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ABSTRACT

Testing is playing a crucial and fundamental role in modern software develop-

ment. Although software tests are conceptually simple—they are composed of two

primary parts: inputs that are used to execute the program under test and an oracle

that is used to verify that the execution induced by the inputs produces the expected

results—they are often difficult to write in practice. The software engineering research

community provided many techniques that can help developers determine whether they

have written effective and efficient tests, including various coverage metrics which have

been widely adopted. While they have been proven successful in practice, many follow-

up studies show that there is still a lot to improve for the test quality measurements,

including false negatives in alarming the lack of tests and constructive suggestions for

improvements.

This dissertation focuses on improving the quality of existing test suites based

on interpretations on test inputs and test oracles. If a test oracle checks the values

which the test developers did not or can not control, it would make the test brittle. I

developed a novel technique based on dynamic tainting which can identify the values

that can make tests brittle. An empirical study on real-world applications shows that

the technique can reveal brittle assertions and the values that cause the brittleness

within reasonable cost. I also developed two techniques that can identify insufficiently

tested code by interpreting traditional coverage information. One is a new approach

based on the concepts of direct coverage and indirect coverage. The other is a new

approach to discover incidentally tested code. Both techniques have shown efficiency

and effectiveness in the empirical studies on real-world applications.

xi



Chapter 1

INTRODUCTION

Testing is one of the primary methods developers use to judge the correctness of

software by attempting to expose failures and errors before they impact users. Testing

also provides numerous other benefits such as assessing software quality, enabling large

scale changes and serving as a form of documentation. Therefore, according to a

recent study of practicing software developers [34], many developers have a strong

desire for more tests in their projects. Despite decades of work devoted to developing

techniques that attempt to help developers test software, testing remains an expensive

and laborious activity. Some reports estimate that the costs associated with testing

can account for more than 50 % of the total cost of developing software [6]. In the

future, such high costs are likely to persist or even increase as the growing size and

complexity of modern software exacerbates existing challenges. Therefore, additional

techniques for improving the efficiency and effectiveness of the testing process will be

extremely beneficial in reducing the overall cost of software development and, at the

same time, improving software quality.

The software engineering research community has provided many techniques

that can help developers write test cases, including various testing paradigms as well

as automatic test generation techniques (e.g., [33, 35, 45, 82, 91, 92, 97, 100, 115, 124]).

While such techniques can be successful in helping developers write tests, they only

address part of the overall problem. In order to provide more help, it is necessary to

not only provide developers with help creating new tests but also improving the quality

of existing ones.

In this dissertation, I first present a novel dynamic analysis technique that

addresses both test brittleness and unused inputs. I consider the inputs as controlled
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if they are explicitly provided by the test itself (e.g., constants that appear in the test

method) and all other inputs are considered uncontrolled. The technique is based on

dynamic tainting and works by tracking the flow of controlled and uncontrolled inputs

along data- and control-dependencies at runtime. When a test finishes execution,

the technique uses the tracked information to generate reports that identify brittle

assertions—assertions that check values that are derived from inputs that are not

controlled by the test and unused inputs—inputs that are controlled by the test but

are not checked by an assertion. These reports are then filtered to remove false positives

and presented to testers.

The next two techniques to be introduced in this dissertation are based on

different interpretations of coverage criteria. The research community provides many

pragmatic coverage criteria to measure the effectiveness of test suites, including e.g., [9,

20, 58, 70, 79, 88, 93, 95, 112]. Coverage criteria are often used as coverage adequacy

metrics in the software industry by measuring how much of a certain criterion has

been met with a test suite [4]. In the context of adequacy metrics, coverage criteria

would suggest which part of code to test by indicating which entities (e.g., methods,

statements, branches, etc.) in a program are executed (covered) by a certain test suite

and which are not. Presumably, uncovered entities indicate deficiencies in a test suite.

However, covered entities might be insufficiently tested.

In this dissertation, I introduce a new approach, based on the concepts of direct

coverage and indirect coverage, for interpreting coverage information. The goal of the

approach is to help developers focus their limited testing resources on insufficiently

tested code. At a high-level, the approach identifies methods that contain a high

proportion of indirectly covered entities as being insufficiently tested. In addition to

taking into account how entities are covered by a test suite, the approach also eliminates

the need for testers to manually identify whether the code indicated by the approach

can be executed. Because they are covered by the test suite, the methods identified by

the approach are guaranteed to be feasible. This means that developers do not have

to spend time investigating whether it is possible to execute the identified code.

2



The third technique in this dissertation is a novel technique that identifies

whether covered code is just incidentally covered. In particular, the technique identi-

fies incidentally covered code by whether the code has been covered by its designated

test(s). Intuitively, incidentally covered code can give the false feeling of security about

how well the application code has been tested. The goal of the research is to quantify

the effect of incidentally covered code on test quality and show how to improve the tests

by testing incidentally covered code purposely. I developed a definition for incidentally

covered code and a technique to identify incidentally covered code.

The dissertation is organized as follows: Chapter 2 introduces the related work

of this dissertation. Chapter 3 presents the technique that identifies brittle test or-

acles and unused test inputs. Chapter 4 presents the two techniques that interpret

coverage information to identify insufficiently tested code. Chapter 5 summarizes the

dissertation.

3



Chapter 2

RELATED WORK

Existing work related to my research in the dissertation will be discussed in this

section. Since the OraclePolish technique searches for brittle assertions, it is related

to the areas including: test oracles, test brittleness. The ICDC and Fostered Code

techniques provide new interpretations on coverage information. So they are closely

related to the areas including: coverage criteria and defect prediction. Finally, since

the three techniques give suggestion about what to test and how to improve the tests,

I will discuss automatic test generation techniques.

2.1 Test Oracles

Test oracles play a crucial role in testing. To date, there have only been a few

studies of test oracles that help developers gain better understanding in test oracles. In

general, these studies have compared the costs and effectivenesses of different oracle-

creation strategies—rules that specify which subset of a program’s state should be

checked by an oracle.

Most recently, Li and Offutt evaluated the performance of 6 new oracle-creation

strategies for model-based testing [74]. They found that checking the values of a

program’s variables is much more effective than simply checking for the presence or

absence of exceptions. They also found that checking the value of a variable more than

once was only marginally better than checking multiple times and that in some cases,

weaker oracle creation strategies are as effective as strong oracle creation strategies.

Yu et al. performed a similar study where they studied 6 oracle creation strate-

gies designed to generate oracles that check for specific types of faults in concurrent
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programs [127]. They found that, for concurrent programs, only checking the program’s

output performs worse than checking at least some of the internal state.

Shrestha and Rutherford compared the performance of oracles that only check

for exceptions against oracles that use pre- and post-conditions written in the Java

Modeling Language (JML) [102]. They found that pre- and post-condition based ora-

cles are more effective and should be used in preference to oracles that only check for

exceptions.

Sprenkle et al. developed and studied a suite of 22 oracle creation strategies

designed to check whether a web application produces correct output when given a test

input [103]. Overall, they found that the best strategy depends on the characteristics

of the web application and the fault that is revealed by the input.

Xie and Memon considered different oracle creation strategies for GUI applica-

tions [123]. They compared tradeoffs between what elements of the interfaces should

be checked (e.g., individual widgets, single window, multiple windows, etc.) and how

often the checks should be performed (e.g., after each input, at the end of the test,

etc.). Based on their study, they found that weaker oracle creation strategies detect

fewer faults and that a thorough check at the end of a test often provides the best

balance between cost and effectiveness.

While these studies have provided interesting results, they all share a common

limitation. They are proposing and evaluating new oracle creation strategies. While

investigating fabricated strategies is important, it does have several drawbacks. First,

it is unclear if the oracle creation strategies that they are evaluating are representative

of the strategies actually used by testers. Testers may not use a similar process or even

think about the problem in the same way. Second, they are ignoring the human aspects

of the oracle creation process. While test generation tools can mechanically follow an

oracle creation strategy, developers will often want to make judgement calls based on

their intuition, domain specific information, and other external data that should be

taken into account.

Rather than studying only newly proposed oracle creation strategies, I believe
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that a complementary approach, such as OraclePolish, that investigates and studies

the current state of practice is also necessary.

2.2 Test Oracle Improvement

As I mentioned previously in the introduction, there is a large amount of work on

improve test oracles by choosing test inputs. As these approaches are complementary to

my proposed work, I will only provide a high-level overview of the main areas. Symbolic

execution-based test generation approaches, first proposed in the 70s (e.g., [27, 57, 66,

94]), solve accumulated constraints on the inputs of a program to explore targeted

paths of execution. More recent approaches improve on classic symbolic execution by

combining both symbolic and concrete execution (e.g., [15, 45, 100]). This insight,

combined with techniques that can address the path explosion problem (e.g., [10, 16,

44, 46, 77]), have led to several practical tools (e.g., [5, 14, 17, 78, 108, 124]). Model-

based test data generation approaches derive test suites from a model of the system

under test rather than the system itself. Specific sub-approaches include: axiomatic

approaches (e.g., [13, 26, 37, 43, 69, 72]), finite-state machines (e.g., [56, 61, 71, 89]), and

labeled transition systems (e.g., [18, 47, 48, 110, 111]). Combinatorial-based test data

generation approaches focus on sampling the input parameters to cover a desired subset

of the elements to be tested (e.g., [30, 40, 73, 87, 113, 125]). Adaptive random test data

generation approaches augment random generation approaches under the observation

that failure-causing inputs tend to form contiguous failure regions (e.g., [21–23, 25, 75,

76, 101, 107]). Finally, search-based test data generation approaches uses optimization

algorithms to achieve their goals (e.g., [3, 12, 31, 32, 36, 51–53, 80, 86, 109, 117, 119,

120, 126, 128]).

In addition to techniques that attempt to improve the quality of existing oracles,

there are also several techniques that attempt to automatically create oracles. Some of

these techniques use mutation testing to discover how successful an oracle is at detecting

mutants. For example, Staats et al. use mutation testing to support the creation

of oracles by identifying the program variables that are most successful at detecting

6



mutants and therefore should be checked by an assertion [104, 105]. Conversely, Fraser

and Zeller use mutation testing to generate complete test cases, including oracles.

Other techniques create oracles from observed invariants (e.g., [91, 92, 97, 106]) or

generate oracles for specific domains (e.g., web pages [24, 81]).

2.3 Test Brittleness

State pollution[49] by Gyori et al. finds tests that modify some location on the

heap shared across tests or on the file system. Tests would be brittle if those locations

are not properly reset. The technique captures and compares heap-graphs and file-

system states during test execution. While it focuses more on writing on the shared

states, my research focuses on reading from them.

The brittle assertion problem is also closely related to the test dependency

problem. A recent study [131] proposed an approach for detecting test dependencies

in existing test suites. The authors described a k-bounded dependence aware algorithm

which trims the search space for re-ordering the test methods which otherwise requires

a full permutation over the test methods. The remaining sequences will be executed

and checked to see if this certain ordering will alter the outcomes of some tests in the

sequence. However, the search space is still so large that the authors had to limit the

length of the sequence up to 2. Moreover, the detection of dependencies are limited to

the ones which will unveil their presence by altering the test outcome in a certain order.

My research presents a more precise data flow analysis that will further narrow down

the search space and also be aware of the dependencies which not only cause changes

of outcomes in a certain order but also lie deep in the test suite and application code

so that they may fail the tests in the future.

2.4 Coverage Criteria

Coverage refers to the code entities (e.g., methods, branches, statements, etc.)

that have been executed (covered) by a test suite. Traditionally, covered entities are

always considered as sufficiently tested and the focus of what to test next is on the
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attempts to cover the code entities have not yet been covered. Prior to the ICDC and

the Fostered Code techniques, some researchers have noticed that covered entities may

be insufficiently tested. They developed various techniques based on different concepts.

Schuler and Zeller propose checked coverage as an approach for assessing oracle

quality [99]. The checked coverage of a test or test suite is the ratio of executed

statements that compute values that are checked by the test to the total number of

executed statements. A low checked coverage score suggests that a test is likely to be

missing assertions. Unlike my technique, which uses dynamic tainting, checked coverage

uses backward dynamic slicing to compute the set of statements that contribute to

values checked by the test. While dynamic tainting and dynamic slicing are similar,

dynamic tainting, due to its focus on values rather than statements, provides several

benefits. For example, my technique precisely identifies unused inputs while checked

coverage only identifies sets of statements. Fixing the identified issues starting from

sets of statements rather than inputs increases the amount of manual work that testers

must perform. In addition, checked coverage shares the common limitation of all

coverage-based techniques: deciding how much coverage is sufficient. Obviously, a

checked coverage score of 0 % is bad, but what about a score of 60 %?

State coverage, originally proposed by Koster and Kao [67, 68] and extended by

Vanoverberghe et al. [114], is similar to checked coverage. The primary difference is that

state coverage is the ratio of executed output defining statements (ODS)—statements

that define a variable that can be checked by the test suite—to the total number

of ODSs. Unfortunately, there have only been small case studies on the technique’s

effectiveness so it is not clear how it compares to checked coverage. However, because

state coverage is also a coverage metric, it shares the same limitations as state coverage

as compared to my technique.

Relative coverage, proposed by Bartolini et al., gives another way of interpreting

the adequacy criteria [8]. It suggests, that instead of measuring the covered entities

throughout the test suite, it is more appropriate to count the entities covered for a

certain purpose. The target entities will be specified, and the coverage is the ratio of

8



covered targeted entities among the targeted entities, for example, the measurement

for newly added functionalities in regression testing [84]. In this case, the targeted

entities are the newly added operations.

2.5 Defect Prediction

This group of related work is defect prediction approaches that attempt to model

various software features in order to predict where defects are located before the defects

lead to failures. A wide range of prediction models based on various features have been

proposed including size and complexity models (e.g., [2]), development quality data

models (e.g., [38, 54, 62]), history defect models (e.g., [55, 65]), multi-linear regression

models based on multiple metrics (e.g., [64, 85]). The underlying mechanism how

ICDC and Fostered Code can identify insufficiently tested code can be explained by

such models. The defect prediction approaches that are most closely related to my

approach are the ones proposed by Miller et al. and Voas and Miller.

