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ABSTRACT

With the proliferation of high-performance mobile devices, there has been

renewed interest in MANETs. This Thesis focuses on the impact of stale topology

information in OLSR, a widely used proactive MANET routing protocol. Specifi-

cally, we examine routing loops, black holes, and path stretch when the topology

information is stale. We find that as the topology information becomes stale, OLSR

suffers from all of these problems. Moreover, OLSR specifies some optimizations

that exasperate these problems. As an alternative, we propose a simple approxi-

mate distance-based routing scheme that computes routes slightly differently than

OLSR, and is less impacted by stale topology information. In particular, we prove

the forwarding is loop-free under a mild condition. Routers can maintain this con-

dition in a distributed fashion that results in far less overhead than OLSR.
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Chapter 1

INTRODUCTION

With the proliferation of mobile computing and communication devices (e.g.,

smart phones and tablets), MANET protocol design is receiving renewed interest.

Currently, the IETF-MANET working group is focused on developing two routing

protocols, namely OLSR [1] and DYMO [2]. OLSR has received, by far, the most

attention of the IETF, with a second version of OLSR (OLSRv2 [3]) nearing com-

pletion. OLSR also appears to be the most widely deploy MANET routing protocol

with several large-scale deployments [4, 5, 6].

High overhead that results from frequent topology announcements is an im-

portant challenge facing proactive routing protocols such as OLSR. OLSR stipulates

that topology control (TC) messages, i.e., topology announcements that are dissem-

inated across the entire MANET, should be generated periodically and, optionally,

when the information contained in the message has changed. Intuition suggests

that if TC messages are only triggered periodically, the performance of the routing

protocol will decrease as the period between TC messages increase. Specifically,

several problems can arise as topology information becomes stale, namely, routers

might not have a route to a destination, routing loops can occur, and packets may

reach their destination, but only after following a suboptimal path. Thus, there is

tension between the goal of reducing overhead by reducing the rate at which TC

messages are generated and the impact of routers having stale topology information,

i.e., loops, path stretch, and route failures.
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Traditionally, the performance of routing protocols has been examined only

in terms of total overhead and packet delivery probability (e.g., [7, 8, 9]). One

drawback of this approach is that the impact of several subsystems is merged into

these two coarse metrics, disallowing insight into the performance of the different

subsystems. For example, packet delivery depends on the MAC, the staleness of the

global topology information, and the staleness of local topology information, e.g.,

knowledge of whether the next hop is reachable. If any of these subsystems performs

poorly, then the packet delivery probability will suffer. Therefore, in this Thesis,

we only focus on stale global topology information and abstract away many other

MANET subsystems, allowing us to precisely investigate the conflicting goals of

reducing the overhead from TC messages and reducing the impact of stale topology

information.

We find several behaviors that, to the best of our knowledge, have not been

previously correctly identified.

• In the widely referenced paper [10], it is assumed, but not shown, that routing

loops are rare and path stretch is the main drawback of stale topology informa-

tion, i.e., that packets follow suboptimal paths. However, we find that in many

cases the assumption that loops are rare and insignificant is incorrect. In fact,

the traffic generated by packets caught in loops can be orders of magnitude

more than the traffic caused by packets traveling extra hops because of path

stretch. Moreover, in OLSR, stale information can cause routers to not have

routes to some destinations (i.e., black holes) with a significant probability.

• OLSR’s method for triggering TC messages due to changes in the topology

is inefficient. Specifically, while the method is assumed to only result in

some topology changes being advertised, it turns out that nearly all topol-

ogy changes are advertised. Moreover, a single topology change might trigger
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advertisements by several routers. Specifically, depending on the implementa-

tion, on average, a single topology change will trigger between four and five

topology announcements, depending on the node density.

• OLSR’s approach to only announcing a subset of links significantly increases

the probability of a router not having a route and increases the probability of

a loop.

• Hazy-sighted flooding [10], which is described in Chapter 4, is an optional be-

havior of OLSRv2. However, we find that as compared to traditional flooding,

hazy-sighted flooding greatly increases the probability of loops and, for a given

path stretch, does not reduce the overhead.

With this insight, we develop a new approach to routing in the face of stale

topology information. Our approach is based on two ideas.

1. Since loops are a critical problem when topology information is stale, we pro-

pose a class of approximate distance-based methods that guarantees loop-free

routing under a mild condition on the staleness of topology information. More-

over, this condition can be evaluated and maintained by routers in a distrib-

uted fashion.

2. Routers joining the network and the resolution of a network partition must be

immediately announced to the network.

It turns out that these two features also result in low path stretch. Moreover,

since the approach behaves correctly even when topology information is stale (but

not too stale), we find that the approach requires much less overhead than OLSR.

For example, if OLSR uses triggered TC messages and each router has, on average,

22 neighbors, then the proposed approach could require fewer TC messages by a

factor of 200.
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The rest of the Thesis is divided into two major sections. Chapter 3 studies

stale topology information and OLSR, which includes sections on OLSR TCmessage

triggering, path stretch, loops, black holes, and the performance of hazy-sighted

flooding. Then Chapters 5 and 6 develop a new approach to computing forwarding

table and triggering topology messages that eliminates routing loops and black holes

and reducing path stretch. However, before beginning, the next chapter briefly

discusses the details of the systems studied.
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Chapter 2

SYSTEM ASSUMPTIONS

This study focuses only on the impact of global topology information, which

is information that is distributed throughout the entire network. In order to focus

only on global topology information, we neglect Hello messages, and assume that all

routers are fully aware of their two-hop neighborhood. Moreover, we assume that

global topology information messages (TC messages) are received by all routers and

neighbor discovery works perfectly. Note that in the extensive discussion of loops

on the IETF-MANET mailing list from May 26, 2009 to June 12, 2009, contributors

were unsure if loops were only caused by errors in Hello messages and errors in

the flooding of TC messages or something inherent to the OLSR routing algorithm.

This study resolves this issue and quantifies how stale topology information leads

to loops even when Hello messages and TC flooding works correctly.

In this study, we use random waypoint mobility with a fixed node speed and

ensure that router distribution has stabilized [11]. For the computational results

shown, the routers are restricted to a region that is 8 × 8 transmission ranges.

