USING DOCUMENT SIMILARITY NETWORKS TO
EVALUATE RETRIEVAL SYSTEMS

by

Aparna Kailasam

An abstract of a thesis submitted to the Faculty of the University of Delaware in
partial fulfillment of the requirements for the degree of Master of Science in Computer
Science

May 2010

Approved:

Ben Carterette, Ph.D.
Professor in charge of thesis

USING DOCUMENT SIMILARITY NETWORKS TO
EVALUATE RETRIEVAL SYSTEMS

by

Aparna Kailasam

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment
of the requirements for the degree of Master of Science in Computer Science

May 2010

(© 2010 Aparna Kailasam
All Rights Reserved

USING DOCUMENT SIMILARITY NETWORKS TO
EVALUATE RETRIEVAL SYSTEMS

by

Aparna Kailasam

Approved:

Ben Carterette, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee
Department of Computer and Information Sciences

Approved:

B. David Saunders, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:
George H. Watson, Ph.D.
Dean of the College of Arts and Sciences

Approved:

Debra Hess Norris, M.S.
Vice Provost for Graduate and Professional Education

Acknowledgments

I would like to take this opportunity to express my sincere gratitude to my advisor,
Professor Ben Carterette, for his constant support and encouragement throughout the course
of this thesis work.

My interest in Information Retrieval began when I took a course in the subject mat-
ter taught by Professor Carterette in Spring 2009. His enthusiasm and professionalism in
teaching the course inspired me to work harder and prompted me to request that he grant
me an opportunity to work on a research project under him in the following summer. It
was the glimpse of hands-on research experience I had during this period that convinced me
to do a thesis under his guidance. Professor Carterette has been an excellent mentor and a
constant source of invaluable ideas.

I would also like to thank all my friends at the University of Delaware for the fantastic
and fun-filled two years I spent there. I would especially like to thank Shailaja Rabindran
and her family for providing me with constant and unconditional support during my stay in
their home in Delaware. 1 am also grateful to her for letting me share the love of her two
beautiful and adorable pet cats, Dusty and Raja.

Though my family is located in India, they never felt far away as they always reached
out to me whenever I needed them. I cannot thank my parents or my sister Anupama enough

for being my pillars of support throughout.

1l

Table of Contents

LIST OF FIGURES e vi

LIST OF TABLES e e vii

ABSTRACT e viii
Chapter

1 INTRODUCTION e e e 1

2 PREVIOUS WORK e 4

2.1 IR Evaluation Measures 4

2.2 Low-Cost Evaluation 5

2.2.1 Choosing Documents to Judge L. 6

2.2.2 Evaluation with Incomplete Judgments 8

2.2.3 Inferring Relevance 9

2.3 Citation Graphs 10

24 Our Approach 12

3 METHODS e 13

3.1 PageRank 13

3.1.1 Weighted PageRank 16

3.1.2 Computing PageRank using MapReduce 17

3.2 Similarityo 18

v

3.3 TrustRank 18

3.3.1 Weighted TrustRank 20

3.4 Our Approach L 20
3.4.1 Seed-set Construction L. 21

3.4.2 Static Prior Score Distribution 22

3.4.3 Mapping TrustRanks to Relevance Judgments 22

3.4.3.1 F-measure o 23

3.4.3.2 Logistic Regression 24

4 EXPERIMENTS 27
4.1 Data o 27
4.1.1 Corpora 28

4.1.2 Queries 28

4.1.3 Runso 28

4.2 Experimental Setupo 29
4.3 Experimental Procedure 000 29
4.4 Implementation Details L 31
4.5 Evaluation Lo 31
4.5.1 Evaluating Classification Performance 32

4.5.2 Evaluating Ability to Evaluate Systems 32

5 RESULTS 34
5.1 Evaluating Classification 34
5.2 Evaluating the Evaluation 38
5.2.1 Terabyte Results 38

52.1.1 Analysis 40

522 MQResults 40

6 CONCLUSION AND FUTURE WORK 43
BIBLIOGRAPHY 44

List of Figures

3.1

3.2

3.3

3.4

5.1

5.2

5.3

5.4

5.5

5.6

An example webgraph 14
A hypothetical web-model of good and spam (black) pages 19

A web-model of relevant and non-relevant (black) pages in the weighted
TrustRank approach 21

Logistic function assumed by P(Y|X) 26

Macro-averaging process on a (a) depth-5, (b) depth-10 and (c) depth-25
pool . .o 36

Micro-averaging process on a (a) depth-5, (b) depth-10 and (c) depth-25 pool 37

Correlation between the true ranking and predicted ranking (a & b) depth-5
pooled seed-set of runs from the Terabyte 2004 track, (¢ & d) depth-10

pooled seed-set of runs from the Terabyte 2005 track, (e & f) depth-25

pooled seed-set of runs from the Terabyte 2006 track. (i & ii) correspond to
using t-macro and t-micro as classifiers.o 39

Change in Kendall’s 7 in response to increase in pooling depth for
subset-qrels, t-macro (pooling), t-micro (pooling) and t-macro (statistical
sampling) on the (a) 2004, (b)2005 and (c¢)2006 Terabyte runs 41

Histogram of predictions generated using Logistic Regression for test data

from the 2008 MQ track. Y-axis indicates the frequency of retrieved
documents and X-axis indicates the probability of relevance. 42

Correlation of the predicted EMAPs with the baseline EMAPs. It can be
seen that there is almost little to no correlation between the 2 rankings. . . 42

vi

List of Tables

4.1

5.1

Summary of runs 29

Classification performance produced by training on seed-sets pooled to

depths of 5, 10 and 25. Precision and recall increase with the pooled depth.
Among the machine-learnt thresholds, local-t-micro seems to perform poorly
compared to t-macro and t-micro. logreg does not do well either. 35

vii

Abstract

Information Retrieval System Evaluation is important in order to determine the per-
formance of a system’s ability in satisfying the information needs of users. Evaluation of re-
trieval systems requires constructing test collections, which consists of obtaining documents,
topics (information needs) and a set of relevance judgments that indicate the relevant docu-
ments for a topic. For a small collection of documents, it is possible to judge every document
for relevance. A large document collection will demand an enormous judging effort, which
is unrealistic.

We present a novel technique for evaluating retrieval systems using minimal human
judgments. Our proposed solution initially selects a small ‘seed-set’ of documents which are
judged for relevance. The relevance information from this set is then propagated through
an adhoc network of document similarities to determine the relevance of other unjudged
documents. The original judgments combined with the inferred judgments constitute the
complete set of judgments that is used to compare the relative performance of different
systems. Our results show that we can effectively compare different retrieval systems using
very few relevance judgments and at the same time achieve a high correlation with the true

rankings of systems.

viil

Chapter 1

INTRODUCTION

The goal of Information Retrieval is to help users find arbitrary information in very
large collections of unstructured text or other media. One could be searching the World
Wide Web or looking for scholarly articles. Typically, retrieval systems accept queries from
users. The system uses some representation of the text in the query and text in documents
to calculate a matching score between the query and each document, then returns a ranked
list of documents in decreasing order of score to the user.

IR systems are complicated. There are many components that interact with each
other to influence the final results, including the text representation, the scoring function,
properties of the collection, and so on. Researchers and developers of IR systems need to
know whether they can expect users of their systems to be happy with the results provided,
but because the system is so complicated, there is no way they would be able to predict how
any given design decision will ultimately affect the users. It is therefore necessary to evaluate
the final ranked list itself. This is done by evaluating the relevance of the documents in the
collection.

Information Retrieval System Evaluation follows the so-called Cranfield paradigm de-
veloped in the 1960’s by library scientists at Cranfield Aeronautics. The Cranfield paradigm
uses a static test collection for batch evaluation over a representative sample of queries. A
test collection consists of documents, a set of queries and a fixed set of relevance judgments.
Documents solve information need, queries are information needs used to search against the
documents, and the relevance judgments identify the relevant documents for the topics. The

Cranfield paradigm assumes that the relevance judgments are complete; every document is

judged with respect to every topic. If the document collection size is huge, this task requires
exhaustive human effort, and in reality becomes infeasible and inefficient.

The Text REtrieval Conference (TREC) was started by researchers at NIST in 1992
as a way to involve the information retrieval research and development community in the
construction of large-scale test collections for research [27]. Before TREC, test collections
for IR research consisted of a few thousand short document abstracts; they had to be small
because of the cost involved in getting human relevance judgments. TREC scaled up to
hundreds of thousands full-text news articles. It did this by use of the pooling method [22].
First, a set of queries with full statements of an information need were developed at NIST.
These queries were sent to research groups at universities and companies that had agreed
to participate. Each group submitted the queries to one or more retrieval systems that had
indexed the news articles. They returned their results to NIST, which then pooled the top
100 documents ranked by each system for each query. Every document in the pool was
judged for relevance. Although only a small fraction of the total collection was judged, since
they were documents that were actually retrieved by modern systems, it was good enough
to provide accurate evaluation.

