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ABSTRACT

Autonomous robotic systems can operate in an unsupervised manner over re-

mote or potentially dangerous domains. Object recognition is an important trait re-

quired for a robotic system to achieve autonomy. The task of object recognition in-

volves understanding and labeling the different components in a robot’s environment.

This task becomes complicated for robots that operate in unstructured natural envi-

ronments, like forests or deep sea, due to noise in sensor measurements. Noisy sensor

measurements can potentially affect a robot’s perception of the world. To avoid being

misled by corrupted measurements, robots need to possess robust object recognition

capabilities that can handle noise in sensor measurements. Such robust object recogni-

tion capabilities are valuable for processing large natural image datasets. One such case

of image datasets are the underwater imagery data gathered by marine scientists and

oceanographers; there, automatic object recognition capabilities could be invaluable.

Such a capability would enable the automatic analysis of these datasets to understand

natural phenomena, for instance to recognize different organisms of interest. Sifting

through such big datasets, which can range into millions of images, and making in-

ferences based on this data, is evolving into one of the biggest challenges in the field

research community. This motivates the need for automated object recognition and

image analysis tools.

This dissertation focusses on object recognition techniques capable of operating

in noisy natural environments. A series underwater object recognition problems have

been solved as means to validate the developed object recognition algorithms. Each

technique was developed to complement the shortcomings of the existing tools available

to the research community. At first, eigen-value based shape descriptors were tasked

to solve a submerged subway car recognition problem. Despite being successful in

xiv



solving this problem, the eigen-value shape descriptor method cannot leverage textural

cues for object identification. This primary drawback, among other shortcomings, lead

to the development of a multi-layered object recognition architecture. This multi-

layered architecture was tested on an scallop enumeration problem. 60-70% of scallop

instances were successfully identified. To improve the machine learning classifier of

this multi-layered framework, and also to minimize false positives, a multi-view object

classification approach is proposed. This multi-view approach combines histogram-

based global cues from a series of images of a target, captured from different heights,

to construct a machine learning classifier. This multi-view method was successful in

classifying all specimens in the available dataset. In addition to the developed object

recognition methods, a low cost ROV, named CoopROV, was designed for underwater

data collection to support research experiments.
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Chapter 1

INTRODUCTION

1.1 Benefits of Robotic Systems

Robotic systems are useful for tasks that come under the purview of the “3D ’s”–

dirty, dull and dangerous. Currently, manufacturing and assembly lines, where tasks

are of repetitive nature, are places where robotic systems are ubiquitous. “Dirty” tasks

like traversing tunnels or sewers are being slowly delegated to tele-operated robots. The

other avenue where robotic systems are being promoted relates to activities deemed

dangerous for humans, like deep sea exploration, biologically, or chemically contami-

nated zones, and conflict areas. With enabling new advances in the field of robotics,

robots are beginning to take over new roles to complement and assist humans in various

ways.

Though advances in robotic systems have enabled robots to outperform humans

in certain complicated tasks that are usually considered to require intelligence, such as

competing in games like Go [1] and Chess [2], robotic systems still lack the ability to

reason and operate autonomously in most unpredictable real world environments. In

such cases, a human expert is deemed necessary to make decisions for the robot and

guide the machine to accomplish its objectives. Another domain where tele-operation

is prevalent is in operations in inhospitable environments. Some prime examples of

such remote operation in dangerous environments include the rescue and repair effort

at radiation affected zones in Fukushima Daichii nuclear power plant [3], or combat

operations via remotely operated weapons like Packbot [4] and Predator [5] that have

been deployed at war-zones in Iraq and Afghanistan. Though tele-operation appears

to offer a solution, a more scalable alternative is aiming for full autonomy of robotic

systems to minimize the strain and demands on human workforce.

1



1.2 Tele-operation

Tele-operation offers an avenue for humans to leverage the benefits posed by a

robotic system to perform activities that are dirty or dangerous without being phys-

ically present on the site of operation. During tele-operation, the human operator

typically operates the robot from a safe distance away from the point of activity of

the robot. This safe distance could range from a few meters to over a few hundred

kilometers, based on the nature of the activity. For instance, in case of a tunnel or

sewer inspection, the operator can stay a few meters outside the structure and drive a

robot that is traversing inside. On the other hand, in case of weaponized drones like

the predator [5], the operator typically controls the drone from a safe remote command

center, several hundred kilometers from the point of action of the drone. Tele-operation

allows the operator to process the sensory information collected by the robot and make

informed decisions for the robot. The robot then translates an informed decision into

a sequence of actions. The tele-operation solution allows a human operator to safely

accomplish an objective without being in discomfort or risk.

Tele-operation brings together durability of a robotic agent and human intelli-

gence to provide a powerful solution to solve problems ranging from deep sea explo-

ration to safe operation in combat zones. Despite this advantage, tele-operation still

requires the constant attention and involvement of a human operator. Additionally,

since the human operator is not present, a reliable communication channel is essential

to remotely control the robot. If the communication links are unreliable, or subject to

willful sabotage by an enemy in a war-zone, the robotic system can get disconnected

from the human operator. Such communication interruptions could possibly result is

mission failure. The constant need for a human operator and the need for reliable

communication channels are some of the shortcomings that limit the applicability of

tele-operated systems.

If the objective is to move towards decreasing the strain on human workforce,

it is imperative to decrease the reliance of robots on humans for operation. This

emphasizes the need for automated decision-making in robotic systems. Furthermore,

2



building automated, decision-making capable robotic systems obviates the need for

reliable communication channels. Thus improving the cognitive capabilities to enable

automated decision-making is essential to build robust self-sufficient robotic systems.

1.3 Components of Automated Informed Decision-Making

The first component of informed decision-making is gathering the information

needed to make a decision. For a robotic system, information about the environment

and the objective it needs to accomplish, dictate the decisions it makes. Collecting

sensory data, is the prime and often the only mechanism, available for a robot to learn

about its environment. Based on the type of sensors, different measurements describing

the state of the environment are available. These raw sensor data need to be processed

to get actionable information that enable a robot to reason about the state of its

environment. Then decision may be seen as extrapolation of the reasoning process to

choose an action from the set of actions available to a system. If the entire sequence,

from sensory data aggregation to choosing an action based on processed information, is

performed by a robotic system without any external intervention, then the due process

can be characterized as automated, informed, decision-making.

Transforming sensory data into usable information involves parsing the data to

gain a semantic understanding about the state of an environment. The basic component

in understanding a scene1 is separation and labeling of different objects present. A more

refined version of this understanding is deciphering the relationship between the objects

in a scene. Such a detailed semantic understanding allows a robot to infer the ability

of the scene elements to actively participate in the robot’s planned actions.

The ability of a robot to detect and label objects in its environment is an

important step towards gaining semantic understanding of its environment. Since

this semantic understanding of a scene dictates the ability of a robotic system to

make informed decisions, object recognition capability is central to automated informed

decision-making.

1 Scene here is defined as the state of an environment at a given point in time.
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1.4 Automated Decision-Making in Natural Environment

Building robotic systems that are fully autonomous, with an ability to make

informed decisions based on their observations under all possible environmental condi-

tions, is an open problem. The existing solutions typically apply to certain specialized

domains only. Before further discussion on this topic, it is important to understand

that natural environments pose significant challenges that compound the problems

faced by robotic systems operating in other regimes. Section 1.4.1 states the definition

of natural environment in the context of this dissertation and, Section 1.4.2 goes into

the details on the challenges faced by robotic systems in natural environments.

1.4.1 Natural Environment

The word Natural Environment in this dissertation refers to uncontrolled and

unstructured real world environments, with scenes containing predominantly naturally

occurring objects; the robot has no direct control over any environment parameter.

(However we assume that the robot can use accessories, like artificial light sources,

to influence the state of the environment and thereby enhance sensor measurements.)

Natural environments are typically challenging to model due to the unpredictability

in the environment parameters and unknown noise parameters. Deep sea or forest

landscapes with vegetation are some prime examples of such natural environments.

1.4.2 Robotic Systems in Natural Environments

In the past, robots have been specialized to do tasks in well defined environ-

ments, like assembly lines, where environmental variables (e.g. visibility and lighting)

are strictly controlled. If such environment variables are known in advance, a math-

ematical model that maps robot actions to finite known environment states can be

built. In such cases, based on the state of the environment observed, a robot action

that complies with a predefined database of logical rules is chosen. Systems that oper-

ated on this principle, sometimes referred to as Expert Systems [6], came into existence

in 1980’s. Such systems fail in scenarios where the environment cannot be perfectly

4



modeled. Despite the advances in field of robotics since then, robotic systems still face

challenges when dealing with unpredictable environments similar to those in natural

settings found in forests or deep sea.

The task of understanding natural scenes and recognizing objects like animals

from them is shown to be a cognitively challenging task even for humans [7]. The

unstructured nature and unpredictability associated with natural environment makes

the task of building models to capture natural scenes challenging. Using global fea-

tures to characterize the nature of a scene is, in general, possible [8]. However, these

models can only offer a high level understanding of the scene. For instance, the high

level understanding translates to differentiating between widely different scenes like a

beach, foliage or a busy city street. It does not inform about separating the different

components or objects in those scenes. Most object recognition techniques depend on

features like edges or texture to identify such objects. Such feature-based approaches

are difficult to implement in natural scenes where the edges of objects can be difficult to

distinguish. The measurement noise in such natural scenes further complicates the ob-

ject recognition task. Thus, for a robotic system to be successful in making automated

informed decisions in natural environments, it has to possess robust object recognition

capabilities that can handle noise and variations in environmental conditions.

1.5 Noise in Sensor Measurements

Sensors are designed to measure a physical quantity. This physical quantity

is captured by the sensor in the form of a signal. The measurement reported by the

sensor almost always does not exactly match the real value of the physical quantity.

This error in the measured value is considered as measurement noise. The ubiquitous

presence of noise in almost all sensor measurements has spurred a field of study in the

name of Filtering [9]. Filtering deals with the estimation of signals from noisy data. If

the source and nature of noise that affects measurements of a sensor can be somehow

modeled, then specialized filters can be designed to recover the underlying signal from

noisy sensor measurements. The challenge here is in identifying the noise sources and
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modeling them. The sources of noise in sensor data can be manifold. An exhaustive

discussion on sources of noise and methods to model them is beyond the scope of

this dissertation. In the remainder of this section, we will focus on specific sources of

noise that affect imagery data collected by robots operating in natural environments

(Section 1.5.1) and some filters that can help recover the underlying signal in these

cases (Section 1.5.2).

1.5.1 Noise Sources

The sources of noise associated with a particular application need to be carefully

analyzed before designing appropriate filters to mitigate this noise. In the specific case

of imaging applications that employ a camera sensor in natural environments, the var-

ious noise sources can be broadly divided into (i) noise inherent to the sensor, (ii) noise

associated with data collection setup, and (iii) noise introduced by the environment.

For instance, in the case of an underwater imaging application using an AUV, the noise

associated with the imaging setup constitutes noise introduced due to vibration in the

motion of the AUV. Additionally, the environmental parameters associated with deep

sea environments could introduce noise which could further degrade the sensor mea-

surements. Further details about the different noise sources of this type is discussed in

the rest of this section.

In an imaging application, some noise is inherent to the camera sensor. Studies

[10] have analyzed the various constituents of noise in a Charge-Coupled Device (CCD)

video-camera. According the these studies, the sources of noise in a camera can further

be divided into three categories, namely: illumination-independent noise, illumination-

dependent noise, and digital processing noise. After further analysis, this work suggests

that there are four major noise sources that contribute to the camera sensor noise. Out

of these four sources, readout noise and fixed pattern noise are constant illumination-

independent noise sources. One of the factors that determine the value of readout noise

and fixed pattern noise is the temperature of the sensor. The remaining two primary

contributing noise sources, photo-shot noise and photo-response non-uniformity noise
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are illumination-dependent noise sources. Its important to note that, in illumination

dependent noise sources the intensity of noise is a function of the intensity value of the

pixel. Modeling all the noise sources for different camera sensors poses a challenge in

itself.

Another source of noise is the physical setup which holds the camera. This setup

could be an AUV or just a stationary imaging rig. Such physical structures that hold

the camera can introduce noise in form of vibration or motion of the structure during

imaging. Such motion could lead to out-of-focus or blurred pictures. There could also

be cases where the physical setup can produce artifacts like shadows that could affect

the sensor measurements. The few examples mentioned here are not all encompassing.

Each imaging setup needs to be studied to identify the possible sources of noise it can

introduce into sensor measurements.

Environmental conditions are one of the chief sources of noise. There is a key

difference between noise due to environmental conditions and other sources like sensor

noise or the imaging setup noise: the former is relatively more difficult to model com-

pared to the latter due to wide range of variables associated with environment. These

environmental variables are fairly limited in controlled environments, but in case of

natural environments the number of variables are far higher. Furthermore, the ability

to predict or model the environmental variables in natural environments is far more

challenging compared to controlled environments. To understand some of the variables

associated with natural environments, let us consider the case of imaging experiments

in underwater environments. Some of the variables at play here are non-uniform low

illumination, absorption of light by water, and scattering of light by different particles

in water. Each of these parameters can have considerable impact on the quality of the

image acquired by a camera. Modeling these environment variables and accounting

for the noise induced by them in the sensor measurements is critical to extract useful

information from the sensor data.

Any object recognition method has to account for the different noise sources
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that can affect sensor measurements. Especially in case of natural environments, envi-

ronmental conditions typically act as major noise sources. In any case, it is important

to take appropriate steps to mitigate the effect of noise in the sensor measurements

before useful information can be extracted. Even in the absence of accurate models

of different noise sources, it is important to attempt to model the noise seen in the

sensor data and devise filters to extract the underlying signal from recorded sensor

measurements.

1.5.2 Noise Filtering

The sensor noise model is often a part of the sensor specification provided by the

manufacturer. Thus the person integrating the sensor into a custom application, can

sometimes avoid modeling the sensor noise. However, the noise induced by the setup

is unique to each system and hence needs to be analyzed to identify the characteristics

of noise. Once a model is identified, the subsequent filter design involves designing a

filter that can recover the signal from recorded sensor measurements.

The task of filtering noise induced by the environment is more complex relative

to that of sensor or setup. The reason for this is the difficulty in modeling environ-

mental variables. In the case of underwater imaging applications, understanding the

physics of light propagation, that includes phenomena like absorption and scattering, is

required. Some proposed models [11, 12] try to capture light propagation in water and

also suggest filter models that can correct illumination and color in noisy underwater

images. A more detailed survey by Jaffe [13] describes different existing filter models

available to deal with noise in underwater images. In most cases, modeling all the

environment parameters is intractable. Hence identifying the dominant noise source or

simply identifying the nature of noise affecting the images are possible alternatives. For

instance, in scallop recognition [14], the AUV images used were corrupted by speckle

noise, hence a median filter [15] was used to minimize noise without elaborate modeling

of noise sources.
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Since extracting useful information from sensor data is essential for object recog-

nition, noise filters constitute a core component of object recognition systems. The first

stage in noise filtering involves identifying noise sources and modeling them. Accurate

modeling of noise sources in often challenging, hence most systems use simplified models

that only capture dominant noise sources. Since there are several filtering mechanisms

available, filter design often involves human intuition to pick appropriate filters that

can handle the noise pattern seen. Ultimately, noise filtering allows distilling useful

information for informed decision-making.

1.6 Object Recognition in Natural Environments

For an object recognition framework to be effective in natural environments, it

should be robust to noise and variations in environmental conditions. To avoid dealing

with uncertainties in environmental conditions, researchers tend to specialize their

object recognition technique to work in certain controlled conditions. In some instances

even the sensing apparatus used can be explicitly designed to detect a certain organism

as in the case of plankton recognitions systems [16, 17]. Such techniques, that are

highly specialized to solve a specific problem, often do not transfer to other application

domains. An example of object recognition in controlled conditions is the scallop

recognition system designed to work in artificial scallop beds [18, 19]. In this method,

a series of stationary cameras under known conditions are used to perform object

recognition. The object recognition systems built on the assumption of controlled

environmental conditions, generally do not translate well to natural environments that

exhibit wide variation in environmental conditions.

Building specialized object recognition frameworks that translate between dif-

ferent application domains is challenging. At the same time, it is equally challenging to

build a generalized object recognition method that can accommodate wide variations

in environmental conditions. One approach to this problem is the use of multi-layered

object recognition frameworks. Multi-layered object recognition frameworks with ded-

icated modules for dealing with different sub-problems, like filtering and hypothesis
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testing, allow easy customization of layers based on application requirements. Thus

multi-layered frameworks allow researchers to configure specialized layers that are cus-

tom designed for their object recognition problem. The scallop recognition framework

[14, 20] offers one such multi-layered framework. Another interesting example is the

set of underwater object recognition tools [21] used for recognizing organisms like sea-

anemones.

In conclusion, multi-layered object recognition frameworks offer a flexible so-

lution to automated object recognition problems. Customizing a multi-layered object

recognition framework to work with a specific problem amounts to picking the right

layers that would be effective in solving the problem. The layers used can be adapta-

tions of existing computer vision or machine learning tools. For cases where there is

no such off-the-shelf solution, specialized layers can be engineered to fit the problem.

A researcher can thus build a multi-layered framework with existing tools in tandem

with custom designed solutions to solve specialized object recognition applications.

1.7 Object Recognition as a path to Robot Autonomy

Object recognition capabilities allow a robotic system to identify and label the

different components in its environment. Such understanding of individual objects

in the robot’s surrounding is required to build a semantic model that captures the

relationship between the different components in an environment. Cognitive reasoning

relies on such semantic models to determine the best possible action for a robot given

its knowledge about the state of the environment. This is why object recognition

capabilities are essential to building robotic systems capable of automated informed

decision-making.

The task of object recognition and understanding the state of the environment

becomes challenging in the presence of noise. Sensor measurements that are supposed

to measure the state of the environment could be corrupted due to the presence of

noise. In order to avoid being misled by bad measurements, a robotic system needs

to employ noise filters to extract the underlaying signal from sensor measurements.
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Noise filters become a core component of the perception system that aggregates sensor

measurements to gain knowledge about the state of the environment. Building accurate

models of the surroundings despite the presence of noise is key to the success of a robotic

system that is intended to operate autonomously in natural environments.

In conclusion, object recognition capabilities, with robustness to noise, are re-

quired for building systems that operate in natural environments. Object recognition,

coupled with an ability to model and reason about the state of an environment, al-

lows a robotic system to make automated informed decisions. Automated informed

decision-making, in conjunction with autonomous actuation, paves the way for robot

autonomy. Autonomous systems can act independently without any human support

in a range of environments. Such systems can ease the strain on human work force by

taking up tasks that are physically challenging or risky for a human to perform.

1.8 Approach Overview

Given that object recognition in noisy environments is critical for robot auton-

omy, this dissertation proposes a series of techniques designed to address the object

recognition problem in noisy environments. We choose underwater object recognition

as the primary domain to conduct the experimental validation for this approach. The

rest of this section offers a brief overview of the different object recognition techniques

developed as a part of this overall approach, along with insights on the particular

problems they address.

Recognizing submerged subway cars from seabed images was the first appli-

cation that motivated the development of an object recognition technique capable of

operating in noisy seabed images. Since recognizing subway cars can be reduced to de-

tecting rectangles, eigen-value based shape descriptors with in-built Rotation, Scaling

and Translation (RST) invariance, were tested to solve this specific object recogni-

tion problem. Eigen-value based shape descriptors were successful in detecting simple

shapes like rectangles from images. During the course of the study, several shortcom-

ings of eigen-value shape descriptors were exposed. These include poor performance in
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noisy domains, and inability to identify objects characterized by complex shape pro-

files given constraints on image discretization. Chapter 2 of this dissertation offers a

detailed treatment of the eigen value shape descriptors, and the results of the subway

car recognition problem they were tested on.