However, related work on path stretch indicates that the behavior for other sized

networks is similar [12]. Since transmission errors are not the focus of this study,

we assume that routers within transmission range are neighbors.
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Chapter 3

TC MESSAGE GENERATION AND STALE TOPOLOGY

INFORMATION IN OLSR

OLSR uses several techniques in order to attempt to reduce overhead. One

method is an efficient message dissemination method and another is to only dis-

tribute information about a subset of all links. For both techniques, OLSR uses

multipoint-relays (MPRs). A router selects a subset of its neighbors as MPRs such

that all two-hop neighbors are reachable via the MPRs. The set of MPRs, and

MPRs of MPRs, and so on, forms a connected dominating set, which OLSR uses

for efficient topology control (TC) message dissemination. There has been extensive

effort focused on efficiently computing a small MPR set (e.g., [13, 14, 15, 16, 17]).

Another method OLSR employs to reduce overhead is only advertise links

between a router and its MPRs. It can be shown that if the topology information

is up-to-date, shortest path routes can be determined from this subset of links [18].

As a method to further reduce overhead, a router does not advertise links

to its MPRs. Instead, the MPRs advertise links to routers that have select it as a

MPR. That is, each router maintains a MPR-selector set of the neighboring routers

that have selected it as a MPR. A router includes the links to the MPR-selector

set in TC messages. The motivation for this approach is that some routers will be

more suitable to be MPRs for many neighbors. These highly suitable routers will

generate TC messages, while routers that are not selected as MPRs for any other

router will not generate TC messages, thereby reducing the number of TC messages
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generated. However, the efficacy of this method has been challenged in [19], where

it is shown that when routers are mobile, most routers will generate TC messages.

For completeness, we briefly explain the behavior discussed in [19]. To this

end, we first describe the rules for when a router generates TC messages. According

the RFC 3626 [1], when a router is a MPR of some other router, it will generate TC

messages. If the topology changes so that the router is no longer a MPR, then the

router will continue to generate empty TC messages until three empty TC messages

have been generated. Once the three TC messages have been generated, the router

stops generating TC messages until the router is a MPR of some other router. If the

topology never changed, then a substantial fraction of routers would not generate TC

messages. However, whether or not a router is selected as a MPR is very sensitive on

the topology. As a result, a small change in the topology can switch which routers

are MPRs and hence which routers generate TC messages. Since links rapidly form

and break, a router will frequently switch from being selected as a MPR for some

other routers to not being a MPR for any router. However, since OLSR specifies

that a router must generate three empty TC messages after the router is no longer

a MPR of any router, there is a significant probability that before the router has

completed generating three TC messages, it has become a MPR of another router.

Not only does [19] indicate that using MPRs to advertise links selected by

MPR selectors does not substantially reduce the number of routers generating TC

messages, but, as described below, this approach can increase the frequency that

routers generate TC messages.

3.1 TC Message Triggering

A router that generates TC messages must send them periodically and can

also send them aperiodically. Specifically, the July 2011 draft of OLSRv2 stipulates

that a TC message can be generated when the information advertised changes. The

earlier version of OLSR stipulated that TC messages should be triggered when the
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advertised information changes because of a link failure. Since only a fraction of

all links are links to MPRs, only a fraction of links are advertised. Consequently,

when a link breaks or forms, the topology change might not impact the advertised

topology information, and hence, it is widely believed that OLSR’s optional method

for triggering TC messages is an effective way to advertise only a subset of all

topology changes. For example, it is well known that the fraction of neighbors that

are MPRs can be modeled by Cδ1/3, where C is a constant and δ is the average

number of neighbors [20]. Thus, one might also assume that OLSR’s method for

triggering TC messages will only trigger TC messages for approximately Cδ1/3 of

the topology changes. In fact, [21] made this precise assumption. However, this

assumption is incorrect.
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Figure 3.1: When a link breaks, the link might be between a router and its MPR, or
even both ends of the link might be MPRs for the other end. Similarly,
when a new link is formed, the new neighbor might become a MPR, or,
again, both sides might become MPRs for the other side. The above
plot shows the probability of this occuring for different node densities.

Intuitively, MPRs are selected so that they reach two-hop neighbors that

are, in a sense, hard to reach. This implies that links to MPRs are likely to be

long links, and hence will soon break or have recently formed. Figure 3.1 confirms

this behavior. Specifically, we find that 92% of topology changes (link breaks or
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link formations) are links between a router and its MPR. In slightly over 50% of

the topology changes, both ends of the link were MPRs for the other end (in the

case of link breaks) or will become a MPRs for the other end (in the case of link

formations). In such cases, if OLSRv2 is used, one can expect that both ends of the

link will advertise the topology change. The OLSR specification states that only

changes that are a result of a link break are triggered. Figure 3.1 shows that in 95%

of the link breaks at least one end of the link is a MPR for the other end, and in

over 60% of the link breaks, both ends of the broken link is a MPR for the other

end1. Moreover, this behavior appears to be independent on the router density.

Clearly, most topology changes will trigger TC message generation (if this op-

tion is used). However, the problem is worse than this. When the topology changes,

many routers’ two-hop neighborhood changes. And when a router recomputes its

MPRs, the whole set of MPRs changes. Recall that routers that have been selected

as MPRs are responsible to advertising which routers have selected them as MPRs.

Thus, if the OLSRv2 approach is followed, when a router’s set of MPRs changes,

each router that is no longer selected as a MPR should trigger a TC messages as

well as each router that has been recently selected. While it would violate the exact

definition of protocols, one could elect to only have routers trigger new TC messages

if a neighbor newly selects it as a MPR, and advertise deselection of MPRs in the

periodic TC messages. In either case, a single topology change can result in a large

number of TC messages being generated. Figure 3.2 shows the number of routers

1 One reason that breaks cause more changes in the MPR set is that we assume
that if the current set of MPRs reaches all two-hop neighbors, the set of MPRs
remains fixed (even if this set is suboptimal in that there are more MPRs than
necessary). Of course, if a link to a MPR breaks, then the set of MPRs must
be recomputed. Note that this is an optimization we selected to used. Other
methods could give better or worst results. RFC 3626 and the OLSRv2 draft do
not stipulate the exact algorithm to select MPRs, only that all 2-hop neighbors
must be reachable from a MPR.
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that generate a TC message in response to a single topology change.

Note that an important part of this problem is that a router does not advertise

its MPRs, but rather a router advertises which routers have selected it to be a MPR.

If a router announced its own MPRs, then, on average, a topology change would

trigger about 1.5 TC messages (recall, that both ends of the link might generate a

new set of MPRs).