Since 1992, the document collections used for TREC have grown. In 2004 a 25-million
document collection was introduced [11]. 2009 saw the introduction of a one billion document
collection [12]. As collection sizes increase, the amount of human effort needed even for
shallow-depth pools increases. The cost is beyond what NIST can expend. Furthermore,
research groups that want to work on new problems outside of TREC cannot rely on NIST
to obtain relevance judgments. For these reasons it is important to have ways to build test
collections cheaply while still allowing accurate comparisons between retrieval algorithms.

Our goal in this work is to propose a semi-automatic evaluation system that infers
the relevance of unjudged documents given minimal judgments and use this information to
evaluate different systems. Our approach starts by selecting a seed-set of documents that
have been judged for relevance. We construct an adhoc network of document similarities that

consist of both judged and unjudged documents and propagate the relevance information

from the seed-set to unjudged documents in the network. We then use the inferred relevance
judgments to evaluate retrieval systems.

Our approach is applicable for use in the following environments that follow the
Cranfield-based evaluation strategy: Text REtreival Conference (TREC), NII-NACSIS Test
collection for IR Systems (NTCIR), Cross-Language Evaluation Forum (CLEF), INitiative
for the Evaluation of XML Retrieval (INEX). Another scenario is a research group that wants
to evaluate their retrieval system but does not have access to sufficient resources for obtaining
relevance judgments for their collection of documents. They could start with few judgments
and infer the relevance of unjudged documents and use this to evaluate the performance of
their retrieval system.

We will show that our method can predict the relevance of unjudged documents with
62% precision and 80% recall and that bears a Kendall 7 correlation of 0.95 with the original
ranking. Despite the relatively low success rate, we can compare different systems to each
other with high accuracy, that is evident from the high value for 7 correlation: we will show
that we can use a small seed set of human judgments to rank a set of systems in increasing
order of quality very close to the ranking that would be obtained with a much larger set.

Our main contributions include the following:

e We present techniques to estimate relevance of an unjuded document given few rele-

vance judgments to begin with
e We propose a technique for retrieval system evaluation using a network algorithm

The rest of the report is organized as follows: Chapter 2 gives a background of prior
related work in evaluation of retrieval systems and popular link-graph based approaches for
ranking documents. Chapter 3 provides an overview of and a detailed description of our
algorithm. Chapter 4 presents an overview of our experimental procedure. Experimental

results are presented in Chapter 5. We finally conclude the report in Chapter 6.

Chapter 2

PREVIOUS WORK

As described before, our goal is to evaluate retrieval systems using a combination of
minimal human relevance judgments and inferred judgments based on similarity networks.
This work, therefore, combines research on evaluation with incomplete and inferred judg-
ments with research on propagation of information through networks. In this section, we
summarize previous work in these two areas. First we will introduce the standard measures

used to evaluate retrieval systems.

2.1 IR Evaluation Measures

As we discussed in Chapter 1, information retrieval evaluation is based on human
judgments of relevance to individual documents. It is useful to be able to distill these
judgments down to a single measure or set of measures of properties of a ranked list of
documents. The information retrieval literature contains a wide variety of such measures; a
handful of these are widely used by researchers and developers.

Precision is the proportion of documents retrieved that are actually relevant according
to human assessors. Recall is the proportion of relevant documents in the entire collection
that have been retrieved. Precision and recall are usually calculated at a particular rank cut-
off, for instance precision at rank 10 is the proportion of the top 10 ranked documents that
are relevant, and recall at rank 10 is the proportion of relevant documents in the collection
that have been ranked in the top 10. Precision and recall are frequently combined into a

single summary measure. F is the harmonic mean of precision and recall at a particular

rank. R-precision (or breakeven point) is the precision at the rank equal to the number of
relevant documents.

Precision may also be averaged over the entire ranked list for a summary of perfor-
mance. The average of the precisions computed at each rank that a relevant document has
been retrieved is called average precision (AP). AP is equivalent to the area under a curve
of recall versus precision.

Because different queries can have very different performance, it is standard to evalu-
ate a set of queries, computing AP or some other measure for every query in the set. These
measures are then averaged over the set, and frequently a confidence interval calculated for
comparison to other systems. When AP is averaged over a set of queries, it is called mean
average precision (MAP). MAP is the most common measure seen in IR literature today. It
is the official measure of the TREC conference, and it is the measure we will use throughout
this work.

The measures above are based on binary relevance judgments. Relevance could also be
judged on a graded scale (highly relevant, relevant, not relevant) for finer distinctions between
documents. Discounted cumulative gain (DCG) is an evaluation measure that makes use of
graded relevance judgments. For each rank, it calculates a ‘gain’ as the relevance grade of
the document at that rank divided by a logarithmic discount. These gains are summed over
ranks to produce the final cumulative measure of performance. DCG and the normalized

variant NDCG have become standard evaluation measures for search engines like Google.

2.2 Low-Cost Evaluation

Work on low-cost evaluation can be seen as falling along three dimensions:

1. Determining which documents to judge in order to provide efficient and reliable eval-

uation results

2. Using a small, incomplete set of judgments to reliably evaluate systems

3. Inferring the relevance of unjudged documents in order to produce better estimates of

evaluation measures when judgments are missing

These three dimensions are not independent of one another, of course; a certain estimate
of evaluation measures based on incomplete judgments may require a certain approach to

collecting those judgments. Nevertheless, we find this a useful classification scheme.

2.2.1 Choosing Documents to Judge

Large-scale retrieval evaluation requires efficient construction of large test collections.

A test collection consists of 3 components, namely:
1. Documents
2. Queries
3. Relevance judgments

If the document collection size is huge, it may become infeasible to judge each and every
document with respect to a topic. Hence, it might be good to judge only a subset of
documents to evaluate different systems; given that these documents are well-representative
of the entire set of relevant documents. The following approaches have been proposed:

The Pooling [22] method involves forming a pool by taking the union of the top k
documents retrieved by n independent systems for a query. Assessors judge every document
in the pool for relevance to that query. It is justified by the principle that if a retrieval system
is effective, the top-ranked documents will be excellent candidates for inclusion in the subset
of documents to be judged. If k£ and n are large, the set of judged relevant documents is
assumed to be representative of the entire set of relevant documents, and hence suitable to
evaluate different systems. But, on the other hand, the number of documents to be judged
for a topic (up to kn) is still huge. Also, the subset of documents closely approximates the
ideal set of relevant documents only under the assumption that all systems achieve equal

retrieval effectiveness, which is not realistic.

Cormack et al. proposed 2 methods [14]; the first, called Interactive Searching and
Judging (1SJ), combines the efforts of multiple searchers in identifying a representative set
of the set of relevant documents. This method ranks each document based on the length and
the number of passages satisfying the query. The assessors are not stuck with a pool, they
are able to submit queries themselves and judge the documents that come back. They’re
allowed to do this iteratively so that they can learn about the topic and find more relevant
documents. Even though this method uses roughly one-quarters of a judging effort compared
to Pooling, it has been shown to be effective in comparing retrieval performance. The second,
called Move to Front Pooling (MTF), selects the next document to be judged from the system
that retrieved the most recently judged relevant document. MTF can be seen as ordering
documents in a priority queue by a rough approximation of their probability of relevance,
adaptively updating the probabilities after each judgment. This method finds more relevant
documents more efficiently than the traditional pooling method.

Carterette et al. proposed the Minimal Test Collections method [10] that selects
those documents for judging that are the most informative about the difference in the MAP
of two retrieval systems. It is an iterative algorithm that assigns weights to documents based
on the judgments that were made up to that point and these weights are recalculated after
each judgment is made. hey define a sampling prior based on cumulative information about
the ranks at which documents appear in the ranked lists being sampled from. This method
is capable of ranking systems with a high degree of confidence using minimal judgments and
is also applicable for use in non-TREC research environments.

The method by Aslam et al. in [4] selects documents for judging from a specific
random sample of documents from the given ranked lists to produce unbiased, low-variance
estimates of retrieval measures like average precision. This method can also take information

coming from additional judged documents from other, non-random locations in a ranked list.

2.2.2 Evaluation with Incomplete Judgments

The simplest approach to estimate evaluation performance when judgments are in-
complete is to assume that all unjudged documents are non-relevant. This assumption is
reasonable when the relevance judgments are fairly substantial; but if the document collec-
tion is very large, it is likely that many relevant documents exist beyond those that have
been judged. Also, performance can be better estimated by taking unjudged documents into
account. Therefore, other estimation methods become necessary.

