
A COMPUTATIONAL APPROACH TO ELICITING AND MODELING

STORIES WITH SOCIAL INTERACTIONS

by

Sergio Antonio Pino Gallardo

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Electrical and
Computer Engineering

Fall 2013

c© 2013 Sergio Antonio Pino Gallardo
All Rights Reserved



A COMPUTATIONAL APPROACH TO ELICITING AND MODELING

STORIES WITH SOCIAL INTERACTIONS

by

Sergio Antonio Pino Gallardo

Approved:
Kristina Winbladh, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
James G. Richards, Ph.D.
Vice Provost for Graduate and Professional Education



ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Prof. Kristina

Winbladh, who guided, encouraged, and supported me in my research and personal

grow. Under her guidance, I acquired a vast set of skills and knowledge. Also, I would

like to thank my coworkers for their support during the development of this project.

Special thanks to my beloved wife Irene for her support and understanding in

this journey, to my mom for helping me to become the person whom I am, to my dad

for his support and love, and to my grandparents for their love.

Finally, I am thankful for the help and support that I have received from the staff

and faculty of the Electrical & Computer Engineering Department of the University of

Delaware.

iii



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Storytelling Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Author-centric Systems . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Story-centric systems . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Character-centric Systems . . . . . . . . . . . . . . . . . . . . 7

2.2 Support for Human Storytelling . . . . . . . . . . . . . . . . . . . . . 8
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 STORY REPRESENTATION MODELING . . . . . . . . . . . . . . 10

3.1 Model representation for capturing the steps taken in a story . . . . . 10

3.1.1 Model for capturing the steps taken in a story . . . . . . . . . 13

3.1.1.1 Components of the Model . . . . . . . . . . . . . . . 14

3.1.1.1.1 Goal . . . . . . . . . . . . . . . . . . . . 14
3.1.1.1.2 Action . . . . . . . . . . . . . . . . . . . 15
3.1.1.1.3 Plot Fragment . . . . . . . . . . . . . . . 15

iv



3.1.1.1.4 Characters and Environments . . . . . . . 16

3.2 Expansion of the model representation to capture the social interaction
changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Model support for a story with social interactions . . . . . . . 17

3.2.1.1 Components of the model that support the social
interaction . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1.1.1 Social Interaction . . . . . . . . . . . . . 18
3.2.1.1.2 Social Network . . . . . . . . . . . . . . . 20
3.2.1.1.3 Social Network Progress . . . . . . . . . . 22

4 MEASURING TOOL: IMUSE . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1.1 Grammar . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.1.2 Story Engine . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 Front end prototypes . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.2.1 Eclipse plugin . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2.2 Plain English writing style . . . . . . . . . . . . . . . 36

4.2 Graphical user interface design . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 The timeline approach for capturing a story . . . . . . . . . . 39
4.2.2 Social Interactions as a Social Network. . . . . . . . . . . . . . 42
4.2.3 Sample story . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

v



LIST OF FIGURES

1.1 An overview of the computer-based tool that helps people of a
domain tell their stories and make their contribution directly into a
body of knowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 A story structure example of a Universe model hierarchy. Where G
stands for author-goal, P for plot fragment, and A for the sequential
step or action. Also, the highlighted path in the structure represents
a single instance of a story which is executed in a top-down fashion. 11

3.2 Class diagram of the concepts and the relationships between those
concepts in the Universe author-goal based model. This diagram
represents clearly the hierarchical structure of the model and the life
cycle dependencies of the components on it. . . . . . . . . . . . . . 13

3.3 Class diagram of the concepts and the relationships between those
concepts in Modified Universe Model which is proposed in this work.
This diagram represents clearly the hierarchical structure of an actual
story in which each author-goal has just one possible plot fragment.
This is because each story is an instance of something that did really
happen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Social Interactions from Éponine with respect to Marius after him ask
her to retrieve Cosette’s address. . . . . . . . . . . . . . . . . . . . 19

3.5 Class diagram of a social interaction. . . . . . . . . . . . . . . . . . 20

3.6 Social Network that represents the different social interactions in the
excerpt plot. Since, in the excerpt, it is not explicit that Félix
Tholomyès is in love with Fantine, then the social interaction between
him and her could be left unstated. However, it is from the point of
view of the user, which could be imply that he was also in love with
her. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7 Class diagram of a social network. . . . . . . . . . . . . . . . . . . . 22

vi



3.8 Change on the social interactions between Fantine and Félix
Tholomyès. The social network after the action was performed
captures the change on the social interactions after Félix abandon
Fantine. The overall figure represents the social network progress. . 24

4.1 Software Architecture when a direct access to the story model is
possible from other subsystems. . . . . . . . . . . . . . . . . . . . . 26

4.2 Proposed software architecture to reduce the coupling between the
GUI and the story model. This architecture provides indirect access
to the story model by using the backend subsystem. . . . . . . . . . 27

4.3 Software architecture to reduce the coupling between the GUI and the
story model when the backend is implemented using the Grammar. 29

4.4 Single abstract way to access the model infrastructure. This pattern
defines the required behavior for process the model objects and
compute the desired representation for example text or a graphical
representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Left: shows a story unit structure that is composed by one goal, one
plot fragment, and at least one action. Right: example of the
breakdown of an instance of the story model into story units. . . . 31

4.6 Class diagram of the story engine’s design using the adapter design
pattern as a delegation approach and the observer (listener) pattern
as the synchronization mechanism. . . . . . . . . . . . . . . . . . . 32

4.7 iMuse Activator solves the requirement of creating the basis of an
underlying Plug-in for the project. . . . . . . . . . . . . . . . . . . 34

4.8 Extension Points that represent the dependencies on other plug-ins
and resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.9 Screenshots of the plug-in implemented on eclipse. Left: grammar
representation of the hypothetical execution of a Universe model
presented in chapter 2. Right: Graphical representation of the story
after capturing the model elements from the grammar-based input
from the user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



4.10 Screenshots of the plain English text metaphor used in the design of
the text editor based prototype. While the sentence creation is on the
right of the GUI, the actual story is on the left of the interface. Also,
a graphical representation of the story is displayed as a directed
graph that represents the current story. . . . . . . . . . . . . . . . . 38

4.11 Presents an example of the story structure of the proposed model
hierarchy using a set of nested timelines. Each Ai represents an action
taken in the story and its location represent the chronological order in
which was taken. The different levels represent the hierarchical nested
structure, which means that a parent action is expanded to provide a
detailed description of it. This structure represents a single instance
of a story which is captured in a top-down fashion. . . . . . . . . . 40

4.12 The graphical timeline available in the prototype for supporting the
elicitation of the flow of actions in the story. . . . . . . . . . . . . . 40

4.13 Main window of the graphical user interface of the prototype. . . . 42

4.14 The steps follow by a user to input the actions of a story using the
GUI. First, the user interacts with the empty time line. Second, the
user clicks over the timeline to create two actions. Third, the user
right click onto the first action to create a nested timeline using “Add
details”. Finally, the user adds three actions to the nested timeline. 43

4.15 Change on the social interactions between Marius and Éponine. The
social network after the action was performed captures the change on
the social interactions after Marius asks Éponine to retrieve Cosette’s
address. This figure represents the social network progress. . . . . . 44

4.16 Left: it shows how a user can modify the social interactions. Right: it
presents the current social network of the sample story. . . . . . . . 45

4.17 The user uses the pop-up option “Modify social states” to access the
dialog that adds, modifies, or eliminates (CRUD) a social state. . . 46

4.18 Left: it presents the dialog to add or remove social states into a social
interaction. Right: it shows the list of social states of the social
interaction between Éponine and Marius. . . . . . . . . . . . . . . . 46

viii



4.19 The steps that a user follow to input the main goal, the characters,
and the first action for a story. Top-left: interaction with an empty
story. Top-right: the user adds the main goal. Bottom-left: the user
decides to add two characters to the story. Bottom-right: the user
adds the first action to the timeline. . . . . . . . . . . . . . . . . . 48

4.20 Top-left: three main actions inserted by the user. Top-right: the user
decides to add details about the changes in the social interactions.
Bottom-left: the user decides to add a social state from Félix
Tholomyès to Fantine. Bottom-right: the user added social states
from each character which results in a bidirectional social interaction. 50

4.21 Top-left: the user decides that the social interactions changed after
Félix Tholomyès abandon Fantine. Top-right: the user specifies how
the values of the current social states changed and decides to add a
new social state named “sad”. Bottom: the user uses the interface to
check the current values of the social interaction of Fantine with
respects to Félix Tholomyès. . . . . . . . . . . . . . . . . . . . . . . 51

ix



ABSTRACT

In this work, we explored a middle point between the common approach of

sharing knowledge using oral narratives and the automatic approach of generation of

narratives by computational tools. We describe a new model to capture the flow of

events of a story and the changes in the social interactions between the characters

as the story progresses. We present a description of the software implementation of

the model. Also, we provide a discussion about the design and implementation of

the computational tool used to capture stories with the proposed model. The main

motivation of this work lies on the fact that each domain of knowledge has people

with a wide range of experience and expertise in that domain. Also, within each

domain people use narratives as an effective medium of transferring their knowledge.

A crucial point is that individuals of a domain have the potential of making valuable

contributions to the body of knowledge and that those contributions are often driven

in a narrative fashion. In addition, as interactive entertainment continues its role

as a pervasive element of today’s culture, the potential of a meaningful experience

through the use of narratives can only be achieved if there are tools that aid a wider

audience in the creation of those narratives. The AI community has recognized the

overwhelming task of authoring stories for interactive entertainment, which demands

expertise in computational models for the structure of the story and its execution, as

well as expertise in creating the content of the story. Thus, establishing a computational

representation of narratives that aid individuals to share their experience and expertise

could open the door for capturing the underlying knowledge of a domain.

x



Chapter 1

INTRODUCTION

Each domain has people with a wide range of experience and expertise in that

domain. Within a domain, it is a common practice for people to rely on narratives

as a way to communicate their knowledge. As a result, narratives have been estab-

lished an effective medium of transferring knowledge. For example, a Xerox PARC

study of technicians [1] shows that the diagnosis process and the distribution of tech-

nical knowledge are accomplished within the technicians by means of oral narratives.

This example reveals that narratives through storytelling are one of the ways individ-

uals make contributions to the body of knowledge of a domain. Turner describes the

problem with the storytelling process as an apparent simple task. On its surface, this

task is composed of a simple form that can be captured by a formalism. However, it

has an underlying content that is a complex web of author goals, reader expectations,

and cultural knowledge [2]. A crucial point is that individuals of a domain have the

potential of making valuable contributions to the body of knowledge and that those

contributions are often driven in a narrative fashion. Thus, establishing a computa-

tional representation of narratives that aids individuals to share their experience and

expertise could open the door for capturing the underlying knowledge of a domain.