Consequently, we find that the OLSR option for triggering TC message gen-

eration because of topology changes should not be used in OLSR. Instead, TC

messages should be generated at some periodic rate; the required technique to gen-

erate TC messages. The obvious question is, at what rate should these periodic TC

messages be generated?
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Figure 3.2: When a link breaks or a new link is formed, two-hop neighbors of
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compute their MPRs. The newly selected or newly deselected MPRs
should advertise the new MPR-selector sets. Above show the number
of routers that advertise their new MPR-selector sets and the number
that would advertise if advertisements are triggers only when a router
is added to the MPR-selector set.
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3.2 The impact of stale topology when all links are advertised

The goal of reducing the overhead caused by TC messages is in conflict with

the goal of reducing the impact of stale topology information, specifically, routing

loops, black holes (i.e., a router not having a route to a destination), and path

stretch, which is defined as the difference between the number of hops a packet

travels to reach the destination and the minimum number of hops between the

source and destination. In order to balance these conflicting goals, the relationships

between the rate that TC message are generated and the results of stale topology

information must be quantified, which is the goal of this section. As will be shown,

only advertising links between a router and its MPRs can lead to performance

problems. Thus, we initially study when routers advertise all links.

3.2.1 Path stretch when routers advertise all links

We begin by investigating path stretch. Note that in [10] it was assumed

that path stretch is the key metric in the sense that if routers have stale topology

information, then path stretch will be significant, while loops and black holes can

be ignored. Figure 3.3 shows the relative path stretch for different router densities

and different path lengths, where

relative path stretch = PS (H∗) := E

(
Ĥ −H∗

H∗

)

,

and Ĥ is the number of hops the packet travels and H∗ is the minimum number of

hops between the source and destination. Here, the router density is measured by

the average number of one-hop neighbors, i.e., the average degree of vertices in the

router topology graph.

The x-axis in Figure 3.3 is the average number of topology changes a router

observes between TC messages. There are several benefits of using this as an in-

dependent variable. First, it allows performance to be evaluated without directly

considering the router speed; instead, it expresses the ratio of the router speed to
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the rate that TC messages are generated. Second, this metric is easily estimated by

routers and hence, allows routers to adaptively adjust the TC generation rate in or-

der to achieve a desired level of performance. Of course, for a fixed router speed, this

metric increases linearly with the time between TC messages. Hence, the average

number of topology changes a router observes between TC messages is alternative

and perhaps more intuitive way to interpret the time between TC messages.

Figure 3.3 shows that, as expected, the path stretch increases as the time

between TCmessages increases. When routers are two hops apart, the local topology

information from Hello messages allows packets to be forwarded correctly, without

any path stretch. As the distance between the source and destination increases, the

relative path stretch also increases. Figure 3.3 shows the path stretch for different

router densities. As can be observed, the path stretch is not significantly impacted

by the router density. And finally, the rate of change of the path stretch, as a

function of the time between TC messages, tends to decrease as the time between

TC messages increases. These behaviors will be further discussed below.
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Figure 3.3: Path stretch (i.e., the difference between the number of hops a packet
travels and the length of the shortest path) as a function of the stal-
eness of router’s topology information. The staleness of the topology
information is measured by the average number of changes in topology
that each router directly observes between the generation of TC mes-
sages. This relationship is shown for different router densities, ranging
for where each router has, on average, 8.25 neighbors to where each
router has 22 neighbors.
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3.2.2 Loops when routers advertise all links

Path stretch increases the amount of traffic the network must support. For

example, a 10% relative path stretch results in 10% more transmissions. However,

routing loops, which not only disconnect source-destination pairs, can cause signifi-

cant traffic. In today’s operating systems, routing loops are detected by decremented

the TTL at each hop. Hence, a routing loop will simple cause a packet to be re-

peatedly transmitted according to the initial value of the TTL. In Linux, the initial

value is 255, and we use this value for our analysis.

Suppose that packets get caught in a loop with probability Ploop (L) , where

L is the number of hops between the source and destination. Thus, the traffic that

travels over paths of length L result in L × (1− Ploop (L)) transmissions, whereas

traffic that gets caught in a loop results in 255×Ploop (L) transmissions. The ratio of

the traffic generated by loops and the traffic generated by successful packet delivery

is
255× Ploop (L)

L (1− Ploop (L))
≈
255

L
Ploop (L) .

We define the break even probability (BEP) to be the probability of a loop such that

the number of transmissions from packets caught in loops is the same as the number

of transmissions form successful packet delivery (i.e., the above ratio is one), hence,

BEP (L) =
L

255
. (3.1)

Figure 3.4 shows the probability of a loop for a range of router densities.

As described above, the x-axis is the average number of topology changes a router

observes between the generation of TC messages, which grows linearly with the time

between TC message generation. As expected, Figure 3.4 shows that the probability

of a loop increases with the time between TC messages. Moreover, the probability

of loops can become quite large, especially when the router density is low2.

2 In the topologies used, when the node density was 8.25, with a probability of
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As mentioned, while loops render some source-destination pairs disconnected,

they also create traffic. Figure 3.5 shows the ratio of the relative path stretch to

255 multiplied by the probability a packet gets caught in a loop. If this ratio is

greater than one, the more traffic is caused by path stretch than by packets caught

in routing loops. As can be observed, as the topology information becomes more

stale, the traffic generated by loops exceeds the traffic caused by path stretch. Also,

as the router density decreases, loops become more important than path stretch,

and for longer paths, loops are more important than path stretch. The importance

to routing loops as compared to path stretch contradicts the assumption made in

[10], upon which parts of OLSRv2 is based.
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Figure 3.4: The probability that a packet gets caught in a routing loop. In this
case, all links are assumed to be advertised.
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Figure 3.5: The ratio of the traffic generated by path stretch and the traffic gen-
erated by routing loops.

3.2.3 Black holes when routers advertise all links

In some cases, the stale topology information results in a router being unable

to find a route to a destination. To see how this occurs, consider Figure 3.6. Initially,

0.955 any two routers are connected (through multiple hops). Thus, even the
low router density topology is reasonably well connected.

14



S

N

D

M

S

N

D

M

Figure 3.6: An example of how stale topology information can cause a route failure.

S has a route to D. However, when D moves, S learns that from N that the link

between N and D has broken. (Recall that in OLSR, nodes are aware of the two-

hop neighborhood through Hello messages, which are generated at a high frequency.)

However, S does not learn that D is still reachable via N and M. In this case, if a

packet arrives at S with destination D, router S will drop the packet. We say that

S is a black hole for destination D.

Figure 3.7 shows the probability that a packet gets caught in a black hole,

even though the destination is reachable. We see that this probability is fairly low.

