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ABSTRACT 

 
Developed by Dr. Saaty in the early 1970’s, the Analytic Hierarchy 

Process is a multi-criteria decision making tool. The initial step in applying AHP is to 

accurately decompose a decision problem into a decision hierarhcy, avoiding both the 

overspecification (including irrelevant criteria/alternatives) and underspecification 

(omitting relevant criteria/alternatives). 

Aull-Hyde and Duke (2006) introduced the concept of a minimal possible 

priority weight, the smallest priority weight for any alternative/criterion among n 

alternatives/criteria. They suggested using the minimal priority weight to detect an 

over-specified hierarchy.  If the priority weight associated with a specific 

alternative/criterion is within 10% of the corresponding minimal possible weight, the 

alternative/criterion should be considered for omission from the decision hierarhcy.  

However, they assumed perfect consistency when determining the minimal possible 

priority weight.  

The first focus of the thesis is to extend their methodology for the case of 

an inconsistent pairwise comparison matrix. For the case of a 3x3 pairwise comparison 

matrix, the minimal possible priority weight is shown to be a unique function of the 

consistency ratio.  For higher dimension pairwise comparison matrices, the concept of 

a consistency ratio set is used to group potential pairwise comparison matrixes 



 x

according to their consistency ratios. Within each set, we propose a representative 

matrix for that set and use its smallest priority weight as the minimal weight for the 

entire set. Moreover, we numerically show that the minimal priority weight is a 

decreasing function of the consistency ratio, indicating that higher levels of 

inconsistency will generate smaller minimal prority weights.  

The second focus of the thesis is to investigate any potential link between 

over-specified hierarchies and the rank reversal phenomenon, via Monte Carlo 

simulation. The analysis reveals that, as expected, the risk of rank reversal (in matrices 

having an acceptable level of inconsistency and are at risk for over-specification) 

increases dramatically as the number of decision alternatives increases. Given that a 

pairwise comparison matrix, with an acceptable level of inconsistency, exhibits rank-

reversal, the likelihood that the associated hierarchy is at risk for over-specification is 

no more than 5%.  This result indicates that no strong link exists between an over-

specified hierarchy and rank reversal phenomenon.
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Chapter 1  

 INTRODUCTION  

Decision makers frequently face the challenge of evaluating multiple 

decision alternatives from the perspective of numerous criteria in order to select the 

single ‘best’ alternative.  Multi-attribute decision making models can assist decision 

makers in navigating this type of decision making process.  Several specific multi-

attribute-decision-making methodologies exist:  Multi-attribute utility theory, goal 

programming, the Analytic Hierarchy Process and the Analytic Network Process. This 

paper focuses on the Analytic Hierarchy Process (AHP).  Specifically, this paper 

presents new insights about the AHP that can potentially improve the value of 

information generated from the AHP.   

Thomas Saaty developed the AHP in the early 1970’s.  The impetus for its 

development occurred during the late 1960s when he directed research in the area of 

arms control and disarmament for the U.S. State Department.  Despite the unsurpassed 

talent of his work group, he was dissatisfied with the outcome of the group’s work 

(Saaty, 1996).  Saaty continued to be troubled by the lack of a ‘practical and 

systematic methodology’ for setting priorities to assist in decision making.  This 

pervasive issue motivated his development of the Analytic Hierarchy Process, a 

methodology currently used by academics, businesses, and governmental agencies 
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(Duke and Aull-Hyde, 2002; Al Khalil, 2002; Chen, 2006; Liu and Hai, 2005; Wong 

and Li, 2008, etc).   

The initial step in applying the AHP methodology is to decompose a 

multi-criteria problem into a decision hierarchy.  This hierarchy graphically depicts 

the major criteria, the minor criteria (also known as sub-criteria) and all decision 

alternatives. Figure 1.1 shows a three level hierarchy with 2 criteria and 2 alternatives.  

When applying the AHP, an important, if not crucial, step is the design of a decision 

hierarchy that accurately specifies those criteria, and only those criteria, viewed as 

being essential in evaluating all possible decision alternatives.  The hierarchy should 

not include irrelevant criteria (known as over-specification); the hierarchy should not 

omit relevant criteria (known as under-specification).  Over-specification or under-

specification of a hierarchy can generate biased results.  

Therefore, the first step in applying AHP -- specifying an accurate 

hierarchy -- is crucial.  Given the very scant research literature on how to specify a 

hierarchy, Aull-Hyde and Duke (2006) proposed an iterative methodology that 

identifies potentially irrelevant criteria. If the methodology identifies a potentially 

irrelevant criterion, the decision maker can re-evaluate the validity of this criterion and 

re-specify the hierarchy accordingly. This thesis extends their original work into the 

inconsistent situation. 

The term “irrelevant alternative/criterion” has two meanings: (1) in the 

first part of the thesis, it generally means the alternative/criterion that should not be 

included into the hierarchy; and (2) in the second part of the thesis, it particularly 
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means the alternative/criterion that is a copy or near copy of existing 

alternatives/criteria. 

Since Saaty introduced the AHP in the late 1970s, the method has not 

been without controversy.  Long time debate about the rank reversal phenomena of 

AHP has, at times, cast doubt on the credibility of the method (Belton and Gear 1983, 

Dyer 1983, 1985, 1990a, 1990b).  Rank reversal refers to a reversal of the rank of 

decision alternatives when an alternative is either added or deleted.  A second focus of 

this thesis is to investigate a potential link between a misspecified hierarchy and 

occurrence of rank reversal. Preliminary evidence suggests that, for specific cases, the 

inclusion of an irrelevant criterion or an irrelevant decision alternative in the hierarchy 

may lead to rank reversal.   

This goal of this thesis is two-fold:  (1) to propose a methodology that 

detects a potentially over-specified (i.e., inclusion of irrelevant criterion/criteria) 

hierarchy and (2) to investigate a potential link between an over-specified hierarchy 

and the phenomenon of rank reversal.  The thesis is organized as follows.  Chapter 2 

reviews the AHP methodology and provides some examples in which rank reversal 

occurs.  Chapter 3 reviews the research literature on both the practical applications of 

AHP and the long-running debate over the rank reversal phenomena of AHP.  Chapter 

4 presents the proposed methodologies to identify a potentially over-specified 

hierarchy.  Chapter 5 will try to find the link between over-specified hierarchy and 

rank reversal by conducting simulation.  Chapter 6 will provide a summary, general 

discussion and suggestions for further research.  
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Figure 1.1 An example of a single level hierarchy with 2 criteria and 2 

alternatives 
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Chapter 2  

 THE ANALYTIC HIERARCHY PROCESS 

 
2.1 Mathematical Methodologies of AHP 

Developed by Saaty (1980), the Analytic Hierarchy Process (AHP) is a 

popular multi-attribute decision making tool that has been successfully applied to a 

wide variety of decision making situations.  It is a compositional methodology that 

synthesizes a decision maker’s preference judgments for each of the decision 

alternatives, under each criterion within a decision hierarchy, to generate a quantitative 

measure of the decision maker’s relative preference for each decision alternative.  

AHP not only enables a single decision maker to select a most suitable alternative, but 

the methodology can also be extended to group decision making (Saaty, 2007).   

The AHP methodology involves the following steps: 

Step1: Decompose a decision problem into a decision hierarchy, 

including all criteria, sub-criteria (if applicable) and decision alternatives. 

Step 2: Conduct pairwise comparisons of all decision alternatives under 

each criterion, based on Saaty’s 9-point preference rating scale,  

Step 3: Derive the local priority weights using the eigenvector method (or 

other approximation methods.) 
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Step 4: Synthesize the local priority weights to generate the overall 

preference weights for each decision alternative.    

Step 5: Check the inconsistency level of the decision maker’s pairwise 

comparisons.  If the level of inconsistency is unacceptable, then the decision maker 

should revise the pairwise comparisons described in Step 2.    

In Step 1, specification of the decision hierarchy must reflect all criteria 

that are relevant to selection of a single decision alternative as well as all relevant 

decision alternatives.  Aull-Hyde and Duke (2006) summarized three methods to 

specify the hierarchy: (1) specification by an external expert (or a team of experts) 

who is not the decision maker, (2) specification based on relevant criteria/alternatives 

reported in the research literature, and (3) specification by the decision maker.  An ill-

specified hierarchy will result in either over-specification or under-specification.  An 

over-specified hierarchy includes irrelevant criteria and/or decision alternatives; an 

under-specified hierarchy omits relevant criteria and/or decision alternatives. Both 

cases generate biased results.  This thesis proposes a method that provides feedback to 

a decision maker that the hierarchy may be over-specified.  The proposed method in 

this thesis does not address the issue of an under-specified hierarchy.   

To conduct pairwise comparisons of all relevant criteria/decision 

alternatives, Saaty proposed the formation of an n x n pairwise comparison matrix A = 

{aij) where the aij values are derived according to the 9-point scale (Saaty, 1980, p54) 

presented in Table 2. 1. The pairwise comparison matrix assumes the following form: 
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                                     (2.1.1) 

 The matrix A is a positive reciprocal matrix where element ija is 

interpreted as the ratio of the preference of alternative i over the preference of 

alternative j.  The value of element ija is the reciprocal of that of jia : 1
ji

ij
a a= .  

All diagonal elements assume the value 1.  If all pairwise comparison ratings are 

consistent, then the aij elements in matrix A will satisfy  

                                          ij jk ika a a⋅ =  for all i, j, k.                                          (2.1.2) 

The key component of AHP is the derivation of relative priority weights 

{ } 1

n
i i

w
=

given the pairwise comparison matrix A.  The ith element of the w vector 

represents the final priority weight given to criterion/alternative i.  Note that 3wi = 1.  

Saaty (1980) proposed the eigenvector method, which uses the normalized principle 

eigenvector of A, to derive the relative priority weight vector w.  

If A is consistent (i.e., satisfies equation 2.1.2.), ija  can be expressed as 

i
ij

j

w aw = , for all i and j (Taha, 2006). Thus, if A is consistent, then 
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                    (2.1.3) 

This system of equations indicates that n, the total number of 

criteria/alternatives, is the eigenvalue of the pairwise comparison matrix A and the 

vector of priority weights { } 1

n
i i

w
= is the right eigenvector that corresponds to the 

eigenvalue n.  Saaty (Saaty, 1980, p167) proved that n is the maximal eigenvalue of 

matrix A.  Thus,  

                     max 1 2, ( , , , )nA W n W W W w w wλ⋅ = ⋅ = ⋅ = L                    (2.1.4) 

Eigenvalues and eigenvectors are continuous functions of the matrix 

elements, which implies that relatively small changes in the ija will result in relatively 

small changes in the eigenvalue and eigenvector.  Thus, if the matrix A exhibits a 

small degree of inconsistency, then Aw can be approximated by nw, or Aw . nw.  For 

this reason, Saaty (1980) proposed the use of the right normalized principle 

eigenvector as the priority weight vector w.  To simplify calculations, Saaty also 

proposed several approximation methods to obtain the relative priority weight vector 
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w of which the additive normalized method is the simplest.  Using the simple additive 

normalized method, the relative priority weight vector is computed as follows: 

                                   

'

1

, , 1, 2 , ,ij
nij

ij
i

aa i j n
a

=

= =
∑

K

                         (2.1.5) 

                                      

'

1

1 , 1, 2 , ,
n

i ij
j

w a i n
n =

= =∑ K
                        (2.1.6) 

As stated earlier, Aw ≈ nw if the matrix A exhibits a ‘small degree’ of 

inconsistency.   A key issue in using AHP is to quantitatively define a ‘small degree’ 

of inconsistency.  If the matrix A of pairwise comparisons is consistent (i.e., equation 

2.1.2 holds), then the maximal eigenvalue is simply n, the dimension of the pairwise 

comparison matrix A (which is the number of criteria/decision alternatives).  If A is 

not consistent (also termed ‘inconsistent’), Saaty (Saaty, 1980, 170) proved that the 

maximal eigenvalue is no smaller than n, or max nλ ≥ . Because slight changes in the aij 

elements of the pairwise comparison matrix A result in slight changes in the 

eigenvalue and eigenvector, the difference between the maximal eigenvalue maxλ and n, 

max nλ − , can be used as the indicator of the level of inconsistency within matrix A. 