Next, as interactive entertainment continues its role as a pervasive element of

today’s culture, the potential of a meaningful experience through the use of narratives

can be only be achieved if there are tools that aid a wider audience in the creation of

those narratives [3]. There are a number of recent contributions from the AI community

that explores the creation of storytelling systems for automatic story generation [4, 5, 6,

7, 8]. These works recognize the overwhelming task of authoring stories for interactive

entertainment, which demands expertise in computational models for the structure of

1



the story and its execution, as well as expertise in creating the content of the story.

In general, they try to model the knowledge and processes used to tell a story [9],

and by creating a computational tool they use the modeling in order to generate the

narratives.

The main motivation of this work is based on the fact that each domain of

knowledge has people with a wide range of experience and expertise in that domain.

In fact, a crucial point is that individuals of a domain have the potential of making

valuable contributions to the body of knowledge and that those contributions are often

driven in a narrative fashion. Although many people find it easy to relate to narra-

tives, they contain ambiguities and unstated assumptions. It is therefore important to

establish a computational representation of narratives and provide automated help to

capture those narratives in a formal representation. Figure 1.1 shows the concept of

a computational tool to capture stories from people in a domain into a formal repre-

sentation. First, a person introduces their story by interacting with the computational

tool. Next, this process results in a formal representation of the story that can be

stored for later analysis. Finally, since the stories are captured and then stored, this

could open the possibility that other persons in that domain could reuse those stories.

Domain A

Computational 
tool

Body of Knowledge

G1

P1

A1 A2

G2

P2

A3 A4 A5 A6

G1

P1

A1 A2

G2

P2

A3 A4 A5 A6

G1

P1

A1 A2

G5

P6

A11

P8

A13

G6

P7

A12

Input story
Formal

 representation

Benefit

Figure 1.1: An overview of the computer-based tool that helps people of a domain
tell their stories and make their contribution directly into a body of
knowledge.

2



In this work, we explore a middle point between the common approach of sharing

knowledge using oral narratives and the automatic approach of generation of narratives

by computational tools. We describe a new model to capture the flow of events of a

story. In addition, the model captures changes in the social relationships between the

characters of a story that result from their actions. We describe the rationale for such

a model and relate it to previous developments in storytelling systems presented in the

literature. We present a description of the software implementation of the model. Also,

we provide a discussion about the design and implementation of the computational tool

used to capture the user’s stories with the proposed model.

The main contributions of this work are: (1) a model to represent the flow of

a story and the changes of the social interactions (social relationships) introduced by

the actions of story characters; (2) the software design of the model and the details of

its implementation in an object-oriented programming language; (3) a computational

tool that aids users to create stories in the underlying model.

The remainder of this thesis is organized as follows. In the next chapter, we

present a review of the storytelling systems that have been proposed in the literature.

Chapters 3 and 4 describe the proposed system for eliciting and modeling stories as

event flows with social interactions. Finally, conclusions are drawn from the experience

on modeling and implementing the system.

3



Chapter 2

BACKGROUND

Storytelling appears to be a simple task because, because at a first glance, telling

a story seems simple. However, telling a story is a difficult task even for adults, since in

addition to the form, there is an underlying story content which contains the meaning of

the story. Indeed, it is in the content where the difficulties originate due to the existence

of a complex web of author goals, reader expectations, and cultural knowledge that

are part of either its creation process or its assumptions. Thus, to understand the

complexities of storytelling, it is necessary to understand what an author is trying to

achieve. As a result, research with the intention to build a computer program with the

capacity of telling stories have determined that it is key to figure out and model the

process an author uses to achieve his goals [2].

The effort in storytelling systems (SS) can be decomposed into three main

groups: author-centric, story-centric, and character-centric systems. First, author-

centric systems try to model the thinking processes of an author. Character-centric

systems focus on the modeling of the goals and plans of the characters, so that the

stories result from characters pursuing their autonomous goals and plans. Finally,

story-centric systems focus on the modeling of the structural properties of the story,

as a consequence the system tells stories by manipulating these structural properties

[9]. A SS is thus a system that seeks to model the necessary knowledge and process

to tell a story, and it is based on a clear-cut definition of the concept of story. To

enable further discussion, although within the storytelling systems there is not a stan-

dard definition of what a story is, this work uses the definition provided by Gervás

[10]: A story is a highly complex intellectual product that exercises a wide range of the

cognitive abilities of humans, involving as it usually does perceptions of time and space,

4



attribution of knowledge to particular characters, identifying character goals, validat-

ing character plans to achieve the goals, accepting plan failure in the face of obstacles,

attributing feelings to characters, associating character intentions with feelings, devel-

oping empathy with characters, and including the underlying skill of natural language

understanding.

On the other hand, for a story to be satisfactory its elements have to be merged

in a complicated manner that is difficult to define. Those elements have to be manip-

ulated and include characters, personality, knowledge that each character possesses,

character’s goals, character’s feelings or emotions, dialogues between the characters,

and so on [10].

2.1 Storytelling Systems

The creation of a successful story-generation system requires the consideration

of both the intended audience experience and the structures presented for authoring

the elements of that experience. Next, the system has to be expressive and controllable

so that the underlying model effectively form the audience experience. Also, the system

should be authorable by trying to mimic or fake in some feasible way the skills and

expectations of traditional authors[11].

2.1.1 Author-centric Systems

In author-centric systems, the task of the storytelling system is approached from

the perspective of a human author. Thus, these systems attempt to model the processes

undergone by a human author during the creation of a story, whether consciously or

otherwise [12].

Ani is an early storytelling system that when presented with a description of

a film, attempts to create an animated film based upon that description. In this

system, an author presents a partial description of the personality and appearance of

the characters involved, of the relationships and interactions among the characters,

5



and of the type of film desired. Then, the system produces a detailed film description

using the previous information and a set of more general knowledge [9, 13].

Lebowitz introduces the Universe author-goal based story generation model,

which is based on a Hierarchical Task Network (HTN) style model. The former models

the structure of a story as a set of hierarchical plans that describe one or more ways

to achieve an author goal in the story [3, 14, 15, 16]. Based on this model, several

authoring tools have been proposed, such as Wide Ruled a text-based story planner that

aims to provide a friendly authoring tool for non-technical users [3, 5]. Thus, it extends

the Universe model by providing an easy to use graphical user interface, support for

the author/reader interactivity, and the addition of episodic memory elements to the

model. Similarly, Story Canvas is a visual authoring tool for the creation of interactive

and generative stories. Story Canvas uses as a framework that integrates, for authoring

and interaction, the language of storyboards and comics [17, 18]. This integration

provides the user with visual authoring metaphors for all the components of the story

generator, since as in the films and computer animation tasks, these techniques provides

to the user with a spatio-temporal visualization of the story. As a way to generate the

stories, Story Canvas uses the reactive planning language, called A behavior language

(ABL), designed specifically for authoring believable agents-characters that express

rich personality [19].

Similarly, the system called Minstrel is capable of generating stories that make a

point as well as being believable and logically consistent [20]. This system has received

attention recently with the introduction of a rational reconstruction of the missing

project [6, 21, 22, 23].

Other systems such as Scenejo, which makes special emphasis on the creation of

conversational threads for virtual actors using pattern matching, employing transition

graph representations as the main interface for authoring. This system prescribes that

authors should be able to define the way a conversation develops at any given time

[8, 24].

6



2.1.2 Story-centric systems

In these systems the story-generation proceeds from an abstract representation

of the story by modeling the its structural properties. Subsequently, a story-centric

system has an approach similar to a context-free grammar, and the discussion centers

on an exhaustive analysis of the linguistic attributes of story grammars [12]. Capturing

the idea of a story using a grammar-based representation, has the main objective of

describing the inter-sentence bindings that arise in simple stories [20, 25].

As an example, the system called Brutus tells stories about a betrayed and a

betrayer. In this system, the generation process is incremental since it needs to fill

the roles of the characters in a constrained way that ensures the role of Betrayer or

Betrayed. Then, the production of a plot requires a hand-creating process for the

characters, plans, and events. Finally, the events must be structured into a story

grammar for their presentation to the audience [26, 27].

2.1.3 Character-centric Systems

Under the category of character-centric systems, the task of story generation

is addressed by the creation of a world, and the characters within it. Then, for each

character there are a set of goals and plans so that the stories result from characters

pursuing their autonomous goals and plans [12].

Tale-spin, one of the earliest approaches to storytelling systems, simulates a

small world of characters and their motivation to act in that world [28]. Tale-spin

pursues the previous process by modeling the goals and plans of animal characters

[9, 12] and the resulting stories are similar to the fables of Aesop [29].

The Virtual Story Teller has a multi-agent approach in which there is a director

agent that looks after the plot. Similarly to Tale-spin, each agent has its own knowledge

base (representing what it knows about the world) and rules to govern its behavior. In

addition, the director agent has basic knowledge about the plot structure and exercises

control over actions performed by other agents. The director exercises control in terms

of either environmental actions by introducing new characters and objects, motivational

7



actions by giving characters specific goals, or prescriptive actions by disallowing a

character’s intended action. However, the director agent cannot force other characters

to perform specific actions [7, 10, 30].

Another system is Fabulist, which splits the narrative generation process into

three tiers: fable generation, discourse generation, and media representation. Interest-

ingly, the generation process of the fable uses a planning approach that simultaneously

reasons about causality, character’s intention, and character’s motivation. As a result,

the system produces narrative sequences that are causally coherent and have elements

of character believability. Moreover, the system introduces specific features that al-

low the planner to apply modifications to the given input world in order to meet the

required goal [10].

Comme il Faut (CiF) is a model that focuses on social interactions and is de-

signed to allow autonomous characters to play social games. This system seeks to

represent and reason over social situations and the different behaviors that may expose

when different character personalities perform similar roles. In addition to the use of

software engineering and computer science techniques, the model incorporates concepts

from the areas of sociology, psychology, and knowledge of authoring and drama with

the objective of supporting the social artificial intelligence system [4, 31]. Because this

novelty, CiF has been used as the basis for the creation of several games, such as the

role-playing games RPG [32, 33, 34], and social simulation games [35].

2.2 Support for Human Storytelling

Stories are a key part in the human daily life, for example, Storytelling is a

cornerstone in teaching from kindergarten to higher education [36, 37]. Thus, the

creation of systems that support people in telling stories to another have been proposed.