Buckley & Voorhees proposed the bpref evaluation measure [7] that is calculated
only over judged relevant and nonrelevant documents, ignoring unjudged documents bpref
computes a preference relation that is a function of the number of times judged non-relevant
documents are retrieved and ranked higher than judged relevant documents. bpref has been
shown to rank systems similar to average precision, and is known to be highly stable given
incomplete relevance judgments

Yilmaz & Aslam’s propose inferred average precision [28] is an estimate of average
precision on a set of judgments uniformly sampled from the original judgments set. In effect,
this set acts as the set of incomplete judgments. The notion of inferred average precision
arises from thinking about average precision as the outcome of a random experiment. A
relevant document is chosen at random from a ranked list of documents and the probability
of finding a relevant document at or above that rank is determined; that in effect corresponds
to finding the precision at that rank. Randomly picking a relevant document corresponds to
averaging these precisions over all relevant documents.

Carterette et al’s Expected Average Precision(EAP) [10] is calculated as an expected
value of average precision expressed as a function of document relevance variables. The rele-
vance of each document is represented as a Boolean random variable X;, and the probability
that the document is relevant is p(X; = 1). For a judged relevant document p(X; =1) =1
and for a judged nonrelevant document p(X; = 1) = 0. Consequently, any evaluation mea-
sure (and thus AP) can be expressed in terms of document relevances X;, and thus must have

a distribution over possible assignments of relevance to unjudged documents. The maximum

a posteriori ranking of systems is one in which systems are ranked by the ezpected value of

average precision. Given probabilities of relevance p; = p(X;):

FEAP ~ ZIPZZZ: CiiDi + Z CijDiDyj

Also, since Mean Average Precision is the average of the average precisions computed for a

set of topics T', EMAP can be computed as:

1
EMAP = — > ier EIAP)] (2.1)

2.2.3 Inferring Relevance

Instead of trying to work around missing judgments, we can use evidence provided
by any relevance judgments we have to infer the relevance of unjudged documents. These
inferred judgments can be used to augment the existing judgments, possibly providing more
accurate evaluation.

Carterette et al. present a model of evaluation (described above) that can incorporate
any type of evidence to estimate relevance [9]. The similarity of an unjudged document to
other judged relevant documents may provide evidence for that document being relevant;
this idea comes from the cluster hypothesis, which says that associated documents tend to be
relevant to the same requests. By modelling the relevance of a document conditional on its
similarity to judged relevant documents, the relevance of unjudged documents is estimated.
This method is capable of ranking retrieval systems with minimal human effort compared
to traditional TREC methods like pooling.

Aslam et al. present a technique that infers the relevance of unjudged documents by
obtaining estimates of average precision and the number of relevant documents [4] by sam-
pling and judging some documents. Based on these estimates, the method assigns probabili-
ties of relevance to unjudged documents by solving an optimization problem that minimizes
the difference in average precisions obtained by using a true ranking (generated by assessors
at TREC) and one generated by inferring the relevance of unjudged documents. It then

converts these probabilities into binary judgments of relevance using randomized rounding.

The resulting judgments set was shown to bear a high correlation to the actual judgments
set.

Jensen presents a technique in [21] for obtaining automatic relevance judgments from
web taxonomies. The technique requires a query log that sufficiently represents the query
population on the web, and a human-edited taxonomy of documents, that is not biased
towards any search-engine. For an informational/topical-search task, all the documents
corresponding to a category in the taxonomy whose name exactly matches a query are
treated as relevant. For a named-page finding task, this method retrieves all the documents
whose human-edited title exactly matches the query. These documents are treated as the
‘most-relevant’ for the corresponding query. Jensen et al. show that judgments inferred in

this way can be used for repeatable and reliable comparisons of IR systems

2.3 Citation Graphs

Networks are interesting structures that can be used for the propagation of various
properties from one node to others through link structure. It is useful to be able to identify
the 'authority’ or the ‘relative standing’ of nodes who can be used to propagate reliable
information through the network. Research in social networks has formulated various ways
of determining the ‘standing’ of a node. Amongst several popular formulations was one
defined by Hubbell: The standing s; of a node j is a solution to the system of equations
s; =ej+ y_, Aijs;, where s; is the standing of a node j, e; is the prior weight of node j, A;;
is the strength of the reference from node i to node j. Much subsequent research on citation
graphs can be seen as building on this framework. The field of bibliometrics was one of the
first to make use of this idea.

Bibliometrics is the study of written documents and their citations. Research in
Bibliometrics evaluates the influence of a journal in a network of journal citations. The most
popular measure in this field is Garfield’s impact factor, which counts the number of inlinks
to a journal as a measue of its influence. Pinski and Narin [25] made the observation that not

all citations may be equally influential; they calculated ‘influence weights’ based on the idea

10

that a journal is influential if it is recursively cited by other influential journals. Geller [17]
observed that the influence weights correspond to stationary probabilities of a random walk
through the network of journal citations. Doreian [15, 16] proposed that the influence weight
of a journal essentially corresponds to the standing of a node in a social network (in this
case a network of journal citations) and can be obtained by running Hubbell’s computations
iteratively; the standings computed in one iteration become the prior weights for the next
iteration.

Standard citation analysis has been applied to the hypertextual citation structure of
the web. Algorithms like PageRank [6] and HITS [23] extended the concept of an academic
citation to the notion of a ‘link’ between 2 web pages. PageRank computes the relative
importance of web pages and uses this information to re-rank the seach results for a query.
The idea behind PageRank is that an important page is linked to by other important pages,
which gives rise to a recursive computation. The PageRank of a page is equal to the sum of
the ranks of the pages that point to it weighed by the number of forward links from those
pages. The ranking follows the walk of a 'random surfer’ in a hyperlinked environment; the
surfer starts randomly on some page and successively keeps clicking on links, but eventually
gets bored and ‘jumps’ to a random page with a uniform probability.

PageRank computes ‘global importance’ scores for web pages, and these scores can be
specialized to create a personalized view of importance. Unlike PageRank, that computes a
single importance score for every webpage, Haveliwala [19] suggests customizing the search
results according to a topic. The technique initially computes a set of topic-sensitive im-
portance scores for each page offline. During query-processing, the topic-sensitive scores for
a page are combined based on the topics encompassed by the query to form a ‘composite-
PageRank’ score for pages matching a query.

Glen and Widom [20] create a set P of user-selected pages that define importance.
This set essentially comprises of a subset of the set of hub pages (pages with high PageRank).
Instead of randomly jumping to a page with uniform probability as in the PageRank algo-

rithm, the jump is restricted to the set P, increasing the probability that a random surfer will

11

prefer a page in P’s near environment. In essence, this approach creates a personalized view
of the pages on the web. The TrustRank [18] algorithm is similar to the above approach, i.e
does not assign a uniform prior probability for all web pages. The algorithm initially assigns
a non-zero score to some pages that are manually determined to be spam-free. The score of
such pages is propagated to pages that are reachable from them to determine their likelihood
of being spam-free.

Another popular algorithm that makes use of the hyperlinked structure of the web is
HITS. Unlike PageRank, which propagates information from one authority node to another,
HITS proposes the flow of information from one authority to another using ‘hubs’. An
‘authority’ node may not endorse another ‘authority’ node, which is why PageRank uses
random jumps to deal with the problem of an authority essentially to nowhere. The algorithm
constructs a focussed subgraph of the web with respect to a topic to find 2 sets of pages;
‘authority’ pages that contain a lot of relavant information on a topic and the ‘hub’ pages

that point to a lot of relevant ‘authority’ pages.

2.4 Our Approach

The network algorithms outlined above consider a hyperlink as conferring a notion of
authority /approval. We will use this idea, but instead of using explicit links, we will use an
ad hoc network based on content similarity. Like TrustRank and the personalized versions of
PageRank, we will use this network to propagate information about a topic from documents
in the network that have been assessed by humans to documents in it that have not been
assessed. We will then use this information to infer relevance judgments that we can use to

evaluate retrieval systems.

12

Chapter 3

METHODS

To estimate the relevance of unjudged documents and hence evaluate retrieval sys-
tems, we make use of the cluster hypothesis that states: “closely associated documents tend
to be relevant to the same requests”. If this is true, it suggests that we can leverage some
measure of association between unjudged documents and judged relevant documents to iden-
tify new relevant documents among those that have not been judged. A natural indicator
of association is a hyperlink between two documents; if one document links to another, it
suggests those two documents have something in common.

Links alone may not be sufficient indicators of association, however. Many links
between web pages exist only because the pages share a domain or for other reasons that
have little to do with content or meaning. If we can create new “links” that are based on
similarity of content, we can take advantage of existing citation-graph algorithms and the
cluster hypothesis to propagate relevance from judged documents to unjudged documents.