For example, it is much smaller than the probability that a packet gets caught in

a loop. However, as will be seen shortly, when MPRs are used, this probability

becomes significant.
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Figure 3.7: The probability that a packet gets caught in a black hole (i.e., the
packet reaches a router that does not have a route in its forwarding
table). In this case, all links are advertised.

3.3 The impact of stale topology when only links to MPRs are adver-

tised

OLSR dictates that only links between a router and the routers it selects

as MPRs should be advertised. A significant problem with this approach, is that
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it essentially reduces the router density, which, as shown in the previous section,

causes significant performance problems. In this section we will examine the impact

of stale topology information when only links to MPRs are advertised.
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Figure 3.8: Path stretch when only links to MPRs are advertised.

Figure 3.8 shows the relative path stretch for different router densities. For

this metric, there is little difference between when only links to MPRs are advertised.

This conclusion is reasonable since, as shown in Section 3.2, the path stretch does

not significantly depend on router density.
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Figure 3.9: The probability that a packet gets caught in a routing loop. In this
case, only links to MPRs are advertised.

Figure 3.9 shows the probability that a packet gets caught in a loop. For lower

router densities, the probability that a packet gets caught in a loop in this case is

nearly the same as when all links are advertised. However, for higher densities, the

probability of getting caught in a loop is significantly higher when only links to

MPRs are advertised. For example, when the average degree is 11, the probability

of getting caught in a loop when only links to MPRs are used is about double of the

probability of getting caught in a loop when all links are advertised. This difference

increases to a factor of three when the degree is 22.

The behavior is reasonable since the fraction of links advertised decreases with

the router density. For example, in [20], it was found that the number of MPRs
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is Cδ1/3 where C is a constant and δ is the router degree. Thus, for small router

densities, most links are advertised, resulting in the same performance regardless of

whether all links are advertised or only links to MPRs are advertised. But for larger

router densities, a smaller fraction of links are advertised, and hence, there is more

significant difference between when all links are advertised and when only links to

MPRs are advertised.

Note that since the path stretch is not impacted, but the probability of getting

caught in a loop is increased, loops become even more important when only links to

MPRs are advertised.
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Figure 3.10: The probability that a packet gets caught in a black hole (i.e., the
packet reaches a router that does not have a route in its forwarding
table). In this case, only links to MPRs are advertised.

Figure 3.10 shows the probability that a packet gets caught in a black hole.

Again, for low router densities, the probably getting caught in a black hole is similar

regardless of whether all links are advertised or only links to MPRs are advertised.

For higher router densities, the probability of a packet getting caught in a black hole

is significantly larger when only links to MPRs are advertised as compared to when

all links are advertised. For example, when the degree is 11, when only advertising

links to MPRs, the probability of a router not having a path increases by a factor

of 5.

One important finding is that when all links are advertised, the probability

that a packet gets caught in a black hole is much smaller than the probability that

a packet gets caught in a loop. Thus, the performance can be estimated while

neglecting the possibility that packets get caught in black holes. However, when
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only links to MPRs are advertised, the probability that a packet gets caught in a

black hole is on the order for the probability that a packet gets caught in a loop.

Thus, in this case, loops and black holes must be considered.

3.4 Sensitivity to Router Density

It is generally believed that path stretch, loops and black holes are only a

problem when the router density is low. The above indicates that this intuition

is somewhat correct. However, some care is required before assuming high density

networks perform well. First, path stretch is not impacted by the router density in

the sense that the path stretch depends on the number of topology changes between

the generation of TC messages and not on router density. However, if the router

speed is held constant, when the router density is increased, i.e., the number of

neighbors is increased, then the topology changes will occur more frequently. Thus,

path stretch will increase as the router density increases.

Figure 3.11 shows the probability of a packet getting caught in a loop when

the average number of topology changes between TC messages is the same as the

average router degree. This figure shows that the probability of a packet getting

caught in a loop decreases as the router density increases, as intuition predicts.

However, the decrease is fairly slow, especially for short paths. Thus, we conclude

that loops are also important when the router density is as high and one should

not dismiss loops as something that only occurs in low density, barely connected

networks.
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Figure 3.11: The probability of a packet getting caught in a loop when the average
number of topology changes between TC messages is the same as the
average router degree.
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Chapter 4

THE PERFORMANCE OF HAZY-SIGHTED FLOODING

Hazy-sighted flooding was proposed in [10] and is an optional approach in OL-

SRv2. Hazy-sighted flooding is based on the idea that topology information about

near-by links is more important than information about far away links. Therefore,

topology information should be forwarded to routers near to the source of the infor-

mation than it is forwarded to far away routers. This approach can be implemented

by controlling the number of hops a TC message can travel (with TTL) and varying

this number of hops. Specifically, the TTL follows a pattern so that routers 2 hops

away will receive TC messages every time one is generated (e.g., TTL = 2 when k is

even, where k counts the number of TC messages generated). Routers 3 and 4 hops

away will receive a TC message every other time one is generated (e.g., TTL ≥ 4

when k is odd). Routers 5-8 hops away receive a TC message every 4 times a TC

message is generated (i.e., TTL ≥ 8 when k/2 is odd). More generally, TTL ≥ 2m

when k/2m−2 is odd.

One result of hazy-sighted flooding is that if the TC generation period is

held fixed, then hazy-sighted flooding generates far less packet transmissions than

traditional routing, which attempts to ensure that each router receives every TC

message. On the other hand, one can easily see that a router might receive a TC

message while its neighbor does not receive the same TC message. Specifically,

suppose router A is 2n hops away from router O, while router B is 2n+1 away from

router O, and suppose that A and B are neighbors. Then A will get TC messages
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Figure 4.1: The probability that a packet gets caught in a loop as a function of
the time between TC message generation when hazy-sighted flooding
is used.

from O more frequently than router B. In this case, A and B will have inconsistent

topology information. This inconsistency could lead to loops and black holes.

Figure 4.1 shows the probability that a packet gets caught in a loop when

hazy-sighted flooding is used. Note that this figure shows that the probability is

far larger than when traditional flooding is used. However, this figure is an unfair

comparison. Specifically, this figure, as the ones above, have the x-axis a function

of the time between the generation of TC messages. However, since the number of

hops a TC message is allowed to travel is controlled, hazy-sighted flooding greatly

reduces the number of transmissions. Hence, a fair comparison keeps the number

of messages transmissions fixed. Therefore, we must adjust the x-axis. Specifically,

we define the Equivalent Average Number of Topology Changes Directly Observed

Between TC Messages such that when this metric is x, then the TC generation

rate is such that number of transmissions generated by hazy-sighted flooding is the

same as the number of transmissions generated by traditional flooding when Average

Number of Topology Changes Directly Observed Between TC Messages is x. That

is, we can compare the performance of hazy-sighted flooding to traditional flooding

by adjusting the respective TC generation rates so that the number of transmission

generated by each method is the same.
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Figure 4.2: Difference in probability of a packet getting caught in a loop with
traditional and hazy-sighted flooding

Figure 4.2 shows the probability of a packet getting caught in a loop when

hazy-sighted flooding is used and when traditional flooding is used. As can be

observed, hazy-sighted flooding results in a far larger probability. For example,

when the average degree is 11 and the x-axis is 25, then the probability is increased

by a factor 11.