Systems like ReQuest, an intelligent story authoring support system that as-

sists a non-expert author in creating meaningful narrative content, allow non-technical

users for the authoring of plots. This system uses a natural language-based authoring

paradigm in which the story events, states, and character goals are individually written

8



by the users. In addition, the system exploits this information and generates questions,

using the Quest psychological model of question answering [38]. This model simulates

the question-answering performance of humans when responding to open-class ques-

tions about the narrative content that a hypothetical audience might have about the

story in order to help the author to further elaborate on the narrative [39, 40, 41]. In a

similar fashion, the Asking Questions and Understanding Answers system (Aqua), uses

a question-based theory of explanation, story understanding, and learning. So that it

is possible to create a model of a dynamic understander that is driven by its questions

or goals to acquire knowledge [42].

2.3 Discussion

As evidence from the previous section, the field of computational storytelling is

rich, and the scope of possible research directions is substantial. Thus, having identified

these trends from the previous works in the field, we now turn our attention to what

is missing. Current trends and expressed needs include a midpoint research between

Support for Human Storytelling and Authoring tools for Storytelling Systems; tighter

integration between Story Database Systems and support for authoring a story; and

the consideration of using stories as a representative of a body of knowledge.

9



Chapter 3

STORY REPRESENTATION MODELING

In this section, we describe the story representation that was proposed in this

work. Our model of story representation is based in a great part on the analysis

of the author-centric systems approach presented in the previous chapter. Within

the models that were surveyed we found that the Universe author-goal based model

created by Lebowitz offered a good starting point from which we can create our model.

The key point of the analysis of those models is that by definition their intent is

to capture an abstraction of the process that has to be followed to create a story

in an automatic fashion. On the other hand, this work focuses on the elicitation

of stories from a user rather than on the generation of stories with an automatic

computational tool. Although the final application of the surveyed models is different,

these models offer from a modeling and computational perspective good insights on how

to create a solution that elicit stories from users. Indeed, we wanted to create a solution

for the inverse problem of previous approaches, then in a concise form our problem

is the capturing of a story from a narrative source (user) into a model that keeps

the structure and complexity of the narrative, rather than generating automatically a

narrative from a model of a specific type of story. In the same fashion, we extracted

ideas for the modeling and capturing of the changes of the social interactions from

currently proposed models, to create playable games, that take into account the social

complexities among players.

3.1 Model representation for capturing the steps taken in a story

Lebowitz introduces the Universe author-goal based story generation model,

which is based on a Hierarchical Task Network (HTN) style model. The HTN models

10



the structure of a story as a set of hierarchical plans that describe one or more ways

to achieve an author-goal in the story [3, 14, 15, 16].

G1

P1

A1 A2

G2

P2

A3 A4 A5 A6

G5

P6

A11

P8

A13

G6

P7

A12

G3

P3

A7

P4

A10

G4

P5

A9

A8

Figure 3.1: A story structure example of a Universe model hierarchy. Where G
stands for author-goal, P for plot fragment, and A for the sequential
step or action. Also, the highlighted path in the structure represents a
single instance of a story which is executed in a top-down fashion.

The Universe author-goal story generation model approach is to model the story

structure as a set of hierarchical paths that enclose one or more ways to accomplish a

story goal assigned by the author. This model describes a Hierarchical task network

(HTN-style) of the structure of the story. As a result, the generation of the story uses

a hierarchical arrangement of author-goals, and tasks to accomplish each goal. Where

an author-goal represents the story intentions of the author, and the tasks (denoted as

plot fragments) consist of ordered steps that can achieve a goal [3]. The hierarchical

nature comes from the possibility of having subgoals nested into those steps. Figure 3.1

shows this concept with an example, the outer goal has one plot fragment with two

11



steps. However, one of the steps has a nested subgoal that has a plot fragment and four

steps, and so on. This hierarchical structure makes it possible for the user to create

stories with a considerable complexity by nesting the basic building block composed

by an author-goal, a plot fragment, and some steps. In terms of the generation, this

model uses a randomized approach in which at runtime the program decides from an

author-goal what plot fragment (of the pool of plot fragments that meets the input

parameters) is going to be generated.

In our example in Figure 3.1, an instance of the story that could be the result

of the story generation is as follows. First, let’s assume that G1 is “prepare a romantic

dinner”, P1 is “at home”, A1 is “clean kitchen”, and A2 is “prepare dinner”. Thus,

the first level generates G1, P1, A1, and A2. Likewise, A2 has a nested subgoal that

constitutes the second level of the hierarchy where the generation is G2, P2, A3, A4,

A5, A6. To follow the example, G2 could be “pursue the preparation of the dinner”

which expands the step A2 by adding more details. Next, P2 could be “italian recipe”

with the steps A3 as “prepare pasta”, A4 as “prepare salsa”, A5 as “select wine”, and

finally A6 as “serve the dinner”. However, it is important to notice that A3 has a

nested subgoal, this means that before executing A4 the system has to go down in

the hierarchy of A3 until reaching a leaf step (in this case A10). In our example, G3

could be “pursue preparation of pasta”, P3 could be “use home-made pasta”, and P4

as “use factory-made pasta”. Also, an interesting characteristic of the execution is that

for G3 there are two possible plot fragments, P3 and P4, in which the system decides

randomly which one to generate. In the example, it is clear that the steps (A7, A8)

for P3 are more complex than the steps for P4, because the preparation of homemade

pasta is far more complex than preparing a factory-made package of pasta. Similarly,

when the generation reaches A6 the system goes down in the hierarchy of the nested

goals until A12 is generated. Finally, the story finishes its generation in A6 since is the

last step generated.

A formal description of the components of the Universe model could be rep-

resented as a class diagram as in Figure 3.2. In its simplest form, the model begins

12



with the user defined story objects. These objects can be either a character or an

environment, and contain associate trait pairs and relationships. Then, we can iden-

tify the author-goal as the principal unit of story planning since each goal implies a

set of one or more plot fragments that capture a set of steps or actions that fulfill its

parent goal. Each plot fragment could have ordered preconditions that contain ordered

constraints. These preconditions have to be true in order to consider the plot fragment

as a candidate for the generation. Additionally, each plot fragment contains a list of

sequential steps that can modify the story objects (characters and environments) or

pursue subgoals.

Author Goal

Plot 
Fragment Precondition

ConstraintAction

1

0..1

1

1..*

1

1..*

1 *

1

*

Story 
Object

Character Environment

Figure 3.2: Class diagram of the concepts and the relationships between those con-
cepts in the Universe author-goal based model. This diagram represents
clearly the hierarchical structure of the model and the life cycle depen-
dencies of the components on it.

3.1.1 Model for capturing the steps taken in a story

In this work, we focused on the creation of a model that could solve the inverse

problem with respect to the automatic story generation. In this approach rather than

going from the modeling of the story to a generated narrative that a user can read, we

13



focused on the backwards process. Thus, the high-level idea is to capture a narrative

in terms of the components of the model.

For this purpose, we have been guided by assumptions that offer both challenges

and opportunities. First, a user will input one story at a time, which is part of his

first hand experience with a task, this means that we expect stories of something that

did happen. Second, within a domain of knowledge the users will use a common set

of concepts in order to describe a situation, their expertise, or their experience in that

domain. Third, the stories that a user will input have a clear main goal and a set of

actions that the user took to achieve the goal. Finally, as several users input their

stories in the system, the accumulated body of knowledge represented by those stories

grows and becomes richer.

3.1.1.1 Components of the Model

A story in our model consists of a hierarchical arrangement of basic building

blocks called story units. A story unit is composed by one goal, a plot fragment, and

at least one action on that plot fragment. As in the case of the Universe model, it

is possible to have nested subgoals by creating an action that pursues a subgoal, this

explains the hierarchical structure presented in our model. However, in our model

each goal can have just one plot fragment, rather than multiple plot fragments as in

the Universe model. This enforces the assumption that a story is a situation that did

happen and, as a result, there are not possible ramifications to explain how the goal

was achieved. Figure 3.3 shows a class diagram representation of the proposed model.

3.1.1.1.1 Goal

The goals in our model share some characteristics with their Universe’s counter-

parts. In both cases, the goals constitute in the primary organizational components of

the story. However, in our model just the first created goal can be the initial goal for

a particular story, which is not necessary in Universe. Each goal has a name property

that can have a weak or a strong semantic depending on the case where the goal is the

14



initial goal or not. First, in the case of the first goal, the name property has a weak

semantic since its intent is to assign the global objective of the story entered in the

system, for example, “Cooking a pie”, or “Pulling over a car on the highway”.

On the other hand, a subgoal has a name property with a semantic that captures

specific information about the subgoal. In particular, it captures the data that answer

the “Who?”, “Does what?”, “to Whom?”. First, the “Who?” information identifies

in the story the character that performs the goal such as “Police officer”, “Chef”,

or “Victor”. Second, the ”Does what?” is the piece of information that captures an

action that the character “Who?” performed such as “prepare salsa”. Finally, the

“to Whom?” captures a second character who toward the action was performed. In

fact, this piece of information could represent either an individual character such as

“Driver”, a group of characters “crowd”, or could be empty.

3.1.1.1.2 Action

Actions are the core of the story elicitation process. They capture the data

that provide information about the “Who?”, “Does what?”, “to Whom?”. Thus, the

system captures a description of an event that took place in the story by eliciting the

previous information. In terms of the semantics, an action has the same semantics as

in the case of the subgoals 3.1.1.1.1.

3.1.1.1.3 Plot Fragment

Plot fragments organize, in a first-input first-output (FIFO) fashion, the spe-

cific actions (steps) that take place to fulfill its parent goal. The FIFO organization

preserves the chronological order of the execution of those actions, and also enforces

the non-overlapping of them. In addition, a plot fragment may have preconditions that

contain constraints that can capture details about the environment, other characters,

or other aspects. Taking the “prepare a romantic dinner” story presented in Figure 3.1,

it is easy to see that the actions A3, A4, A5, and A6 are taken to fulfill the goal G2

when the plot fragment (P2) is selected. In fact, since P2 restricts the recipe to be an

15



Goal

Plot 
Fragment Precondition

ConstraintAction

1

0..1

1

1

1

1..*

1 *

1

*

Story 
Object

Character Environment

Figure 3.3: Class diagram of the concepts and the relationships between those con-
cepts in Modified Universe Model which is proposed in this work. This
diagram represents clearly the hierarchical structure of an actual story
in which each author-goal has just one possible plot fragment. This is
because each story is an instance of something that did really happen.

italian recipe, then the P2’s actions to prepare the dinner are italian-based. Using this

approach it is possible to record “why” the actions were taken in the specific way. The

preconditions and their constraints have a natural language format that is up to the

user of the model. The intuition here is that two different stories can have the same

goal and even the same actions, but they could be taken in a different order. Thus, the

preconditions can help to capture insights about why the actions were taken in some

way and not in another.