When the scope of the object recognition problem was expanded from simple

shapes like rectangles to underwater organisms characterized by complex profiles, eigen-

value shape descriptors were no longer a viable choice. The primary application driver

for the design of the multi-layered object recognition system in Chapter 3 was the

need for a scallop recognition system in image-based benthic survey efforts capable

of automated scallop enumeration. The multi-layered object recognition system thus

designed was capable of recognizing objects from noisy natural images. This method

detected 60–70% of scallops, present in a dataset of over 8000 images. One important

point here is that the method was explicitly designed to deal with noise introduced by

non-uniform lighting, low resolution, and large levels of speckle noise, that previous

scallop recognition efforts were not equipped to handle. Chapter 3 elaborates on the

multi-layered object recognition framework developed to meet this challenge.

Despite this multi-layered object recognition framework proposed in Chapter 3,

being able to detect objects from noisy images, there were several instances of false pos-

itives in the ensuing detections. This prompted the need for a classification technique

that can recognize objects with smaller percentage of false positives. To accomplish this

we merged information from multiple views of an object before determining its iden-

tity. The details involved in this multi-view object recognition approach are discussed

in Chapter 4.

During the development of these object recognition algorithms, the need for a

low-cost research platform that can be used as a test bed to evaluate different ob-

ject recognition algorithms was realized. In response to this, CoopROV, a low cost

underwater ROV was developed. CoopROV’s specifications and design procedure is

discussed in Chapter 5.
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1.9 Dissertation Organization

Firstly, Chapter 2 discusses the eigen-value shape descriptors and the subway

car detection problem they were evaluated on. The multi-layered object recognition

technique developed to support an automated scallop survey effort is then discussed in

Chapter 3. This is followed by Chapter 4, that describes a multi-view object recognition

technique that allows to combine information from multiple views of a target object,

and decreases the number of false positives seen in the multi-layered object recognition

technique. Chapter 5 provides details on the underwater ROV designed as a research

prototype to test object recognition algorithms. Finally, Chapter 6 highlights the

insights gleaned during the development of the different object recognition techniques

along with possible directions that can be explored in the future.
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Chapter 2

EIGEN-VALUE BASED SHAPE DESCRIPTORS

2.1 Introduction

Identification of objects is a challenging and tricky problem. One way to recog-

nize objects is through shape identification [22]. Eigen-value based shape descriptors

[23, 24], is a mathematical framework that can identify prespecified geometric shapes

in images. This method can be used to detect artificially introduced man-made objects

describable by a strict geometric shape amongst other naturally occurring objects in

images. An application for such a shape identification method was identified in the

Redbird reef site. In the Redbird reef site off the coast of New York-New Jersey, subway

cars were dropped into the sea to aid artificial reef development [25, 26]. When research

studies were conducted to study the impact of these subway cars on the geologic fea-

tures [27, 28], the need for an automated method to pinpoint the locations of artificial

objects from sonar survey data became apparent. Eigen-value shape descriptors were

employed to solve this problem.

2.2 Background

Eigen-value based shape descriptors is an object recognition solution designed

to identify objects characterized by a specific shape. Additionally, eigen-value shape

descriptors require the object that is to be detected to have a unique prespecified shape

that contrasts with the other objects found in the environment. This requirement is

readily met when trying to identify man-made objects form natural scenes. Man-

made objects tend to have strict geometric shapes compared to naturally occurring

objects which exhibit a wide variation in shape and appearance. This suggests that
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eigen-value shape descriptors may be a useful tool for recognizing specific objects from

natural images.

In shape-based identification problems, even if prior knowledge is available about

the shape of the objects, the position and orientation of objects could be unknown.

The task of searching for the same shape over different orientations in an image makes

it computationally intensive. It is more effective to have a solution that can identify

shapes irrespective of variations in rotation, scaling and translation of objects or in

other words use a shape descriptor that is RST invariant. The RST-invariant nature

of eigen-value shape descriptors makes it a useful tool for object recognition.

“Can one hear the shape of the drum?” This famous question by Kac [29] laid

the foundation for the research into eigen-value shape descriptors. This question can be

rephrased as “Can one determine the shape of the drum membrane from the principal

modes of vibration of the sound it produces?”. If the principle modes of vibration of

each drum membrane shape were unique, then would be an appealing possibility of

using the eigen modes as descriptors for shape of drum membranes. Through a later

work, Gordan et.al.[30] proved that a pair of iso-spectral drums produce sound with

same principal modes. The work by Gorden answers Kac’s question by stating that

the eigen modes are not sufficient to uniquely identify the shape of a drum. However

two independent papers by Khabou and Zuliani [23, 24] show that eigen modes can

still be used as shape descriptors for practical purposes.

Eigen-value based shape descriptors offer a RST invariant object recognition

solution for identifying predefined shapes. This is useful in applications where the

objects to be recognized can be distinguished from other background objects primarily

using their shape. This property is especially useful for identifying artificial objects

with a well defined shape from natural scenes.

2.3 Preliminaries

The mathematical formulation of identifying the bounded planar domain Ω from

its eigen-values λi can be applied to object recognition problems [23, 24]. The λi’s are
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the eigen-values of the helmholtz differential equation (2.1) with Dirichlet boundary

condition u = 0 on the boundary of the domain δΩ.

∆u+ λu = 0 (2.1)

When cast as an object to be recognized, the domain Ω is a binary profile representation

of a shape in an image. Let the sequence of computed eigenvalues λi be

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · → ∞. (2.2)

A shape Ω can then be represented as a finite n-element vector of eigen ratios, which

we call as shape descriptor F . For this application, the length of shape descriptor was

truncated to 17 (n = 17).

F (Ω) =

{
λ1

λ2

,
λ1

λ3

,
λ1

λ4

, . . . ,
λ1

λn

}
. (2.3)

The angle Θ between two shape descriptor vectors F (Ω1) and F (Ω2) can be used as

relative a measure of dissimilarity between the two shapes Ω1 and Ω2,

Θ (Ω1,Ω2) = cos−1

(
〈F (Ω1), F (Ω2)〉
‖F (Ω1)‖‖F (Ω2)‖

)
. (2.4)

Small values for the angle Θ would imply that the two shapes Ω1 and Ω2 are similar.

For a pair of objects whose Θ value is less than a threshold, we can assume that the

two objects are identical in terms of their shape.

2.4 Subway-car Detection from Seabed Images

The ability of eigen-value shape descriptors to match to certain shapes can be

used for object recognition in natural images, especially for identification of artificial

objects from natural scenes. Artificial, or man-made, objects are often characterizable

by a prespecified shape. On the other hand, naturally occurring objects can exhibit

wide intra-species and inter-species variation. For instance, it is easier to define the

shape of an artificial object like a book compared to a natural object like a leaf. This

enables eigen-value shape descriptors to pick out artificial objects from natural scenes

based on their shape alone.
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(a) Backscatter image of sea-floor from Gavia AUV

(b) Image segmentation using basic morphological operations and edge detection

Figure 2.1

This problem of recognizing artificial objects from natural scenes was encoun-

tered while marine geologists were studying the Redbird artificial reef site [27, 28]. The

focus of these studies were to observe geologic sub-sea features around artificial objects

like subway cars. An automated method to detect subway cars would significantly

facilitate such studies.

The sonar backscatter image of Redbird reef in Figure 2.1a shows the shape

profiles of some sunken objects resting on the seabed. Two subway cars are marked

using black rectangles. If we look for rectangular objects like the rectangle in Figure 2.2,

it is likely that eigen-value shape descriptors will distinguish the profiles of subway-

cars, as there are no other objects with such rectangular shape profile in the seabed

image (Figure 2.1a).
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Figure 2.2: Rectangular template used as reference shape for subway-cars
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Figure 2.3: Plot of the weighted distance D between each segmented feature and the
template rectangle in Figure 2.2. The threshold (D=3) is shown as a red line.
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In order to verify the ability of eigen-value shape descriptors to pick out the

subway-cars in Figure 2.1a, we follow a sequence of steps. The sonar backscatter image

is first segmented to get a series of shape profiles using a grayscale threshold operation

on the image. Figure 2.1b shows the different “blobs” obtained after thresholding. The

blobs were then compared to the rectangular shape in Figure 2.2 using the angle Θ

metric that was defined in (2.4). The Θ value of a blob is a direct indicator on how

close in appearance it is to the reference rectangle in Figure 2.2. The smaller the Θ

value, the closer it is in appearance to the reference rectangle shape Ωr. The Θ(Ωr,Ωj)

value for each blob j is recorded and the Θ values are plotted in ascending order in

Figure 2.3.

The two blobs that correspond to subway cars have the lowest Θ values. The

blob with the lowest Θ value (Θ = 1.89◦) along with its plotted shape descriptor F is

shown in Figure 2.4a. Similarly the blob with the second lowest Θ value is shown in

Figure 2.4b(Θ = 2.93◦). In Figures 2.4a and 2.4b, the blue line corresponds to the

shape descriptor F (Ωr) of reference rectangle Ωr and the red line corresponds to the

shape descriptor F (Ωj) of blob j. The Θ(Ωr,Ωj) is the computed angle between the

shape descriptor vectors as discussed in (2.4). In contrast, the blob with the largest Θ

value (Θ = 15.85◦) or in other words the blob that matches the least with the reference

rectangle is shown in Figure 2.4c. In this case, if we set a threshold Θthresh = 3

and only consider objects with Theta < Θthresh to be subway cars, then we have a

mechanism to detect subway cars from other objects present in this sonar image. This

effectively shows that eigen-value shape descriptors are in principle capable of picking

up prespecified shapes from images.

2.5 Discussion

In Section 2.4, we saw how eigen-value shape descriptors can be utilized to

detect subway cars from other underwater objects. The eigen-value shape descriptors

here were tuned to look for rectangular objects that match the profile in Figure 2.2.

The blobs obtained as matches to the reference rectangle through this eigen-value
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Figure 2.4: Parts (a) and (b) correspond to the blobs that are closest to the reference
rectangle in Figure 2.2. The shape of the blob j is shown on left and the corresponding
plot of shape descriptor F (Ωj) (red line) along with the plot of the reference rectangular
profile (blue line) is shown on right. The distance measure Θ between the blob and
the reference rectangle gives a picture of how close the given blob is to the reference
rectangle. A contrasting view of the blob that matches the least with the reference
rectangle is shown in (c).
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shape descriptor method complies with the ground truth information on the position

of the subway cars in the sonar image (Figure 2.1a). Hence from this study, we see

that eigen-value shape descriptors provide a viable mechanism to detect objects with

specific shapes.

Since eigen-value shape descriptors purely rely on the shape of an object, two

objects with identical shapes but significantly different textures cannot be differentiated

using this method. In tests we performed, eigen-value descriptor did not perform well

on objects whose shape is characterized by more complex contours. For instance when

eigen-value shape descriptors were evaluated as a tool to recognize numbers between

0 and 9, 1 and 7 were often confused and wrongly classified. Similar misclassifications

were also registered between 0,6,8 and 9. These errors can be attributed to the RST

invariance property coupled with discretization errors while representing numbers (0-

9) in an image form. Even though RST invariance is helpful in some cases, it can be

detrimental when the orientation of a shape can play a part in the recognition process.

The theoretical mechanism behind the eigen-value shape descriptors defines it over

a continuous domain. When eigen-value shape descriptors were adopted as a shape

identification tool on images, the domain needed to be discretized; images are nothing

but discrete spatial arrangement of pixel values. When dealing with complex shapes,

there can be significant discretization errors that can adversely affect the performance of

eigen-value shape descriptors. High levels of noise and errors in segmentation are other

significant factors that can lower the performance of eigen-value shape descriptors.

2.6 Conclusion

Eigen-value based shape identification is a tool that can be used to identify sim-

ple predefined shapes from natural images. This method was successful in identifying

subway-cars from sonar images of the seabed under the assumption that subway cars

are rectangular in shape. Apart from shape, the texture of an object plays a key role

in determining the identity of an object. Since eigen-value shape descriptors discard

textural information, they are not suited for applications where shape is insufficient to
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decipher the identity of an object. Additionally, while dealing with complex shapes,

there can be significant discretization error, and also segmentation errors which can

affect the shape profile of an object. Such errors often diminish the performance of

eigen-value shape descriptors. Hence eigen-value shape descriptors is a useful tool for

identifying objects provided we can guarantee that the shape of the object can be

described in a discrete domain with minimal error. Furthermore, for this method to

work, the objects we are interested in should exhibit a shape profile that is significantly

different from all other objects in the background.

Natural objects, like marine organisms, are typically associated with complex

shape profiles. Furthermore texture is often a key discriminant required to identify

marine organisms. The inability to use textural information, among other factors,

limits eigen-value shape descriptors to few specialized object recognition applications

only. Chapter 3 offers a multi-layered object recognition solution that attempts to

overcome some drawbacks seen in eigen-value shape descriptor approach.
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Chapter 3

MULTI-LAYERED SCALLOP RECOGNITION FRAMEWORK

3.1 Introduction

Recognizing marine organisms, like scallops, is a challenging problem. A previ-

ously introduced approach, named eigen-value based shape descriptors (in Chapter 2),

is incapable of utilizing textural information. Thus, eigen-value shape descriptors are

unsuitable for recognizing organisms with prominent textural markers. Sensitivity to

discretization noise, exhibited by Eigen-value based shape descriptors is another factor

that discourages their use in noisy natural images. The multi-layered object recognition

approach discussed in this chapter combines both shape and textural cues to recognize

objects. This framework is also expressly designed to deal with noise present in im-

ages. A scallop enumeration problem is used as a means to validate this multi-layered

approach.

The sea scallop (Placopecten magellanicus) fishery in the US EEZ (Exclusive

Economic Zone) of the northwest Atlantic Ocean has been, and still is, one of the most

valuable fisheries in the United States. Historically, the inshore sea scallop fishing

grounds in the New York Bight, i.e., Montauk Point, New York to Cape May, New

Jersey, have provided a substantial amount of scallops [31, 32, 33, 34, 35]. These mid-

Atlantic Bight “open access” grounds are especially important, not only for vessels

fishing in the day boat category, which are usually smaller vessels with limited range

opportunities, but also all the vessels that want to fish in near-shore “open access” areas

to save fuel.1 These areas offer high fish densities, but are at times rapidly depleted

due to overfishing [36].

1 Based on personal communication with several limited access and day boat scallopers.
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The 2011 Research Set-Aside (RSA) project (Titled: “A Demonstration Sea

Scallop Survey of the Federal Inshore Areas of the New York Bight using a Camera

Mounted Autonomous Underwater Vehicle”) was a scallop survey effort undertaken to

study the health of the scallop population along the coast of New York-New Jersey. As a

part of this effort around a quarter million images of the ocean floor were recorded and a

manual scallop enumeration was performed on these images. The considerable human

effort involved for manual enumeration spawned the idea of building an automated

species recognition system that can sift through millions of images and perform species

enumeration with minimal to no human intervention. In response to this need for an

automated scallop enumeration system, a multi-layered scallop recognition framework

was proposed [37, 14, 20]. The workflow of this scallop recognition framework involves

4 processing layers: customized Top-Down Visual Attention (TDVA) pre-processing,

robust image segmentation, object classification and false positive filtering layers.

The value of the proposed approach in this dissertation is primarily in providing

a novel engineering solution to a real-world problem with economic and societal signifi-

cance, which goes beyond the particular domain of scallop population assessment, and

can possibly extend to other problems of environmental monitoring, or even defense

(e.g. mine detection). Given the general unavailability of similar automation tools, the

proposed one can have potential impact in the area of underwater automation. The

multi-layered approach not only introduces several technical innovations at the imple-

mentation level, but also provides a specialized package for benthic habitat assessment.

At a processing level, it provides the flexibility to re-task individual data processing

layers for different detection applications. When viewed as a complete package, the

approach offers an efficient tool to benthic habitat specialists for processing large image

datasets.

In the this chapter, we discuss the details of the multi-layered scallop recognition

system [37, 14, 20]. This chapter also lists information about the data collection effort

that provided the scallop data for the scallop enumeration survey. Finally, an in depth

comparison of the differences between this multi-layered framework and an earlier
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scallop recognition work [38] is discussed.

3.2 Background

3.2.1 Underwater Animal Recognition

In natural settings, living organisms often tend to blend into their environments

to evade detection via camouflage. Webster’s thesis work [39] provides a detailed

exposition on the visual camouflage mechanisms adopted by animals to blend into their

background. Under such circumstances of camouflage, there are very limited visual cues

that can be used to identify animals. Even in the presence of visual cues, the task of

identifying animals from natural scenes is shown to be a cognitively challenging and

complex task [7].

Previous efforts to detect animals like plankton [16, 17], clam [40] and a range

of other benthic megafauna [21] exist. Most of these methods here are specialized to a

specific species, or only tested in controlled environments. In some cases, the methods

require specialized apparatus (like in the plankton recognition studies [16, 17]). A series

of automated tools like specialized color correction, segmentation and classification

modules along with some level of manual expert support, can be combined to perform

identification of several marine organisms like sea anemones and sponges from natural

image datasets [21].

The existing techniques for marine animal recognition can be broadly divided

into methods devised for identifying mobile organisms and methods for sedentary or-

ganisms. The former category is useful in dealing with a wide range of sea organisms

like the varied species of fish that swim through water. The latter category is less stud-

ied. It includes identifying sedentary marine animals like scallops, corrals and sponges.

Both categories present their own set of challenges. In the rest of this section we visit

the techniques relevant to moving animals and show how they are different from the

methods employed for sedentary animals. An overview of the existing literature on

recognizing sedentary animals follows, with special emphasis on methods developed for

identifying scallops.
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3.2.1.1 Methods for Recognition of Moving Underwater Organisms

Recognizing and counting mobile marine life like fish [41, 42, 43] and studies in

aquaculture [44] have been attempted. The recurring theme in these efforts involves the

use of stationary cameras to detect the presence of moving species, provided that the

background can be described by a prior model. This technique of assuming a known

background, and using changes in the background as an evidence for the presence of a

moving object entering the field of view of a sensor, is called background subtraction.

In the marine species identification case, any changes to the background are assumed

to be caused by a moving marine organism. The pixels in the image that deviate from

the background model can be labeled as the pixels belonging to the organism.

Once a marine organism is detected through background subtraction, then other

computer vision or machine learning techniques can be used to classify the organism

into a specific species based on its visible characteristics. This classification task can be

achieved through conventional machine learning approaches. For instance the salmon

species classification algorithm developed by Williams et al. [43] uses active contours to

model the shape of the fish before comparing these contours to known salmon species.

However, if the pixels corresponding to the organism are contaminated by high levels

of noise, a specialized technique that is robust to noise might be required.

Background subtraction requires a mathematical model that describes the dis-

tribution of background pixels. In an underwater setting, such a background model

can only be obtained if the camera is stationary and is observing a static background.

Additionally, there can also be cases where the evolution of a non-static background

over time can be captured through a mathematical model. Such well defined back-

ground models are not always available. An opportunity to employ the background

subtraction-based techniques arises in underwater environments with stationary fix-

tures designed to study a specific underwater location. In instances where such sta-

tionary arrangement of cameras is not available, background subtraction is inapplicable

due to the lack of a background model.
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3.2.1.2 Methods for Recognition of Sedentary Underwater Organisms

Since sedentary marine animals like scallops do not typically move (unless chased

by a predator), a mobile robotic platform is required to traverse sub-sea relief to image

and recognize those marine animals. Extending background subtraction to work with

mobile robotic platforms is challenging, since the motion of the platform causes changes

in its background. Generating a model for the background to perform background

subtraction in these cases is problematic. This makes the task of detecting sedentary

organisms with moving sensors even more challenging than detecting moving organism

with stationary sensors. The lack of background model in these cases motivates the

development of a foreground model. If a foreground model is available, the task of

detecting an organism can be realized as a search for pixels satisfying the foreground

model in the image.

Detecting an organism typically involves segmenting all pixels of the organism,

in order for one to classify the organism into a known category. The motion-based

segmentation of marine animals that involves subtracting a known model of background

from a snapshot of the environment, followed by attributing the pixels with non-zero

values to the foreground is inapplicable in cases where the background model does

not exist. Furthermore, the task of segmentation can be challenging in noisy images

with weak edges, since the boundary pixels of the foreground object cannot be easily

distinguished from background pixels.

Thus, the lack of background model makes background subtraction problematic.