Figure 4.3 shows the probability that a packet get caught in a black hole.

Again, hazy-sighted flooding results in a significant increase in the probability. For

example, when the average degree is 22, the probability is increased by a factor of

15.

Figure 4.4 shows the average path stretch for hazy-sighted flooding and tra-

ditional flooding. Here we find that both methods are similar. We note that hazy-

sighted was specifically designed to not increase path stretch. It appears that this

method has been met. However, the design of this method did not consider loops

or black-holes, and these appear to occur far more frequently when hazy-sighted

flooding is used than when traditional flooding is used.
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Figure 4.3: Difference in probability of a packet getting caught in a black hole
with traditional and hazy-sighted flooding
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Figure 4.4: Average path stretch for hazy-sighted flooding and traditional flooding
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Chapter 5

APPROXIMATE DISTANCE ROUTING

Based on the insights gained from the above analysis of OLSR, a different

approach is justified. As noted above, the traffic generated by packets caught in

loops can easily exceed the traffic caused by path stretch. In some cases, the traffic

in loops exceeds all other traffic. Thus, loops must be eliminated. Next, while

loops are a primary concern, path stretch should be controlled. And of course,

there should not be black holes unless explicit information is given that the node is

unreachable. The analysis above also indicates that all links should be advertised.

In very dense networks, perhaps a fraction of links can be advertised, but very dense

networks are out of scope of this investigation.

Loops and black holes are caused by routers having inconsistent topology

information. Specifically, neighboring nodes have different views of the topology

and hence, compute different forwarding tables. If these neighbors’ estimates of

the topology differ enough, black holes and loops can form. In OLSR, routers

always have inconsistent topology information. For example, if router A and B are

neighbors, they will each learn the topology from TC messages, which all nodes

receive, and from Hello messages, which provide information about each routers

two-hop topology. Thus, if routers A and B have different two-hop neighborhood,

then they will have different views of the topology. It is precisely this inconsistent

topology information that causes loops and black holes.

To solve the loop problem, we note that routing can be decomposed into two

problems. First, the distance from each router to the destination is determined.
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Next, by comparing neighbors’ distances to the destination, a next hop is selected.

To solve loops, we require that routers use the same information to compute the dis-

tance to the destination, specifically, only topology information from TC messages

is used. Local topology information is used to compute the next hop. Since the

topology information received from TC messages can become stale, the computed

distance to the destination might be different from the actual distance to the des-

tination. Thus, we denote by D (A,T ) the actual distance (in hops) from router A

to destination T, and by D̃ (A, T ) the estimated distance, which is computed from

the current set of received TC messages. Since all routers receive the same set of

TC messages, all routers know the function D̃. Next, we show how D̃ is used to

compute forwarding tables and a condition that guarantees that loops do not exist.

5.1 Route Computation and Proof of Correctness

We denote the next hop from A toward destination T by n∗ (A, T ). To

compute n∗ (A, T ), we require the following definitions. Let N1 (A) be the routers

within one hops of A, let N1,2 (A) is the set of routers within one and two hops

of A, and let N2 (A) be the routers within exactly two hops of A, i.e., N2 (A) =

N1,2 (A) \ (A ∪N1 (A)). And finally, let V (A) := argminv∈N1,2(A) D̃ (v, T ). To

reduce notational clutter, in the following, we suppress the dependence on T . Thus,

n∗ (A) = n∗ (A, T ) and D̃ (v) = D̃ (v, T ).

We employ Algorithm 1 to compute the next hop. The intuition behind

Algorithm 1 is that a router forwards packets toward a target, which is a router in

its two-hop neighborhood that is estimated to be nearest to the destination. If the

D̃ is the actual number of hops to the destination, then there is at least one router,

v∗ (A), that is exactly two hops away such that D̃ (A) + 2 = D̃ (v∗ (A)). However,

because of stale topology information, D̃ might differ from the number of hops to

the destination. Consequently, as shown in Figure 5.1, v∗ (A) might only be one hop

away from A and we have have that D̃ (A) − D̃ (v∗ (A)) �= 2. On the other hand,

25



Algorithm 1 Computing the Next Hop from A Toward Destination T

1: If T is in A’s two hop neighborhood, forward directly to T.
2: if T ∈ N1(A) then
3: Select n∗(A) so that n∗(A) ∈ N1(A) ∩ N1(T )
4: else

5: if T ∈ N2 (A) then
6: Select n∗ (A) so that n∗ (A) ∈ N1 (A) ∩ N1 (T ).
7: else

8: # Otherwise, pick a target v∗ (A) ∈ N1,2 (A) as follows.
9: if V (A) ∩ N1 (A) �= ∅ then

10: Select the target v∗ (A) arbitrarily from V (A) ∩N1 (A),
11: Set the next hop to v∗ (A), i.e., n∗ (A) = v∗ (A)
12: else

13: Select v∗ (A) arbitrarily from V (A).
14: Select the next hop, n∗ (A) such that n∗ (A) is a neighbor of v∗ (A), i.e,

n∗ (A) ∈ N1 (A) ∩ N1 (v
∗ (A))

15: end if

16: end if

17: end if

Figure 5.1 also shows that the estimated distance to the next hop is not always

less than the estimated distance from A. These examples indicate that forwarding

can function correctly even when the estimated distance differs from actual distance.

Next we study the conditions that guarantee that Algorithm 1 will perform correctly

and not result in loops.

Assume the estimated distance has the following feature.

Assume that if A �= T , then A /∈ argminv∈N1,2(A) D̃ (n).

Then we have the following.

Theorem 1 If Condition 5.1 holds, then Algorithm 1 results in loop-free forwarding

and without black holes.