3.1.1.1.4 Characters and Environments

Each character conceptually refers to an object that appear in the story and

where each one of those objects can have a set of traits represented as attributes.

For example, the character “Police officer” can have the traits: age, height, rank,

department, and so on. On the other hand, each environment conceptually refers to

16



those locations where the story took place, and that as well as the characters they

have a set of traits. Similarly, environments refer to an object that appear in the story

and that have a set of traits. However, while a character takes an active role in the

development of the story, an environment is a passive entity that is part of the story.

3.2 Expansion of the model representation to capture the social interaction

changes

Recently, some approaches have proposed to construct interactive experiences in

video games that enable the possibility of include social aspects in the game experience.

A good example of an interactive narrative based game that offers a high level of social

play is the experimental game called Façade [19]. Comme il Faut is a more recent

work that explores the construction of a playable social model [4, 31], that in its first

incarnation used the Goffman’s dramaturgical analysis, to encode patterns of normal

social behavior as the basis for the creation of an abstraction that enables a social play

(social games). The definition of these games is a set of social interactions between

characters whose function is to modify the social state existing within and across the

characters. Also, this model tries to represent and reason over the social situations

that appear as a consequence of the different personalities being placed in similar

roles. Another important point is that the model focus on the logic of social statuses

and relationships between characters. The social status is an important concept that

represents either a boolean relationship between two characters, or a scalar relationship

representing the degree of a single character’s perception or feeling towards another

character [31]. Finally, the system has the concept of “social network”. This concept

is a metric used to measure the relationship between any two characters, so every

character in every net has a link to every other character.

3.2.1 Model support for a story with social interactions

This section presents an expansion of the model presented in section 3.1.1 so

that it is possible for a user to introduce, along with the flow of steps in the story,

17



the information on how those steps could change the social relationships between the

characters of the story. The design of the expansion of the model used the assumption

that after a character performs one action over another character, there could be a

possible change in the social state of the story. Thus, the social interactions, in the

model, capture the potential changes produced by the execution of an action in the

social interactions (relationships) of the characters with other characters.

3.2.1.1 Components of the model that support the social interaction

In order to incorporate the concept of social interactions into a story, the model

has to be modified to include new components that make it possible to handle such

stories. At a high level view, the model captures at particular times the social inter-

actions between each character and its peers. In addition, after each action the model

can capture the changes that the execution of that action generated in the interactions

between characters.

3.2.1.1.1 Social Interaction

A social interaction is the basic concept that encodes the relationships or percep-

tions of a character with respect to another character. It is an unidirectional recording

of the social interaction of character A with respect to character B. This unidirec-

tional restriction is necessary since the two characters can potentially have different

perspectives of each other. Also, a social interaction consists of both a temperature

that summarizes the social interaction, and a list of social states.

A social state represents a single relationship or perception of character A with

respect to character B, and it has a key-value pair representation. The value can be a

boolean relationship true or false (e.g. Character A does not know Character B can be

described as Character A knows=false Character B). Also, the value can be a numeric

relationship that represents the interaction’s power with a value between 0 to 5 (e.g.

Character A has a big crush with Character B could be represented as Character A

love=5.0 Character B). Figure 3.4 shows an example of how the social interactions

18



can represent an excerpt plot from the novel Les Misérables in [43]. The excerpt is as

follows: “After he and Cosette leave, Marius asks Éponine to retrieve her address for

him. Éponine, who is in love with Marius herself, reluctantly agrees to do so”. This

example shows the unidirectional social interaction from Éponine to Marius with two

social states. First, the social state “love” captures the fact that she is in love with

Marius and the value represents the strength of that perception, that in this case is

the maximum. Next, the social state “unenthusiastic” captures the fact that Éponine

reluctantly agreed to help Marius after his request.

MariusÉponine

love=5
unenthusiastic=4

Figure 3.4: Social Interactions from Éponine with respect to Marius after him ask
her to retrieve Cosette’s address.

In the model, a social interaction is a weighted edge that links together Character

A (source) with Character B (target) as in Figure 3.4. In addition, this weighted edge

encapsulates the social interaction concept as two components, named a temperature

and a list of social states. The weight on the edge represents the temperature of

the social interaction with a number. This weight is an optional feature that the

implementer of the model can decide on whether to support or not. In fact, if it

is providing support for the weight, then it has a computational scheme based on a

weighted average of the values of the social states, and can be defined as follows,

t =

∑n
i=1wipi∑n
i=1 |wi|

, (3.1)

where pi is the power in the social states that have a numeric value (a value from

0 to 5). The wi are the weights for each pi and represents the importance of the social

state in the overall temperature of the social interaction. In addition, the weight’s

19



sign of wi could be positive or negative which depends on whether or not the concept

represented by the social state is a positive or negative concept. This computation

can be accesses using the method call getSocialMeter() that returns a floating-point

number. For example, in Figure 3.4 the social state “unenthusiastic” (state k) has

power pk = 4, but since it is a negative concept then its weight wk should be a negative

number that affects the temperature of the interaction. Hence, in this case the weight

wk is a negative value in order to reflect the impact of the concept. Finally, Figure 3.5

shows a class diagram representation of the social interaction concept.

WeightedEdge

+setSocialState(k: String, v: Object): void
+getSocialState(k: String): Object
+getSocialMeter(): float

-meter: float
-states: Map<String, Object>

Social Interaction

Figure 3.5: Class diagram of a social interaction.

3.2.1.1.2 Social Network

At a particular time, the social interactions between each character and its

peers, are a description of the relationships or perceptions of the entire set of charac-

ters participating in the story. Since a social interaction encodes the relationships or

perceptions between two characters, we can expect that there is a potential social in-

teraction between each character and its peers. Thus, the model captures the different

social interactions between the characters as a graph representation that we referred

as the Social Network. This network records the different social interactions by linking

two nodes (characters) with an edge (a social interaction) when such a link should be

20



established. This means that two characters have an edge just when the user declares

that the story required it so.

Félix 
Tholomyès

Fantine

love=5

ListolierDahlia

FameuilZéphine

BlachevelleFavourite

love=3

love=4

love=1

friend=true

friend=true

friend=true

friend=true

friend=true

friend=true

love=2

love=5

love=4

Figure 3.6: Social Network that represents the different social interactions in the
excerpt plot. Since, in the excerpt, it is not explicit that Félix Tholomyès
is in love with Fantine, then the social interaction between him and her
could be left unstated. However, it is from the point of view of the user,
which could be imply that he was also in love with her.

Figure 3.6 shows an example of how the social network represents an excerpt

from a plot of the novel Les Misérables in [43]. In this plot, the story has eight

characters named Fantine, Félix Tholomyès, Listolier, Fameuil, Blachevelle, Listolier,

Fameuil, and Blachevelle; and the story dictates the interactions between them. In this

case, the story is as follows: “Years earlier in Paris, a grisette named Fantine was very

much in love with Félix Tholomyès. His friends, Listolier, Fameuil, and Blachevelle

were also paired with Fantine’s friends Dahlia, Zéphine, and Favourite”. This example

21



shows the social interactions within the different characters in the story. From the

Figure 3.6 it is possible to be aware of the different levels of power of each interaction.

This could be helpful to understand how the actions taken before yielded into this

social network or how the actions taken after produced certain results. Notice that, in

the excerpt, it is not explicit that Félix Tholomyès is in love with Fantine, then the

social interaction between him and her could be left unstated. However, is the user

who has the discretion of adding or not a social interaction, which in this case could

imply that Félix Tholomyès was also in love with Fantine, and as a result, add such

social interaction in the social network.

The social network is modeled as a weighted graph, where the nodes are the

characters participating in the story, and the edges are the social interactions connect-

ing the two characters (Figure 3.6). The weight of the edges is the temperature of the

situation as long as it is available as presented in section 3.2.1.1.1. Finally, Figure 3.7

shows a class diagram representation of the social network concept.

+SocialNetwork(old: SocialNetwork)
+addCharacter(ch: Character): boolean
+getCharacters(): Set<Character>
+setRelationship(from: Character, to: Character, k: String, v: Object): boolean
+getRelationship(from: Character, to: Character, k: String): Object
+getSocialInteraction(from: Character, to: Character): SocialInteraction

-graph: WeightedGraph<Character, SocialInteraction>
SocialNetwork

WeightedGraph

Character

Social Interaction
1

1

Figure 3.7: Class diagram of a social network.

3.2.1.1.3 Social Network Progress

One of the assumptions that guided the design of the model, states that after

a character performed one action over another character there could be a potential

change in the social state of the story.

22



Those actions could change the social interactions between one or more charac-

ters in a social network. Thus, if this action changed one or more social interactions

between characters, then a new social network will represent the new social relation-

ships. For example, an act of courage from character A to save the life of character

B could trigger a change of perception in character B that add the social state “re-

spect=5”. Similarly, an act of betrayal from character B to character C can destroy

the trust that character C had with respect of character B, by modifying the social

state “trust” from value 5.0 to 0.

Thus, the changes in a social network at a given “time” to another social network

could be captured using the concept of finite state machine. Since, each social network

contains the social interactions between characters at a given “time”, then a social

network could be considered an analog concept as the state in a finite state machine. In

addition, the assumption that an action introduces the changes in the social interactions

can be considered analogous to the transition, caused by a trigger, from one state to

another. Hence, while a state in the finite state machine represents a social network,

a trigger that causes a transition between states represents an action. However, the

creation of new social network (state) in this state machine happens if and only if the

performed action introduces a modification (creation/update/deletion) in at least one

of the social interactions.

Figure 3.8 shows an example of the concept of the social network progress by

representing an excerpt of the novel Les Misérables in [43]. This excerpt of the story

is a continuation of the one presented in section 3.2.1.1.2 and it is as follows: “The

men (Félix Tholomyès) abandon the women (Fantine), treating their relationships as

youthful amusements. Fantine must draw on her own resources to care for her and

Tholomyès daughter, Cosette”. In the example, we made a simplification by focusing

on the social interaction between Fantine and Félix Tholomyès. As a consequence, the

details of the characters and the social interactions that correspond to Fantine and

Félix Tholomyès friend are hidden in the figure. Also, assuming a uniform distribution

of the importance (weight wi) for each social state, that in this example are “love”

23



and “sad”, then (3.1) computes the temperature of interaction with a result of t =∑n

i=1
wipi∑n

i=1
|wi|

= 5∗0.5+5∗−0.5
|0.5|+|−0.5| = 0. In fact, this result of zero in the temperature of the

interaction (perception of Fatine towards Tholomyès) can be seen as an overview of

what Fantine was feeling after Tholomyès left her alone.

