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ABSTRACT 

Environmental monitoring, especially long-term monitoring programs are a 

backbone component for environmental science and policy. Where environmental 

observatory networks (EONs) are entities that coordinates environmental monitoring 

efforts and provides useful information that helps to develop knowledge at a regional 

to global scale. However, due to intrinsic environmental variability and EONs 

organizational structure, the ability of EONs to properly represents environmental 

dynamic is prompt to poorly represents certain regions or ecosystems. This 

dissertation focuses on developed a different approach to assess EONs 

representativeness and design, by using a time-varying land-cover surface 

classification that characterize ecosystem functional heterogeneity based on carbon 

uptake dynamics (i.e., ecosystem functional types; EFTs), and by using machine 

learning techniques (i.e., maxent, random forest) to assess EONs representativeness. 

This study is divided into three main objectives; A) assess the representativeness of 

AmeriFlux and the National Ecological Observatory Network (NEON) to monitor the 

spatial and temporal variability of EFTs across the conterminous Unites States; B) 

propose a flexible framework to optimize the design of an EON using a publicly 

available data in a high-diverse country (i.e., Mexico; and C) Assess the 

representativeness of ecosystem states factors (i.e., climate, topography and soil 

resources) along with ecosystem processes (i.e., gross primary productivity and 

evapotranspiration) of FLUXNET eddy-covariance sites in Latin America. Results 

indicate that this dissertation provides valuable information for EONs management as 



 xv 

identifies spatial information gaps and could guide an optimal EONs design. Also, is 

based on a reproducible framework using publicly available information and it could 

be applied anywhere in the world. 



 

 

1 

Chapter 1 

INTRODUCTION 

1.1 Environmental Observatory Networks 

The development of human civilization has been related to an escalated 

alteration and transformation of Earth and its natural resources, this transformation has 

reached a peak that nowadays human activities are one of the most dominant forces 

shaping the Earth surface (Steffen et al 2007, Lewis and Maslin 2015). This human-

induced transformation is characterized by changes in atmosphere chemistry, land-

cover change, earth’s global temperature, among others. In order to account for the 

impact and consequences of such transformation, environmental monitoring provides 

information of physical, chemical, and/or biological variables which are designed to 

answer clear and specific questions on global change relate it issues (Lovett et al 2007, 

Scholes et al 2017). By hence, environmental monitoring is a backbone component for 

environmental science and for environmental policy (Ciais et al 2014, Vaughan et al 

2001). 

The complexity of global change makes environmental monitoring a 

challenging task due to the broad spectrum of its impact and scope (Running et al 

1999, Turner et al 1990) F). Arguably, a successful strategy comes from collaborative 

efforts which can be organized under environmental observatory networks (EON’s). 

Briefly, EONs can be defined as a relatively loose affiliation of organizations that 

agree to create value by collaborating towards a common purpose while retaining their 

individual mandates, resources and management (Scholes   2017, 2012). The benefits 
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that EON’s provides are the collection and dissemination of environmental data along 

with efforts towards the standardization of protocols, data sharing and synthesis 

activities. Furthermore, EONs have provided value added products that include 

databases, maps, conceptual models, software/analytical tools for ecological modeling, 

and virtual communities of practices. These products have been useful for the scientific 

community and policy maker to assess knowledge gaps and expands the frontiers of 

ecological understanding (Novick et al 2017, Kampe et al 2010a, Villarreal et al 2018).  

EON’s are usually organized under a “bottom-up” or a “top-down” approach, both 

having their own advantage and disadvantages. For example, a bottom-up structure 

provides a more devolved framework which allows a broader environmental scope as 

different organizations retain their individual objectives, resources and management while 

sharing a common purpose or goal (Scholes et al 2017, Novick et al 2017), however, this 

approach is also prone to make redundant observations while under-representing other 

regions. A “top-down” approach is a more centralized coordinated effort having well 

defined and clear specific goals, which allows a better optimization of resources, but its 

scope is usually narrower compare to the bottom-up approach (Scholes et al 2017, Kampe 

et al 2010b). A common example of bottom-up approach are AmeriFlux and FLUXNET. 

AmeriFlux is a network of PI-managed sites measuring carbon, water, and energy fluxes 

representing major climate and ecological biomes fluxes across the Americas (Novick et 

al 2017). FLUXNET is a global network that clustered/gathered regional networks with 

the purpose to compile, archive and distribute data from the major climate and ecological 

biomes across the world to the scientific community (Baldocchi et al 2001, Williams et al 

2009). The National Ecological Observatory Network (NEON) is organized under a “top-

down” approach, designed for discovering, understanding and forecasting of ecosystem 
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processes at a continental scale (Kampe et al 2010b, Keller et al 2011). NEON study-sites 

are distributed across 20 sampling domains which were delineated based on ecoclimatic 

variables spatially clustered to grouped the same fraction of the total ecoclimatic variance 

with the purpose to better represents the main ecoclimatic characteristics of the United 

States (Schimel et al 2007). 

The aforementioned EONs have monitored the exchange of matter (e.g., CO2, 

H20, CH4) and energy (e.g., surface energy balance) between terrestrial ecosystems and 

the atmosphere using the eddy covariance (EC) technique, this method has the potential to 

monitor how ecosystems respond to a wide spectrum of different climate regimes if EC 

study-sites are deployed under a coordinated network of sites (Baldocchi 2003, Baldocchi 

et al 2001). For example, AmeriFlux through a network of more than 260 EC study-sites 

across the Americas provides information of ecosystem carbon, water, and energy fluxes 

across a wide range of climate regimes and its data collection making this network an 

exceptional tool to assess the ecosystem response to slowly evolving changes in climate 

and land cover, along with extreme or rare events such as droughts, floods, wildfires, 

among others (Novick., 2017). 

1.2 Representativeness of environmental observatory networks 

Representativeness studies are of prime importance in order to increase EONs 

utility by providing information to discern when, where and at what frequency EONs have 

monitoring or should monitor ecological processes, along with information to determine 

whether to maintain/remove current study-sites (Villarreal et al 2018). By hence, 

representativeness assessments are of prime importance for a proper design and 

management of EON’s. Traditionally, these studies mainly used information of climate 

and plant functional type, which have been used to determine that the number of study 
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sites to properly monitored a certain ecosystem process at specific scale (He et al 2015, 

Chen et al 2011), suggest new arrangements of study sites (Sulkava et al 2011), and 

identified what type of ecosystems are under/over represented (Hargrove et al 2003, 

Kumar et al 2016). However, due to the utility and relevance of EONs there is a pressing 

need to design different scientific approaches to assess the representativeness of EONs for 

current and near-future applications (Lovett et al 2007, Jongman et al 2017). 

The novelty of this study is the addition of functional properties at ecosystem 

scale to assess the representativeness of EONs (Alcaraz et al 2006, Villarreal et al 2018), 

since recent studies discuss that ecosystem properties related to carbon and water fluxes 

are insufficiently explain by climate controls and classical plant functional types (Petrakis 

et al 2017, Reichstein et al 2014, Violle et al 2014). We used ecosystem functional types 

(EFTs) to characterize the amount and timing of carbon exchange between the ecosystem 

and the atmosphere (Alcaraz-Segura et al 2013, Alcaraz et al 2006, Alcaraz-Segura et al 

2017). The EFT concept is analogous to Plant Functional Type (PFT) concept but defined 

at a higher level of biological organization. As species can be grouped into plant 

functional types based on common species traits, ecosystems can be grouped into 

ecosystem functional types based on their similar ecosystem functioning. In practice, EFT 

is a time-varying land surface classification based on remote sensing vegetation indexes 

(i.e., MODIS-EVI) that are used to represent the spatial patterns and temporal variability 

of key ecosystem functional traits (i.e., productivity, seasonality and phenology) without 

prior knowledge of vegetation type or canopy architecture (Alcaraz-Segura et al., 2017; 

2013; Cabello et al., 2013). Therefore, the ecosystem functional characterization obtained 

with EFTs can infer information on vegetation structure and composition (e.g., canopy 

architecture, vegetation type, PFT) because they constitute complementary dimensions of 
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biodiversity complexity (Noss 1990, Pettorelli et al 2016), and it can be integrated into 

representativeness studies of EONs (Villarreal et al 2018). 

In this study we assess the representativeness of EON’s based on concepts derived 

from species distributions models (SDM). The general idea of SDM is to define a 

geographic space that includes a set of environmental data layers, and then delineate an 

area within the geographic space that corresponds to environmental properties that are 

suitable to the presence of a certain specie (Drew et al 2011, Evans et al 2011). We 

propose that this concept can be applied to assess EON’s representativeness, since the 

goal is to delineate the spatial distribution of environmental properties across a geographic 

space that should be similar to the environmental range monitored by corresponding 

EON’s study sites (Villarreal et al 2018). 

1.3 Overview of research 

The research presented in this dissertation proposed different methodologies to 

assess the representativeness of EON’s and to suggest an analytical framework to 

optimally design an EON’s. Chapter 2 presents the assessment of AmeriFlux and NEON 

to represents the spatial and temporal characteristics of EFT’s across the conterminous 

united states (CONUS) during the years 2001-2014. Chapter 3 presents a proposed 

analytical framework to optimally design an EON that monitors GPP and ET across a 

large biodiverse and heterogeneous country like Mexico. Chapter 4 presents the 

assessment of FLUXNET representativeness across Latin America (LA) to monitor 

environmental properties (i.e., bioclimatic predictors, terrain properties and soil resources) 

along with ecosystem processes (i.e, GPP and ET), and suggesting the addition of 

potential study-sites to increase the network representativeness. 
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Chapter 2 (published 2018 in Agricultural and Forest Meteorology) 

Presents a study performed across CONUS to assess the spatial and temporal 

representativeness of EFTs by AmeriFlux and NEON, and their combined core sites (i.e., 

sites with long-term support). This study investigates: a) what are the different EFTs 

categories represented by each network, b) What is the EFT inter-annual variability 

(EFTint; number of unique EFTs per pixel during 2001-2014) representativeness by each 

network and their combined core sites, and c) What is the spatial representativeness of 

EFT categories and EFTint based on a maximum entropy approach (i.e., spatial functional 

heterogeneity) by each network and their combined core sites. 

Chapter 3 (In review for publication in Journal of Geophysical Research Biogeoscience). 

Here, we test a flexible framework to optimize the design of an environmental 

observatory network (EON) using publicly available data for Mexico. We address three 

pervasive challenges for designing EONs: 1) How to classify ecological heterogeneity to 

determine multi-scale sampling domains; 2) How to set geographic priorities to maximize 

the representativeness of new study sites; and 3) How to assess the representativeness of 

new study sites. We used unsupervised classification methods (i.e., factorial and cluster 

analysis) to spatially delineate ecologically similar sampling domains. Then, we identified 

the most representative sites within each domain using a conditioned Latin Hypercube-

based sampling strategy. Finally, we demonstrated the applicability of this approach by 

assessing the spatial representativeness of the eddy covariance network in Mexico (i.e., 

MexFlux). 

Chapter 4 (In preparation to submit it in Environmental Research Letters). 

The representativeness of FLUXNET sites across LA was assessed in order to 

address: a) What is the representativeness of FLUXNET-LA study-sites to monitor 
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environmental properties such as bioclimate predictors, terrain properties and soil 

resources; b) What is the representativeness of FLUXNET-LA study- sites to monitor 

GPP and ET?; and c) Where new study-sites should be located in order to increase 

FLUXNET-LA representativeness?. These representativeness analyses were performed 

based on concepts derived from species distribution models (SDM), since the goal was to 

delineate the spatial distribution of environmental properties across a geographic space 

that should be similar to the environmental range monitored by corresponding FLUXNET 

sites. The proposed representativeness framework is based on publicly available 

information and open source software and it can be applied to any other region across the 

world. 

Taken these three studies together they provide a more comprehensive picture on 

EON’s representativeness and design addressing some of their most pervasive issues. The 

running theme of this dissertation is the addition of functional properties on EON’s 

studies, since they provide knowledge of the temporal spatial patterns of ecosystem 

functioning at the regional scale and provides a proper background to assess the effects of 

environmental changes on ecosystems processes (Vitousek et al., 1997. Gitay & Noble 

1997. Alcaraz et al., 2006). Along with the use of species distribution models (SDMs) to 

assess the representativeness of EONs since they provide a quantitative assessment on the 

spatial environmental range potentially monitored by EONs (Elith and Graham 2009, 

Elith and Leathwick 2009). 
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Abstract 

Environmental observatory networks (EONs) are coordinated efforts to 

provide knowledge that ultimately delivers transformational ecological science from 

regional to global scales. We used ecosystem functional types (EFTs), a time varying 

land surface classification, as an alternative way to characterize ecosystem functional 

heterogeneity based on carbon uptake dynamics. We assessed the representativeness 

of the eddy-covariance sites of AmeriFlux and NEON, and their combined core sites 

(i.e., sites with long-term support) across the conterminous United States (CONUS) 

based on: a) the number of different EFT categories (EFTmode) represented by each 

network, b) representativeness of the EFT inter-annual variability (EFTint; number of 

unique EFTs within each pixel during years 2001–2014), and c) the spatial 

representation of EFTmode and EFTint based on a maximum entropy approach (i.e., 

spatial functional heterogeneity). AmeriFlux represents 50% of all possible EFT 

categories, includes most of EFTint values (9 out of 14), and represents 55% of the 

spatial functional heterogeneity across CONUS. NEON represents 23% of all possible 

EFT categories, 7 out of 14 possible EFTint values, and 23% of the spatial functional 

heterogeneity across CONUS. The combined effort of AmeriFlux and NEON core 

sites represents 33% of all possible EFT categories, 7 out of 14 possible EFTint values, 

and 46% of the spatial functional heterogeneity across CONUS. We used the NEON 

ecoclimatic domains to summarize our results within a geographical context. The least 

represented NEON ecoclimatic domains were Desert Southwest, Southern Rockies 

and Colorado Plateau, Great Basin, Northern Plains, and Central Plains. Our results 

provide insights about the potential of AmeriFlux to address questions regarding 
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decadal and inter-annual variability of ecosystem functional heterogeneity across 

CONUS. 

 

Highlights 

• Alternative approach to assess the representativeness of environmental 

networks 

• Ecosystem Functional Types characterize ecosystem functional heterogeneity 

• The AmeriFlux network has unique spatial and temporal information 

• Network collaboration enhances long-term representativeness  
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2.1 Introduction  

Environmental observatory networks (EONs) are organizations that are 

affiliated in a flexible way that agree to join efforts towards a common purpose while 

retaining their individual objectives, resources, and management. It has been discussed 

that EONs are the proper structure to address complex, global and socially imperative 

issues (Scholes et al., 2017). EONs promote collection and dissemination of 

environmental data along with efforts towards standardization of protocols, data 

sharing and synthesis activities. Furthermore, EONs have provided value added 

products that include databases, maps, conceptual models, software/analytical tools for 

ecological modeling, and virtual communities of practice. These products have been 

useful for the scientific community and policy makers to assess knowledge gaps and 

expand the frontiers of ecological understanding (Ciais et al., 2014; Running et al., 

1999). Examples of EONs include: AmeriFlux, National Ecological Observatory 

Network (NEON), FLUXNET, Integrated Carbon Observation System (ICOS), the 

Spectral Network (SpecNET), Long Term Ecological Research Network, among 

others (Peters et al., 2014). 

Among different research efforts, the aforementioned EONs have monitored 

the exchange of matter (e.g., H2O, CO2, CH4) and energy (e.g., heat and solar 

radiation) between terrestrial ecosystems and the atmosphere to better understand 

biosphere-atmosphere interactions (Baldocchi et al., 2001; Baldocchi et al., 2012; 

Law, 2005). Consequently, representativeness studies are of prime importance to 

discern when, where, and at what frequency EONs have been measuring or should 

measure ecological processes (Baldocchi et al., 2012b; Jongman et al., 2017; Vaughan 

et al., 2001; Vos et al., 2000). These assessments inform EONs on how to increase 

their utility, so the generated information could be applicable at regional and/or global 
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scales (Ciais et al., 2014; Jongman et al., 2017; Schimel and Keller, 2015). Thus, there 

is a pressing need to design different scientific approaches to assess the 

representativeness of EONs for current and near-future applications (Lovett et al., 

2007; Jongman et al., 2017). 

A spatial and temporal representativeness analyses would inform where to 

establish new study sites and the basis to determine whether to maintain/remove 

current sites across networks. Thus, these analyses provide insights to improve 

management decisions and optimize network operability and interoperability (Vargas 

et al., 2017; Jongman et al., 2017). Previous studies have analyzed the spatial 

representativeness of national eddy-covariance networks (i.e., Canadian Carbon 

Program, ChinaFlux) and have concluded that the degree of fine-scale ecosystem 

processes across landscapes determine the number of study sites needed within a 

network to properly monitored those processes (Chen et al., 2012, 2011; He et al., 

2015). Other studies have used cluster-based approaches to delineate spatial sampling 

domains and assess the spatial representativeness of EONs, and suggested 

arrangements of study sites of EONs such as CarboEurope-IP (Sulkava et al., 2011) 

and FLUXNET (Kumar et al., 2016). Representativeness studies across the 

conterminous United States (CONUS) have concluded that arid and semiarid 

ecosystems, as well as elevational changes, were under-represented by AmeriFlux 

during the first decade of the 2000’s (Hargrove et al., 2003; Yang et al., 2008). 

In general, studies on EONs representativeness have used information 

regarding the spatial heterogeneity of mean climate conditions and plant functional 

types (PFTs) composition to represent the dynamics of ecosystem processes (i.e., 

carbon uptake; Hargrove et al., 2003; Kumar et al., 2016), along with ecosystem 
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productivity and seasonality (Cramer et al., 2001; Falge et al., 2002). However, recent 

studies have discussed that the variability of ecological processes at the ecosystem 

level is insufficiently explained by using the PFTs approach (Bond-Lamberty et al., 

2016; Petchey and Gaston, 2006; Petrakis et al., 2017; Reichstein et al., 2014; Wright 

et al., 2006).  