Saaty defined the following terms to develop a quantitative measure of the 

degree of inconsistency within a pairwise comparison matrix A.  Define the 
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consistency index as CI = m a x

1
n

n
λ −

−
 and the random index RI = 

1.98( 2)n
n
−

.   CI 

measures the degree of inconsistency of A (i.e., the difference between 8max and n, 

adjusted for the dimension of the matrix A).   RI is the corresponding measure of the 

degree of inconsistency of a pairwise comparison matrix of dimension n whose 

elements are randomly generated.  The consistency ratio CR, defined as CR = CI/RI, 

is the ratio of CI to RI.  CR is the quantitative measure, proposed by Saaty (1980), of 

the degree of inconsistency of a pairwise comparison matrix.  Saaty (1980) suggested 

that a pairwise comparison matrix A with a corresponding CR of no more than 10% 

would qualify as having an ‘acceptable small degree’ of inconsistency.  Thus, for a 

pairwise comparison matrix A with CR ≤ .10, Aw suffices as an approximation of nw 

and, therefore, use of the right normalized principle eigenvector w serves as an 

acceptable measure of the relative priority weights associated with the pairwise 

comparison matrix A.  If a given pairwise comparison matrix A has a CR value 

exceeding 10%, if possible, the decision maker is advised to re-evaluate his/her 

pairwise comparison ratings.  

 

2.2 An AHP Example 

Saaty (1980, p46) presented the following example to illustrate the 

concepts and methodologies of the AHP.   There are three major users of energy in the 
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U.S.:   Household users (C1), transportation (C2), and power generating plants (C3).  

Suppose we wish to allocate weights to each of these energy users according to their 

overall contribution to social welfare.  We feel that three criteria should be used to 

define ‘contribution to social welfare’: Contribution to economic growth, contribution 

to environmental quality and contribution to national security.   The corresponding 

hierarchy is illustrated in Figure 2.1.  The pairwise comparison matrices, as well as 

final priority weights, are shown in Tables 2.1 and 2.2.  

From Tables 2.2 and 2.3, the CR value is less than 10% for all four 

pairwise comparison matrices.   In fact, the pairwise comparison matrix for the three 

criteria is consistent because CR = 0.  Thus, inconsistency is not an issue.   

Also from Table 2.2, wcrit = (0.65, 0.13, 0.22) is the vector of relative 

priority weights for the three criteria.  We see that economic growth is 5 (0.65/0.13) 

times as important as environmental impact and about 3 times as important as national 

security.           

Table 2.3 lists the relative priority weight vectors for each group of users 

with respect to each criterion.  Denote these three vectors as wc1, wc2 and wc3.  The 

final composite relative priority weight vector w for the three groups of users is 

computed as w = 0.65 wc1 + .13 wc2 + 0.22 wc3 = (0.62, 0.26, 0.12).  We can conclude 

that the social contribution of household users is nearly three times greater than that of 

transportation and nearly six times greater than that of power generating plants.  
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2.3 Examples of Rank Reversal in AHP 

AHP has been criticized due to the possibility of rank reversal when using 

the methodology.  Rank reversal occurs when the addition or deletion of a decision 

alternative results in a change of the relative rankings of the remaining alternatives.  

First observed by Belton and Gear (1983), the issue of rank reversal has generated a 

long-running debate in the research literature regarding the credibility of AHP.  Two 

famous examples of rank reversal occur in the literature.  These examples are 

presented below.    

Hochbaum (2006) considered the 4 x 4 pairwise comparison matrix below.  

After deleting alternative 4, the ranks of the remaining three alternatives change.  

 

 

                                                                                                                                 (2.3.1) 

 

 

The priority weights for the initial 4 x 4 comparison matrix are (0.335, 

0.347, 0.273, 0.046).  After the deletion of alternative 4, the weights are (0.373, 0.356, 

0.271). After the deletion of alternative 4, the ranks of alternatives 1 and 2 change.  

The second example by Belton and Gear (1983) is the example most cited 

in the research literature.  Assume three decision criteria, each of equal importance 

and three decision alternatives, namely A, B and C.  The pairwise comparison 

matrices for the Belton and Gear example are given in Table 2.4 below.   

1 1.2 1.5
1/1.2 1 1.2
1/1.5 1/1.2 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 1.2 1.5 6
1/1.2 1 1.2 8
1/1.5 1/1.2 1 7
1/ 6 1/ 8 1/ 7 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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Given that the three criteria are equally important, the final composite 

weights for alternatives A, B, and C are (0.4512, 0.4697, 0.0791).   Belton and Gear 

now introduce a new alternative D which is a copy of B.   When incorporating this 

additional ‘duplicate’ alternative into the hierarchy, the final composite weights for A, 

B, C, and D are (0.3654, 0.2889, 0.0568, 0.2889). Prior to adding alternative D, B is 

preferred over A (i.e., A p  B).   Upon adding alternative D, A is preferred over B (i.e., 

A f  B). 
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Table 2.1 The AHP pairwise comparison 9-point rating scale 

 
aij value Meaning 

aij = 1 criteria i and j equally important 

aij = 3 criterion i slightly more important than criterion j, 

aij = 5 criterion i moderately more important than criterion j, 

aij = 7 criterion i strongly more important than criterion j, 

aij = 9 criterion i extremely more important than criterion j, 

aij = 2, 4, 6, 8 represent intermediate values of importance between the two 

criteria. 
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Table 1.2 Pairwise comparisons for criteria (λmax=3, CR = 0) 

 
  Econ Growth Environmental 

Impact 

National 

Security 

Weights 

Econ Growth 1 5 3 0.65 

Env. Impact 1/5 1 3/5 0.13 

National 

Security 

1/3 5/3 1 0.22 
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Table 2.3 Pairwise comparison matrices for each user group under each 
criterion and corresponding priority weights 

 
Criterion Alternative C1 C2 C3 Weights CR 

Economic 

Growth 

C1 1 3 6 0.65 0 

C2 1/3 1 2 0.23 

C3 1/6 1/2 1 0.12 

Environmental 

Impact 

C1 1 2 7 0.59 0.02 

C2 1/2 1 5 0.33 

C3 1/7 1/5 1 0.08 

National 

Security 

C1 1 2 3 0.54 0.02 

C2 1/2 1 2 0.30 

C3 1/3 1/2 1 0.16 
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Table 2.4 Pairwise Comparison Matrices for the Belton and Gear Example 

 

 Alternative A B C Weights 

Criterion 1 A 1 1/9 1 1/11 

B 9 1 9 9/11 

C 1 1/9 1 1/11 

Criterion 2 A 1 9 9 9/11 

B 1/9 1 1 1/11 

C 1/9 1 1 1/11 

Criterion 3 A 1 8/9 8 8/18 

B 9/8 1 9 9/18 

C 1/8 1/9 1 1/18 
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Figure 2.1 The Decision Hierarchy 
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Chapter 3  

 LITERATURE REVIEW 

 
3.1 Previous Methods to Establish the Decision Hierarchy 

The Analytic Hierarchy Process has been successfully applied to a wide 

variety of decision situations, such as project management (AL-Harbi, 2001; Al Khalil, 

2002), quality control (Lee and Kozar, 2006), resource allocation (Cheng and Li, 2001; 

Hsu, Wu and Li, 2008), land preservation (Aull-Hyde and Duke, 2002), and multiple 

evaluation applications (Chen, 2006; Liu and Hai, 2005; Wong and Li, 2008). In 

general, the AHP methodology can be applied to any decision making process that 

involves hierarchy structuring, scale measurement, and synthesis.    

As discussed in Chapter 2, applying the AHP methodology is a five-step 

process that consists of:  (1) constructing a decision hierarchy, (2) generating pairwise 

comparisons, (3) deriving local priority weights, (4) synthesizing the local priority 

weights to generate global priority weights and (5) checking pairwise comparison 

matrices for acceptable inconsistency levels.  The first step -- hierarchy construction-- 

is crucial.  Decision makers must avoid both over-specification and under-

specification of the hierarchy; otherwise, results will be biased. 



 20

The research literature provides no universal method for decision makers 

to generate a decision hierarchy or check the credibility of a hierarchy. Three methods 

currently exist for specifying a hierarchy (Aull-Hyde and Duke, 2006): (1) 

specification by an expert (or group of experts) who neither participates in the decision 

making process, nor has any vested interest in the outcome of the decision making 

process, (2) specification based on criteria/alternatives deemed to be relevant in 

research literature, and (3) specification by the decision maker 

Specification by an external expert.  The decision maker may consult an 

expert or survey a group of experts to construct the decision hierarchy (Chan, Kwok 

and Duffy, 2004; Cheng and Li, 2001; Liu and Hai, 2005; Kurttila, Pesonen, Kangas 

and Kajanus, 2000).   

Cheng and Li (2001) used AHP to identify key information to more 

efficiently allocate resources for a construction project. Two experts involved in the 

construction project were asked to determine the major criteria of the decision 

hierarchy.  They acknowledge that “although opinions from two experts may only 

provide a very rough picture, it is still appropriate in this exploratory study.”   Liu and 

Hai (2005) applied AHP to supplier selection in supply chain management.  They 

specified selection criteria and sub-criteria based on the opinions of 60 managers and 

supervisors.  

Specification based on the previous research literature.  The decision 

hierarchy is typically constructed based on previous research literature (Scholl, 

Manthey, Helm and Steiner, 2005; Chen, 2006; Wang and Li, 2008; Duke and Aull-
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Hyde, 2002; AL-Harbi, 2001; Al Khalil, 2002; Hsu, Wu and Li, 2008; R. Banuelas 

and J. Antony, 2007; Lee and Kozar, 2006).  Duke and Aull-Hyde (2002) used AHP to 

identify public preferences for land preservation. Based on previous empirical studies 

by Kline, Wichelns and Rosenberger (1998), the preference criteria used in their study 

were ‘preserves agriculture’, ‘improves environment’, ‘controls development’ and 

‘enhances open space’. Chen (2006) used AHP to select a convention site location.  

Based on a review of relevant research literature, the preference criteria used to 

specify the hierarchy were meeting and accommodation facilities, costs, site 

environment, local support, and extra conference opportunities.  Sub-criteria were also 

selected based on past reported studies. 

Specification by the decision maker. In this case, decision makers should 

have a deep understanding of the overall objective and sufficient knowledge to 

decompose the problem into a series of criteria and sub-criteria.  Given that this 

approach is usually the most informal and subjective; hierarchies specified solely by 

the decision maker may be more likely to be ill-specified.   

In summary, there is no universal method to specify an AHP decision 

hierarchy.  Decision makers can select criteria and sub-criteria based on the previous 

studies, experts’ opinions or their own specifications.  Regardless of how the hierarchy 

is constructed, the decision maker should take steps to ensure that the hierarchy is 

neither over-specified nor under-specified.  Aull-Hyde and Duke (2006) proposed an 

iterative method to detect potentially over-specified hierarchy under consistency. The 

first goal of this thesis is to extend their method into inconsistent situation.  
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3.2 The Controversy over Rank Reversal in AHP 

AHP has suffered serious criticism due to its potential for rank reversal.  

As illustrated in Chapter 2, Belton and Gear (1983) pointed out that adding a copy of 

an existing alternative into the decision hierarchy can potentially change the rank of 

previous alternatives.  They suggested that normalizing the local priority weights by 

the maximal element of each local priority column, instead of the column sum, would 

eliminate the rank reversal phenomenon.  Belton and Gear’s example essentially 

generated a protracted debate about the validity of AHP.  Dyer (1983, 1985) presented 

another rank reversal example to further question the credibility of AHP.  He argued 

that adding an alternative that was even a near-copy of an existing alternative could 

also cause rank reversal.  

In response to Dyer’s challenge, Saaty (1983, 1987) argued that if relative 

priority weights for two alternatives were within 10% of each other, then the decision 

maker would likely be indifferent towards the two alternatives.  In this case, Saaty 

suggested the deletion of one alternative from the hierarchy in order to eliminate rank 

reversal.  In support of Saaty’s view, Harker and Vargas (1987) argued that, as in the 

Belton and Gear (1983) example, adding a copy of an existing alternative contributed 

no new information to the process. Thus, their counterexample was not meaningful. 

As for Dyer’s example, Harker and Vargus (1987) suggested that the use of a ‘super’ 

pairwise comparison matrix (also known as a ‘supermatrix’) would derive the correct 

priorities and avoid rank reversal. However, the debate was not over.  
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Dyer (1990a, 1990b) disagreed and insisted that “When the principle of 

hierarchy composition is assumed, the results produced by the AHP are arbitrary” 

(Dyer, 1990a). Based on the previous rank reversal examples, Dyer argued that 

Saaty’s 10% rule regarding the ‘near-copy’ alternative was ungrounded and open to 

doubt.  Saaty (1990) relied to Dyer’s criticisms by emphasizing the legitimacy of rank 

reversal within AHP and argued that Dyer’s views about AHP were based on 

traditional multi-attribute utility theory (MAUT), which assumes decision alternatives 

are independent.  However, unlike MAUT, “AHP was a new and logical theory, but 

certainly not arbitrary” (Saaty, 1990).  In support of AHP, Harker and Vargas (1990) 

argued that the concepts of independence within AHP and MAUT were different as 

well as subjective.  “The reason why rank can reverse in the AHP with relative 

measurement is clear. It is because the alternatives depend on what alternatives are 

considered, hence, adding or deleting alternatives can lead to change in final rank” 

(Harker & Vargas, 1990).  