Félix 
Tholomyès

Fantine

love=5

Félix Tholomyès abandon Fantine

Félix 
Tholomyès

Fantine

love=5
sad=5

love=0

start end

Figure 3.8: Change on the social interactions between Fantine and Félix Tholomyès.
The social network after the action was performed captures the change
on the social interactions after Félix abandon Fantine. The overall figure
represents the social network progress.

24



Chapter 4

MEASURING TOOL: IMUSE

4.1 Software Architecture

In the design of the elicitation tool, we relied on concepts of system design to

help us create a software solution by considering the internal structure of the system,

its hardware configuration, and in general how the system can be realized [44]. In this

section, we focus on the details of the software architecture of the system. Thus, this

section provides a description of the subsystem decomposition in terms of subsystem

responsibilities, the dependencies among subsystems, and the control flow of the sys-

tem. The decisions were driven mainly by the following premises. First, the system

decomposition has to be designed in a way where the complexity of the subsystems is

such that could be assigned to an individual developer and realized independently. Sec-

ond, in terms of coupling (number of dependencies between two subsystems) the design

should enforce the loose coupling of the different subsystems so that the subsystems

could be considered almost independent. Also, in terms of cohesion (number of depen-

dencies within a subsystem) the design should clearly define the boundaries of each

subsystem so that the dependencies within the subsystem yields in a high cohesion.

Finally, since we anticipate a system with a growing complexity as more requirements

are included, the design should use an architectural style that reduces the potential

difficulty in modifying or correcting weakness in the system decomposition.

As stated before, this research sought for establishing a computational repre-

sentation of narratives that aids individuals to share their experience and expertise on

a domain. We anticipated that the component that would have more changes in the

design was the graphical user interface (GUI), which is the component that supports

25



the elicitation of those narratives. Thus, the proposed software architecture has the

goal of reducing the coupling between the GUI and the implementation of the story

model. One approach uses a direct access to the story model subsystem as presented

in Figure 4.1. In this approach a subsystem that needs to access the story model

(create/read/update/delete) simply issue a method call through the objects from the

story model subsystem. Unfortunately, this leads to high coupling between the GUI

subsystem and the story model subsystem which is clearly not the goal of this project.

Story model

Character 
Window

Actions 
Window

Social Interactions 
Window...

GUI

Figure 4.1: Software Architecture when a direct access to the story model is possible
from other subsystems.

Hence, we introduce an intermediate subsystem, denoted as backend, to reduce

the coupling between the story model and the gui subsystems. This subsystem has

the goal of hide the story model subsystem from the other subsystems. In other

words, the client subsystems will use the interfaces or services provided by the backend

subsystem, which it the one responsible for issuing the method calls to the story model

subsystem. For this reason, if a change in the story model occurs, then it is only

needed to change the backend subsystem. Hence, this technique decreases the overall

coupling of the subsystem decomposition. The proposed software architecture reuses

the Model-View-Controller (MVC) architectural style to define how the Graphical user

interface subsystem should be implemented. In addition, the architecture defines that

the GUI subsystem can access the story model in the following way. First, the model

26



subsystem of the GUI consumes the services provided by the backend subsystem of the

Story representation. Next, the backend deals with the complexities of using the Story

model subsystem by consuming the services exposed by that subsystem.

Story representaion

ModelView

Controler

backend Story model

1

1*

*

initiator repository

subscriber

notifier

GUI

Figure 4.2: Proposed software architecture to reduce the coupling between the GUI
and the story model. This architecture provides indirect access to the
story model by using the backend subsystem.

Figure 4.2 shows the class diagram of the software architecture. This figure

presents two main components named “GUI” and “Story representation”. First, as

described before the GUI use the MVC architectural style to separate the user interfaces

(controller and view) from the domain knowledge (model), since these interfaces are

more likely to change than the model. Second, the story representation component

exposes the backend as the interface to consume services provided by the story model,

and in that way it reduces the dependencies from the user interface and the story

model.

Section 4.1.1 presents a discussion of the implementation of the different designs

that realize the backend subsystem. Then, section 4.1.2 presents an overview of the

development of the different prototypes of the front end graphical user interface. Fi-

nally, section 4.2 focus on the description of the final prototype of the user interface

that includes the proposed techniques for facilitating the elicitation of the narratives

from the users.

27



4.1.1 Backend

This section describes the different realizations of the backend subsystem and

the exposed interfaces that allow client code to consumes the functionality of the sub-

system. First, a context-free grammar was designed to represent the objects in the

model so that it is possible to input stories by representing them as string generated

by the grammar language. Second, a story engine was designed in order to access

directly to the model objects without the need of the grammar format.

4.1.1.1 Grammar

As presented in section 3.1.1 the model for capturing the flow of steps in a story

can be used for elicitation purposes. Thus, the elicitation process can be considered as

a given set, S, of input stories expressed in natural language, and the task is to create

an algorithm that maps each story into a hierarchical representation by extracting from

the narrative: the Story World elements (Character and Environment), and Goals with

their associated Plot Fragments and Actions.

G :=< V,Σ, P, S > (4.1)

Since the model has a hierarchical representation of a story and a well defined

set of components, we designed a grammar for expressing a story textually using the

concepts presented in the model. We did this so that a story can be composed in the ap-

propriate syntax and then automatically translated into the objects that represent the

model. Thus, the definition of the grammar could be stated as: Let be G the context-

free grammar designed to express the user’s stories. The grammar G is composed of

four elements V , Σ, P and S as in (4.1) and the set of rewriting rules P is presented in

Grammar 4.1. The alphabet set V is defined based on a subset of the concepts proposed

by Lebowitz in [14, 15, 16]. The definition of the set V is V :=
{
S,G, PF, PC,A, λ

}
,

where S denotes the initial axiom (the entering point of the story) used in the either sen-

tence generation or parsing process. Next, G denotes the definition of the basic building

block of a story which contains a Goal, a plot fragment, and actions. Finally, PF , PC,

28



and A are the definitions of a plot fragment, precondition, and actions, respectively. In

addition, the alphabet set Σ defines the terminal elements that capture the structure

of the story and the need to be easily identify the elements of the model. This set is

defined as Σ :=
{
STORY, (, ), GOAL, PLOTFRAG,PRECOND,ACTION

}⋃
W ,

where W is the set of English words.

〈S 〉 ::= ‘‘STORY’’ 〈W+〉 〈G〉

〈G〉 ::= ‘‘( GOAL’’ 〈W+〉 〈PF 〉 ‘‘)’’

〈PF 〉 ::= ‘‘PLOTFRAG’’ 〈W+〉 〈PC* 〉 〈A+〉 〈G+〉
| ‘‘PLOTFRAG’’ 〈W+〉 〈PC* 〉 〈G+〉
| ‘‘PLOTFRAG’’ 〈W+〉 〈PC* 〉 〈A+〉

〈PC 〉 ::= ‘‘PRECOND’’ 〈W+〉

〈A〉 ::= ‘‘ACTION’’ 〈W+〉

Grammar 4.1: Context-free grammar definition for the elicitation of stories into the
elements of the story model.

Using this interface a user that is able to translate stories into the grammar or

a client code, can interact with the grammar and capture the story using the proposed

model. In this work, there were two prototype implementations that exploit the former

use of the grammar as the backend subsystem as presented in Figure 4.3.

Story representaion

Grammar Story modelGUI

Figure 4.3: Software architecture to reduce the coupling between the GUI and the
story model when the backend is implemented using the Grammar.

29



First, section 4.1.2.1 presents an eclipse plug-in that offers a text editor based

solution to input stories directly using the grammar. Second, section 4.1.2.2 discuss

the design of a plain writing English based user interface that hide the complexities

of the grammar representation and in that way increase the range of users that can

interact with the tool. Both implementations rely on the expose of a template method

design pattern that identify the framework of the interaction of the grammar with

the model as shown in Figure 4.4. This allows the implementation of different classes

that define the required behavior of the processing of the story given the user interface

selected. The common behavior that we wanted to encapsulate with the pattern was

the generation of the model’s objects from an input story in the grammar format passed

as a raw String.

compute(args): <T>
#story: Model

<<abstract>>
IMuseTemplate

+ compute(args):<T>
ConcreteClass

Client

Figure 4.4: Single abstract way to access the model infrastructure. This pattern
defines the required behavior for process the model objects and compute
the desired representation for example text or a graphical representation.

4.1.1.2 Story Engine

One of the objectives of the backend is dealing with the complexities of using

the story model subsystem. Especially, the story model has to be in synchronization

with the backend subsystem, such that a change in the story model, reflects in other

subsystems through the backend (e.g. the GUI) and vice versa. While the grammar

representation relies on a compiler-like translation approach for the synchronization,

30



the story engine uses an ad hoc approach. The ad hoc approach is built up from the

premise that it is possible to breakdown the story model into basic units. This is

possible since the model has a hierarchical structure that allows a story to grow by

adding a structural pattern composed by one goal, one plot fragment, and at least one

action (Figure 4.5 left). In terms of the story engine, this basic unit is denoted as story

unit, which conveys the idea that several story units compose a story in this system.

G

P

A1 A2 AM...

43

G1

P1

A1 A2

G2

P2

A3 A4 A5 A6

G4

P4

A9

G3

P3

A8A7

1

2

Figure 4.5: Left: shows a story unit structure that is composed by one goal, one plot
fragment, and at least one action. Right: example of the breakdown of
an instance of the story model into story units.

Figure 4.5 (right) shows an example of a breakdown of a story instance into story

units. The story engine manages this set of story units by providing both a way to select

a story unit and functionality to modify the content of the current story unit. In the

example, the current story unit is the number 4, which means that the modifications

(e.g. adding new actions, remove actions, modify the goal, etcetera) target the current

story unit. Hence, if a client code of the backend invokes the functionality for adding

a new action (A10) this action is added to story unit number 4. Also, a client code

could tell the backend to choose a different story unit by invoking the corresponding

31



functionality. For example, if the story unit number 1 is selected, then adding a new

action (A11) modifies story unit 1 rather than story unit 4.

The design of the story engine uses two software design patterns as shown in

Figure 4.6. First, the adapter pattern exposes the high level functionality that ab-

stracts thedetailsof the story model. This decoupling allows to introduce changes in

the underlying story model without the need of modifying the behavior of the gui.

Second, the observer pattern allows to synchronize the story model and the gui by

notifying the changes of state of the model directly to the gui.