Miller et al. proposed an approach to estimate the probability of a fault even

when testing reveals no failures [83]. The authors provided a probability density func-

tion to predict the true probability of failure. With this function, Voas and Miller

proposed testability which can be measured statically even before testing has taken

place to predict the presence or the absence of defects [116]. The authors stated that

different software systems have different sensitivities towards testing due to their struc-

tures that can be modeled by two kinds of information loss: implicit information loss

and explicit information loss. Implicit information loss occurs when two or more dif-

ferent inputs to a function produce the same output. The authors defined the domain/

range ratio (DRR), as the ratio between the cardinality of the domain of the specifica-

tion and the cardinality of the range of the specification. For example, while a function

that checks whether an integer is odd can accept any integer as input, it only has two

possible outputs so its DRR is ∞ : 2. Conversely, a function that negates a boolean

value has a DRR of 2 : 2. The assumption is that functions with higher DRR values

are more likely to contain undetected failures.
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2.6 Automatic Test Generation

As my research can give suggestions for what to test next, automated test gen-

eration approaches can be used to actually generate the missing test cases. The family

contains different techniques focusing on different facets of automatic test generation,

including (1) generating test inputs effectively and efficiently, (e.g., [115]), (2) gener-

ating test oracles effectively and efficiently, (e.g., [1]), (3) using mutation to expose

the vulnerability of the system, (e.g., [33, 42]), and (4) generating tests directed by

coverage information, (e.g., [45, 96, 122]). The techniques that are guided by cover-

age information may benefit most from ICDC and Fostered Code. Although I do not

provide an automatic approach about how to generate new tests, e.g., what the test

inputs and expected values will be, the information about direct coverage can be used

to guide the generation process.
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Chapter 3

IMPROVING ORACLE QUALITY BY DETECTING BRITTLE
ASSERTIONS AND UNUSED INPUTS

Although software tests are conceptually simple—they are composed of two

parts: inputs that are used to execute the program under test and an oracle that is

used to verify that the execution induced by the inputs produces the expected results—

tests are often difficult to write in practice. This is especially true for modern software

which is typically large and complex. Together, these characteristics produce a situ-

ation where test writers have an imperfect understanding of not only what inputs a

program may receive but also how the program should behave and what outputs it

should produce. In short, when writing tests, selecting neither inputs nor oracles is

straightforward.

In many testing frameworks, an oracle is encoded as a set of assertions that check

whether a subset of a program’s state (variables) has particular values. Considered in

this way, choosing an oracle is analogous to choosing a point on the continuum from

checking nothing to checking the entire state of the program. While neither extreme

is appropriate—oracles that check nothing will never find bugs, and oracles that check

everything will likely be difficult to maintain and enormous—there is a point some-

where between that represents the ideal oracle. Unfortunately, identifying this point is

challenging. In practice, the oracles written by testers often miss the mark by either:

(1) checking too little by failing to include assertions for relevant variables—which can

result in tests that are unable to reveal failures (i.e., missed warnings), or (2) checking

too much by including assertions about irrelevant variables—which can lead to brittle

tests that fail when they should not (i.e., false warnings, see Section 3.1 for an example).
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Existing work on assessing the quality of test oracles addresses only the first of these

possibilites by detecting tests that are likely missing assertions (e.g., [99, 105, 114]).

In this part of my research, I present a novel dynamic analysis technique that

addresses both possibilites. The technique, named OraclePolish, is based on dynamic

tainting and works by tracking the flow of controlled and uncontrolled inputs along

data- and control-dependencies at runtime. Intuitively, controlled inputs are inputs

explicitly provided by the test itself (e.g., constants that appear in the test method)

and all other inputs are considered uncontrolled. When a test finishes execution, the

technique uses the tracked information to generate reports that identify brittle asser-

tions—assertions that check values that are derived from inputs that are not controlled

by the test and unused inputs—inputs that are controlled by the test but are not

checked by an assertion. These reports are then filtered to remove false positives and

presented to testers.

To evaluate the technique, I created a prototype implementation that analyzes

Java applications and tests written using the JUnit testing framework.1 I used the

prototype tool to analyze over 4,000 tests from real, open source software projects and

to answer several research questions about (1) the feasibility and effectiveness of the

technique, and (2) the quality of existing test oracles.

This work[59] makes the following contributions:

• The definition of a new technique that can automatically analyze tests to detect

both brittle assertions and unused inputs.

• A prototype implementation of the technique that implements the technique for

Java applications with test cases written using JUnit.

• An extensive empirical study that demonstrates my tool’s feasibility, accuracy,

and usefulness.
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 1 public class EmployeeTest extends TestCase {
 2  static String firstName, lastName, ssn;
 3  static double baseSalary, commissionRate = 0.5, grossSales;
 4  static Employee E = new Employee(firstName, lastName, ssn, 
 5                            baseSalary, commissionRate,
 6                            grossSales);
 7    
 8  public void testToString() {
 9    E.setFirstName("John")
10    E.setGrossSales(200);
11    E.setBaseSalary(100);
12    String expected = "Employee: null\n" +
13                      "social security number: null\n" +
14                      "total salary: 200.00";
15    assertEquals(E.toString(), expected);
16  }
17
18  public void testAbbreviateLastName() {
19    E.setLastName("Moore-Towers");
20    String expected = "Moore";
21    assertEquals(E.abbreviatedLastName(), expected);
22  }
23 }

Figure 3.1: An example of a brittle test case.

3.1 Motivating Example

In this section, I provide an example that will be used in the remainder of the

section to illustrate my technique. Figure 3.1 shows the example, which consists of

several tests derived from the test suite for CommissionEmployee, a small application

that is used to perform various computations necessary to calculate payroll information

for sales employees. Consider testToString, which is checking whether Employee’s

toString method produces the expected output. While this test fulfills its goal, it has

several problems.

First, testToString is brittle because it makes assertions about values derived

from inputs that it does not control. More specifically, the test assumes that the

values of the employee’s last name, social security number, and commission rate are not

changed between the time when the employee is created and the time when the result

of toString is checked. Note that no such assumption is made about the employee’s

first name, gross sales, or base salary as these values are controlled by the test (i.e.,

1
http://www.junit.org
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they are explicitly set to “John”, 200 and 100, respectively, during the execution of the

test).

In practice, there are many ways that testToString’s assumption that the

employee’s last name, social security number and commission rate are not changed

could be violated. For example, if testAbbreviateLastName was added to the test

suite, testToString would fail intermittently, depending on the order in which the test

cases are executed. If testToString is executed first, the assumption holds and both

tests will pass. However, if testAbbreviateLastName is executed first, the assumption

is violated and testToString will fail because the value of the employee’s last name will

no longer be null. To prevent the possibility of failures due to brittleness, a test should

not check values derived from inputs that it does not control. For testToString, this

can be accomplished by explicitly controlling the values of the employee’s last name,

social security number, and commission rate, as is done for first name, gross sales, and

base salary. This can also be accomplished by creating a new instance of Employee with

known values or by explicitly setting the employee’s last name, social security number,

and commission rate. Both of these options fix the test’s brittleness by ensuring that

the values checked by the its oracle are derived from controlled inputs.

The second problem with testToString is that one of the test’s controlled

inputs is unused. Although the test specifically sets the employee’s first name to

“John”, there is not any assertions checking any values that are derived from this

input. Unused inputs suggest that the test’s author is unsure about the behavior of

the application under test, possibly because modifications made to the application

have not been reflected in the test or simply because the tester was unfamiliar with

the code when the test was written. In the worst case, an unused input indicates that

a test is missing an assertion which could lead to missed warnings—situations where

the test should fail but does not. Even if they do not lead to missed warnings, unused

inputs increase the costs of test maintenance by increasing the cognitive burden on the

tester. To eliminate unused inputs, additional assertions could be added to the test

(e.g., adding assertEquals(E.getFirstName(), "John") to testToString) or the
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unused inputs could be removed (e.g., deleting Line 9 in testToString).

The overall goal of the proposed technique, OraclePolish, is to reduce the costs

of testing by automatically identifying, and helping testers fix both brittle assertions

and unused inputs. The basic intuition behind the approach is that dynamic tainting,

due to its ability to mark and track inputs at runtime, can be successfully used to

accomplish this goal.

3.2 Background

In this section, I provide background information on dynamic tainting. Note

that the material in this section is paraphrased from previous work on dynamic taint-

ing [28]. Intuitively, dynamic tainting consists of (1) marking some data values in a

program with a piece of metadata called a taint mark, and (2) propagating taint marks

according to how data flows in the program at runtime. In this way, dynamic tainting

can track and check the flow of information through a program while it executes.

Information flows through a program in two ways: through data dependences

and through control dependences. I illustrate these two kinds of flows using the code

examples in Figure 3.2. First, consider the code in Figure 3.2a. Assume that variable

a is tainted with taint mark ta at Line 2 and variable b is tainted with taint mark tb at

Line 3. Given this assignment of taint marks, variables x, y, and z would be tainted, at

the end of the execution, with sets of taint marks {ta}, {tb}, and {ta, tb}, respectively.

Taint mark ta would be associated with x because the value of a is used to calculate

the value of x (x = a + 2), that is, x is data dependent on a. Analogously, y would

be tainted with tb because the value of b is used to calculate the value of y (y = b *

4). Finally, z would be tainted with both ta and tb because the values of both x and y

are used to compute the value of z (z = x + y), that is, z is indirectly data dependent

on both a and b.

Consider now the code in Figure 3.2b and assume that variable a is tainted with

taint mark ta at Line 2. Although a’s value is not directly involved in the computation

of x in this case, it nevertheless affects x’s value: the outcome of the predicate at Line 3
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1 int x, y, z;
2 int a = input();
3 int b = input();
 
4 x = a - 2;
5 y = b * 4;
6 z = x + y;

(a)

1 int x, y;
2 int a = input();
 
3 if(a > 0)
4    x = 0;
5 else
6    x = 1;
7 y = 2;

(b)

Figure 3.2: Code examples that illustrate information flow through data and control
dependencies.

decides whether Line 4 or Line 6 will be executed, that is, the statements at Lines 4

and 6 are control dependent on the statement at Line 3. Therefore, the value of x at

the end of the execution would be associated with taint mark ta.

In general, the propagation of taint marks along data dependences is called data-

flow propagation, and the propagation along control dependences is called control-flow

propagation. The details can be found in Section 3.5.

3.3 Detecting Brittle Assertions and Unused Inputs

This section presents the technique, OraclePolish, for helping testers improve

the quality of their test oracles. I first provide an intuitive description of the technique

and then discuss its main characteristics in the following 4 steps.

3.3.1 Overview

The basic technique behind OraclePolish is dynamic tainting which can mark

and track inputs at runtime. In this spirit, the OraclePolish technique works by (1) as-

signing taint marks to two types of inputs: inputs that are controlled by the test and

inputs that are not controlled by the test, (2) tracking both types of inputs by suitably

propagating the taint marks as a test executes, and (3) identifying, when an assertion

is executed, which taint marks are associated with the values checked by the assertion.

The taint marks discovered in the third step allow for identifying situations where a

test checks too much (i.e., is brittle) and situations where a test checks too little (i.e.,

has unused inputs).
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testToString

ssn == null total salary == 200.00

Uncontrolled
inputs
null
ssn

0.5
commission rate

null
last name

"John"
first name

200
gross sales

100
base salary

Controlled
inputs

Assertions

last name == "null"

Figure 3.3: Intuitive view of the application of my technique to testToString from
Figure 3.1.

Before presenting the details of the approach, I discuss how it works on test-

ToString from Figure 3.1. This test is brittle because it contains assertions about

values derived from uncontrolled inputs, and also has unused inputs because some con-

trolled inputs, or values derived from them, are not checked by an assertion. Figure 3.3

provides an intuitive view of how OraclePolish can detect both problems.

The top of Figure 3.1 shows testToString’s inputs. Note that the inputs are

divided into two categories: controlled inputs and uncontrolled inputs. Intuitively,

controlled inputs are values that are provided as part of the test itself (in this case,

“John”, 200 and 100) and uncontrolled inputs are inputs that are not explicitly set

during the execution of the test (in this case null, used to initialize lastName and

ssn, and 0.5, used to initialize commissionRate). Section 3.4 provides a detailed

discussion of how the technique identifies controlled and uncontrolled inputs. To make

the example more clear, each input shows both the value (top) and a brief description

of what the value represents (bottom). For example, the value “John” represents the

first name of the employee, the value 200 represents the employee’s gross sales value,

etc.
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The bottom of Figure 3.1 shows, conceptually, the test’s oracle. The call to

assertEquals at Line 15 implicitly checks whether the employee’s first name is equal

to “John”, whether the employee’s social security number is equal to null, and whether

the employee’s total salary is equal to 200.00.

The lines that traverse testToString illustrate, intuitively, how OraclePolish

assigns a unique taint mark to each input. In the figure, each input is the source of

a unique line. In addition, the color and style of the lines indicate the type of input:

green, dashed lines indicate taint marks assigned to controlled inputs and solid, red

lines indicate taint marks assigned to uncontrolled inputs. In the remainder of the

section, I refer to taint marks assigned to controlled inputs as c-marks and taint marks

assigned to uncontrolled inputs as u-marks. The lines in the figure also illustrate how

my technique tracks inputs at runtime, by propagating the taint marks as the test

executes. For example, the line connecting the input “null” to the assertion last

name == null indicates that the value checked by the assertion (the employee’s last

name) is derived from the value null. Similarly, the lines that connect the inputs 200,

100, and 0.5 to the assertion total salary == 200.00 indicate that the value checked

by the assertion (the employee’s total salary), is derived from the values 200, 100, and

0.5. The technique uses this information to detect brittle assertions and unused inputs.

In Figure 3.3, both types of deficiencies are shown using a bug icon.

Brittle assertions are detected by (1) identifying, when an assertion occurs, the

set of taint marks associated with the values checked by the assertion, and (2) checking

whether the set of taint marks contains a u-mark. If the set does contain a u mark,

the assertion is considered to be brittle. For example, as Figure 3.3 shows, there are

three taint marks associated with the value checked by the assertion total salary ==

200: the taint marks for 200, 100, and 0.5. Because the taint mark for 0.5 is a u-mark,

the technique identifies this assertion as brittle. Similarly, the other two assertions are

also identified as brittle because the values that they check are tainted with a u-mark.

Unused inputs are detected by (1) computing the union of all taint marks asso-

ciated with every value checked by an assertion, and (2) checking whether the union
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contains every c-mark assigned during the execution of the test. If a c-mark is not

present in the union, its corresponding input is unused. For example, in Figure 3.3

the union of all taint marks associated with values checked by the assertions does not

contain the c-marks for “John”. Consequently, “John” is identified as an unused input.

In addition to detecting brittle assertions and unused inputs, the information

provided by propagating taint marks is used to give testers additional data about the

identified errors. Intuitively, the technique tracks backwards to identify the origins

of the problems and outputs the source of each input (i.e., the locations where the

controlled and uncontrolled inputs were assigned a taint mark). These locations can

serve as a starting point to help testers fix the identified problems with their assertions.