We begin this section by describing the PageRank citation-graph algorithms in more
detail. We then discuss linking documents by similarity of content and using a refinement of
PageRank to propagate human relevance judgments along those links. Section 3.4 presents

a complete summary of our approach.”

3.1 PageRank

Pagerank[1] is based on a mutual-reinforcement relationship between web pages. It

uses the connectivity information between pages to assign popularity scores: a popular page

13

Figure 3.1: An example webgraph

contributes to the scores of other pages, and its own score is a function of the popularity of
other pages. This means that PageRank is recursive: calculating the PageRank of a page a
requires knowing the PageRanks of the pages that link to a, which could in turn depend on
the PageRank of a.

Pages are initially assigned uniform PageRanks of 1/N, where N is the total number
of pages. PageRank is then computed iteratively. The PageRank of a page b on iteration ¢
is the sum of the current PageRanks of each page a that links to b divided by the number
of outgoing links from page a. If G(W, E) is a graph in which nodes W are web pages and
edges E are hyperlinks between pages, the PageRank of b is computed as:

pr(b) = Z _prla) (3.1)

es outlinks(a)

where outlinks(a) is the number of outgoing links from page a. Figure 1 shows an example
web graph. In the figure, a and c¢ link to b. Hence the PageRanks of pages a,b,c are
calculated as:
Intial PageRanks:

pr(a) = pr(b) = pr(c) = 0.167

After the 1st iteration:

pr(a) =0

14

pr(b) = pr(a)/2 + pr(c)/1 =0.167/2 + 0.167,
pr(c) =pr(a)/2+pr(b)/1+ pr(e)/1 =0.167/2 + 0.167 4 0.167

Page a links to pages b and ¢, but no other page links to a. Hence, page a will have
a low PageRank. Pages b, ¢ form a loop (Pages d, f also link to each other, but they do not
form a loop, as page d links to page e¢). The PageRanks of pages b and ¢ will end up being
higher than those of d and f, since the pair b, ¢ have more inlinks than the pair d, f.

PageRank can be seen as modeling a ‘random surfer’ visiting web pages in a hyper-
linked environment. The random surfer starts at an arbitary page and keeps on following
successive links randomly. There is a uniform probability of going to any linked page. In
Figure 1, if the random surfer starts at d and goes to f, the surfer might get stuck by click-
ing on the links from d and f back and forth. But the surfer can break out of the loop by
randomly going to e. If the surfer starts at a, and then follows the link to either b or ¢,
there will be no possibility of breaking out of the loop b,c. Thus b and ¢ will have all the
probability. This phenomenon is called as “rank-sink”.

The computed PageRanks after the 1st iteration are as follows:
[a:0.0,b:0.25,¢:0.416,d : 0.167,e : 0.083, f : 0.083]
after 20 iterations, ..
[a:0.0,b:0.583,c:0.416,d : 0.00016, ¢ : 0.00016, f : 0.00016]

As we can see, after 20 iterations, pages b and ¢ have nearly all of the probability
mass, because the random surfer is always going to end up clicking between those two pages.
This loop is called a “rank sink”.

We can solve this problem by allowing the random surfer to randomly “jump” to
some other page in the web graph without regard to the link structure. These jumps happen
with uniform probability (all pages are equally likely landing points), so the probability is
(1—a)/N. This acts as a “source of rank”. The parameter « is determined by the researcher;

o = 0.85 is a common value.

15

The PageRank of a page b in a network of N pages is thus defined as:

pr)=a > pr@) _ 1-a (3.2)

oer outlinks(a) N

For the example webgraph, we computed the following PageRanks for 20 iterations

and a=0.85.

[a:0.025,b:0.386,c: 0.405,d : 0.072,¢ : 0.056, f : 0.056]

The PageRanks seemed to be changing marginally after the 20th iteration. The correctness
of the PageRanks can be confirmed from the webgraph in Figure 1. As page a is not linked
to by any other page, it receives the lowest PageRank. Pages e and f have a common inlink
from page d, therefore their PageRanks are equal, but low as d has a low PageRank. Pages
b and c receive the highest PageRanks, as they endorse each other repeatedly in PageRank
iterations and the loop b, ¢ receives rank source from 4 pages, namely a, b, c and e. Also, ¢
receives a slightly higher PageRank than b as it also gets a rank contribution from e, besides
a. The PageRanks of all pages in a network (also from the example) sum to 1, as they are

essentially probabilities.

3.1.1 Weighted PageRank

A weighted graph is one in which the edges have real-valued weights instead of 0/1
values. A weighted webgraph may be desirable in situations where one link is preferred
over another, instead of endorsing all links equally or entirely ruling them out, as in the
case of a 0/1 webgraph employed by the tradition PageRank approach. The weights on the
links between pages signifies the strength of the endorsement from one page to another. One
scenario where a weighted webgraph may be useful is for expressing graded relevance; for

expressiong the notions of highly relevant, relevant and non-relevant. Also, the component

Z(a,b)EE pr(a)
outlinks(a)

in the PageRank formula propagates an equal portion of the PageRank of b to
pages that it links to. This suggests that b equally endorses all outgoing links, which is not

desired.

16

In a weighted PageRank [26] technique that operates on a weighted graph, there is
a higher probability of endorsing an outgoing link with the largest weight. The calculation

would proceed as follows:

)= a Z Z (a)c)‘l’l]_va (3.3)

(a,b)eE
3.1.2 Computing PageRank using MapReduce

PageRank can be computationally intensive, so it would be good to parallelize it.
MapReduce is a framework for massive parallelization by dividing a computation into many
small independent jobs, then recombining the results of the jobs into one final result. For
PageRank, we can use it to calculate "partial PageRanks” based on knowing that one page
links to another, then obtain final PageRank scores by summing up those partial values.

PageRank iterations can be run on the MapReduce framework as follows:

Algorithm 1 PageRank using MapReduce

procedure map(p;, outlinks(p;)):

for j« 1 to len(outlinks(p;)) do
7,() _ __pr(p)
prip; outlinks(p;)

print p;, pr(p;)
end for

procedure reduce(p;, (pr(pji), pr(pje),..-))):
pr(p;) = ax Y pr(py) + 52
print p;, pr(p;)

The input to the map procedure is a page-identifier p; and a vector outlinks(p;)
containing the outgoing links from p;. This phase outputs key-value pairs of type (page-
identifier, partial -PageRank) for each p; that p; links to.

The reduce operator collects all tuples with a key p; and computes a final PageRank from
the partial PageRanks. Ideally, the iterations must be run to convergence, but only a fixed

number of iterations are run in practice.

17

This will ensure that the human judgments are propagated according to the strength

of association.

3.2 Similarity

The edges in a weighted webgraph can be modelled using any metric. Content sim-
ilarity between documents can be used as one such metric. We model content using a
“bag-of-words” description of a document, and a document is modeled as a vector in | V' |-
dimensional space, where V is the vocabulary. Each term in a document has a weight
associated with it. Then we can calculate a measure of content similarity as the cosine of

the angle between two vectors.

> tev Wa) W)

\/Zte\/ (art \/Ztev (b,t)

We used wqs) = log(tfias + 1) log N/df;, where t f(qy) is the number of times term ¢ appears

sim(a, b) = cos(a,b) (3.4)

in page a and df; is the total number of pages t appears in. This gives greater weight to
terms that appear more frequently in a document, but less weight to terms that appear in
many documents. Term weights are usually a function of term frequency in a document and

document frequency in a collection.

3.3 TrustRank

A second drawback with the PageRank algorithm is that it assigns an equal (prior)
score to all pages. This means that all pages are initially considered to be of equal importance.
TrustRank, a network algorithm that separates good pages from spam, incorporates a
biased PageRank technique, that assigns a non-zero score to a set of manually identified
‘eood’(spam-free) pages.The score of these ‘good’ pages is then propagated in subsequent
iterations to pages they point to, to find other pages that may be good.
The TrustRank algorithm is outlined below.

18

Figure 3.2: A hypothetical web-model of good and spam (black) pages

Algorithm 2 TrustRank algorithm

. Construct a seed — set of documents.
d=0y
. for each s € seed-set do
d[s| = human judgment : 1(good)/ 0(bad)
: end for
cd=d/> d

Compute TrustRank scores as follows:
ctr=d
8: for i+ 1to M do
for each page b do

EN|

10: tr(b) = &Y per samem + (1 —a) d,
11: end for
12: end for

e The algorithm begins by selecting a set of documents, called the seed-set that are
manually examined by an expert to be reputable or bad. The size of this set is kept

small to limit the amount of human effort required in this step.

e Step(2) initializes a one-dimensional static score distribution vector d of size N; entries
in d corresponding to manually judged good-seed pages receive a score of 1, bad-seed

pages receive a score of 0.

e Step(3) normalizes the d vector, so that its entries sum to 1.