The legitimacy of AHP continued to be debated in the research literature.  

Saaty (2000) stated that both rank reversal and rank preservation may occur in real-

world decision making situations.  He therefore offered two methods of determining 

priority weights:  ‘Distributive’ and ‘Ideal’.  The distributive method normalizes the 

local priority weights by their respective column sum; the distributive method has the 

potential for rank reversal.  The ideal method, proposed by Belton and Gear (1983), 

normalizes the local priority weights by the largest element within the column; the 

ideal method preserves rank.   
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Following the decade-long debate of the legitimacy of rank reversal 

within AHP, many researchers focused their efforts on modifications to the initial 

AHP methodologies that would eliminate the rank reversal phenomenon.  As 

mentioned before, Belton and Gear (1983) first proposed a modification that Saaty 

later termed the “Ideal” mode in order to preserve rank.  Barzilai and Golany (1994) 

argued that no normalization could preserve rank and instead proposed an aggregation 

rule.  Tiantaphyllou (2001) presented two new cases of rank reversal that occurred in 

AHP but not in multiplicative AHP.  Wang and Elhag (2006) proposed that the new 

local priority column associated with a new decision alternative be normalized by the 

sum of its first n elements.  They argued that this normalization method can preserve 

rank. Wang and Luo (2009) suggested that rank reversal is a universal phenomenon 

that not only occurs within AHP, but also appears in many other decision making tools, 

such as the Borda-Kendall method, the simple additive weighting method and the 

cross-efficiency evaluation method, among others.  

Despite more than 25 years of debate, no consensus exists within the 

research literature on the validity of rank reversal within AHP.   For the purposes of 

this thesis, the question of whether or not rank reversal is a valid concern in AHP is 

secondary.   A primary goal of this thesis is to provide evidence of a link between the 

rank reversal phenomenon and an over-specified decision hierarchy. 

In summary, this thesis provides two contributions to the research 

literature.  First, the thesis extends Aull-Hyde and Duke’s (2006) methodology, which 

detects hierarchies that are at risk for over-specification, to inconsistent situation. 
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Second, the thesis investigates Saaty’s (1983, 1987) suggested link between an over-

specified hierarchy and the phenomenon of rank reversal.    
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Chapter 4  

 PROPOSED METHODOLOGY 

 
As outlined in Chapter 3 above, no definitive method exists to specify a 

hierarchy for implementing AHP.  To exclude important criteria (under-specification) 

generates biased results.  And, to include irrelevant criteria (over-specification) 

generates biased results.  Aull-Hyde and Duke (2006) proposed a methodology to 

detect a potentially over-specified hierarchy. In this chapter, we extend their method to 

inconsistent case.  

An over-specified hierarchy contains at least one decision alternative (or 

at least one criterion) that is irrelevant to the problem. Applying AHP to an over-

specified hierarchy will generate a very low relative priority weight for the irrelevant 

alternative/criterion. Aull-Hyde and Duke (2006) suggested a methodology to detect a 

potentially irrelevant alternative/criterion.  A specific alternative/criterion should be 

flagged if its computed relative priority weight is within 10% of the minimum possible 

weight that can be assigned to any alternative/criterion. The following sections present 

the methodology for deriving this minimum priority weight as a function of the 

dimension of the pairwise comparison matrix and its inconsistency level.  As 

suggested by Aull-Hyde and Duke (2006), this minimum priority weight can then be 

compared to the computed priority weight; small differences in these two weights 
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likely identify an irrelevant alternative/criterion.  A second objective of this thesis is to 

investigate a possible link between the phenomenon of rank reversal and a potentially 

over-specified hierarchy.   

 

4.1 Definitions and Introduction 
 

Aull-Hyde and Duke (2006) defined a minimal priority weight wmin(n) as 

the smallest possible priority weight for a pairwise comparison matrix of dimension n.     

Let A denote a consistent n x n pairwise comparison matrix with relative 

priority weight vector w = {wi}.  Define wmin(n) such that wmin(n)  ≤ wi  for i = 1, …, n.  

wmin(n) is the minimum priority weight for n decision alternatives and is computed as 

(Aull-Hyde and Duke (2006)): 

                                         min
1( )

1 9 ( 1)
w n

n
=

+ ⋅ −                                           (4.1.1) 

 
The minimal possible weight is calculated by keeping (n-1) alternatives 

absolutely important (rating as 9) than the remaining one. wmin(n) is a decreasing 

function of n (the number of available alternatives).  Essentially, the minimal possible 

weight in equation (5.1.1) is the smallest possible weight that AHP guarantees for any 

alternative or criterion. For example, wmin(3) = 0.0526, meaning that for any given 3x3 

pairwise comparison matrix, under perfect consistency, the priority weight assigned to 

each alternative will be at least 5.26%.  

Equation (4.1.1) holds for pairwise comparison matrices that are 

consistent.  In the following sections, we calculate wmin(n) for inconsistency pairwise 
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comparison matrices.  These calculations are presented for two situations: (1) n = 3 

(i.e., exactly three decision alternatives, generating a 3 x 3 pairwise comparison matrix) 

and (2) n ≥ 4 (i.e., four or more decision alternatives, generating a pairwise 

comparison matrix having dimension of at least 4).   

 

4.2 Calculation of Minimal Weights for n = 3 

If n = 3 situation, in order to calculate a minimal possible weight for an 

inconsistent pairwise comparison matrix, we assume that one of the three alternatives 

(denoted as alternative C) is α times less important than the remaining two alternatives, 

A and B. This assumption extends Aull-Hyde and Duke’s (2006) model to a more 

general case. If the value α is at least 7 (on Saaty’s 9-point rating scale), then we can 

say that alternatives A and B are, at the very least, strongly more important than 

alternative C.  Given that we are assuming that the pairwise comparison matrix is 

inconsistent, this matrix assumes the following form:   

                                                  

1
1 1

1 1 1

m

m

α

α

α α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠                                           (4.2.1) 

 

If the pairwise comparison matrix is consistent, then m = 1.  Otherwise, m 

≠ 1 and alternative A is m times important than B.  In this latter case, the matrix is 

inconsistent.   
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Given that the pairwise comparison matrix assumes the form of equation 

(4.2.1), the characteristic equation and principle eigenvector are, respectively, (Farkas, 

2000): 

                             
3 2
max max

13 ( 2) 0m mλ λ− − + − =
                                  (4.2.2) 

                                  

11
33

m ax
1 1m mλ = + +                                        (4.2.3) 

Given equations (4.2.2) and (4.2.3) above, we see that if the 3 x 3 pairwise 

comparison matrix is consistent (m = 1), then the principle eigenvector is 3 and the 

remaining two eigenvectors are 0, as expected.  Equation (4.2.2) is now used to 

determine an expression for wmin(3).  Equation (4.2.3) can be used to determine a 

numerical range on the parameter m such that the pairwise comparison matrix can be 

termed as ‘acceptably inconsistency’ according to Saaty’s criterion (Saaty, 1980, p54).              

                                                                    

Theorem 4.2.1:  For a 3 x 3 pairwise comparison matrix of the form 4.2.1 that 

displays an acceptable level of inconsistency, the range on m is such that 0.3382 ≤  m 

≤  2.9568.  

Proof:  As described in Chapter 2, if a pairwise comparison matrix is acceptably 

inconsistent, then CR = CI/RI should be no larger than 0.1.   Thus,  

                      

max( ). . 1. . 0.11.98( 2). . ( )

n
C I nC R nR I

n

λ −
−= = ≤−                            (4.2.4) 
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Setting n = 3 in equation (4.2.4), generates the following boundaries on the principle 

eigenvalue: 

                                             max3 3.132λ≤ ≤
                                                (4.2.5)  

Combining equations (4.2.5) and (4.2.3) generates a range on m of [0.3382, 2.9568].  

As expected, the lower and upper bounds are reciprocals.  □ 

 

Theorem 4.2.2: For a 3x3 pairwise comparison matrix of the form (4.2.1), the 

normalized minimal possible weight is a function of the consistency ratio CR.   

Proof:  Using equation (4.2.4), λmax can be written as 
 

                                                max 1.32 3cλ = +                                             (4.2.6) 
 

where c is the value of consistency ratio CR.  Thus, λmax is expressed as a function of 

CR.  From the characteristic equation (4.2.2),  

                                     

2 3
max max

1 (3 2) 0m
m

λ λ+ + − − =
                       (4.2.7) 

 
Equation (4.27) is quadratic in m; hence,     
 

                           

2

1 2 3
max max

2

2

( 4)
2 (3 2)

( 4)
2

m

m
λ λ

⎧ −Δ + Δ −=⎪⎪ Δ = − −⎨
−Δ − Δ −⎪ =⎪⎩         (4.2.8) 
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Thus, m can be expressed as a function of λmax.  Based on equation (4.2.6), m is also a 

function of the consistency ratio CR = c.  Now, the principle eigenvector is calculated 

by the following system of linear equations: 

                         

max 1

max 2

min
max

1
1 1 0

1 1 1

m w
wm

w

λ α

λ α

λα α

⎛ ⎞− ⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟− =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟−⎝ ⎠            (4.2.9) 

 

Based on Saaty’s (1980, p98, equation 3) results, the normalized minimal weights can 

be calculated as: 

      

2
max

min
2

max max

((1 ) 1)

( 2 ( 1) 1 (1 ) )
w

m
m

λ
αα α λ λ

− −=
⋅ + ⋅ ⋅ − + − + −

  

(4.2.10) 
 

From equation (4.2.10), wmin can be expressed as a function of the principle 

eigenvalue λmax and the parameter m.  Because λmax and m are single variable functions 

of the consistency ratio c, wmin can be expressed as a function of the consistency ratio 

CR = c.                                                                                                                            □ 

 

We note two observations regarding the above proof. 

Observation 1:  From equation (4.2.8), it can easily be shows that m1m2=1, 

which implies that m1 and m2 are reciprocals. 
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Observation 2:  From equation (4.2.10), given that m and 1/m are reciprocals; 

both m and 1/m generate the same minimal weight.  This observation can be 

interpreted in the following way: Suppose B is α times more important than alternative 

C. If A is m times important than B or if B is m times important than A, either of these 

two cases generates the same minimal possible weight. 

For the case of n = 3, Table 4.1 gives the minimum weight, computed 

from equation 4.2.10, for values of CR = c that are deemed ‘acceptably inconsistent’ 

(i.e., CR ≤ .10) and for α = 7, 8, 9.  (Recall that α is a pairwise comparison rating from 

Saaty’s 9-point scale.  Values of at least 7 imply that one alternative is at least strongly 

preferred over another.)  

For example, if alternatives A and B are deemed to be strongly more 

important than alternative C (α = 7), and the consistency ratio of the corresponding 

pairwise comparison matrix is 0.05, then alternative C will be assigned a priority 

weight of no less than 0.0647. Because A and B are strongly more important than C, 

then C could potentially be treated as an irrelevant/non-important alternative.  

Obviously, the minimal weight is a decreasing function of the consistency 

ratio.  The higher the C.R. level, the more inconsistent the comparisons are. The more 

inconsistency gives the decision maker more freedom to make the comparison. Thus, 

more values will be used as potential priority weight, indicating the lower bound 

(minimal possible weight) will be smaller.  
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From Table 4.1, the relationships between the consistency ratio and the 

minimal possible weight are nearly linear. A least-squares regression of the data in 

Table 4.1 will generate the following linear relationships with R2 ≥ 0.99: 

                                     

min, 7

min, 8

min, 9

( ) 0.0667 0.0392

( ) 0.0588 0.0344

( ) 0.0526 0.0313

a

a

a

w c c

w c c

w c c

=

=

=

= − ⋅

= − ⋅

= − ⋅
                         (4.2.11)       

These equations are illustrated in Figure 4.1. 

 

4.3 Calculation of Minimal Weights for n ≥ 4 

When the number of alternatives (criteria) is larger than 3, several unique 

pairwise comparison matrixes can have the same consistency ratio CR. Thus, we 

introduce the concept of a consistency level set. 

Definition 4.3.1: A consistency level set is a set of potential pairwise comparison 

matrixes that share the same consistency ratio CR = c. 