The proof of this theorem follows from the fact that the estimated distance

function eventually decreases along a path. Specifically, let p be a path followed by
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Figure 5.1: Because of router mobility, the topology on the left evolves to the
topology on the right. The value of D is indicated. On the left, D is
the number of hops to the destination. In the topology on the right,
packets follow the red path. Note that after the link break, the same
D still allows packets to be forwarded corretly.

a packet from A with destination T . Thus, p0 = A, p1 is the next hop from A, i.e.,

p1 = n∗ (A), and more generally, pk+1 = n∗ (pk). Then we have the following result.

Theorem 2 Assume Condition 5.1 holds and assume that T /∈ N1,2 (pk). Then

D̃ (v∗ (pk)) is nonincreasing in k (i.e., D̃ (v∗ (pk+1)) ≤ D̃ (v∗ (pk))) and either D̃ (v∗ (pk+1)) <

D̃ (v∗ (pk)) or D̃ (v∗ (pk+2)) < D̃ (v∗ (pk)).

Theorem 1 follow easily from Theorem 2.

[Proof of Theorem 1]If T ∈ N1,2 (pk), then Algorithm 1 will correctly forward

packets to T . Otherwise, suppose there is a loop, i.e., pk = pk+r for some r > 1. In

this case, we have D̃ (v∗ (pk+r)) = D̃ (v∗ (pk)), which contradicts Theorem 2. Hence,

loops are not possible. Black holes are not possible since Algorithm 1 will always

select a next hop.

To prove Theorem 2, we use the following lemmas.

D̃ (v∗ (A)) = minv∈N1,2(A) D̃ (v) and, from 5.1, D̃ (v
∗ (A)) < D̃ (A).

Since v∗ (A) ∈ V (A), the result follows from the definition of V (A).

If T /∈ N1,2 (A), then D̃ (v∗ (pk)) is nonincreasing, i.e., D̃ (v∗ (pk+1)) ≤ D̃ (v∗ (pk)),

or equivalently, D̃ (v∗ (n∗ (A))) ≤ D̃ (v∗ (A)).
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If v∗ (A) ∈ N1 (A), then the condition in line 9 of Algorithm 1 is true, and

hence n∗ (A) = v∗ (A), and, of course,

D̃ (n∗ (A)) = D̃ (v∗ (A)) . (5.1)

From the Lemma 5.1,

D̃ (v∗ (n∗ (A))) < D̃ (n∗ (A)) . (5.2)

Combining (5.1) and (5.2), we have D̃ (v∗ (n∗ (A))) < D̃ (v∗ (A)). Now if v∗ (A) /∈

N1 (A), line 13 and 14 fromAlgorithm 1 are applied. Therefore, v∗ (A) ∈ N1 (n
∗ (A)),

and hence, v∗ (A) ∈ N1,2 (n∗ (A)). By Lemma 5.1, D̃ (v∗ (n∗ (A))) = minv∈N1,2(n∗(A)) D̃ (v),

and so D̃ (v∗ (n∗ (A))) = minv∈N1,2(n∗(A)) D̃ (v) ≤ D̃ (v
∗ (A)).

If T /∈ N1,2 (A) and D̃ (v∗ (n∗ (A))) = D̃ (v∗ (A)), then D̃ (n∗ (n∗ (A))) =

D̃ (v∗ (A)).

Since D̃ (v∗ (n∗ (A))) = D̃ (v∗ (A)), we have that v∗ (A) �= n∗ (A). To see this,

suppose that otherwise, i.e., v∗ (A) = n∗ (A). Then, substituting, n∗ (A) for v∗ (A)

in D̃ (v∗ (n∗ (A))) = D̃ (v∗ (A)), we have D̃ (v∗ (n∗ (A))) = D̃ (n∗ (A)). However,

Condition 5.1 guarantees that D̃ (n∗ (A)) > D̃ (v∗ (n∗ (A))). Since T /∈ N1,2 (A) and

v∗ (A) �= n∗ (A), the condition in line 9 of Algorithm 1 must be false, and line 13 is

used to determine v∗ (A) and line 14 is used to determine n∗ (A), and hence

v∗ (A) ∈ N1 (n
∗ (A)) . (5.3)

By Lemma 5.1, D̃ (v∗ (n∗ (A))) = minv∈N1,2(n∗(A)) D̃ (v). Combining this with the as-

sumption of the lemma, we have D̃ (v∗ (A)) = D̃ (v∗ (n∗ (A))) = minv∈N1,2(n∗(A)) D̃ (v).

From (5.3), v∗ (A) ∈ N1,2 (n
∗ (A)), thus v∗ (A) ∈ V (n∗ (A)). From (5.3), we have

that v∗ (A) ∈ V (n∗ (A))∩N1 (n∗ (A)). Therefore, when computing the next hop from

n∗ (A), condition in line 9 of Algorithm 1 is true, i.e., V (n∗ (A))∩N0,1 (n
∗ (A)) �= ∅,

and hence, n∗ (n∗ (A)) ∈ V (n∗ (A))∩N0,1 (n
∗ (A)) and D̃ (n∗ (n∗ (A))) = D̃ (v∗ (A)).

If D̃ (v∗ (n∗ (A))) = D̃ (v∗ (A)), then D̃ (v∗ (n∗ (n∗ (A)))) < D̃ (n∗ (n∗ (A))).
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From Lemma 5.1, we have D̃ (v∗ (n∗ (n∗ (A)))) < D̃ (n∗ (n∗ (A))). From

Lemma 5.1, D̃ (v∗ (n∗ (A))) = D̃ (v∗ (A)) implies that D̃ (n∗ (n∗ (A))) = D̃ (v∗ (A)).

Combining these yields,

D̃ (v∗ (n∗ (n∗ (A)))) < D̃ (n∗ (n∗ (A))) = D̃ (v∗ (A))

[Proof of Theorem 2]From Lemma 5.1, we know that D̃ (v∗ (pk)) is non-

increasing in k. Suppose that D̃ (v∗ (pk+1)) < D̃ (v∗ (pk)), in this case, the conclusion

of the theorem holds. Otherwise, we must have that D̃ (v∗ (pk)) = D̃ (v∗ (pk)). In

this case, we can apply Lemma 5.1, and conclude that D̃ (v∗ (pk+2)) < D̃ (v∗ (pk)).

While the analysis above assumes that the hop count is the routing metric,

the above method works with any routing metric where link costs are positive.

In the analysis above, it is assumed that routers are aware of their two-hop

topology. If the routers are aware of their K hop topology, then the result above

still hold, where the number 2 is replaced by K.