3.4 Input Tainting

Input tainting is responsible for associating taint marks with a test’s inputs.

The technique intercepts the execution of the test at specific points and assigns either

a c-mark, for controlled inputs, or a u-mark, for uncontrolled inputs.

3.4.1 Tainting Controlled Inputs

Currently, OraclePolish considers two types of values to be controlled inputs.

First, the technique considers values (constants) that are (1) used during the execution

of the test method itself, and (2) not directly passed to an assertion method to be

controlled inputs. For example, in Figure 3.1, the constant “John” used at Line 9 is a

controlled input, but the constant “Moore” at Line 20 is not because it is used as an

argument to assertEquals on Line 21. The decision to only include constants in the

test method itself is based on my experience, domain knowledge, and intuition about

how testers write tests. Initially, the technique also considered constant values from

the test’s setup code to be controlled inputs. However, I found that many tests use the

same setup code to construct a complex state. While, when considered individually,

the tests appear to have unused inputs (i.e., parts of the common state that are not

checked), when they are considered collectively, they check the entire state.
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Second, the technique considers the return values of no-argument methods called

in the test method itself and also implemented in the test class to be controlled inputs.

I found that no-argument methods are frequently used to separate long sequences of

initialization code from a test. Moving such initialization code to a separate method

decreases the size of the test, which can improve its readability and understandability.

Because such methods are conceptually part of the test, I consider their results to be

controlled inputs.

To taint constants that are used as part of the test method, OraclePolish simply

intercepts the loading of the constants and applies a unique c-mark to the loaded

constant. Similarly, to taint the return value of no-argument methods implemented in

test suite, the technique intercepts the test’s execution immediately after the method

returns and applies a unique c-mark to the return value. Note that if either type of

controlled input is used repeatedly, as would be the case inside of a loop, the technique

reuses the same c-mark for each iteration. Based on the results of the experiments (see

Section 3.8), I found that this approach produces the most understandable reports.

From the point of view of a tester, regardless of the number of times an input is used,

it is still, conceptually, the same input.

As a concrete example of how my technique assigns c-marks to controlled inputs,

consider testToString in Figure 3.1. The technique identifies three controlled inputs

in this test: the literal value “John” used at Line 9, the literal value 200 used at Line 10,

and the literal value 100 used at Line 11. When each of these constants is loaded, the

technique assigns a unique c-mark to each value (e.g., c1 is assigned to “John”, c2 is

assigned to 200, and c3 is assigned to 100).

3.4.2 Tainting Uncontrolled Inputs

Currently, OraclePolish considers one type of values to be uncontrolled inputs.

The values of global variables (static, mutable fields) are considered to be uncontrolled

inputs. The intuition behind this choice is that reading the value of a global variable

is the most likely way for a test to unintentionally depend on a value that it does not
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control. Because global variables maintain their state and can be written to at any

time, a test has no way of knowing what values they contain. Similarly, tests can also

unintentionally depend on the contents of the files, databases, network connections, etc.

I chose not to consider values read from such sources as uncontrolled inputs because

unit tests typically use mock objects instead of the real resources.

To assign u-marks to global variables, when each class, including each test class,

is loaded, the technique assigns a unique u-mark to each non-final, static field. If

the field is a reference value, OraclePolish will recursively assign taint marks to the

fields of this reference value until the technique finds a primitive or an already solved

case (e.g., an array). As a concrete example of how my technique assigns u-marks

to uncontrolled inputs, consider testToString in Figure 3.1. EmployeeTest has six

static fields, only one of which has a variable initializer (commissionRate). When an

instance of EmployeeTest is initialized, all six fields are assigned a unique u-mark (e.g.,

firstName is assigned u1, lastName is assigned u2, ssn is assigned u3, baseSalary is

assigned u4, commissionRate is assigned u5, and grossSales is assigned u6). During

the class loading of EmployeeTest, when commissionRate is assigned the value 0.5, the

taint mark assigned during object initialization is overwritten with a fresh taint mark

(e.g., u5 is overwritten by u7). Later when testToString is executed, OraclePolish

would assign a unique u-mark to each static, mutable field of every currently loaded

class.

3.4.3 Recording Supplemental Information

Regardless of the type of taint mark, OraclePolish performs an additional ac-

tion when assigning a taint mark t to an input i. To help testers debug the problems

identified by OraclePolish, additional information is recorded. More specifically, Ora-

clePolish logs a tuple 〈t, loc, value〉, where loc is the location in the execution where

the taint mark was associated with the input and value is the initial value of the input.

The location is expressed differently depending on the type of taint mark. For c-marks,

the location is the file name and line number corresponding to where the constant or
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return value was used. For u-marks, the location is the fully qualified name (field name

and declaring class name) of the field that contains the input. This information is used

by OraclePolish when generating reports, as described in Section 3.6.

3.5 Taint Mark Propagation

A taint propagation policy specifies how taint marks are propagated during

execution. Typically it is defined along two dimensions: how to combine taint marks

and which types of dependences to consider.

My technique’s policy for combining taint marks is fairly intuitive. In general,

OraclePolish taints all values written by a statement with the union of all taint marks

associated with the values read by that statement. For instance, after the execution of

statement x = y + z, where y and z are tainted with taint marks t1 and t2, respectively,

x would be associated with the set of taint marks {t1, t2}. The only type of statement

where OraclePolish deviates from this general policy is the execution of native methods.

Because native methods are executed by the Java Virtual Machine (JVM), it is often

unclear which values are read by the native method. Rather than require a precise

model of every native method, the technique conservatively assigns the union of all

taint marks associated with the native method’s arguments to its return value.

When choosing which dependences to consider, OraclePolish considers both

data-flow and control-flow dependencies. Identifying data-flow dependencies is triv-

ial as they are encoded as the semantics of the language. Identifying control-flow

dependencies is more challenging.

A control-flow dependence arises when a conditional branch b decides whether a

statement s is executed. In this case, the values that affect b’s outcome indirectly affect

the values of any data written by s. Therefore, to be conservative, the taint marks

associated with the values read by b must be combined and associated with the values

written by s. To achieve this, the technique uses an approach that in Clause et al.’s

prior work [29]. In brief, the technique keeps track of relevant taint marks at runtime

by leveraging statically-computed post-dominance information. When an execution
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reaches a conditional branch b, the technique (1) computes T , the union of the taint

marks associated with the values read by b, and (2) adds a pair 〈b, T 〉 to CF , the set

of active control flow marks. When execution reaches the immediate post-dominator

of a conditional branch b, it removes from CF all pairs 〈x, y〉 such that x is equal to

b. Note that CF will contain multiple pairs with x equal to b when b is executed as

part of a loop. Each iteration will add a new pair 〈b, T 〉 to CF , all of which must

be removed when the immediate post-dominator is executed. When a statement s is

executed and CF is not empty, the technique computes the union of all active control

flow marks (i.e., the union of y, for each pair 〈x, y〉 in CF ) and adds this set to the set

of taint marks associated with the values written by s.

3.6 Checking Taint Marks

This third part of my technique, checking, is responsible for two tasks: (1) iden-

tifying brittle assertions and unused inputs, and (2) generating the error reports that

will be presented to testers.

To identify brittle assertions, the technique intercepts the execution of com-

parison operations (e.g., greater than, less than, equals, etc.) that occur inside the

execution of an assertion method (e.g., assertEquals). Intercepting the execution of

comparison operations, rather than simply examining the actual argument of the asser-

tion method, allows for a more precise identification of brittle assertions. For example

if the actual parameter of the assertion method is an object, examining the taint marks

associated with all of the object’s fields is likely to be incorrect as not all of the fields

are necessarily involved in checking whether the actual and expected arguments are

equal. Rather than attempting to identify, a priori, which values are used to check for

equality, the technique can simply monitor the comparison operations to achieve the

same effect. In addition, testers often inadvertently swap the order of the actual and

expected arguments which means that the actual parameter may not be in the correct

location which would result in incorrect reports.
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testToString appears to be brittle.  The assertions at the 
following lines check values that are derived from 
uncontrolled inputs:

assertEquals at Line 25 depends on:
EmployeeTest.lastName being null (object initialization)
EmployeeTest.ssn being null (object initialization)
EmployeeTest.commissionRate being 0.5 (object initialization)

(a) Report for brittle assertions.

testToString appears to be missing one more assertions. The 
following values are provided as input but are not checked by 
an assertion: 

"John" (EmployeeTest.java, Line 9)

(b) Report for unused inputs.

Figure 3.4: Example reports output by my technique when run on testToString from
Figure 3.1.

For each comparison operation inside of an assertion method, the technique

identifies the taint marks associated with the values involved in the comparison and

checks whether the set of identified taint marks contains a u-mark. If a u-mark is

found, the technique detects a brittle assertion.

To identify unused inputs, the technique calculates the union of all c-marks that

were encountered when checking for brittle assertions. The technique then subtracts

this set from the set of all c-marks that were assigned to controlled inputs. If the

resulting set is not empty, the inputs initially assigned with the remaining c-marks are

marked as unused.

As a concrete example of how the checking part of the technique operates, con-

sider again testToString from Figure 3.1. For this test, the technique would intercept

the comparison operations that occur inside the call to assertEquals. Because the

actual value is a string, the String class’s equals method is used to perform the check.

The equals method uses a series of equality comparisons (i.e., ==) to check whether

the same characters make up each string. Each time this equality is executed, the

technique determines whether either character is tainted with a u-mark. Because the

actual value is derived from three uncontrolled inputs, three u-marks are found and a

brittle assertion is detected.
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At the end of the test’s execution, the technique calculates the union of all

encountered c-marks. Because only values tainted with only two of three total c-marks

were checked by the assertion, an unused input report for the remaining mark (the one

initially assigned to “John”) is created.

Figure 3.4 shows the error reports generated by the technique when run on

testToString. As the figure shows, both the brittleness report (top) and the unused

input report (bottom) include all of the information necessary to help testers fix the

identified issues. The brittleness report includes the name and location of the brittle

assertion (assertEquals on Line 25), the uncontrolled values that were used to compute

the values checked by the assertion (null, null, and 0.5), the names of the fields where

the uncontrolled values were stored (EmployeeTest.firstName, EmployeeTest.ssn, and

EmployeeTest.commissionRate), and the locations where the uncontrolled values were

stored into the fields (during object initialization). Note that to collect the location

information, the technique traverses the test’s call stack to find the name of the out-

ermost enclosing assertion method invocation and the location where the assertion

method was invoked. The unused input report includes the controlled inputs that were

not checked by an assertion and the line number where the value was loaded.

3.7 Removing False Positives

The purpose of the fourth part of the technique is to filter false positive error

reports. Taint mark propagation is known to be imprecise, especially in the case of

native methods. As a result, error reports generated by the third part of the technique

may be false positives. More specifically, the technique may generate false positive

reports if it under-propagates c-marks or over-propagates u-marks. As a result, con-

trolled inputs may appear to be unused when in fact they are used and uncontrolled

inputs may appear to be checked by an assertion when in fact they are not.

To eliminate such false positives, the technique uses an approach inspired by

mutation testing [35, 50]. Essentially, the technique preemptively makes changes that

may happen in the future and checks to see whether such changes alter the outcome
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of the test. More specifically, for each input that is identified as the cause of a brittle

assertion or as an unused input, the technique re-executes the test. As the test is

being re-executed, at the point when the taint mark was assigned to the input in the

original execution, the technique mutates the value of the input to a randomly chosen

value of the same type. Note that data- and control- flow analysis is not needed to

accomplish this. The technique then compares the outcomes of the re-executed and

original executions.

In the case of uncontrolled inputs that cause brittle assertions, we would expect

that changing the input’s value would alter the outcome of the test. If a test checks

values derived from an input, changing the value of the input should change the out-

come of the test. If the outcome of the test does change, the report is a true positive

(i.e., if the change were to be made, the test would fail) and is presented to the user.

Conversely, if the outcome of the test does not change, the report is a false positive

(i.e., the u-mark should have been over written but was not) and is discarded.

In the case of unused inputs, I would expect that changing the value of the

input would not alter the outcome of the test. If an input is really unused, its value

doesn’t matter. If the outcome of the test does not change, the unused input report is

a true positive and is presented to the user. Conversely, if the outcome of the test does

change, the error report is a false positive (i.e., the c-mark should have propagated to

an assertion but did not) and is discarded.

Note that this filtering strategy is precise—reports that are identified as true

positives have an associated witness (a concrete change that will cause the test to

fail)—but not safe—reports that are identified as false positives may actually be true

positives. True positives can be identified as false positives when the randomly chosen

value is indistinguishable from the original value. For example, consider an assertion

that checks whether a value is positive. If the original value checked by the assertion is 1

and the randomly chosen replacement is 5, the outcome of the assertion will be the same

for both values. To reduce the possibility of this occurring, multiple re-executions, each

with a unique value, can be run or additional analysis could be performed to identify
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values that are more likely to cause the outcome of the test to change.

In the case of testToString, both of the error reports generated by the third

part of the technique are true positives. Changing the value of commissionRate causes

the test to fail and changing the value of the employee’s first name does not cause the

test to fail.

3.8 Evaluation

To evaluate my technique, I created a prototype implementation called Oracle-

Polish and analyzed over 4,000 tests for 12 real Java applications. Using the output of

the tool, I investigated the following research questions:

RQ 1—Effectiveness. Can the technique detect both brittle assertions and unused in-

puts in real test suites?

RQ 2—Cost. What are the costs associated with using the technique and are they

reasonable?

Note that RQ1 provides a quantitative assessment of the technique; it does not make

any assumptions about whether the reported errors are likely to cause problems in the

future. Conversely, RQ2 is a qualitative assessment that does take into account the

users’ perspective.

The remainder of this section describes (1) OraclePolish, the prototype imple-

mentation of my technique, (2) the experimental subjects I chose, (3) the experimental

protocol I used and the data I generated, (4) the results of evaluation, and (5) threats

to the validity of my results.

The prototype implementation of my technique, as well as the subjects I chose

and the experimental data I generated, are available from: http://bitbucket.org/

udse.
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Table 3.1: Experimental subjects and data.