By introducing the concept of a consistency-level set, we can group 

potential pairwise comparison matrices according to their inconsistency levels (as 

measured by CR = c).  In order to simplify the calculations, we declare a 

‘representative’ pairwise comparison matrix within each consistency-level set.  We 

then use the minimal weight generated by the ‘representative’ pairwise comparison 

matrix as the minimal weight for all matrices in the consistency-level set. We assume 

the following form for the ‘representative’ pairwise comparison matrix: 
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1 1
1 1 1

1 1 1

1 1 1 1

m a

a
m

a

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

L

M M M O M

L
                                    (4.3.1) 

  

The above representative pairwise comparison matrix assumes the 

simplest form of all matrices within a consistency-level set.  (n-1) alternatives are α 

times more important than the remaining alternative.  

Meanwhile, only one perturbation term m exists.  If the pairwise 

comparison matrix is consistent, m = 1.  Otherwise, m > 1, indicating alternative A is 

m times more important than alternative B, or m < 1, indicating B is m times more 

important than A. The characteristic polynomial is shown in the following theory 

(Farkas, 2000).    

 

Theorem 4.3.1   For an n x n pairwise comparison matrix of the form in equation 

(4.3.1), the characteristic equation is: 

                     
3 3 2 1[ ( 2) ( 2)] 0n n n m

m
λ λ λ− − ⋅ − − ⋅ + − =

                  (4.3.2) 

and the principle eigenvector satisfies the following equation: 
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3 2
max max

1( 2) ( 2) 0n n m
m

λ λ− ⋅ − − ⋅ + − =
                     (4.3.3) 

Theorem 4.3.2 For an n x n pairwise comparison matrix of the form in equation 

(4.3.1), if the matrix displays an acceptable level of inconsistency (i.e., CR = c < 10%), 

then the parameter m is bounded on the following interval:   

                    

2 2

2

4 4[ , ],
2 2

0.198 ( 1) 0.198 ( 1) ( 2)2 [ ]

A A A A

n n nA n
n n

− − + −

⋅ − ⋅ − ⋅ −
= + ⋅ +

              (4.3.4) 

Proof:  If a pairwise comparison matrix is acceptably inconsistency, then CR = c ≤ .10.  

From equation (4.2.4), the principle eigenvalue satisfies: 

                                  
max

0.198 ( 1) ( 2)n nn n
n

λ ⋅ − ⋅ −
≤ ≤ +

                     (4.3.5) 

Rewrite equation 4.3.3 as: 

                                       

2
max max( )1 2

2
nm

m n
λ λ⋅ −

+ = +
−                             (4.3.6) 

The right-hand side of the above equation is an increasing function of the principle 

eigenvalue λmax.  The left-hand side is a convex function of the perturbation value m; 

the left-hand side obviously has a minimal value of 2.                   

21 0.198 ( 1) 0.198 ( 1) ( 2)2 2 [ ]n n nm n
m n n

⋅ − ⋅ − ⋅ −
≤ + ≤ + ⋅ +         (4.3.7) 

Thus, boundaries on m can be obtained by solving the above inequality.                     □ 
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From equation (4.3.7), if n = 4, m is bounded on the interval [0.2212, 

4.5207].  If n = 5, m is bounded on the interval [0.1516, 6.5969].  Obviously, the 

upper bound and lower bounds are reciprocal. Moreover, the upper bound is an 

increasing function of n – the dimension of the pairwise comparison matrix. 

 

Theorem 4.3.4: For a 4 x 4 pairwise comparison matrix of the form given in equation 

(4.3.1), the normalized minimal possible weight can be expressed as a function of the 

consistency ratio CR = c. 

Proof:  Similarly, from equation (4.2.4), the principle eigenvalue can be expressed as a 

function of the consistency ratio CR = c:  

                                                     max 2.97 4cλ = ⋅ +                                        (4.3.8) 

Rewriting equation (4.3.3) as 

                                    

3
2 max

max
1 (2 2) 0

2
m

m
λλ+ + ⋅ − − =                     (4.3.9) 

enables m to be expressed as a function of the principle eigenvalue λmax and, thus, as a 

function of the consistency ratio CR = c                                                                              

2
31 2 max

max
2

2

( 4)
2 (2 2)

2( 4)
2

m

m

λλ

⎧ −Δ + Δ −=⎪⎪ Δ = ⋅ − −⎨
−Δ − Δ −⎪ =⎪⎩

                         (4.3.10) 

The minimal priority weight is calculated by solving the following system of linear 

equations: 
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max

1

max
2

3max

min
max

1 1
1 1 1

0
1 1 1
1 1 1 1

m a
w

a wm
wa

w
a a a

λ

λ

λ

λ

−⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎜ ⎟− ⎜ ⎟
⎜ ⎟ ⎜ ⎟⋅ =⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎝ ⎠−⎜ ⎟
⎝ ⎠

                (4.3.11) 

Given Saaty’s result (1980, pg 100) the minimal priority weight can be calculated as:

3
max max

min

3 2
max max max

1( 1) 3 ( 1) ( )

(2 1)( 1) 3 ( 1) (4 3 ) ( 1) [ (2 1) ]

m
mw

Q
a aQ a a m a m a a
m m

λ λ

λ λ λ

− − ⋅ − − +
=

⋅ −
= − + ⋅ ⋅ − + ⋅ − + ⋅ + ⋅ − + ⋅ ⋅ − + −

(4.3.12) 

The minimal priority weight is a function of the principle eigenvalue λmax and the 

perturbation term m.  Thus, wmin is a single-variable function of consistency ratio.    □                      

 

Theorem 4.3.5: For a 5x5 pairwise comparison matrix of the form given in equation 

(4.3.1), the normalized minimal possible weight can be expressed as a single-variable 

function of consistency ratio CR = c. 

Proof:  The minimal weight is calculated by solving the following system of linear 

equations: 
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max
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max
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3max

4max

min
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1 1 1
1 1 1 1

01 1 1 1
1 1 1 1
1 1 1 1 1

m a
w

a wm
wa
wa

w
a a a a

λ

λ

λ
λ

λ

−⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎜ ⎟− ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⋅ =−
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟−
⎝ ⎠  (4.3.13) 

Using Maple and assuming w1=1, we can derive the minimal priority weight of the 

following form: 

                                           
min

max

1
( 1) 1

w
aλ

=
− ⋅ +                                      (4.3.14) 

Applying equation (4.2.4), we have: 

                                                 max 4.752 5cλ = ⋅ +                                        (4.3.15) 

Combining equations (4.3.14) and (4.3.15), we can express the minimal priority 

weight as a function of the consistency ratio:                                                                     

                                          min
1

(4.752 4) 1
w

c a
=

⋅ + ⋅ +                                 (4.3.16)  

 

For n = 4, Table 4.2 gives the minimum weight, computed from equation 

4.3.12, for values of CR = c that are deemed ‘acceptably inconsistent’ (i.e., CR ≤0.10), 

and for α = 7, 8, 9.   Values of α ≥ 7 imply that one alternative is at least strongly 
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preferred over another.  Minimum weights for n = 5. Computed from equation 4.3.16, 

are given in Table 4.3.   

Obviously, the minimal priority weight is a decreasing function of the 

consistency ratio c. The higher the C.R. level, the more inconsistent the comparisons 

are, giving the decision maker more freedom to make the comparison. Thus, more 

values will be used as potential priority weight, indicating the lower bound (minimal 

possible weight) will be smaller. Moreover, the relationship is nearly linear.  

For n = 4, the estimated linear relationships are listed below. A least-

squares regression of the data in Table 4.2, calculated from equation 4.3.12, generates 

the following linear relationships, with R2 ≥ 0.99: 

                                        

min, 7

min, 8

min, 9

( ) 0.0455 0.0394

( ) 0.04 0.035

( ) 0.0357 0.0308

a

a

a

w c c

w c c

w c c

=

=

=

= − ⋅

= − ⋅

= − ⋅
                    (4.3.18)            

These relationships are illustrated in Figure 4.2.   

For n =5, the estimated linear relationships are listed below. A least-

squares regression of the data in Table 4.3, calculated from equation 4.3.16, generates 

the following linear relationships, with R2 ≥ 0.99: 

                                     

min, 7

min, 8

min, 9

( ) 0.0344 0.0355

( ) 0.0303 0.0314

( ) 0.027 0.0278

a

a

a

w c c

w c c

w c c

=

=

=

= − ⋅

= − ⋅

= − ⋅
                     (4.3.19)          

 
These relationships are illustrated in Figure 4.3.  
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Table 4.2 Minimal weights for n = 3 

 
Consistency  Ratio Wmin (α = 7) Wmin (α = 8) Wmin (α = 9) 

0 0.0667 0.0588 0.0526 

0.01 0.0663 0.0585 0.0523 

0.02 0.0659 0.0581 0.0520 

0.03 0.0655 0.0577 0.0517 

0.04 0.0651 0.0574 0.0513 

0.05 0.0647 0.0571 0.0510 

0.06 0.0643 0.0567 0.0507 

0.07 0.0639 0.0564 0.0504 

0.08 0.0635 0.0560 0.0501 

0.09 0.0632 0.0557 0.0498 

0.1 0.0628 0.0554 0.0495 
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Table 4.2 Minimal weights for n = 4 

 
C.I. level Wmin (α=7) Wmin (α=8) Wmin (α=9) 

0 0.0455 0.0400 0.0357 

0.01 0.0450 0.0396 0.0354 

0.02 0.0446 0.0393 0.0350 

0.03 0.0442 0.0389 0.0347 

0.04 0.0438 0.0385 0.0344 

0.05 0.0434 0.0382 0.0341 

0.06 0.0430 0.0378 0.0338 

0.07 0.0426 0.0375 0.0335 

0.08 0.0423 0.0372 0.0332 

0.09 0.0419 0.0368 0.0329 

0.1 0.0415 0.0365 0.0326 
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Table 4.3 Minimal weights for n = 5 

 
C.I. level Wmin (α=7) Wmin (α=8) Wmin (α=9) 

0 0.0345 0.0303 0.0270 

0.01 0.0341 0.030 0.0267 

0.02 0.0337 0.0296 0.0264 

0.03 0.0333 0.0293 0.0261 

0.04 0.0330 0.0290 0.0258 

0.05 0.0326 0.0287 0.0256 

0.06 0.0323 0.0283 0.0253 

0.07 0.0319 0.0280 0.0250 

0.08 0.0316 0.0277 0.0247 

0.09 0.0313 0.0275 0.0245 

0.1 0.0309 0.0272 0.0242 
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Figure 4.1 Minimal weights for n = 3 and α = 7, 8, 9 
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Figure 4.2 Minimal weights for n = 4 and α = 7, 8, 9 
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Figure 4.3 Minimal weights for n = 5 and α = 7, 8, 9 
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Chapter 5  

 SIMULATION RESULTS 

 
5.1 Simulation Methods 

 
Monte Carlo simulation was used to establish a link, if any, between a 

potentially misspecified hierarchy and the rank reversal phenomena.  The methods 

described in this section were applied to comparison matrices of dimension n = 3, 4, 5 

with a single-level hierarchy from which the best decision alternative is selected.    

Using simulation, a set of pairwise comparison matrices was generated 

such that each matrix in the set (1) exhibited rank reversal, (2) had an acceptable level 

of inconsistency, and (3) contained at least one aij value such that aij ≥ 7.  The last 

condition is required because, in the case of a misspecified hierarchy, at least one 

alternative should be, at least, strongly more important than another, indicating that the 

hierarchy may be risk of over-specification.    

For each matrix in this set, the smallest actual priority weight was 

compared to the absolute smallest possible priority weight for the matrix’s level of 

inconsistency and dimension (computed from equations 4.2.10, 4.3.12, and 4.3.16). If 

the deviations are ‘relatively’ small, then a link exists between a potentially 
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misspecified hierarchy and the rank reversal phenomenon.  The definition of 

‘relatively small’ will be presented later in this section.     

The general simulation methods described above are detailed in the 

following steps:   

Step 1: Randomly generate an n x n pairwise comparison matrix such that 

each aij is generated from the intervals [i,i+1] or [1/(i+1), 1/i] (i=1, 2, …, 8) with the 

equal probability.  

Step 2: Ensure that the pairwise comparison matrix generated in step 1 

satisfies CR ≤ 0.1 (an acceptable level of inconsistency) and at least one aij  ≥ 7.  If yes, 

continue to step 3; otherwise return to step 1. 

Step 3: Check the pairwise comparison matrix for rank reversal when one 

alternative is randomly selected for deletion.   If rank reversal does not occur, return to 

Step 1 to generate another pairwise comparison matrix.  If rank reversal does occur, 

record the smallest priority and return to Step 1 to generate another pairwise 

comparison matrix.   