19

e Finally, the prior scores of good pages identified in step 2 is propagated to other pages
that are reachable from them in M steps/iterations. In each iteration, the TrustRank
score of a page is dampened by a factor of o and equally split among the pages it
points to. The authors of the paper used a = 0.85 and found M = 20 iterations to be

sufficient in achieving convergence in the relative ordering of the pages.

The seed-set of pages is essentially identifying a set of pages that will be most useful in
propagating a desired property in a network of pages. TrustRank propagates spam judgments
to identify and separate spam pages. The seed-set could also consist of relevance judgments,
topicality judgments used by [19], preference judgments used by [20] or any other kind of

human judgment of a property of a page.

3.3.1 Weighted TrustRank

The edges(links) in the TrustRank web-model could be assigned weights, just as in
the weighted PageRank technique outlined in section 3.1.1, to reflect the desirability of one
link over the other. This will ensure that the human judgments are propagated according
to the strength of association. Accordingly, weighted TrustRank scores can be computed in

step(9) of the TrustRank algorithm as:

w(a,b) tr(a)
tr(b) = « —————+(1—-a).d (3.5)
; Zaw(a’? C)

3.4 QOur Approach

Our goal is to infer the relevance of unjudged documents in light of incomplete judg-
ments and use it to evaluate systems. TrustRank propagates spam judgments through a
network of web pages to identify other spam-free pages based on their connectivity with the
good seed pages. Similarly, we use the weighted TrustRank technique introduced in section
3.3.1 to propagate relevance information from some manually judged relevant pages to pre-

dict the relevance of unjudged documents based on their degree of similarity with the judged

20

sim(a,e)

:sim(e,f)

sim(b,f)

Figure 3.3: A web-model of relevant and non-relevant (black) pages in the weighted TrustRank
approach

relevant documents. We model the document collection as an undirected weighted-graph, in
which the documents constitute the vertices and the notion of an edge/link between two doc-
uments a and b is the degree of cosine similarity, sim(a,b) between them. Taking similarity
between every pair of documents into account gives rise to a link between every document
pair in the webgraph (shown in Figure 3 using dotted lines). Also, sim(a,b) = sim(b,a),
which is why the webgraph is considered undirected. A hypothetical collection webgraph is

shown in Figure 3.

3.4.1 Seed-set Construction

We use the following seed-selection techniques to find whether any particular tech-

nique influences TrustRanks greater than the other:

(a) Pooling: a method commonly used to build the test collections for TREC tasks, to build
our seed-set of documents: the top k£ documents ranked by different systems are pooled

and included in the seed-set. We want to keep k small, so that extensive human effort

21

is not required in determining the relevance information of these documents in step(2)

of the algorithm.

(b) Statistical Sampling [3]: This method also examines a ranked list of documents for
inclusion into the seed-set, but samples at those locations “where the relevant documents

are most likely to be found”, which would be at the top of a ranked list.

The method employs a non-uniform sampling strategy, i.e samples documents from the
top of a ranked list with higher probability, and samples documents from the bottom of
the list with a lower probabaility. We also ensure that using this strategy, we include

the same-number of documents in the seed-set as obtained with pooling.

3.4.2 Static Prior Score Distribution

We use the term prior for the static score distribution vector d from the TrustRank
algorithm. The documents in the seed-set are examined by a human expert to be rele-
vant (rel=1) or non-relevant (rel=0), and are accordingly assigned prior scores of rel = 1 or
rel = 0. Documents outside the seed-set are treated as unjudged documents, and are given
a prior score of rel = 0.5 .

The prior vector initialized in step(2) is normalized as follows:

rel
prior el (3.6)

3.4.3 Mapping TrustRanks to Relevance Judgments

After running algorithm 2, each document has a TrustRank score based on its simi-
larity to relevant documents in the seed set. We then need to convert TrustRank scores to
binary relevance judgments. We will do that by ranking the documents in decreasing order
of TrustRank score, then finding a threshold ¢ for TrustRank such that all documents with
scores above t are considered relevant and all documents with scores below ¢ are considered

nonrelevant.

22

We normalized the TrustRank scores as they were not in the same scale from query to
query. For intra-query normalization (required for computing a macro-averaged F), we nor-
malized the TrustRanks querywise and for inter-query normalization (for computing micro-

averaged F), we normalized the TrustRanks over queries.

tr — trmin

normalized tr = (3.7)

trmaz - trmin

where tr stands for a TrustRank score, tr,,;, and tr,,,, are the query mininum and maximum
TrustRanks in case of intra-query normalization and global minimum and maximum in case

of inter-query normalizaion.

3.4.3.1 F-measure

We use the ‘F-measure’ evaluation metric to learn a threshold (hereafter referred to
as TrustRank threshold) to separate relevant documents from non-relevant ones. F-measure

is the weighted harmonic mean of precision and recall and is defined as:

2. precision . recall

F — measure = — (3.8)
precision + recall
Precision and recall are defined as :
. # of relevant docs with score > t (3.9)
recision = .
b # of docs with score > t
vecall — # of relevant docs with score >t (3.10)

of relevant docs

where t is the TrustRank threshold. Since we are training a threshold on the seed-set
of documents, the number of relevant documents is the number in the seed set only. We
hence learn a threshold that will give us best prediction results for the documents in the
seed set.

We compute the F-measure over the TrustRanks using the following 2 kinds of aver-

ages:

23

1. Micro-averaging: In this technique, F-measure is averaged over the TrustRank scores of
all queries). The algorithm for computing micro-averaged F-measure and the corre-
sponding micro-averaged threshold (t-micro) is shown below. A document is classified

as relevant if its weighted TrustRank is greater than or equal to t-micro.

Algorithm 3 Computing micro-averaged F-measure

Require: vector tr of TrustRanks, normalized over all queries
t=20
while ¢t <1 do
A=) co # of docs i s.t. i is relevant to g and tr;, <t
B =) co # of docs i s.t. i is relevant to ¢ and tr;, >
C =) ,co # of docs i s.t. i is non-relevant to ¢ and tr;, <t
D =)" co # of docs i s.t. i is non-relevant to ¢ and tr;, >t

precision; = BiD

- _B_
recall; = % iy
__ 2.precisiony . recallt
F, = oL
precisiont+recallt

t=1t+ 0.05
end while
t-micro < arg max, F;

2. Macro-averaging: Here, F-measure is calculated over each query ¢ € @) first and then

averaged over all queries.

A document is classified as relevant if its weighted TrustRank is greater than or equal

to t-macro.

As Ozgur et al. [24] point out, the micro-averaged F-measure is influenced by the
classifier’s performance on common classes, and the maco-averaged F-measure is influenced

by the classifier’s performance on rare classes.

3.4.3.2 Logistic Regression

Logistic Regression consists of identifying a relationship between two variables X and

Y; where X = < X;...X,, > is a vector of continuous/discrete variables and Y is a discrete

24

Algorithm 4 Computing macro-averaged F-measure

Require: vector tr of TrustRanks, normalized querywise
t=20
while ¢t <1 do
for ¢ — 1 to #Q do
A = # of docs i s.t. i is relevant to ¢ and tr; , <t
B = # of docs @ s.t. 7 is relevant to ¢ and tr; , > ¢
C = # of docs @ s.t. ¢ is non-relevant to ¢ and tr; , <t
D = # of docs ¢ s.t. ¢ is non-relevant to ¢ and tr;, >t
precision, g = BJ%

recally, = B—iA

F o = 2. precisiont q . recallt 4
t.q precisiont qg+recalls g

qeQ Ft,q

Favg, = =4
t =1+ 0.05
end while
t-macro «+ arg max, Favg,

response variable. The vector X represents a set of independent variables that can influence
the outcome in a strong/weak way, and Y represents the probability of a particular outcome.
Our approach models X; as the TrustRank for document ¢ and Y as its relevance judgment.
The probability distribution P(Y'|X) follows the distribution shown in Figure 4. As Y is

boolean(relevant /non-relevant), P(Y'|X) is defined as:

1
PYIX) = Gy (3.11)
and:
1
P(Y - 1|X) - 1 + e(Bot+227 BiXi) (3'12)
e(ﬁo-i'zzl BiXi)
P(Y:0|X) = (3.13)

1 4+ e(Bot2} BiXi)
Taking log on both sides of equation (1) results in a simple linear classification rule

that assigns a judgment of Y = 0/non-relevant if:
0<fBo+ 06) X (3.14)

where (3 is the intercept and) ' f; are the regression coefficients, Y = 1 otherwise.