Arguably, ecosystem functionality could complement the evaluation of the 

representativeness of EONs by incorporating several aspects: First, information on 

ecosystem functionality complements descriptions based solely on climate or 

vegetation structure; for example, by complementing climate drivers information with 

information on canopy productivity, and the temporal patterns of seasonality or 

phenology (Valentini et al., 1999, Alcaraz-Segura et al., 2006; 2017). Second, the 

inertia of ecosystem structural attributes may delay the quantification of ecosystem 

responses to environmental changes, while ecosystem processes (i.e., exchange of 

energy and matter of an ecosystem) have a faster quantifiable response (Milchunas 

and Lauenroth 1995; Mouillot et al., 2013). Third,, ecosystem function offers an 

integrative response to environmental drivers and changes (Nagendra et al., 2013; Vaz 

et al., 2015). Last, functional attributes allow the qualitative and quantitative 

assessment of ecosystem services (Costanza et al., 1997). 

We explored the applicability of Ecosystem Functional Types (EFT) (Alcaraz 

et al., 2006) as an alternative way to characterize ecosystem functional heterogeneity 

(Alcaraz-Segura et al., 2013) and assess the representativeness of eddy covariance 

sites across AmeriFlux and NEON. EFTs have been conceptually defined as groups of 

ecosystems or patches of the land surface that share similar dynamics of matter and 

energy exchanges between the biota and the physical environment (Alcaraz et al., 
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2006; Paruelo et al., 2001). The EFT concept is analogous to the Plant Functional 

Type (PFT) concept but defined at a higher level of biological organization. As 

species can be grouped into plant functional types based on common species traits, 

ecosystems can be grouped into ecosystem functional types based on their similar 

ecosystem functioning. In practice, EFT is a time-varying land surface classification 

based on remote sensing vegetation indexes (i.e., MODIS-EVI) that are used to 

represent the spatial patterns and temporal variability of key ecosystem functional 

traits (i.e., productivity, seasonality and phenology) without prior knowledge of 

vegetation type or canopy architecture (Alcaraz-Segura et al., 2017, 2013; Cabello et 

al., 2013). Therefore, the ecosystem functional characterization obtained with EFTs 

can be infer information on vegetation structure and composition (e.g., canopy 

architecture, vegetation type, PFT), because they constitute complementary 

dimensions of biodiversity complexity (Noss, 1990; Pettorelli et al., 2016). 

The overarching goal of this study was to assess the representativeness of 

AmeriFlux and NEON based on ecosystem functional diversity characterized by EFTs 

across CONUS. These networks monitor a wide range of ecosystem types (Novick et 

al., 2017; Schimel et al., 2007), and recently have joined forces to have a long-term 

monitoring plan to support core sites. Data from both AmeriFlux and NEON support 

governmental and intergovernmental programs and reports, such as the North 

American Carbon Program (NACP), State of the Carbon Cycle Report (SoCCR), the 

UN Intergovernmental Panel on Climate Change (IPCC), and multiple regional to 

global syntheses activities. We assess the representativeness by analyzing the 

categorical, temporal, and spatial representation of EFTs across CONUS. Specifically, 

we quantify the representativeness of (a) the historical AmeriFlux archive (i.e., all 
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sites active and inactive within the AmeriFlux network), (b) core and relocatable 

NEON sites, and (c) the joint effort of AmeriFlux and NEON active core sites. In light 

of the 20th anniversary of the AmeriFlux network, we asked three interrelated research 

questions: What are the spatial and temporal patterns of EFTs across CONUS? How 

do the historical AmeriFlux archive and planned NEON sites represent spatial and 

temporal patterns of EFTs across CONUS? and What is the representativeness of the 

joint effort of AmeriFlux and NEON core sites? We used the 17 NEON ecoclimatic 

domains across CONUS as geographical categories to organize and summarize the 

results of this study.  Our EFT-based approach provides an alternative framework to 

previous assessments of the representativeness of EON’s (Hargrove et al., 2003; Yang 

et al., 2008; Chen et al., 2012), it is explicitly based on ecosystem functional attributes 

derived from publicly available data, provides insights for the design, improvement, 

and growth of EONs, and it is applicable to other EONs around the world. 

2.2 Materials and methods  

2.2.1 Environmental Observatory Networks  

AmeriFlux is an integrated “bottom-up” effort from principal investigators 

(PIs) to coordinate eddy covariance measurements across the most common 

ecosystems in the United States and the Americas (Keller et al., 2011; Law, 2005; 

Novick et al., 2017). The historical AmeriFlux archive represents the total wealth of 

information collected by all active and inactive study sites registered since the 

establishment of AmeriFlux. The historical AmeriFlux archive has a total of 207 

registered study sites across the CONUS and 46 of those sites are currently considered 

to be core sites. Those core sites have received direct support and funding from the 
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AmeriFlux Management Program (AMP) and are more likely to remain active (i.e., 

long-term, >10 years) than independently funded sites (AMP 2017). The number of 

active sites within the AmeriFlux archive has varied through time due to multiple 

factors (e.g., available funding, human resources, project timelines).  

The National Ecological Observatory Network (NEON) is an ecological 

observatory platform that is organized under a “top-down” approach, which is 

designed for discovering, understanding and forecasting of ecosystem processes at a 

continental scale (Kampe et al., 2010, Schimel et al., 2011). NEON observations are 

distributed across 20 ecoclimatic domains (i.e., NEON domains), which act as spatial 

sampling domains and represent regions of distinct landforms, vegetation, climate and 

ecosystem dynamics (Keller et al., 2011; Schimel et al., 2007). NEON domains are 

derived from ecoclimatic variables that are clustered based on a multivariate statistical 

approach, the clusters are formed in a way that each of them grouped the same fraction 

of the total ecoclimatic variance (Hargrove and Hoffman. 1999; Keller et al., 2011). 

Each NEON domain is represented by one core wild land site (total 20 observatory 

sites, 17 within CONUS) and additional relocatable sites (39 within CONUS) to 

represent the ecoclimatic properties and gradients within and among NEON domains 

(Keller et al., 2011; Schimel et al., 2011), or address grand challenge areas as 

described by the National Academy of Sciences (NRC, 2001, 2003, 2007). 

Throughout this study, we used the 17 NEON domains across CONUS to organize and 

summarize our results.  

Finally, AmeriFlux and NEON have a unique opportunity for long-term 

monitoring by joining efforts from core sites. AmeriFlux has selected 46 core sites 

while NEON has designed 17 core observatory sites across CONUS (n = 68 of 
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AmeriFlux plus NEON core sites). Thus, there is a need to provide information of 

potential representativeness as these networks join long-term monitoring efforts. 

 

2.2.2 Terrain complexity 

We used terrain complexity as a static topographic metric derived from a 

digital elevation model. Complex topography is an important limitation for the eddy-

covariance technique as it influences the assumption of horizontal homogeneity 

required for a proper estimation of biosphere-atmosphere fluxes (Göckede et al., 

2004). Terrain complexity was derived from a publicly available digital elevation 

model consisting of a 30-arc second resolution global topographic/bathymetric grid 

(Becker et al., 2009). Terrain complexity was defined by calculating ±1 standard 

deviation of the terrain altitude within areas of approximately 0.05o x 0.05o. We used 

this resolution to represent the major topographic characteristics of CONUS as this 

resolution is widely used in country-scale or regional studies (Löw et al., 2005;  Piao 

et al., 2015; Chrysoulakis et al., 2003). We used this metric to describe the mean 

terrain complexity for each one of the NEON domains across CONUS. 

2.2.3 Ecosystem Functional Types 

The basis of the concept of EFTs assumes that by using time-series of satellite 

images it is possible to identify and map areas with similar ecosystem functional 

characteristics (Alcaraz-Segura et al., 2017; Alcaraz et al., 2006; Paruelo et al., 2001). 

Spectral indices derived from satellite images can provide information about key 

ecosystem functional aspects such as primary production, evapotranspiration, surface 

temperature and albedo (Fernandez et al., 2010; Lee et al., 2013; Paruelo et al., 1997). 
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In this work, we used a holistic approach to assess ecosystem functioning (Jax 

2010). The regional ecosystem functional heterogeneity was characterized by means 

of EFTs derived from the seasonal dynamics of the Enhanced Vegetation Index (EVI), 

as a surrogate of carbon gain dynamics (Alcaraz-Segura et al., 2013). We used the 

2001-2014 time-series of satellite images of the EVI from NASA's Moderate 

Resolution Imaging Spectroradiometer (MODIS) product MOD13C2 with a spatial 

resolution of 0.05o x 0.05o across CONUS. We used this resolution to characterize the 

patterns at the country scale as done in other studies (Löw et al., 2005; Trieb et al., 

2002; Chrysoulakis et al., 2003).  EFTs were derived from three meaningful metrics of 

the EVI seasonal curve related to the dynamics of terrestrial carbon gains: a) annual 

mean (EVI_Mean) as an estimator of primary production; b) EVI seasonal coefficient 

of variation (EVI_sCV) as a descriptor of seasonality; and c) the month of the annual 

maximum EVI value (DMAX) as an indicator of phenology. Those three metrics 

represent more than 80% of variance in the annual EVI time series (Alcaraz et al., 

2006; Paruelo et al., 2001). The range of values of each EVI metric was divided into 

four intervals, giving a potential number of 64 EFTs (i.e., 4 x 4 x 4 = 64; Alcaraz-

Segura et al., 2013). To obtain the intervals for EVI_mean and EVI_sCV, we extracted 

the first, second, and third quartiles for each year, and then calculated the inter-annual 

mean of each quartile. For EVI_DMAX, the four intervals agreed with the four 

seasons of the year (Alcaraz-Segura et al., 2013).  

We labeled all 64 EFT categories using a previously published nomenclature, 

where two letters and one number describe each category (Alcaraz-Segura et al., 2017; 

Paruelo et al., 2001). Therefore, each EFT category is a summary of the information 

contained in the three EVI metrics for each 0.05o x 0.05o grid pixel. The first letter 
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(capitalized) represents the EVI_Mean, which ranged from A (low primary 

productivity) to D (high primary productivity). The second letter represents EVI_sCV, 

which ranged from a (high seasonality) to d (low seasonality; Alcaraz-Segura et al., 

2013). The third position is a number that represents DMAX, which indicates the 

phenology stage during the year (1-4: spring, summer, autumn, and winter, 

respectively, Alcaraz-Segura et al., 2013). For example, Aa1 represents an EFT 

category of low productivity, high seasonality and with a growing season with a spring 

maximum. In contrast, Dd2 represents an EFT with a high productivity, low 

seasonality and a growing season with summer maximum. 

2.2.4 Network representativeness analyses 

2.2.4.1 Categorical representativeness 

To summarize the spatial heterogeneity of ecosystem functioning of the 2001-

2014 period, we calculated the mode of the annual EFT maps. We refer to this as the 

EFTmode and consequently it corresponds to the most dominant EFT for each pixel 

during the 14-year period. The categorical representativeness analysis evaluated 

whether each one of the EFTmode categories found across CONUS was represented by: 

(a) the historical AmeriFlux archive; (b) NEON sites; or (c) AmeriFlux and NEON 

core sites. In addition, we analyzed how the AmeriFlux network has represented the 

EFT categories as sites have been added or became inactive in the network throughout 

the 2001–2014 period.  

2.2.4.2 Temporal representativeness 

EFT categories can change through time in a particular pixel as they represent 

annual dynamics of terrestrial carbon gains within each pixel across CONUS. Thus, 
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we used the number of different EFTs occurring within each pixel throughout the 

2001-2014 period as an indicator of the inter-annual variability in ecosystem 

functioning (EFTint). For example, if a pixel displayed three EFT categories from 2001 

to 2014, then EFTint was 3; despite if one EFT was more abundant than the other two. 

An EFTint of 14 meant that every year was different to the rest in terms of the EFT 

categories. The temporal representativeness analysis evaluated whether different 

values of inter-annual variability (EFTint) were covered by: (a) the historical 

AmeriFlux archive; (b) NEON sites; or (c) AmeriFlux and NEON core sites. 

2.2.4.3 Spatial representativeness 

We assessed the spatial representativeness of the network using a probability 

distribution technique based on maximum entropy distribution (Phillips et al., 2004; 

2006). We used this approach to express the suitability of the study sites to monitor 

the range of ecosystem functional heterogeneity across CONUS. The maximum 

entropy approach (Maxent) is largely used in estimating the relationship between 

spatial observations (i.e., site locations) and environmental or spatial properties (i.e., 

EFTmode and EFTint) associated with those locations across a well-defined geographic 

region (i.e., CONUS). Entropy can be seen as a measure of dispersedness, while the 

maximum entropy approach maximizes the entropy distribution of a set of 

environmental properties within a geographic space (Elith et al., 2011). Here, we 

performed a Maxent analysis for: (a) the historical AmeriFlux archive; (b) NEON 

sites; and (c) AmeriFlux and NEON core sites, to represent the heterogeneity of 

EFTmode and EFTint (i.e., environmental properties) across CONUS. The randomness 

of the Maxent model was tested using the area under the curve (AUC) of the training 

data (i.e., EFTmode and EFTint) and that of a random prediction as recommended 
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(Fielding and Bell, 2016; Hijmans, 2012; Liu et al., 2011; Phillips et al., 2004). A 

random classification has a typical value for the area under the curve equal to 0.5, 

while a non-random classification (i.e., distinction between potential presence and 

absence) has values closer to 1. The final result derived from our Maxent model are 

expressed using a Kappa index derived from cross-validation, where Kappa index of 1 

indicates areas with characteristics that are more likely to be monitored by the study 

sites (i.e., sampling locations). We reported spatial representativeness results as the 

percentage ratio of those pixels with a Kappa index equal to 1 divided by the total 

number of pixels across CONUS. See Appendix A for more detail. 

2.3 Results 

2.3.1 Categorical representativeness 

The EFTmode for the 2001-2014 period across CONUS (Figure 2.1, Table 2.1) 

showed that ecosystems with high productivity were located in the NEON ecoclimatic 

domains of Northeast, Mid-Atlantic, Southeast, Appalachians and Cumberland 

Plateau, and the Ozark Complex. In contrast, ecosystems with low productivity were 

found at the Great Basin, Desert Southwest and Southern Rockies, and Colorado 

Plateau. The ecosystems with the highest seasonality were common in the Great 

Lakes, Prairie Peninsula, Northern Plains, Northeast, and Appalachians and 

Cumberland Plateau; while ecosystems with the lowest seasonality occurred in the 

South East, Central Plains, and Southern Plains. Most ecoclimatic domains were 

dominated by ecosystems with growing season with summer maxima, except for the 

Great Basin, Pacific Southwest and Desert Southwest where the growing season 

maxima was reached during spring.  
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The historical AmeriFlux archive covered 31 out of the 64 possible EFTmode 

categories (Figure 2.2).  In contrast, NEON sites only represented 16 EFTmode 

categories (Figure 2.2c), and the combined efforts of the AmeriFlux and NEON core 

sites represented 21 EFTmode categories (Figure 2.2d). The frequency distribution of 

the number of sites (across AmeriFlux and NEON networks) did not follow the 

frequency distribution of EFTmode categories (Figure 2.2a). In other words, the most 

abundant EFTmode categories across CONUS did not have the largest number of 

monitoring sites. 
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Figure  2.1. Spatial distribution and inter-annual variability of Ecosystem Functional 

Types (EFTs) across the conterminous United States (CONUS) during 

the 2001-2014 period: a) spatial patterns of the mode of EFTs for the 

2001-2014 period (EFTmode); and b) inter-annual variability of EFTs 

(EFTint; i.e., number of unique EFTs that occurred in the 14-year period), 

where red areas represent high inter-annual variability and blue areas low 

inter-annual variability. EFTs were calculated from Moderate Resolution 

Imaging Spectroradiometer Enhanced Vegetation Index (MODIS-EVI). 

Capital letters correspond to the EVI annual mean (EVI_Mean) level, 

ranging from A to D for low to high productivity. Small letters show the 

seasonal coefficient of variation (EVI_sCV), ranging from a to d for high 

to low seasonality for carbon uptake. The numbers indicate the season of 

maximum EVI (DMAX): (1) spring, (2) summer, (3) autumn, (4) winter. 

The map uses the 0.05ºx0.05º Global Climate Modeling Grid in 

geographic projection with Datum WGS84. 
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Table 2.1. Dominant Ecosystem Functional Types (EFTmode) and mean terrain 

complexity for each NEON ecoclimatic domain across the conterminous 

United States.  

NEON ecoclimatic 

domain 

Two most 

dominant EFTmode 

Mean EFT inter-annual 

variability (EFTint) 

Mean terrain 

complexity 

Northeast Db2, Da2 3.3 63.1 

Mid Atlantic Db2,Dc2 3.8 30.1 

South East Dc2,Dd2 3.9 8.1 

Atlantic Neotropical Dd2,Cd2 4.9 1.7 

Great Lakes Ca2,Cb2 3.5 13.9 

Appalachian and 

Cumberland Plateau 

Db2,Da2 3.7 54.4 

Prairie Peninsula Ca2,Cb2 3.5 15.1 

Ozark Complex Db2,Dc2 4.2 22.7 

Northern Plains Ba2,Bb2 4.7 35.1 

Central Plains Bc2,Bb2 6.6 25.1 

Southern Plains Cc1,Cc2 6.7 20.1 

Northern Rockies Cd2,Bd2 5.1 207.6 

Great Basin Ad1,Ac1 5.6 142.6 

Southern Rockies and 

Colorado Plateau 

Ad2,Bd2 5.2 147.0 

Desert Southwest Ad1, Ad2 6.0 120.1 

Pacific Northwest Dd2,Cd2 3.5 194.2 

Pacific Southwest Bd1,Cd1 4.7 168.0 

Note: The EFTmode represents the summary of the spatial heterogeneity of ecosystem 

functioning of the 2001-2014 period. EFTint represents the average number of different 

EFT that occurred within an ecocolimatic domain during the 2001-2014 period. 