The first and most important step is to generate random pairwise 

comparison matrices.  For an nxn pairwise comparison matrix, n*(n-1)/2 aij values 

must be generated. In this chapter, we conduct two kinds of simulations, assuming aij 

to be either non-integer values or integer values. The former one analyzes the 

possibility of rank reversal theoretically, whereas, the latter one focuses on the risk of 

rank reversal occurred in practical situations. 
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If aij is assumed to be non-integer value, it can be drawn from the 

following continuous intervals with equal probability: (1, 2], (2, 3], (3, 4], (4, 5], (5, 6], 

(6, 7], (7, 8], (8,9] and (1/2,1], (1/3, 1/2], (1/4, 1/3], (1/5, 1/4], (1/6, 1/5], (1/7, 1/6], 

(1/8, 1/7], (1/9, 1/8].  This process involved two steps: 

Step 1: Generate two random numbers u and α, where u ~ U [0, 1] and α 

~ U [1, 9].  

Step 2: If u < 0.5, then αij = α; otherwise αij =1/ α.   

For validation purposes, 100,000 aij values were generated using the 

above two-step process.  Results presented in Table 5.1 validate the process used to 

generate the aij values.     

If aij is assumed to be integer value, it can be drawn from the following 

values with equal probability 1/17: 1, 2, 3, 4, 5, 6, 7, 8, 9, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 

1/8, 1/9.  This process also involved two steps: 

Step 1: Generate a random number u ~ U [0, 1]. 

Step 2: Assign αij value according to the value of u: 

αij =1/9, if u belongs to [0, 1/17]; 

αij =1/8, if u belongs to (1/17, 2/17]; 

                          

αij =9, if u belongs to (16/17, 1]; 

The above two steps algorithm will generate required random integer aij 

values. 

 

M
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5.2 Simulation Results for n = 3, Non-integer aij Value 
 

Using the method described above to generate non-integer aij values, 3x3 

pairwise comparison matrices were continuously generated until the number of 

matrices that exhibited rank reversal reached 20,000.  Generation of 20,000 ‘rank-

reversal comparison matrices’ was executed under each of the following three 

conditions:  (1) at least one element α ≥ 7, (2) at least one element α ≥ 8 and (3) and at 

least one element α = 9.  The details of this simulation process are given in Table 5.2. 

The results in Table 5.2 indicate that for n = 3, the chance of rank reversal 

in a matrix of acceptable inconsistency is about 4.6% or about 1 in 22.   It should be 

noted that this result assumes that the aij values need not assume only integer values or 

their respective reciprocals.  Table 5.3 summarizes the deviation between the smallest 

actual priority weight and the smallest possible priority weight (computed from 

equation 4.2.10), across all 20,000 generated pairwise comparison matrices.  

From table 5.3, we can see that, for each of the three scenarios, about 4% 

of the actual smallest priority weights are within 10% of their corresponding minimal 

possible weights.  This result indicates that only about 4% of pairwise comparison 

matrices that exhibit rank reversal (with an acceptable level of inconsistency) may 

include irrelevant alternatives (i.e., be at risk for an overspecified hierarchy).  

Figure 5.1 illustrates the distribution of actual smallest priority weights, 

for comparison matrices that exhibit rank reversal, for the case of α ≥ 7.   

The distribution in Figure 5.1 is nearly bi-modal, with one mode around 

0.07 and the other around 0.12.  The reason for this phenomenon can be explained as 
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follows: For a 3x3 pairwise comparison matrix, two situations may generate rank 

reversal: one alternative is strongly more important than the other two or one 

alternative is strongly less important than the other two.  In the former situation, rank 

reversal may occur between the two less important alternatives.  In the later situation, 

rank reversal may occur within the two more important alternatives. Under perfect 

consistency, the pairwise comparison matrixes associated with the two situations are: 

    

1 1 1
1 1 1/ 1 1

1/ 1/ 1 1/ 1 1
(1) (2)

α α α
α α

α α α

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠                        (5.4.1) 

The first pairwise comparison matrix (1) generates a minimal possible 

priority weight wmin=1/ (2*α+1).  The second pairwise comparison matrix generates a 

minimal possible priority weight wmin=1/ (α+2).   Assuming α=7 in this situation, the 

two minimal possible priority weights are 0.067 and 0.111, respectively.  Thus, the 

smallest priority weights of rank-reversal comparison matrices, with a CR ≤ 0.1, 

should cluster around .067 and around .111, as illustrated in Figure 5.1.  

For the case of a 3x3 pairwise comparison matrix (n = 3), by assuming 

non-integer aij values, two observations should be made:    

Observation 1: For pairwise comparison matrices that exhibit an acceptable level of 

inconsistency, rank reversal occurs with a probability of about 4.6%. 

Observation 2:  For pairwise comparison matrices that DO exhibit rank reversal, no 

more than 4% of these matrices have an actual minimal priority weight that is within 
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10% of the absolute minimum priority weight.  No more than 12% have an actual 

minimal priority weight that is within 20% of the absolute minimum priority weight.  

This observation implies that the link between an over-specified hierarchy (i.e., 

irrelevant criterion or decision alternative) and the rank-reversal phenomenon is weak, 

at best.   

In n = 3 situation, rank reversal doesn’t occur, if aij is assumed to be 

integer value. 

 

5.3 Simulation Results for n = 4, Non-integer aij Value 
 

As in the case of n = 4, by assuming aij value to be non-integer, 4x4 

pairwise comparison matrices were continuously generated until the number of 

matrices that exhibited rank reversal reached 20,000.  Generation of 20,000 ‘rank-

reversal comparison matrices’ was executed under each of the following three 

conditions:  (1) at least one element α ≥ 7, (2) at least one element α ≥ 8 and (3) and at 

least one element α = 9.  The details of this simulation process are given in Table 5.4.  

The results in Table 5.4 indicate that for n = 4, by assuming aij to be non-

integer values, the chance of rank reversal in a matrix of acceptable inconsistency is 

about 17.6%. Rank reversal will occur nearly 4 times more frequently than in 3x3 

pairwise comparison matrices. It should be noted that this result assumes that the aij 

values need NOT assume only integer values or their respective reciprocals.  Table 5.5 

summarizes the deviation between the smallest actual priority weight and the smallest 
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possible priority weight (computed from equation 4.3.12), across all 20,000 generated 

pairwise comparison matrices.  

From the table 5.5, we can see that, for each of the three scenarios, about 4% 

of the actual smallest priority weights are within 10% of their corresponding minimal 

possible weights.  This result indicates that only about 4% of pairwise comparison 

matrices that exhibit rank reversal (with an acceptable level of inconsistency) may 

include irrelevant alternatives (i.e., be at risk for an overspecified hierarchy).  

Figure 5.2 shows the distributions of actual smallest priority weight with 

rank reversal and without rank reversal. It is obvious that the distribution of smallest 

priority weight with rank reversal is right skewed compared to that without rank 

reversal, indicating the link between rank reversal and over-specification is weak. On 

the other hand, more than 10% of smallest priority weights without rank reversal are 

close to corresponding minimal ones, implying that the idea of minimal priority 

weight will be useful in detecting the potentially over-specified hierarchy. 

For the case of a 4x4 pairwise comparison matrix (n = 4), by assuming aij 

to be non-integer values, two observations should be made:    

Observation 1: For pairwise comparison matrices that exhibit an acceptable level of 

inconsistency, rank reversal occurs with a probability of about 17.6%. 

Observation 2:  For pairwise comparison matrices that DO exhibit rank reversal, no 

more than 5% of these matrices have an actual minimal priority weight that is within 

10% of the absolute minimum priority weight.  No more than 14% have an actual 

minimal priority weight that is within 20% of the absolute minimum priority weight.  
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This observation implies that the link between an over-specified hierarchy (i.e., 

irrelevant criterion or decision alternative) and the rank-reversal phenomenon is weak, 

at best.  

 

5.4 Simulation Results for n=4, Integer aij Value 

Similarly, if aij is assumed to be integer value, we generate 10,000 rank 

reversal examples under each of the following three conditions:  (1) at least one 

element α ≥ 7, (2) at least one element α ≥ 8 and (3) and at least one element α = 9.  

The details of this simulation process are given in Table 5.6.  

The results in Table 5.6 indicate that for n = 4, by assuming aij to be 

integer value, the chance of rank reversal in a matrix of acceptable inconsistency is 

about 22%, which is similar with previous result, by assuming aij to be non-integer. 

Table 5.7 summarizes the deviation between the smallest actual priority weight and 

the smallest possible priority weight (computed from equation 4.3.12), across all 

10,000 generated pairwise comparison matrices.  

From the table 5.7, we can see that, for each of the three scenarios, about 7% 

of the actual smallest priority weights are within 10% of their corresponding minimal 

possible weights.  This result indicates that only about 7% of pairwise comparison 

matrices that exhibit rank reversal (with an acceptable level of inconsistency) may 

include irrelevant alternatives (i.e., be at risk for an overspecified hierarchy).  

Similarly, for the case of a 4x4 pairwise comparison matrix (n = 4), 

assuming integer aij values, two observations should be made:    



 54

Observation 1: For pairwise comparison matrices that exhibit an acceptable level of 

inconsistency, rank reversal occurs with a probability of about 22%. 

Observation 2:  For pairwise comparison matrices that DO exhibit rank reversal, no 

more than 7% of these matrices have an actual minimal priority weight that is within 

10% of the absolute minimum priority weight.  No more than 17% have an actual 

minimal priority weight that is within 20% of the absolute minimum priority weight.  

This observation implies that the link between an over-specified hierarchy (i.e., 

irrelevant criterion or decision alternative) and the rank-reversal phenomenon is weak, 

at best.  

 

5.5 Simulation Results for n=5, Non-integer aij Value 
 

As in the case of n = 5, by assuming non-integer aij values, 5x5 pairwise 

comparison matrices were continuously generated until the number of matrices that 

exhibited rank reversal reached 20,000.  Generation of 20,000 ‘rank-reversal 

comparison matrices’ was executed under each of the following three conditions:  (1) 

at least one element α ≥ 7, (2) at least one element α ≥ 8 and (3) and at least one 

element α = 9.  The details of this simulation process are given in Table 5.8.  

The results in Table 5.8 indicate that for n = 5, the chance of rank reversal 

in a matrix of acceptable inconsistency is about 35.42% or 1 out of 3. Rank reversal 

will occur nearly 2 times more frequently than in 3x3 pairwise comparison matrices 

and 8 times more frequently than in 3x3 pairwise comparison matrices. It should be 

noted that this result assumes that the aij values need NOT assume only integer values 
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or their respective reciprocals.  Table 5.9 summarizes the deviation between the 

smallest actual priority weight and the smallest possible priority weight (computed 

from equation 4.3.16), across all 20,000 generated pairwise comparison matrices.  

From the table 5.7, we can see that, for each of the three scenarios, about 2% 

of the actual smallest priority weights are within 10% of their corresponding minimal 

possible weights.  This result indicates that only about 2% of pairwise comparison 

matrices that exhibit rank reversal (with an acceptable level of inconsistency) may 

include irrelevant alternatives (i.e., be at risk for an overspecified hierarchy).  

Figure 5.3 shows the distributions of actual smallest priority weight with 

rank reversal and without rank reversal. It is obvious that the distribution of smallest 

priority weight with rank reversal is right skewed compared to that without rank 

reversal, indicating the link between rank reversal and over-specification is weak. On 

the other hand, from the distribution, around 5% of smallest priority weights without 

rank reversal are close to corresponding minimal ones, implying that the idea of 

minimal priority weight will be useful in detecting the potentially over-specified 

hierarchy. 

For the case of a 5x5 pairwise comparison matrix (n = 5), two 

observations should be made:    

Observation 1: For pairwise comparison matrices that exhibit an acceptable level of 

inconsistency, rank reversal occurs with a probability of about 35.42%. 

Observation 2:  For pairwise comparison matrices that DO exhibit rank reversal, no 

more than 3% of these matrices have an actual minimal priority weight that is within 
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10% of the absolute minimum priority weight.  No more than 9% have an actual 

minimal priority weight that is within 20% of the absolute minimum priority weight.  

This observation implies that the link between an over-specified hierarchy (i.e., 

irrelevant criterion or decision alternative) and the rank-reversal phenomenon is weak, 

at best.  

 

5.6 Simulation Results for n=5, Integer aij Value 
 

Similarly, if aij is assumed to be integer value, we generate 10,000 rank 

reversal examples under each of the following three conditions:  (1) at least one 

element α ≥ 7, (2) at least one element α ≥ 8 and (3) and at least one element α = 9.  

The details of this simulation process are given in Table 5.6.  

The results in Table 5.10 indicate that for n = 5, by assuming aij to be 

integer value, the chance of rank reversal in a matrix of acceptable inconsistency is 

about 36.7%. Table 5.11 summarizes the deviation between the smallest actual priority 

weight and the smallest possible priority weight (computed from equation 4.3.12), 

across all 10,000 generated pairwise comparison matrices.  