25

1.0

0.8

0.6
L

f(z)

0.4

0.2

0.0
L

Figure 3.4: Logistic function assumed by P(Y|X)

We will create a new set of relevance judgments consisting of the seed set and the
predicted relevant documents from either the threshold classifier or the logistic regression

classifier.

26

Chapter 4

EXPERIMENTS

The following section describes our test collection, the experimental procedure and
the implementation details. First, we construct an adhoc network of document similarities of
the documents in the collection. We then select a seed-set of judged documents that would
be the most desirable in propagating relevance through the document-similarity network.
Thereafter, we train weighted TrustRank thresholds (outlined below) on both the judged and
unjudged documents and infer the relevance of unjudged documents. We use the inferred

judgments together with the seed-set of judgments to evaluate systems.

4.1 Data

We will need a test collection (consisting of documents, queries, and relevance judg-
ments) that we can use to simulate our method, as well as some actual retrieval runs that
we can evaluate using our method. We evaluate the performance of our approach over the
runs submitted to the TREC Terabyte tracks [11, 13, 8] and the 2008 Million Query (MQ)
track [2]. Hence our test collection consists of the document collection, the set of topics and
the relevance judgments used by the above tracks.

The Terabyte track was a competition to evaluate retrieval performance on a large
corpus of 25 million web pages (the largest available at the time the Terabyte track started).
The Million Query track was also for evaluating retrieval performance over a large collection,

but another goal was to evaluate evaluation techniques.

27

4.1.1 Corpora

We used the GOV2 corpus as it was the document collection used with the above
tracks. It contains a crawl of the pages in the ‘.gov’ domain and is a mix of plain text,
HTML and the extracted text of pdf, word and postscript files. It is 426 GB in size and

contains a total of 25 million documents.

4.1.2 Queries

The TREC Terabyte tracks used TREC topics 701-850, which consist of:
1. title field, typically a keyword query
2. description field that provides a slightly longer statement of the topic requirements
3. narrative that describes all other information required in a short paragraph

The different groups had the choice to use any or all of the topic fields when creating queries
from the topic statements. However, each group was required to a submit an automatic run
that used only the title fields.

The 2008 MQ queries were 10000 title-only topics which were sampled from an Inter-

net search engine, of which 782 were converted to topic statements and judged.

4.1.3 Runs

The Terabyte and the MQ tracks attarcted participation from both universities and
industries alike. Notable ones included University of Massachusettes at Amherst, Carnegie
Mellon University, IBM and Yahoo!. For the Terabyte tracks, the groups were permitted
to submit up to 5 runs. Each run consisted of the top 10000 documents retrieved for every
topic. Each run in the 2008 MQ track retrieved the top 1000 documents. Table 1 provides

a summary of the runs in the Terabyte and 2008 M tracks.

28

avg.#judgments | avg.#rel/ | #participating | #submitted
TREC topics query query groups runs
701-750 1185.244 216.673 17 70
751-800 905.82 208.14 18 58
801-850 639.68 117.86 20 80
2008 MQ topics 19.451 0.391 7 25

Table 4.1: Summary of runs

4.2 Experimental Setup

We performed 2 sets of experiments. The first experiment consists of training weighted
TrustRank thresholds on seed-set of documents from the Terabyte runs and using the thresh-
olds to make relevance predictions for unjudged documents (documents outside the seed-set)
from the same runs. The thresholds are trained and tested on the same set of queries, but
the training and the test sets consist of specific samples from the collection (of judged and
unjudged documents respectively). Hence, this experiment illustrates transductive learning.

The second consists of training weighted TrustRank threholds on seed-set of docu-
ments from Terabyte runs and making relevance predictions for documents from the 2008 MQ
runs. As we use the thresholds trained from one set of queries on another, this experiment
illustrates semi-supervised learning.

For each type of experiment the following setting was common:
1. Construction of a similarity network of all documents in the collection

2. Building a seed-set of (judged for relevance) documents that will be used to propagate

relevance through the similarity network

3. Training weighted TrustRank thresholds on the seed-set to infer relevance judgments

of unjudged documents

4.3 Experimental Procedure

1. Seed-set construction :

29

(a) With pooling, we retrieved the top n documents from every run submitted to the
TREC Terabyte tracks; and included only those documents in the seed-set which
had a relevance judgment in the original TREC ranking (hereafter called original-
grels) for that track. So, the documents included in the seed-set are essentially a
subset of original-grels (and hence referred to as subset-grels) and used as training
data. All other documents outside the seed-set and part of original-qrels were
treated as unjudged, and included in the test data. For our experiments, we tried

pooling depths of £ = 5, 10 and 25.

(b) With statistical sampling, we sampled the documents from a pool of depth-50 from
all the retrieval runs with a higher probability, and decreased the probability
of sampling documents from outside the pool. Accordingly, we constrcuted 3

different seed-sets by using 5, 10 and 25 samples.

2. Build network of document similarities: We compute cosine similarities for each pair of
documents part of both the training and the test sets. We use the document similarity

matrix thus obatained as the link structure for computing TrustRanks.

3. Training TrustRank on seed-set: As mentioned in section 3.4.2, we initialized the scores
for the judged relevant documents in the seed-set to 1, judged non-relevant documents
to 0. Unjudged documents are given a prior score of 0.5. We used o = 0.85 in our

experiments.
4. Making relevance predictions for unjudged documents:

(a) TrustRank-threshold: We trained 3 kinds of classifiers in this category: We had
to normalize TrustRanks for computing the following classifiers as they were very

small in magnitude; some of them small to the order of e>.

i. t-macro: We normalized TrustRanks querywise and apply the computed t-

macro to classify documents as relevant /non-relevant.

ii. t-micro: We normalized TrustRanks over queries and applied t-micro on the

test set of documents.

30

iii. local-t-micro: In this approach, we normalized TrustRanks querywise and

applied t-micro for classification.

(b) Logistic Regression: We fit the TrustRanks and relevance labels of training doc-
uments from Terabyte queries to the logistic functon and predicted probabilties

of relevance for documents from the Million Query runs

5. Extending original-grels: We extend our seed-set of documents (subset-qrels) with the
inferred judgments for unjudged documents inferred-qrels and call it extended-qgrels.
We will use this extended set to evaluate the runs submitted to the TREC Terabyte
and the 2008 Million Query tracks.

4.4 Implementation Details

For building the adhoc network of document similarities, the cosine similarities be-
tween all the documents were precomputed and stored on disk, with the documents retrieved
from an Indri index. The computation was parallelized query-wise using Grid Engine running
on an 8-node-dual-processor-quad-core compute cluster. We used our own map-reducisized
implementation of weighted Trustrank written in Python, that executes on the Hadoop
streaming [1] framework. Hadoop streaming is a utility that allows any kind of excecutable
script as mapper and/or reducer.

We used R’s glm function for computing classification using Logistic Regression. We
used trec_eval, a standard evaluaton tool at TREC developed by Chris Buckley, to evaluate
a set of runs against relevance judgments. For computing EMAP of a run, we used the

mtc-eval evaluation tool developed by Carterette et al.

4.5 Evaluation

We want to measure our classifier’s ability to classify an unjudged document as

relevant /non-relevant and use the classified data to evaluate retrieval systems.

31

4.5.1 Evaluating Classification Performance

1. Classification using TrustRank-threshold: We used t-macro, t-micro and local-t-
micro to classify unjudged documents for relevance. These relevance predictions form
the inferred-qrels which is appended to subset-qrels for evaluating retrieval runs in the
TREC Terabyte and 2008 Million Query tracks. We then evaluate the performance of

the classification task by computing precision and recall

num_actually_rel & predicted_rel

precision = ,
num_predicted_rel

num_actually_rel & predicted_relevant

recall =
num_actually_rel

Precision is the proportion of documents predicted to be relevant by inferred-qrels that
are originally relevant. Recall is the proportion of relevant documents retrieved using

inferred-qrels of the total relevant documents

2. Classification using Logistic Regression: The TrustRanks and relevance labels
of documents in the training set are fit to a logistic curve to make predictions of
relevance for test data. We infer the relevance judgments of the test documents using

the following logistic regression classifier (henceforth called logreg) rule:

(1-p)

)

i is non — relevant if > 1, else i is relevant (4.1)

where p; is the prediction for document .

We append these inferred judgments to the seed-set of judgments to obtain extended-
qrels. We evaluate the classification performance of the extended-qrels using precision

and recall.

4.5.2 Evaluating Ability to Evaluate Systems

We compare the rankings generated by original-qrels , subset-qrels and extended-

grels using Kendall’s 7 correlation coefficient. original-qrels is the set of relevance judgments

32

obtained from TREC, subset-qrels consists of the seed-set of documents we select for training
purposes, and extended-qrels consists of judgements from subset-qrels and inferred relevance
judgments for unjudged documents. Kendall’s 7 counts the number of pairwise disagreements
between two lists. The value for 7 ranges from [-1,1]; 1 indicates that the two lists are identical
and hence in perfect aggreement, 0 indicates that the two lists agree on half of the pairs,

and -1 indicates perfect disaggreement.