Terrain complexity was defined by calculating the ±1 standard deviation of the terrain 

altitude within areas of approximately 0.05o x 0.05o. 
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Figure 2.2.  Categorical representativeness of the Ecosystem Functional Type mode 

(EFTmode) of the 2001-2014 period across CONUS. EFTmode corresponds 

to the most dominant EFT for the 14-year period at each pixel. a) 

Frequency of EFTmode across CONUS; b) EFTmode categories represented 

by the historical AmeriFlux archive; c) EFTmode categories represented by 

NEON sites; and d) EFTmode categories represented by current AmeriFlux 

and NEON core sites. Grey bars indicate represented frequency of 

EFTmode categories, and lines represent the number of study sites in each 

EFTmode category. X-axes indicate represented EFTmode categories (in b, 

c, d) sorted by frequency (as in a) across CONUS. 
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Year-specific categorical representativeness of AmeriFlux changed through 

time as eddy covariance sites have been added or became inactive from the network 

(Table 2.2). Despite the sustained increase in the number of eddy covariance sites 

across the years, the number and EFTmode categories represented by AmeriFlux have 

remained relatively constant since 2007. The most common EFTmode categories 

represented by AmeriFlux are Ca2 (i.e., ecosystems with medium high productivity, 

very high seasonality, and summer maximum) and Db2 (i.e., ecosystems with very 

high productivity, low seasonality, and summer maximum). 

Table 2.2.  Changes in categorical representativeness of the AmeriFlux network in 

terms of number of EFTmode categories represented by active sites for 

each year between 2001 and 2014. 

Year Number of sites Number of EFTmode 

categories 

Most represented  

EFTmode categories 

2001 37 16 Dd2 (6), Ca2(5) 

2002 46 17 Dd2 (7), Ca2(7) 

2003 50 19 Db2(8), Dd2(7) 

2004 77 24 Db2 (13), Ca2(10) 

2005 78 24 Ca2(11), Db2(10) 

2006 81 26 Ca2(13), Db2(10) 

2007 99 28 Ca2(14), Db2(11) 

2008 98 29 Ca2(14), Db2(9) 

2009 108 29 Ca2(20), Db2(9) 

2010 107 30 Ca2(20), Db2(9) 

2011 111 30 Ca2(22), Db2(9) 
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Table 2.2 Continued 

Year Number of sites Number of EFTmode 

categories 

Most represented  

EFTmode categories 

2012 117 31 Ca2(21), Db2(10) 

2013 124 31 Ca2(21), Db2(11) 

2014 131 31 Ca2(20), Db2(11) 

Note: numbers in parenthesis under "Most represented EFTmode categories" represent 

number of active sites for each EFTmode category. For example, during year 2014 there 

were 20 active sites in the AmeriFlux network for EFTmode category Ca2. 

 

2.3.2 Temporal representativeness  

We mapped the patterns of EFTint (i.e., number of different EFT that occurred 

in a pixel during the 2001-2014 period) across CONUS (Figure 2.1b). The highest 

EFTint was found in the Southern and Central Plains, while the lowest variability was 

found in the Great Lakes, Prairie Peninsula, Pacific Northwest, and Northeast (Table 

2.1). Across CONUS, the most common values of EFTint were between 3 and 5, EFTint 

values <3 or >9 were less common, and the maximum value of EFTint was 14 (Figure 

2.3a).  

The historical AmeriFlux archive included information of sites with EFTint 

values between 1 and 9, and where values between 3 and 5 were also the most 

common (Figure 2.3b). Nearly 80% of study sites within the AmeriFlux network were 

located at EFTint values between 3 and 6; 7% at EFTint values ≤2; and 12% at EFTint 

values ≥7. Across NEON sites, EFTint values 3, 4 and 7 were the most common 

(Figure 2.3c). The combined effort of AmeriFlux and NEON core sites did not include 

EFTint values <3 or >9, despite the fact that EFTint value 2 is relatively abundant across 

CONUS (Figure 2.3a).  
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Figure 2.3.  Representativeness of the inter-annual variability of EFTs during the 

2001-2014 period across CONUS. Inter-annual variability of EFTs is 

expressed as the number of EFTs occurring in each 0.05o pixel during the 

14-year period (EFTint). (a) Histogram distribution of EFTint values 

across CONUS. Number of sites representing each value of EFTint for (b) 

historical AmeriFlux archive; (c) NEON sites; and (d) current AmeriFlux 

and NEON core sites. X-axes represent EFTint values for each panel. 

Individual monitoring sites within the historical AmeriFlux archive had 

between 1 and 28 years of available eddy-covariance information (Figure 2.4). Most 

study sites (62) were located at an EFTint value of 3 (Figure 2.3b, 4), and 42 of these 



 

 

34 

sites had >3 years of available information (Figure 2.4). Sites at EFTint values of 4 (49 

sites) and 5 (38 sites) were also common, with 29 and 24 sites having more than 4 and 

5 years of available information, respectively. Only one site with >9 years of 

information was located at an EFTint value of 9 (Figure 2.4).  

 

Figure 2.4.  Representativeness of the inter-annual variability of EFTs (i.e., EFTint) 

and number of years with information in the historical AmeriFlux 

archive. The X-axis represents values of EFTint, and the Y-axis represents 

the number of years with eddy covariance information per site available 

in the historical AmeriFlux archive. Colors represent the number of sites 

that report a specific number of years with eddy covariance information 

for each value of EFTint. Numbers in parenthesis indicate the number of 

total study sites available for each EFTint value within the historical 

AmeriFlux archive. For example, there is a total of 2 sites in the 

historical AmeriFlux archive (number in parenthesis) with an EFTint 

value of 9 (see X-axis), where one single site (color or the circle [dark 

blue]) has 6 years of information (see Y-axis) and a second single site 

(color of the circle [dark blue]) has 10 years of information (see Y-axis). 

The dashed line represents the threshold where the number of years of 

available information is equal to EFTint.  
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2.3.3 Spatial Representativeness  

The maximum entropy analysis provides information of the representativeness 

of AmeriFlux, NEON and the combine core sites to monitor the spatial variability of 

EFTmode and EFTint (Elith et al., 2011). The overall spatial representativeness is 

expressed as the ratio of all pixels with a Kappa index equal to 1 divided by the total 

number of pixels across CONUS. This resulted in a spatial representativeness of 55% 

by the historical AmeriFlux archive, 23% by NEON sites, and 46% by the combined 

AmeriFlux and NEON core sites of the CONUS surface (Table 2.3, Figure A-1). The 

most represented ecoclimatic domains by the historical AmeriFlux archive were Great 

Lakes, Prairie Peninsula, Northeast, and Appalachians and Cumberland Plateau 

whereas the least represented were Desert Southwest, Northern Plains and Great Basin 

(Table 2.3, Figure A-1). NEON sites had high spatial representation across the 

Northeast, Appalachians and Cumberland Plateau and Mid Atlantic domains, whereas 

the least represented domains were Desert Southwest, Northern Plains, and Southern 

Rockies and Colorado Plateau (Table 2.3). The most represented ecoclimatic domains 

by the combined effort of AmeriFlux and NEON core sites were Pacific Northwest, 

Northeast and Mid-Atlantic, whereas the least represented were Desert Southwest, 

Northern Plains, and Southern Rockies and Colorado Plateau (Table 2.3, Figure A-1). 

Maxent model was tested using the area under the curve (AUC). The AUC for 

the historical AmeriFlux archive (0.65), NEON sites (0.59), or AmeriFlux and NEON 

core sites (0.63) were always higher than the AUC of a random prediction (0.5); thus, 

supporting the applicability of the maximum entropy analysis. The relative 

contribution of each variable to the maximum entropy analyses was 88% for EFTmode 

and 12% for EFTint.  
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Table 2.3.  Spatial representativeness for each network and the combined core sites, 

based on the ratio of the cross-validation results derived from the 

maximum entropy analysis. The percentage correspond to the ratio of 

those pixels with a kappa index equal to 1 divided by the total number of 

pixels across each NEON domain.  

NEON ecoclimatic 

domain 

Historical AmeriFlux 

archive (%) 

Core and relocatable 

NEON sites (%) 

AmeriFlux and NEON 

core sites (%) 

Northeast 89 85 84 

Mid Atlantic 58 68 64 

South East 55 54 58 

Atlantic Neotropical 79 25 36 

Great Lakes 92 30 46 

Appalachians and 

Cumberland Plateau 

89 70 58 

Prairie Peninsula 91 10 24 

Ozark Complex 63 52 44 

Northern Plains 12 1 5 

Central Plains 39 1 31 

Southern Plains 55 8 40 

Northern Rockies 48 12 40 

Great Basin 20 4 17 

Southern Rockies and 

Colorado Plateau 

26 1 16 

Desert Southwest 6 1 6 

Pacific Northwest 83 39 87 

Pacific Southwest 73 23 63 

Note: numbers indicate percent area represented within a NEON ecoclimatic domain. 
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2.4 Discussion 

2.4.1 Categorical representativeness 

Our results demonstrate how the characterization of ecosystem functional 

heterogeneity made by EFTs at the regional scale can be applied to assess the 

representativeness of EONs. EFTmode showed a contrasting pattern of carbon gain 

dynamics across CONUS. The ecoclimatic domains located in temperate humid 

conditions (Bailey, 1983) such as Northeast, Appalachian and Cumberland Plateau, 

Mid Atlantic, South East, Atlantic Neotropical and the Pacific Northwest showed high 

productivity, low seasonality, and had a growing season with summer maxima (Figure 

2.1a; Table 2.1). In contrast, ecoclimatic domains located in grasslands and open-

shrublands under dry conditions such as Great Basin, Desert Southwest and the 

Southern Rockies and Colorado Plateau showed the lowest productivity, low 

seasonality, and the growing season was tightly coupled with water availability (e.g., 

spring in Mediterranean regions, summer across the North American Monsoon 

region).  

Our results demonstrate that ecosystem functional heterogeneity is well 

represented by the historical AmeriFlux archive, which included nearly 50% of all 

possible EFTmode categories across CONUS. The AmeriFlux network, as a bottom-up 

community effort, has experienced the removal and addition of eddy covariance sites 

over the last two decades. Thus, at any given year, some EFTmode categories could 

have been added or removed based on the location of active eddy covariance sites. The 

network has constantly increased the number of active sites across years, but the 

number of EFTmode categories has remained relatively constant (~30 categories) since 

2007. Furthermore, ecosystems with very high or medium high productivity, very high 
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or low seasonality, and with growing seasons with summer maximum (Ca2, Db2) 

have been the most commonly monitored since 2005, likely due to the large interest on 

large terrestrial carbon sinks (Running et al., 1999). It is likely that AmeriFlux will 

continue providing information from these and other EFTmode categories as researchers 

address unexplored ecological questions across ecosystems. 

The long-term perspective of AmeriFlux and NEON core sites will provide 

information of the 12 most dominant EFTmode categories across CONUS (33% of all 

possible EFTmode categories). That said, the probability distribution of these core sites 

did not follow the probability distribution of EFTmode categories across CONUS 

(Figure 2.2). This means that the most abundant EFTmode categories do not necessarily 

have the largest number of study sites. Looking forward, these results open questions 

about network design, such as: a) Should new monitoring sites emphasize research on 

ecosystems within EFT’s with the most frequency of occurrence (i.e., Ca2 and Db2)? 

or b) Should new monitoring sites aim to represent the probability density distribution 

of ecosystem functional heterogeneity across CONUS? Long-term monitoring core 

sites are and will continue to be limited due to the financial and pragmatic 

requirements for their operation, but the joint effort by AmeriFlux and NEON 

provides an exciting and unique opportunity for decadal-scale information that 

otherwise would not be available.   

2.4.2 Temporal representativeness 

The inter-annual variability of EFTs showed contrasting patterns across 

CONUS. We postulate that NEON ecoclimatic domains with lower EFTint values are 

typified by forested ecosystems in temperate humid regions, which are mainly 

constrained by temperature, light and nutrient cycling (Allen and Chapman, 2001; 
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Nemani et al., 2000; Vargas et al., 2010). In contrast, ecoclimatic domains with high 

EFTint values are represented by grasslands and shrublands across water-limited 

regions, and are sensitive to changes in timing and magnitude of precipitation that 

substantially influence carbon gain dynamics (Arredondo et al., 2016; Schwinning et 

al., 2004; Vargas et al., 2010). Quantifying EFTint values is important as recent studies 

have highlighted the need of long-term flux data records to describe the inter-annual 

variability of carbon uptake (Novick et al., 2017; Zscheischler et al., 2016).  

We highlight that EFTint represents the number of changes in EFT categories 

within a single pixel. This does not necessarily mean that changes in EFTs are changes 

in vegetation structure or composition (e.g., changes from a forest to a grassland). 

Changes in EFT categories could be the result of ecosystem structural changes such as 

those imposed by land-use change (e.g., deforestation), but also the result of more 

subtle changes. For example, a pixel could represent a grassland throughout our study 

period (i.e., 2001-2014), but displayed a EFTint value of 5. This means that the plant 

functional type and vegetation structure was the same (i.e., grasslands) throughout the 

study period, but there were changes in terms of productivity, seasonality and 

phenology that resulted in different EFT categories. This could happen for instance, as 

a result of droughts, floods or fires. In addition, the same EFTint value of 5 could be 

present in grasslands, shrublands, or evergreen forests, but it only indicates unique 

changes in EFT categories throughout the study period. Thus, site-specific 

interpretation of our results should take into consideration the underlying plant 

functional type and history (land use or weather) at a location of interest. Overall, our 

results highlight the importance of network representativeness to understand how 

changes in biophysical forcing factors could influence ecosystem functional 
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heterogeneity across regions and the whole CONUS. We recognize that this approach 

requires further development and research, but also acknowledge that the addition of 

EFT information has already improved the performance of regional climate (Lee et al., 

2013) and biodiversity models (Alcaraz-Segura et al., 2017, 2013). 

The historical AmeriFlux archive has a good representation of the inter-annual 

variability of EFTs across CONUS. Most eddy covariance sites within AmeriFlux 

have EFTint values between 3 and 6, which are also the most common values across 

CONUS. In contrast, NEON lacks representation of EFTint values <3 and has a higher 

representation of sites with an EFTint value of 7. The long-term perspective of 

AmeriFlux and NEON core sites will provide information of EFTint values between 3 

and 9. Both the historical AmeriFlux archive and NEON do not have sites at EFTint 

values >9, regardless there are pixels with EFTint values up to 14 across CONUS. We 

recognize that areas with high EFTint values are rare, and properly monitoring their 

long-term carbon dynamics will require decades due to their high inter-annual 

variability. Long-term monitoring of ecosystems with low EFTint values could provide 

information about ecosystem resiliency from weather variability and disturbances; 

while monitoring ecosystems with high EFTint values could provide information from 

the most sensitive ecosystems in terms of carbon uptake dynamics.  

Many AmeriFlux study sites have more years with site-specific measurements 

than the annual temporal variability of EFT (EFTint) associated to the location of 

those sites (Figure 2.4). For example, the network has information of 62 sites located 

at an EFTint value of 3, but >40 sites have over 3 years of site-specific measurements. 

On one end of the spectrum, there are 2 sites with over 10 years of site-specific 

measurements at the EFTint value of 1, where questions about ecosystem stability and 
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resiliency could be asked. On the other end of the spectrum, there are 4 sites (out of 

10) at the EFTint value of 8 with over 10 years of site-specific measurements, where 

we can ask questions about sensitivity and variability of ecosystem processes. Overall, 

our results support that the AmeriFlux network has unique information to address 

questions regarding inter-annual variability of carbon gain dynamics, ecosystem 

stability and resiliency across the CONUS.  

2.4.3 Spatial representativeness 

Our results show that the historical AmeriFlux archive includes information of 

ecosystem functional heterogeneity for 55% of the CONUS. This contrast with the 

23% of the CONUS represented by NEON sites, but the sites in this network are fewer 

and with a long-term perspective than the wide bottom-up effort of AmeriFlux. It is 

important to mention that the combined effort of AmeriFlux and NEON core sites 

represents 46% of CONUS surface, demonstrating that few but strategically located 

sites could represent a large proportion of the continental ecosystem functional 

heterogeneity.  

In general, AmeriFlux and NEON (individually) do not properly represent 

ecosystems dominated by grasslands and shrublands across water-limited ecosystems. 

These results are in accordance with previous studies that identified an overall high 

representativeness of temperate forested ecosystems by the AmeriFlux network 

(Hargrove et al., 2003; Yang et al., 2007), but to our knowledge no assessment has 

been done for the NEON eddy covariance sites. Historically, there has been a (bias) 

better representation of ecosystems with larger potential to uptake and store carbon, 

likely due to the large interest on quantifying and characterizing the processes that 

control large terrestrial carbon sinks (Cramer et al., 2001; Luo et al., 2007; Running et 
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al., 1999). We highlight that these forested lands are of critical importance for the 

regional carbon budget of North America (Hayes et al., 2012) and the world (Pan et 

al., 2011). That said, there is an increasing interest to improve the representation of 

water-limited ecosystems in ecosystem processes-based models (Biederman et al., 

2016; Vargas et al., 2013) as is important to understand how their inter-annual 

variability contributes to the regional-to-global carbon balance (Ahlström et al., 2016; 

Biederman et al., 2017; Poulter et al., 2014) 

Our results provide evidence that there is a lack of representation by the 

historical AmeriFlux archive and NEON sites across the Desert Southwest, Southern 

Rockies and Colorado Plateau, Great Basin, Northern Plains, and Central Plains 

ecoclimatic domains. These regions have been recognized to have wide range of 

bioclimatic drivers (Gilmanov et al., 2005; Zhang et al., 2010) and anthropogenic 

activities such as land-use-change (Chuluun and Ojima, 2002). Thus, research in these 

regions represent an opportunity to better understand socio-ecological processes and 

the nexus of food, energy, and water systems (Bazilian et al., 2011).  