Test Suite Brittle Assertions Unused Inputs

Subject LoC # Tests # Executable # Reports # TP # Reports # TP

CommissionEmployee 100 15 15 2 1 13 13
DataStructures 429 106 99 0 0 55 47
Employee 183 15 15 3 3 11 11
LoopFinder 49 13 13 0 0 13 5
Point 69 13 11 0 0 10 8
ReductionAndPriority 3,245 52 38 0 0 37 37
Sudoku 376 25 18 0 0 7 0

commons-beanutils-1.8.3 11,375 810 73 12 4 59 44
commons-cli-1.2 1,978 164 130 22 5 119 24
commons-collections-3.2.1 26,414 886 672 20 12 426 247
commons-io-2.4 26,614 824 236 1 0 154 78
commons-lang-3.1 23,070 2,024 1,547 128 114 1,133 549
commons-math-3.0 70,006 1,150 72 0 0 39 12
JDepend-2.9.1 2,531 39 0 0 0 0 0
Jfreechart-1.0.15 92,252 2,234 862 1 0 538 285
joda-convert-1.2 2,675 105 0 0 0 0 0
Joda-time-2.2 86,797 3,962 506 181 25 226 144
Jtopas-0.8 4,373 53 27 0 0 21 11
PMD-5.0.4 100,300 770 346 2 0 184 93

total 13,609 4,718 405 164 3,060 1,618

3.8.1 Prototype Tool

OraclePolish is a prototype implementation of my technique for applications

written in the Java language using the JUnit testing framework. It consists of three

separate components: the analyzer, the runtime system, and the mutator.

The primary task of the analyzer is to statically compute the information needed

by the runtime system. More specifically, the analyzer computes the post-dominance

information needed to perform control-flow propagation. The current implementation

of the analyzer uses the T.J. Watson Libraries for Analysis (WALA) to perform the

necessary analyses. I choose WALA because it (1) analyzes Java bytecode, which

means that I do not need to obtain the source code for all parts of the application,

(2) provides built-in dominator analyses, and (3) is extensible enough to allow us to

easily implement the other necessary analyses.

The runtime system implements the input tainting, taint mark propagation,

and checking parts of the technique described in Section 3.4, Section 3.5, Section 3.6,
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respectively. The current implementation of the runtime system is an extension to

Java PathFinder (JPF), an explicit state software model checker for Java software.2

To assign taint marks to inputs, OraclePolish uses JPF’s listener callbacks to intercept

class and object initialization and to intercept the execution of instructions that load

constants. To implement taint mark propagation, OraclePolish uses JPF’s bytecode

overloading facilities to replace each Java bytecode with a modified version that repli-

cates the instruction’s original semantics while also propagating taint marks. Finally,

to implement checking, OraclePolish again uses JPF’s listener callbacks to intercept

the execution of comparisons instructions that occur inside of assertion methods.

The mutator implements the part of the technique that filters false positives

(see Section 3.7). It is also implemented as a plugin to JPF. Similarly to the runtime

system, the mutator uses JPF’s listener callbacks to intercept class and object initial-

ization and to intercept the execution of instructions that load constants. However,

instead of assigning taint marks, the mutator randomly changes the values of the in-

puts. Currently, the mutator re-executes the test three times. As I demonstrate in

Section 3.8.4, this number is sufficient to eliminate many false positives.

3.8.2 Subjects

The goal of the technique is to improve oracle quality by detecting brittle as-

sertions and unused inputs. To suitably evaluate the technique with respect to this

goal, I selected the test suites of 20 applications as my subjects. Table 3.1 describes

the applications. In the table, the first column, Subject shows the name and version

of each application, if available. The first eight applications (CommissionEmployee

through Sudoku) are taken from the Proteja Test Suite Executor and Coverage Monitor

repository.3 The remaining subjects were obtained from various repositories including:

(1) the Software-artifact Infrastructure Repository (SIR),4 which provides a variety

2
http://javapathfinder.sourceforge.net/

3
https://code.google.com/p/proteja/

4
http://sir.unl.edu

29

http://javapathfinder.sourceforge.net/
https://code.google.com/p/proteja/
http://sir.unl.edu


of open-source projects for empirical software engineering, (2) SourceForge,5 a popular

repository for open-source projects, and (3) Apache Commons,6 a collection of reusable

components. The second column, LoC, shows the number of non-blank, non-comment,

lines of code that comprise the application and the third column, # Tests shows the

number of tests in each application’s test suite.

I chose the test suites of these applications as subjects for several reasons. First,

the applications cover a variety of subject domains. For example, Commons CLI is a

library for processing command-line options, Commons IO is a library for performing

various input/output operations, Joda-Time is a library for handling dates and times,

etc. Second, the applications vary in size. For example, Commons-math has over 70,000

lines of code, while Sudoku only has 376 lines of code. Finally, the test suites also vary

in size. The test suites for some of the application contain more than 3,000 tests while

others contain fewer than 20. Selecting test suites and applications of various sizes and

subject domains improves the generalizability of my results.

After selecting my subjects, I performed an initial sanity check and removed

any tests that can not be run using JPF. The number of remaining tests is shown in

the fourth column, # Executable. For example, although Commons-beanutils-1.8.3’s

test suite contains 810 tests, 73 of which are executable using JPF. After filtering, I

was left with 4,718 tests.

3.8.3 Experimental Protocol and Data

To generate the experimental data necessary for answering my research ques-

tions, I ran OraclePolish on each of my 4,718 tests and recorded its output. The

experiments were all conducted on the same computer: a machine running Ubuntu

12.04 LTS 64-bit edition with a 3.40 GHz Intel Core i7-2600 processor and 8 GB of

memory. Java version 1.7.0 03 was used and was configured with 2 GB of heap space

(default).

5
https://sourceforge.net

6
http://commons.apache.org
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Table 3.1 shows the experimental data that I generated. The last four columns

in the table show the number of reports generated by the technique, # Reports, and

the number of reports that are true positives, # TP, for both Brittle Assertions and

Unused Inputs. The number of reports is the total number of reports generated by the

checking part of the technique (see Section 3.6) and the number of true positives is the

number of reports that remain after being filtered by the fourth part of the technique

(see Section 3.7).

3.8.4 RQ1: Effectiveness

The purpose of my first research question is to determine the effectiveness of

the technique at detecting brittle assertions and unused inputs in real tests. To answer

this question, I first judged effectiveness quantitatively, by examining the number of

true positive reports generated by OraclePolish.

As Table 3.1 shows, for the subjects I considered, OraclePolish was able to detect

both brittle assertions and unused inputs. In total, it detected 164 tests that contain

at least one brittle assertion and 1,618 tests that contain unused inputs. These results

are encouraging and also a bit surprising. Because most of the tests that I considered

are from the test suites of mature applications, I expected them to contain few errors.

It is interesting to note that OraclePolish detects far more unused inputs than

brittle assertions. Intuitively, this makes sense as unused inputs are unlikely to cause

any observable problems. While missing assertions may cause a test to pass when it

should fail, there is no way to detect this occurrence. Similarly, there is not an easy

way to measure the amount of additional effort needed to comprehend and maintain

tests with unused inputs. As a result, unused inputs are more likely go undetected and

unfixed than brittle assertions.

The second way I judged effectiveness was by qualitatively assessing the reports

generated by OraclePolish. In the remainder of the section, I provide a more detailed

discussion of two randomly chosen brittle tests and two randomly chosen tests with

unused inputs.
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    public class BugsTest extends TestCase {
      public void test13666() throws Exception {
229     Options options = new Options();
230     Option dir = OptionBuilder.withDescription( "dir" )
                                  .hasArg()
                                  .create( 'd' );
233     options.addOption(dir);
         
236    final PrintStream oldSystemOut = System.out;
237    try {
239      OutputStream bytes = new ByteArrayOutputStream();

247      System.setOut(new PrintStream(bytes));

249         HelpFormatter formatter = new HelpFormatter();
250         formatter.printHelp( "dir", options );

252         assertEquals("usage: dir"+eol+" -d <arg>   dir"
                         + eol,
                         bytes.toString());
       }
       finally {
256      System.setOut(oldSystemOut);
       }
     }
   }

Figure 3.5: Brittle assertions in test13666

Figure 3.6 shows an excerpt of test13666 that is part of the test suite for

Commons-cli. OraclePolish detects that the assertion at Line 252 is brittle because

it depends on several of OptionBuilder’s static fields. Because OptionBuilder is a

singleton, it is possible for other users of the class to leave it in an indeterminate state

by starting to build an option but never calling create. Internally, create resets the

state of the OptionBuilder so that it is safe to reuse. To prevent the possibility that

OptionBuilder has already been partially configured, the test should call Option-

Builder’s reset method before building an option at Line 230.

Figure 3.6 shows an excerpt of testPut that is part of test suite for Commons-

beanutils. OraclePolish detects that the assertion at Line 246 is brittle because it

checks the value of stringVal. As the code shows, stringVal is a static field of

the DynaBeanMapDecoratorTestCase. Because testPut does not control the value of

stringVal, it is assuming that stringVal will not be modified between the time when

the field is initialized and the time when the assertion is executed. To fix this error, the

reference to the static field could be replaced with the expected constant. Alternatively,
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    public class DynaBeanMapDecoratorTestCase extends TestCase {
 43   private static final DynaProperty[] properties =
        new DynaProperty[] { ... };
 
 47   private static String stringVal = "somevalue";
 
 52   private Object[] values = new Object[] {stringVal, ...};

 54   private BasicDynaBean dynaBean;

      public void setUp() throws Exception {
 96     dynaBean = new BasicDynaBean(dynaClass);
 97     for (int i = 0; i < properties.length; i++) {
 98         dynaBean.set(properties[i].getName(), values[i]);
 99     }

103     modifiableMap = new DynaBeanMapDecorator(dynaBean, 
                                                 false);
      }
    
      public void testPut() {
235     String newValue = "ABC";

246     assertEquals(stringVal, 
                     modifiableMap.put(stringProp.getName(), 
                                       newValue);
247     assertEquals(newValue,
                     dynaBean.get(stringProp.getName()));
248     assertEquals(newValue, 
                     modifiableMap.get(stringProp.getName()));
      }
    }

Figure 3.6: Brittle assertions in testPut

if the field were to be made final it would be guaranteed to have the expected value.

Because the majority of DynaBeanMapDecoratorTestCase’s other fields are final, this

later option is likely to be the correct fix.

Figure 3.7 shows an excerpt of testGetRowKey from JFreeChart’s test suite.

OraclePolish detected two unused inputs in this test: the value “C1” at Line 266 and

the value “C1” at Line 267. Although these values are used as arguments to the calls

to addValue at Line 266 and Line 267, they are not checked by an assertion. Adding

additional assertions (i.e., assertEquals("C1", d.getColumnKey(0)) and assertE-

quals("C1", d.getColumnKey(1))) would ensure that not only are the correct row

keys returned, but also that the column keys are not modified.

Figure 3.8 shows an excerpt of test13 from Employee’s test suite. OraclePolish

detected three unused inputs in this test: “FN” at Line 160, “SN” at Line 161, and
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    public class DefaultKeyedValues2DTests extends TestCase {
      public void testGetRowKey() {
257     DefaultKeyedValues2D d = new DefaultKeyedValues2D();

266     d.addValue(new Double(1.0), "R1", "C1");
267     d.addValue(new Double(1.0), "R2", "C1");
268     assertEquals("R1", d.getRowKey(0));
269     assertEquals("R2", d.getRowKey(1));
      }
    }

Figure 3.7: Unused inputs in testGetRowKey

    public class EmployeeTest extends TestCase {
  8   private String fn, ln, ssn;
  9   private double s;
    
 20   SalariedEmployee s1 = new SalariedEmployee(fn,ln,
                                                 ssn,s);
    
158   public void test13() {
159     s1.setWeeklySalary(10);
160     fn = "FN";
161     ln = "SN";
162     ssn = "ssn";
163     SalariedEmployee s2 = new SalariedEmployee(fn,ln,
                                                   ssn,s);
164     String actual = s1.toString();
165     String expected = "salaried employee: null null\n"
                          + "ssn: null\n"
                          + "weekly salary: $10.00";
166     assertEquals(actual, expected);
167   }
    }

Figure 3.8: Unused inputs in test13

“ssn” at Line 162. Although these values are used to construct s2, a new instance of

SalariedEmployee, they are never checked by an assertion. Note that s1 is used to

construct the actual value passed to assertEquals at Line 166, not s2. In this case, it

is not clear how to best fix the test. The unused inputs could be deleted or the actual

value could be constructed using s2 instead of s1.

3.8.5 RQ2: Cost

The purpose of my second research question is to investigate the costs of using

OraclePolish and to determine if such costs are reasonable. Because my technique is

fully automated, the primary cost is its runtime overhead.

34



To investigate the runtime overhead that OraclePolish imposes, I executed my

subject tests twice, once using the JVM and once using OraclePolish (with the pre-

ceding static analysis), and compared the execution times of these runs. Based on

these measurements, I found that running the tests using OraclePolish takes between

5 and 30 times longer than running the tests using the JVM. Although this cost is

significant, I believe that it is reasonable. In my experience, developers will accept

high overheads for tools that produce accurate results. This is especially true when,

as is the case for OraclePolish, the tools do not require any developer interaction and

can be run overnight, possibly as part of an automated build system whose results are

inspected the next day. In addition, OraclePolish is an unoptimized prototype. I chose

to implement it as a JPF plugin because JPF is a general platform that already imple-

ments many of the capabilities I needed (e.g., the ability to associate metadata with

runtime values). However, JPF’s generality comes at a cost. Based on my experience

with taint-based techniques, I believe that a custom implementation of OraclePolish

could reduce its overhead to less than 20 %, levels that are comparable to other recent

tainting-based approaches (e.g., [11, 90]), by taking advantage of several optimizations

(e.g., [19, 98]).

3.8.6 Threats to Validity

There are several threats to the validity of my evaluation. First, I considered a

limited number of tests, all of which were written in Java and used the JUnit testing

framework. In addition, I filtered out tests that could not be run using JPF. Conse-

quently, my results may not generalize beyond the considered domains. However, the

tests that I considered represent a wide range of application domains, sizes, and ma-

turity levels. Therefore, I believe that my results are promising and motivate further

research. Second, I qualitatively assessed the usefulness of the error reports generated

by the technique, which may introduce bias. While I am planning to conduct a human

study with developers to eliminate this threat in the future, I did not believe that such

a study was justified at this stage of the research.
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3.9 Summary

In this chapter I presented a new technique, OraclePolish, for automatically

analyzing test oracles. OraclePolish is based on dynamic tainting and can detect both

brittle assertions—assertions that depends on values that are derived from uncontrolled

inputs—and unused inputs—inputs provided by the test that are not checked by an

assertion. An implementation of the technique has been built to analyze tests that

are written in Java and use the JUnit testing framework. Using the implementation,

I conducted an empirical evaluation of the OraclePolish’s performance on more than

4,000 tests from 12 real applications. The results of the evaluation demonstrate that

OraclePolish is able to detect both brittle assertions and unused inputs in real tests at

a reasonable cost.