33

Chapter 5

RESULTS

5.1 Evaluating Classification

Using the pooling method, we constructed seed-sets pooled to depths of 5,10 and
25. The classification performance of the TrustRank thresholds and the logreg rule on the
corresponding seed-sets are presented in the tables below.

As the tables show, precision decreases from left to right in a row, while recall increases
from left to right. This means that t-micro and local-t-micro predict many more documents
to be relevant than t-macro. Increase in pool-depth also seems to influence the classification
results; precision and recall decrease with the pool-depth. This suggests that a deeper pool
negatively affects TrustRank, possibly because the proportion of nonrelevant documents
increases and overcomes the information contained in the relevant documents.

The F-measure values and hence the classification results computed by training on
seed-sets constructed using pooling were slightly better than to those generated using sta-
tistical sampling. This suggests that the method for choosing the seed-set seems to make a
difference in learning the classifier.

Figures 5.1 and 5.2 show the macro-averaging and micro-averaging process for pool
depths of 5, 10 and 25 respectively. In general, as t increases, precision increases, recall
decreases. Greater precision leads to decreased recall and greater recall leads to decrease in
precision, and this is reflected in the value of F-measure that takes both precision and recall
into account. For both sets of plots, precision starts off with a higher value for a shallower

pool-depth, recall is high for some time and starts dropping down, but the variation in both

34

t-macro t-micro local-t-micro logreg
run precision recall | precision recall | precision recall | precision recall
Terabyte 2004 | 0.304 0.365 0.274 0.457 | 0.130 0.482 0.308 0.022
Terabyte 2005 0.329 0.305 0.279 0.620 0.187 0.557 | 0.315 0.187
Terabyte 2006 0.279 0.321 0.185 0.730 0.134 0.446 0.232 0.483
(a) Classification performance on a depth-5 pooled seed-set
t-macro t-micro local-t-micro logreg
run precision recall | precision recall | precision recall | precision recall
Terabyte 2004 | 0.278 0.295 0.260 0.329 0.124 0.416 0.234 0.008
Terabyte 2005 0.304 0.262 0.269 0.504 0.177 0.487 | 0.292 0.127
Terabyte 2006 0.248 0.238 0.165 0.522 0.116 0.322 0.211 0.309
(b) Classification performance on a depth-10 pooled seed-set
t-macro t-micro local-t-micro logreg
run precision recall | precision recall | precision recall | precision recall
Terabyte 2004 | 0.250 0.186 0.222 0.209 0.115 0.301 0.098 0.001
Terabyte 2005 0.284 0.191 0.247 0.368 0.160 0.370 0.274 0.072
Terabyte 2006 0.211 0.115 0.135 0.274 0.101 0.185 0.160 0.131

(c) Classification performance on a depth-25 pooled seed-set

Table 5.1: Classification performance produced by training on seed-sets pooled to depths of 5, 10
and 25. Precision and recall increase with the pooled depth. Among the machine-learnt thresholds,
local-t-micro seems to perform poorly compared to t-macro and t-micro. logreg does not do well

either.

35

classifier performance

T
precision
recall

08 —

04| R

classifier performance

02

T
precision
recall

classifier performance

F-measure

Figure 5.1: Macro-averaging process on a (a) depth-5, (b) depth-10 and (c) depth-25 pool

36

T
precision %
recall

F-measure

T
precision %
recall

F-measure

0.6

0.4

classifier performance
classifier performance

0.2

L———

precision ﬂf
recall

F-measure

0.8 - q

classifier performance

0.8 1

Figure 5.2: Micro-averaging process on a (a) depth-5, (b) depth-10 and (c) depth-25 pool

precision and recall remains more or less the same, which is why the macro/micro averaged
F was the same for all the pool depths.

Also, recall starts dropping faster during micro-averaging than macro-averaging. This
justifies the statement in section 3.4.3 that micro-averaged F is heavily influenced by the
classifier’s performance on common categories, and macro-averaged F is influenced by the
classifier’s performance on rare categories. For any topic, non-relevant documents are more
common than relevant documents and as non-relevant documents get a lower TrustRank

score than relevant documents, micro-averaged F is lower than the macro-averaged F.

37

5.2 Evaluating the Evaluation

For both sets of experiments, we extend the training set(subset-qrels) with the rele-
vance predictions generated by the classifiers described above. We use Kendall’s 7 to measure
the correlation between the true ranking (original-qrels) and predicted ranking (extended-

qrels).

5.2.1 Terabyte Results

Using trec_eval, we evaluated the Terabyte-track runs against extended-qrels to
compute the corresponding MAP scores of the runs (referred to as predicted_map in the
plots). In the Figure 7, we plot the correlation between the original maps (trec_eval using
original-qrels) and the predicted maps in the figures below for the seed-sets obtained using
pooling.

The TrustRank thresholds trained on seed-sets constructed using statistical sampling
were identical to those obtained using pooling, with a minor difference in the F-measure
values. Hence, the evaluation results using statistical sampling were more or less similar to
results obtained using pooling.

It is evident from the plots that there is not much difference in evaluation performance
by using t-macro or t-micro (even though they give very different results for classification).
This may be due to the thresholds wrongly predicting the relevance of many documents and
still doing well when the judgments are actually used for evaluation. Also, it is not very
surprising that 7 increases as the pooling-depth /number of samples increases.

Figure 8 shows a comparison of the performance of subset-qrels, t-macro (pooling),
t-micro (pooling) and t-macro (statistical sampling). As the plots suggests, t-macro and
t-micro outperform subset-qrels on the Terabyte 2004 and 2006 runs. Also, t-macro-stat-
sampling does better than t-macro-pooling on the Terabyte 2005 runs. None of the thresholds
did well on the Terabyte 2005 runs.

38

predicted map

predicted map

predicted map

0.20 025 030

0.15

0.10 015 0.20 025 030 035 0.40

0.05

0.10 015 0.20 0.25 0.30

0.05

°.
R 5
® o
o .
°© '0
oo
.o o0 ©
L o
‘o
s,
,(bo
) 0'0,‘
7 00
-
oo -~
o 0m
50
,'0'/
0.00 0.05 0.10 0.15 0.20 0.25 0.30
original map
. e
(a) i. Kendall’s 7 = 0.902
.
o
A
o B
B o0
0% .- o
° ooo%" ®
o LIS °
.o o 8
’ o
e
o g
o
oo
50
0,’4' o
.
01 02 03 04
original map
. S
(c) i. Kendall’s 7 = 0.803
. -0
e ¢
6 &
-
»
. 9%
. o
e ®
-
g
Lo’ o
o
09 ® 50
.o
s
o'%'oo
s
0.00 0.05 0.10 0.15 0.20 0.25 0.30
original map

(e) i. Kendall’s 7 = 0.894

predicted map

030

025

0.20

0.15

0.10

0.05

o.

o
P
) o -7
3
&4 ° -6o
p
. p
g | o
° o
00 5°
e .7 o
g S 00 .
13 .
° Q.
< P
g o2 Ca
L o
o 00 .7
=] ®° o o
g 5%
.
g | I
g K
ol
0.00 0.05 0.10 0.15 0.20 0.25 0.30
original map
(b) ii. Kendall’s 7 = 0.903
g] S
o ° .
& @ o
Qo0 B
) o aep O
g | o
=) oo o %o ©
EP
Q ° ,"V
g L e
g ° o
£ .
g ° .
L .
s) -
. .
0 '0
2 | o
o
S 4 oo
g
.
01 0.2 03 0.4
original map
(d) ii. Kendall’s 7 = 0.813
;
- ®
e 08
° o°
°
o
. oo °
7 %0
s
Se® o
;
.
O,”
X
e
[d
.o
o7
\' T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30
original map

(f) ii. Kendall’'s 7 = 0.877

Figure 5.3: Correlation between the true ranking and predicted ranking (a & b) depth-5 pooled
seed-set of runs from the Terabyte 2004 track, (¢ & d) depth-10 pooled seed-set of runs from the
Terabyte 2005 track, (e & f) depth-25 pooled seed-set of runs from the Terabyte 2006 track. (i &
ii) correspond to using ¢-macro and t-micro as classifiers.