This leads to the need for techniques that depend on foreground models, and use

of other features to detect and segment organisms from the background. This task

becomes even more complicated if the organism does not present significant visual

cues that make it distinctive from the background, as in the case of creatures exhibiting

camouflage. High levels of noise or unpredictable environmental variables could also

significantly affect the effectiveness of any animal recognition mechanism.
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3.2.1.3 Scallop Recognition Methods

There are several aspects that make scallop recognition challenging. Scallops,

especially when viewed in low resolution, do not provide features that would clearly

distinguish them from their natural environment. This presents a major challenge in

designing an automated identification process based on visual data. To compound this

problem, visual data collected from the species’ natural habitat contain a significant

amount of speckle noise. Some scallops are also partially or almost completely covered

by sediment, obscuring the scallop shell features. A highly robust detection mechanism

is required to overcome these impediments.

There is a range of previously developed methods specialized for scallop recog-

nition [38, 45, 18, 19, 46, 37, 14, 20] that operate on different assumptions, either with

regards to the environmental conditions or the quality of data. Existing approaches

to automated scallop counting in artificial environments [18, 19] employ a detection

mechanism based on intricate distinguishing features like fluted patterns in scallop

shells and exposed shell rim of scallops, respectively. Imaging these intricate scallop

shell features might be possible in artificial scallop beds with stationary cameras and

minimal sensor noise, but this level of detail is difficult to obtain from low resolution

images of scallops in their natural environment. A major factor that contributes to

the poor image resolution is the fact that sometimes the image of a target is captured

several meters away from it. Overcoming this problem by operating an underwater

vehicle much closer to the ocean floor will adversely impact the image footprint (i.e.

area covered by an image) and increase the risk of damaging the vehicle.

Furthermore, existing work on scallop detection [38, 45] in their natural envi-

ronment is limited to small datasets (often less than 100 images). A sliding window

approach has been used [45] to focus the search for the presence of scallops. The large

number of overlapping windows that need to be processed per image raises scalabil-

ity concerns if this method were to operate on a large dataset containing millions of

images. Additionally, the small number of natural images used as a test set raises ques-

tions about the generalizibility of this method and its ability to function under varied
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environmental conditions. The work by Dawkins [38] is more detailed in its treatment

of the natural environmental conditions spanning the scallop habitat. The images used

here are collected using a towed camera system that minimizes noise, a fact which

greatly enhances the performance of the machine learning and computer vision algo-

rithms. Despite the elaborate imaging setup designed to minimize noise, the results

reported are derived only from a few tens to hundreds of images. It is not clear if those

machine learning methods [38] can extend to noisy image data captured by AUVs.

From these studies alone, it is not clear if such methods can be used effectively in cases

of large datasets comprising several thousand seabed images. An interesting example

of machine-learning methods applied to the problem of scallop detection [46] utilizes

the concept of Bottom-Up Visual Attention (BUVA). The approach is promising but

it does not use any ground truth for validation.

There is more work [37, 14, 20] that offers a multi-layered object recognition

framework validated on a natural image dataset for scallop recognition application.

The main emphasis there (and in this dissertation) is to develop a technique that can

work on low quality noisy sensor data collected using AUVs. The other objective

is to build a scalable architecture that can operate on large image datasets in the

order of thousands to millions of images and can be generalized for recognizing other

marine organisms. A detailed comparison between the scallop recognition approaches

in Dawkins et al. [38] and Kannappan et al.[20] is provided in Section 3.8.

3.2.2 Motivation for a Generalized Automated Object Recognition Tool

Understanding the parameters that affect the habitat of underwater organisms

is of interest to marine biologists and government officials charged with regulating a

multi-million dollar fishing industry. Dedicated marine surveys are needed to obtain

population assessments. One traditional scallop survey method, still in use today, is

a dredge-based survey. Dredge-based surveys have been extensively used for scallop

population density assessment [47]. The process involves dredging part of the ocean

floor, and manually counting the animals of interest found in the collected material. In
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addition to being invasive and detrimental to the creatures habitat [48], these methods

have accuracy limitations and can only generalize population numbers up to a certain

extent. There is a need for non-invasive and accurate survey alternatives.

The availability of a range of robotic systems in form of towed camera and AUV

systems offer possibilities for such non-invasive alternatives. Optical imaging surveys

using underwater robotic platforms provide higher data densities. The large volume

of image data (in the order of thousands to millions of images) can be both a blessing

and a curse. On one hand, it provides a detailed picture of the species habitat; on the

other requires extensive manpower and time to process the data. While improvements

in robotic platform and image acquisition systems have enhanced our capabilities to

observe and monitor the habitat of a species, we still lack the required arsenal of data

processing tools. This need motivates the development of automated tools to analyze

benthic imagery data containing scallops.

One of the earliest video based surveys of scallops [49] reports that it took from

4 to 10 hours of tedious manual analysis in order to review and process one hour of

collected seabed imagery. The report suggests that an automated computer technique

for processing of benthic images would be a great leap forward; to this time, however,

no such system is available. There is anecdotal evidence of in-house development efforts

by the HabCam group [50] towards an automated system but as yet no such system

has emerged to the community of researchers and managers. A recent manual count of

our AUV-based imagery dataset indicated that it took an hour to process 2080 images,

whereas expanding the analysis to include all benthic macro-organisms reduced the rate

down to 600 images/hr [51]. Another manual counting effort [52] reports a processing

time of 1 to 10 hours per person to process each image tow transect (the exact image

number per tow was not reported). The same report indicates that the processing time

was reduced to 12 hours per tow by subsampling 1% of the images.

Future benthic studies can be geared towards increasing data densities with

the help of robotic optical surveys. It is clear that the large datasets, in the order of

millions of images, generated by these surveys will impose a strain on researchers if the
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images are to be process manually. This strongly suggests the need for automated tools

that can process underwater image datasets. Motivated by the need to reduce human

effort, Schoening [21] has proposed a range of tools that can be generalized to organisms

like sea-anemones. With an additional requirement of being able to work with low-

resolution noisy underwater images, a generalized multi-layered framework that can

be used to detect and count underwater organisms has been proposed [37, 14, 20].

This method has been evaluated on a scallop population assessment effort on a dataset

containing over 8000 images, the details of which is the subject of this chapter.

3.3 Preliminaries

3.3.1 Visual Attention

Visual attention is a neuro-physiologically inspired machine learning method [53]

that attempts to mimic the human brain function in its ability to rapidly single out

objects that are different from their surroundings within imagery data. The method is

based on the hypothesis that the human visual system first isolates points of interest in

an image, and then sequentially processes these points based on the degree of interest

associated with each point. The degree of interest associated with a pixel is called

salience, and points with the highest salience values are processed first. The method

is used to pinpoint regions in an image where the value of some pixel attributes may

be an indicator to its uniqueness relative to the rest of the image.

According to the visual attention hypothesis [53], in the human visual system

the input video feed is split into several feature streams. Locations in these feature

streams that are different from others in their neighborhood would generate peaks in

the center-surround feature maps. The different center-surround feature maps can be

combined to obtain a saliency map. Peaks in these resulting saliency maps, otherwise

known as fixations, become points of interest, processed sequentially in descending

order of their salience values.

Itti et al. [54] proposed a computational model for visual attention. According to

this model, an image is first processed along three feature streams (color, intensity, and
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orientation). The color stream is further divided into two sub-streams (red-green and

blue-yellow) and the orientation stream into four sub-streams (θ ∈ {0◦, 45◦, 90◦, 135◦}).

The image information in each sub-stream is further processes in 9 different scales. In

each scale, the image is scaled down using a factor 1
2k

(where k = 0, . . . , 8), resulting

in some loss of information as scale increases. The resulting image data for each scale

factor constitutes the spatial scale for the particular sub-stream.

The sub-stream feature maps are compared across different scales to expose

differences in them. Through the spatial scales in each sub-stream feature map, the

scaling factors change the information contained. Resizing these spatial scales to a

common scale through interpolation, and then comparing them, brings out the mis-

match between the scales. Let 	 be an pixel operator that takes pixel-wise differences

between resized sub-streams. This function is called the center-surround operator,

and codifies the mismatches in the differently scaled sub-streams in the form of an-

other map: the center-surround feature map. In the case of the intensity stream, with

c ∈ {2, 3, 4} and s = c + δ for δ ∈ {3, 4} denoting the indices of two different spatial

scales, the center-surround feature map is given by

I(c, s) = |I(c)	 I(s)| . (3.1)

Similarly center-surround feature maps are computed for each sub-stream in color and

orientation streams.

In this way, the seven sub-streams (two in color, one in intensity and four

in orientation), yield a total of 42 center-surround feature maps. All center-surround

feature maps in an original stream (color, intensity, and orientation) are then combined

into a conspicuity map (CM): one for color C̄, one for intensity Ī, and one for orientation

Ō. Define the cross-scale operator ⊕ that adds up pixel values in different maps. Let

wcs be scalar weights associated with how much the combination of two different spatial

scales c and s contributes to the resulting conspicuity map. If M is the global maximum

over the map resulting from the ⊕ operation, and m̄ is the mean over all local maxima

present in the map, let N (·) be a normalization operator that scales that map by a
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factor of (M − m̄)2. For the case of intensity, this combined operation produces a

conspicuity map based on the formula

Ī =
4⊕

c=2

c+4⊕
s=c+3

wcsN (I(c, s)) . (3.2)

The three conspicuity maps—for intensity, color and orientation—are combined to

produce the saliency map. If scalar weights for each data stream are selected, say wĪ

for intensity, wC̄ for color, and wŌ for orientation, the saliency map can be expressed

mathematically as

S = wĪ N (Ī) + wC̄ N (C̄) + wŌN (Ō) . (3.3)

In a methodological variant of visual attention known as BUVA, all streams

are weighted equally: wcs is constant for all c ∈ {2, 3, 4}, s = c + δ (δ ∈ {3, 4})

and wĪ = wC̄ = wŌ. A winner-takes-all neural network is typically used [54, 55] to

compute the maxima, or fixations, on this map—other discrete optimization methods

are of course possible. In the context of visual attention, fixations are the local maxima

of the saliency map. These fixations lead to shifts in focus of attention, or in other

words, enables the human vision processing system to preferentially process regions

around fixations in an image.

In a different variant of visual attention referred to as TDVA [56], the weights

in (3.2) and (3.3) are selected judiciously to bias fixations toward particular attributes.

There exists a method to select these weights in the general case when Nm maps are to

be combined with those weights [56]. Let N be the number of images in the learning

set, and NiT and NiD be the number of targets—in this case, scallops—and distractors

(similar objects) in image i within the learning set. For image i, let PijTk
denote the

local maximum of the numerical values of the map for feature j in the neighborhood of

the target indexed k; similarly, let PijDr be the local maximum of the numerical values

of the map for feature j in the neighborhood of distractor indexed r. The weights for
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Figure 3.1: Seabed image with scallops shown in red circles

a combination of maps are determined by

w′j =

∑N
i=1N

−1
iT

∑NiT

k=1 PijTk∑N
i=1N

−1
iD

∑NiD

r=1 PijDr

wj =
w′j

1
Nm

∑Nm

j=1 w
′
j

, (3.4)

where j ∈ {1, . . . , Nm} is the index set of the different maps to be combined.

Equations (3.4) are used for the selection of weights wcs in (3.2), and wĪ , wŌ, wC̄ in

(3.3).

3.4 Problem Statement

A visual scallop population assessment process involves identifying these animals

in image datasets. A representative example of an image from the dataset we had to

work with is shown in Figure 3.1 (scallops marked within red circles). A general

solution to automated image annotation might not necessarily be effective for the

dataset at hand. The need here is to identify algorithms and methods that will work

best under poor lighting and imaging conditions, characteristic of this particular scallop

counting application. The results from using elementary image processing methods like

thresholding and edge detection on the images (see Figure 3.2c and 3.2d) demonstrate

the need for a more sophisticated approach (possibly a hybrid combination of several

techniques).
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(a) (b) (c) (d)

Figure 3.2: (a) Scallop with yellowish tinge and dark crescent; (b) Scallop with yel-
lowish tinge and bright shell rim crescent; (c) Scallop sample after thresholding; (d)
Scallop sample after edge detection.

Another challenge, related to the issue of low image resolution and high levels

of speckle noise, is the selection of appropriate scallop features that would enable

distinguishing between these organisms and other objects. In the particular dataset,

one recurrent visual pattern is a dark crescent on the upper perimeter of the scallop

shell, which is the shadow cast by the upper open scallop shell produced from the

AUV strobe light (see Figure 3.2a). Another pattern that could serve as a feature in

this dataset is a bright crescent on the periphery of the scallop, generally associated

with the visible interior of the bottom half when the scallop shell is partly open (see

Figure 3.2b). A third pattern may be a yellowish tinge associated with the composition

of the scallop image (see Figure 3.2b).

We have leveraged visual patterns [14] to develop a three-layered scallop count-

ing framework that combines tools from computer vision and machine learning. This

particular hybrid architecture uses top-down visual attention, graph-cut segmentation

and template matching along with a range of other filtering and image processing

techniques. Though this architecture offers a performance of over 63% true positive

detection rate, it has a very large number of false positives. To mitigate this problem,

we extend the framework [14] by adding a fourth, false-positives filtering layer [20].

3.5 Scallop Survey Procedure

The 2011 RSA project (Titled: “A Demonstration Sea Scallop Survey of the

Federal Inshore Areas of the New York Bight using a Camera Mounted Autonomous
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Figure 3.3: Map of the survey region from Shinnecock, New York to Cape May, New
Jersey, divided into eight blocks or strata

Underwater Vehicle”) was a proof-of-concept project that successfully used a digital,

rapid-fire camera integrated to a Gavia AUV, to collect a continuous record of pho-

tographs for mosaicking, and subsequent scallop enumeration. In July 2011, transects

were completed in the northwestern waters of the mid-Atlantic Bight at depths of 25-50

m. The AUV continuously photographed the seafloor along each transect at a constant

distance of 2 m above the seafloor. Parallel sets of transects were spaced as close as

4 m. Georeferenced images were manually analyzed for the presence of sea scallops

using position data logged (using Doppler Velocity Log (DVL) and Inertial Navigation

System (INS)) with each image.

3.5.1 Field Survey Process

In the 2011 demonstration survey, the federal inshore scallop grounds from Shin-

necock, New York to Ocean View, Delaware, was divided into eight blocks or strata

(as shown in Figure 3.3). The f/v Christian and Alexa served as the surface support

platform from which a Gavia AUV (see Figure 3.4) was deployed and recovered. The

AUV conducted photographic surveys of the seabed for a continuous duration of ap-

proximately 3 hours during each dive, repeated 3–4 times in each stratum, with each

stratum involving roughly 10 hours of imaging and an area of about 45 000 m2. The
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AUV collected altitude (height above the seabed) and attitude (heading, pitch, roll)

data, allowing the georectification of each image into scaled images for size and count-

ing measurements. During the 2011 pilot study survey season, over 250 000 images of

the seabed were collected. These images were analyzed in the University of Delaware’s

Coastal Sediments, Hydrodynamics and Engineering Laboratory for estimates of scal-

lop abundance and size distribution. The f/v Christian and Alexa provided surface

support, and made tows along the AUV transect to ground-truth the presence of scal-

lops and provide calibration for the size distribution. Abundance and sizing estimates

were computed manually for each image using a GUI-based digital sizing software.

Each image included embedded metadata that allowed it to be incorporated into ex-

isting benthic image classification systems (HabCam mip [38]).

During this proof of concept study, in each stratum the f/v Christian and Alexa

made one 15-minute dredge tow along the AUV transect to ground-truth the presence

of scallops and other fauna, and provide calibration for the size distribution. The

vessel was maintained on the dredge track by using Differential GPS. The tows were

made with the starboard 15 ft (4.572 m) wide New Bedford style commercial dredge at

the commercial dredge speed of 4.5–5.0 knots. The dredge was equipped with 4 inch

(10.16 m) interlocking rings, an 11 inch (27.94 cm) twine mesh top, and turtle chains.

After dredging, the catch was sorted, identified, and weighed. Length-frequency data

were obtained for the caught scallops. This information was recorded onto data logs

and then entered into a laptop computer database aboard ship for comparison to the

camera image estimates.

The mobile platform of the AUV provided a more expansive and continuous

coverage of the seabed compared to traditional fixed drop camera systems or towed

camera systems. In a given day, the AUV surveys covered about 60 000 m2 of seabed

from an altitude of 2 m above the bed, simultaneously producing broad sonar swath

coverage and measuring the salinity, temperature, dissolved oxygen, and chlorophyll-a

in the water.
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Figure 3.4: Schematics and image of the Gavia AUV

3.5.2 Sensors and Hardware

The University of Delaware AUV (Figure 3.4) was used to collect continuous

images of the benthos, and simultaneously map the texture and topography of the

seabed. Sensor systems associated with this vehicle include: (1): a 500 kHz GeoAcous-

tics GeoSwath Plus phase measuring bathymetric sonar; (2): a 900/1800 kHz Marine

Sonic dual-frequency high-resolution side-scan sonar; (3): a Teledyne Rd Instruments

1200 kHz acoustic DVL/Acoustic Doppler Current Profiler (ADCP); (4): a Kearfott

T-24 inertial navigation system; (5): an Ecopuck flntu combination fluorometer / tur-

bidity sensor; (6): a Point Grey Scorpion model 20SO digital camera and LED strobe

array; (7): an Aanderaa Optode dissolved oxygen sensor; (8): a temperature and den-

sity sensor; and, (9): an altimeter. Each sensor separately records time and spatially

stamped data with frequency and spacing. The AUV is capable of very precise dy-

namic positioning, adjusting to the variable topography of the seabed while maintaining

a constant commanded altitude offset.
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3.5.3 Data Collection

The data was collected over two separate five-day cruises in July 2011. In total,

27 missions were run using the AUV to photograph the seafloor (For list of missions

see Table 3.1). Mission lengths were constrained by the 2.5 to 3.5 hour battery life of

the AUV. During each mission, the AUV was instructed to follow a constant height

of 2 m above the seafloor. In addition to the 250 000 images that were collected, the

AUV also gathered data about water temperature, salinity, dissolved oxygen, geoswath

bathymetry, and side-scan sonar of the seafloor.

The camera on the AUV, a Point Grey Scorpion model 20SO (for camera spec-

ifications see Table 3.2), was mounted inside the nose module of the vehicle. It was

focused at 2 m, and captured images at a resolution of 800 × 600. The camera lens

had a horizontal viewing angle of 44.65 degrees. Given the viewing angle and distance

from the seafloor, the image footprint can be calculated as 1.86× 1.40 m2. Each image

was saved in jpeg format, with metadata that included position information (including

latitude, longitude, depth, altitude, pitch, heading and roll) and the near-seafloor envi-

ronmental conditions analyzed in this study. This information is stored in the header

file, making the images readily comparable and able to be incorporated into existing

RSA image databases, such as the HabCam database. A manual count of the number

of scallops in each image was performed and used to obtain overall scallop abundance

assessment. Scallops counted were articulated shells in life position (left valve up) [51].

3.6 Methodology

The multi-layered scallop counting framework that comprises four layers of pro-

cessing on underwater images for the purpose of obtaining scallop counts is discussed

in this section. The four layers involve the sequential application of Top-Down Visual

Attention, Segmentation, Classification and False-Positive Filtering.
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Mission Number of images

LI11 12 775
LI2 2 387
LI3 8 065
LI4 9 992
LI5 8 338
LI6 11 329
LI7 10 163
LI8 9 780
LI9 2 686
NYB12 9 141
NYB2 9 523
NYB3 9 544
NYB4 9 074
NYB5 9 425
NYB6 9 281
NYB7 12 068
NYB8 9 527
NYB9 10 950
NYB10 9 170
NYB11 10 391
NYB12 7 345
NYB13 6 285
NYB14 9 437
NYB15 11 097
ET13 9 255
ET2 12 035
ET3 10 474

1 LI–Long Island
2 NYB–New York Bight
3 ET–Elephant Trunk

Table 3.1: List of missions and number of images collected
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Attribute Specs

Name Point Grey Scorpion 20SO Low Light Re-
search Camera

Image Sensor 8.923 mm Sony ccd
Horizontal Viewing Angle 44.65 degrees (underwater)
Mass 125 g
Frame rate 3.75 fps
Memory Computer housed in AUV nose cone
Image Resolution 800 × 600
Georeferenced metadata Latitude, longitude, altitude, depth
Image Format jpeg

Table 3.2: Camera specifications

3.6.1 Layer I: Top-Down Visual Attention

3.6.1.1 Learning

A customized TDVA algorithm can be designed to sift automatically through

the body of imagery data, and focus on regions of interest that are more likely to

contain scallops. The process of designing the TDVA algorithm is described below.