Adapter pattern
Observer pattern

Story 
representaion

UI Model

View

Controler

GUI

<<client>>

Request()

EngineAdapter
<<interface>>

Request()
StoryEngineImp

ExistingRequest()
Story Model

attach(o: StoryUnitListener): void
detach(o: StoryUnitListener): void
notifyChange(): void

EngineSubject
<<interface>>

updateSU(): void

StoryUnitListener
<<interface>>

<<notify>>

<<adaptee>>

<<observes>>

Figure 4.6: Class diagram of the story engine’s design using the adapter design pat-
tern as a delegation approach and the observer (listener) pattern as the
synchronization mechanism.

4.1.2 Front end prototypes

The design of the front end was an interesting process since it was not clear

what a good approach to elicit a story from its narrative form should provide. Thus,

during the design process we used some ideas from the Agile development methodology

for the design. Specifically, we relied in an iterative approach of development and the

32



creation of several prototypes to elicit a story. Several prototypes were sketched, and

some of them were implemented for proof of concept purposes.

4.1.2.1 Eclipse plugin

The first explorative approach for a front end implementation of the project

was an Eclipse-based application. The Eclipse platform provides good opportunities

for creating new applications that can take advance of the underlying platform’s in-

frastructure such as the update and help features, and the possibility of reuse other

existent plug-ins. Based on the design of eclipse if a new feature needs to be included

into the platform, it has to be designed and implemented using the Plug-In specifi-

cation and the Plug-In Development Environment. For the reuse of the Backend we

implemented a new plug-in that provided

1. A new wizard for creating an “iMuse File”. Basically, this file will contain a
String that represents a story following the iMuse grammar.

2. A multipage editor that will be used to input the story in the grammar format
and two tabs, one for display the Universe Model objects and the other will
display the Graph representation of the Story.

One of the first changes in order to create the plug-in is to extend one of the

classes in the hierarchy of the abstract class org.eclipse.core.runtime.Plugin. Thus,

we create the iMuse Activator that solved the requirement of creating the basis of an

underlying Plug-in.

33



Figure 4.7: iMuse Activator solves the requirement of creating the basis of an under-

lying Plug-in for the project.

Next, given that we want to reuse an existing project, iMuse, in order to in-

tegrate the iMuse library with the plug-in Editor we figured out that the correct

answer was to create a subclass of org.eclipse.ui.part.MultiPageEditorPart that has

a dependent relationship with the iMuse Library. It means that the iMuseEditor

will consume the interfaces provided by the reused library which solves the need of

integration of the iMuse project with eclipse. In addition, given the requirement

of a Wizard for creating files related to the plug-in, it was required to extend the

class org.eclipse.jface.wizard.Wizard and create the iMuseWizard. These are known in

eclipse as use of Extension Points because we depend on other plug-ins.

34



Figure 4.8: Extension Points that represent the dependencies on other plug-ins and

resources.

In this implementation, the main editor has four tabs denoted as Text Editor,

Universe Objects View, Graph Rep, and Graph View. Where the Text editor provides

the input approach to the system through the grammar format presented in 4.1.1.1.

The remained tabs provide a different representation of the story. The sample instance

presented in Figure 3.1 can be expressed in the grammar format as in Figure 4.9. Also,

the graphical representation can be compared with the structure of the one presented

in the previous chapter.

35



Figure 4.9: Screenshots of the plug-in implemented on eclipse. Left: grammar repre-

sentation of the hypothetical execution of a Universe model presented in

chapter 2. Right: Graphical representation of the story after capturing

the model elements from the grammar-based input from the user.

However, this implementation shown to be complicated for a user without a

computer science background, since the user has to type in the story directly using the

grammar provided by the project.

4.1.2.2 Plain English writing style

The first version that considered the importance of the analyze of the system

metaphor and its relationship with the purpose of the elicitation tool was a text editor-

based input experience. It was the product of the realization that the system metaphor

36



should be related to the real world storytelling process. Since, in the real world, it is

common to use a plain English writing style, then a good intuition was to design the

input system to take advance of this metaphor. The objective of relying on a familiar

metaphor for the graphical user interface is to speed up the user understanding on how

the system works and how it supports the writing process of the user.

Then, in a concise form the target metaphor is based on ideas presented by

Strunk in [45], where a subject of writing (story) requires subdivision into topics,

each of which should be made the subject of a paragraph. Where, the beginning of

each paragraph is a signal to the reader/writer that a new step in the development

of the subject has been reached. In addition, a paragraph is composed of a group

of sentences expressing one central idea and is complete itself. In fact, a paragraph

has a general structure such as a topic sentence, development of the paragraph and

concluding sentence. Finally, given the model and the target stories that we want to

collect, the “chronological order” paragraph pattern adapts more to the model since it

narrates a sequence of events from beginning to end.

Figure 4.10 presents the prototype implementation representing a partial story

about a police routine traffic stop. The user entered the first three sentences of the

story where he described the main goal of the story “routine traffic stop”, some details

about his location and his task at that time. Also, he described actions taken by the

driver and himself. Then, he continues developing the story in the next sentences.

Thus, as in this example the process of eliciting a story was related to the creation of

sentences that describe the story. The system supports this creation by providing to

the user with a dedicated panel that present some basic questions “What?, When?,

Where?, Why?, Who?, and How?” that aid in the construction of the sentence. Then

the user add some plain English details like transitions, conjunctions and so on, to

increase the readability of the story.

Finally, the system lets the user preview the representation of the story in the

underlying elements of the story model as presented in Figure 4.10. The interface

worked as a wrapper of the grammar as the backend implementation presented in the

37



section 4.1.2.1 eliminating in this way the complexities of creating a story directly using

the grammar interface. This implementation uses the Java programming language and

the Swing framework as the Java GUI widget toolkit.

Figure 4.10: Screenshots of the plain English text metaphor used in the design of

the text editor based prototype. While the sentence creation is on the

right of the GUI, the actual story is on the left of the interface. Also,

a graphical representation of the story is displayed as a directed graph

that represents the current story.

However, this implementation shown to be impractical for the following reasons.

38



First, as a story gets more complex, the textual representation gets more complex.

Since the model constraints, due to its hierarchical structure, the representation then

a user does not have total freedom as he/she has when when using common writing.

Thus, if a story has a lot of details about each action, then the resulting hierarchical

structure can have several branches that translate into a difficult to read and complex

textual representation. Second, although the user has to add plain English details (such

as transitions and conjunctions) to increase the readability of the story, the system does

not capture these details in the story model, and, as a result, it constitutes in a waste

of time and effort from the user side.

4.2 Graphical user interface design

This section describes the latest iteration on the design of the Front end. This

implementation addresses most of the issues related to the usability of the graphical

user interface that were detected in the previous prototypes. Mainly, those prototypes

suffer from the need of familiarity with the underlying model from the user side. As a

result, the focus of this prototype was the creation of new metaphors for the graphical

user interface to exploit concepts familiar for a wide range of users. First, this system

uses a timeline concept (section 4.2.1) to exploit the common approach of representing

the events that occur in the passage of the time as a line. Second, since the users are

likely to be familiar with the concepts behind the social networks (e.g. Facebook, or

Google+), the system uses a social network metaphor (section 4.2.2) for the elicitation

of the social interactions between the characters of the story. This prototype uses the

story engine 4.1.1.2 as its backend implementation, and it is developed in the JavaFX

Rich Client Platform for the Java programming language.

4.2.1 The timeline approach for capturing a story

The elicitation tool relies on the model presented in section 3.1.1 for capturing

the flow of actions taken by the characters in a story. By design, the model stores those

actions in-order so that it is possible to capture the order in which they occurred in

39



the story. Hence, it is possible to restate the graphical representation of a hierarchical

story presented in Figure 3.1 so that the hierarchy could be drawn as in Figure 4.11.

A1 A2

A3 A4 A5 A6

A10 A11

A12

Figure 4.11: Presents an example of the story structure of the proposed model hi-
erarchy using a set of nested timelines. Each Ai represents an action
taken in the story and its location represent the chronological order in
which was taken. The different levels represent the hierarchical nested
structure, which means that a parent action is expanded to provide a
detailed description of it. This structure represents a single instance of
a story which is captured in a top-down fashion.

This representation of the hierarchical structure resembles a timeline with sev-

eral nested timelines. Since timelines are particularly useful for studying history, as

they convey a sense of change over time [46], this implementation exploits this concept

as a metaphor for eliciting the flow of actions in the story. Thus, a user will rely on his

familiarity with the timeline concept for inserting in a graphical fashion a story into

the system. Figure 4.12 shows the graphical user interface that supports the elicitation

of the flow of actions in a story.

Figure 4.12: The graphical timeline available in the prototype for supporting the
elicitation of the flow of actions in the story.

40



The user interacts with the graphical user interface which at the beginning

displays a main window that has two sections named “story information” and “story

timeline” as show in the Figure 4.13. The “story information” section is directly

related with the information of the goal (referred as objective in the GUI) as presented

in section 3.1.1. The left part captures the information about the goal either when

it is the first goal (assign the global objective of the story), or when it is a subgoal

(it captures the data that answer the “Who?”, “Does what?”, “to Whom?”). The

right part is part of the implementation of the concepts behind the social interactions

presented in section 3.2.1.1.1, and it displays the social network of the story in a

graphical form.

Second, the “story timeline” allows the user to introduce in a graphical fashion

the actions that were taken in the story. If the timeline is related to the first goal,

a user normally will introduce the outline of the most important steps in the story

as actions in the timeline. As an example, if a user introduces the plot of the movie

“The terminator”, then he/she can set the main goal as “A robotic assassin from a

post-apocalyptic future travels back in time to eliminate Sarah Connor, whose son will

grow up and lead humanity in a war against machines” [47]. Next, as an outline of the

main actions taken in the story he/she can input the following actions,

1. The Terminator is sent from the future.

2. Kyle Reese is sent from the future.

3. The Terminator searchs Sarah.

4. Kyle Reese protects Sarah.

5. Kyle Reese kiss Sarah.

6. Sarah destroys The Terminator.

After the outline, the user can decide to add more details to each action in the

outline, which results in the creation of a nested timeline in which the user can add

more actions that describe the parent action.

41



Figure 4.13: Main window of the graphical user interface of the prototype.

Figure 4.14 shows how a user will use the GUI to introduce the steps that

represent a story. First, the user adds the outline of the story by interacting with the

empty timeline. Second, the user clicks over the timeline to create two actions named

“ChrA did this to ChrB” and “Step1”. Third, the user decides to add another action

named “Step2”. Next, the user adds details about the action “ChrA did this to ChrB”

by performing a right click onto that action, then selecting the option “Add details”

and as a result, creates a nested timeline. Finally, the user adds three actions to the

nested timeline, which are named as “Step3”, “Step4”, and “Step5”.