For practical use of the OraclePolish technique, the developers need to determine

what inputs shall be considered controlled and what shall be considered uncontrolled

in various cases. For example, for JUnit test suites in Java, non-final non-static fields

in test classes cannot be used to communicate between tests because a new test class

instance is initialized for each test method. For some other testing frameworks, it might

not be the case. The cost associated with using the OraclePolish technique mostly

depends on the dynamic tainting framework. The prototype implementation is 5 to 30

times slower than running the application on a pure JVM. Since OraclePolish is an

automatic tool, the developers can use the tool overnight and get the reports the next

day. Upon evolution of the software project, if a test method is added, the additional

cost is only associated with the test method for identifying brittle assertions and unused

inputs in this test. The additional test will not affect the previous results. If the

application has been changed, the whole test suite needs to be executed to determine

the changes in brittle assertions. However, in case of changes in the application, the

identified unused inputs stay the same.
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Chapter 4

IDENTIFYING INSUFFICIENTLY TESTED CODE

Testing provides numerous benefits such as assessing software quality, enabling

large scale changes and serving as a form of documentation. Because of these benefits,

according to a recent study of practicing software developers [34], many developers

have a strong desire for more tests in their projects. However, writing additional tests

can be difficult and costly. As reported in the study, a significant portion of this

cost is due to the difficulty of identifying which parts of the code to test. To help

developers locate where to test, researchers have proposed numerous code coverage

criteria (e.g., [9, 20, 58, 70, 79, 88, 93, 95, 112]). Coverage criteria are often used as

coverage metrics in the software industry by measuring how much of a certain criterion

has been met by a test suite [4]. In this context, coverage metrics offer essential

clues about which parts of code to test by indicating which entities (e.g., methods,

statements, branches, etc.) in a program are executed (covered) by a certain test suite

and which are not. Obviously, uncovered entities are not tested. However, covered

entities cannot be assumed to be adequately tested. For example, they may be covered

by accident.

The shortcoming is often due to the fact that code coverage metrics do not

consider how an entity is covered, only whether it is executed by the test suite. It is

common in practice that code is covered but not tested properly. The research commu-

nity is aware of this problem and has developed techniques to address it. For example,

Schuler and Zeller [99] proposed checked coverage such that covered entities are con-

sidered as checked only when there are assertions associated with them. My intuition

for identifying insufficiently tested entities rises from (1) the caller-callee association
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during the test execution, and (2) the association between application classes and test

classes in various testing paradigms.

In this chapter, I will present two new approaches to identify insufficiently tested

code. The first approach is based on the concepts of indirect coverage and direct cov-

erage, ICDC, for interpreting coverage information [60]. At high level, ICDC identifies

code entities that have never been directly invoked from a test as being insufficiently

tested. The second approach, Fostered Code, is based on the association between the

application and the tests in various testing paradigms. At high level, Fostered Code

identifies code entities that have not been covered by their designated tests as insuffi-

ciently tested. In addition to taking into account how entities are covered by tests, the

two approaches eliminate the need for testers to manually identify whether the code

indicated by the approaches can be executed. Because the code entities are already

covered by the test suite, the entities identified by the approach are guaranteed to be

feasible. This means that developers do not have to spend time investigating whether

it is possible to execute the identified code.

4.1 Indirect and Direct Coverage

In this section, I will provide the details of the ICDC technique which identifies

insufficiently covered code using the concept of direct and indirect covereage. The

rest of the section is organized as follows: Section 4.2.1 describes the details of ICDC

for interpreting coverage information including formal definitions of direct coverage

and indirect coverage, an algorithm to compute direct coverage and indirect coverage,

and an example illustrating the approach. Section 4.2.2 presents an empirical study

investigating various aspects of direct coverage and indirect coverage on 17 real-world

software projects.

4.1.1 Direct and Indirect Coverage

This subsection describes background information necessary for understanding

the remainder of the subsection. First, it defines the concepts of direct coverage and
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indirect coverage. Second, it describes how the direct coverage and indirect coverage

of a test suite can be calculated. Third, it explains how insufficiently tested methods

can be identified. Finally, it provides a concrete example of the concepts in terms of

statement coverage.

4.1.1.1 Definitions

The concepts of direct coverage and indirect coverage are relatively simple:

rather than identifying only whether an entity (e.g., a branch, a statement, etc.) is

covered by a test suite, direct and indirect coverage identify how an entity is covered.

Formally, the concepts of coverage, direct coverage, and indirect coverage are defined

as follows:

Definition 4.1.1 An entity e is covered by a test suite T iff there exists a test t ∈ T

such that e is executed by t.

Definition 4.1.2 An entity e is directly covered by a test suite T iff (1) e is covered

by T , and (2) there is at least one occurrence that e is covered because a test t ∈ T

directly invokes the method that contains e.

Definition 4.1.3 An entity e is indirectly covered by a test suite T iff e is (1) covered

by T , (2) not directly covered by T , and (3) contained within a method that is publicly

accessible.

Note that in Definition 4.1.3, an entity has to be inside a method that is publicly

accessible. If it is not feasible for the test to directly invoke a method, all the entities

in such a method are always indirectly covered.

4.1.1.2 Calculating Direct Coverage and Indirect Coverage

Algorithm 1 shows the procedure for computing the direct coverage and indirect

coverage of a test suite. As input, the algorithm requires five pieces of information. The

first is E , the entities covered in publicly accessible methods. The second is Coverage, a
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Algorithm 1 Compute the direct coverage and indirect coverage for a test suite.

Input: AUT is the application under test. T is the test suite of AUT .
Input: E , all covered entities in publicly accessible methods.
Input: Coverage, a mapping that associates each test t ∈ T to the set of entities

covered by t.
Input: Direct, a mapping that associates each test t ∈ T to the methods that have a

depth of 1 in t’s dynamic call graph.
Input: MethodOf, a mapping that associates each entity e to the method that contains

e.
Output: DC, a mapping that associates each method m ∈ AUT to the set of entities

in m that are directly covered.
Output: IC, a mapping that associates each method m ∈ AUT to the set of entities

in m that are indirectly covered.

1: function computeICDC
2: E ′ ← E
3: DC[m]← {}
4: IC[m]← {}

5: for t ∈ T do
6: Et ← Coverage[t]
7: Mt ← Et map {e⇒ MethodOf[e]}
8: Md ←Mt filter {m ∈ Direct[t]}

9: for m ∈Md do
10: Em ← Et filter {e⇒ m = MethodOf[e]}
11: E ← E \ Em

12: end for
13: end for

14: IC ← E groupby {e => MethodOf [e]}
15: DC ← (E ′ \ E) groupby {e => MethodOf [e]}
16: return DC, IC
17: end function

mapping that associates each test in the test suite to the set of entities that are covered

when the test is executed. The third is Direct, a mapping that associates each test in

the test suite to the set of methods that are directly invoked by the test (i.e., the set

of methods that have a depth of 1 in the test’s dynamic call graph). And the fourth

is MethodOf, a mapping that associates each entity in the application under test with
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the method that contains the entity. The application under test and the associated

test suite are provided by the tester while the mappings can be computed using various

straightforward static and dynamic analyses.

As output, the algorithm produces two mappings, DC, which associates each

method in the application under test to the set of entities contained in the method

that are directly covered and, IC, which associates each method in the application

under test to the set of entities contained in the method that are indirectly covered.

Given DC and IC, it is straightforward to compute the set of entities directly covered

or indirectly covered by the entire test suite.

Given the necessary inputs, the algorithm proceeds as follows. First a set E ′

memorizes the original E . Then the output mappings, DC and IC, are initialized to

empty maps (Lines 3–4). Then, the for loop from Line 5 to Line 13 iterates over each

test contained in the application under test’s test suite.

In the body of the loop, Line 6 retrieves Et, the set of entities covered by the t

from the Coverage mapping. Line 7 calculates Mt, the set of methods covered by test

t, by transforming the set of entities covered by t to their containing method using

MethodOf. Line 8 filter Mt based on whether a method is directly invoked by t. The

result, Md, contains the methods that are directly invoked.

The for loop from Line 9 to Line 12 iterates over the directly covered methods

to exclude directly covered entities from E . Line 10 computes Em, the subset of entities

covered by t that are contained in method m, by filtering the set of all entities covered

by t. In practice, instead of filtering the set of entities for each directly covered method,

an additional mapping Mm→E ⊆ Md × P (E) could be computed for all methods in

M before Lines 9. Line 10 updates the set E removing Em, which is the set of entities

directly covered by m. When the loop exits, E is left with indirectly covered entities.

Line 14 computes IC by grouping the entities in E by the methods that the entities

belong to. Analogously, line 15 computes DC by grouping the directly covered entities

(i.e., the difference of E ′ and E). Finally, DC and IC are returned.
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Note that, while the concepts of direct coverage and indirect coverage are ag-

nostic to the type of entity that is being covered, in the remainder of the section I will

focus on statement coverage. I choose to focus on statement coverage because, due to

its simplicity and availability of tool support, it is the most commonly used coverage

metric in practice.

4.1.1.3 Identifying Insufficiently Tested Methods

Given the DC and IC mappings produced by Algorithm 1, it is possible to

identify methods that are insufficiently tested by computing each method’s direct and

indirect coverage scores:

DirectCoverage(m) =
|DC[m]|

|DC[m]|+ |IC[m]|

IndirectCoverage(m) =
|IC[m]|

|DC[m]|+ |IC[m]|

Analogously to how traditional coverage scores can indicate insufficiently tested

code by identifying areas where large numbers of entities are uncovered, direct and indi-

rect coverage scores indicate insufficiently tested methods by identifying methods that

have a small percentage of directly covered entities or a high percentage of indirectly

covered entities.

4.1.1.4 Prototype implementation

The implementation of my technique consists of three components, a coverage

profiler,1 a call graph tracer2, and a direct coverage calculator. The coverage profiler

uses WALA, a static analysis framework developed by IBM3, to find out the tests

in applications. It then executes each test individually and uses the Jacoco frame-

work to record the test’s coverage. The output of running each test is used to define

1
Available at: https://bitbucket.org/huoc/icdc

2
Available at: https://bitbucket.org/huoc/icdctracer

3
http://wala.sourceforge.net
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 1. public class Example {
 2. 
 3.   public int m1(int a, int b) {
 4.     return a + b + m4(a, b);
 5.   }
 6.
 7.   public int m2(int a, int b) {
 8.     return a + (2 / b);
 9.   }
10.
11.   public int m3(int a) {
12.     return m2(a, 2);
13.   }
14.
15.   public int m4(int a, int b) {
16.     return a - b;
17.   }
18. }

(a) Application under test.

public class ExampleTest {
  public void test1() {
    Example e = new Example();
    assertEquals(3, e.m1(1, 2));
  }

  public void test2() {
    Example e = new Example();
    assertEquals(3, e.m3(1) + e.m4(1, 2));
  }
}

(b) Corresponding test suite.

Figure 4.1: Example code for illustrating direct coverage and indirect coverage.

the Coverage mapping explained in Section 4.1.1.2. It then builds up the mapping

MethodOf to relate the entities to the methods with the help of WALA. Finally, the

Direct mapping is built using the JVMTM Tool Interface (JVMTI) to track the direct

invocations from the tests. Every time a method is invoked, the tracer will check if

the caller is a test or some auxiliary method in the test suite. If the caller is a test

or some auxiliary method in the test suite, the callee is considered directly covered.

The tracer stores the execution traces for direct invocations. Finally, I implemented

the algorithm described in Section 4.1.1.2 to compute the direct coverage and indirect

coverage of the test suite.

4.1.1.5 An Illustrative Example

As a concrete example of computing direct statement coverage and indirect

statement coverage, consider Figure 4.1 which shows the four methods that constitute
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an application under test (Figure 4.1a) and the application under test’s corresponding

test suite (Figure 4.1b).

The input mappings, Coverage, Direct, and MethodOf for this example are

shown below:

Coverage =


test1 → {s4, s16}

test2 → {s8, s12, s16}

Direct =


test1 → {m1}

test2 → {m3,m4}

MethodOf =



s4 → m1

s8 → m2

s12 → m3

s16 → m4

The coverage mapping indicates that test1 covers Statements 4 and 16 while

test2 covers Statements 8, 12, and 16; the direct invocation mapping indicates that

test1 directly invokes method m1 while test2 directly invokes methods m3 and m4; and

the containing method mapping indicates that Statement 4 is contained in method m1,

Statement 8 is contained in method m2, Statement 12 is contained in method m3, and

Statement 16 is contained in method m4.

The DC and IC mappings computed by Algorithm 1 are as follows:

DC =



m1 → {s4}

m2 → ∅

m3 → {s12}

m4 → {s16}
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IC =



m1 → ∅

m2 → {s8}

m3 → ∅

m4 → ∅

For this example, the mappings show that Statements 4, 12, and 16 are directly

covered by the test suite, while Statement 8 is indirectly covered. Statement 8 is the

only indirectly covered entity because all of the other statements are directly covered

by either test1 or test2. Given this output, the direct coverage scores of methods m1,

m2, and m4, are 100 % while the direct coverage score of method m3 is 0 %. Although

the test suite achieves 100 % statement coverage, the direct coverage scores suggest

that method m2 may be insufficiently tested.

In this particular case, the fact that Statement 8 is never directly covered means

that the potential division by zero error that it contains may not be detected. Because

m2 is only called by m3, the argument to m2 is always 2. By pointing out that method

m2 has low proportion of directly covered statements, the approach guides testers to

the portions of their applications that can benefit from additional testing.

4.1.2 Empirical Study

I conducted an empirical study that applied my proposed approach on 17 real

world applications. This subsection describes the design details of my empirical study,

including the research questions and subject applications. This empirical study is

designed to answer the following research questions:

RQ1—Presence Does indirect coverage exist in real world applications?

RQ2—Significance Is the possibility of finding a fault influenced by whether the code

containing the fault is directly or indirectly covered?

RQ3—Distribution How are indirectly covered statements distributed throughout an

application?
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Table 4.1: Considered applications.

Subject LoC # Tests

Apache XML Security 20,396 52
Barbecue 4,129 172
Commons Beanutils 11,375 973
Commons CLI 1,978 187
Commons CLI2 11,231 470
Commons Collections 26,414 2,563
Commons IO 26,614 882
Commons Language 23,070 2,044
Crammer 20,034 185
Crystal VC 8,031 80
DecentXML 12,741 714
HTML Parser 31,216 764
HttpClient 48,994 894
JDom 16,154 1,257
JFreeChart 92,252 2,234
Joda-Time 86,797 3,962
Numerics4j 3,647 194

RQ4—Categorization What are the potential causes for indirectly covered methods?