The combined effort of the AmeriFlux and NEON core sites lacks 

representation of the Prairie Peninsula ecoclimatic domain. These core sites have good 

representation of the CONUS surface (46%) and almost represent the same 

ecoclimatic domains as the historical AmeriFlux archive and NEON sites (Table 2.3, 

Figure A-1). The Midwest corn belt of the United States produces over 35% of the 

global corn production and is part of the Prairie Peninsula (Graham et al., 2007; Ort 

and Long, 2014). Hence, the ecosystem functional heterogeneity of this region 

represents a network limitation when long-term carbon dynamics for agro-ecosystems 

are considered for the spatial representativeness of the CONUS. The lower 
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representation at this and other ecoclimatic domains brings attention to the limitations 

to cover a heterogeneous landscape with few core sites. 

Finally, complex topography creates ecological niches that could influence 

carbon dynamics across topographic gradients and landscapes (Katul et al., 2006; 

Swanson et al., 1988). For example, it has been estimated that nearly 70% of the 

carbon uptake across the western CONUS occurs at high elevation, with about 50-85% 

taking place on complex terrain (Schimel et al., 2002). Unfortunately, complex 

topography is a large limitation for implementation of the eddy covariance technique 

as it is often violates assumptions for the technique for annual carbon budgets and 

promotes advection processes (Göckede et al., 2004). Congruently, three of the least 

represented NEON ecoclimatic domains are also characterized by complex topography 

(Southern Rockies and Colorado Plateau, Great Basin, Desert Southwest; Table 2.1). 

These results support previous reports that suggest AmeriFlux lacks representation of 

the western mountain ranges of the CONUS (Hargrove et al. 2003). We argue that 

monitoring ecosystem functional heterogeneity across complex terrain represents a 

final frontier for AmeriFlux and NEON networks that could limit an accurate spatial 

inference of carbon dynamics across CONUS.   

2.4.4 Considerations and network inferences 

We provide an alternative approach to assess representativeness of EON's 

based on metrics of ecosystem functional heterogeneity that complements previous 

assessments based on vegetation climatic or structural features. We interpret EVI 

dynamics as a surrogate for ecosystem carbon gain dynamics. There are known 

limitations when using EVI, especially in evergreen and water-limited ecosystems, 

that could influence the assumption that EVI is closely related to carbon gain 
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dynamics (Ha et al., 2015; Sims et al., 2014). Hence, our EFT classification may 

inherit the intrinsic limitations of EVI and consequently there could be area-specific 

biases; for example: a) areas with apparent low inter-annual variability (i.e., EFTint) 

could actually have larger inter-annual variability (e.g., evergreen forests); and b) 

areas with apparent low seasonality could in fact have larger seasonality (e.g., 

grasslands and shrublands). That said, there is strong evidence that EVI is still the best 

predictor for describing carbon gain dynamics at the continental scale (Rahman et al., 

2005; Sims et al., 2006). Arguably, there is no definitive and universal definition for 

PFTs where there could be different criteria to develop classifications (Ustin et al., 

2004). Similarly, there could be different criteria to develop classifications of EFTs 

(e.g., carbon gains, water balance, energy balance). We propose that the current 

limitations for calculation of EFTs based on EVI as a surrogate of carbon gain could 

be addressed with long-term remote sensing information on solar induce chlorophyll 

fluorescence (Joiner et al., 2011), or new pigment indexes sensitive to seasonality of 

evergreen conifers (Gamon et al., 2016). 

The historical AmeriFlux archive is unique for representing regional 

biosphere-atmosphere interactions (focused in CONUS) and is only rivaled by 

information from European networks. The number of active sites has consistently 

grown every year, but the number of sites sharing data has decreased since 2005 

(Novick et al 2017). This means that our representative analysis of the historical 

AmeriFlux archive is only applicable if all sites share the available data (Figure 2.4). 

Our analyses of the combined effort of AmeriFlux and NEON core sites likely 

represent the long-term representativeness of carbon uptake dynamics across CONUS, 

as data from these sites is available and funding for operation is less uncertain. New 
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representativeness analyses could be based on other ecosystem functional processes 

such as ecosystem CO2 losses to the atmosphere (i.e., ecosystem respiration), energy 

balance, water fluxes, or dynamics of non-CO2 gases. Finally, an aspirational goal of 

AmeriFlux is to provide a collaborative and networking platform for all eddy-

covariance sites across the Americas. This effort has fundamental benefits because 

understanding of global environmental challenges is only reached through 

international programmatic and scientific collaborations (Vargas et al., 2012); 

therefore, there are open research questions for the potential representativeness of the 

joint efforts of all regional networks across the Americas.  

2.4.5 Conclusions 

We used EFTs as an alternative approach to assess the representativeness of 

AmeriFlux and NEON to monitor ecosystem functional heterogeneity across CONUS. 

This analysis complements previous studies based on climatic or vegetation structural 

characteristics (Hargrove et al., 2003; Yang et al., 2008), and addresses the interests 

for considering alternative information on ecosystem functionality (Bond-Lamberty et 

al. 2016; Petrakis et al. 2017; Petchey and Gaston 2006; Reichstein et al., 2014; 

Valentini et al., 1999; Wright et al. 2006). Throughout its 20-year history of 

biosphere-atmosphere flux observations, the AmeriFlux network provides 

representation of ecosystem functional heterogeneity for 55% of CONUS. The joint 

effort of AmeriFlux and NEON core sites provides a long-term opportunity for 

representation of ecosystem functional heterogeneity for 46% of CONUS. The 

historical AmeriFlux archive also provides unique information about temporal 

variability of ecosystem functional heterogeneity due to decadal monitoring efforts at 

multiple study sites. Overall, representation could be enhanced across the Desert 
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Southwest, Southern Rockies and Colorado Plateau, Great Basin, Northern Plains, and 

Central Plains of the NEON ecoclimatic domains. Most of these regions are 

characterized by complex terrain and therefore represent a scientific and 

methodological challenge to measure biosphere-atmosphere fluxes. This study 

provides insights for EONs design and improvement, is based on publicly available 

data, and is applicable to other networks around the world. 
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Key Points: 

• Alternative approach to inform the design of an environmental observatory 

network 

• This framework provides insights about network representativeness 

• This study identified spatial information gaps across a megadiverse country 
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Abstract 

There is an increasing need to optimize resources for large-scale environmental 

monitoring efforts, especially in developing countries. Here, we test a flexible 

framework to optimize the design of an environmental observatory network (EON) 

using publicly available data for Mexico. This country represents a challenge for 

designing EONs because of its megadiversity and large climate and ecological 

heterogeneity. We address three pervasive challenges for designing EONs: 1) How to 

characterize and delineate ecologically similar areas; 2) How to set geographic 

priorities to establish new representative study sites; and 3) How to assess the 

representativeness of current and potential new study sites. We used unsupervised 

classification methods (i.e., factorial and cluster analysis) to spatially delineate 

ecologically similar sampling domains. Then, we identified the most representative 

sites within each domain using a conditioned Latin Hypercube-based sampling 

strategy. Finally, we demonstrated the applicability of this approach by assessing the 

spatial representativeness of the eddy covariance network in Mexico (i.e., MexFlux). 

We found that at least 84 distributed sampling sites are needed to represent more than 

45% of the spatial heterogeneity of gross primary productivity (GPP) and 

evapotranspiration (ET) at the national-level. The current array of MexFlux only 

represents 3% of GPP and 5% of ET spatial variability at the national-level, while the 

same number of sites organized under an optimal framework nearly doubled these 

estimates. We conclude that our framework is an alternative approach to identify 

spatial information gaps and to guide EONs design. It is based on a data-driven 

approach and publicly available sources of information, so it could be applied 

anywhere in the world. 
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3.1 Introduction 

Monitoring global environmental changes (e.g., land cover and land use, 

chemical composition of the atmosphere, climate) is crucial to guide mitigation and 

adaptation policies across the world (Lovett et al., 2007; Menoni et al., 2012). This has 

motivated the scientific community to study ecosystem processes and ecological 

interactions at multiple spatial and temporal scales. Addressing these grand challenges 

requires a coordinated effort of environmental monitoring of multiple physical, 

chemical and biological variables (Lovett et al., 2007). Such efforts are usually 

coordinated by environmental observatory networks (EONs), which can be defined as 

organizations whose members are affiliated in a flexible way to share procedures and 

to optimize the network design by avoiding duplicated measurements or redundant 

study sites (Sulkava et al., 2011). Thus, there is a pressing need to propose alternative 

scientific approaches to design representative EONs and optimize their performance 

across the world. 

An optimized design for an EON is largely constrained by the number and 

spatial configuration of the study sites. The question of where to establish new study 

sites requires a “sampling frame” that strategically chooses locations that are 

representative of similar ecological areas according to specific scientific questions 

(e.g., similar areas in terms of ecosystem functioning related to gross primary 

production (GPP) and evapotranspiration (ET) dynamics) at a spatial scale of interest 

(Jongman et al., 2017). Ideally, these ecologically similar areas (or domains) should be 

identified based on environmental patterns that drive the ecological processes of 

interest according to an explicit ecological conceptual model (Metzger et al., 2005, 

2013). For example, the National Ecological Observatory Network (NEON) in the 

United States defined sampling domains based on bioclimatic predictors, and for each 
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domain identified strategic locations that better represent the bioclimatic 

characteristics of the domain (Keller et al., 2008; Schimel et al., 2007). Ultimately, a 

network design should also consider how to aggregate observations and how to 

prioritize new sites to maximize its effectiveness towards specific monitoring goals 

(Jongman et al., 2017; Lovett et al., 2007; Scholes et al., 2012; Villarreal et al., 2018). 

The selection of study sites depends on whether EONs are organized under a “bottom-

up” or a “top-down” framework. A “bottom-up” framework is characterized by 

aggregating individual study-sites based on principal investigators interests within the 

network (Scholes et al., 2012). This devolved framework allows for a flexible 

coordination of monitoring efforts that could embrace a wider range of applications; 

however, it could have a low degree of interoperability that may limit EONs 

development (Vargas et al., 2017). A “top-down” framework is based on a more 

centrally-directed effort, which requires clearly defined common goals for different 

research groups. Its implementation requires a high degree of interoperability (Vargas 

et al., 2017) and its application range may be limited depending on the EONs’ goals. 

Both approaches are helpful to address complex and interconnected issues that require 

efforts that cannot be undertaken by individual groups working alone. We highlight 

that “bottom-up” initiatives can also be supported by a “top-down” framework, which 

can provide guidelines towards an optimal network design, a high degree of 

interoperability, and wider applications (Holzer et al., 2018). 

FLUXNET and associated regional networks (e.g., AmeriFlux, AsiaFlux, 

MexFlux) are monitoring net ecosystem exchange (NEE) and evapotranspiration (ET) 

worldwide, and have improved our understanding of terrestrial biogeochemistry and 

land-atmosphere interactions (Baldocchi et al., 2001). Most of these EONs are 
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organized under a “bottom-up” approach, which is prone to over/under-represent 

certain ecosystems, land cover types or specific ecological conditions (Hargrove et al., 

2003; Kumar et al., 2016; Sulkava et al., 2011; Villarreal et al., 2018). The under-

representativeness of these EONs is also evident among countries, where developed 

countries are better represented than developing countries (Kumar et al., 2016). 

Under-represented regions hamper our understanding of land-atmosphere interactions 

at local, regional and global scales. For example, synthesis activities of carbon cycling 

across North America are mainly based on information collected from United States 

and Canada, being Mexico the most under-represented country (Hayes et al., 2012; 

Huntzinger et al., 2012; King et al., 2015). However, Mexico is a megadiverse country 

and has large climate and topographic heterogeneity (Mittermeier & Mittermeier, 

1992), which influences ecosystem carbon dynamics in different ways than in the rest 

of North America (Hayes et al., 2012; King et al., 2015) (Hayes et al., 2012; King et 

al., 2015). The relevance of improving the representativeness of carbon and water 

fluxes study sites across Mexico is an opportunity to build a more comprehensive 

understanding of these biogeochemical cycles at a full continental-scale (Vargas et al., 

2012, 2013).  

Our goal in this study is to provide a framework using publicly available data 

to identify potential sampling locations or study sites that could maximize the 

representativeness of an EON to capture targeted ecosystem processes (i.e., carbon 

and water fluxes) at the national-level. The proposed framework addresses three main 

issues of EONs: 1) How to characterize and delineate ecologically similar areas; 2) 

How to set geographic priorities to establish new representative study sites; and 3) 

How to assess the representativeness of current and potential new study sites.  



 

 

64 

This framework is conceptually applicable to any country/region around the 

world. We tested this framework across Mexico using the regional eddy covariance 

network as reference (i.e., MexFlux; Vargas et al., 2013). The information from this 

study provides insights for interpretation of synthesis studies derived from current 

available sites, and guidance for network development using “top-down” information. 

This framework is based on publicly available information and it can provide insights 

towards evaluation of current EONs’ design and future optimizations worldwide. 

3.2 Material and Methods 

This study presents a stepwise data-driven approach to provide insights to 

improve an EON design for monitoring national-scale carbon (i.e., GPP monitoring) 

and water (i.e., ET monitoring) fluxes. We organize a workflow considering three 

main tasks with subsequent steps (Table 1): Task A (Table 1, steps 1-4): provides the 

ecological conceptual framework (i.e., state system model) where environmental 

covariates that act as drivers of the target ecosystem fluxes (i.e., GPP and ET) were 

pre-selected to subsequently select only those variables with a spatial distribution 

pattern; Task B (Table 1, step 5-6): delineation of environmental similar areas (i.e., 

ESA’s) based on the previously selected variables to be use as sampling domains, and 

selection of potential study sites that represents the most dominant environmental 

characteristics of each ESA; Task C (Table 1, step 7) assess the representativeness of 

those potential study sites and the current MexFlux sites to depict GPP and ET 

dynamics at the national-level using a machine-learning approach (i.e., random forest). 

We tested this approach across Mexico aiming for improvement in the spatial 

representativeness for monitoring GPP and ET across highly diverse ecological 
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landscapes. In the following section, we explain the details and statistical techniques 

for this workflow. 

Table 3.1.  Workflow of the proposed framework to inform the design of an 

Environmental Observatory Network (EON). The framework is divided 

into three main tasks with subsequent steps: A) data selection and 

preparation (steps 1 to 4); B) sampling framework (steps 5 and 6); and C) 

network representativeness analysis (step 7). 

Workflow  

T
as

k
 A

 
 

 

 

Step 1 

 

State system model 

To select candidate environmental variables that could be 

drivers of the targeted ecosystem processes, e.g., gross 

primary productivity (GPP) and evapotranspiration (ET). 

These environmental variables are related to climate, 

topography, parent material, soil properties, ecosystem 

functional attributes, ecosystem disturbances, etc.  

 

Step 2 

 

Variable selection 

To maximize the spatial variance accounted by different 

candidate environmental variables by selecting them 

based on their spatial patterns and structure. We selected 

variables with a nugget/sill > 0.75 using information 

derived from semivariograms. 

 

Step 3 

Data harmonization 

and standardization 

To make variables comparable by harmonizing the final 

set of selected variables (from Step 2): a) into a similar 

spatial resolution (e.g., 0.05º); and b) by standardizing 

values (i.e., -1 < σ < 1, µ=0). 

Step 4 Data aggregation To avoid redundancy in the final dataset by linearly 

combining all variables using principal component 

analysis (PCA). 

 

  



 

 

66 

Table 3.1 Continued  

Workflow 
T

as
k

 B
 

 

 

Step 5 

Delineation and 

validation of 

sampling domains 

(i.e., Ecologically 

Similar Areas) 

To identify a hierarchy of Ecologically Similar Areas 

(ESAs) by: a) an initial delineation (e.g., using K-means 

clustering) and validation (e.g., using Silhouette Analysis; 

i.e., 7 general ESAs in this study); and b) sub-division of 

general ESAs into subclasses (e.g., using K-means 

clustering and iterative Silhouette Analysis; 28 sub-ESA 

in this study). 

 

Step 6 

Selection of potential 

study-sites 

To select potential study-sites by using, e.g., a constrained 

Latin Hypercube (cHLS) analysis. In this study we select: 

a) 1 for each general ESA; b) 1 for each sub-ESA; c) 3 for 

each sub-ESA.  

T
as

k
 C

 

 

Step 7 

Representativeness 

Assessment 

To perform a representativeness analysis of potential 

study-sites (identified in step 6) to monitor targeted 

ecosystem processes (i.e., GPP and ET) by using: a) 

Random Forest Analysis; and by b) describing the 

representation of the ecosystem functional types (EFTs) 

monitored by these study-sites. 

 

 

3.2.1 State system model and variable selection (steps 1 & 2) 

Based on previous studies (Amundson R., 1991; Chapin et al., 2002), it is 

assumed that GPP and ET dynamics are mostly influenced by abiotic factors (e.g., 

climate, topography, soil resources supply) and major functional traits (e.g., plant and 

ecosystem functional types). In step 1 (table 1), we characterized climate properties 

based on 19 bioclimatic predictors (Hijmans et al., 2005). To characterize topography 

and parent material, we selected 15 environmental predictors from global data sharing 

initiatives such as www.worldgrids.org (Table B-1). To characterize the spatial 

heterogeneity of soil resource supply, we selected soil organic carbon (SOC) and the 

age of the most superficial rock strata (i.e., parent material;  (Anderson 1988; Jobbágy 

http://www.worldgrids.org/
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& Jackson, 2000)). Table B-1 provides a full list of all the pre-selected and selected 

variables. 