From the table 5.11, we can see that, for each of the three scenarios, about 

3% of the actual smallest priority weights are within 10% of their corresponding 

minimal possible weights.  This result indicates that only about 3% of pairwise 

comparison matrices that exhibit rank reversal (with an acceptable level of 

inconsistency) may include irrelevant alternatives (i.e., be at risk for an overspecified 

hierarchy).  
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Similarly, for the case of a 5x5 pairwise comparison matrix (n = 5), 

assuming integer aij values, two observations should be made:    

Observation 1: For pairwise comparison matrices that exhibit an acceptable level of 

inconsistency, rank reversal occurs with a probability of about 36.7%. 

Observation 2:  For pairwise comparison matrices that DO exhibit rank reversal, no 

more than 3% of these matrices have an actual minimal priority weight that is within 

10% of the absolute minimum priority weight.  No more than 10% have an actual 

minimal priority weight that is within 20% of the absolute minimum priority weight.  

This observation implies that the link between an over-specified hierarchy (i.e., 

irrelevant criterion or decision alternative) and the rank-reversal phenomenon is weak, 

at best.  

 

5.7 Simulation Summary 

By conducting the above simulation process for n = 3, 4, and 5, assuming 

aij values to be both non-integer and integer, we conclude that (1) rank reversal is 

more likely to occur as the number of decision alternatives increases and (2) on 

average, only a small percentage (4%) of matrices that do exhibit rank reversal (and 

have an acceptable level of inconsistency) have an actual minimal priority weight that 

is within 10% of the absolute minimum priority weight.  Thus, the link between an 

over-specified hierarchy (i.e., irrelevant criterion or decision alternative) and the rank-

reversal phenomenon appears to be weak, at best.  
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Table 5.1 Distribution of simulated non-integer aij values  

           

 
  

Interval Percentage Interval Percentage 

(1, 2] 6.24% (1/2, 1] 6.24% 

(2, 3] 6.22% (1/3, 1/2] 6,24% 

(3, 4] 6.26% (1/4, 1/3] 6.22% 

(4, 5] 6.22% (1/5, 1/4] 6.25% 

(5, 6] 6.21% (1/6, 1/5] 6.25% 

(6, 7] 6.22% (1/7, 1/6] 6.23% 

(7, 8] 6.23% (1/8, 1/7] 6.34% 

(8, 9] 6.39% (1/9, 1/8] 6.24% 
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Table 5.2 Simulation results n=3, non-integer aij value 

 
 α ≥ 7 α ≥ 8 α = 9 

Total # of matrixes with 

CR ≤ 0.1 

441,676 436,619 442,626 

Total # of matrixes with 

CR ≤ 0.1 and rank reversal 

20,000 20,000 

 

20,000 
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Table 5.3 Comparison of actual to smallest possible weight for n = 3, non- 
integer aij value 

 
Percent Deviation from 

Smallest Possible Weight 

α ≥ 7 

 

α ≥ 8 

 

α = 9 

 

10% 4.25% 3.52% 3.69% 

20% 11.78% 11.39% 11.31% 

30% 21.38% 20.70% 21.26% 

40% 31.61% 31.22% 30.98% 

50% 41.86% 40.73% 40.94% 

60% 48.46% 47.22% 47.59% 

70% 50.88% 49.69% 49.84% 

80% 53.86% 52.08% 51.42% 

90% 60.43% 58.17% 56.91% 

100% 69.12% 69.12% 64.63% 
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Table 5.4 Simulation results for n = 4, non-integer aij value 

 
 α ≥ 7 α ≥ 8 α = 9 

Total # of matrixes with 

C.R.≤ 0.1 

112,416 113,977 114,537 

Total # of matrixes with CR 

≤ 0.1 and rank reversal 

20,000 20,000 

 

20,000 
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Table 5.5 Comparison of actual to smallest possible weight for n = 4, non-
integer aij value 

 
Percent Deviation from 

Smallest Possible Weight 

α ≥ 7 α ≥ 8 α = 9 

10% 5.25% 3.81% 2.73% 

20% 13.67% 11.6% 9.88% 

30% 22.81% 20.55% 18.68% 

40% 31.50% 29.45% 27.33% 

50% 40.18% 37.55% 35.13% 

60% 48.61% 45.70% 43.24% 

70% 57.07% 54.10% 51.36% 

80% 64.77% 61.97% 59.32% 

90% 72.30% 69.45% 67.06% 

100% 78.41% 75.84% 73.58% 
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Table 5.6 Simulation results for n = 4, integer aij value 

 
 α ≥ 7 α ≥ 8 α = 9 

Total # of matrixes with 

C.R.≤ 0.1 

45,905  46,579  47,113  

Total # of matrixes with CR 

≤ 0.1 and rank reversal 

10,000  10,000  10,000  
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Table 5.7 Comparison of actual to smallest possible weight for n = 4, integer 
aij value 

 
Percent Deviation from 

Smallest Possible Weight 

α ≥ 7 α ≥ 8 α = 9 

10% 7.5% 5.81% 5.94% 

20% 16.81% 14.40% 14.75% 

30% 26.32% 23.92% 23.84% 

40% 35.50% 32.68% 32.66% 

50% 44.92% 41.95% 41.90% 

60% 54.55% 51.12% 52.03% 

70% 63.19% 59.79% 61.18% 

80% 70.50% 67.76% 69.15% 

90% 77.20% 74.64% 75.74% 

100% 82.89% 80.64% 81.06% 
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Table 5.8 Simulation results n=5, non-integer aij value 

 
 α ≥ 7 α ≥ 8 α = 9 

Total # of matrixes with 

CR ≤ 0.1 

55,924 56,142 57,332 

Total # of matrixes with 

CR ≤ 0.1 and rank reversal 

20,000 20,000 

 

20,000 
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Table 5.9 Comparison of actual to smallest possible weight for n = 5, non-
integer aij value 

 
Percent Deviation from 

Smallest Possible Weight 

α ≥ 7 α ≥ 8 α = 9 

10% 2.44% 1.80% 1.68% 

20% 8.75% 6.74% 5.54% 

30% 18.21% 15.30% 13.34% 

40% 28.56% 25.32% 22.79% 

50% 39.17% 35.44% 33.04% 

60% 49.35% 45.49% 42.74% 

70% 58.52% 54.97% 52.17% 

80% 67.31% 63.57% 60.72% 

90% 74.23% 70.82% 68.42% 

100% 80.32% 77.22% 75.31% 
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Table 5.10 Simulation results n=5, integer aij value 

 
 α ≥ 7 α ≥ 8 α = 9 

Total # of matrixes with 

CR ≤ 0.1 

27,701 27,655 26,831 
 

Total # of matrixes with 

CR ≤ 0.1 and rank reversal 

10,000 10,000 
 

10,000 
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Table 5.11 Comparison of actual to smallest possible weight for n = 5, integer 
aij value 

 
Percent Deviation from 

Smallest Possible Weight 

α ≥ 7 α ≥ 8 α = 9 

10% 3.2% 2.7% 2.3% 

20% 10.3% 7.1% 7.9% 

30% 18.6% 17.5% 17.3% 

40% 27.8% 28% 26.7% 

50% 38.7% 39% 37.4% 

60% 48.8% 49.1% 48% 

70% 58.9% 58.5% 56.4% 

80% 66.5% 66.9% 65.5% 

90% 73.3% 72.3% 72% 

100% 79% 78.8% 78% 
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Figure 5.1 Distribution of smallest priority weight when rank reversal occurs, 
n = 3, a ≥ 7, for non-integer aij values 

 

 
 
  

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

Pr
ob

ab
ili
ty

Smallest Priority Weight of Generated Comparison Matrix

Distribution of smallest priority weights 
(n=3, a ≥ 7, for non‐integer aij values)



 70

 
 

Figure 5.2 Distribution of smallest priority weights, n=4, α ≥ 7, for non-integer 
aij values 
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Figure 5.2 Distribution of smallest priority weights, n=5, α ≥ 7, for non-integer 
aij values 
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Chapter 6  

 CONCLUSION 

This thesis focused on two issues: (1) the calculation of an absolute 

minimal priority weight for a pairwise comparison matrix that exhibits an acceptable 

level of inconsistency and (2) investigation of a link, if any, between a potentially 

over-specified hierarchy and the rank reversal phenomenon.  

With respect to the first issue, the thesis extended the work of Aull-Hyde 

and Duke’s (2006) by generating an absolute minimal priority weights for matrices 

that exhibit an acceptable level of inconsistency.  Aull-Hyde and Duke (2006) 

assumed a perfectly consistent matrix when determining an absolute minimal priority 

weight.  Thus, the methodology proposed by Aull-Hyde and Duke can be 

implemented without the assumption of perfect consistency.  

When determining the minimum possible priority weight for an 

inconsistent 3x3 pairwise comparison matrix, the minimum possible priority weight 

can be expressed as a unique function of the consistency ratio (CR as defined by Saaty 

(1980)).   To determine the minimum possible priority weight for an inconsistent 4x4 

pairwise comparison matrix,  a ‘consistency ratio set’ was used to group potential 

pairwise comparison matrixes according to their consistency ratio.  The minimal 

weight generated by the ‘representative’ pairwise comparison matrix is used as the 

minimal weight for all matrices in the consistency-level set.   The minimal relative 

priority weight is a decreasing function of the CR value, indicating that matrices with 

higher levels of inconsistency will have smaller minimal relative priority weights.  
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This result implies that the ability to detect a misspecified hierarchy, using the 

procedure proposed by Aull-Hyde and Duke (2006), becomes more difficult as the 

inconsistency levels of the associated matrices increase.   

Given that an absolute minimal relative priority weight had been 

developed for the case of an inconsistent pairwise comparison matrix, the relationship 

between a mis-specified hierarchy and the rank-reversal phenomenon was investigated.  

This analysis revealed that, as expected, the risk of rank reversal (in matrices having 

an acceptable level of inconsistency and are at risk for over-specification) increases 

dramatically as the number of decision alternatives increases. Given that a pairwise 

comparison matrix, with an acceptable level of inconsistency, exhibits rank-reversal, 

the likelihood that the associated hierarchy is at risk for over-specification is no more 

than 4%.  This result indicates that no strong link exists between an over-specified 

hierarchy and rank reversal phenomena. 

The thesis extends the work of Aull-Hyde and Duke (2006) by calculating 

a minimal relative priority weight for an inconsistent pairwise comparison matrix.  

The minimal priority weight can be of practical importance by enabling decision 

makers to check the credibility of their established hierarchy.  

The simulation analysis verified, as expected, that the risk of rank reversal 

increases as the number of decision alternatives/criteria increases.  As the dimension 

of the pairwise comparison matrix increases, the level of inconsistency also tends to 

rise.  Thus, the risk of rank reversal increases as the level of inconsistency increases.   

Future research directions include: 
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 1. Can we find a representative matrix that generates a better (i.e., higher) 

lower bound on minimal relative priority weight for all matrices in the given 

consistency ratio set? 

2. Does a link between an over-specified hierarchy and rank reversal exist 

in multiple-level decision hierarchies?   