The first step is a small-scale, BUVA based saliency computation. The saliency

computation is performed on a collection of randomly selected 243 annotated images,

collectively containing 300 scallops. This collection constitutes the learning set. Fig-

ure 3.5 represents graphically the flow of computation and shows the type of informa-

tion in a typical image that visual attention tends to highlight.

A process of extremum seeking on the saliency map of each image identifies

fixations in the associated image. If a 100 × 100 pixel window—corresponding to an

approximately 23 × 23 cm2 area on the seafloor—centered around a fixation point

contained the center of a scallop, the corresponding fixation was labeled a target ;

otherwise, it is considered a distractor.

The target and distractor regions are determined in all the feature and con-

spicuity maps for each one of these processed images in the learning set. This is done

by adaptively thresholding and locally segmenting the points around the fixations with
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Figure 3.5: Illustration of computation flow for the construction of saliency maps

Figure 3.6: Illustration of fixations (marked by yellow boundaries): red lines indicate
the order in which the fixations were detected with the lower-left fixation being the
first.
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Table 3.3: Top-down weights for feature maps

Center Surround Feature Scales

1 2 3 4 5 6

Color red-green 0.8191 0.8031 0.9184 0.8213 0.8696 0.7076
blue-yellow 1.1312 1.1369 1.3266 1.2030 1.2833 0.9799

Intensity intensity 0.7485 0.8009 0.9063 1.0765 1.3111 1.1567

Orientation 0◦ 0.7408 0.2448 0.2410 0.2788 0.3767 2.6826
45◦ 0.7379 0.4046 0.4767 0.3910 0.7125 2.2325
90◦ 0.6184 0.5957 0.5406 1.2027 2.0312 2.1879
135◦ 0.8041 0.6036 0.7420 1.5624 1.1956 2.3958

similar salience values in each map. Then the mean numerical value in neighborhoods

around these target and distractor regions in the feature maps and conspicuity maps

are computed. These values are used to populate the PijTk
and PijDr variables in (3.4),

and determine the top-down weights for feature maps and conspicuity maps.

For the conspicuity maps, the center-surround scale weights wcs computed through

(3.4) and consequently used in (3.2), are shown in Table 3.3. For the saliency map com-

putation, the weights resulting from the application of (3.4) on the conspicuity maps

are wĪ = 1.1644, wC̄ = 1.4354 and wŌ = 0.4001. The symmetry of the scallop shell in

our low-resolution dataset justifies the relatively small value of the orientation weight.

3.6.1.2 Implementation and Testing

To test the performance of the customized TDVA algorithm, it is applied on two

image datasets, the size of which is shown in Table 3.5. In this application, the saliency

maps are computed via the formulae (3.3) and (3.2), using the weights listed in Table

3.3. Convergence time of the winner-takes-all neural network that finds fixations in the

saliency map of each image in the datasets of Table 3.5, is controlled using dynamic

thresholding: It is highly unlikely that a fixation that contains an object of interest

requires more than 10 000 iterations. If convergence to some fixation takes more than
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Figure 3.7: Percentage of scallops enclosed in the fixation window as a function of
window half length (in pixels)

(a) (b)
(c)

(d) (e)

Figure 3.8: (a) Fixation window from layer I; (b) Edge segmented image; (c) graph-cut
segmented image; (d) Region boundaries obtained when the edge segmented image is
used as a mask over the graph-cut segmented image boundaries; (e) circle fitted on the
extracted region boundaries.

this number of iterations, then the search is terminated and no more fixations are

sought in the image.

Given that an image in datasets of Table 3.5 contains two scallops on average,

no more than ten fixations are sought in each image (The percentage of images in the

datasets that contained more than 10 scallops was 0.002%). Since in the testing phase

the whole scallop—not just the center—needs to be included in the fixation window,

the size of this window is set at 270 × 270 pixels; more than 91% of the scallops are

accommodated inside the window (Figure 3.7).

3.6.2 Layer II: Segmentation and shape extraction

This processing layer consists of three separate sub-layers: edge based segmen-

tation (involves basic morphological operations like smoothing, adaptive thresholding
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and edge detection), graph-cut segmentation, and shape fitting. The flow of the seg-

mentation process for a typical fixation window containing a scallop is illustrated in

Figure 3.8. Figure 3.8a shows a fixation window. Edge-based segmentation on this

window yields the edge segmented image of Figure 3.8b. At the same time, graph-cut

segmentation process [57] is applied on the fixation window to decompose it into 10

separate regions as seen in Figure 3.8c. The boundaries of these segments are matched

with the edges in the edge segmented image. This leads to further filtering of the edges,

and eventually to the region boundaries on Figure 3.8d. This is followed by fitting a

circle to each of the contours in the filtered region boundaries (Figure 3.8d). Only

circles with dimensions close to that of a scallop (diameter 20− 70 pixels) are retained

(Figure 3.8e), which in turn helps in rejection of other non-scallop round objects.

The choice of the shape to be fitted is suggested by the geometry of the scallop’s

shell. Finding the circle that fits best to a given set of points is formulated as an

optimization problem [58, 59].

Given a set of n points on a connected contour each with coordinates (xi, yi)

(i ∈ {1, 2, . . . , n}), define a function of four parameters A, B, C, and D:

F2(A,B,C,D) =

∑n
i=1[A(x2

i + y2
i ) +Bxi + Cyi +D]2

n−1
∑n

i=1[4A2(x2
i + y2

i ) + 4ABxi + 4ACyi +B2 + C2]
. (3.5)

It is shown [58] that minimizing (3.5) over these parameters yields the circle that fits

best around the contour. The center (a, b) and the radius of this best-fit circle are

given as a function of the parameters as follows:

a = − B

2A
, b = − C

2A
, R =

√
B2 + C2 − 4AD

4A2
. (3.6)

For all annotated scallops in the testing image dataset, the quality of the fit

is quantified by means of two scalar measures: the center error ec, and the percent

radius error er. An annotated scallop would be associated with a triple (ag, bg, Rg)—

the coordinates of its center (ag, bg) and its radius Rg. Using the parameters of the

fit in (3.6), the error measures are evaluated as follows, and are required to be below
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the thresholds specified on the right hand side in order for the scallop to be considered

detected.

ec =
√

(ag − a)2 + (bg − b)2 ≤ 12 (pixels) er =
|Rg −R|
Rg

≤ 0.3 .

These thresholds were set empirically, taking into account that radius measurements

in manual counts used as ground truth [51] have a measurement error of 5–10%.

3.6.3 Layer III: Classification

The binary classification problem solved in this layer consists of identifying

specific features in the images which mark the presence of scallops. These images are

obtained by a using a camera at the nose of the AUV, illuminated by a strobe light

close to its tail (mounted to the hull of the control module at an oblique angle to

the camera). Our hypothesis is that due to this camera-light configuration, scallops

appear in the images with a bright crescent at the lower part of its perimeter and a dark

crescent at the top—a shadow. Though crescents appear in images of most scallops,

their prominence and relative position with respect to the scallop varies considerably.

The hypothesis regarding the origin of the light artifacts implies that the approximate

profile and orientation of the crescents is a function of their location in the image.

3.6.3.1 Scallop Profile Hypothesis

A statistical analysis was performed on a dataset of 3 706 manually labeled

scallops (each scallop is represented as (a, b, R) where a, b are the horizontal and vertical

coordinates of the scallop center, and R is its radius). For this analysis, square windows

of length 2.8 × R centered on (a, b) were used to crop out regions from the images

containing scallops.2 Each cropped region was filtered in grayscale, contrast stretched,

and then normalized by resizing to 11×11 dimension or 121 bins. To show the positional

2 Using a slightly larger window size (> 2 × R, the size of the scallop) includes a
neighborhood of pixels just outside the scallop which is where crescents are expected.
This also improves the performance of local contrast enhancement, leading to better
edge detection.
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(a) (b)

Figure 3.9: (a) Mean map of scallops in each quadrant; (b) Standard deviation map
of scallops in each quadrant. Red corresponds to higher numeric values and blue
correspond to lower numeric values.

dependence of the scallop profiles, the image plane is discretized into 48 regions (6× 8

grid). Scallops whose centers lie within each grid square are segregated. The mean

(Figure 3.9a) and standard deviation (Figure 3.9b) of the 11 × 11 scallop profiles of

all scallops per grid square over the whole dataset of 3 706 images was recorded. The

lower standard deviation found in the intensity maps of the crescents on the side of

the scallop facing away from the camera reveal that these artifacts are more consistent

as markers compared to the ones closer to the lens.

3.6.3.2 Scallop Profile Learning

The statistics of the dataset of 3 706 images used to produce Figure 3.9 form

a look-up table that represents reference scallop profile (mean and standard deviation

maps) as a function of scallop center pixel location. To obtain the reference profile for

a pixel location, the statistics from all the scallops whose centers lie inside a 40 × 40

window centered on the pixel is used. This look-up table can be compressed; it turns

out that not all of the 121 bins (11 × 11) within each map is equally informative,

because bins close to the boundary are more likely to include a significant number of

background pixels. For this reason, a circular mask with a radius covering 4 bins is

applied to each map (Figure 3.10), thus reducing the number of bins that are candidates
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(a) (b) (c)

Figure 3.10: Intensity statistics and mask for a region centered at image coordinates
(470, 63): (a) Map of mean intensity; (b) Map of intensity standard deviation; (c) Mask
applied to remove background points.

as features for identification to 61. Out of these 61 bins, 15 additional bins having the

highest standard deviation are ignored, leading to a final set of 46 bins. The value in

the selected 46 bins from mean map forms a 46-dimensional feature vector associated

with that region. The corresponding 46 bins from the standard deviation map are also

recorded, and are used to weight the features (as seen later in (3.7)).

3.6.3.3 Scallop Template Matching

With this look-up table that codes the reference scallop profile for every scallop

center pixel location, the resemblance of any segmented object to a scallop can now be

assessed. The metric used for this comparison is a weighted distance function between

the elements of the feature vector for the region corresponding to the segmented object,

and that coming from the look-up table, depending on the location of the object in the

image being processed. If this distance metric is below a certain threshold Dthresh, the

object is classified a scallop. Technically, let Xo = (Xo
1 , X

o
2 , . . . , X

o
46) denote the feature

vector computed for the segmented object, and Xs = (Xs
1 , . . . , X

s
46) the reference

feature vector. Every component of the Xs vector is a reference mean intensity value

for a particular bin, and is associated with a standard deviation σk from the reference

standard deviation map. To compute the distance metric, first normalize Xo to produce
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Figure 3.11: Nine different masks slightly offset from the center used to make the
classification layer robust to errors in segmentation

vector X ō with components

X ō
p = min

k
Xs

k +

max
k
Xs

k −min
k
Xs

k

max
k
Xo

k −min
k
Xo

k

[Xo
p −min

k
Xo

k

]
for p = 1, . . . , 46 ,

and then evaluate the distance metric Dt quantifying the dissimilarity between the

normalized object vector X ō and the reference feature vector Xs as

Dt =

√√√√ n∑
k=1

‖X ō
k −Xs

k‖2

σk
. (3.7)

Small variations in segmentation can produce notable deviations in the com-

puted distance metric (3.7). To alleviate this effect, the mask of Figure 3.10c was

slightly shifted in different directions and the best match in terms of the distance was

identified. This process enhanced the robustness of the classification layer with respect

to small segmentation errors. Specifically, nine slightly shifted masks were used (shown

in Figure 3.11). Out of the nine resulting distance metrics Do1
t . . .Do9

t , the smallest

Dobj = minp∈{1,...,9}D
op
t is found and used for classification. If Dobj < Dthresh, the corre-

sponding object is classified as a scallop. Based on Figures 3.12a–3.12b, the threshold
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Figure 3.12: (a) Precision-Recall curve with Dthresh shown as a vertical line; (b) His-
togram of template match of segmented scallop objects.

value was chosen at Dthresh = 7 to give a recall3 rate of 97%. Evident in Figure 3.12a

is the natural trade-off between increasing recall rates and keeping the number of false

positives low.

3.6.4 Layer IV: False Positives Filter

To decrease the false positives that are produced in the classification layer, two

methods are evaluated as possible candidates: a high-dimensional Weighted Correlation

Template Matching (WCTM) technique and a Histogram of Gradients (HOG) method.

The main objective here is to find a method that will retain a high percentage of

true positive scallop and at the same time eliminate as many false positives from the

classification layer as possible.

3.6.4.1 High-dimensional weighted correlation template matching (WCTM)

In this method, the templates used are generated from scallop images that are

not preprocessed, i.e., images that are not median-filtered, unlike the images that were

processed by the first three layers. The intuition behind this is that although median

3 Recall refers to the fraction of relevant instances identified: fraction of scallops de-
tected over all ground truth scallops; precision is the fraction of the instances returned
that are really relevant compared to all instances returned: fraction of true scallops
over all objects identified as scallops.
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filtering reduces speckle noise and may improve the performance of segmentation, it

also weakens the edges and gradients in an image. Avoiding median filtering helps to

generate templates that are more accurate than the ones already used in the classifi-

cation layer.

Based on the observation that the scallop templates are dependent on their

position in the image (Figure 3.9), a new scallop template is generated for each object

that is classified as a scallop in Layer III. As indicated before, such an object would

be represented by a triplet (ao, bo, Ro), where ao and bo represent the spatial Cartesian

coordinates of object’s geometric center, and Ro gives its radius. The representative

scallop template is now generated from all scallops in the learning set (containing 3 706

scallops), of which the center is within a 40 × 40 window in the neighborhood of the

object center (ao, bo). Each of these scallops is then extracted using a window of size

2.5R × 2.5R where R is the scallop radius. Since these scallops in the learning set

can be of different dimensions, it is resized (scaled) to a window of size 2.5Ro× 2.5Ro.

All these scallop instances in the learning set are finally combined through a pixel-

wise mean to obtain the mean representative template. Similarly, a standard deviation

map that captures the standard deviation of each pixel in the mean template is also

obtained. The templates produced here are of larger size compared to the templates in

Layer III (recall that a Layer III template was of size 11×11). The inclusion of slightly

more information contributes to these new larger templates being more accurate.

In a fashion similar to the analysis in Layer III, the templates and object pixels

first undergo normalization and mean subtraction. Then they are compared. Let

v = (2.5Ro)
2 be the total number of pixels in both the template and the object, and let

the new reference scallop feature (template) and the object be represented by vectors

X t = (X t
1, X

t
2, . . . , X

t
v) and Xu = (Xu

1 , . . . , X
u
v ), respectively. In addition, let σ be

the standard deviation vector associated with X t. Then the reference scallop feature

vector X t would first be normalized as follows:

X t′

p = min
k
Xu

k +

max
k
Xu

k −min
k
Xu

k

max
k
X t

k −min
k
X t

k

[X t
p −min

k
X t

k

]
,
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where p denotes the position of component X t
p in vector X t. Normalization is followed

by mean subtraction, this time both for the template and for the object. The resulting,

mean-subtracted reference scallop feature X t̄, and object X ū are computed as

X t̄
p = X t′

p −
1

v

v∑
k=1

X t′

k , X ū
p = Xu

p −
1

v

v∑
k=1

Xu
k .

Now the standard deviation vector is normalized:

σ̄p =
σp∑v
k=1 σk

.

At this point, a metric that expresses the correlation between the mean-subtracted

template and the object can be computed. This metric is weighted by the (normalized)

variance of each feature. In general, the higher the value of this metric, the better the

match between the object and the template. The WCTM similarity metric is given by

Dwctm =
v∑

k=1

X t̄
kX

ū
k

σ̄k
.

The threshold set for the weighted correlation metric Dwctm, in order to distinguish

between likely true and false positives is at 0.0002222, i.e., any object with a similarity

score lower than this threshold is rejected. This threshold value is justified from the

precision-recall curves (see Figure 3.13a) of the weighted correlation metric values for

the objects filtering down from the classification layer. The threshold shown by the

blue line corresponds to 96% recall rate, i.e., 96% of the true positive scallops from

the classification layer pass through WCTM. At the same time, WCTM decreases the

false positives by over 63%.

3.6.4.2 Histogram of Gradients (HOG)

The HOG feature descriptor encodes an object by capturing a series of local

gradients in neighborhood of the object pixels. These gradients are then transformed

into a histogram after discretization and normalization. There are several variants of

HOG feature descriptors. The R-HOG used for human detection in [60] was tested

here as a possible Layer IV candidate.
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Figure 3.13: Precision recall curve for Layer IV candidate methods (a) WCTM and
(b) HOG. The blue line marks thresholds Dwctm = 0.0002222 and Dhog = 2.816. It
is important to note that WCTM is a similarity measure and HOG is a dissimilarity
measure. This implies that only instances below the indicated threshold Dwctm in
WCTM, and likewise instances above the threshold Dhog in HOG, are rejected as false
positives.

To produce R-HOG, the image is first tiled into a series of 8 × 8 pixel groups

referred to here as cells (the image dimensions need to be multiples of 8). The cells are

further divided into a series of overlapping blocks each containing groups of 2× 2 cells.

For each cell a set of 64 gradient vectors (one per pixel) is computed. Each gradient

vector contains a direction and magnitude component. In the gradient directions, the

sign is ignored reducing the range of angles from 0–360 down to 0–180. The gradient

vectors are then binned into a 9–bin histogram ranging from 0–180 degrees with a bin

width of 20 degrees. The contribution of each gradient vector is computed as half

its gradient magnitude. The other half of the gradient magnitude is split between

the two neighboring bins (in case of boundary bins, the neighbors are determined by

wrapping around the histogram). The histograms from the 4 cells in each block is then

concatenated to get vector v of 36 values (9 per cell). These vectors from each block

are then normalized using their L2-norm; for a vector v this normalization would be

expressed as

v̄ =
v√

‖v‖2
2 + ε2

where ε is a small constant (here ε = 0.01). The normalized vector v̄ from each block

is concatenated into a single feature vector F to get the HOG descriptor for the input

image.
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Since this method imposes a constraint on the image dimensions being multiples

of 8, the learning samples (each cropped using a square window of size of 3 × radius)

are resized to 24× 24. Here, we have to use both positive and negative object samples,

the latter being objects other than scallops picked up in the segmentation layer. A

HOG feature vector F of length 144 (4 blocks × 4 cells × 9 values) is computed for

each object instance obtained from the classification layer.

Now several different machine learning methods can be applied, using the pos-

itive and negative object instances as learning samples. As per the original imple-

mentation of the R-HOG method [60], an Support Vector Machine (SVM) is used

here. It turns out that the SVM learning algorithm fails to converge even after a large

number of iterations. This could be attributed to the fact that the scallop profiles

vary significantly based on their position in the image. To overcome this limitation, a

lookup table similar to the one used to learn the scallop profiles in the classification

layer is generated. The only difference here is that instead of saving a reference scallop

template vector, a reference HOG vector for only positive scallop instances from the

learning set is recorded. The reference HOG descriptor for a pixel coordinate in the

image is taken to be the mean of all the HOG descriptors of scallop instances inside a

40× 40 window around the point.

For each instance classified as a scallop from the classification layer, its HOG de-

scriptor is compared with its corresponding learned reference HOG descriptor from the

lookup table. Since HOG feature vectors are essentially histograms, the Earth Mover’s

Distance (EMD) metric [61] is used to measure the dissimilarity between feature and

object histograms. Let A and B be two histograms, and let m and n be the number

of bins in A and B, respectively. Denote dij the spatial (integer) distance between bin

i in A and bin j in B, and fij the smaller number of items that can be moved between

bins i and j to ultimately make both histograms match (this is known as the optimal

flow and can be found through a process of solving a linear program [61]). Then the

EMD metric Demd that quantifies dissimilarity between two histograms A and B would
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HOG WCTM
Dataset 1 Dataset 2 Dataset 1 Dataset 2

TP1 from Classification Layer 183 1 759 183 1759
FP2 from Classification Layer 7 970 52 456 7 970 52 456
TP after Layer IV 179 1 689 176 1 685
FP after Layer IV 7 752 51 329 2 924 16 407
Decrease in TP after Layer IV 4 (2.2%) 70 (4%) 7 (3.8%) 74(4.2%)
Decrease in FP after Layer IV 218 (2.7%) 1 127 (2.1%) 5 046 (63.3%) 36 049 (68.7%)
1 TP–True Positives
2 FP–False Positives

Table 3.4: Comparison of tested false positive filter layer methods

be expressed as

Demd(A,B) =

∑m
i=1

∑n
j=1 dijfij∑m

i=1

∑n
j=1 fij

.