5.2 Approximate Distance Routing

Theorem 1 indicates that in order to have loop-free forwarding, we only need

to enforce Condition 5.1. Specifically, we have the following

Rule 1 If routerA determines that D̃ (A, T ) <∞ and D̃ (A, T ) = minv∈N1,2(A) D̃ (n, T ),
then it should generate a TC message advertising all links.

Note that we relax Condition 5.1 for unreachable destinations and we set

D̃ (A, T ) =∞ if a destination is unreachable.

Figures 5.1 and 5.2 shows an example of how the links breaks do and do not

cause TC messages to be generated.

Note that the following is straightforward to prove the following.

Theorem 3 Under Rule 1, link formations will not cause a topology announcement

to be generated.
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Figure 5.2: Continuing the evolving topology shown in the previous figure, we
see that only after several link breaks do routers need to generate TC
messages and recompute P.

20 2 1 D19

18 17 16 15 14 13 12

Figure 5.3: An example of path stretch. The router with P=19, will forward to
the router with P=18, and so on, and hence packets will follow a path
with 8 hops instead of the optimal length of 4 hops.

Consequently, while Rule 1 will eliminate loops, as shown in Figure 5.3,

significant path stretch is possible. The problem in Figure 5.3 is that D̃ experiences

a large jump between two neighbors; it jumps from 20 to 2, whereas if D̃ was equal

to the number of hops to the destination, the value of D̃ at neighboring routers

would differ by at most one. Path stretch can be reduced by the reducing jumps in

the value of P by using the following rule.

Rule 2 If D̃ (A,T )−minv∈N1(A) D̃ (v, T ) > JumpThreshold, then router A should
generate a TC message.

If D̃ (A,T ) is the number of hops fromA to T , then D̃ (A, T )−minv∈N1(A) D̃ (v, T ) =

1. Thus, JumpThreshold = 1 reduces path stretch. However, path stretch can still

occur since it is possible that D̃ (A,T )−minv∈N1(A) D̃ (v, T ) = 0 and still satisfy Con-

dition 5.1. On the other hand, from Theorem 2 it follows that if JumpThreshold =
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1, then D̃ (A, T ) ≤ 2D (A, T ), where D (A, T ) is the actual number of hops from A

to T .

One important case where Rule 2 is applied is when a network partition is

resolved. For example, suppose the network was partitioned so that A cannot reach

T and hence D̃ (A, T ) = ∞. Then, suppose a link forms between A and B, where

B can reach T , i.e., D̃ (B, T ) <∞ and D̃ (A, T ) =∞. Thus, D̃ (A, T )−D̃ (B, T ) =

∞ > JumpThreshold and A will generate a TC message.

We denote JumpThreshold = ∞− 1 to be such that a TC message is gen-

erated when a network partition is resolved, but in any other case, jumps in D̃ can

be arbitrarily large without generating a TC message. More specifically, considering

Theorem 3, when JumpThreshold = ∞− 1, the only time a new link triggers a

topology advertisement is when the link resolves a network partition.

If link metrics are integers, then there is no loss of generality to assume that

JumpThreshold is an integer. However, as will be seen shortly, the performance

jumps when JumpThreshold goes from one to two. Thus, we attempt to consider

intermediate values of JumpThreshold by using the following rule.

Rule 2’ After a topology change is detected, a TC message is generated with
probability

min (1,max (0,

D̃ (A, T )− min
v∈N1(A)

D̃ (v, T )− JumpThreshold

))

For example, if JumpThreshold = 1.9 and a detected topology change re-

sults in D̃ (A,T ) − minv∈N1(A) D̃ (v, T ) = 2, then a TC message is generated with

probability 0.1.

5.3 Performance of Approximate Distance Routing

Since loops and black holes are impossible, there is no need to estimate the

probability of their occurrence. However, path stretch is still possible. Figure 5.4

31



shows the relative path stretch for different values of JumpThreshold. For reference,

we denote by JumpThreshold = 0 to be the case where every topology change is

immediately advertised, and hence there is no path stretch.

As observed, the path stretch is quite small for all values of JumpThreshold.

For example, when JumpThreshold = ∞− 1, the path stretch is about the same

as the path stretch that occurs in OLSR when routers observe around five topology

changes between the generation of TC messages.
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Figure 5.4: Path Stretch for the proposed approach as a function of the
JumpThreshold. "Every" implies that a TC message is generated
for each topology change, which, of course, results in no path stretch.
-1 implies that the only link formations that trigger TC messages are
those that resolve a network partition.

As expected, when JumpThreshold = 1, the path stretch is quite small, how-

ever, it jumps when JumpThreshold = 2 and only slightly increases as JumpThreshold

is further increased. This jump in the path stretch motivates the using fractional

values of JumpThreshold and using Rule 2’. However, Figure 5.4 includes the

path stretch for JumpThreshold = 1.9 and the jump in path stretch persists. One

implication of this is that randomly generating TC messages is different from the

generation of TC messages by Rule 2 and in order to satisfy Condition 5.1, which

evaluate the relationship between the local topology and global topology information

in order to determine whether a TC message should be triggered.

Figure 5.5 shows the number of topology changes between the generation of

TC messages. Note that since TC messages are triggered by specific changes in the

topology, they are aperiodic. Figure 5.5 shows that for JumpThreshold = ∞− 1,
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the number of topology changes is 40% larger than the degree. For example, when

the degree is 8.25, the average number of topology changes directly observed by a

router between the generation of TCmessages is about 1.4×8.25 or 11.55. Since links

break and form at the same rate, if the number of topology changes is 1.4 multiplied

by the degree, then approximately 70% of routers neighbors have changed before

a TC message is generated. Moreover, 1.4×degree is the mean, when degree= 22,

routers might observe over 100 topology changes before finally generating a TC

message. Consequently, routers typically have a limited sense of the actual topology;

nonetheless, there are no loops, no black holes, and path stretch is quite small.

This performance should be compared to the performance achieved by OLSR.

For example, we compare the proposed approach to OLSR when the degree is 8 and

when the average number of topology changes between TC messages is 1.4 × 8.

Table 5.1 provides such a comparison. Note that as discussed in Section 3.2.2, the

BEP, which is given by (3.1), is the probability of a loop that results in the same

amount of traffic generated by packets caught in loops as all the traffic not in loops.

When the path length is 8, BEP (8) = 0.03. The table below shows that while

the proposed approach suffers from no loops or no black holes and only limited

path stretch, reducing the TC generation period of OLSR to achieve a the same TC

message generation rate results causes the probability that a packet gets caught in

a loop to be approximately the same as the BEP.