3. What is the risk of rank reversal for any matrix (i.e., no restriction on 

the aij values) having an acceptable level of inconsistency? 
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APPENDIX A  

Matlab Simulation Programs for n=3: 

 
function w=mweight(c,a); %c is the C.R. level. a is the max element. w return to the 
corresponding minimal weight. 
lamda=1.32*c+3; 
d=3*lamda^2-lamda^3-2; 
m=(-d+sqrt(d^2-4))/2; 
w=((1-lamda)^2-1)/(a*m+2*a*(lamda-1)+a/m-1+(1-lamda)^2); 
end 
 
 
function [V, H]=simulate3(n);%V returns to the minimal weights and matrix 
information, H returns to the smallest priority from matrix without rank reversal. N 
inputs that total # of rank reversal generated. 
 
t=cputime; 
i=0; %the number of rank reversal example; 
j=0; %the number of total simulations; 
k=0; %the number of total examples satisfying CR<=0.1 and max element >=7; 
o=1; 
coun=zeros(1,10); 
while i<n 
    j=j+1; 
    u=rand();     %generate random numbers 
    a=rand()*8+1; 
    if u<=0.5 
        a=a; 
    else 
        a=1/a; 
    end 
    u=rand(); 
    b=rand()*8+1; 
    if u<=0.5; 
        b=b; 
    else 



 79

        b=1/b; 
    end 
    u=rand(); 
    c=rand()*8+1; 
    if u<=0.5 
        c=c; 
    else  
        c=1/c; 
    end 
    c=9; 
    M=[1,a,b;1/a,1,c;1/b,1/c,1]; %generate pairwise comparison matrix 
    [v,d]=eig(M); 
    CR=(d(1,1)-3)/1.32; 
    if (CR<=0.1)&&(max([a,b,c])>=7)  % check conditions 
        k=k+1; 
        v1=abs(v(1,1)); 
        v2=abs(v(2,1)); 
        v3=abs(v(3,1)); 
        X=(v1/v2-1)*(a-1); 
        Y=(v1/v3-1)*(b-1); 
        Z=(v2/v3-1)*(c-1); 
        if (X<0)||(Y<0)||(Z<0) %check if rank reversal occurs 
            V(i+1,1)=a; 
            V(i+1,2)=b; 
            V(i+1,3)=c; 
            V(i+1,4)=CR; 
            V(i+1,5)=min([v1,v2,v3])/(v1+v2+v3); %smallest weight  
            V(i+1,6)=V(i+1,5)-mweight(V(i+1,4),max([a,b,c]))*1.1; 
            V(i+1,7)=V(i+1,5)-mweight(V(i+1,4),max([a,b,c]))*1.2; 
            V(i+1,8)=V(i+1,5)-mweight(V(i+1,4),max([a,b,c]))*1.3; 
            V(i+1,9)=V(i+1,5)-mweight(V(i+1,4),max([a,b,c]))*1.4; 
            V(i+1,10)=V(i+1,5)-mweight(V(i+1,4),max([a,b,c]))*1.5; 
            V(i+1,11)=V(i+1,5)-mweight(V(i+1,4),max([a,b,c]))*1.6; 
            V(i+1,12)=V(i+1,5)-mweight(V(i+1,4),max([a,b,c]))*1.7; 
            V(i+1,13)=V(i+1,5)-mweight(V(i+1,4),max([a,b,c]))*1.8; 
            V(i+1,14)=V(i+1,5)-mweight(V(i+1,4),max([a,b,c]))*1.9; 
            V(i+1,15)=V(i+1,5)-mweight(V(i+1,4),max([a,b,c]))*2; 
            i=i+1; 
        else  
            H(o)=min([abs(v(1,1)),abs(v(2,1)),abs(v(3,1))])/(v1+v2+v3); 
            o=o+1; 
        end 
        v1=0; v2=0; v3=0; X=0; Y=0; Z=0; 
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    end 
    a=0; b=0; c=0; M=zeros(3,3); v=zeros(3,3); d=zeros(3,3); CR=0; 
end 
for c=1:n 
    if V(c,6)<0 
        coun(1)=coun(1)+1; 
    end 
    if V(c,7)<0 
        coun(2)=coun(2)+1; 
    end 
    if V(c,8)<0 
        coun(3)=coun(3)+1; 
    end 
    if V(c,9)<0 
        coun(4)=coun(4)+1; 
    end 
    if V(c,10)<0 
        coun(5)=coun(5)+1; 
    end 
    if V(c,11)<0 
        coun(6)=coun(6)+1; 
    end 
    if V(c,12)<0 
        coun(7)=coun(7)+1; 
    end 
    if V(c,13)<0 
        coun(8)=coun(8)+1; 
    end 
    if V(c,14)<0 
        coun(9)=coun(9)+1; 
    end 
    if V(c,15)<0 
        coun(10)=coun(10)+1; 
    end 
end 
coun 
k 
j 
time=cputime-t 
end 
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APPENDIX B 

Matlab Simulation Programs for n=4: 
 
function w=mweight(c,a); 
L=2.97*c+4; 
D=2*L^2-L^3/2-2; 
m=(-D+sqrt(D^2-4))/2; 
Q=(L-1)^3+3*a*(L-1)^2+(4*a-3+a*m+a/m)*(L-1)+[m*(2*a-1)+(2*a-1)/m-a]; 
w=[(L-1)^3-3*(L-1)-(m+1/m)]/Q; 
end 
 
 
function [V, H]=simulate4(n);  %V returns to the minimal weights and matrix 
information, H returns to the smallest priority from matrix without rank reversal. N 
inputs that total # of rank reversal generated. 
 
t=cputime; 
o=1; 
i=0; %count the number of rank reversal; 
j=0; %count the total number of simulation; 
k=0; %count the total number of example s.t. CR<=0.1 and max element>=7; 
S123=0;S234=0;S124=0;S134=0; 
coun=zeros(1,10); 
while i<n 
    j=j+1; 
    u=rand(); 
    a12=rand()*8+1;  %generate random numbers for aij between [1,9] 
    if u<=0.5 
        a12=a12; 
    else 
        a12=1/a12; 
    end 
    u=rand(); 
    a13=rand()*8+1; 
    if u<=0.5 
        a13=a13; 
    else 
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        a13=1/a13; 
    end 
    u=rand(); 
    a14=rand()*8+1; 
    if u<=0.5 
        a14=a14; 
    else 
        a14=1/a14; 
    end 
    a14=9; 
    u=rand(); 
    a23=rand()*8+1; 
    if u<=0.5 
        a23=a23; 
    else 
        a23=1/a23; 
    end 
    u=rand(); 
    a24=rand()*8+1; 
    if u<=0.5 
        a24=a24; 
    else 
        a24=1/a24; 
    end 
    u=rand(); 
    a34=rand()*8+1; 
    if u<=0.5 
        a34=a34; 
    else 
        a34=1/a34; 
    end 
    
A=[1,a12,a13,a14;1/a12,1,a23,a24;1/a13,1/a23,1,a34;1/a14,1/a24,1/a34,1]; %generate 
random pairwise comparison matrix 
    [v,d]=eig(A);   %calculate the eignvalue and eignvector 
    CR=(d(1,1)-4)/2.97;  %calculate the consistency ratio 
    if (CR<=0.1)&&(max([a12,a13,a14,a23,a24,a34])>=8) % choose random pairwise 
comparison matrix satisfying CR requirement and maximal element larger than 7 
        k=k+1;     %calculate the number of matrix satisfying the requirements. 
        v1=abs(v(1,1)); 
        v2=abs(v(2,1)); 
        v3=abs(v(3,1)); 
        v4=abs(v(4,1)); 
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        A123=[1,a12,a13;1/a12,1,a23;1/a13,1/a23,1];   %delete alternative 4 
        A124=[1,a12,a14;1/a12,1,a24;1/a14,1/a24,1];   %delete alternative 3 
        A134=[1,a13,a14;1/a13,1,a34;1/a14,1/a34,1];   %delete alternative 2 
        A234=[1,a23,a24;1/a23,1,a34;1/a24,1/a34,1];   %delete alternative 1 
         
         
        [v123,d123]=eig(A123); %check alternative 1,2,3 situation 
        if (d123(1,1)-3)/1.32<=0.1 
            w1=abs(v123(1,1)); 
            w2=abs(v123(2,1)); 
            w3=abs(v123(3,1)); 
            X=(v1/v2-1)*(w1/w2-1); 
            Y=(v1/v3-1)*(w1/w3-1); 
            Z=(v2/v3-1)*(w2/w3-1); 
            if (X<0)||(Y<0)||(Z<0) %check if there is rank reversal, if yes, S123=1, 
otherwise, 0 
                S123=1; 
            end 
            w1=0; w2=0; w3=0; X=0; Y=0; Z=0; 
        end 
        %v123=zeros(3,3); d123=zeros(3,3); 
         
        [v124,d124]=eig(A124); %check alternative 1,2,4 situation 
        if (d124(1,1)-3)/1.32<=0.1 
            w1=abs(v124(1,1)); 
            w2=abs(v124(2,1)); 
            w4=abs(v124(3,1)); 
            X=(v1/v2-1)*(w1/w2-1); 
            Y=(v1/v4-1)*(w1/w4-1); 
            Z=(v2/v4-1)*(w2/w4-1); 
            if (X<0)||(Y<0)||(Z<0) %check if there is rank reversal, if yes, S124=1, 
otherwise, 0 
                S124=1; 
            end 
            w1=0; w2=0; w4=0; X=0; Y=0; Z=0; 
        end 
        %v124=zeros(3,3); d124=zeros(3,3); 
         
        [v134,d134]=eig(A134);        %check alternative 1,3,4 situation 
        if ((d134(1,1)-3)/1.32<=0.1) 
            w1=abs(v134(1,1)); 
            w3=abs(v134(2,1)); 
            w4=abs(v134(3,1)); 
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            X=(v1/v3-1)*(w1/w3-1); 
            Y=(v1/v4-1)*(w1/w4-1); 
            Z=(v3/v4-1)*(w3/w4-1); 
            if (X<0)||(Y<0)||(Z<0) %check if there is rank reversal, if yes, S134=1, 
otherwise, 0 
                S134=1; 
            end 
            w1=0; w4=0; w3=0; X=0; Y=0; Z=0; 
        end 
        %v134=zeros(3,3); d134=zeros(3,3); 
         
        [v234,d234]=eig(A234); %check alternative 2,3,4 situation 
        if ((d234(1,1)-3)/1.32<=0.1) 
            w2=abs(v234(1,1)); 
            w3=abs(v234(2,1)); 
            w4=abs(v234(3,1)); 
            X=(v2/v3-1)*(w2/w3-1); 
            Y=(v2/v4-1)*(w2/w4-1); 
            Z=(v3/v4-1)*(w3/w4-1); 
            if (X<0)||(Y<0)||(Z<0) %check if there is rank reversal, if yes, S234=1, 
otherwise, 0 
                S234=1; 
            end 
            w4=0; w2=0; w3=0; X=0; Y=0; Z=0; 
        end 
        %v234=zeros(3,3); d234=zeros(3,3); 
         
        if (S123==1)||(S234==1)||(S134==1)||(S124==1) %check if given matrix suffers 
from rank reversal. 
            V(i+1,1)=a12; 
            V(i+1,2)=a13; 
            V(i+1,3)=a14; 
            V(i+1,4)=a23; 
            V(i+1,5)=a24; 
            V(i+1,6)=a34; 
            V(i+1,7)=CR; 
            V(i+1,8)=min([v1,v2,v3,v4])/(v1+v2+v3+v4); 
            V(i+1,9)=V(i+1,8)-mweight(CR,max([a12,a13,a14,a23,a24,a34]))*1.1; 
            V(i+1,10)=V(i+1,8)-mweight(CR,max([a12,a13,a14,a23,a24,a34]))*1.2; 
            V(i+1,11)=V(i+1,8)-mweight(CR,max([a12,a13,a14,a23,a24,a34]))*1.3; 
            V(i+1,12)=V(i+1,8)-mweight(CR,max([a12,a13,a14,a23,a24,a34]))*1.4; 
            V(i+1,13)=V(i+1,8)-mweight(CR,max([a12,a13,a14,a23,a24,a34]))*1.5; 
            V(i+1,14)=V(i+1,8)-mweight(CR,max([a12,a13,a14,a23,a24,a34]))*1.6; 
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            V(i+1,15)=V(i+1,8)-mweight(CR,max([a12,a13,a14,a23,a24,a34]))*1.7; 
            V(i+1,16)=V(i+1,8)-mweight(CR,max([a12,a13,a14,a23,a24,a34]))*1.8; 
            V(i+1,17)=V(i+1,8)-mweight(CR,max([a12,a13,a14,a23,a24,a34]))*1.9; 
            V(i+1,18)=V(i+1,8)-mweight(CR,max([a12,a13,a14,a23,a24,a34]))*2; 
            i=i+1; %calculate the number of rank reversal 
        else 
            H(o)=min([v1,v2,v3,v4])/(v1+v2+v3+v4); 
            o=o+1; 
        end 
        S123=0; S234=0; 
S134=0;S124=0;A123=zeros(3,3);A134=zeros(3,3);A234=zeros(3,3);A124=zeros(3,3
); 
    end 
    
a12=0;a13=0;a14=0;a23=0;a24=0;a34=0;CR=0;A=zeros(4,4);v=zeros(3,3);d=zeros(3,
3); 
end 
for c=1:n 
    if V(c,9)<0 
        coun(1)=coun(1)+1; 
    end 
    if V(c,10)<0 
        coun(2)=coun(2)+1; 
    end 
    if V(c,11)<0 
        coun(3)=coun(3)+1; 
    end 
    if V(c,12)<0 
        coun(4)=coun(4)+1; 
    end 
    if V(c,13)<0 
        coun(5)=coun(5)+1; 
    end 
    if V(c,14)<0 
        coun(6)=coun(6)+1; 
    end 
    if V(c,15)<0 
        coun(7)=coun(7)+1; 
    end 
    if V(c,16)<0 
        coun(8)=coun(8)+1; 
    end 
    if V(c,17)<0 
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        coun(9)=coun(9)+1; 
    end 
    if V(c,18)<0 
        coun(10)=coun(10)+1; 
    end 
end 
coun 
j 
k 
time=cputime-t 
end 
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APPENDIX C 