Ecosystem functional traits can be represented by a land surface classification 

known as Ecosystem Functional Types (EFTs), conceptually defined as patches of the 

land surface that exchange matter and energy with the atmosphere in a similar way 

(Alcaraz-Segura et al., 2006, 2013; Paruelo et al., 2001). In practice, EFTs are a yearly 

varying land surface classification based on satellite-derived key ecosystem functional 

attributes (i.e., descriptors of primary productivity, seasonality and phenology of 

carbon gains) (Alcaraz-Segura et al., 2017; Lee et al., 2013). These attributes are 

obtained from annual curves of spectral vegetation indices. In this study, we used the 

Enhanced Vegetation Index (EVI) annual curve (i.e., MODIS-EVI MOD13C2 product 

for the 2001-2014 period) and derived: a) the EVI annual mean (EVI_Mean) as 

surrogate of primary production; b) the EVI seasonal coefficient of variation 

(EVI_sCV) as descriptor of seasonality; and c) the month of the EVI annual maximum 

(MMAX) as an indicator of phenology. The range of values of each EVI metric was 

divided into four intervals, giving a potential number of 64 EFTs (i.e., 4 x 4 x 4 = 64; 

(Alcaraz-Segura et al., 2013)). A detail explanation on the computation of each EVI 

metric can be found in previous studies (Alcaraz-Segura et al., 2013, 2017). In 

addition, we computed the number of unique EFT categories that occurred in each 

pixel between 2001 and 2014 to assess the inter-annual variability of EFTs (EFTint). 

The same technique was used to estimate inter-annual variability in land cover 

categories (LCint; MODIS MCD12C1 product). Both, EFTint and LCint were used as 

descriptors of variability in ecosystems functioning (EFTs) and structure (land cover).  
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In step 2 (table 3.1), data selection was based on semi-variograms, where we 

selected the variables with medium to strong spatial autocorrelation and excluded 

those variables with a nugget/sill ratio equal or higher than 0.75. In this case, it is 

assumed that those variables do not capture differences in spatial environmental 

features at distinct spatial locations and are more likely to be randomly distributed 

across our region of interest (Cambardella et al., 1994; Cruz-Cárdenas et al., 2014). 

The final number of selected variables was 27 (Table C-1).  

3.2.2 Data harmonization, standardization, and aggregation (steps 3 and 4) 

In step 3 (Table 3.1), data harmonization consisted in resampling using bilinear 

interpolation the 27 selected variables to the same spatial-resolution (i.e., 0.05o) and 

set into the same geographical projection (WGS84). This spatial resolution is largely 

used to represent environmental patterns at national-level (Chrysoulakis et al., 2003; 

Löw et al., 2011; Villarreal et al., 2018). In step 4 (Table 1), the selected variables 

were standardized by centering the mean to 0 and scaling the standard deviation within 

-1 to 1 range. 

3.2.3 Delineation of ecologically similar areas and selection of potential 

sampling sites (steps 5 and 6) 

In step 5 (Table 3.1), the standardized variables were orthogonally 

decomposed by using principal component analysis (PCA) to avoid variable 

redundancy in the subsequent cluster analysis. Then, we delineated ecologically 

similar areas (ESA) to define spatial sampling domains (Hargrove & Hoffman, 2005; 

Metzger et al., 2005). ESA delineation was performed by applying hierarchical K-

means cluster partitioning using all the principal components.  
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Since K-means requires to previously defined number of clusters, we characterized the 

spatial heterogeneity of our environmental dataset using the number of the distinct 

hierarchical ecoregions previously defined and proposed by the CEC (Commission for 

Environmental Cooperation) and CONABIO (National Commission for the 

Knowledge and use of Biodiversity) for North America and Mexico (CEC, 1997). The 

first hierarchical level corresponds to the broader ecoregions across North America, 

while the second and third hierarchical levels are further subdivisions of those broader 

ecoregions. The fourth hierarchical level is the subdivision of the third level and is 

only defined for Mexico. The number of ecoregions found in Mexico within the 

distinct hierarchical levels are 7, 21, 51 and 141, where we initially prescribed those 

ecoregions (i.e., ESAs) into our K-means analysis. Subsequently, we assessed which 

of those number of ESAs provided a better cluster tightness (i.e., cohesion or object 

similarity within the same cluster) and separation (i.e., dissimilarity among clusters) 

using a Silhouette analysis and the Silhouette index (Si; (Rousseeuw, 1987)). Based on 

these results, we identified 7 ESAs to characterize the spatial heterogeneity of our 

environmental dataset at the national scale. Following the hierarchical approach of the 

CEC and CONABIO, we subdivided these 7 general ESAs to further separate their 

internal environmental heterogeneity. We applied independent K-means for each one 

of the ESAs and tested the results using a Silhouette analysis through an iterative 

process. This iterative process started with a number of groups (n) equal to 2 and 

stopped when the Si for n groups was higher than the Si for n+1 groups. 

In step 6 (Table 3.1), we selected potential sampling locations using the conditioned 

Latin Hypercube sampling technique (cLHS). cLHS is a stratified random procedure 

that samples a dataset (i.e., principal components in our study) from their multivariate 
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distribution by forming a Latin Hypercube, where the multivariate distribution of the 

dataset is maximally stratified (Minasny & McBratney, 2006). This provides a full 

coverage of the range of each variable and it serves as an efficient sampling strategy 

(Minasny & McBratney, 2006). We selected sites according to the following 

guidelines: a) selection of one potential sampling site for each one of the 7 main 

ESAs; b) selection of two potential sampling sites for each one of the 7 ESAs as a way 

to test an ideal distribution of 14 sample sites (the current number of MexFlux sites is 

14); c) selection of one site for each sub-ESA to account for internal ESA 

heterogeneity; and d) selection of three sites for each sub-ESA to potentially maximize 

representativeness within each sub-ESA.  

3.2.4 Representativeness of proposed and actual study sites (step 7) 

In step 7 (Table 3.1). We assessed the representativeness of the proposed study 

sites and of the current distribution of MexFlux sites for monitoring GPP and ET 

based on a random forest model (RF) used for species distribution (SDM). It is 

recommended to apply RF when there are few observations over a broad region 

(Evans et al 2011; Cutler et al 2007). RF creates nodes that are organized into pairs 

which forms branches of classification trees (CT), then, RF through “bootstrap 

aggregation” predicts multiple CT and average them to create the model output (Cutler 

et al., 2007; Evans et al., 2011). RF produces a raster map that represents the relative 

similarity of each pixel to the sample points or presence data (Schmitt et al., 2017), 

which in this case corresponds to the geographic locations of the potential study sites 

or the current MexFlux sites.  

First, RF was used to assess the spatial representativeness of GPP and ET 

characterized by their annual mean and annual coefficient of variation (GPP_mean, 



 

 

71 

ET_mean, GPP_cv and ET_cv), as these metrics are known to capture most of the 

variability of the seasonal dynamics in a time-series of vegetation indexes derived 

from satellite information. The annual mean and annual coefficient of variation of 

GPP and ET and are used as surrogate of productivity and seasonality, respectively 

(Alcaraz-Segura et al., 2006, 2009, 2013). Second, we assessed the representativeness 

of MexFlux and the potential study sites to monitor the diversity of EFT categories. 

This was performed by identifying the distinct EFT categories occurring at each 

sampling sites and by summing their frequency of occurrence. For all cases, the model 

used was repeated 5 times and 5000 absence points were randomly selected as 

recommended (Barbet-Massin et al., 2012). 

3.3 Results 

3.3.1 Data selection and cluster partitioning 

After selecting the initial data, the variables discarded and selected for further 

analysis are listed in Table B-1 (task A steps 1-3, Table 3.1). From the variables 

selected, the first two axes of the PCA (task A step 4, Table 1) captured 35% and 19%, 

respectively. PC1 had higher correlation with bioclimatic variables (top 5 ranging 

from 0.23 to 0.27) while PC2 was correlated with soil organic carbon (SOC), 

bioclimatic predictors and topographic variables (top 5 ranging from 0.28 to 0.45; 

Table C-1). 

ESA delineation (i.e., cluster partitioning) and validation (i.e., cluster tightness 

and separation; task B steps 5, Table 3.1) was consistent with the seven groups 

previously defined by CEC and CONABIO on its broader classification level (Table 

D-1; Figure 3.1). Based on S(i) results and using the sub-ESA delineation, we 
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selected: a) six clusters for ESA1 and ESA2, respectively; b) three clusters for each 

ESA3, ESA5 and ESA7; and c) four clusters for ESA4 and two for ESA6 (Table D-1).  

 

Figure 3.1.  Spatial distribution of the seven general ecological similar areas (ESAs) 

for Mexico along with the spatial location of the proposed study sites 

(increasing number a to d): a) 7 general ESAs and 7 proposed study sites; 

b) 7 general ESAs and 14 proposed study sites; c) 7 general ESAs and 28 

proposed study sites; d) 7 general ESAs and 84 proposed study sites and; 

d) 7 general ESAs and the distribution of the 14 current MexFlux sites. 

ESAs showed environmental differences among each other (Table 3.2). For 

example, ESA1 and ESA2 (located at the northern part of Mexico) were characterized 

by low annual temperature and the lowest annual total precipitation, and whose 

dominant EFTs were characterized by low-productive and low-seasonal ecosystems 

with a maximum greening during autumn (Ad3 and Ac3, respectively; Figures 3.1 and 

3.2). These two ESAs had the highest EFTint (Table 3.2). In contrast, ESA7 (which 

was the warmest and wettest) was associated with high-productive and low-seasonal 

ecosystems with a maximum greening during summer (Dd2) and the lowest EFTint 
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among all ESAs (Figures 3.1 and 3.2, Table 3.2). The spatial comparison among ESAs 

and the first hierarchical ecoregions proposed by CEC and CONABIO showed spatial 

matching between ESA1 and ESA2 with Deserts of North America and Southern 

Semiarid Highlands, while ESA7 spatially matched the Tropical Humid Forests (Table 

3.2). 

Table 3.2.  Spatial similarity between the proposed ecologically similar areas (ESAs) 

and the CONABIO-CEC ecoregions (see methods for details). Similarity 

is expressed as the percentage of coincident surface area. Mean 

temperature, total annual precipitation, most dominant Ecosystem 

Functional Type (EFT) and the spatial mean of the inter-annual 

variability in EFT (EFTint) for each of the 7 general ESAs is reported.  

Ecologically 

Similar Area 

(ESA) 

Dominant  

Ecoregion 

Temperature 

(oC) 

Precipitation 

(mm) 

Dominant 

EFT EFTint 

ESA1 Deserts of North 

America (88%) 

19 333 Ad3 
6 

ESA2 Deserts of North 

America (63%) & 

Southern Semiarid 

Highlands (32%) 

18 340 Ac3 
6 

ESA3 Great Plains (52%) & 

Tropical Humid 

Forest (37%) 

24 856 Dc2 
6 

ESA4 Temperate Sierras 

(62%) & Southern 

Semiarid Highlands 

(28%) 

16 774 Ca2 
4 

ESA5 Temperate Sierras 

(62%) & Southern 

Semiarid Highlands 

(28%) 

23 679 Ca2 
5 

ESA6 Tropical Dry Forest 

(73%) 

24 937 Ca2 
4 

ESA7 Tropical Humid 

Forest (92%) 

24 1866 Dd2 
4 
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Figure 3.2.  Spatial distribution of carbon uptake patterns as expressed by Ecosystem 

Functional Types (EFTs) across Mexico. The map shows the dominant 

EFT for the 2001-2014. EFTs were identified based on Moderate 

Resolution Imaging Spectroradiometer Enhanced Vegetation Index 

(MODIS-EVI) dynamics (0.05° pixel). Capital letters correspond to the 

EVI annual mean (EVI_Mean) level, ranging from A to D for low to high 

productivity. Small letters show the seasonal coefficient of variation 

(EVI_sCV), ranging from a to d for high to low seasonality of carbon 

gains. The numbers indicate the season of maximum EVI (MMAX): (1) 

spring (Sp), (2) summer (Sm), (3) autumn (Au), (4) winter (Wi).  

3.3.2 Informing site selection and representativeness evaluation  

he points selected as potential sampling sites correspond to locations with the 

most common environmental parameters (i.e., where the principal components 

spatially converge (Figure 1 and Figure 3, task b step 6, Table 1). Using this approach, 

we identified locations (i.e., study sites) within each ESAs ranging from 7 sites to 84 

sites (Figure 1a-d). Furthermore, Figure 3a and 3b show the pair-distribution of PC1 

vs PC2 and the distribution of the locations selected for each ESA (n=7) that 
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correspond to the most frequent values of PC1 and PC2. The distribution range of the 

selected locations increased as each of the sub-ESA were sampled (from n=14 to 

n=84, Figure 3 b-d), which allowed to represent a wider range of environmental 

characteristics (Figure 3). Our results show that the multivariate space of 

environmental variables across Mexico is difficult to represent even with 84 potential 

study sites (Figure 3d). 

 

Figure 3.3.  Distribution of proposed study sites across the multivariate space 

represented by the first two principal components (PC1, PC2) of a 

principal component analysis: a) distribution of 7 proposed study sites; b) 

distribution of 14 proposed study sites and c) distribution of 28 proposed 

study sites; d) distribution of 84 proposed study sites. 

We assessed the representativeness of the potential study sites and current 

MexFlux sites using a RF approach (task C step 7, Table 3.1). Overall, the 

representativeness of GPP and ET was relatively similar for the potential study sites 

and increased with a higher number of sites (Table 3.3). Also, the representativeness 

of the potential study sites was in general higher than the MexFlux sites (Table 3.3). 

The spatial distribution of the represented/non-represented areas between GPP and ET 
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was similar according to the same number of potential sampling sites, and it was the 

same for the MexFlux sites (Figure 3.1, 3.4-3.5). 

Table 3.3.  Spatial representativeness of gross primary productivity (GPP), 

evapotranspiration (ET) and Ecosystem Functional Types (EFT) for: 7, 

14, 28 and 84 potential study sites, and the 14 current MexFlux sites. 

Percentages refer to the area of Mexico whose GPP and ET would be 

represented by the corresponding number and configuration of sites. EFT 

representativeness is reported as the number of categories represented 

divided by the total number of categories (i.e., 64), and by the frequency 

sum as percentage of all the distinct categories monitored. 

 Proposed 

Sites (n=7) 

Proposed 

Sites (n=14) 

Proposed 

Sites (n=28) 

Proposed 

Sites (n=84) 

MexFlux 

Sites (n=14) 

GPP 4% 8% 20% 45% 3% 

ET 4% 8% 18% 49% 5% 

EFT 7/64 (35%) 13/64(47%) 16/64(61%) 31/64(91%) 8/64(32%) 
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Figure  3.4.  Spatial representativeness of gross primary productivity (GPP) based on 

a Random Forest approach for: a) 7 proposed study sites, b) 14 proposed 

study-sites, c) 28 proposed study-sites, d) 84 proposed study-sites; and e) 

the 14 current MexFlux sites. Black areas indicate regions not 

represented and grey areas represented regions by each scenario of study 

sites. 
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Figure 3.5. Spatial representativeness of evapotranspiration (ET) based on a Random 

Forest approach for: a) 7 proposed study sites, b) 14 proposed study-sites, 

c) 28 proposed study-sites, d) 84 proposed study-sites; and e) the 14 

current MexFlux sites. Black areas indicate regions not represented and 

grey areas represented regions by each scenario of study sites. 

The representativeness of EFT diversity was also higher for the potential study 

sites than the current MexFlux sites (Table 3.3), even when both consistently monitor 

some of the most frequent EFT categories (Figure 3.6). In the case of the potential 

study sites, the tendency to monitor the most frequent EFT categories was consistent 

for the different number of potential study sites (Figure 3.6b to 3.6f).  
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Figure 3.6. Representativeness in terms of ecosystem functional heterogeneity 

expressed by the unique Ecological Functional Type (EFT) categories 

potentially monitored by the proposed study sites and by the MexFlux 

sites: a) Ecosystem Functional Type legend b) The 7 potential sampling 

sites represent 7 out of 64 categories (11%), c) The 14 potential sampling 

sites represent 13 out of 64 categories (20%), c) the 28 proposed study 

sites represent 17 out of 64 categories (27%), d) the 84 proposed study 

sites represent 31 out of the 64 categories (48%), e) the current MexFlux 

sites represent 8 out of the 64 EFT categories (12%). 
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3.4 Discussion 

An optimal design for an EON at a national-level requires a stratified sampling 

strategy that integrates different environmental variables and delineates distinct 

ecological sampling domains (Graef et al., 2005; Metzger et al., 2013). Representing 

such ecosystem heterogeneity in megadiverse countries, such as Mexico, makes an 

optimal EONs design particularly challenging (Hampton et al., 2013; Kelling et al., 

2009; Vos et al., 2000). We argue that a first step could be to delineate the national-

scale ecosystem heterogeneity, which can be delineated based on expert opinion or 

using quantitative models (Hargrove & Hoffman, 2005). The sampling domains, e.g., 

the Ecologically Similar Areas (ESAs) proposed in this study, aim to quantitatively 

classify the national-level (i.e., Mexico) ecological heterogeneity based on ecological 

covariates (i.e., bioclimate, topography, soil, ecosystem functional attributes) related 

to ecosystem processes of interest (i.e., GPP and ET).  

Our data-driven approach to delineate ESAs reduces human subjectivity and 

provides a flexible, analytical and repeatable framework. This quantitative approach is 

comparable to the delineation of the NEON domains, which were derived from eco-

climatic properties in the United States (Keller et al., 2011; Schimel & Keller, 2015). 

However, to improve our understanding of the land-atmosphere interactions, we 

propose that it is also needed to include information about ecosystem functionality 

(Bond-Lamberty et al., 2016; Petrakis et al., 2017; Reichstein et al., 2014). The 

addition of information on ecosystem functional attributes has enhanced biodiversity 

models (Alcaraz-Segura et al., 2013, 2017; Armas et al., 2017) and is useful for 

network design and assessment (Villarreal et al., 2018). We argue that including 

information related to environmental state factors along with ecosystem functional 

heterogeneity could complement bioclimatic information to define ESAs, since 
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ecosystem-level observations suggest that climate controls are insufficient to explain 

land-atmosphere interactions (Reichstein et al., 2014). The spatial heterogeneity of 

ecosystem functionality and the inter-annual variability of carbon uptake dynamics (as 

is expressed by EFTs and EFTint), complement the traditional ecoregionalization 

approach based only on climate, topographic and edaphic information (Keller et al., 

2011; Kumar et al., 2011; Metzger et al., 2013). Under a long-term vision, delineation 

of domains or ecoregions could incorporate information about different climate or 

ecological scenarios to account for potential environmental changes that may 

influence an EON’s design. 