4.2.2 Social Interactions as a Social Network.

As presented in section 3.2, the changes in a social network can be captured

using a finite state machine model. However, in terms of the graphical user interface,

this model does not make any assumptions on how to capture those changes or on how

to capture what produced them. Since, it seems reasonable to expect that the social

42



Step1ChrA
did this to
ChrB

Step2ChrA
did this to
ChrB

Step1

Step1ChrA
did this to
ChrB

Step2

Step3 Step4 Step5

1

2

3

4

Figure 4.14: The steps follow by a user to input the actions of a story using the GUI.
First, the user interacts with the empty time line. Second, the user
clicks over the timeline to create two actions. Third, the user right click
onto the first action to create a nested timeline using “Add details”.
Finally, the user adds three actions to the nested timeline.

43



network will potentially change by each action performed by one of the characters in

the story. Hence, a natural way to define a change in the social network is through

the explicit definition of whether or not an action introduces a change in the social

network. Thus, in the process of telling the story the graphical user interface supports

the direct specification that an action introduces a change in the social network.

Building upon an example from section 3.2.1.1.1, we use the excerpt from the

novel Les Misérables to show how the system supports the elicitation of the social in-

teractions. This excerpt is as follows “After he and Cosette leave, Marius asks Éponine

to retrieve her address for him. Éponine, who is in love with Marius herself, reluctantly

agrees to do so”. As an illustration, Figure 4.15 shows just the state before the action

and the new state after the user decides that the action introduces a social network

change.

Marius asks Éponine 
to retrieve Cosette's address

...
MariusÉponine

love=5

MariusÉponine

love=5
unenthusiastic=4

...

Figure 4.15: Change on the social interactions between Marius and Éponine. The
social network after the action was performed captures the change on
the social interactions after Marius asks Éponine to retrieve Cosette’s
address. This figure represents the social network progress.

Assuming that the characters (Marius and Éponine) in the excerpt the story

already were added into the system. Then, a user will be use the following sequence of

steps to introduce the previous story into the front end. First, the user will identify or

chose the action that he/she thinks cause the change in a social interaction within the

current social network. Then, the user presses the right click over the action “Marius

asks Éponine to retrieve Cosette’s address”, which shows a pop-up menu with three

44



options. Since the objective is to modify the social interactions, the user presses the

option called “Modify Social Interactions” as shown in Figure 4.16 (left).

Figure 4.16: Left: it shows how a user can modify the social interactions. Right: it
presents the current social network of the sample story.

Next, the GUI shows a dialog that displays the current social network at the

“time” the action was performed. This dialog has a visual representation of the social

interactions between the characters in the story as presented in Figure 4.16 (right).

Next, the user presses the right-click over the social interaction that goes from Éponine

to Marius, as a result he/she can add, modify, or eliminate (CRUD) a social state by

selecting the option “Modify social states” in the pop-up as in Figure 4.17.

Then, in Figure 4.18 (left) the system displays a dialog that has the list of

current social states and its values. Finally, the user can add or remove social states

using the former dialog as in Figure 4.18 (right). Since in the plot Éponine reluctantly

agrees to retrieve Cosette address, the user adds the social state “unenthusiastic” with

value “4” to capture the change of perception of Éponine with respects to Marius due

to the performed action.

45



Figure 4.17: The user uses the pop-up option “Modify social states” to access the
dialog that adds, modifies, or eliminates (CRUD) a social state.

Figure 4.18: Left: it presents the dialog to add or remove social states into a so-

cial interaction. Right: it shows the list of social states of the social

interaction between Éponine and Marius.

46



4.2.3 Sample Story

This section presents how a user can input a story with the flow of the actions

and the corresponding social interactions. To this end, we use an excerpt of the novel

Les Misérables which was discussed in a previous section. This story is as follows:

“Years earlier in Paris, a grisette named Fantine was very much in love with Félix

Tholomyès. His friends, Listolier, Fameuil, and Blachevelle were also paired with

Fantine’s friends Dahlia, Zéphine, and Favourite. The men (Félix Tholomyès) abandon

the women (Fantine), treating their relationships as youthful amusements. Fantine

must draw on her own resources to care for her and Tholomyès daughter, Cosette”.

First, the user interacts with an empty story as presented in subfigure 1 in

Figure 4.19. Then, the user fills up the first section “story information” by describing

the overall goal of the story, which in this case can be stated as “Fantine is left by Felix

Tholomyes”. Hence, the user (or a reader) can have an overall view of the underlying

reason for which the actions were taken. To fill up the goal, the user just clicks over

the highlighted text “A→ action→ B” as in subfigure 2 in Figure 4.19.

Next, a user can add characters participating in the story by clicking on the

“Characters” button at the bottom of the user interface. This action will open a pop-

up dialog that let the user visualize the current set of character, add a new character,

remove a character, or modify an existing character as in subfigure 3 in Figure 4.19.

At this point, the user has introduced just the main characters named “Fantine” and

“Felix Tholomyes” along with the overall goal. However, the process of adding or

modifying the characters in a story is up to the user, and it is just required to add a

character when it appears in either an action or a social interaction.

47



1 2

3 4

Figure 4.19: The steps that a user follow to input the main goal, the characters, and

the first action for a story. Top-left: interaction with an empty story.

Top-right: the user adds the main goal. Bottom-left: the user decides

to add two characters to the story. Bottom-right: the user adds the

first action to the timeline.

Then, the user introduces the outline of the main actions taken in the story as

shown in subfigure 4 in Figure 4.19. In this example, the user introduces three main

actions named “Fantine moves to Paris”, “Fantine falls in love with Felix Tholomyes”,

and “Felix Tholomyes abandon Fantine”. Later on, the user can add more details

48



about each of these actions. For example, he/she can add to the first action another

subgoal that provide details about how Fantine move to Paris as well as insights of

why she took that decision. Thus, if that were the case, the user could add (as in

section 4.2.2) the following actions as part of the subgoal: “Fantine’s parents die” and

“Fantine move to an orphanage”. Subfigure 5 in Figure 4.20 shows the three actions

that were introduced by the user.

Next, the user decides that there was a potential change in the social interactions

after the action in which “Fantine falls in love with Felix Tholomyes”. Clearly, the

perception of Fantine towards Félix Tholomyès changed since she fell in love with him.

At this point, it is not clear why did she fall in love, but later on the user can decide

to add details, by adding a subgoal and its actions, about the actions that yield in this

situation. Continuing with the example, then the user clicks over the action “Fantine

falls in love with Felix Tholomyes” and selects the option “Modify Social Interactions”

as in subfigure 6 in Figure 4.20

In subfigure 7 in Figure 4.20, a pop-up dialog with the social interactions in-

formation appears, then the user can add social interactions between characters with

a drag-and-drop gesture. This gesture begins with the selected source (in this case

Félix Tholomyès) and ends with the target character (in this case Fantine). Then, the

system displays a dialog similar to the one shown in subfigure 10 in Figure 4.21.

49



5 6

7 8

Figure 4.20: Top-left: three main actions inserted by the user. Top-right: the

user decides to add details about the changes in the social interac-

tions. Bottom-left: the user decides to add a social state from Félix

Tholomyès to Fantine. Bottom-right: the user added social states from

each character which results in a bidirectional social interaction.

After the user finishes his modifications of the social interaction, he/she can

review the different social states in a specific social interaction between two characters

in a graphical fashion as in subfigure 8 in Figure 4.20. In the example, the user added

the social state “love=5” in the social interaction from Fantine to Félix, and assumed

50



the social state of “love=3” in the interaction from Félix to Fantine since it was not

stated in the story. In this way, a user can assume details about the social interactions

in order to explain the underlying reasons for the actions in the story.

9 10

11

Figure 4.21: Top-left: the user decides that the social interactions changed after

Félix Tholomyès abandon Fantine. Top-right: the user specifies how

the values of the current social states changed and decides to add a new

social state named “sad”. Bottom: the user uses the interface to check

the current values of the social interaction of Fantine with respects to

Félix Tholomyès.

51



In subfigure 9 in Figure 4.21, the user decides that there is a potential change

in the social interactions because Félix abandon Fantine. As a result, the system

displays the social interaction dialog, and then the user decide to modify the social

interaction from Fantine toward Félix which shows a dialog with the current social

states as shown in subfigure 10 in Figure 4.21. Using this dialog, the user adds a new

social state named “sad” with a value of 5 since Fantine is heartbroken. After the

user finishes his modifications of the social interaction, he/she can review the different

social states as in subfigure 11 in Figure 4.21.

52



Chapter 5

CONCLUSIONS

We have proposed a flexible story model that captures the flow of actions in a

story as well as the social interactions between characters of a story. This is important

since individuals of a domain have the potential of making valuable contributions to

the body of knowledge, and those contributions are often driven in a narrative fashion.

Thus, the use of the proposed story model can aid individuals to share their experience

and expertise by means of stories that follow a specific syntax and semantics, thereby

reducing the ambiguities and assumptions which are often present in natural language

stories. The model is meant to open the door for capturing the underlying knowledge

of a domain so that domain knowledge can be shared among individuals of the domain.

An important aspect of this work is that the model was designed to capture the

changes in the social relationships between the characters that result from their actions.

This is helpful in those situations when is necessary to reason about the consequences

of the actions in terms of the social interactions of the characters.

As part of this work, we proposed several prototypes of a graphical user interface

that provides users with automated help to capture their narratives into the formal

representation. The goal of the GUI is to reduce the complexity for users to express

formal stories and aid them to tell complete and precise stories of their experiences.

This is achieved thanks to the explicit support in the tool for adding subgoals, new

actions, social interactions, and characters.

A key aspect of the software design was to decouple modules to allow the tool

to be extensible, so that we can continue to explore new ways to interact with the

underlying model.

53



Chapter 6

FUTURE WORK

Further steps include the generation of representations of a story in other for-

mats, which can be integrated with various simulation tools. This could open the door

to simulate an existing story in a virtual world to make the knowledge store in each

story more accessible and easy to consume.

Also, it is possible to reuse the existing stories in the system to generate auto-

matically stories. In this way, it would be possible to combine several stories that have

similarities and create new stories from that process.

It is also important to design a usability study, with several people in different

domains, in order to further evaluate the system and use the feedback to improve the

acquisition system.

Finally, it would be interesting to explore the applicability the proposed system

in the domain of software engineering. In fact, the storytelling system can be used to

identify different types of user workflow scenarios in a software development project.