39

5.2.1.1 Analysis

We performed a multi-factor ANOVA analysis on the Terabyte results. Considering
the 7 correlation as a response variable and ‘pool-depth’/‘number of samples’, ‘thresholding

method’ and ‘seed-selection technique’ as the independent variables, we conclude that:
1. pool-depth/number of samples has a strongly significant effect on 7

2. thresholding (t-macro/t-micro vs local-t-micro) method has a strongly significant effect

on T
3. seed selection algorithm does have a significant effect on 7

Thus we recommend using a seed set from a pool with depth selected according to

budget constraints, and using a macro-average threshold classifier to predict relevance.

5.2.2 MQ Results

We computed weighted TrustRank for documents part of subset-qrels pooled to depth
10, and fit the TrustRanks and relevance labels of the training data to a logistic function to
generate probabilities of relevance for the MQ documents.

Figure 9 shows a histogram of the relevance predictions for MQ data. It shows a lot
of documents being increasingly predicted relevant, which suggests that TrustRank results
obtained from one set of queries may not be useful for another set of queries. This is also
justified by the low 7 score of 0.123 between the true and predicted rankings. We plot the
correlation between the 2 rankings in Figure 10.

We used EMAP [10] to evaluate the performance of the predicted ranking for MQ

runs and compare these to the EMAPs of the baseline run using Kendall’s 7.

40

0.95

0.94

0.93

Kendall's Tau
o
©

0.87

0.86

0.85

subset-grels
macro-average-pooling
micro-average-pooling
macro-averagq-s&a{-sampling

Kendall's Tau

0.94

0.9

0.88

0.82

0.8

subset-grels
macro-average-pooling
micro-average-pooling
macro-averagq-s&a{-sampling

Kendall's Tau

15
depth

20

25

0.76

depth

subset-grels i
macro-average-pooling
micro-average-pooling
macro-average-stat-sampling

depth

(c)

15

20 25

20

25

Figure 5.4: Change in Kendall’s 7 in response to increase in pooling depth for subset-grels, t-macro
(pooling), t-micro (pooling) and t-macro (statistical sampling) on the (a) 2004, (b)2005 and (c)2006

Terabyte runs

41

Histogram of rel.pred

Frequency
1500 2000 2500 3000
L L I

1000
I

500
I

|

r T T T T 1
0.0 0.2 0.4 0.6 08 1.0

o d

rel.pred

Figure 5.5: Histogram of predictions generated using Logistic Regression for test data from the
2008 MQ track. Y-axis indicates the frequency of retrieved documents and X-axis indicates the
probability of relevance.

0.046 0.048
I
o

predicted emap
0.044
L

0.042
I

0.040
I
®o

T T T T
0.02 0.04 0.06 0.08

baseline emap

Figure 5.6: Correlation of the predicted EMAPs with the baseline EMAPs. It can be seen that
there is almost little to no correlation between the 2 rankings.

42

Chapter 6

CONCLUSION AND FUTURE WORK

We address the problem of large-scale retrieval evaluation using incomplete relevance
judgments. Our proposed solution is a semi-automatic technique that starts by obtaining
relevance judgments for a few documents and propagates the relevance information from the
judged relevant documents through a document-similarity network to infer the relevance of
other unjudged documents in the collection. We then create a complete set of judgments
by combining the original seed-set of judgments with the inferred judgments and use it to
evaluate the relative performance of different retrieval systems. We believe that our work
is a first attempt in solving an evaluation problem by propagating relevance information
through document networks.

It is evident from our results that we can effectively compare the performance different
retrieval systems by using only few judgments and still achieve a high correlation with the
true ranking of retrieval systems. However, our approach is limited in that it cannot learn a
relationship between TrustRank scores and relevance for unseen queries. We can only use it
to find new relevant documents for queries that we already have judgments for. Nevertheless,
we believe this will be a useful technique for rapid development of new test collections.

As part of future work, different similarity measures/term weighting approaches could
be used as weights in a weighted webgraph. It would be particularly interesting to explore
similarity measures that capitalize on the link structure as well as the document content. It

would also be interesting to adapt the ‘HITS’ approach to similarity graphs.

43

BIBLIOGRAPHY

1]
2]

3]

Hadoop streaming. http://hadoop.apache.org/common/docs/r0.15.2/streaming.html.

J. Allan, J. A. Aslam, B. Carterette, V. Pavlu, and E. Kanoulas. Million query track
2008 overview. In Proceedings of TREC 2008, 2008.

J. A. Aslam and V. Pavlu. A practical sampling strategy for efficient re-
trieval evaluation. May 2007. Working draft available at the following URL:
http://www.ccs.neu.edu/home/jaa/papers/drafts/stat AP.html.

J. A. Aslam, V. Pavlu, and E. Yilmaz. A statistical method for system evaluation using
incomplete judgments. In SIGIR ’06: Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, pages 541-548,
New York, NY, USA, 2006. ACM.

J. A. Aslam and E. Yilmaz. Inferring document relevance from incomplete informa-
tion. In CIKM °07: Proceedings of the sixteenth ACM conference on Conference on
information and knowledge management, pages 633-642, New York, NY, USA, 2007.
ACM.

S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst., 30(1-7):107-117, 1998.

C. Buckley and E. M. Voorhees. Retrieval evaluation with incomplete information. In
SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 25-32, New York, NY, USA,
2004. ACM.

S. Biittcher, C. Clarke, and I. Soboroff. The trec 2006 terabyte track. In Proceedings of
TREC 2006, 2006.

B. Carterette and J. Allan. Semiautomatic evaluation of retrieval systems using doc-
ument similarities. In CIKM ’07: Proceedings of the sizteenth ACM conference on
Conference on information and knowledge management, pages 873-876, New York, NY,
USA, 2007. ACM.

44

[10]

[12]

[13]

[14]

[19]

[20]

[21]

[22]

[23]

B. Carterette, J. Allan, and R. Sitaraman. Minimal test collections for retrieval evalua-
tion. In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 268-275, New York, NY,
USA, 2006. ACM.

C. Clarke, N. Craswell, and 1. Soboroftf. Overview of the trec 2004 terabyte track. In
Proceedings of TREC 2004, 2004.

C. Clarke, N. Craswell, and I. Soboroft. Overview of the trec 2009 web track. In Notebook
Proceedings of TREC 2009, 2009.

C. Clarke, F. Scholer, and I. Soboroff. The trec 2005 terabyte track. In Proceedings of
TREC 2005, 2005.

G. V. Cormack, C. R. Palmer, and C. L. A. Clarke. Efficient construction of large test
collections, 1998.

P. Doreian. Measuring the relative standing of disciplinary journals. Inf. Process.
Manage., 24(1):45-56, 1988.

P. Doreian. A measure of standing for citation networks within a wider environment.
Inf. Process. Manage., 30(1):21-31, 1994.

N. L. Geller. On the citation influence methodology of pinski and narin. Information
Processing and Management, 14:93-95, 1978.

7. Gyongyi, H. Garcia-Molina, and J. Pedersen. Combating web spam with trustrank.
In VLDB °04: Proceedings of the Thirtieth international conference on Very large data
bases, pages 576-587. VLDB Endowment, 2004.

T. H. Haveliwala. Topic-sensitive pagerank. In WWW ’02: Proceedings of the 11th
international conference on World Wide Web, pages 517-526, New York, NY, USA,
2002. ACM.

G. Jeh and J. Widom. Scaling personalized web search. In WWW ’03: Proceedings of
the 12th international conference on World Wide Web, pages 271-279, New York, NY,
USA, 2003. ACM.

E. Jensen, S. Beitzel, A. Chowdhury, and O. Freider. Repeatable evaluation of search
services in dynamic environments. ACM Transactions on Information Systems (ACM-
TOI1S), 26(1):1, November 2007.

K. S. Jones and van Reijsbergen. Information retrieval test collections. Journal of
Documentation, 32(1):59-75, 1976.

J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J ACM,
46(5):604-632, 1999.

45

[24]

[25]

2]

[27]

28]

A. Ozgiir, L. Ozgiir, and T. Giingor. Text categorization with class-based and corpus-
based keyword selection. In ISCIS, pages 606-615, 2005.

G. Pinski and F. Narin. Citation influence for journal aggregates of scientific publica-
tions: Theory, with application to the literature of physics. Information Processing and
Management, 12:297-312, 1976.

R. Sinha and R. Mihalcea. Unsupervised graph-basedword sense disambiguation using
measures of word semantic similarity. In ICSC ’07: Proceedings of the International
Conference on Semantic Computing, pages 363-369, Washington, DC, USA, 2007. IEEE
Computer Society.

E. M. Voorhees and D. K. Harman. TREC Experiment and Evaluation in Information
Retrieval. MIT-Press, September 2005.

E. Yilmaz and J. A. Aslam. Estimating average precision with incomplete and imperfect
judgments. In CIKM °06: Proceedings of the 15th ACM international conference on
Information and knowledge management, pages 102-111, New York, NY, USA, 2006.
ACM.

46