The ESAs proposed in our study could be used to complement and inform 

expert opinion based on ecological classification systems already available for Mexico 

(CEC, 1997). For example, the CEC-CONABIO ecoregions of North American 

Deserts correspond to an ecological region of desert and steppe climate, where the 

most dominant vegetation types are low growing shrubs and grasses (CEC, 1997). 

This information is complemented by the functional properties derived from EFTs, 

which correspond to ecosystems of low productivity, low seasonality and a relative 

high EFTint (Table 3). Contrasting with North American Deserts, the Tropical Humid 

Forests are largely composed by evergreen and semideciduous forests, with relatively 

high annual temperature and precipitation higher than 1000 mm (CEC 1997). The 

functional characteristics for Tropical Humid Forests correspond to be highly 

productive with low seasonality EFTs and a relatively low EFTint (Table 3.3). We 

postulate that EFT complements the traditional approach of ecoregion delimitation as 

it includes information based on spatial ecosystem functional heterogeneity derived 

from carbon uptake dynamics (Villarreal et al., 2018). 
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Our approach for delineation of ESAs adds some advantages over existing 

ecoregionalization efforts used for EON design since: a) it formally includes the 

targeted ecosystem processes into the EON design; b) provides a spatial sampling 

domain that allows the comparison of ecological responses across contrasting 

environments; c) it represents spatial domains with relatively homogeneous 

environmental characteristics to select and/or evaluate current and potential study sites 

(Metzger et al., 2005, 2013); and d) it can be applied to any other region/country 

around the world as it is based on publicly available data and is built on a flexible 

framework. 

The conceptual design of EONs in developing countries is challenging due to 

limited country-specific information. However, network coordination is critical for 

developing countries due to limitation of human and economic resources for 

monitoring efforts at the national-level (Vargas et al., 2012, 2017).  For the case of 

Mexico, monitoring of ecosystem scale carbon and water fluxes has not been a 

nationally coordinated effort with the goal to maximize regional representativeness. 

Instead, the growth of MexFlux has been a principal investigator’s effort based on 

available individual grants, local expertise, and site-security and accessibility. Sites 

have been selected based on the interest of individual research groups (Vargas et al., 

2013) as it is the case for most regional networks within FLUXNET. This approach 

has resulted in higher density of sites across the northwest of Mexico (Figure 1d) at 

ecosystems characterized by (see Figure 3.2) medium-low productivity (EFTs named 

as “B”), high to medium-high seasonality (EFTs named as “a” and “b”) and a 

phenology of summer or autumn greening peaks (EFTs named “2” and “3”). On one 

side, these study-sites have contributed to synthesis studies to better understand the 
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role of water-limited ecosystems across North America  (Biederman et al., 2016; 

Villarreal et al., 2016). On the other side, the lack of coordination on the distribution 

of MexFlux sites has resulted in a lack of representativeness for monitoring GPP and 

ET at the national-level (Figures 3.4d and 3.5d, Table 3.3). This problem is not unique 

of MexFlux as even in a highly dense network like AmeriFlux there are large 

underrepresented areas within the region of interest (Villarreal et al., 2018). 

Our results show that a coordinated organization of study sites could reach 

greater representativeness to monitor GPP, ET and EFT diversity than the distribution 

of the 14 current MexFlux sites (Figure 3.4, 3.5 and 3.6; Table 3.3). For example, a 

national coordinated array of 14 sites could represent 8% of the spatial variability in 

GPP and ET, respectively, which is nearly double than the current representativeness 

of MexFlux. (Figures 3.4a, 3.5a, Table 3.3). However, even though the 

representativeness of a high number of strategically selected sampling points (i.e., 84 

study sites) could be higher than the current distribution of MexFlux sites, a 

substantial percentage of GPP and ET variability will remain under-represented across 

Mexico (Table 3.3). In general, the regions that are most difficult to represent are 

mountain areas across the Pacific coast characterized by medium-high productivity, 

high and medium-high seasonality, and a growing season peak in summer (Figure 3.2, 

3.4c, 3.5c). This representativeness challenge is the result of the great diversity of 

ecosystems across Mexico due to anthropogenic activities, complex physiography, 

heterogeneous geology and diverse climate regions (Espinosa et al., 2008). 

Furthermore, these regions are even more challenging for MexFlux due to limitations 

of the eddy covariance technique in non-flat terrains (Hammerle et al., 2007; Hiller et 

al., 2008; Su et al., 2004).   
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Our framework relies on a data-driven approach to inform EON design, 

evaluation and improvement, but we recognize that the full implementation of the 

proposed sites for MexFlux may not be possible. We highlight that a major challenge 

for EON design is to find a balance between maximizing representativeness of the 

network and available human and economic resources. This challenge increases when 

there are limited human resources, funding opportunities and a low degree of 

interoperability among researchers, governments and society (Vargas et al., 2017). 

Furthermore, we recognize that there exists inherent uncertainty associated with each 

ecological covariate used in our framework, but we could not incorporate a formal 

assessment of uncertainty propagation since most of these publicly available products 

do not include a spatially explicit assessment of uncertainty. Even though, these 

globally available covariates were used as value-added products to give our 

framework a wider applicability. 

We identify several challenges to increase the representativeness of MexFlux 

for monitoring GPP and ET across Mexico. First, our framework suggests new 

locations for potential study sites, but accessibility, security, topographic conditions, 

and proximity to a research center with expert knowledge are limiting factors. Second, 

the large number of study sites needed to represent the ecosystem functional 

heterogeneity across Mexico is beyond any current funding opportunities and will 

remain highly unlikely for the future. That said, our approach provides guidelines for 

researchers and organizations to evaluate current network performance and support 

informed decisions about network growth. The low current representativeness of 

MexFlux highlights the need to move towards a national strategy to spatially 
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maximize the representativeness of the complex ecological functional heterogeneity of 

the carbon cycle across this megadiverse country.  

3.5 Conclusions 

Mexico is a megadiverse country whose complexity in ecological diversity 

represents both an opportunity and a challenge to increase our understanding of 

regional-to-continental land-atmosphere interactions. Our results show that few 

strategically located sites could result in higher representativeness of national-scale 

GPP and ET than the current array of MexFlux sites. However, our results suggest that 

over 80 sites are required to substantially improve the representation of GPP and ET at 

the national-level. The great ecological diversity across Mexico represents a challenge 

to EONs design since even minimum levels of representativeness will require large 

investments for infrastructure, maintenance, human resources and an overall increase 

in interoperability.  

This study proposes a framework (based on publicly available data) to test and 

improve the design and representativeness of EONs to monitor GPP and ET at the 

regional-scale. The proposed framework could be applied to any region of the world, 

with particular interest for developing countries currently lacking detailed information 

of GPP and ET. For example, Latin America includes a large ecosystem diversity 

along with large gradients of land-uses and land-use-change, but there are only 41 

eddy covariance sites affiliated with FLUXNET. The implementation of alternative 

assessment approaches can provide insights for decision-making to inform EON 

designs and improve the understanding of regional carbon and water cycles while 

maximizing available human and economic resources. 
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Abstract 

Environmental observatory networks (EONs) provide information that help us 

understand, model and forecast the spatial and temporal patterns of Earth’s 

biophysical process. The role of EONs includes data collection, data sharing, synthesis 

activities, and building communities of practice. Consequently, representativeness 

analyses are important since they provide insights to improve EON’s management and 

network design and interpretation of data-driven products. We assessed the 

representativeness of FLUXNET sites across Latin America (LA), a region of great 

importance for the global carbon and water cycles, which represents nearly 13% of the 

land surface area. Representativeness analyses were performed based on concepts 

derived from species distribution models (SDM), since the goal was to delineate the 

spatial distribution of environmental properties across a geographic space that should 

be similar to the environmental range monitored by corresponding FLUXNET sites. 

Our results show a spatial representativeness of LA surface area of 0.34 % for climate 

properties, 0.36 % for terrain parameters, 0.34% for soil resources, 0.45% of all 

previous environmental drivers added into a principal component analysis, 0.48% for 

gross primary productivity and 0.34% for evapotranspiration. We discussed the need 

to enhance interoperability across and promote the participation of active or inactive 

sites to register and share information with local, regional and international networks 

non-affiliated study sites to FLUXNET in order to increase the utility of EON’s across 

LA. The proposed representativeness framework is based on publicly available 

information and open source software and it can be applied to any other region across 

the world. 
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4.1 Introduction 

Environmental monitoring, especially long-term monitoring programs are a 

backbone component for environmental science and policy (Chabbi et al., 2017; 

Lovett et al., 2007). Environmental monitoring is fundamental to foster knowledge as 

it promotes creativity for scientific methodologies, generates invaluable data products, 

and provides baselines and information to answer challenging scientific questions 

(Lovett et al., 2007; Scholes et al., 2017). In theory, developing environmental 

observatory networks (EONs) would lead to successful environmental monitoring 

efforts as EONs are entities designed to provide insights to address complex regional-

to-global socio-ecological problems through a coordinated effort (Chabbi et al., 2017; 

Keller et al., 2011; Scholes et al., 2017). Some key task lead by EONs include data 

collection, data sharing, and synthesis activities. Furthermore, EONs provide a wide 

range of value-added products such as databases, conceptual models and synthesis 

reports that help decisions makers to make informed environmental policies or 

management actions (Lovett et al., 2007; Scholes et al., 2017; Villarreal et al., 2018).  

An example of an EON is FLUXNET, which represents a global network of 

micrometeorological tower sites using the eddy-covariance method to measure the 

exchange of mass and energy between the land surface and the atmosphere (Baldocchi 

et al 2001). FLUXNET is a global ‘network of regional networks’ that promotes the 

compilation, harmonization, standardization, and archiving of eddy-covariance data 

for the broader scientific community. As the FLUXNET archive includes multiple 

ecosystems across the world, it is possible to generate knowledge of the interaction 
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between terrestrial ecosystems and the atmosphere at a global scale (Falge et al., 2002; 

Fisher et al., 2008; Schwalm et al., 2017). However, FLUXNET sites are not evenly 

distributed and they under-represent certain regions or ecosystems across the world 

(Kumar et al., 2016). Consequently, representativeness assessments of EONs are 

critical as they provide information for EONs design/growth, and insights for 

interpretations and implications of data-driven (or value-added) products (Sulkava et 

al., 2011; Villarreal et al., 2018). Consequently, these assessments are relevant to 

increase EON’s applicability and to guide regional-to-global management and 

research efforts (Jongman et al., 2017; Lovett et al., 2007). 

The representativeness of EONs has been mostly assessed using climate and 

vegetation parameters (Hargrove et al., 2003; Kumar et al., 2016; Sulkava et al., 

2011). For example, through stratification of climate, vegetation and soil information 

some studies have assessed the representativeness of AmeriFlux and FLUXNET 

(Hargrove et al., 2003; Kumar et al., 2016), while recent studies have incorporated 

functional information from ecosystems (Alcaraz-Segura et al 2017, Villarreal et al 

2018) . A common approach to assess representativeness of EONs has been the 

estimation of minimum distances within a multivariate space (Hargrove et al., 2003; 

Kumar et al., 2016; Sulkava et al., 2011). An alternative approach is the use of 

machine learning techniques, which estimate the spatial distribution of the 

environmental range monitored by the EON's study sites (i.e., nodes) across the spatial 

domain of the network (Villarreal et al 2018; Villarreal et al in review).  

We propose that it is possible to assess the representativeness of EONs based 

on concepts derived from species distributions models (SDMs). Briefly, SDMs define 

a geographic space that includes a set of environmental data layers, and then delineate 
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an area within the geographic space that corresponds to environmental properties that 

are suitable to the presence of a certain species (Drew et al., 2011; Evans et al., 2011). 

This concept can be applied to assess the representativeness of EONs, since the goal is 

to delineate the spatial distribution of environmental properties across a geographic 

space that should be similar to the environmental range monitored by corresponding 

EON’s study sites (Villarreal et al., 2018).  

Here, we present a representativeness assessment of eddy-covariance sites 

registered with FLUXNET across Latin America (LA). LA is a region that is largely 

characterized by its wide ecosystem diversity along with a broad gradient of land-use 

and land-use-change covers. LA includes nearly 13% of the global land surface area, 

but only 5% off all registered FLUXNET sites are located within this region. It is clear 

that the density of registered FLUXNET sites in LA is low when compared to regions 

such as the United States or Europe, so a representativeness analysis is needed to 

better interpret data-driven products parameterized with FLUXNET data from this 

region. 

The overarching goal of this study is to provide an assessment of the current 

representativeness of registered FLUXNET sites across LA to monitor environmental 

properties such as climate, topography and soil resources along with ecosystem 

process such as gross primary productivity (GPP) and evapotranspiration (ET). We 

asked three interrelated research questions: 1) What is the representativeness of 

FLUXNET sites across LA to characterize climate, topography and soil resources 

variability? 2) What is the representativeness of FLUXNET sites to represent GPP and 

ET patterns across LA? and 3) How many more sites are needed to improve 

representativeness of GPP and ET across this region? Finally, this study is based on 
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publicly available information and open source software, so this framework can be 

applied anywhere in the world.  

4.2 Data and Methods 

4.2.1 FLUXNET registered sites 

FLUXNET provides standardized data products through coordination among 

various regional flux networks across the globe (http://fluxnet.fluxdata.org).  We used 

the online database to extract the geographical location of eddy-covariance sites across 

LA affiliated to FLUXNET. Currently, there are 41 registered sites distributed across 

different ecosystems (September/2018), but we recognize that there are several 

unregistered eddy-covariance sites across LA. For this study, we only considered sites 

affiliated with FLUXNET despite if they are active or inactive and if they have 

provided data or not to the FLUXNET database. Consequently, this study provides a 

conservative representativeness of eddy-covariance sites across LA, and we hope that 

it will encourage principal investigators to register their sites and share data with 

FLUXNET to improve the representation of LA in regional and global studies.  

4.2.2 Environmental properties 

A set of variables related to climate, terrain parameters, and soil resources 

variability were used to assess the representatives of environmental state factors, as 

they may constrained the spatial patterns of ecosystem processes such as GPP and ET 

(Amundson and Jenny 1991, Chapin et al 2002). We used 19 bioclimatic predictors to 

characterize climate conditions since it capture mean annual conditions (i.e., annual 

mean temperature, annual precipitation) mean annual seasonal conditions (i.e., 

temperature seasonality) and intra-annual seasonal conditions (i.e., mean temperature 
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of the driest quarter or precipitation of the wettest quarter) of temperature and 

precipitation (Hijmans et al., 2005). Terrain parameters were characterized by slope, 

elevation, topographic water capacity, and solar radiation index. Soil resources were 

characterized by soil organic carbon, soil nitrogen, soil phosphorus and soil water 

content. The bioclimatic predictors were downloaded from worldclim.org (accessed 

May 2018). Most terrain parameters and soil resources variables were downloaded 

from worldgrids.org (accessed May 2018), but soil organic carbon was downloaded 

from www.fao.org (accessed May 2018) and soil phosphorus from data.nasa.gov 

(accessed May 2018). Respectively, NASA-MODIS products MOD17A2 and 

MOD16A2 from 2001 to 2014 were used to characterize GPP and ET as previously 

done for assessment of the AmeriFlux network (Villarreal et al 2018). The statistic 

parameters used to characterize GPP and ET dynamics were the mean and the 

coefficient of variation, since they have been used as proxies for ecosystem 

productivity and seasonality (Alcaraz-Segura et al 2017; Villarreal et al 2018). 

4.2.3 Data harmonization and FLUXNET representativeness 

All variables were standardized into a similar geographical system (GS), which 

consisted in harmonizing all variables into the same projection (i.e., WGS84) and 

transforming them into the same spatial resolution (i.e., 0.05o). We selected 0.05o as 

this resolution is largely used to represent environmental patterns at a regional scale 

(Chrysoulakis et al., 2003; Löw et al., 2011) and has been used to assess the 

representativeness of AmeriFlux and NEON (Villareal et al 2018). In addition, all 

variables representing climate, terrain parameters and soil resources were reduced in 

dimensionality using a principal component analysis (PCA) to assess the 
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representativeness of these combined environmental factors (using the first two 

principal components) from a multivariate approach. 

Representativeness was estimated using random forest (RF) applied for SDMs. 

RF is a widely used technique in SDMs, especially for rare species that have few 

observations over a broad region (Cutler et al., 2007; Evans et al., 2011). We argue 

that the relative few eddy-covariance sites across the large geographic extent of LA is 

a similar case. As a machine-learning technique, RF produces classifications trees 

from bootstrapping samples from a given dataset (i.e., training-data), while the 

observations that are not consider (out-of-bag data) are later used for predictions and 

model evaluation. Then, each classifications trees (CT) are built from sample 

bootstrapping by repeatedly partitioning the training-data into a binary-series of 

clusters (child-nodes) that split the data into more or less homogeneous child-nodes 

with respect to the response variable, this process continues with each child-nodes 

until is stopped (Marmion et al., 2009). The grown trees are used to predict the out-of-

bag observations. Then, the class that is predicted of an observation is estimated by the 

majority vote of the out-of-bag predictions for that observation (Cutler et al., 2007; 

Evans et al., 2011; Marmion et al., 2009). Finally, RF produces a raster map that 

represents the relative similarity of each pixel to the sample points or presence data 

(Schmitt et al., 2017), which in this case corresponds to the geographic locations of 

FLUXNET sites across LA.  