Finally note that OLSR cannot guarantee loop-free forwarding unless every

topology change triggers a TCmessage. As noted in Section 3.1, when OLSR triggers

a TC message, several nearby nodes also trigger TC messages. Consequently, if r

is the rate that a router observes topology changes, the proposed approach triggers

TC messages at a rate r/ (1.4× degree), while in order to guarantee loop-freeness,

OLSR triggers TC messages at approximately a rate of 4 × r or 2 × r, depending

on the implementation. In this way, the proposed approach results in dramatically
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Figure 5.5: The average number of topology changes between TC message gener-
ation when the proposed approach is used. Note that these topology
changes include link breaks as well as link formation. Half of the
topology changes are from link breaks.

lower overhead than OLSR, for example, if the degree is 22, then the overhead is

reduced by more than 2 orders of magnitude.

Degree
1.4×
degree

P8(loop) P8(no path) PS(8)

8.25 11.5 0.05 0.03 10%
11 15.4 0.03 0.02 12%
16.5 23 0.025 0.01 14%
22 31 0.02 0.008 15%

Table 5.1: Overhead reduction with different node degree
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Chapter 6

ANOTHER APPROXIMATE DISTANCE METRIC

The routing method described above can easily be extended to a class of

routing algorithms by redefining the distance metric. For example, let

D̂ (v, T ) = 1+ min
n∈N1(v)

⌊
D̂ (n, T )

⌋
+1/

(
1 + #

{
w ∈ N1 (v) :

⌊
D̂ (w, T )

⌋
= min

n∈N1(v)

⌊
D̂ (w, T )

⌋})
,

(6.1)

where ⌊r⌋ is the floor of r, i.e., the largest integer that is no larger than r. Also,#S is

the number of elements in set S. To explain D̂, note that
⌊
D̂ (n, T )

⌋
is the number of

hops from n to T . Also,
{
w ∈ N1 (v) :

⌊
D̂ (w,T )

⌋
= minn∈N1(v)

⌊
D̂ (w, T )

⌋}
is the

set of neighbors of v that are one hop closer to T than v is. Thus, if the topology

information is correct, then the next hop from v will be a neighbor n that is one

hop closer to T , i.e., if n is the next hop from v, then
⌊
D̂ (v, T )

⌋
= 1 +

⌊
D̂ (n, T )

⌋
.

However, if the topology information is stale, then it is possible that none of v’s one

or two hop neighbors n satisfy
⌊
D̂ (v, T )

⌋
= 1 +

⌊
D̂ (n, T )

⌋
. On the other hand,

there might be a router n in the two-hop neighborhood such that D̂ (v, T ) > D̂ (n, T ).

Thus, router v can forward packets toward n and packets will eventually reach the

destination, T . Note that the approach described in Section 5.2 ensures that there is

always a node n ∈ N1,2 (v) such that
⌊
D̂ (v, T )

⌋
= 1+

⌊
D̂ (n, T )

⌋
. Thus, as compared

to the distance metric described in Section 5.2, the distance metric described here

will lead to increase the time between TC message generation and increase path

stretch.
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Figure 6.1: The average number of topology changes between TC messages when
the distance metric D^is used

We note that the basic idea of the metric defined in (6.1) is that the integer

part of D̂ (v, T ), i.e.,
⌊
D̂ (v, T )

⌋
, is the traditional distance to the destination, with

the fractional part of D̂ (v, T ) is used to increase the time between TC messages.

Clearly, there are a wide range of ways to define the integer part and the fractional

part of D̂ (v, T ). Moreover, instead of mixing an integer valued metric (such as

hop count), it is possible to mixed a metric such as expected transmission time to

destination [22] and some other metric to increase the time between TC message

generation.

Figure 6.1 shows the average number of topology changes between TC mes-

sages when this metric is used, while Figure 6.2 shows the path stretch. As can be

observed, both of these metrics are a bit larger than the metric used in Section 5.2.

Specifically, while the metric used in Section 5.2 results in the TC message every

1.4×degree topology changes, this metric results in a TC message every 1.7×degree

topology changes. However, the path stretch is slightly increased, namely, for long

paths, the path stretch for this metric is 7.5% whereas the metric described in Sec-

tion 5.2 results in a path stretch of around 4.5%. And of course, there are no loops

and no black holes.

The basic achievement of approximate distance routing is that it greatly
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is the same as achieved by approximate distance routing
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reduce the overhead without causing loops. It is useful to view the behavior of

OLSR when TC messages are generated as infrequently as the proposed methods

do. To this end, Figure 6.3 shows the fraction of transmissions from packets caught

in loops when the number of topology changes between TC messages is 1.7×average

degree and 1.4×average degree. Here we assume that packets’ initial TTL is 255,

which is often the default value in Linux. Therefore, when a packet is stuck in a loop,

it will generate approximately 255 transmissions. Specifically, letting ploop (L) be the

probability that a packet gets caught in a loop, then the number of transmissions

from packets caught in loops is 255
∞∑

L=3

p (L) ploop (L), where p (L) is the probability

that the destination is L hops away. The number of transmissions from packets not

caught in loops is
∞∑

L=1

Lp (L) (1− PLoop (L)). The ratio of these quantities is shown

in Figure 6.3. Of course, not only do loops cause unneeded transmissions, but

they also essentially disconnect pairs of nodes. Figure 6.4 shows the relative path

stretch that would occur if traditional routing is used, but the number of topology

changes between TC message generation is 1.7×average degree and 1.4×average

degree. Note that for low degree, the path stretch for both methods is not very

different; approximate distance routing results in path stretch of between 5% and

7.5%. However, as the degree increases, the path stretch increases, while the path

stretch is roughly unchanged in the case of approximate distance routing.
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changes is the same as achieved by approximate distance routing
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Chapter 7

CONCLUSION

OLSR has been the focus of considerable effort by the IEFT-MANET work-

ing group, with the specification of the second version nearing completion. This

Thesis finds several serious problems with OLSR. Specifically, when faced with stale

topology information, OLSR generates loops, black holes, and path stretch. These

problems are caused by the fact that in OLSR, different routers use different topol-

ogy information when computing routes. These problems are further exasperated

by OLSR only advertising links to routers selected as MPRs. After identifying these

problems, we propose a solution which includes using a perhaps stale, but globally

consistent, estimate of the number of hops to a destination. The approach leads

to loop-free forwarding as long as a mild condition is maintained. This condition

is maintained by routers generating TC messages if the local topology information

indicates that the global topology information is too stale. This approach leads to

router generating TC messages infrequently and hence generates far less overhead

than OLSR.
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