54



REFERENCES

[1] Julian E. Orr. Narratives at Work: Story Telling As Cooperative Diagnostic
Activity. In Proceedings of the 1986 ACM Conference on Computer-supported
Cooperative Work, pages 62–72, New York, New York, USA, December 1986.
ACM Press.

[2] Scott R. Turner. The Creative Process: A Computer Model of Storytelling and
Creativity, volume 1994. Routledge, 1994.

[3] James Skorupski and Michael Mateas. Interactive Story Generation for Writers:
Lessons Learned from the Wide Ruled Authoring Tool. Cognition and Creativity,
Digital Arts and Culture 2009, Arts Computation Engineering, UC Irvine, 2009.

[4] Josh McCoy, Mike Treanor, Ben Samuel, Brandon Tearse, Michael Mateas, and
Noah Wardrip-Fruin. Comme il Faut 2. In Proceedings of the Intelligent Narrative
Technologies III Workshop on - INT3 ’10, pages 1–8, New York, New York, USA,
June 2010. ACM Press.

[5] James Skorupski, Lakshmi Jayapalan, Sheena Marquez, and Michael Mateas.
Wide Ruled: A Friendly Interface to Author-Goal Based Story Generation. VIR-
TUAL STORYTELLING. USING VIRTUAL REALITY TECHNOLOGIES FOR
STORYTELLING - Lecture Notes in Computer Science, 4871:26–37, 2007.

[6] Brandon Tearse, Michael Mateas, and Noah Wardrip-Fruin. MINSTREL Remixed:
A Rational Reconstruction. In Proceedings of the Intelligent Narrative Technolo-
gies III Workshop on - INT3 ’10, pages 1–7, New York, New York, USA, June
2010. ACM Press.

[7] I. M. T. Swartjes and M. Theune. The virtual storyteller: story generation by
simulation. In Proceedings of the Twentieth Belgian-Netherlands Conference on
Artificial Intelligence, BNAIC 2008, Enschede, pages 257–265, Enschede, October
2008. University of Twente.

[8] Sebastian Weiss, Wolfgang Müller, Ulrike Spierling, and Florian Steimle. Scenejo
– An Interactive Storytelling Platform. In Gérard Subsol, editor, Virtual Story-
telling. Using Virtual Reality Technologies for Storytelling, volume 3805 of Lecture
Notes in Computer Science, pages 77–80. Springer Berlin / Heidelberg, 2005.

[9] Michael Mateas and Phoebe Sengers. Narrative intelligence. In Proceedings AAAI
Fall Symposium on Narrative Intelligence, pages 1–10, 1999.

55



[10] P Gervas. Computational Approaches to Storytelling and Creativity. AI Maga-
zine, 30(3):49, 2009.

[11] Noah Wardrip-Fruin. Expressive Processing: Digital Fictions, Computer Games,
and Software Studies. MIT Press, 2009.

[12] Paul Bailey. Searching for storiness: Story-generation from a reader’s perspective.
In Working notes of the Narrative Intelligence Symposium, pages 157–164, 1999.

[13] Kenneth Michael Kahn. Creation of Computer Animation from Story Descrip-
tions. August 1979.

[14] Michael Lebowitz. Story-telling as planning and learning. Poetics, 14(6):483 –
502, 1985.

[15] Michael Lebowitz. Creating characters in a story-telling universe. Poetics,
13(3):171 – 194, 1984.

[16] Michael Lebowitz. Creating a Story-Telling Universe. 1983.

[17] James Skorupski. Novice-Friendly Authoring of Plan-Based Interactive Story-
boards. Sixth Artificial Intelligence and Interactive Digital, 2010.

[18] James Skorupski. Storyboard authoring of plan-based interactive dramas. In
Proceedings of the 4th International Conference on Foundations of Digital Games
- FDG ’09, page 349, New York, New York, USA, 2009. ACM Press.

[19] M. Mateas and A. Stern. A behavior language for story-based believable agents.
IEEE Intelligent Systems, 17(4):39–47, July 2002.

[20] R. Raymond Lang. A Declarative Model for Simple Narratives. In Proceedings
AAAI Fall Symposium on Narrative Intelligence, 1999.

[21] Brandon Tearse, Peter Mawhorter, Michael Mateas, and Noah Wardrip-Fruin.
Minstrel remixed: User interface and demonstration, 2011.

[22] Brandon Tearse, Noah Wardrip-Fruin, and Michael Mateas. Minstrel remixed:
Procedurally generating stories, 2010.

[23] B Tearse, P Mawhorter, M Mateas, and N Wardrip-Fruin. Lessons Learned From
a Rational Reconstruction of Minstrel. In Twenty-Sixth AAAI Conference on
Artificial Intelligence, 2012.

[24] Ulrike Spierling, Sebastian Weiß, and Wolfgang Müller. Towards Accessible Au-
thoring Tools for Interactive Storytelling. In Stefan Göbel, Rainer Malkewitz, and
Ido Iurgel, editors, Technologies for Interactive Digital Storytelling and Entertain-
ment, volume 4326 of Lecture Notes in Computer Science, pages 169–180. Springer
Berlin / Heidelberg, 2006.

56



[25] David Rumelhart. Notes on a schema for stories. 1975.

[26] Selmer Bringsjord and David Ferrucci. Artificial Intelligence and Literary Cre-
ativity: Inside the Mind of Brutus, A Storytelling Machine. Taylor & Francis,
1999.

[27] Taisuke Akimoto and Takashi Ogata. A consideration of the elements for narrative
generation and a trial of integrated narrative generation system. In 2011 7th Inter-
national Conference on Natural Language Processing and Knowledge Engineering,
pages 369–377. IEEE, November 2011.

[28] James R. Meehan. TALE-SPIN, an interactive program that writes stories. pages
91–98, August 1977.

[29] Stephen Slade. The Yale artificial intelligence project. AI Magazine, 8(4):67–76,
December 1987.

[30] Jasper Bragt. Towards believable characters in the virtual storyteller, July 2010.

[31] Joshua McCoy, Michael Mateas, and Noah Wardrip-Fruin. Comme il Faut: A
System for Simulating Social Games Between Autonomous Characters. In UC
Irvine: Digital Arts and Culture, 2009.

[32] Anne Sullivan, April Grow, Tabitha Chirrick, Max Stokols, Noah Wardrip-Fruin,
and Michael Mateas. Extending CRPGs as an interactive storytelling form, volume
7069 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin,
Heidelberg, November 2011.

[33] Aaron A. Reed, Noah Wardrip-Fruin, Ben Samuel, Anne Sullivan, Ricky Grant,
April Grow, Justin Lazaro, Jennifer Mahal, Sri Kurniawan, and Marilyn Walker.
SpyFeet. In Proceedings of the 6th International Conference on Foundations of
Digital Games - FDG ’11, pages 310–312, New York, New York, USA, June 2011.
ACM Press.

[34] Anne Sullivan, April Grow, Michael Mateas, and Noah Wardrip-Fruin. The design
of Mismanor. In Proceedings of the International Conference on the Foundations
of Digital Games - FDG ’12, page 180, New York, New York, USA, May 2012.
ACM Press.

[35] Josh McCoy, Mike Treanor, Ben Samuel, Michael Mateas, and Noah Wardrip-
Fruin. Prom Week. In Proceedings of the 6th International Conference on Foun-
dations of Digital Games - FDG ’11, pages 319–321, New York, New York, USA,
June 2011. ACM Press.

[36] Meher Van Groenou. ”Tell Me a Story”: Using Children’s Oral Culture in a
Preschool Setting. Montessori Life, 7(3):19–21, 1995.

57



[37] W Swap, D Leonard, M Shields, and L Abrams. Using mentoring and storytelling
to transfer knowledge in the workplace. Journal of management information sys-
tems, 18(1):95–114, 2001.

[38] Graesser Arthur C., Lang Kathy L., and Roberts Richard M. Question an-
swering in the context of stories. Journal of Experimental Psychology: General,
120(3):254–277, 1991.

[39] Mark O. Riedl, Jonathan P. Rowe, and David K. Elson. Toward intelligent support
of authoring machinima media content: story and visualization. page 4, January
2008.

[40] M.O. Riedl and B. O’Neill. Computer as Audience: A Strategy for Artificial
Intelligence Support of Human Creativity. In Computational Creativity Support
Workshop at CHI’09, 2009.

[41] Brian O’Neill and Mark Riedl. Supporting human creative story authoring with
asynthetic audience. In Proceeding of the seventh ACM conference on Creativity
and cognition - C&C ’09, page 399, New York, New York, USA, October 2009.
ACM Press.

[42] Ashwin Ram. AQUA: Questions that Drive the Explanation Process.

[43] Wikipedia. Les misérables — wikipedia, the free encyclopedia, 2013. [Online;
accessed 14-March-2013].

[44] B. Bruegge and A.H. Dutoit. Object-Oriented Software Engineering: Using Uml,
Patterns, and Java. Prentice Hall, second edition, 2004.

[45] W. Strunk, E.B. White, and M. Kalman. The Elements of Style. A Penguin book
: Reference. Penguin Group, 2007.

[46] Wikipedia. Timeline — wikipedia, the free encyclopedia, 2013. [Online; accessed
22-March-2013].

[47] James Cameron. The terminator (movie), October 1984. [Online; accessed 22-
July-2013].

58


	Table of Contents
	List of Figures
	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Storytelling Systems
	2.1.1 Author-centric Systems
	2.1.2 Story-centric systems
	2.1.3 Character-centric Systems

	2.2 Support for Human Storytelling
	2.3 Discussion

	3 STORY REPRESENTATION MODELING
	3.1 Model representation for capturing the steps taken in a story
	3.1.1 Model for capturing the steps taken in a story
	3.1.1.1 Components of the Model
	3.1.1.1.1 Goal
	3.1.1.1.2 Action
	3.1.1.1.3 Plot Fragment
	3.1.1.1.4 Characters and Environments



	3.2 Expansion of the model representation to capture the social interaction changes
	3.2.1 Model support for a story with social interactions
	3.2.1.1 Components of the model that support the social interaction
	3.2.1.1.1 Social Interaction
	3.2.1.1.2 Social Network
	3.2.1.1.3 Social Network Progress




	4 MEASURING TOOL: iMuse
	4.1 Software Architecture
	4.1.1 Backend
	4.1.1.1 Grammar
	4.1.1.2 Story Engine

	4.1.2 Front end prototypes
	4.1.2.1 Eclipse plugin
	4.1.2.2 Plain English writing style


	4.2 Graphical user interface design
	4.2.1 The timeline approach for capturing a story
	4.2.2 Social Interactions as a Social Network.
	4.2.3 Sample story


	5 CONCLUSIONS
	6 FUTURE WORK
	References