Model performance was assessed using True Skin Statistics (TSS), which 

corresponds to the sum of the model sensitivity (i.e., proportion of presence correctly 

predicted) and the specificity (i.e., proportion of absence correctly predicted) minus 

one. TSS ranges from -1 to 1, being -1 a predictability power worse than a random 
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model, 0 indicates a random predictability, and 1 corresponds to a perfect model (Liu 

et al., 2011). Absence data points were generated by random selection, as randomly 

selected points usually produce reliable distribution models (Barbet-Massin et al., 

2012).  

The optimal number of absence data and model repetition for each 

environmental set of variables (i.e., climate, terrain parameters, soil resources, GPP 

and ET) was selected based on the TSS by an iterative process. We selected the 

number of absence data and model repetition that had the higher TSS (Barbet-Massin 

et al 2012). The number of absence and repetitions were different for each 

environmental set of variables. Data management and analysis were performed using 

the R programming language (R project for statistical computing; www.r-project.org) 

using the ‘SSDM’ library (Schmitt et al., 2017).  

4.2.4 Improving the representativeness of GPP and ET 

Our final goal was to provide insights about how many more sites are needed 

across LA to improve representativeness of GPP and ET. To this end, we used the 

constrained Latin hypercube sampling technique (cLHS; (Minasny and McBratney, 

2006). The cLHS is a multivariate statistical technique that ensures a full coverage of 

the range of the variables involved in the multivariate space (i.e., mean and std of GPP 

and ET). The cLHS serves as an efficient sampling strategy and it has been used in 

EON’s representativeness analysis (Villarreal et al review). For this assessment we 

followed a sequential approach: (a) first we started by adding additional sites across 

LA in increments of 10 sites until reaching 100 sites; and then (b), additional sites 

were added in increments of 20 until reaching 200 sites across LA. We stopped at 200 

potential sites across LA as an arbitrary number similar to the total number of eddy-

http://www.r-project.org)a/
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covariance sites registered in the AmeriFlux network for the conterminous United 

States, which represents about 40% of LA surface area (Villarreal et al., 2018). The 

assessment of representativeness by adding new FLUXNET sites was also performed 

using RF as described above. 

4.3 Results 

4.3.1 Distribution of FLUXNET sites across LA 

There is a large diversity of terrestrial ecosystems across LA with 15 out of 16 

possible International Geosphere-Biosphere Program (IGBP) categories (MODIS 

MCD12Q1, 2012), but the extensions of these categories are not evenly distributed. 

For example, 5 out of 16 categories incorporate 80% of LA land surface, where the 

largest categories are Evergreen Broadleaf Forest (34% of LA) and Savanna (19% of 

LA). The less extended categories are Evergreen Needle-Leaf Forest (0.05% of LA) 

and Closed Shrublands (0.04% of LA). The current number of FLUXNET sites at each 

IGBP category is also not evenly distributed (Figure 4.1 and Table 4.1). For example, 

Evergreen Broadleaf Forest has the most sites (n = 19), followed by Woody Savanna 

(n = 8) and Open Shrublands (n = 5). Six IGBP categories across LA do not have any 

FLUXNET site (Table 4.1). 
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Table 4.1.  Surface area of each of the International Geosphere-Biosphere Project 

biome class across Latin America and the number of eddy-covariance 

sites at each class. 

IGBP Class Area covered (%) Number of eddy-

covariance towers 

Water 1.08 0 

Evergreen needle-leaf forest 0.05 0 

Evergreen broad-leaf forest 33.83 19 

Deciduous needle-leaf forest 0.00 0 

Deciduous broad-leaf forest 3.00 2 

Mixed Forest 1.52 0 

Closed Shrubland 0.04 1 

Open Shrubland 12.64 5 

Woody Savanna 6.00 8 

Savanna 18.62 1 

Grassland 9.37 0 

Permanent Wetland 0.88 0 

Cropland 4.96 1 

Urban and Build-Up 0.32 1 

Cropland/natural vegetation 

mosaic 

4.65 3 

Snow and Ice 0.21 0 

Barren Land 2.83 0 

Total 100.00 41 
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Figure 4.1.  Spatial distribution of the different biomes across Latin America 

according to the International Geosphere-Biosphere Program (IGBP) and 

the location of the eddy covariance sites affiliated to FLUXNET. 

4.3.2 Representativeness of environmental properties and ecosystem processes. 

The representativeness of FLUXNET sites differ for each environmental 

characteristic assessed (i.e., climate, terrain properties, soil resources, combined 

environmental properties, GPP and ET). The tested variables with the highest spatial 

representativeness were GPP (0.48%), combined environmental properties (0.45%) 

and terrain parameters (0.36%), while climate, soil resources and ET had the same 



 

 

106 

representativeness (0.34%; Table 4.2). The representativeness between the IGBP 

categories is different among the distinct environmental variables assessed. The 

categories having at least one study site with the higher representativeness among all 

the different environmental variables assessed (i.e., climatic, topographic, soil 

resources, combined environmental properties, GPP and ET) were shrublands and 

savannas, while forest ecosystems (Evergreen and deciduous broadleaf forest) have 

similar ranges than transform ecosystems (croplands, cropland natural vegetation 

mosaic; Table  E-1). 

 

Table 4.2.  Parameters used to characterize each model, their performance and their 

overall representativeness across Latin America. 

Environmental 

Model 

Absence Repetition Model 

Performance 

(True Skill 

Statistic) 

Threshold 

Binary Map 

Representativeness 

Percent SD 

Climate 100 5 0.49 0.35 34 0.47 

Topography 100 3 0.24 0.33 36 0.48 

Soil Resources 1000 7 0.22 0.02 34 0.47 

Env. Prop. 100 5 0.51 0.31 45 0.50 

GPP 10000 7 0.17 >0.01 48 0.50 

ET 10000 7 0.08 0.05 34 0.47 
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Figure 4.2.  Spatial representativeness for the distinct environmental parameters 

based on random forest models (A,C, E and G), along with the 

distribution of the FLUXNET sites across the multivariate space 

represented by the two most influential variables for each model (B, D, F 

and H). Black areas indicate not-represented regions while gray areas are 

represented regions. 
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Figure 4.3.  Spatial representativeness of gross GPP and ET based on random forest 

models (A,C), along with the distribution of the FLUXNET sites across 

the multivariate space represented by the two most influential variables 

for each model (B, D). Black areas indicate not-represented regions while 

gray areas are represented regions. 

We compared the distribution between the represented and non-represented 

regions of the two most important variables for each representative model (Figures 4.2 

and 4.3). For the bioclimatic predictor (Figure 4.2A-B), precipitation seasonality 

above 120mm and below 40mm and the annual mean diurnal temperature range above 

20 0C and below 6 0C are not represented (Figure 4.4 A-B). For terrain properties 
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(Figure 4.2 C-D) the majority of the IGBP classes are represented while values 

90>TWI>75 are not represented for TWI (Figure 4.4 C-D). For soil resources (Figure 

4.2 E-F) soil organic carbon >80 g/m2 and soil nitrogen below <500 and above >2000 

mg/m2 are not represented (Figure 4.4 E-F). For all the environmental drivers 

combined in a PCA the components that had the highest influence on the PCA 

representativeness map were PC26 and PC21 (Figure 4.2 G-H), PC26 is only 

represented within the range -0.08 to 0.16 while PC21 is represented within the range 

of -1 to 1.5 (Figure 4.4 G-H).  

The representativeness of GPP and ET is likely to be spatially similar (Figure 

4.3). For GPP (Figure 4.3 A-B), the representativeness of FLUXNET sites for 

GPP_mean tend to be bias towards values above the GPP_mean median for LA, while 

for GPP_CV only those values above > 2 g/day are not well represented (Figure 

4.5A). The representativeness of ET is also similar (Figure 4.3 C-D), the ET_mean 

representativeness of FLUXNET sites is bias towards values above the ET_mean 

median for LA, while for ET_CV values close to 2.0 mm/day are not represented 

(Figure 4.5 C-D). 
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Figure 4.4.  Distribution of the two most influential variables for each environmental 

parameter (A, C, E, G; number 1), along with the distribution of the 

sample monitored by the FLUXNET sites for each (B, D, G and H; 

number 2). 
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Figure 4.5. Distribution of the two most influential variables for GPP (A and C; 

number 1) and ET (E and G; number 1), along with the distribution of the 

sample monitored by FLUXNET for GPP (B and D; number 2) and for 

ET (F and H; number 2).  

4.3.3 Representativeness by adding potential sampling sites 

The overall representativeness of GPP and ET across LA slightly increased by 

adding new study-sites (Figure 4.6), despite that those sites represent the most 

dominant properties of GPP and ET and are mainly located at the larger IGBP classes 

(table 4.3). Also, the addition of new study-sites progressively increased the predictive 

power for each model (Figure 4.6), this is the correlation between the current and the 

additional sites with the represented regions.  
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Figure 4.6. Representativeness according with the addition of potential study-sites 

based on the cHLS technique for GPP (A) and ET (B), along with their 

predictability increase (C and D). 
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Table 4.3. Number of potential-study sites based on cLHS for each International 

Geosphere-Biosphere Project biome class. 

IGBP Class Current number of 

Towers 

Including new Study 

Sites 

Water 0 0 

Evergreen needle-leaf 

forest 

0 0 

Evergreen broad-leaf forest 19 80 

Deciduous needle-leaf 

forest 

0 0 

Deciduous broad-leaf forest 2 6 

Mixed Forest 0 4 

Closed Shrubland 1 1 

Open Shrubland 5 30 

Woody Savanna 8 15 

Savanna 1 54 

Grassland 0 19 

Permanent Wetland 0 1 

Cropland 1 11 

Urban and Build-Up 1 2 

Cropland/natural vegetation 

mosaic 

3 9 

Snow and Ice 0 1 

Barren Land 0 6 
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4.4 Discussion 

4.4.1 FLUXNET representativeness for environmental parameters and 

ecosystem processes. 

Our results show that shrublands and woody savannas had the highest 

representativeness among all the different environmental properties assessed (i.e, 

bioclimatic predictors, terrain parameters, soil resources and combined environmental 

properties), along with ET and among the highest for GPP (Table E-1). Despite only 

having a combined 36% of the registered FLUXNET sites across LA (open 

shrublands, close shrublands and woody savannas; Table 4.1). These results suggest 

that these ecosystems are environmentally less heterogeneous than others, arguably 

due to a semi-arid permanent water stress conditions that triggers common strategies 

on resources use such as water-use efficiency (Biederman et al 2016, Huxman et al 

2004, Ponce Campos 2013). Previous studies indicate a high convergence on structural 

and functional properties for dryland ecosystems such as shrublands and savannas 

between North and South America (Paruelo 1998), which could provide insights about 

why few sites could contribute to a relative high representativeness even though most 

of these sites are located at the Northern domain of LA (Figure 4.1). Despite the high 

representativeness of shrublands and savannas by a low number of eddy-covariance 

sites, the undergoing drought across these water-limited ecosystems highlights the 

need to support monitoring programs since these ecosystems are especially sensitive to 

changes in precipitation and temperature (Biederman 2016;2017; Villarreal 2017). 

The representativeness of forested ecosystems such as evergreen broadleaf 

forest and deciduous forest were consistently lower than shrublands and woody 

savannas for all the distinct environmental variables assessed including GPP and ET 

(S1), despite that more than 50% of the monitoring efforts have focused across these 
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ecosystems, especially on tropical forests (Table 1). These results suggest a larger 

variability in climatic, topographic and soil resources cycling. For example, the 

precipitation gradient is larger for forested ecosystems than for shrublands and 

savannas (Chapin et al 2002). Soil nutrient cycling in forest ecosystems is more 

dynamic and variable than water-limited ecosystems (Vitousek, 1984; Vitousek and 

Sanford, 1986). The complex natural dynamic of GPP and ET along with change in 

land-use (i.e., deforestation and agriculture) and climate variability, offset carbon 

sequestration of undisturbed forest at the point that there is no consensus if the 

Amazonia basin is a sink or source of carbon (Andreae et al., 2002; Avissar et al., 

2002; Grace et al., 1995). These results highlight the challenges that leads to 

represents the broad spectrum of the environmental properties assessed across forested 

ecosystems in LA. However, the current efforts on tropical wet forest have supplied a 

wide variety of environmental information (e.g., atmospheric chemistry, land-use 

land-cover change), and have fostered our knowledge on carbon and water fluxes at 

natural, converted and afforested sites across broadleaf evergreen forest in LA 

(Andreae et al., 2002; Avissar et al., 2002; Keller et al., 2004). However, our results 

highlight the need to improve the representativeness of environmental variables (i.e., 

climatic, terrain parameters and soil resources) and ecosystem process across these 

ecosystems. 

Other ecosystems such as croplands and crop-land natural vegetation mosaics 

have a relative similar representativeness among all the environmental variables 

assessed including GPP and ET, despite a substantial lower number of FLUXNET 

sites (Table 4.1). Arguably this is due by the low number of towers and the wide range 

of environmental conditions where this land-covers are located. The undergoing 
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agricultural expansion particularly on forested ecosystems highlight the need to 

enhance GPP and ET representativeness across these ecosystems, since the land-use 

change of tropical forest to croplands reduces carbon uptake and it increase its 

seasonality, along with a potential increase in the intensity of precipitation seasonality 

and evapotranspiration (Andreoli and Kayano, 2005; Eva et al., 2004; Graesser et al., 

2015). 

Other ecosystems such as Mixed Forest, Grasslands and Permanent Wetlands 

also plays a key role in climate regulation, soil nutrient cycle and ecosystem processes 

such as GPP and ET (Baldocchi et al., 2000; Conant et al., 2001; Whiting and 

Chanton, 2001). However, the representativeness of those ecosystems is based on the 

approximation of eddy-covariance sites located at different IGBP classes because any 

of the aforementioned ecosystems has a study site affiliated to FLUXNET (Table 4.1). 

By hence, the interpretation of those results should be performed cautiously. However, 

there are some study sites located at grasslands and Permanent Wetlands and among 

other ecosystems that haven’t been affiliated to FLUXNET (Delgado-Balbuena et al., 

2013; Hinojo-Hinojo et al., 2018; Tonti et al., 2018). We hope that these results 

encourage affiliation of eddy-covariance across LA to FLUXNET in order to provide 

a more comprehensive view about the representativeness of eddy-covariance across 

LA. 

4.4.2 Improving Representativeness 

LA comprehend one of the most widely ecological diverse regions in the 

world, having a large influence on the global carbon and water cycles, the Earth’s 

climate systems and nutrient cycles (Balvanera et al., 2012). Our results show spatial 

representativeness gaps among the distinct environmental properties assessed (i.e, 
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bioclimatic, terrain properties and soil resources) including GPP and ET (Figures 4.2-

4.3), these gaps depicts the under-represented regions of the different IGBP classes 

(S4.1). For the environmental properties assessed, conditions located at the low or 

high end of the distribution across LA are usually under-represented but their medians 

are likely to be similar (Figure 4.4). These conditions are also similar for GPP and ET 

except that the median of the represented regions is higher than the distribution of 

GPP_mean and ET_mean across LA (Figure 4.5), this is arguably due by the larger 

efforts for monitoring tropical forest (Table 4.1).  

In order to complement the current monitoring efforts across LA this study 

proposed a coordinated approach to improve FLUXNET representativeness of 

ecosystem fluxes such GPP and ET under a top-down approach, as recent studies have 

discussed the efficiency of top-down EON design to efficiently enhance spatial 

representativeness (Villarreal et al 2018; Villarreal in Review). Our results add two 

main advantages over the existing FLUXNET representativeness on GPP and ET 

dynamic: a) increased the spatial representativeness of GPP and ET as potential study-

sites were strategically located (Figure 4.6A); b) increased the predictive capacity of 

FLUXNET as the correlation between the represented regions with the properties 

monitored by the potential and current study-sites also increased (Figure 6B). While 

looking at these results we have identified the need to add more study sites to 

increased FLUXNET representativeness and its validations, however, the addition of 

more sites brings EON’s challenges related to its design and effort coordination, 

specially within a region of limited economic, logistic and human resources.  
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4.4.3 Opportunities and Challenges 

Traditionally, monitoring carbon and water fluxes across LA has not been done 

under a national coordinated effort that could maximizes regional representativeness at 

a country level (Roberti et al., 2012; Vargas et al., 2013), monitoring efforts have been 

performed by individual research groups or by local networks with clear and specific 

questions on specific land covers (i.e., SulFlux; BrasFlux; Roberti et al 2012). 

However, recent studies have identified key aspects and challenges to coordinate 

monitoring efforts (Sierra et al., 2017; Villarreal et al., 2018), these are: a) 

Coordinated effort towards archive, synthesis and analyze existing information; b) 

Coordinated effort towards the collection of new information; c) The creation of 

platforms for data sharing, scientific discussion and potential actions among 

researchers and decision makers.  

FLUXNET is a global network that owns an infrastructure able to archive and 

synthesizes the vast amount of previously collected information and it makes easier to 

scientists the assessment of current archived information, storage of new information, 

and sharing information and ideas (Baldochhi et al 2001). The primary functions of 

FLUXNET are toward the advancement of knowledge mostly on carbon, water, and 

energy fluxes from the local to global scale (Baldochhi et al 2001), by hence, 

FLUXNET can serve as a platform to coordinate monitoring efforts within LA. 

However, the poor interoperability across sites and local networks within LA 

represents a challenge. In order to overcome this challenge, we suggest the 

coordination of current monitoring efforts by implementing an interoperability 

framework to overcome barriers such as standardization of sampling protocols, data 

standards, duplications of efforts and poor data sharing among others (Vargas et al 
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2017). The coordination of these actions can be supported under the FLUXNET 

platform.  