A precision-recall curve (shown in Figure 3.13b) with the classification threshold

set as 2.816 (which corresponds to 96% recall rate, same rate used to set the WCTM

threshold). Any object with EMD distance value less than this threshold is considered

as a scallop. Though this threshold can capture 96% of the scallops, very few false

positives actually get eliminated (less than 3%).

3.7 Results

The multi-layered detection approach is tested on two separate datasets con-

taining 1 299 and 8 049 images, respectively. Among the two candidate methods tested

for the fourth layer, WCTM was chosen over HOG due to it superior performance in

terms of eliminating false positives. The difference in performance between HOG and

WCTM is given in Table 3.4 for both datasets. Rows 1 and 2 in Table 3.4 show the

true positives and false positives, respectively, that are filtered down from the initial 3

layers (Layers I-III). With these values as baseline, the thresholds for both HOG and

WCTM were chosen to retain a high recall rate of close to 96%. This ensures that

very few true positives are lost and their performance is primarily assessed through the

reduction in false positives (row 6 of Table 3.4).
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Since the thresholds are set such that the recall rate is high in both methods,

the decrease in true positives is less than 5% in both HOG and WCTM. However

there is a significant reduction in false positives (63.3% for dataset 1 and 68.7% for

dataset 2) due to WCTM. On the other hand, the decrease in false positives is relatively

small (less than 3%) for HOG. It is not clear at this point why the HOG filter fails

to remove false positives. One reason could be that the HOG filter derived from its

native implementation for human detection in [60] might need further customization

and even weighting through standard deviation weights like in WCTM. Further study

and detailed analysis is required to investigate and possibly improve its performance.

In any case, the results support the inclusion of WCTM as the false positive filter layer

in the multi-layer scallop detection and counting process pipeline.

The overall performance of the four-layer pipeline is shown in Table 3.5. The

results are compared to manually labeled ground truth. Only a subset of the available

scallops—scallops at least 80 pixels horizontally and 60 pixels vertically away from the

image boundaries—were used as ground truth. This was done to leave out scallops

near the boundaries that were affected by severe vignetting effects. Such scallops were

often too dark (see Figure 3.1) and very difficult to correct using standard vignetting

correction algorithms. Furthermore, the scallop templates for scallops near the bound-

aries are such that their prime feature, the dark crescents, blend into the dark borders

of the image (see Figure 3.9a). Inclusion of the boundaries would cause almost any

objects near the boundary to be classified as scallops, resulting in a large number of

false positives. It is also interesting to note that scallops only partially visible near the

image boundaries were excluded in the manual counts performed [51].

Table 3.5 shows the results of the 3-layer pipeline along with the improvements in

terms of the reduction in false positives as a result of introducing the fourth processing

layer. The true positive percentages shown are computed with reference to the valid

ground truth scallops (row 3 of table 3.5), i.e., scallops away from image boundaries.

In dataset 1, which contains 1 299 images, the four-layer filtering results in a 70.4%

overall recall rate, while in dataset 2 that contains 8 049 images the overall recall rate
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Table 3.5: Results of multi-layer scallop classification

Dataset 1 Dataset 2

Number of images 1,299 8,049
Ground Truth Scallops 363 3,698
Valid Ground Truth Scallops 250 2,781
True positives after Visual Attention Layer 231 (92.4%) 2,397 (86.2%)
True positives after Segmentation Layer 185 (74%) 1,807 (64%)
True positives after Classification Layer 183 (73%) 1,759 (63.2%)
True positives after False Positive Filter Layer 176 (70.4%) 1,685 (60.6%)
False positives after Classification Layer 7,970 52,456
False positives after False Positives Filter Layer (WCTM) 2,924 16,407
Decrease in false positives (due to WCTM) 63.3% 68.7%

is 60.6%. Though the addition of the fourth false positive layer results in a small drop

of 2.6% in recall rate, it eliminates over 63% of the false positives in both datasets.

There is no clear reason for the better performance of this pipeline on dataset 2 both

in terms of recall rate and decrease in false positives compared to dataset 1.

3.8 Discussion

The four-layer automated scallop detection approach discussed here works on

feature-poor, low-light imagery and yields overall detection rates in the range of 60–

70%. Related work on scallop detection using underwater imaging [62, 38], reported

higher detection rates, but the quality of the images used was visibly better. Specifi-

cally, the datasets on which the alternative algorithms [38] operated on, exhibit much

more uniform lighting conditions, higher resolution, brightness, contrast, and color vari-

ance between scallops and background (see Figure 3.14). Evidence of this can be seen

in Figure 3.14: the color variation between scallops and background data is reflected

in the saturation histogram of Figure 3.14. While the histograms of scallop regions

in the datasets of Table 3.5 is often identical to the global histogram of the image,

the histograms of the WHOI data used by the alternative algorithms [38] present a
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bimodal saturation histogram (Figure 3.14c), from which foreground and background

are easily separable.

Compared to another alternative approach that uses a series of bounding boxes

to cover the entire image [45], the one reported here employs only ten windows per

image, scanning the images at a much faster rate. Additionally, the detection rates

there [45] were based on a dataset of just 20 images; statistically significant differences

in performance rates between that approach and the one reported here would need

much larger image samples.

3.9 Conclusions

With the increasing use of underwater robotic platforms, terrabytes of imagery

datasets featuring millions of images are becoming commonplace. The current practice

of manual processing of these underwater images introduces a bottleneck. In the spirit

of this scallop counting work, designing better and faster automated tools to charac-

terize animals and other natural underwater phenomenon from images is imperative

for future marine environmental studies.

This work is a step toward the development of an automated procedure for scal-

lop detection, classification and counting, based on low-resolution imagery data ob-

tained in the organisms’ natural environment. The uniqueness of the reported method

lies in its ability to handle poor lighting and low-contrast imaging conditions. A large

natural datasets of over 8000 images have been used to validate this four-layered frame-

work. Augmenting a previously developed three-layer scallop counting framework with

a dedicated false-positive filtering layer has a drastic effect in terms of reducing the

number of false positives. The study noted that a filter based on a custom WCTM

method outperforms HOG in this specific application context. The multilayer frame-

work reported is verified to be modular, and it allows easy adaptation of different

layers for various applications like counting other sea organisms. Designing such tools

with further improvements in form of higher detection rates and lower false positives

is required to help advance future marine animal studies.
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(a) (b) (c)

(d) (e) (f)

Figure 3.14: Representative samples of different imagery data on which scallop de-
tection algorithms may be called to operate on. Figures 3.14a and 3.14d, show an
image containing a single scallop from the dataset used by Dawkins et al.[38] (used
with permission from the authors) and the datasets used in this chapter respectively.
A magnified view of a scallop cropped from Figure 3.14a and 3.14d can be seen in
Figures 3.14b and 3.14e respectively. Figure 3.14c gives the saturation histogram of
background or the complete image in Figure 3.14a to left and saturation histogram
of Figure 3.14b to the right. Similarly, Figure 3.14f gives the saturation histogram of
Figure 3.14d to the left and saturation histogram of Figure 3.14e to the right. The
bimodal nature of the scallop histogram in Figure 3.14c derived from the dataset used
in Dawkins et al.[38], clearly portrays the distinguishing appearance of the scallop pix-
els from the rest of the image, making it easily identifiable. The datasets we used did
not exhibit any such characteristics (as seen in Figure 3.14f) to aid the identification
of scallops.
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3.10 Future Work

One future direction would be to further reduce false positives by enhancing

the false positives filter layer by using multiple scallop reference templates for each

pixel location. These new templates could be designed to capture the bright crescents

that sometimes appear due to the visible interior of the lower valve of a scallop when

the scallop shell is partly open. As this crescent appearance is only dependent on the

relative scallop orientation with respect to the camera, it can occur at any point in

the periphery of a scallop. If these bright crescents were to be used in conjunction

with dark crescents multiple templates will be required to model scallops at each pixel

location. This idea is supported by inspection of recently collected high-resolution

scallop data, which indicate additional definitive features connecting the position of

the bright and dark crescents along with their relative intensities. We believe that

even without major changes to the current framework, testing on higher resolution

images could produce much better performance outcomes (both in terms of detection

and false positive rates). The unavailability of ground truth for the new datasets

makes it hard to provide evidence of any performance at this point. It is also expected

that using more targeted color and light correction methods [38] as a part of image

preprocessing will improve results.

Building robust object classification techniques capable of handling noisy data,

is one of the primary directions where improvement is necessary. It is possible that a

single noisy image of a target object might lack the information needed to accurately

recognize it. With this in mind, a multi-view object recognition approach that combines

information from multiple images is proposed in Chapter 4.
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Chapter 4

DISTANCE BASED GLOBAL DESCRIPTORS FOR MULTI-VIEW
OBJECT RECOGNITION

4.1 Introduction

The ability to recognize objects on distorted images is critical for robotic systems

that operate in natural environments where measurement is contaminated by noise.

In the presence of noise, the information contained in a single image might not be

sufficient to unambiguously classify the object-of-interest. This may justify in part the

percentage of false positives seen in the multi-layered object recognition approach of

Chapter 3. One possible way to resolve the ambiguity regarding an object’s identity is

by combining information from multiple views. The approach described here combines

information from multiple views of a target, and employs global image descriptors to

solve a classification problem.

Object recognition can be cast as a generalized machine learning problem. Tra-

ditional machine learning approaches [63] use a learning set with annotated instances to

learn the characteristics of an object. A classifier can be used to label a given instance

as a target object, if sufficient evidence is available from the learning set to support

this hypothesis. Typical machine learning techniques like convolution neural networks

[64], use several thousand labeled images to solve the object recognition problem in

a purely data-driven fashion. In the absence of large labeled datasets for specialized

applications like underwater animal recognition, such data-driven approaches require

a labor intensive annotation process.

An alternative to a data-driven approach of this type is a feature-based object

recognition approach [65]. In feature-based object recognition, prior knowledge about

the object to be recognized can be leveraged to build specialized feature descriptors
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that capture the appearance traits of an object. The models used in such cases can

range from simple geometric shapes to complex free-form models [66, 67]. The fea-

ture descriptors thus trained encode the object appearance through a low-dimensional

mathematical model. This model can be used to check for the presence of an object in

an image.

Feature-based approaches can be further subdivided into two classes; local, and

global. Local feature-based approaches like the Scale-invariant Feature Transform

(SIFT) [68] and the Speeded-up Robust Features (SURF) [69] approach, encode a

configuration of localized features specific to an object to build a descriptor. In the

case of SIFT and SURF, the feature descriptors obtained are invariant to in-plane ro-

tation and scaling. These properties make SIFT and SURF very robust and suitable

for a multitude of object recognition applications. Since local descriptors primarily

depend on artifacts like corners, they are sensitive to noise which degrades and distorts

such artifacts. In general, local descriptors can be severely affected by noise in images.

On the other hand, global feature descriptors like gist [70] are more resilient to noise,

since they encode general characteristics of an image which are less impacted by the

presence of noise. Global feature representation also has the additional benefit of not

requiring segmentation. Segmentation is a hard problem in itself, especially since it is

difficult to delineate foreground and background regions in noisy images. Hence, using

a method that does not require segmentation has its benefits. However, the global

feature descriptors often only provide a weak description of an object, which might not

be sufficient to unambiguously detect its occurrence.

One way to strengthen a weak feature descriptor is to combine information about

a single object, derived from multiple information sources. For instance, this can be

done by merging information from multiple views of an object. Such an approach is

more effective compared to a case in which a single view of an object does not contain

sufficient information to unambiguously expose an object. Based on these multiple

views, a sequence of hypothesis tests can be combined to eventually classify the object.

This process of combining multiple weak classifiers is a common theme in machine

62



learning methods like boosting and bagging [63].

The idea of combining multiple sensor measurements is also encountered in the

area of active sensing [71]. In most active sensing problems, for instance in the case of

next best view [72, 73], the task is to determine successive sensor positions that increase

the perceived information associated with a target object. In the approach described in

this chapter, there are differences in the way object classification is ultimately accom-

plished: a target is observed from several (pre-determined) sensor positions in a way is

conceptually similar to active sensing. One difference with active sensing, is that the

next sensor position is determined at each iteration based on the current information

available.

Combining information from multiple views can also be related to computer

vision techniques that operate on the principle of multi-resolution processing or image-

pyramid-based methods. Visual attention based object recognition frameworks (like

VOCUS [74]), and multi-resolution pedestrian detection [75], utilize features from mul-

tiple scales to build a robust feature descriptor for objects. These multi-resolution

techniques essentially resize one image to compute features at different scales. Thus

such techniques can only represent the information available from a single parent im-

age in different forms. In cases where objects exhibit different appearance traits when

viewed from different heights, multiple images of an object are needed to capture new

information disclosed at different scales.

This chapter describes an object recognition technique that combines informa-

tion from multiple images of an object gathered from different heights to perform binary

classification. The conceptual contribution of this process is in verifying the hypothe-

sis stated earlier regarding the superiority of merging information from multiple views

compared to using a single view. The technical contribution is in the design of a novel

histogram-based global feature descriptor, along with a hypothesis testing mechanism

that combines information from multiple-views of a target object. The approach de-

veloped here lies at the intersection of global feature descriptors, active sensing, and

multi-resolution image processing to offer a novel object recognition technique that is
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intended to operate on noisy natural images. The use of global feature descriptors

obviates segmentation of noisy images. At the same time, a strong feature descriptor

is constructed by combining information from several weak global feature descriptors,

each learnt from a different height. This approach also offers a semi-automated anno-

tation framework to minimize the human effort involved in the annotation task.

4.2 Preliminaries

4.2.1 Grabcut-in-one-cut Algorithm

A graphcut algorithm treats the segmentation problem as a graph partition

problem [76]. Consider a case where each pixel p of an image I is treated as a vertex i

in the graph G(V ,N ). Two neighboring pixels p and q, represented by vertices i and

j respectively, are connected by an edge eij in graph G. The task of partitioning this

graph G into foreground and background is cast as an optimization problem where

some form of “energy” E is to be minimized. Here, the energy E is formulated as

E(L) =
∑
p∈I

Dp(Lp) +
∑

(p,q)∈N

Vp,q(Lp, Lq) (4.1)

where Lp corresponds to a labeling for pixel p, D is a data penalty function that assigns

a likelihood for pixel p to belong to either foreground or background label class, and

Vp,q is an interaction potential function that encourages spatial coherence by penalizing

discontinuity in label values of pixels. A binary partition of this graph is obtained by

choosing a label for each pixel p such that the energy E of the image is minimized.

This graph-based segmentation approach, also referred to as the max-cut min-flow

algorithm was adapted to solve binary image segmentation problems. To this end, a

variant called Grabcut-in-one-cut [77] uses pre-specified foreground and background

seeds to perform a binary partition of an image. According to the Grabcut-in-one-cut

algorithm, the energy function in (4.1) is reformed as

Eseeds(S) = −β‖θS − θS̄‖L1 + λ|∂S| . (4.2)

Here, θS and θS̄ are the histograms of the foreground and background pixels in the

image. The first term of (4.2), ‖θS − θS̄‖L1 , penalizes the pixels with intensities that
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overlap with both foreground and background distributions. The second term of (4.2),

|∂S|, is a term analogous to V in (4.1), that tries to enforce similar labeling of neighbor-

ing pixels and therefore penalizes a change in labeling across neighbors. The weights

λ and β allow to vary the contribution of the first and second term to the value of the

energy function in (4.2). Finally, L1 in (4.2) refers to the L1-norm.

The Grabcut-in-one-cut algorithm generates a binary partition of an image into

background and foreground by extrapolating the input foreground and background

seed pixels. If there is an automated means to find the location of foreground objects,

the seeds required by this algorithm can be automatically generated, hence making

this guided segmentation approach fully autonomous.

4.2.2 Data Collection Apparatus

4.2.2.1 Imaging Rig

The imaging rig shown in Figure 4.1 allows a camera to be held at different

heights from the ground for imaging experiments. The height bar slides up or down

and can be locked at a specific configuration through specially designed clamps on the

scaffold support of the imaging rig. By varying the position of the height bar, the

height of the camera holder that is attached to the lower end of the height bar can

be varied. This allows the camera held on to the camera holder to capture images of

targets placed on the ground from different controlled heights. The camera holder was

designed to hold a GoPro Hero 4 camera [78].

4.2.2.2 Imaging Environment

The environment where object recognition experiments are performed could af-

fect the performance of the algorithm used. In case of an environment with limited to

no control over the imaging parameters, the level of noise introduced into the sensor

measurements is difficult to gauge. This complicates the task of designing noise fil-

ters to take corrective measures. It might be tempting to perform object recognition

experiments in controlled laboratory conditions, where the environmental parameters
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(a) (b)

Figure 4.1: The imaging rig allows the height bar to slide up or down, thereby letting
the height of the camera from the ground to be varied. The different components of
the imaging rig are labeled in (a). The camera holder attached to the lower end of the
height bar is designed to carry a GoPro Hero 4 camera.

can be tuned to enhance the performance of an algorithm. However, if an algorithm

is intended to operate on natural images, unpredictable variations in environmental

factors that could adversely affect the performance of the algorithm are common. To

accurately validate an algorithm that is intended to operate on natural environments,

it is imperative to choose a test environment where the conditions are close to the

expected natural conditions. Following this line of reasoning, an underwater environ-

ment with uncontrolled lighting was chosen as the test environment–since this object

recognition algorithm is intended to operate on noisy natural environments. A circular

tank in the Robot Discovery Lab (RDL) at University of Delaware filled with 4 feet of

fresh water was thus utilized to collect experimental data. The imaging rig described in

Section 4.2.2.1 was submerged inside this test tank during the data collection process.

4.2.2.3 Object Specimens

The focus of this work is to recognize a class of objects that can exhibit some level

of intra-class variance that is characteristic to naturally occurring objects. One such

example is underwater marine organisms, where each species can have several identifiers

that distinguish them from a different species. However in most cases, the members of a
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(a) Potatoes (b) Tomatillos

Figure 4.2: An illustration of the inter-class and intra-class variance exhibited by
naturally occurring objects like potatoes (a) and tomatillos (b)

.

single species also exhibit some level of variation in their appearance. To accommodate

such cases, the specimens used to validate this multi-view object recognition algorithm

were required to have (i) some characteristics that are unique to the class they belong

to, (ii) small variations with regards to appearance within the same class of objects, and

(iii) easy accessibility for experimentation purposes. All these points were satisfied by

natural produce like potatoes, oranges, tomatillos and strawberries. Natural produce

exhibit significant inter-class variance, sufficient intra-class variance and are readily

available commercially making them ideal candidates for object specimens. Figure 4.2

shows an assortment of potatoes and tomatillos to visually reinforce the inter-class and

intra-class variance exhibited by naturally occurring objects. The underwater data on

which this multi-view algorithm is validated is composed of a set of 11 oranges and 11

strawberries.

4.3 Definitions

4.3.1 Histogram Signature

As a part of this object recognition technique we define a histogram signature

that improves on the generic histogram, specifically designed to deal with possible noise

in the pixel values. The rest of this section defines this histogram signature.