4.1.2.1 Considered Applications

To investigate my research questions, I selected 17 Java applications with their

associated developer-provided test suites as my research subjects. Table 4.1 lists the

specific applications that I chose. The first column, Subject, shows the names of the

selected projects. These projects were taken from a variety of open source repositories

including: (1) SIR,4 which provides a variety of open-source projects for empirical

software engineering, (2) SourceForge,5 a popular repository for open-source projects,

and (3) Apache Commons,6 a collection of reusable components. The second column,

LoC, shows the number of source lines of code in the Java files of each subject. The

4
http://sir.unl.edu

5
https://sourceforge.net

6
http://commons.apache.org
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Table 4.2: Direct and indirect coverage in percentage.

Subject Coverage % DC % IC

Apache XML Security 42.4 79.4 20.6
Barbecue 84.0 75.3 24.7
Commons Beanutils 74.1 57.9 42.1
Commons CLI 93.1 66.2 33.8
Commons CLI2 95.7 71.3 28.7
Commons Collections 84.7 65.9 34.1
Commons IO 80.0 83.4 16.6
Commons Language 91.8 90.6 9.4
Crammer 59.2 53.7 46.3
Crystal VC 40.9 63.5 36.5
DecentXML 72.8 40.5 59.5
HTML Parser 61.1 50.3 49.7
HttpClient 69.2 77.8 22.2
JDom 71.2 77.1 22.9
JFreeChart 69.0 67.0 33.0
Joda-Time 89.1 84.4 15.6
Numerics4j 94.2 77.0 23.0

third column, # Tests, shows the number of tests included in each application’s test

suite.

I chose these specific applications for several reasons. First, in general, they are

popular and widely used. Second, the applications cover a variety of subject domains.

For example, Commons CLI is a library for processing command-line options, Com-

mons IO is a library for performing various input/output operations, Joda-Time is a

library for handling dates and times, etc. Third, the applications vary in size. For

example, JFreeChart has over 90,000 lines of code, while Commons CLI has approxi-

mately 2,000 lines of code. Finally, the test suites also vary in size. The test suites for

some of the applications contain nearly 4,000 tests, while others contain fewer than 100.

Selecting test suites and applications of various sizes and subject domains improves the

generalizability of my results.
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4.1.2.2 Presence

The purpose of my first research question is to determine how the statements

in my subject applications are covered by the test suites. Because I am proposing

to identify insufficiently tested code based on indirect coverage, it is important to

understand how common indirect covered code is in real applications. To answer this

question, I first computed the overall direct and indirect coverage scores for each of my

subject applications. The results of this computation are shown in Table 4.2.

In Table 4.2, the first column, Subject, again shows the names of my experimental

subjects. The second column, Coverage, shows the overall statement coverage achieved

by the application’s test suite. The third and fourth columns, % DC and % IC, show

the application’s direct coverage score and indirect coverage score, respectively. That is,

of the covered statements, the percentage that are directly covered and the percentage

that are indirectly covered. The data shows that the percentage of indirect coverage

ranges roughly from 10 % to 60 %. This suggests that, even for real test suites, the

proportion of indirectly covered code in an application can be significant.

To gain some additional insights into this data, I checked whether there is any

correlation between an application’s statement coverage score and the percentage of

statements that are indirectly covered. To compute the correlation, I used R version

2.14.1’s implementation of the Pearson correlation coefficient. The computed correla-

tion coefficient is −0.35 which indicates a very weak negative correlation. That means

that, in practice, it is not possible to infer the amounts of direct or indirect coverage

by considering only the traditional coverage score. It is necessary to compute direct

coverage and indirect coverage scores directly.

4.1.2.3 Significance

The purpose of my second research question is to determine whether how a

statement is covered impacts the effectiveness of the test suite. More specifically, I am

interested in knowing if faults located in indirectly covered statements are less likely
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Table 4.3: Mutants covered and killed.

# Mutants # Killed Mutation Score

Subject IC DC IC DC IC DC % Change p value

Barbecue 81 668 35 362 43.2 54.2 11.0 7.7× 10−9

Commons Beanutils 567 1,130 292 678 51.5 60.0 7.5 5.6× 10−9

Commons CLI 185 453 135 357 73.0 78.8 5.8 2.5× 10−3

Commons CLI2 476 1,110 309 911 64.9 82.1 17.2 2.2× 10−16

Commons Collections 1,150 4,011 712 3,004 61.9 74.9 13.0 2.2× 10−16

Commons IO 519 3,570 394 3,000 75.9 84.0 8.1 2.2× 10−16

Commons Language 1,031 12,575 726 9,496 70.4 75.5 5.1 2.2× 10−16

HTMLParser 2,163 2,443 1,220 1,558 56.4 63.8 7.4 7.3× 10−14

JDom 491 1,059 298 703 60.7 66.4 5.7 7.4× 10−5

Joda Time 693 2,111 465 1,532 67.1 72.6 5.5 3.2× 10−8

JFreeChart 10,001 16,681 2,915 9,171 29.2 55.0 25.8 2.2× 10−16

Numerics4j 65 665 35 484 30.8 72.5 41.7 2.2× 10−16

to be detected by the application’s test suite than faults located in directly covered

statements.

Because it is difficult to identify a suitable number of real faults with the neces-

sary uniform distribution among directly and indirectly covered code, I chose to con-

sider injected faults. More specifically, I considered mutants. Although mutants are

artificial, recent work has shown that they can be a valid substitute for real faults [7, 63].

To generate the necessary mutants for my subjects, I used the MAJOR frame-

work.7 While MAJOR is a state of the art mutation testing framework, it was unable

to complete the mutation testing process for five of the applications.

As part of performing mutation testing, MAJOR collects several pieces of useful

information for each mutant that it generates, including: the location of the mutant,

in terms of the containing class and method names and the line number; the mutation

operator used to generate the mutant; and whether the mutant was detected by the

application’s test suite (i.e., if the mutant was killed). Because I know the location of

the mutant, I can identify whether each mutant is located in directly covered code or

indirectly covered code.

7
http://mutation-testing.org
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To determine whether there is a significant difference in the ability of a test

suite to detect a fault depending on how the fault is covered, I used the binomial

test. As an example of how to compute the test, let Nd be the number of mutants

located in directly covered code, Ni be the number of mutants located in indirectly

covered code, Kd be the number of mutants located in directly covered code that are

killed by the test suite and Ki be the number of mutants located in indirectly covered

code that are killed by the test suite. Then the binomial distribution B(Nd, Ki/Ni) is

used to calculate the probability of Kd or more kills in a sample of size of Nd, given

the assumption that the probability of killing a mutant is Ki/Ni. Informally, my null

hypothesis is that the location of the mutant does not affect the likelihood that it is

killed. I used R version 2.14.1’s implementation of the test (i.e., binom.test) with the

one-sided option (i.e., alternative="greater").

Table 4.3 shows the twelve subjects for which MAJOR was able to generate

mutants. The first column, subject, shows the name of each subject. The second and

third columns show the number of mutants generated by MAJOR that are located in

indirectly covered code (IC ) and the number that are located in directly covered code

(DC ). The fourth and fifth columns show the number of mutants, located in either

directly covered code (DC ) or indirectly covered code (IC ) that were detected by the

application’s test suite. The sixth and seventh columns show the mutation scores for

indirectly covered mutants (IC ) and directly covered mutants (DC ), that is the ratio of

killed mutants to total mutants. The eighth column, % Change shows the percentage

change in mutation score when comparing the mutation score for mutants located in

indirectly covered code to the mutation score for mutants located in directly covered

code. Finally, the last column, p value, shows the p value computed by the binomial

test for each subject.8

As the data shows, for all twelve subjects, there is a statistically significant

difference in the likelihood that a mutant is killed depending on how the mutant is

8
2.2× 10−16 is the minimum value can be shown by R in the binomial test.
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covered by the test suite. Moreover, the percentage change in mutation score ranges

from 5.5 % to 41.7 %. This means that not only is the effect of how a mutant is

covered significant, the size of the effect can be large as well. These results support my

assumption that indirectly covered code is less effectively tested than directly covered

code and should be brought to the attention of testers.

An entity is identified as directly covered once a test directly covers 9 the entity.

So for a killed mutant in direct coverage, it is possible that the mutant is killed only

by the tests that indirectly cover it. If it was the case for most killed mutants in

direct coverage, it might not be plausible to encourage developers to directly cover

what was indirectly covered. For this reason, I conducted another experiment that

provides the details how the mutants in direct coverage are killed. The first column in

Table 4.4 shows a subset of 7 subjects used in this experiment since it is much more

expensive to specify which individual test methods killed the mutant. The second

column, Total, shows the total numbers of killed mutants in direct coverage for each

subject. The numbers are slightly different from the numbers from Table 4.3 since

there have been slight changes in the mutation analysis framework. The next three

columns show the numbers of the mutants that have been killed only by the tests that

indirectly cover the mutants, only by the tests that directly cover the mutants, and

both. The last three columns show the percentage of the mutants that killed in each

manner. The Indirectly Only percentages show that only a minor portion of mutants in

direct coverage are killed only by the tests that indirectly cover the mutants. The Both

percentages show that the majority of killed mutants in direct coverage are killed by

both tests that directly and indirectly cover the mutants. Moreover, the Direct Only

percentages are more or less greater than the percentages of Indirect Only. The result

provides evidence that the developers can improve the test suite by directly covering

the indirect coverage.

9
For a mutant in direct coverage, if a test is said to directly cover a mutant, that means the test covers the mutant’s

location by directly invoking the method that contains the mutant.
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Table 4.4: Mutants killed in direct coverage.

# Killed Mutants in Direct Coverage # Percentage

Subject Total Indirectly Only Both Directly Only % Indirectly Only % Both % Directly Only

Barbecue 172 27 97 48 15.7 56.4 27.9
Commons CLI 330 112 90 128 33.9 27.3 38.8
Commons CLI2 797 261 260 276 32.7 32.6 34.7
Commons Collections 2,591 331 1,859 401 12.8 71.7 15.5
Commons IO 2,814 402 1,935 477 14.3 68.8 16.9
Commons Language 8,208 497 7,007 704 6.1 85.3 8.6
Numerics4j 452 65 287 35 15.7 63.5 20.8

4.1.2.4 Distribution

The purpose of my third research question is to learn about the distribution of

indirectly covered statements in each of the applications. By learning how indirectly

covered statements are distributed, I can determine the appropriate level at which

to report insufficiently covered code to developers. If indirectly covered statements

are evenly distributed, then reporting them individually is the only option. However,

if indirectly covered statements are clustered, reporting indirectly covered code at a

higher granularity can be more useful.

To investigate how indirectly covered statements are distributed, we computed

the indirect coverage scores of each method in each subject application. The results of

this calculation are shown in Figure 4.2. This figure shows several plots, one for each

subject, and one, (all), for all applications together. Each individual plot presents a

histogram that shows the distribution of indirectly covered statements in the appli-

cation. The y-axis shows the percentage of indirect statement coverage grouped into

three bins: 0 % indirect coverage, 1 % and 99 % indirect coverage, and 100 % indi-

rect coverage. The y-axis shows the percentage of methods whose indirect coverage

score falls within the corresponding bin. For example, for apache-xml-security, approx-

imately 20 % of its methods are completely directly covered, approximately 3 % of its

methods have indirect coverage scores between 1 % and 99 %, and approximately 77 %

of its methods are completely indirectly covered.

As the data shows, for all the applications, the distribution of the methods

is primarily binary. In general, methods are either completely directly covered or
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Figure 4.2: The distribution of indirectly covered statements of each application.

completely indirectly covered. Across all applications, less than 3 % of the methods

have indirect coverage scores between 1 % and 99 %. This suggests that reporting

indirectly covered statements at a method level will be effective at helping guide testers

to indirectly covered code.

4.1.2.5 Categorization

The purpose of my fourth research question is to determine the potential causes

of indirectly covered code. Understanding why indirectly covered code occurs in appli-

cations can help testers preemptively address why the code is indirectly covered and

improve their test suites.

To determine the causes of the indirectly covered code, I manually investigated
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Table 4.5: Methods with partial indirect covereage.

Overloading Inheritance

Subject Total # Methods # Unique # Methods # Unique Other

Apache XML Security 2 0 0 0 0 2
Barbecue 5 1 1 1 1 3
Commons Beanutils 23 14 12 3 3 6
Commons CLI 4 2 2 0 0 2
Commons CLI2 20 5 5 4 4 11
Commons Collections 43 11 9 7 7 25
Commons IO 22 16 15 1 1 5
Commons Language 37 30 26 6 5 1
Crammer 3 2 2 0 0 1
Crystal VC 2 0 0 0 0 2
Decent XML 18 9 9 2 2 7
HTML Parser 9 4 4 0 0 5
HttpClient 25 3 3 4 4 18
JDom 36 14 10 1 1 21
JFreeChart 126 32 30 31 15 63
Joda Time 24 9 8 2 2 13
Numerics4j 4 1 1 0 0 3

Total 403 153 137 62 45 188

all of the methods in my subjects with indirect coverage. As a result of this investiga-

tion, I classified the methods into three groups: Overloading, Inheritance, and Other.

The Overloading group contains methods that appear to be indirectly covered due to

overloading among methods in the same class. For example, if a class contains more

than one method with the same name and return type and at least one of the overloaded

methods is directly covered, I consider the cause of any indirectly covered overloaded

methods to be Overloading. Similarly, the Inheritance group contains methods that

appear to be indirectly covered due to inheritance among subclasses and super classes.

For example, if super class contains a method that is indirectly covered, while a sub-

class’s implementation of the method is directly covered, I consider the cause of the

indirectly covered method to be Inheritance. Finally, the last group Other contains

methods that are indirectly covered for another reason (e.g., a tester may simply have

forgotten to directly test the method).
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Table 4.6: Methods with full indirect covereage.

Overloading Inheritance

Subject Total # Methods # Unique # Methods # Unique Other

Apache XML Security 27 0 0 2 1 25
Barbecue 116 12 8 33 11 71
Commons Beanutils 132 80 47 22 14 30
Commons CLI 46 16 10 6 2 24
Commons CLI2 93 27 17 10 8 56
Commons Collections 597 128 79 101 53 368
Commons IO 133 73 47 5 4 55
Commons Language 133 46 20 6 5 81
Crammer 129 24 18 6 2 99
Crystal VC 32 2 1 1 1 29
Decent XML 228 56 47 16 6 156
HTML Parser 313 79 50 54 35 180
HttpClient 252 62 43 21 15 169
JDom 223 79 32 15 10 129
JFreeChart 1,443 347 254 139 80 957
Joda Time 263 93 51 55 28 115
Numerics4j 56 40 39 3 3 13

Total 4,216 1,164 756 495 276 2,557

The results of this classification are shown in Tables 4.5 and 4.6. Table 4.5

shows the results for methods whose percentage of indirectly covered statements is be-

tween 1 % and 99 % while Table 4.6 shows the results for methods that are completely

indirectly covered. In each table, the first column, Subject shows the name of each

subject. The second column, Total, shows the number of indirectly covered methods.