Matlab Simulation Programs for n=5: 
 
function m=mweight(c,a); 
m=1/(1+a*(4.752*c+4)); 
end 
 
function [V, H]=simulate5(n); %V returns to the minimal weights and matrix 
information, H returns to the smallest priority from matrix without rank reversal. N 
inputs that total # of rank reversal generated. 
o=1; 
t=cputime; 
i=0; %count the number of rank reversal; 
j=0; %count the total number of simulation; 
k=0; %count the total number of example s.t. CR<=0.1 and max element>=7; 
S1=0; S2=0; S3=0; S4=0; S5=0; 
coun=zeros(1,10); 
while i<n 
    j=j+1; 
    u=rand(); 
    a12=rand()*8+1;  %generate random numbers for aij between [1/9,9] 
    if u<=0.5 
        a12=a12; 
    else 
        a12=1/a12; 
    end 
    %a12=9; 
    u=rand(); 
    a13=rand()*8+1; 
    if u<=0.5 
        a13=a13; 
    else 
        a13=1/a13; 
    end 
    u=rand(); 
    a14=rand()*8+1; 
    if u<=0.5 
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        a14=a14; 
    else 
        a14=1/a14; 
    end 
    u=rand(); 
    a15=rand()*8+1;  %generate random numbers for aij between [1/9,9] 
    if u<=0.5 
        a15=a15; 
    else 
        a15=1/a15; 
    end 
    u=rand(); 
    a23=rand()*8+1;  %generate random numbers for aij between [1/9,9] 
    if u<=0.5 
        a23=a23; 
    else 
        a23=1/a23; 
    end 
    u=rand(); 
    a24=rand()*8+1;  %generate random numbers for aij between [1/9,9] 
    if u<=0.5 
        a24=a24; 
    else 
        a24=1/a24; 
    end 
    u=rand(); 
    a25=rand()*8+1;  %generate random numbers for aij between [1/9,9] 
    if u<=0.5 
        a25=a25; 
    else 
        a25=1/a25; 
    end 
    u=rand(); 
    a34=rand()*8+1;  %generate random numbers for aij between [1/9,9] 
    if u<=0.5 
        a34=a34; 
    else 
        a34=1/a34; 
    end 
    u=rand(); 
    a35=rand()*8+1;  %generate random numbers for aij between [1/9,9] 
    if u<=0.5 
        a35=a35; 
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    else 
        a35=1/a35; 
    end 
    u=rand(); 
    a45=rand()*8+1;  %generate random numbers for aij between [1/9,9] 
    if u<=0.5 
        a45=a45; 
    else 
        a45=1/a45; 
    end 
    a45=9; 
    
A=[1,a12,a13,a14,a15;1/a12,1,a23,a24,a25;1/a13,1/a23,1,a34,a35;1/a14,1/a24,1/a34,1,
a45;1/a15,1/a25,1/a35,1/a45,1]; 
    [v,d]=eig(A);  
    CR=(d(1,1)-5)/4.752; 
    if (CR<=0.1)&&(max([a12,a13,a14,a15,a23,a24,a25,a34,a35,a45])>=8) 
        k=k+1; 
        v1=abs(v(1,1)); 
        v2=abs(v(2,1)); 
        v3=abs(v(3,1)); 
        v4=abs(v(4,1)); 
        v5=abs(v(5,1)); 
         
        
A5=[1,a12,a13,a14;1/a12,1,a23,a24;1/a13,1/a23,1,a34;1/a14,1/a24,1/a34,1]; %deletin
g alternative 5; 
        [V5,D5]=eig(A5); 
  
        if (D5(1,1)-4)/2.97<=0.1 
            X1=(v1/v2-1)*(V5(1,1)/V5(2,1)-1); 
            X2=(v1/v3-1)*(V5(1,1)/V5(3,1)-1); 
            X3=(v1/v4-1)*(V5(1,1)/V5(4,1)-1); 
            X4=(v2/v3-1)*(V5(2,1)/V5(3,1)-1); 
            X5=(v2/v4-1)*(V5(2,1)/V5(4,1)-1); 
            X6=(v3/v4-1)*(V5(3,1)/V5(4,1)-1); 
            if (X1<0)||(X2<0)||(X3<0)||(X4<0)||(X5<0)||(X6<0) %Check if rank reversal 
occurs, when deleting 5. 
                S5=1; 
            end 
        X1=0; X2=0; X3=0; X4=0; X5=0; X6=0; 
        end 
        A5=zeros(4,4); 
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A4=[1,a12,a13,a15;1/a12,1,a23,a25;1/a13,1/a23,1,a35;1/a15,1/a25,1/a35,1]; %deletin
g alternative 4; 
        [V4,D4]=eig(A4); 
        if (D4(1,1)-4)/2.97<=0.1 
            X1=(v1/v2-1)*(V4(1,1)/V4(2,1)-1); 
            X2=(v1/v3-1)*(V4(1,1)/V4(3,1)-1); 
            X3=(v1/v5-1)*(V4(1,1)/V4(4,1)-1); 
            X4=(v2/v3-1)*(V4(2,1)/V4(3,1)-1); 
            X5=(v2/v5-1)*(V4(2,1)/V4(4,1)-1); 
            X6=(v3/v5-1)*(V4(3,1)/V4(4,1)-1); 
            if (X1<0)||(X2<0)||(X3<0)||(X4<0)||(X5<0)||(X6<0) %Check if rank reversal 
occurs, when deleting 4. 
                S4=1; 
            end 
        X1=0; X2=0; X3=0; X4=0; X5=0; X6=0; 
        end 
        A4=zeros(4,4); 
         
        
A3=[1,a12,a14,a15;1/a12,1,a24,a25;1/a14,1/a24,1,a45;1/a15,1/a25,1/a45,1]; %deletin
g alternative 3; 
        [V3,D3]=eig(A3); 
        if (D3(1,1)-4)/2.97<=0.1 
            X1=(v1/v2-1)*(V3(1,1)/V3(2,1)-1); 
            X2=(v1/v4-1)*(V3(1,1)/V3(3,1)-1); 
            X3=(v1/v5-1)*(V3(1,1)/V3(4,1)-1); 
            X4=(v2/v4-1)*(V3(2,1)/V3(3,1)-1); 
            X5=(v2/v5-1)*(V3(2,1)/V3(4,1)-1); 
            X6=(v4/v5-1)*(V3(3,1)/V3(4,1)-1); 
            if (X1<0)||(X2<0)||(X3<0)||(X4<0)||(X5<0)||(X6<0) %Check if rank reversal 
occurs, when deleting 3. 
                S3=1; 
            end 
        X1=0; X2=0; X3=0; X4=0; X5=0; X6=0; 
        end 
        A3=zeros(4,4); 
         
        
A2=[1,a13,a14,a15;1/a13,1,a34,a35;1/a14,1/a34,1,a45;1/a15,1/a35,1/a45,1]; %deletin
g alternative 2; 
        [V2,D2]=eig(A2); 
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        if (D2(1,1)-4)/2.97<=0.1 
            X1=(v1/v3-1)*(V2(1,1)/V2(2,1)-1); 
            X2=(v1/v4-1)*(V2(1,1)/V2(3,1)-1); 
            X3=(v1/v5-1)*(V2(1,1)/V2(4,1)-1); 
            X4=(v3/v4-1)*(V2(2,1)/V2(3,1)-1); 
            X5=(v3/v5-1)*(V2(2,1)/V2(4,1)-1); 
            X6=(v4/v5-1)*(V2(3,1)/V2(4,1)-1); 
           if (X1<0)||(X2<0)||(X3<0)||(X4<0)||(X5<0)||(X6<0) %Check if rank reversal 
occurs, when deleting 2. 
                S2=1; 
            end 
        X1=0; X2=0; X3=0; X4=0; X5=0; X6=0; 
        end 
        A2=zeros(4,4); 
         
        
A1=[1,a23,a24,a25;1/a23,1,a34,a35;1/a24,1/a34,1,a45;1/a25,1/a35,1/a45,1]; %deletin
g alternative 1; 
        [V1,D1]=eig(A1); 
        if (D1(1,1)-4)/2.97<=0.1 
            X1=(v2/v3-1)*(V1(1,1)/V1(2,1)-1); 
            X2=(v2/v4-1)*(V1(1,1)/V1(3,1)-1); 
            X3=(v2/v5-1)*(V1(1,1)/V1(4,1)-1); 
            X4=(v3/v4-1)*(V1(2,1)/V1(3,1)-1); 
            X5=(v3/v5-1)*(V1(2,1)/V1(4,1)-1); 
            X6=(v4/v5-1)*(V1(3,1)/V1(4,1)-1); 
            if (X1<0)||(X2<0)||(X3<0)||(X4<0)||(X5<0)||(X6<0) %Check if rank reversal 
occurs, when deleting 1. 
                S1=1; 
            end 
        X1=0; X2=0; X3=0; X4=0; X5=0; X6=0; 
        end 
        A1=zeros(4,4); 
         
        if (S1==1)||(S2==1)||(S3==1)||(S4==1)||(S5==1) 
            i=i+1; 
            V(i,1)=a12; 
            V(i,2)=a13; 
            V(i,3)=a14; 
            V(i,4)=a15; 
            V(i,5)=a23; 
            V(i,6)=a24; 
            V(i,7)=a25; 
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            V(i,8)=a34; 
            V(i,9)=a35; 
            V(i,10)=a45; 
            V(i,11)=CR; 
            V(i,12)=min([v1,v2,v3,v4,v5])/(v1+v2+v3+v4+v5); 
            V(i,13)=V(i,12)-
mweight(V(i,11),max([a12,a13,a14,a15,a23,a24,a25,a34,a35,a45]))*1.1; 
            V(i,14)=V(i,12)-
mweight(V(i,11),max([a12,a13,a14,a15,a23,a24,a25,a34,a35,a45]))*1.2; 
            V(i,15)=V(i,12)-
mweight(V(i,11),max([a12,a13,a14,a15,a23,a24,a25,a34,a35,a45]))*1.3; 
            V(i,16)=V(i,12)-
mweight(V(i,11),max([a12,a13,a14,a15,a23,a24,a25,a34,a35,a45]))*1.4; 
            V(i,17)=V(i,12)-
mweight(V(i,11),max([a12,a13,a14,a15,a23,a24,a25,a34,a35,a45]))*1.5; 
            V(i,18)=V(i,12)-
mweight(V(i,11),max([a12,a13,a14,a15,a23,a24,a25,a34,a35,a45]))*1.6; 
            V(i,19)=V(i,12)-
mweight(V(i,11),max([a12,a13,a14,a15,a23,a24,a25,a34,a35,a45]))*1.7; 
            V(i,20)=V(i,12)-
mweight(V(i,11),max([a12,a13,a14,a15,a23,a24,a25,a34,a35,a45]))*1.8; 
            V(i,21)=V(i,12)-
mweight(V(i,11),max([a12,a13,a14,a15,a23,a24,a25,a34,a35,a45]))*1.9; 
            V(i,22)=V(i,12)-
mweight(V(i,11),max([a12,a13,a14,a15,a23,a24,a25,a34,a35,a45]))*2; 
        else 
            H(o)=min([v1,v2,v3,v4,v5])/(v1+v2+v3+v4+v5); 
            o=o+1; 
        end 
        S1=0;S2=0;S3=0;S4=0;S5=0;v1=0;v2=0;v3=0;v4=0;v5=0; 
    end 
    
a12=0;a13=0;a14=0;a15=0;a23=0;a24=0;a25=0;a34=0;a35=0;a45=0;A=zeros(5,5);CR
=0; 
end 
for m=1:n 
    if V(m,13)<0; 
        coun(1)=coun(1)+1; 
    end 
     if V(m,14)<0; 
        coun(2)=coun(2)+1; 
     end 
     if V(m,15)<0; 
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        coun(3)=coun(3)+1; 
     end 
     if V(m,16)<0; 
        coun(4)=coun(4)+1; 
     end 
     if V(m,17)<0; 
        coun(5)=coun(5)+1; 
     end 
     if V(m,18)<0; 
        coun(6)=coun(6)+1; 
     end 
     if V(m,19)<0; 
        coun(7)=coun(7)+1; 
     end 
     if V(m,20)<0; 
        coun(8)=coun(8)+1; 
     end 
     if V(m,21)<0; 
        coun(9)=coun(9)+1; 
     end 
     if V(m,22)<0; 
        coun(10)=coun(10)+1; 
    end 
end 
coun 
j 
k 
time=cputime-t 
end 
 
 