4.4.4 Limitation and consideration 

Our study is based using location from currently affiliated to FLUXNET sites, 

but we are aware that there are multiple unaffiliated sites across LA. Just to mention a 

few examples, there have been research efforts across permanent wetlands (Tonti et 

al., 2018), semi-arid grasslands (Hinojo-Hinojo et al., 2016) and croplands (Lewczuk 

et al., 2017). Furthermore, we recognize that a site that is affiliated with FLUXNET 

may be active or inactive and may have (or not) contributed with information to the 

FLUXNET database. By hence, our representativeness results must be taken as a 

conservative approach, especially for those IGBP classes with no eddy-covariance site 

registered at FLUXNET (Table 4.1). We assume that if a site is currently registered 

with FLUXNET the eddy-covariance information either is available, or the principal 

investigator is willing to contribute in the near future. A clear example are the sites 

located across Mexico (i.e., MexFlux) that are affiliated with FLUXNET but the data 

is not currently available for the wider scientific community (Villarreal et al in 

review). This study could motivate principal investigator and regional networks (i.e., 

MexFlux, Brasflux, SULFLUX) to join and collaborate with FLUXNET and 

contribute with their data and knowledge to build a stronger network and increase our 

understanding of the Earth System. 

The overarching aim of this study is to provide an overview of the 

representativeness of FLUXNET across LA and can be taken as a benchmark to 

encourage the scientific community to affiliate to AmeriFlux and FLUXNET with the 

purpose to have a common platform to boost the scientific research in this region, 
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these actions could serves FLUXNET’s goal of supporting synthesis, discussion and 

communication activities and to promote workshops and scientists visits (Baldocchi et 

al 2001). The enhancement of interoperability across sites and regional networks 

within LA could help to address questions such as; which ecosystems required more 

study sites? Are there some redundancy of efforts? How to optimize current 

monitoring efforts across LA?. Thus, by improving monitoring efforts within LA more 

pervasive questions such as the spatial and yearly variability of carbon and water 

fluxes across LA? How land-cover and land-use changes affects carbon and water 

fluxes across different ecosystems within LA? And, how and which biophysical 

factors and anthropogenic activities impact on water and carbon fluxes within LA?  

4.5 Conclusions 

The present study provides insights about the FLUXNET representativeness gaps of 

climate, topographic, soil resources along with GPP and ET across LA, a region that 

plays an important role in the global dynamic of ecosystem processes and climate 

regulation. Our results identified the ecosystems with the higher/lower 

representativeness and provided information about which ecosystems should be 

monitor in order to increase the representativeness of the region. This study also 

brings up the discussion about the necessity to add the study sites that are not affiliated 

to FLUXNET and the need to enhance interoperability among the different research 

groups in LA.  
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Chapter 5 

CONCLUSIONS 

This research comprehends different aspects on EONs management, going 

from their representativeness to its designs, which comprehends the quantitative 

delineation of spatial sampling domains, selecting locations for potential new study-

sites, and the need for interoperability among the institutions involved.  

5.1 Key conclusions  

The key conclusions from this research are summarized below:  

• EFTs provide an alternative approach to assess the representativeness of 

EONs, as this analysis complements previous studies which are only based 

on climatic or vegetation structural characteristics, also, EFTs addresses the 

interests for considering alternative information on ecosystem 

functionality. This study can also provide insights for EONs design and 

improvement. 

• We provided a transparent methodology to optimally design an EON, our 

results show that strategically located study-sites could results in a higher 

representativeness of GPP and ET at a national-scale that study-sites 

selected under a bottom-up approach. However, in order to properly 

monitor GPP and ET across Mexico a higher degree of interoperability 

should be achieve among the different institutions involved. 

• These results provided insights about the environmental properties 

(climate, terrain properties, soil resources) along with GPP and ET that are 

represented and under-represented by FLUXNET across LA, along with 

the location of strategically located sites to improve FLUXNET 

representativeness. This study can encourage the affiliation of existing 

eddy-covariance study sites to FLUXNET, in order to increase EONs 

representativeness. 
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5.2 Future directions 

The findings presented in this dissertation provides insights about key 

knowledge gaps in EONs representativeness and designs. However, questions 

inevitably remain after these knowledge gaps are partially addressed. The 

representativeness assessment of AmeriFlux and NEON based on the spatial and 

temporal information derived from EFT lacks the assessment of AmeriFlux active 

study-sites at an annual scale, since AmeriFlux study/sites are subject to be shut-down 

depending on funding availability. The proposed framework for EONs designs in 

order to be implemented it requires a more detailed studies, which would likely 

consider the spatial distribution of the study sites with other spatial information such 

as road maps, topography, population centers, research centers along with alternatives 

that are logistically suitable to install an eddy-covariance study-site. The location of 

FLUXNET study sites used to assess its represents across LA not necessarily 

represents the current wealth of information of the network, since not all study-sites 

have provided information to FLUXNET and not all of them is currently active. Also, 

the addition of information relate it to natural and human-induced disturbance should 

be included in order to have a more detailed representativeness picture for the study-

sites affiliated to FLUXNET across LA. 

5.3 Final thoughts  

The “take home message” of this dissertation is that the addition of the 

functional dimension at ecosystem scale can complement current studies based only 

on climate and plant functional types information. Also, the used of species 

distribution model are suitable to assess the representativeness of EONs since both 

challenges requires to define a geographic space that includes a set of environmental 
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data layers, and then delineate an area within the geographic space that corresponds to 

environmental properties capture by presence data or study-sites locations.  
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Appendix A.1 

SPATIAL REPRESENTANTIVENESS OF AMERIFLUX, NEON AND 

COMBINED CORE SITES 

 

Figure A.1. Spatial representativeness by each network based on the cross-validation 

results derived from the Maximum entropy analysis having has environmental 

covariates ecosystem functional types (i.e., EFTmode) and ecosystem 

functional types inter-annual variability (i.e., EFTint) combined across 

CONUS for the 2001-2014 period. The spatial representativeness is estimated 

based on the ratio of those pixel with a Kappa index equal to 1 divided by the 

total pixel across each NEON ecoclimatic domain. Represented areas are 

marked as grey while black areas correspond to non-represented areas. The 

percentage on each map correspond to the five least represented NEON 

domains for: (a) historical AmeriFlux archive; (b) NEON sites; and (c) current 

AmeriFlux and NEON core sites. Represented areas are marked as grey and 

non-represented areas are marked as black 
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Appendix B.1 

ENVIRONMENTAL DRIVERS OF GROSS PRIMARY PRODUCTIVITY AND 

EVAPOTRANSPIRATION  

Table B.1. Environmental variables selected to represent the environmental factors 

that constrain the dynamic of gross primary productivity (GPP) and 

evapotranspiration (ET). Those parameters were selected/discarded based 

on their nugget/sill ratio obtained from semi-variograms. 

Environmental Variable Nugget/Sill Spatial 

class 

Bioclimatic predictors   

Annual Mean Temperature 0.61/15 = 0.04 S 

Mean Diurnal Range (Mean of monthly 

(max temp – min temp)) 

0.01/5.4 < 0.01 S 

Isothermality 0.01/77 < 0.01 S 

Temperature seasonality 338/114695 < 0.01 S 

Maximum temperature of warmest 

month 

1.9 / 13 = 0.15 S 

Minimum temperature of coldest month 0.01/48 < 0.01 S 

Temperature annual range 0.77 / 33225 < 0.01 S 

Mean temperature of wettests quarter 0.24 / 19 < 0.01 S 

Mean temperature of driest quarter 0.01/98 < 0.01 S 

Mean temperature of warmest month 0.78 / 14 = 0.05 S 

Mean temperature of coldest month 0.32 / 30 = 0.01 S 

Annual Precipitation 4326/12359090 < 0.01 S 

Precipitation of wettest month 0.01/23453 < 0.01 S 

Precipitation of driest month 1.4 / 102 = 0.01 S 

Precipitation seasonality (coefficient of 

variation) 

2.2 / 423 < 0.01 S 

Precipitation of wettest month 0 / 216374 < 0.01 S 

Precipitation of driest month 0.01 / 1286 < 0.01 S 

Precipitation of warmest month 1585 / 7939862 < 0.01 S 

Precipitation of coldest month 22 / 3865 < 0.01 S 

Functional parameters   

Ecosystem Functional Productivity 0.09 / 1.2 = 0.07 S 

Ecosystem Functional Seasonality 0.09 / 1.2 = 0.07 S 

Ecosystem functional type inter-annual 1.1 / 4.6 = 0.23 S 
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variability 

Land Cover inter-annual variability 0.26 / 0.42 = 0.61 M 

Terrain parameters   

Digital Elevation Model 12313 / 2187271 < 0.01 S 

Digital Elevation Model 12313 / 2187271 < 0.01 S 

Analytical Hillshading 0.06 / 0.26 = 0.23 S 

Slope 0.07 = 0.14 S 

Aspect 1.6 / 3.2 = 0.5 M 

Cross-Sectional Curve 318894588/338415554 = 0.94 W 

Longitudinal Index 382376203/419428126 = 0.91 W 

Convergence Index 219 / 219 = 1 W 

Closed depression 456 / 456 = 1 W 

Flow accumulation 0.28 / 0.57 = 0.49 M 

Topographic wetness index 2.1 / 12 = 0.17 S 

LS factor 9.7 / 14 = 0.69 M 

Channel Network Base level 0.1 / 391928 < 0.01 S 

Vertical distance to channel network 12503 / 185186 = 0.06 S 

Valley depth 0.01 / 464727 < 0.01 S 

Relative slope position 0.01 / 0.07 = 0.14 S 

Soil Parameters   

Soil Organic Carbon 85 / 426 = 0.20 S 

Parent material age 151 / 757 = 0.20 S 
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Appendix C.1 

PRINCIPAL COMPONENT ANALYSIS OF THE ENVIRONMENTAL 

DRIVERS SELECTED 

Table C.1. The first two principal components comprehend 35% and 19% of the 

variability of all the environmental variables that were selected. The 

following table represents the correlation matrix between principal 

components PC1 and PC2 with those selected environmental variables. 

Eigenvector Principal Component 1 Principal Component 2 

Annual Mean Temperature 0.2397 -0.1794 

Mean Temperature of 

Warmest Quarter 

0.2117 -0.2150 

Mean Temperature of the 

Coldest Quarter 

0.2583 0.0360 

Annual Precipitation 0.2258 0.1890 

Precipitation of the Wettest 

Month 

0.2095 0.1919 

Precipitation of the Driest 

Month 

0.1912 0.1034 

Precipitation Seasonality -0.0588 0.0445 

Precipitation of the Wettest 

Quarter 

0.1989 0.2009 

Precipitation of the Driest 

Quarter 

0.1895 0.1001 

Precipitation of Warmest 

Quarter 

0.2181 0.1885 

Precipitation of Coldest 

Quarter 

0.1636 0.0923 

Annual Mean Diurnal 

Range 

-0.2306 -0.0671 

Isothermality 0.098 0.2297 

Temperature Seasonality -0.1623 -0.2383 

Maximum Temperature 0.0907 -0.3321 

Minimum Temperature 0.2696 0.0242 



 

 

135 

Coldest Month 

Annual Temperature 

Range 

-0.2177 -0.1872 

Mean Temperature of the 

Wettest Month 

0.1421 -0.3146 

Mean Temperature of the 

Driest Month 

0.2564 -0.0873 

Ecosystem Functional 

Type-Productivity 

0.2151 0.1598 

Ecosystem Functional 

Type-Seasonality 

-0.0777 -0.1696 

Ecosystem Functional 

Type-Interannual 

Variability 

-0.0424 -0.0048 

Land Cover Inter-Annual 

Variability 

0.0401 0.0403 

Soil Organic Carbon 0.1566 0.4522 

Rock Strata Age -0.0046 -0.0070 

Digital Elevation Model -0.1959 0.2459 

Topographic Wetness 

Factor 

0.0644 0.1813 

LS Factor 0.0341 -0.1028 

Channel Network Base 

Level 

-0.1951 0.1039 

Vertical Distance to 

Channel Network 

-0.0939 0.3051 

Valley Depth 0.2172 -0.1290 

Relative Slope Position -0.1571 0.2826 

Analytical Hillshading -0.0030 0.0076 

Slope -0.0158 0.0658 

Aspect -0.0022 0.0202 

Flow Accumulation 0.0155 -0.0821 
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Appendix D.1 

HIERARCHICAL CLASSIFICATION OF ECOLOGICAL SIMILAR AREAS 

Table D.1. The hierarchical delineation of the general ESAs and sub-ESAs was based 

on the silhouette scores (S(i)). S(i) provides a measure of the cohesion and 

separation of the elements within and among clusters, respectively. The first 

delineation consisted in delineating seven, twenty-one, fifty-one and one 

hundred and forty-one clusters using  K-means and selecting the higher S(i) 

scores, those groups were selected as they are the groups already defined by the 

CEC-CONABIO classification, we selected 7 general ESA’s as they had the 

highest S(i). The second delineation was performed through an iterative process 

for each ESA. This iterative process started with a number of groups (n) equal to 

2 and stopped when the Si for n classes was higher than the Si for n+1 classes. 

1st Delineation 

N=7 N=21 N=51 N=141 

S(i) = 0.20 S(i) = 0.17 S(i) = 0.16 S(i) = 0.17 

2nd Delineation 

ESA1 ESA2 ESA3 ESA4 ESA5 ESA6 ESA7 

N=6 N=6 N=3 N=4 N=3 N=2 N=3 

S(i)=0.23 S(i)=0.21 S(i)=0.23 S(i)=0.19 S(i)=0.25 S(i)=0.27 S(i)=0.23 
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Appendix E.1 

SPATIAL REPRESENTATIVENESS OF DIFFERENT LAND COVERS 

ACROSS LATIN AMERIC 

Table E.1. Representativeness for all the variables assessed at each IGBP class. 

Bioclimatic 

IGBP class Mean SD 

Evergreen needleleaf forest 0.49 0.48 

Evergreen broadleaf forest 0.44 0.47 

Deciduous Needleleaf Forest NA NA 

Deciduous Broadlead Forest 0.15 0.33 

Mixed Forest 0.51 0.48 

Closed Shrubland 0.57 0.45 

Open Shrubland 0.18 0.37 

Woody Savana 0.48 0.47 

Savana 0.43 0.47 

Grasslands 0.09 0.26 

Permanent Wetland 0.25 0.40 

Cropland 0.21 0.39 

Urban and Build-Up 0.29 0.44 

Cropland/Natural vegetation mosaic 0.36 0.45 

Snow and Ice 0.04 0.18 

Barren Land 0.11 0.30 
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Terrain parameters 

IGBP class Mean SD 

Evergreen needleleaf forest 0.62 0.41 

Evergreen broadleaf forest 0.40 0.43 

Deciduous Needleleaf Forest NA NA 

Deciduous Broadlead Forest 0.20 0.37 

Mixed Forest 0.75 0.35 

Closed Shrubland 0.60 0.39 

Open Shrubland  0.42 0.42 

Woody Savana  0.37 0.40 

Savana 0.28 0.37 

Grasslands 0.26 0.39 

Permanent Wetland 0.31 0.43 

Cropland 0.15 0.31 

Urban and Build-Up 0.40 0.42 

Cropland/Natural vegetation mosaic 0.32 0.39 

Snow and Ice 0.33 0.37 

Barren Land 0.62 0.44 
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Soil Resources 

IGBP class Mean SD 

Evergreen needleleaf forest 0.46 0.41 

Evergreen broadleaf forest 0.38 0.35 

Deciduous Needleleaf Forest NA NA 

Deciduous Broadlead Forest 0.40 0.39 

Mixed Forest 0.52 0.38 

Closed Shrubland 0.72 0.35 

Open Shrubland  0.45 0.37 

Woody Savana  0.55 0.38 

Savana 0.36 0.35 

Grasslands 0.47 0.38 

Permanent Wetland 0.53 0.38 

Cropland 0.51 0.36 

Urban and Build-Up 0.52 0.36 

Cropland/Natural vegetation mosaic 0.54 0.37 

Snow and Ice 0.57 0.38 

Barren Land 0.58 0.40 
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Combined Environmental Parameters (PCA) 

IGBP class Mean SD 

Evergreen needleleaf forest 0.92 0.26 

Evergreen broadleaf forest 0.39 0.45 

Deciduous Needleleaf Forest NA NA 

Deciduous Broadlead Forest 0.47 0.47 

Mixed Forest 0.88 0.28 

Closed Shrubland 0.90 0.23 

Open Shrubland  0.50 0.45 

Woody Savana  0.57 0.46 

Savana 0.37 0.45 

Grasslands 0.44 0.46 

Permanent Wetland 0.38 0.45 

Cropland 0.49 0.46 

Urban and Build-Up 0.47 0.45 

Cropland/Natural vegetation mosaic 0.57 0.45 

Snow and Ice 0.95 0.16 

Barren Land 0.45 0.36 
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GPP   

IGBP class Mean SD 

Evergreen needleleaf forest 0.54 0.49 

Evergreen broadleaf forest 0.50 0.49 

Deciduous Needleleaf Forest NA NA 

Deciduous Broadlead Forest 0.51 0.49 

Mixed Forest 0.70 0.45 

Closed Shrubland 0.67 0.46 

Open Shrubland  0.67 0.46 

Woody Savana  0.52 0.49 

Savana 0.43 0.49 

Grasslands 0.46 0.49 

Permanent Wetland 0.59 0.49 

Cropland 0.51 0.49 

Urban and Build-Up 0.61 0.49 

Cropland/Natural vegetation mosaic 0.74 0.43 

Snow and Ice 0.77 0.42 

Barren Land 0.22 0.42 
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ET   

IGBP class Mean SD 

Evergreen needleleaf forest 0.12 0.32 

Evergreen broadleaf forest 0.58 0.49 

Deciduous Needleleaf Forest NA NA 

Deciduous Broadlead Forest 0.25 0.44 

Mixed Forest 0.32 0.46 

Closed Shrubland 0.06 0.25 

Open Shrubland  0.24 0.42 

Woody Savana  0.99 0.01 

Savana 0.11 0.31 

Grasslands 0.13 0.34 

Permanent Wetland 0.08 0.27 

Cropland 0.04 0.20 

Urban and Build-Up 0.11 0.31 

Cropland/Natural vegetation mosaic 0.57 0.49 

Snow and Ice 0.06 0.23 

Barren Land 0.09 0.28 
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