The third and fourth columns, Overloading, show the total number of methods in the

Overloading category (# Methods) and the total number of unique method names (#

Unique). For example, for Commons Beanutils, there are 14 methods in the Over-

loading category, but two of them have the same name as another indirectly covered

method. The fifth and sixth columns, Inheritance show the same information for the

methods in the Inheritance group. Finally, the last column, Other, shows the number

of methods in the Other category.

As the data shows, for methods with partial indirect coverage, 53 % are caused
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by either overloading or inheritance and for methods with 100 % indirect coverage, 40 %

are caused by either overloading or inheritance. This suggests that both overloading

and inheritance are common causes of indirect coverage and should be given special

attention in the testing process.

In the remainder of this subsection, I will provide specific examples of methods

in the overloading and inheritance categories and explain why they are likely to be

insufficiently tested.

// 0% Indirect coverage
public static FileOutputStream openOutputStream(File 
file) throws IOException {
  return openOutputStream(file, false);
}

// 100% Indirect coverage
public static FileOutputStream openOutputStream(File 
file, boolean append) throws IOException {
  return new FileOutputStream(file, append);
}

Figure 4.3: An example for an overloading group where one method is completely
indirectly covered.

Figure 4.3 shows an excerpt of an overloading group where one method is

directly covered and another is completely indirectly covered. The method ope-

nOutputStream has two variants, one that accepts a File and a boolean as input

(openOutputStream(File, boolean)) and one that accepts only a File as input (

openOutputStream(File)). The single argument variant delegates to the multiple ar-

gument variant by supplying a default boolean parameter. While the single argument

variant is directly covered by the associated test suite, the two argument variant is

never directly covered. Its indirect coverage score is 100 %. In this case, the tester

cannot access the boolean parameter, and any failures that depend on the parameter

being true may not be found by the test suite.

Figure 4.4 shows an excerpt of an overloading group where one method is directly

covered and the other is partially indirectly covered. The method toInt has two

variants, one that accepts a String and an int as parameters and one that accepts only

a String and delegates to the two argument variant by supplying a default int value.
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// 0% Indirect coverage
public static int toInt(String str) {
  return toInt(str, 0);
}

// 20% Indirect coverage
public static int toInt(String str, int defaultValue) {
  if(str == null) {
    return defaultValue;
  }
  try {
    return Integer.parseInt(str);
  } catch (NumberFormatException nfe) {
    return defaultValue;
  }
}

(a) Application under test.

public void testToIntString() {
  assertTrue(NumberUtils.toInt("12345") == 12345);
  assertTrue(NumberUtils.toInt("abc") == 0);
  assertTrue(NumberUtils.toInt("") == 0);
  assertTrue(NumberUtils.toInt(null) == 0);
}

public void testToIntStringI() {
  assertTrue(NumberUtils.toInt("12345", 5) == 12345);
  assertTrue(NumberUtils.toInt("1234.5", 5) == 5);
}

(b) Corresponding test suite.

Figure 4.4: An example for an overloading group where one method is partially indi-
rectly covered.

Unlike the previous example, the application’s test suite does directly cover some of the

statements in the two argument variant by calling it directly in testToIntStringI.

However, because the calls to toInt in this test never pass in a null value for the String

parameter, the method never returns the provided default value. Again, any failures

related to this code path can not be detected by the test suite.

Figure 4.5 shows an excerpt of an inheritance group where one method is di-

rectly covered and the other is completely indirectly covered. The implementation of

widthInBars() declared in the Module class, a concrete and public class, is never tested

directly by the test suite while the implementation declared in the CompositeModule

subclass is directly covered.

Figure 4.6 shows an excerpt of an inheritance group with partial indirect cover-

age. The class ParentImpl is the base of many subclasses whose method canProcess
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// Module
// 100% Indirect coverage
public int widthInBars() {
  int sum = 0;
  for (int i = 0; i < bars.length; i++) {
    sum += bars[i];
  }
  return sum;
}

// CompositeModule extends Module
// 0% Indirect coverage
public int widthInBars() {
  int width = 0;
  for (Iterator iterator = modules.iterator(); 
       iterator.hasNext();) {
    Module module = (Module) iterator.next();
    width += module.widthInBars();
  }
  return width;
}

(a) Application under test.

protected Module getPreAmble() {
  CompositeModule module = new CompositeModule();
  if(drawingQuietSection) {
    module.add(QUIET_SECTION);
  }
  module.add(START[mode]);
  return module;
}

public void testQuietZoneWidthIsAtLeast10BarWidths() {
  assertTrue(barcode.getPreAmble().widthInBars() > 10);
}

(b) Corresponding test suite.

Figure 4.5: An example for an inheritance group where one method is completely
indirectly covered.

has many variants. The ParentImpl has not been explicitly constructed, however,

ParentImpl.canProcess has partial direct coverage. Unlike Module in the previous

example, there are some subclasses that do not override canProcess. So when these

subclasses are tested in the test suite, part of the method gets directly covered.

The later two examples for inheritance groups show that it is difficult for test

programers to understand which siblings/ancestors/offsprings have not yet been used

as the test inputs because of the various builders and dynamic binding for the big

family of classes.
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//class ParentImpl
public boolean canProcess(WriteableCommandLine cl,
                          String arg) {
  final Set triggers = getTriggers();
  
  if (argument != null) {
    char separator = argument.getInitialSeparator();
    // if there is a valid separator character
    if (separator != NUL) {
      final int initialIndex = arg.indexOf(separator);
      // if there is a separator present
      if (initialIndex > 0) {
        return triggers.contains(arg.substring(0,
                                 initialIndex));
      }
    }
  }
  return triggers.contains(arg);
}

// DefaultOption extends ParentImpl
public boolean canProcess(WriteableCommandLine cl,
                          String argument) {
  return (argument != null) &&
         (super.canProcess(cl, argument) ||
         ((argument.length() >= burstLength) &&
         burstAliases.contains(argument.substring(0,
                               burstLength))));
}

Figure 4.6: An example for an inheritance group where one method is partially indi-
rectly covered.

4.1.3 Summary

In this section, I presented ICDC for interpreting coverage information to iden-

tify insufficiently tested methods. ICDC is a technique based on partitioning the set of

covered entities into entities that are directly covered and entities that are indirectly

covered. I also presented the results of an empirical study of 17 applications that

demonstrates: (1) real test suites indirectly cover large portions of their correspond-

ing applications, (2) faults located in code that is indirectly covered are significantly

less likely to be detected than faults that are located in code that is directly covered,

(3) the majority of methods are either completely directly covered or completely in-

directly covered, and (4) a significant portion of indirectly covered methods are likely
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due to testers improperly considering inheritance or method overloading relations. As

a result, I believe that identifying indirectly covered methods can be an effective ap-

proach for helping testers improve the quality of their test suites by directing them to

insufficiently tested code. In the next section, I will present a similar technique that

identifies insufficiently tested code based on the association between the components

of an application and the tests of the application.

4.2 Fostered Code: Identifying Incidentally Covered Code

Code entities are incidentally covered when these code entities are covered but

no test is written intentionally for covering these code entities. I identify incidentally

covered code as insufficiently tested because the test developers have not yet purposely

tested the properties of the code. It is very likely that such incidentally tested code is

only used as an auxiliary for tests with other purposes. My intuition for identifying inci-

dentally covered entities rises from the association between application classes and test

classes in various testing paradigms. In this section, I will present a novel technique,

Fostered Code, that identifies whether covered code is just incidentally covered by ex-

ploring such associations. The rest of the section is organized as follows: Section 4.2.1

describes the details of fostered code including the formal definition and an algorithm

to compute fostered code. Section 4.2.2 presents an empirical study investigating var-

ious aspects of fostered code on 7 real-world software projects. Section 4.2.3 presents

case studies from the empirical study and demonstrates how to leverage fostered code

information.

4.2.1 Fostered Coverage

This subsection describes background information necessary for understanding

the remainder of the section. First, it demonstrates how to find fostered code using a

motivating example. Second, it defines the concept of class-under-test with regard to

a test class. It also provides an implementation for identifying the class-under-class for

a given test class, which will be used in my empirical study. Third, it gives the formal
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1.  public class TA extends Person {
2.    public TA(int loggedHours, int id){
3.      this.loggedHours = loggedHours;
4.      this.id = id;
5.    }
6.    public int getStudentId(){ return id; }
7.    @override public int getBase() {return 3000;}
8.    @override public int getIncome() {
9.      return this.loggedHours * HOURLY_RATE + getBase();
10.   }
11. }

12. public class Utils {
13.   public bool underPovertyLine(Person p) {
14.     return p.getIncome() < 11700;
15.   }
16. }

17. public class TATest {
18.   public void testConstructor() {}
19. }

20. public class UtilsTest {
21.   public void testUnderPovertyLine() {
22.     TA ta = new TA(loggedHours=400,id=123);
23.     assertTrue(Utils.underPovertyLine(ta));
24.   }
25. }

Figure 4.7: A motivating example.

definition of fostered code. Finally, it describes how the fostered code of a test suite

can be calculated.

4.2.1.1 Motivating Example

In Figure 4.7, there are two application classes and their test classes. The TA

class which represents instances of teaching assistants extends Person and implements

getBase() and getIncome(). A teaching assistant is paid hourly plus a base salary.

The IncomeUtils class provides utilities on a person’s income, for example, determin-

ing if someone’s income is under the poverty line. There is a fault in getBase() where

the base for a teaching assistant should be 2,500 dollars instead of 3,000 dollars. TATest

and UtilsTest are the two test classes for the two application classes. TATest contains

one test method, testConstructor(). The bodies of the two tests are omitted in the
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TATest

UtilsTest
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7,9

Statements in TA
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Figure 4.8: Test coverage on TA.

figure. Inside testConstructor(), a TA object is constructed and tested.

Figure 4.8 depicts the coverage information of class TA with respect to the

two test classes. The rectangle represents all the statements from class TA. The circle

labeled TATest represents the statements from TA covered by TATest and the circle

UtilsTest represents the statements from class Utils. The intersection represents

the entities covered by both test classes. Since there are two test classes in the test

suite, the statements outside of the two circles are the ones that have not been covered.

In this case, Line 6 is not covered because getStudentId() is never executed. The

intersection of the two circles contains the statements of the constructor since it has

been invoked by both test classes, as shown in the tests, Line 18 and Line 23. Line 7

and Line 9, getIncome() and getBase(), are covered by UtilsTest but not TATest.

Although getIncome() and getBase() from class TA are covered, they are not covered

by the test class designated for class TA itself.

The way that getIncome() and getBase() are tested is not sensitive enough to

find potential problems in the methods. For example, if the hourly rate is 10 dollars, the

loggedHours has to be between 870 hours and 919 hours to get an unexpected actual
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outcome which is much greater than a reasonable amount of hours for a teaching assis-

tant in an academic year. The root cause of the problem is the lack of corresponding

tests in TATest so that getIncome() has never been intentionally and directly tested

by the developers. Even if the fault happens to be detected by testUnderPovertyLine

with an input within the narrow window (a loggedHours between 870 – 919 hours), it

will be excessively difficult to trace back to the origin of the fault.

4.2.1.2 Class Under Test

The practice of unit-testing usually encourages a one-to-one or sometimes one-

to-many correspondence between application classes and test classes. When an applica-

tion class is large in size, it may have several test classes, each responsible for a partic-

ular purpose. Developers usually use texts, such as test names, to express the purpose

of the tests and the association with the application classes (e.g., [118, 121, 129, 130]).

Ideally, an application class A has a test class, usually named TestA or ATest and be-

longs to the same (Java) package. Each method in class A, e.g., foo and bar, will have

their counterparts as testFoo and testBar in the test class. Such naming conventions

preserve the correspondence between the application class and the test class(es) which

reveals the intention of the developers.

In this research, I provide an implementation that utilizes the name association

between the application class and the test class. The association will provide a mapping

from a test class to an application class. Note that it allows multiple test classes

for an application class. Ideally, an application class with name “A” will have an

associated test class with name “TestA” or “ATest” – a postfix or prefix of “Test”.

While this postfix-prefix resolution works for many test-testee associations, there are a

few exceptions. Some of them can still be resolved by name association with additional

rules. For example, if the name of class A can be broken into three English words

B, C, D, as BCD, the corresponding test class may have the name CBDTest. Or the

corresponding test class does not belong to the same package with the class-under-

test. Usually, a software project will have consistent naming convention for test classes
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so people either find most or little of the associations.

4.2.1.3 Fostered Code

A set of code entities (e.g., branches, statements, etc.) is fostered when the

entities are covered only by test(s) that are not designated for testing the entities.

A set of code entities is hosted if the entities have been intentionally covered, the

opposite of fostered. In this dissertation, I use fostered coverage as a metric to measure

the proportion of entities that are fostered.

Let P(S) be the powerset of set S. Let C be the set of all the application classes

C1, ..., Cn. Let Ei be the set of entities in application Ci. Let E be all the entities

in the application classes. Let T be the set of all test classes T1, ..., Tm. A coverage

mapping is defined on the powerset of all test classes to the powerset of all entities.

Cov : P(T ) → P (E) is a mapping from a set of test classes to a set of entities that

have been covered by the test classes. classUnderTest : P(T ) → P(C) is a mapping

from a set of test classes to a set of application classes such that every application

class has the tester-testee relation with at least one of the test classes. Fostered code

is defined as the following:

Definition 4.2.1 Let Ej
i = Cov(Tj)∩Ei be the set of the entities in Ci that have been

executed by Tj. Let Hi =
⋃
Ek

i ,∀k such that Ci ∈ classUnderTest(Tk). Fi is the set of

fostered entities of class Ci where Fi =
⋃m

1 E
k
i \Hi. The union of fostered code of each

class,
⋃n

1 Fk, is the fostered code of the application.

Suppose there are two application class, Ci and Cj, and two test classes, Ti and

Tj. Ti is the designated test class for Ci and Tj is the designated test class for Cj.