A generic histogram Hf : bi 7→ ni of some colorspace f , captures the distribution

of values of pixels in colorspace f , where ni represents the count of bin bi ∈ B, and B is
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the set of bins used to partition colorspace f . Any pixels affected by noise in image I

could corrupt the histogram Hf . If we assume that e% of the pixel values of an image

constitutes noise, then the histogram Hf can be refined by rejecting bins containing

e% of pixel values that are least likely to occur according to histogram Hf . Before

computing the refined version of this histogram, the histogram Hf is first normalized

into the form H̄f : bi 7→ n̄i where

H̄f (bi) =
ni∑
j nj

= n̄i . (4.3)

Now the refined histogram signature Hf : bi 7→ n′i is computed, such that

n′i =

n̄i bi ∈ B̄e

0 bi ∈ Be
, (4.4)

where Be and B̄e constitute a binary partition of B, i.e. Be ∩ B̄e = ∅ and Be ∪ B̄e = B,

chosen in a way that B̄e is the smallest cardinality subset of B that satisfies the condition∑
bi∈B̄e H̄f (bi) > 1− e. The definition of set B̄e ⊆ B can be restated as

B̄e := argmin
|B̄e|

∑
bi∈B̄e

H̄f (bi) > 1− e (4.5)

The |B|-element histogram signatureHf now encodes the histogram information

while attempting to filter some of the noise present in sensor measurements.

4.4 Methodology

The distance-based global descriptor algorithm presented in this chapter is es-

sentially a machine learning technique. As it is common with such techniques, it

consists of two parts: a learning part and a validation part. In the learning phase,

features and other attributes of an object class are captured from labeled instances of

the object available in the learning set. In the validation phase, the learned descriptor

for an object class is validated against pre-labeled images to evaluate the performance

of an algorithm. The data collection and annotation phases that provide data used for

learning and validation parts of this algorithm are discussed next.
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4.4.1 Data Collection

The data collection process here involves capturing images from t different

heights for each object specimen. For the validation of this multi-view object recogni-

tion algorithm, data was gathered from 22 specimens (11 oranges and 11 strawberries).

Each specimen was first placed on the floor below the camera-holder on the imaging rig

(see Figure 4.1). The height bar was positioned such that the camera holder was at a

distance dmax away from the ground. A GoPro Hero 4 camera, attached to the holder,

was then triggered to capture an image of the specimen. This first image captured

the visual appearance of the specimen while it was at a distance dmax away from the

ground. After the first image was captured, and without disturbing the object, the

next image was captured after bringing the height bar closer to the ground by a dis-

tance dstep. This process of lowering the camera by distance dstep between subsequent

images is continued till the camera is no closer than a distance dmin from the ground.

The series of images captured between heights dmax and dmin, with a step-change of

distance dstep between subsequent images results in t images per specimen, where

t =

⌊
dmax − dmin

dstep

⌋
. (4.6)

Based on restrictions imposed by the imaging rig, the value of parameters for

this particular experimental study were set to dmax = 32, dmin = 10 and dstep = 2

(all values in inches). For example, the design of the imaging rig allowed the camera

holder to be set at a maximum distance of 32 inches from the ground, hence dmax = 32.

Furthermore, while testing the imaging rig, it was also found that images captured from

any height less than 10 inches from the ground were subject to significant distortion

due to the camera’s shadow. To avoid any such distortion, the minimum height was

set as dmin = 10. Based on values of dmax, dmin and dstep, the number of heights per

specimen t = 12 is determined. These t images capture the appearance of a specimen

at different heights. An illustration of the 12 images captured for a strawberry and

orange specimen is given in Figure 4.3. An important point to make here is that the

imaging rig is handled manually between each image capture which sometimes results
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(a) Strawberry specimen seen from different heights

(b) Orange specimen seen from different heights

Figure 4.3: A set of t = 12 images gathered for a specimen (strawberry in (a) and
orange in (b)) starting from a height of dmax = 32 inches (top left) up to a height of
dmin = 10 inches (bottom right) away from the target. Each subsequent image was
captured dstep = 2 inches closer to the specimen.

in displacement of the imaging rig or the specimen. Additional disturbances in the

underwater testing environment where the specimen was placed, sometimes leads to

the specimen or the imaging rig getting displaced during the data collection process.

These uncontrolled factors in the data collection process added some level of variance

to the gathered dataset. Since this algorithm is intended to operate on uncontrolled

natural environments, such variance in the collected data was welcomed to some degree,

given that it could test the algorithm’s robustness.

Due to the wide-angle fish-eye lens of the GoPro camera used, the ratio of

the pixels of the object specimen to the background could be very small when the

camera is far away from the target. In technical terms, when the images of a target

are captured by a camera that is far away from a specimen, the number of pixels that

correspond to the specimen in a image could be statistically insignificant. This reported

object recognition procedure depends on histograms of images (more details of how the

histogram is relevant are given in Section 4.4). For the histogram to accurately capture
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(a) (b)
(c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

Figure 4.4: The strawberry specimen in Figure 4.3a shown after cropping a portion of
the background

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j)
(k) (l)

Figure 4.5: The orange specimen in Figure 4.3b shown after cropping a portion of the
background

the properties of a specimen, the images of the specimen need to have a relatively

high ratio of object pixels over background pixels. To improve this ratio of object

pixels in the image, the images were cropped to discard a portion of background. The

strawberry and orange specimens shown in Figure 4.3a and Figure 4.3b are shown again

in Figure 4.4 and Figure 4.5 respectively, after cropping of portions of background.

4.4.2 Annotation Process

The task of manual image annotation is a costly and labor-intensive process.

Developing an object recognition algorithm is often motivated by a desire to avoid

manual inspection in order to identify objects from images. However, in order to
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build a machine learning framework for object recognition, an initial set of images

needs to be annotated manually and become the learning set. Just like any other

supervised machine learning algorithm, this procedure requires annotation of images

into labeled foreground and background. Here, each learning sample consists of t

images of a specimen captured from different heights. Increasing the number of images

of each specimen quickly increases the annotation load. To mitigate this burden, a

semi-automated annotation framework is developed.

In the first stage of the annotation process, a customized BUVA technique (de-

scribed in Section 3.3.1) is used to pick the most interesting point in an image. This

most interesting point is referred to as the first fixation. According to the visual atten-

tion hypothesis, if a distribution of features can be used to characterize an image, the

first fixation corresponds to the point in the image which is most unlikely to belong to

this distribution of features. In other words, the first fixation supposedly corresponds

to a point that does not belong to the background (and hence most likely it is a fore-

ground object pixel). In the first stage of this semi-automated annotation process, the

first fixation point along with all its neighboring pixels are assumed to be foreground

pixels. Thus a rectangle of dimensions 15% image width ×15% image height, centered

on the fixation is assumed to be part of the foreground region. This rectangle is referred

to henceforth as the foreground hypothesis rectangle. Since the data collection process

ensures that an object in an image is close to the center of the image rather than

the boundary, the pixels in the boundary of the images can safely be assumed to be

background pixels. Hence, rectangular blocks of pixels in the 4 corners of an image are

assumed to be background pixels. Each of these background blocks is 5% image width

×5% image height in dimension. This foreground and background pixel hypothesis is

used in the next stage of the annotation process to segment the image into foreground

and background. A visual representation of the background and foreground seed pixels

is shown in Figure 4.6a as blue and red rectangles, respectively. The visual attention

fixation is shown here as a green dot.

The foreground and background seeds thus obtained can be used to initialize
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a grabcut-in-one-cut algorithm [77]. This grabcut-in-one-cut algorithm, a variant of

graphcut algorithm (described in Section 4.2.1) splits an input image into background

and foreground. Grabcut-in-one-cut algorithm operates by labeling pixels similar in

appearance to foreground seeds as foreground and the other pixels that appear closer

to background seeds as background. However, the foreground seeds supplied by vi-

sual attention, might not produce accurate results in all cases. There are occasionally

instances when the fixation tagged as foreground includes pixels from the object’s

boundary. Since object boundary pixels are essentially discontinuities, indicating a

transition between foreground and background pixel distributions, the likelihood of

visual attention picking them as fixations is relatively high. If an object’s boundary

pixel is picked as the first fixation, this could result in the foreground hypothesis rect-

angle erroneously containing background pixels. An illustration of this effect is given

in Figure 4.6a where the green dot at the boundary of the object is the visual attention

fixation. The blue foreground hypothesis rectangle around the fixation point contains

some wrongly labeled background pixels. Wrongly labeled background pixels in fore-

ground seeds supplied to graphcut algorithm can result in inaccurate segmentation, as

in the case seen in Figure 4.6b. Thus, to improve the performance of the graphcut algo-

rithm, that iteratively refines the foreground seeds is used. Iterative refinement works

by taking the result of the graphcut segmentation, computing the centroid of the fore-

ground pixels, and utilizing a foreground hypothesis rectangle around this centroid as

input foreground seed to the next iteration of this iterative graphcut algorithm. This

process is repeated until the segmentation results stabilize. Specifically, this iterative

graphcut process is repeated until the number of foreground pixels from the previous

iteration, rejected as background by the current iteration, is within a small threshold of

5%. If Fi is the set of foreground pixels labeled by the graphcut algorithm in iteration

i, then the iterative process is continued till the condition below is satisfied.

|Fi−1 − Fi|
|Fi|

≤ 0.05 . (4.7)

The change in the blue foreground hypothesis rectangle after recursive graphcut seg-
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(a) (b) (c) (d)

Figure 4.6: An illustration of operation of visual attention and recursive graphcut as a
part of the annotation process flow is shown here. (a) shows the visual attention fixation
as a green dot. Since the visual attention fixation is on the boundary of the object,
the foreground hypothesis rectangle shown in blue contains background pixels. When
the graphcut algorithm operates on (a) utilizing the pixels inside the blue rectangle as
the foreground seeds and the pixels inside the red rectangles as the background seeds,
the resulting segmented foreground region is displayed in (b). Due to the presence of
background pixels in the input foreground seeds, the segmentation result obtained in
(b) is inaccurate. When recursive graphcut algorithm is applied, the blue foreground
hypothesis rectangle eventually moves towards the center of the object (as seen in (c))
and no longer contains background pixels. With the updated foreground hypothesis
rectangle after recursive graphcut segmentation, the improved segmentation result can
be seen in (d).

mentation and the resulting improved foreground labeling can be seen in Figure 4.6c

and Figure 4.6d respectively. When the foreground region labels from the graphcut al-

gorithm stabilize, it is unlikely that the foreground region will change after subsequent

iterations. This stabilization condition captured in (4.7), indicates that the foreground

region label hypothesis generated by graphcut has converged. In case the convergence

condition in (4.7) is not met after N iterations (N here is taken equal to 5), further

recursion is abandoned and the labeling results available after N iterations are adopted

by default.

Though this process appears to be fully automated, there are cases where this

automated segmentation fails. A case of segmentation failure could be due to visual

attention picking up interesting artifacts in the image that are not necessarily part of

the specimen. There are also cases where the texture of the specimen is not uniform, in

which case visual attention could be biased towards a specific part of the object. This

could result in graphcut segmentation only identifying the sub-region of the specimen
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(a) (b)

Figure 4.7: An illustration of a case where automated annotation process fails, and
human verification and correction is required. The visual attention fixation shown as
a green dot in (a) is biased towards the green stalk region of the strawberry. Since this
strawberry specimen exhibits binary texture–green stalk and red pulp, the combined
visual attention and graphcut automated annotation approach ends up segmenting only
the stalk sub-region of this strawberry specimen (see (b)). Such cases of failure calls
for human verification and correction of foreground seeds to enable graphcut algorithm
to segment the whole strawberry specimen.

that biased the visual attention fixation. An instance of only segmenting a sub-region

of the specimen is often seen in cases of strawberries, which are characterized by the

occurrence of a green stalk on top of a reddish pulp. Visual attention and graphcut

could end up mistakenly segmenting either the green stalk or the red pulp only. This

case is illustrated in Figure 4.7. The visual attention fixation shown by a green dot in

Figure 4.7a is biased towards the green stalk region of the strawberry specimen. An

application of recursive graphcut on this example only ends up segmenting the green

stalk region as seen in Figure 4.7b. This error in segmentation can be rectified through

inclusion of appropriate foreground seeds that are representative of the complete spec-

imen, i.e., both the green stalk and the red pulp sub-regions in case of strawberry.

Therefore, to prevent inaccurate segmentation from degrading the learning set, a man-

ual verification process is added as the last step of this annotation process. During

this process, for all failed instances of automated segmentation, the foreground and

background seed pixels are manually set.

This final manual verification and correction process requires human effort.

However, during experiments it was noted that a very small percentage of cases needed

corrective action. In summary, this semi-automated annotation process is relatively
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Figure 4.8: The output of the annotation process showing a montage of the segmented
foreground from a set of t = 12 images that belong to a single orange specimen. The
left-top montage component is the image of the orange specimen captured dmax = 32
inches from the ground. The montage components arranged from left to right (with
wrap-around after every 4 images) to progressively show images that were captured
closer to the orange specimen. The closest image that was captured is dmin = 10 inches
away from the specimen and is shown in the bottom-most row.

effective and significantly less cumbersome than a fully manual annotation effort. An

illustration of the output of this annotation process for a single specimen of orange is

given in Figure 4.8. Figure 4.8 represents a montage of t = 12 images of an orange spec-

imen with the top-left component showing the segmented foreground from the image

captured dmax = 32 inches away from the orange specimen. Likewise, the bottom-right

shows the image that was captured dmin = 10 inches away from the specimen. The

montage in Figure 4.8 is arranged such that the 12 images, from left to right, are in

decreasing order of height.
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4.4.3 Learning

The learning phase of a machine learning based object recognition method in-

volves identifying patterns in the data that represent the presence of an object. The

information fed to a machine learning algorithm is a pre-specified labeling of the data

into foreground and background. The responsibility of the learning method here is

to identify patterns in designated foreground regions, using information from labeled

background to reject false positives. The patterns identified by the learning algorithm

are then channeled into the construction of a classifier that is capable of identifying

foreground pixels from an image.

In the machine learning technique proposed in this chapter, instead of using

individual images with annotations of foreground and background, a collection of t

images each featuring the same specimen from a known height is utilized. The goal is

to encode the variation in appearance of a specimen from different heights to build a

robust object recognition classifier. Height offers an additional dimension in the feature

space for the learning algorithm to capitalize on.

This object recognition algorithm is designed to operate on images without

prior segmentation. That is, the features used in this algorithm should be sufficiently

generic to capture the appearance of an object directly from an image without fore-

ground segmentation. To achieve this, we use the histogram signatures (described in

Section 4.3.1) to extract information from an image in Hue Saturation Intensity (HSI)

colorspace. The histogram information from multiple specimens of the same object

class is then combined to generate a feature distribution. The details of this process

are described below.

4.4.3.1 The Feature Distribution

The first step in computing this feature distribution is the computation of the

hue, saturation and intensity histogram signatures on the labeled foreground pixels in

the learning dataset. The parameters chosen for the histogram signature computation

are the number of equally spaced histogram bins, here, |B| = 256, and the upper bound
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on the number of pixels affected by noise, here, e = 5%. Using these parameters the

histogram signatures for all three components of the HSI colorspace are calculated

for all t = 12 height-tagged images of a specimen. Note that this histogram signature

computation only utilizes the labeled foreground pixels in the image. Let the histogram

signature of the labeled foreground for specimen k, with height tag h, belonging to

class c, on the color component f ∈ {H hue, S saturation, I intensity} be represented

as Hchk
f . Since there are 3 color components, we generate 3 histogram signatures per

height-tagged specimen image. If we consider all the t height-tagged images available

for a specimen, the total histogram signatures now available is 3× t, that is, 36 for this

experimental study.

In the next stage of the learning process, the histogram signatures Hchk
f from

all specimens belonging to a single object class are combined to generate a generalized

histogram signature for the object class. In order to achieve this, the mean of all

histogram signatures corresponding to a specific height-tag from all specimens of a class

are combined. In other words, the mean H̄ch
f of all histogram signatures with height-tag

h is computed by taking the mean of individual components of the 256-dimensional

vectors of sequence-of-histogram signatures Hch1
f ,Hch2

f ,Hch3
f , . . . ,Hchm

f , where m is the

number of specimens of class c available in the learning dataset. Technically, the j-th

component of the 256-dimensional mean histogram H̄ch
f is found as

[
H̄ch

f

]
j

=
1

m

m∑
k=1

[
Hchk

f

]
j
. (4.8)

Since there are t different height-tags along with 3 different color components, each

object class c is represented by a sequence of 3t histogram signatures, which will be

collectively referred to as H̄c.

The sequence of 3t histogram signatures H̄c captures the generalized appearance

of the objects of class c. Its important to note that the data used to compute this gener-

alized histogram signature are composed of foreground pixels of object specimens only,

without any background information. If we are to use such a generalized histogram
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signature generated only from foreground information for classifying objects, it is nec-

essary to pre-process an image to detect and segment objects present in the images

before this generalized histogram signature H̄c can be used for classification purposes.

However, one of the goals of this work is to avoid segmentation while attempting classi-

fication of objects from images. To realize this goal, we revisit the learning dataset, and

use the background information to build a representation that captures how inclusion

of background pixels to different individual histogram signatures affects the generalized

histogram signature H̄c of class c.

In order to use background information for building such a classifier, we first

generate another set of histogram signatures. For specimen k of class c from the learning

dataset, we compute a sequence of 3t histogram signatures similar to the computation

involved in Hchk
f , but now utilizing all pixels in the image instead of just the foreground

pixels. This set of 3t histograms Ḧck for specimen k of class c is given by

Ḧck = Ḧchk
f

∣∣∣
h×f

, (4.9)

here h ∈ {10, 12, . . . , 32} and f ∈ {H,S, I}.

Once we have the sequence of histogram signatures Ḧck of specimen k belonging

to class c, along with the generalized histogram signature H̄c of class c, a numeric

distance measure D between the histogram signatures can be computed. If we have

a series of such distance measures evaluated for a collection of specimens of class c, a

distribution of these distance measures can be generated. This distribution of distance

measures encodes the variability in generalized histogram signature H̄c induced by the

presence of background pixels along with foreground pixels. In effect, this offers a way

to check images for the presence of an object of class c without any prior segmentation

of foreground pixels. The distance measure is the standard L2-norm between two

vectors.

dchfk = D(H̄ch
f , Ḧ

chk
f ) =

√√√√ |B|∑
j=1

([
H̄ch

f

]
j
−
[
Ḧchk

f

]
j

)2

(4.10)
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Since there are 3t histograms in total, we get a sequence of dchfk values of length

3t for the k-th specimen of class c, and this sequence is represented as

Dck = dchfk

∣∣∣
h×f

. (4.11)

A sequence of distance measures Dck for each specimen k among the m speci-

mens of class c provides a representation of a feature vector of size 3t that describes

the appearance of an image that contains a specimen of class c. If we consider the fea-

ture vectors of all the m available specimens Dc1, Dc2, . . . , Dcm, a feature distribution

sequence Fc that represents the appearance of images containing objects of class c can

be formulated. Lets assume that the m values dchf1, dchf2, . . . , dchfm are drawn from a

normal distribution

Fchf ∼N (µchf , σ
2
chf ) (4.12)

µchf =

∑m
k=1 dchfk
m

(4.13)

σ2
chf =

∑m
k=1(dchfk − µchf )2

m− 1
. (4.14)

Then the feature distribution sequence

Fc = Fchf

∣∣∣
h×f

(4.15)

can be represented as a sequence of 3t distributions.

For the two classes of objects, strawberries and oranges with 11 specimens each,

the respective feature distributions Fs and Fo can thus be computed. The feature

distributions Fs and Fo are shown in Figure 4.9. The 3t = 36 distributions (see (4.15))

in the distribution sequence are shown along the x-axis. Each distribution here is

represented by a dot and a bar adjoining it. The dot corresponds to the mean and the

bar corresponds to the 95% confidence interval, or the 2σ standard deviation interval

of the distribution shown in (4.12).

This feature distribution Fc, which comprises a sequence of 3t distributions,

offers a way to test for the presence of an object of class c in an image without prior
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Figure 4.9: Strawberry feature distribution sequence Fs (a) and orange feature distribu-
tion sequence Fo (b) generated from 11 strawberry specimens and 11 orange specimens.
All 3t = 36 distributions indexed by v are shown along the x-axis. The mean of each
distribution is shown as a dot along with the 95% confidence interval shown as a bar.
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segmentation. In essence, the testing for the presence of an object can be broken down

into 3t individual hypothesis tests. Each hypothesis test checks whether a certain

colorspace-specific height-tagged image containing an object satisfies a specific distri-

bution, among the 3t distributions in Fc. Not all of the 3t hypothesis tests might be

equally informative– some of them could be more relevant than others. To this end,

a weighting factor wv can be attached to the v-th element in feature distribution se-

quence Fc. More details regarding the computation of these weight factors is described

below.

4.4.3.2 Feature Weights

The feature weights offer a way to weight each distribution in the feature dis-

tribution sequence Fc. In case of a binary classification problem between objects of

class p and q, we choose the feature weights such that the distributions in the sequence

with lower intra-class variance are weighted higher compared to other distributions.

Additionally, the magnitude of the overlap between identical indexed distributions in

Fp and Fq also influences the weights. In the rest of this section the formulation of

these feature weights is discussed.

For object class p and object class q, the corresponding feature distribution

sequences Fp and Fq are in both cases sequences of 3t normal distributions. Let the

v-th component of sequence Fp be denoted Fpv ∼ N (µpv, σ
2
pv). The the 95% confidence

interval of Fpv is given by

C0.95
Fpv

= [µpv − 2× σpv, µpv + 2× σpv] . (4.16)

The weight wpv of the v component of Fp is given by

w′pv =
1

(1 + |CFpv ∩ CFqv |)× σpv
(4.17)

wpv =
w′pv∑
j w
′
pj

(4.18)

where |CFpv ∩ CFqv | corresponds to the length of the interval obtained after the in-

tersection of intervals CFpv and CFqv . The first term in the denominator of (4.17),
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Figure 4.10: The feature weights for strawberry-class Fs (black bars) and orange-class
Fo (red bars)

1 + |CFpv ∩CFqv |, penalizes distributions whose confidence intervals share common po-

sitions with an identical indexed distribution in the other class. In other words, this

term penalizes distribution Fpv whose confidence interval overlaps with intervals of

an identical indexed distribution Fqv. The second term in the denominator of (4.17),

σpv, penalizes distributions with high intra-class variance. Ultimately, the weights are

normalized as shown in (4.18). The 3t feature weights thus computed for a class will

collectively be referred to as Wc. For the binary classification problem, between straw-

berry and orange specimens, the weight factors computed using (4.18) are shown in

the bar plot in Figure 4.10. The black bars show the strawberry class weights and the

red bars show the corresponding orange-class weights.

The distribution components in Fp with higher values of wp are weighted higher

than the other distributions while performing hypothesis tests. This is discussed in the

next section on validation phase of this machine learning algorithm.
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4.4.4 Validation

In this object recognition method, a series of height-tagged images of an object

specimen is used to perform a binary classification task. In other words, the t height-

tagged images are used to decide if the object belongs to one of the two classes: p

or q. In order to achieve this, the histogram signatures (described in Section 4.3.1)

are computed on each of the t height tagged-images available for an object specimen.

Since there is no pre-specified label information available, all pixels in the image are

used here. The computation performed is identical to the one in (4.9), and results in

a sequence of 3t histogram signatures Ḧk.

The next step in the validation procedure is to use (4.10) and (4.11) to compute

the distance measure sequences Dp
k = D(Ḧk, H̄p) and Dq

k = D(Ḧk, H̄p). The 3t-value

sequences Dp
k and Dq

k provide information on how close to each of the classes p and

q, the sample specimen k is. The information in these sequences need to be processed

further in order to associate specimen k with either class p or class q.

Let us assume that specimen k belongs to class p. According to this hypothesis,

the v-th component of Dp
k should follow the v-th distribution of the feature distribution

sequence Fp. In other words, using (4.16), we can state with 95% confidence that

condition

dpkv ∈ C
0.95
Fpv

=[µpv − 2× σpv, µpv + 2× σpv] (4.19)

is satisfied. If we call this hypothesis test hpkv, then passing of this hypothesis test

hpkv =

1 dpkv ∈ C0.95
Fpv

0 otherwise

(4.20)

meaning (hpkv = 1), determines that specimen k belongs to class p.

There are 3t such hypothesis tests, hpk1, h
p
k2, . . . , h

p
k 3t that can be performed to

determine if specimen k belongs to class p. The importance of each of these hypoth-

esis tests for associating specimen k with class p is determined by the corresponding
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weight wpv. The information available in the form of hypothesis tests, along with their

associated weights, is combined in to a single numeric metric or class confidence

Hp
k =

3t∑
v=1

hpkvwpv (4.21)

that measures the confidence in specimen k belonging to class p.

It is important to note that based on (4.18), it follows that Hp
c ∈ [0, 1]. If

Hp
k = 1, then we can say with high confidence that specimen k belongs to class p.

Alternatively, Hp
k = 0 suggests that its unlikely that specimen k belongs to class p. A

similar metric Hq
k is computed to determine confidence in the assertion that specimen

k belongs to class q. Finally, the binary classification task that classifies specimen k

into class p or class q is decided based on the magnitude of Hp
k and Hq

k :

Hp
k > Hq

k specimen k ∈ class p

Hp
k < Hq

k specimen k ∈ class q

Hp
k = Hq

k Undetermined (4.22)

4.5 Results

The data collected during the experiments involve images from 11 specimens of

both orange-class and strawberry-class. Data on each specimen included images taken

from t = 12 different heights, starting at dmax = 32 inches from the ground, down to

dmin = 10 inches, away from the ground. The imaging experiment was conducted in a

test tank filled with water using the imaging rig shown in Figure 4.1. More details of

the data collection process can be found in Section 4.4.1. Following the data collection

process, the feature distribution sequence Fs for strawberry-class, and Fo for orange-

class, are computed using the procedure discussed in Section 4.4.3.1; the results are

shown in Figure 4.9.

As part of an initial validation step, both learning and testing is done on the en-

tire dataset of 22 specimens (11 strawberries and 11 oranges). The learning procedure

results in feature distributions for strawberry and orange which are are shown in Fig-

ure 4.9. Then each specimen is evaluated against both strawberry and orange feature
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distributions as described in Section 4.4.4, to get distance metric sequences Ds
k and

Do
k. The 11 strawberry specimens are checked against the strawberry and orange fea-

ture distribution sequences Fs and Fo; see Figure 4.11. The black bars in Figure 4.11a

are the 95% confidence intervals of strawberry feature distribution sequence Fs (this

is identical to Figure 4.9a). The colored points in Figure 4.11a represent the distance

metric sequences Ds
k of the 11 strawberry specimens (points with the same color across

the x-axis come from a single strawberry specimen). Along side each black bar (in

the y-dimension), we see 11 data points (each one comes from a different strawberry

specimen). Most of these colored points lie inside the confidence intervals indicating

that the distance metric sequence Ds
k of strawberry specimens are in agreement with

the strawberry-class distribution sequence Fs. In Figure 4.11b, we compare the same

11 strawberry specimens against the orange-class distribution sequence Fo. In this

case, the black bars representing the 95% confidence interval of orange-class distribu-

tion sequence Fo is identical to Figure 4.9b. The colored points here represent the

distance metric sequence Do
k values for the 11 strawberry specimens. In contrast to

Figure 4.11a, the colored points in Figure 4.11b are often not in agreement with the

confidence intervals of the orange-class feature distribution sequence Fo. This is a clear

indicator of strawberry specimens matching better with the strawberry-class feature

distribution Fs compared to orange-class feature distribution Fo. On similar lines,

the 11 orange specimens are compared against the orange-class feature distribution

Fo in Figure 4.12a and also compared against strawberry-class feature distribution Fs

in Figure 4.12b. The observations show that the orange specimens match closer with

orange feature distribution sequence Fo rather than the strawberry feature distribution

sequence Fs. This again reinforces that the distance metric values of both orange and

strawberry specimens agree with their corresponding class distribution sequences.

A more concrete validation of this machine learning approach is by computing

the class confidence Hs
k and Ho

k of each specimen, and deciding on the class of the spec-

imen as described in Section 4.4.4. One thing to note here is that the class confidence

measure requires the feature distribution sequences of the strawberry and orange classes
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(a) Strawberry specimens evaluated against strawberry
feature distribution sequence Fs
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(b) Strawberry specimens evaluated against orange fea-
ture distribution sequence Fo

Figure 4.11: Validation results obtained while evaluating strawberry specimens against
strawberry-class feature distribution sequence Fs (a) and against the orange-class fea-
ture distribution sequence Fo (b). The strawberry-class feature distribution sequence
Fs is shown in (a): the 95% confidence intervals are shown as black bars with the mean
of a distribution shown as a black dot in the center of the corresponding black bar.
The sequence of feature distributions indexed by v are identical to Figure 4.9a. The
colored dots in (a), represent the distance metric sequence Ds

k of the 11 strawberry
specimens (dots of the same color come from a single specimen). Along y-axis, we
see a series of 11 points next to each black bar. Each of these 11 points come from
a single strawberry specimen. The vast majority of the colored dots in (a) lie inside
the corresponding confidence intervals, indicating that the distance metric values of
strawberry specimens are in agreement with the strawberry-class distribution sequence
Fs. In (b), the same 11 strawberry specimens are checked against the orange-class
feature distribution sequence Fo. In this case, the black bars are representative of the
orange-class feature distribution sequence Fo. In contrast to (a), a sizable percentage
of colored dots in (b) do not agree with the orange-class feature distribution sequence
Fo. This signifies that the strawberry specimens primarily agree with the strawberry
feature distribution sequence Fs and not with orange distribution sequence Fo.
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(a) Orange specimens evaluated against orange feature
distribution sequence Fo

0 5 10 15 20 25 30 35

0

0.4

0.8

1.2

Index v

L
2
−

n
o

rm
 d

s k
v

(b) Orange specimens evaluated against strawberry fea-
ture distribution sequence Fs

Figure 4.12: Similar to Figure 4.11 that shows the validation results for strawberry
specimens, this figure shows the validation results for orange specimens. Testing of
orange specimens against orange-class feature distribution sequence Fo is shown in
(a), and testing against the strawberry-class feature distribution sequence Fs is shown
in (b). The orange-class feature distribution sequence Fo is shown in (a): the 95%
confidence intervals are shown as black bars with the mean of a distribution shown
as a black dot in the center of the corresponding black bar. The sequence of feature
distributions indexed by v are identical to Figure 4.9b. The colored dots in (a), rep-
resent the distance metric sequence Do

k of the 11 orange specimens (dots of the same
color come from a single specimen). Along y-axis, we see a series of 11 points next
to each black bar. Each of these 11 points come from a single orange specimen. The
vast majority of the colored dots in (a) lie inside the confidence intervals indicating
that the distance metric values of orange specimens are in agreement with the orange-
class distribution sequence Fo. In (b), the same 11 orange specimens are considered
against the strawberry-class feature distribution sequence Fs. In this case, the black
bars are representative of the strawberry-class feature distribution sequence Fs. In
contrast to (a), the colored dots in (b) do not agree with the confidence intervals of
strawberry-class feature distribution sequence Fs. This signifies that the orange spec-
imens primarily agree with the orange feature distribution sequence Fo and not with
strawberry distribution sequence Fs.
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to be computed. The feature distribution sequences are generated from the learning

set, which contains the specimen we are currently trying to recognize. Wanting to sep-

arate the learning and testing datasets before validation, and because the number of

specimens is small, a leave-one-out cross-validation [63] was implemented.1 The class

confidence values Hs
k and Ho

k of the 11 strawberry specimens are shown as black and

red bars respectively in Figure 4.13a. It is clear that the black bars are taller than the

red bars in all cases. According to the hypothesis test in force (see (4.20)), this implies

that that all strawberry specimens are classified correctly. The same can be said for

the orange specimens. As seen in Figure 4.13b: all the red bars are taller than the

back bars. Therefore, all orange specimens are also classified correctly.

This validation procedure confirms the ability of this machine learning technique

to combine data from multiple images of a specimen to perform a binary classification

task. The 22 specimens drawn from strawberry and orange classes were all correctly

classified by the proposed machine learning algorithm.

4.6 Discussion

The machine learning approach developed here was used to perform binary

classification on a set of 22 specimens containing equal number of strawberry and orange

specimens. The graphical results from Figures 4.11 and 4.12 show the conformance of

the distance measures Ds
k and Do

k of different specimens, only to the respective class

they belong to. This is further reinforced by the class confidence measures Hs
k and Ho

k ,

which assigned each specimen to the right class. All the specimens were thus classified

correctly, hence achieving 100% precision and recall rates.2

1 Leave-one-out cross-validation is used in cases where the number of specimens avail-
able is very small. In such cases, one does not have the luxury of splitting the avail-
able labeled dataset into learning and testing sets. Therefore, in leave-one-out cross-
validation, during each iteration one specimen is chosen as the testing set and the all
other specimens are chosen as the learning set. Thus the learning procedure is repeated
in each iteration, without adding the instance that is being tested to the learning set.

2 Precision and Recall are performance measures for a machine learning algorithm.
Precision is the ratio of true positives to the total number of detections and recall is
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(a) Strawberry specimens classification results
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(b) Orange specimens classification results

Figure 4.13: The classification results for the 11 strawberry and 11 orange specimens
are shown in (a) and (b) respectively. The class confidence values Hs

k and Ho
k are shown

by black and red bars. In the case of strawberry specimens in (a), the black bars are
taller than the red bars indicating that all strawberry specimens are classified correctly
based on the hypothesis test of (4.22). Same can be said in case of orange specimens
shown in (b) where the red bars are taller, indicating that all orange specimens are
classified correctly.
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(a) Classification results while considering information from dif-
ferent heights cumulatively
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(b) Classification results while considering information from dif-
ferent heights independently

Figure 4.14: The number of specimens correctly classified while images from different
heights are incorporated into the classification process. In (a), we see the case where
images from heights progressively closer to an object are cumulatively incorporated
into the classification process. The black line shows the number of strawberry spec-
imens correctly classified, while the red line shows the number of correctly classified
orange specimens. All of the 11 strawberry and 11 orange specimens are correctly clas-
sified when information from heights h = {32, 30, . . . , 10} are combined. We can also
observe that the number of specimens correctly classified monotonically increases as
information from heights closer to the specimens are incorporated into the classification
process. This portrays the ability of this multi-view method to consistently perform
better when additional images, progressively closer to a target, are available. On the
otherhand, (b) similarly shows the number of specimens correctly classified while uti-
lizing information from different heights. However in this case the information from
different heights are not cumulatively used, instead they are independently assessed.
In contrast to lines in (a), we do not see any consistent behavior exhibited by lines in
(b).
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This object recognition approach combines information from multiple heights.

Progressively capturing views closer to a target object, followed by combining the gath-

ered evidence, enables this object recognition system to disambiguate the identity of

an object. To support this hypothesis, in Figure 4.14a we show the performance of this

object recognition system monotonically increasing when information from additional

views closer to an object are incorporated. The red line in Figure 4.14a connects the

datapoints representing the number of correctly classified specimens of orange-class

plotted against the height till which information is combined to classify the object.

Similarly, the black line connects the datapoints expressing the number of correctly

classified strawberry specimens. (The dotted lines do not indicate any gradual pro-

gression but simply mark the datapoints that refer to the same species.) For instance,

a height of 28 inches in the x-axis indicates that images from heights ≥ 28 inches, i.e.

in this case images from heights {32, 30, 28} inches– are combined to determine the

identity of the object. In Figure 4.14a, we see that the number of specimens correctly

classified monotonically increases till all the 11 specimens of both strawberry-class

(black line) and orange-class (red line) are correctly classified. This shows that incor-

porating images captured closer to a target object enhances the accuracy of this object

recognition system.

Another observation from Figure 4.14a is the ability of the proposed method to

consistently perform better, as more images closer to the target are incorporated into

the classification process. It is interesting to compare this result against Figure 4.14b.

The plot in Figure 4.14b similarly portrays the number of correctly classified orange

and strawberry specimens. However, in this case the information from images gathered

from different heights are not combined. Instead, images from individual heights are

independently utilized to determine the identity of the objects. In contrast to the

monotonic increase in the number of correctly classified specimens in Figure 4.14a, the

lines in Figure 4.14b do not exhibit any such noticeable consistency.

the ratio of true positives to the total number of positives in the dataset.
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Most object recognition literature does not use information from multiple heights

in the manner proposed in this chapter, therefore a direct comparison is not possible.

However, a comparison against object recognition methods that operate over single

view of an object is indeed possible. Note, however, that the performance of the

approach described in this particular experimental test is the theoretical maximum

obtainable (100% precision and 100% recall rates), there is no possibility of any other

method outperforming the proposed method in terms of recognition rates (precision

and recall rates).

The theoretical best possible performance obtained here speaks to the potential

of this algorithm to work in noisy natural images. One source of noise in the data

collection process has been a collection of floating specks of dust in the water, along

with dust on the floor of the tank. There were even instances when the foot of the

person operating the imaging-rig was included in the images collected. In addition,

the uncontrolled lighting conditions introduced noise in the form of light artifacts in

the floor of the tank. The effect of uneven lighting conditions under which the data

collection process took place is visible in Figure 4.3. The ability of the algorithm to

produce consistent high performance even in the presence of noise is evidence of its

ability to handle unpredictable environmental conditions.

Since only 22 objects were used for this particular evaluation, testing this algo-

rithm on a natural image dataset containing more (a few thousand) specimens would

definitively be interesting. Obtaining multiple images of the same specimen from dif-

ferent heights and annotating large learning sets, might appear cumbersome at first.

However the semi-automated annotation procedure provided in Section 4.4.2 consider-

ably alleviates the manual labor that needs to be involved.

Since this approach relies on multiple images for each specimen, imaging time

and effort involved is typically higher than an object recognition algorithm that is

designed to operate on a single image of a specimen. On the other hand, the use

of multiple images and 36 independent hypothesis tests, contribute to identification

of a target specimen with higher confidence than by an approach that just uses a
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single image of a target. Multiple images offer a way to extract features of an object

from different scales, which when combined together offer a robust object recognition

framework. In cases where it is critical to classify a target with confidence, for instance

in detecting unexploded ordinance, an approach that is so accurate is still valuable

despite the additional imaging time required. The ability of this work to track features

from different heights also lends itself to other critical applications like visual-servoing-

based automated landing of spacecrafts.

4.7 Conclusion

The machine learning method developed here offers a way to perform binary clas-

sification using global descriptors generated from multiple images of a specimen. This

technique was successful in recognizing all the 22 specimens available in our dataset of

11 strawberries and 11 oranges. The performance of this technique on this (admittedly

small) dataset is the absolute theoretical maximum that can be obtained for a machine

learning technique. This exceptional performance, despite the presence of noise and

several uncontrolled variables in the data collection process, is indicative of the robust-

ness of this algorithm. Additionally, the ability of this algorithm to perform object

recognition via histogram based global descriptors, avoids segmentation entirely dur-

ing the testing phase. Since segmentation can be problematic in noisy images where

the edges of objects is hard to determine, doing away with segmentation is a great

incentive to adopt this technique for noisy images.

4.8 Future work

This algorithm has been tested on a set of 22 images collected using an imaging

rig. It will be interesting to expand this technique to natural datasets where multiple

instances of the same target object have been captured. The current procedure adopted

here computes a set of discrete measurements from a fixed set of heights from which

images are available. Expanding this to work with an arbitrary but known set of

heights will be valuable for object recognition tasks where the data collected cannot
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adhere to such predetermined height standards. Expanding this binary classification

problem into a multi-class classification problem for a larger number of object classes

is another natural direction that can be explored.
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Chapter 5

COOPROV: LOW-COST UNDERWATER REMOTELY OPERATED
VEHICLE

5.1 Introduction

Field experiments related to underwater object recognition require a submersible

robot with appropriate sensing and control payload to navigate through points of in-

terest and capture necessary data through sensors. Depending on the level of manual

intervention involved to guide the vehicle, an underwater vehicle, can be classified as

an AUV, a ROV or a Human Operated Vehicle (HOV). AUVs navigate autonomously

with minimal to no manual intervention. Both ROVs and HOVs are piloted by humans,

with the difference being that the human operator is within the vehicle in an HOV,

whereas in the ROV the human operator controls the vehicle from a remote location.

Commercially available underwater vehicles come with wide range of capabilities in

terms of sensing and operational depths. The sensing package or the type of vehicle

required is dictated by the objective of the science experiment and its requirements.

For validation and fine-tuning of the underwater object recognition algorithms like the

multi-layered scallop recognition (Chapter 3) and the multi-view object recognition

(Chapter 4), an underwater vehicle that can navigate to specific points and collect im-

age data of underwater targets is needed. With these requirements in mind, a low-cost

underwater research vehicle named CoopROV was developed. CoopROV is a ROV-

class vehicle that is equipped with several sensors for data collection, and also has the

capability to incorporate any customized controller.
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5.2 Commercial Submersible Robots

Commercially available robots are expensive and often provide minimal access

to their legacy controllers and software. Most commercial ROVs come with a graph-

ical interface and joystick. AUVs come with an interface to allow the user to prede-

fine the robot trajectory through a series of geo-tagged waypoints before deployment.

Once deployed, the AUV tracks the specified trajectory. Such manufacturer inter-

faces do not provide considerable freedom to modify the core software running on the

robot. For instance if someone wants to use their own controller, it becomes problem-

atic to implement it without manufacturer supported software Application Program

Interface (API)s. Cost is another factor that limits accessibility to commercial un-

derwater robots. A relatively small ROV like the videoray [79] with a footprint of

14.75× 11.4× 8.75 (L×W ×H in inches) and a sensor package comprising a camera,

gyros, accelerometers, compass, depth and temperature sensors can cost over 25 000

dollars. Bigger ROVs like the Outland ROV [80] can cost upwards of 75 000 dollars

with the cost here being chiefly determined by the sophistication of the onboard sensing

capabilities. Despite the high cost and minimal flexibility for customer modifications,

the primary advantage of these commercial solutions is their well tested hardware that

is resilient to harsh conditions that are characteristic to the marine environments.

The other league of underwater robotic solutions come in form of low-cost Do-

It-Yourself (DYI) style robots like the OpenROV [81] and the Fathom One [82]. Such

solutions offer a lot of potential for custom hardware and software modifications. How-

ever being small-scale development projects, the associated hardware in these cases is

not well tested and can be prone to failures (e.g. water leaks). The capability of these

systems to withstand the harsh conditions of a marine environment may be limited.

In terms of software, the source code is often available and comes with an open-source

license (as in the case of OpenROV). However such software often does not come with

APIs to encourage users to extend or modify the capabilities of the robot. Additionally,

the limited documentation available makes the task of directly modifying the source

code cumbersome. Since the focus of most of these DYI projects are to offer low-cost
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options that primarily enable hobbyists to explore underwater, a teleoperation inter-

face and access to a camera feed from the robot typically suffices. For researchers that

may have very specialized interests, a professionally developed robotic solution should

offer finer control of the hardware and software with options to easily extend the base

capabilities of the system.

There are two primary requirements for a professionally developed robotic so-

lution that is intended for research. The first is the need for a tough exterior shell

that can hold up against high values of water pressure which is common with deep sea

operation. This exterior shell should also be resilient to water leaks and at the same

time offer the ability to retrofit sensors. The second requirement is for the robotic

system to offer a well built software interface with APIs that allows researchers to

extend the capabilities of the system. It will be beneficial if the software APIs adhere

to popular robotics research architectures like the ROS [83, 84] or Mission Oriented

Operating Suite (MOOS) [85, 86]. A robot with ROS-support will greatly enhance

the versatility of the robot by allowing access to a plethora of existing software tools.

Furthermore, software development based on open-source tools like ROS can be sup-

ported by an active base of researchers who can provide feedback, tips and advice.

Currently the underwater research community lacks a variety of low-cost submersible

robotic platforms with resilient hardware design and well-engineered software.

5.3 CoopROV

The chief requirements that led to the design of CoopROV was the need for a

low-cost submersible robotic platform that can serve as a test-bed for computer vision

and control algorithms. Before the effort to build CoopROV was initiated, existing

solutions were evaluated. Commercial robotic solutions like the Videoray were clearly

outside the budget of this research project. OpenROV 2.5 [81], the first version of

OpenROV, was a good candidate primarily due to it sub-1000 dollar price tag. The

original OpenROV design came with a beaglebone and browser based graphical user
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Figure 5.1: CoopROV shown in two different views

interface that used node.js [87] in the backend to drive the robot. However, multi-

ple tests revealed that the water proofing design and electronics package had several

glitches making it unsuitable for deployment in its original configuration. Furthermore,

most of the algorithm development till that point was in ROS, hence ROS support was

one of the preferred requirements for the submersible robot. The initial experimental

evaluation of OpenROV provided useful insights into the core components and associ-

ated problems that need to be tackled to design a submersible robot. The design of

CoopROV was initiated to address the shortcomings of OpenROV’s hardware in terms

of waterproofing and electronics. Additional features of the target design was to allow

easy interfacing of new sensors along with full ROS software support for sensors and

actuators.

In the current stage of development, CoopROV shows some resemblance to

OpenROV as both of them share the same frame and actuators. However, all electron-

ics, power-supply and sensors in CoopROV diverge completely from OpenROV 2.5.

Two views of CoopROV a frontal view and its appearance when deployed in a test

tank are shown in Figure 5.1.

5.3.1 System Overview

CoopROV is a ROV-class submersible that is connected to a surface station

through a tether. The surface station is a laptop computer. CoopROV and its surface

station are connected by an ethernet interface and run a distributed ROS system. In
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ROV surface station joystick
sensor data

control signal user commands

Figure 5.2: Block diagram of high-level data flow between different components in
CoopROV

Weight 7 Kg
Dimensions (L x W x H) 0.30 x 0.28 x 0.39 m
Run time 1 hour
Sensors Minoru stereo 3D webcam

LIS3MDL 3-axis magnetometer
LSM6DS33 3-axis accelerometer and gyro
MS5803 pressure and temperature sensor
LiPo tester voltage sensor

Table 5.1: CoopROV Specifications

teleoperation mode, a joystick controller connected to the surface station can drive the

robot. The joystick controller can actuate the 3 thrusters (two at the back and one on

top) offering the robot a 6-Degree of Freedom (DOF) motion capability. This data flow

between the different system components is graphically illustrated in Figure 5.2. The

computing on the robot is handled by a RaspberryPi [88] and Arduino Mega [89]. The

sensor package includes a stereo camera, a 9-DOF Inertial Measurement Unit (IMU),

depth, temperature and voltage sensors. The robot is powered by two sets of Lithium

Polymer (LiPo) batteries which can provide up to an hour of run time. For a brief

list of CoopROV specifications see Table 5.1. A more detailed account of different

sub-systems comprising hardware, electronics, software, sensors and power supply is

given in the following sections.

5.3.2 Hardware

The exterior shell of CoopROV is composed of an acrylic frame that holds

all housing tubes together. There are 3 housing tubes in total: an electronics tube,

a connector tube and a battery tube. A Computer Aided Design (CAD) model of

CoopROV in Figure 5.3 illustrates the position of the housing tubes on the CoopROV
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frame. The electronics tube is a long transparent acrylic tube that holds all sensors

and most electronics of the robot. The connector housing tube is a relatively short

transparent acrylic tube with a molex connector plug inside it. This connector tube

serves as a water proof connector plug that allows to change the sensor package by

swapping out the electronics tube. The battery tube is a PVC pipe that holds 11.1 V

Li Ion batteries. The clips and clamps that hold the tubes in place were made out of

3D-printed plastic parts.

One of the bigger design improvement over OpenROV is the water proof seals.

The waterproof seals comprise a delrin end cap with an O-ring seal along with 3

threaded rods to maintain the tension between the end caps and the acrylic tube.

5.3.3 Electronics

The electronic components inside the electronics tube are responsible for con-

trolling the thrusters and relaying the sensor data back to the surface station. The

RaspberryPi and the surface station together constitute a distributed ROS system. For

communication purposes, a Transmission Control Protocol (TCP) link is established

between the RaspberryPi and the surface station via the tether cable. The Arduino is

connected to the RaspberryPi via the serial bridge and behaves like a node on the ROS

system. The Arduino logs the data from the depth sensor and the IMU. Additionally,

the Arduino is also responsible for translating the motor commands into signals for

the motor driver. Image data acquisition from the stereo camera is directly handled

through a usb interface on the RaspberryPi.

There are two parallel data streams. One enables the flow of control commands

throughout the system and other handles the data that is logged from the various

sensors. The control commands from the joystick flow through the surface station

and RaspberryPi to reach the Arduino. The Arduino translates these motor velocity

commands into Pulse Width Modulation (PWM) signals, that enable the motor driver

to run the propellers. The sensor data logged by the Arduino and RaspberryPi are

served to other nodes on the ROS system through a publish-subscribe communication
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(a) Front view (b) Side view (c) Isometric view (back)

(d) Isometric view (front)

Figure 5.3: Different views of the CoopROV CAD model with some labeled parts
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Power supply 5V

RaspberryPi

Arduino

Stereo camera

Depth sensor

IMU

Motor driver

Power supply 11.1V

Thruster

Figure 5.4: Block diagram depicting the connectivity between major components in
the electronics schematics

paradigm [90]. The block diagram in Figure 5.4 provides a graphical overview of the

connections between the major electronic components on CoopROV. It is important to

note that only one motor and motor driver are shown in Figure 5.4, but in the actual

system, there are 3 motors with dedicated motor drivers. Figure 5.4 also shows the

two power supplies in the system. More details on the power supply components can

be found in the next section.

5.3.4 Power Supply

Power supply is a critical part of any robotic system. Almost all mobile robotic

systems require batteries onboard. However tethered systems like the ROVs can have

an alternative resource in form of power supply through the tether. Running power

through a tether comes with its own set of challenges. Direct Current (DC) transmitted

at low voltages results in significant voltage drop due to the impedance of the long

tether cables. Conversely, using AC power at high voltages circumvents this problem

but then requires an onboard transformer/rectifier to transform the input Alternating

Current (AC) power into usable DC form.

A robot’s power supply components ought to be chosen, such that they can

handle the expected operational load (also transients). For CoopROV, several power

supply systems were tested. Four different battery types were evaluated: alkaline C,
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Table 5.2: CoopROV Battery Specifications

Power Source Battery Specification

11.1V LiPo 3-cell 11.1V 5400mAh
5V LiPo 2-cell 7.4V 800mAh

lithium ion, lithium phosphate and Lithium Polymer (LiPo). Tests revealed that the

high transient current requirements (>20A) of CoopROV were only met by the LiPo

composition. Thus, two sets of LiPo batteries were used to independently power the

motors and electronics. This physical isolation of the power sources improves stability

of the robot’s power supply system and prevents electronic components from being

affected by occasional erratic power draws of motors. More information on the two

power sources is given in Table 5.2.

The two independent power sources (Table 5.2) cater to different sub-systems

of CoopROV. The 5V power source drives all the onboard electronics. Additionally,

the 5V power supply is stepped-down and regulated to protect the electronic circuits

against voltage variations. The 11.1V (unregulated) power source meets the power

demands of the motors. Figure 5.4 shows the different power supplies along with the

different components powered by them. An approximate running time of the ROV is 1

hour can be obtained by doubling the number of LiPo batteries on each power source.

5.3.5 Sensors

CoopROV comes with 4 sensors; namely, stereo cameras, IMU, depth sensor and

voltage sensors. A low-cost off-the-shelf Minoru 3D webcam [91] was used to capture

stereo images at 5 Frames Per Second (FPS) with a resolution of 320 × 240. The 9-

DOF IMU on the robot provides instantaneous acceleration in the x,y and z directions

along with roll, pitch and yaw. The depth sensor measures the water pressure and

temperature to compute the robot’s operating depth. The voltage sensors are connected

on to the LiPo batteries to measure and report the instantaneous battery voltage. They
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Figure 5.5: CoopROV software architecture showing all the ROS-nodes along with a
brief overview on their functionality

also double as a protection to the LiPo batteries; they signal an alarm if the battery

voltage drops below a critical value.

5.3.6 Software

The software of CoopROV is built on a ROS architecture. The different core

functions of the robot are sub-divided into independent modules or ROS-nodes. Each

ROS-node has a specific task and can communicate with the other ROS-nodes. Addi-

tionally, the ROS architecture allows ROS-nodes running on different systems to com-

municate seamlessly: agnostic to where they are running. The interaction between dif-

ferent ROS-nodes is handled through a publish-subscribe communication paradigm [90].

These characteristics of the distributed ROS system was exploited to build CoopROV’s

software stack. The CoopROV setup comprises a distributed ROS architecture, where

different ROS-nodes run either on the RaspberryPi or the surface station. Both these

platforms are connected via a TCP link. The different nodes running on the robot and

the surface station along with their functionality is explained in the software architec-

ture diagram in Figure 5.5.
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5.4 Test Infrastructure

Initial waterproofing tests were performed in the University of Delaware indoor

swimming and diving pools. Later, integration tests for software and electronics along

with some experimental runs were conducted in a circular tank at RDL in University

of Delaware.

5.5 Localization Experiments

Preliminary localization experiments were performed by placing an Augmented

Reality (AR)-tag on the bottom of the water tank. Images from the stereo camera

were used to detect and track the AR-tag. Further experiments were also performed

by fusing the the 6-DOF position obtained from the AR-tag localization and IMU

values. Since there was no reliable reference measure to compare the reported position

of the ROV, the quality of the results were not verified.

5.6 Conclusion

CoopROV was built as a research platform to conduct underwater object recog-

nition and control experiments. It offers a low-cost solution with a easily reconfig-

urable hardware and extensible ROS-software interface. ROS-software support allows

the robot to use open source perception and control algorithms available as a part of

ROS software infrastructure. The sensor package comprising a stereo camera, IMU and

depth sensor can be leveraged for object recognition and motion control experiments.

The capabilities of the CoopROV system can be easily expanded to suit any research

experiment like the multi-layered scallop recognition (Chapter 3) and the multi-view

object recognition (Chapter 4) discussed earlier in this dissertation.
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Chapter 6

CONCLUSIONS AND OUTLOOK

The work in this dissertation offers robotic image analysis tools designed to op-

erate in noisy natural environments. Underwater environment has been the primary

domain that is used to validate these tools. The two applications that drove the design

of these object recognition tools are the automated submerged subway car recognition

from artificial reef sites, and scallop recognition problems. Additionally, a multi-view

object classifier, that can operate in noisy images without segmentation, is also pro-

posed. Finally, a low-cost ROV, named CoopROV, was built to facilitate underwater

experiments. The different insights gleaned from development of each of these tools

are discussed below.

Chapter 2 showcases the application of eigen-value based shape descriptors to

the subway car recognition problem. Eigen-value based shape identification is a tool

that can be used to identify simple geometric shapes. By reducing subway car recog-

nition to rectangle matching, eigen-value based shape descriptors were successful in

recognizing subway cars from seabed images. Though shape matching can aid object

recognition, other cues like texture can often play an important role in distinguishing

an object. Since eigen-value shape descriptors only use shape information, they are

not suited for applications where non-shape cues are more relevant in encoding ob-

ject information. Additionally, while evaluating eigen-value shape descriptors, it was

determined that discretization errors and segmentation errors can significantly impair

the performance of the descriptors. In other words, eigen-value shape descriptors are

a useful tool for identifying objects, provided we can guarantee that the shape of the

object can be represented with minimal discretization error. Further, for this method
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to work, the objects we are interested in should exhibit a shape profile that is signifi-

cantly different from all other objects in the background. These requirements may be

restrictive, and could render recognizing complex shapes problematic.

A challenging problem where the validity of such assumptions come under ques-

tion is in scallop recognition. The visual cues presented by a scallop include its dis-

tinguishing crescent profile, along with its texture. Since eigen-value descriptors can

neither handle complex shape profiles like crescents, nor do they capture textural in-

formation, a more refined approach is warranted. This led to the development of

multi-layered object recognition framework proposed in Chapter 3.

In general, marine biologists and oceanographers often depend on large natural

image datasets to study benthic phenomena, similar to surveying marine organisms.

With the availability of robotic imaging vehicles, the generation of datasets ranging

millions of images are becoming increasingly common. Automated image processing

tools are necessary to deal with such large image datasets. Most existing techniques are

built on restrictive assumptions that do not generalize to noisy natural image datasets.

The multi-layered object recognition approach described in Chapter 3 addresses this

problem by providing researchers with a modular architecture that can scale to large

natural image datasets. Modular architectures have the flexibility to be reconfigured,

in order to solve different object recognition problems. The particular multi-layered

framework was tasked with automated scallop recognition from images taken by an

AUV, as a means to assess scallop populations. This framework was successful in

recognizing 60–70% of scallops in a dataset of over 8000 images. The uniqueness of this

approach lies in its ability to handle noisy natural images under varied environmental

conditions. To improve the performance of the classifier proposed in Chapter 3, and

thereby reduce false positives, more information about a target object can be helpful.

To inject this additional information into the classification process, a multi-view object

recognition algorithm was formulated and discussed in Chapter 4.

The multi-view approach discussed in Chapter 4 is a machine learning technique

designed for binary classification tasks. The objective here is to formulate an object

108



classifier that can perform robustly even in noisy image data. Since noisy single-views

of an object might often not contain sufficient information to unambiguously recognize

it, information from multiple views are combined here to build a machine learning

classifier. In this approach, the information from 13 images of each object specimen,

captured from different heights, is encoded into a single object model. Additionally,

the use of histogram-based global feature descriptors here obviates segmentation of

object pixels. Since segmentation can be challenging in noisy natural images, this

feature is attractive. This method is evaluated on a combined dataset of 22 specimens

comprising oranges and strawberries. All the specimens are correctly classified. Despite

the small dataset (22 specimens), the exceptional performance of this classifier in noisy

underwater data is encouraging. To decrease false positives, an approach like this could

be used as a classification layer in a multi-layered approach, like the one described in

Chapter 3.

To remotely collect data in underwater environments, a submersible robotic ve-

hicle is typically required. Most commercially available robotic vehicles are either ex-

pensive or difficult to customize for research needs. To address this problem, CoopROV,

a low-cost ROV was designed as a research prototype to support experimentation in

underwater settings. CoopROV carries an IMU, stereo cameras, depth and pressure

sensors. The onboard electronics on the robot allow customization and inclusion of

new sensors. CoopROV also offers a ROS software interface that allows easy access

to plethora of existing software tools. The low-cost, and innate flexibility to modify

the software and hardware, makes CoopROV an ideal platform to support underwater

experiments.

There are some possible directions to extend the object recognition tools pro-

posed in this dissertation. For instance, the scallop recognition approach of Chapter 3

could benefit from using more descriptive templates. In Chapter 3, we see that the

appearance of a scallop is characterized by two crescents near the scallop rim: one

bright and one dark. Currently, only the position of a dark crescent is captured by the

templates used. Using templates that capture additional information, like the position
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of the bright crescent could be interesting. As for the multi-view object recognition

method discussed in Chapter 4, a more expansive dataset could be used to test this

algorithm. Another possible improvement is to generalize this multi-view algorithm

to accept images from any series of heights instead of a fixed set of heights. Relaxing

the restrictions on the different views needed by the multi-view algorithm could make

the experiments and data collection effort easier. This multi-view approach could also

be expanded to multi-class classification for dealing with more than 2 object classes.

The CoopROV frame could be redesigned to improve the trim (weight distribution) of

the vehicle. Designing controllers and building a localization system are other avenues

where future improvements on CoopROV is possible.

Finally, the main contribution of this dissertation is in the development of ob-

ject recognition tools that work on noisy natural images. Each of these tools have

been validated on different underwater applications. The developments here are in-

tended to provide automated solutions to researchers dealing with large natural image

datasets. The availability of modular reconfigurable architectures to allow researchers

to build custom solutions to solve their object recognition needs is the prime objective.

The techniques proposed here are first steps in providing tools capable of handling

noisy natural images. Further exploration on this domain is necessary to build more

robust architectures that can recognize multiple classes of objects. Some examples

of object recognition applications, like subway car and scallop recognition, are not

all-encompassing but provide an initial thrust in this domain. Further work to build

extensive tools required by the marine research community is warranted. In a broader

scheme, this dissertation contributes in strengthening the perception capabilities of

robots. Ultimately, better scene understanding and perception are vital building blocks

that support robot autonomy.
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