Figure 4.9 illustrates the categorization of the entities in Ci. The larger circle on the

left represents the entities covered by Ti and the smaller circle on the bottom right

represents the entities covered by Tj. The gray area, F j
i , is the fostered code of Ci.

The line shaded area represents the entities in Ci covered by both test classes and can

be written as Ej
i ∩ Ei

i . The white area represents the entities covered only by testCi,

Ei
i \ E

j
i .
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Figure 4.9: Code coverage description using the definitions.

All entities in class Ci

Ei
i \ E

j
i

F j
i

Ej
i ∩ Ei

i

Algorithm 2 shows the procedure for computing the fostered code of an appli-

cation with a test suite. As input, the algorithm requires five pieces of information.

The first is AUT , the application under test. The second is T , the test suite of the

application under test. The third is Coverage, a mapping that associates each test class

in the test suite to a set of entities that are covered when the test class is executed.

The fourth is isClassUnderTestOf(Ci, Cj), a predicate that returns true when Cj is

a test class and Ci is the class-under-test of Cj. The last is enclosingClass which is a

mapping from an entity to the class that contains the entity.

Given the necessary inputs, the algorithm proceeds as follows. First, the output

FC, a collection of entities, is initialized to all the entities covered by the test suite

at Line 2. Then the loop from Line 3 to Line 7 iterates over each test class Ti and

the entities that Ti covered. It then finds the covered entities from the class(es) under

test. It updates FC by removing these entities from FC. When all the test class

coverage information has been processed, FC is left with the entities that have never

been tested by the associated test classes, i.e., fostered code.

While the concepts of fostered coverage are agnostic to the type of the entity

(e.g., a branch, a statement, etc.) that is being covered, in the remainder of the section,

I will focus on statement coverage. I choose to focus on statement coverage because,

due to its simplicity and availability of tool support, it is the most commonly used

coverage metric in practice.
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Algorithm 2 Compute the fostered coverage.

Input: AUT , the application under test.
Input: T , the test suite of the application under test.
Input: Coverage, a mapping that associates each test class T ∈ T to the set of entities

covered by T .
Input: isClassUnderTestOf, a mapping that associates a test class C to the application

under test. The mapping will return null if there is no class-under-test identified.
Input: enclosingClass, a mapping that associates an entity e to the application class

that it belongs to.
Output: FC, a collection of entities that are fostered.

1: function computeFosteredCoverage
2: FC ← {}

3: for Ti ∈ T do
4: Ei ← Coverage[Ti]
5: NotFosteredEntities ←

Ei.f ilter{e⇒
Cj ← enclosingClass[e]
isClassUnderTestOf(Cj, Ti)
}

6: FC ← FC \NotFosteredEntities
7: end for

8: return FC
9: end function

4.2.2 Empirical Study

I conducted an empirical study that applies the fostered code identification

technique on real world applications to validate the usefulness of my technique. This

subsection describes the design details of my empirical study, including the research

questions and subject applications.

4.2.2.1 Research Questions

The primary task of this work is to show the usefulness of the Fostered Code

technique. The first step of the task is to show fostered code exists in real world appli-

cations and composes a reasonable amount of covered entities that is large enough be
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concerned with. Once I can confirm the presence of fostered code, I would like to know

if fostered code is insufficiently tested compared to hosted code. I will first compare the

difference in the ability of a test suite to detect a fault, based on whether the fault is

fostered. I expect that if a fault is fostered, in general, the fault is significantly harder

to detect. Finally, if I can confirm fostered code is likely insufficiently tested, I then

examine the causes. The above task can be condensed to the following three research

questions:

RQ1—Presence. How much code is fostered in real world applications?

RQ2—Significance. Is it more difficult for a fault to be detected in fostered code?

RQ3—Root Cause. What is the root cause that makes fostered code different from

hosted code?

4.2.2.2 Considered Applications

I selected 7 Java applications with their associated developer-provided test suites

as my research subjects. Table 4.7 lists the specific applications. The first column,

Subject, shows the names of the selected projects. The second column, LoC, shows the

number of lines of source code in the Java files of each subject. The third column, #

Tests, shows the number of tests included in each application’s test suite.

I chose these applications for several reasons. First, in general, they are popular

and widely used. Second, the applications cover a variety of subject domains. For

example, Commons CLI2 is a library for processing command-line options, Commons

IO is a library for performing various input/output operations, Joda-Time is a library

for handling dates and times, etc. Third, the applications vary in size. For example,

JFreeChart has over 90,000 lines of code, while Commons CLI2 has approximately

11,000 lines of code. The test suites also vary in size. The test suites for some of

the applications contain nearly 4,000 tests while others contain fewer than 500. The

applications also have application-test class associations that can be identified by the
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Table 4.7: Considered applications.

Subject LoC # Tests

Commons CLI2 11,231 470
Commons IO 26,614 882
Commons Beanutils 11,375 973
Commons Collections 26,414 2,563
Commons Language 23,070 2,044
JFreeChart 92,252 2,234
Joda-Time 86,797 3,962

name association. Selecting test suites and applications of various sizes and subject

domains improves the generalizability of my results.

4.2.2.3 RQ1:Presence

The purpose of my first research question is to determine how the statements in

my subject applications are covered by the test suite with regard to fostered coverage.

It is important to understand how common fostered code is in real applications. My

implementation, with a few special cases, discovers all the associations between test

classes and their class under test if there is one. For example, in subject commons-

cli2, I found application class HelpFormatter being the class-under-test for test class

HelpFormatterTest; there is no class under test for Bug123Test that appears to be an

integration test to ensure a certain bug has been eliminated. The name association is

a preliminary and static check that provides necessary information. It is possible that

HelpFormatterTest does not execute any part of HelpFormatter and it is usually

the case that HelpFormatterTest does not execute all the code entities from Help-

Formatter. An implementation of Algorithm 2 uses the covered entities, obtained

dynamically, to precisely identify fostered code.

Table 4.8 shows the fostered code results for these 7 subjects. The first column

shows the names of the subjects. The second column, Coverage, shows the overall state-

ment coverage achieved by the application’s test suite. The third and fourth columns,

% H and % F, respectively, show the application’s hosted and fostered coverage, which
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Table 4.8: Hosted and fostered coverage in percentage.

Subject Coverage % H % F

Commons CLI2 95.7 69.8 30.2
Commons IO 80.0 81.5 18.5
Commons Beanutils 74.1 41.3 58.7
Commons Collections 84.7 59.9 40.1
Commons Language 91.8 91.2 8.8
Joda-Time 89.1 55.3 44.7
JFreeChart 69.0 79.8 20.2

are the percentage of hosted and fostered code among all covered code. Recall that

hosted code is code that is not fostered. The data shows that the percentage of fos-

tered coverage ranges roughly from 10 % to 60 %. From this data, I can conclude that

fostered code exists and is common in real-world applications.

4.2.2.4 Significance

The purpose of my second research question is to determine whether fostered

code impacts the effectiveness of the test suite. I expect that if a fault is incidentally

covered (fostered), in general, the fault is significantly more difficult to be detected.

Because it is difficult to identify a suitable number of real faults with uniform distri-

bution throughout an application, I chose to consider injected faults, more specifically,

mutants. Recent work has shown that mutants, although being artificial, can be a

valid substitute for real faults [7, 63].

Similar to the mutation analysis conducted in Section 4.1.2 for the ICDC tech-

nique, I used the MAJOR framework10 to generate the mutants and perform mutant

analysis. MAJOR collects several pieces of useful information for each mutant that

it generates, including: the location of the mutant, in terms of the containing class

and method names and the line number; the mutation operator used to generate the

mutant; whether the mutant has been covered; and whether the mutant was detected

10
http://mutation-testing.org
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by the application’s test suite (i.e., if the mutant was killed). With the location infor-

mation of the mutant, I can identify whether each mutant is fostered with regard to

the test suite.

Similar to the statistical significance test conducted in Section 4.1.2, I used the

binomial test to determine whether it is significantly more difficult to detect a fault in

fostered code. As an example of how to compute the test, let Nf be the number of

mutants located in fostered code, Nh be the number of mutants located in hosted code,

Kf be the number of mutants located in fostered code that are killed by the test suite

and Kh be the number of mutants located in hosted code that are killed. The binomial

distribution B(Nh, Kf/Nf ) is used to calculate the probability of Kh or more kills in

a sample of size of Nh, given the assumption that the probability of killing a mutant

is Kf/Nf . Informally, my null hypothesis is that the location of the mutant does not

affect the likelihood that it is killed. I used R version 2.14.1’s implementation of the

test (i.e., binom.test) with the one-sided option (i.e., alternative="greater").

Table 4.9 shows the results of mutation analysis on the seven subjects. The first

column, subject, shows the name of each subject. The second and third columns show

the number of mutants generated by MAJOR that are located in fostered coverage, with

column name ”F”, and the number that are located in fostered coverage, with column

name ”H”. The fourth and fifth columns show the number of mutants, located in either

fostered coverage (F ) or hosted coverage (H ) that were detected by the application’s

test suite. The sixth and seventh columns show the mutation scores within the fostered

coverage (F ) and non-fostered coverage (H ), which is the ratio of killed mutants to

total mutants. The eighth column, % Change shows the percentage change in mutation

score when comparing the mutation score for mutants within fostered coverage to the

mutation score of the counterpart. Finally, the last column, p value, shows the p-

value computed by the binomial test for each subject. 11 Since the significance level

α is usually set at 0.05, the much lower p-values supported the rejection of the null

11
2.2× 10−16 is the minimum value can be shown by R in the binomial test.
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Table 4.9: Mutants covered and killed.

# Mutants # Killed Mutation Score

Subject F H F H F H % Change p value

Commons CLI2 265 876 142 710 53.6 81.1 27.5 2.2× 10−16

Commons IO 431 4,487 317 3,725 73.5 83.0 9.5 2.2× 10−16

Commons Beanutils 1,080 1,456 707 988 65.5 67.9 2.4 2.9× 10−3

Commons Collections 1,376 3,891 901 2,817 65.5 72.4 6.9 2.2× 10−16

Commons Language 866 15,499 594 11,564 68.6 74.6 6.0 2.2× 10−16

Joda Time 8,654 6,999 5,859 5,393 67.7 77.1 9.4 3.2× 10−8

JFreeChart 6,311 24,758 1,919 12,543 30.4 50.7 20.3 2.2× 10−16

hypothesis. Thus I concluded that fostered code is insufficiently tested.

4.2.2.5 Root Cause of The Difference

I hypothesize that fostered code lacks direct checks due to two possible reasons.

One possibility is that the code is covered but not involved in assertions as pinpointed

by Schuler and Zeller[99]. The other is that code is covered and involved in assertions,

as depicted in the motivating example in Section 4.2.1.1, but much of the information

associated with the code has been lost on the way through lossy computations towards

the assertion. Both possibilities imply that fostered code lacks immediate checks.

I will provide evidence that fostered code lacks direct checks by placing imme-

diate checks on values that are related to fostered code. Specifically, for each fault

(mutant) inside the fostered code that has not been detected, I collect the return value

from the method enclosing the code of interest immediately after the method returns.

I also collect values of the fields from the instances of the enclosing class whenever

they are accessed. I use the Java Debugger Interface (JDI) to construct a framework

that taps the method returns and field accesses. I collect values from these events

in temporal order as two sequences, one from the original version and one from the

mutated version. If the sequence of the mutated version is different from the one of

its counterpart, then this mutant is successfully detected. A mutant may alter the

sequence in two different ways: (1) a change of data value, e.g., the fourth invocation
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of a certain method returns a different value, or (2) an alternative control flow, e.g., a

branch is skipped, which yields to a difference execution sequence.

Such additional checks in my empirical study are referred to as additional direct

assertions (ADA) as this process simulates putting actual assertions on values related

to fostered code except that the values are stored in a sequence and compared off-line.

The expected values of the assertions are the values from the original version of the

application and the actual values of the assertions are the values from the mutated

version. ADA also refers to the process of applying additional direct assertions in the

rest of the section. I anticipate gathering the following evidence from the empirical

study: (1) ADA on fostered code kills a significant amount of previously not-detected

mutants., (2) ADA on hosted code does not kill a significant amount of previously

not-detected mutants., and (3) ADA will help fostered code achieve a similar level of

mutation score with its hosted counterpart.

There are several advantages to answer the third research question in this man-

ner. First, this approach provides not only evidence but also a solution which could

be shown effective by observing the improved mutation score. Second, it is easier to

reason about and write assertions for a certain purpose (e.g., put an assertion on the

return value of a method) but rather difficult to reason about the purpose of an given

assertion (e.g., determining related values in tests [59, 99]). Finally, I could the same

technology on the mutants in the hosted code that haven’t been detected. If the addi-

tional assertions cannot improve the likelihood for an error to be detected in code, the

study provides evidence that fostered code lacks immediate checks.

Table 4.10 shows how ADA performs on previously not-detected mutants in-

dividually in both fostered and hosted code. The columns in Table 4.10 are identical

to those in Table 4.9 except that the target mutants are the ones that survive the

original test (so the column names for the mutants are prefixed with Ls which indicate

the mutants are live for the original test suites). The mutation score is calculated

as the amount of the additionally killed mutants divided by the amount of the live

mutants. The 7th column, % Change, shows the difference in percentage between
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Table 4.10: Mutants detected additionally.

# Mutants # Killed Mutation Score

Subject LF LH LF LH LF LH % Change p value

Commons CLI2 124 166 52 19 41.9 11.4 30.5 2.2× 10−16

Commons IO 114 762 45 110 39.5 14.4 25.0 5.3× 10−11

Commons Beanutils 373 468 70 145 18.8 31.0 −12.2 NA
Commons Collections 475 1,074 94 110 19.8 10.2 9.5 4.4× 10−10

Commons Language 272 4,886 88 400 32.4 8.2 24.2 2.2× 10−16

Joda Time 2,795 1,606 635 293 22.7 18.2 4.5 3.2× 10−8

JFreeChart 4,392 12,215 2,126 2,485 48.4 20.3 28.1 2.2× 10−16

Table 4.11: Mutation scores after applying additional direct assertions.

Fostered Hosted

Subject before improvement after before improvement after

Commons CLI2 53.6 19.6 73.2 81.1 2.2 83.2
Commons IO 73.5 10.5 84.0 83.0 2.5 85.5
Commons Beanutils 65.5 6.4 71.9 67.9 10.0 77.9
Commons Collections 65.5 6.8 72.3 72.4 2.8 75.2
Commons Language 68.6 10.2 78.8 74.6 2.6 77.2
Joda Time 67.7 7.3 75.0 77.1 4.1 81.2
JFreeChart 30.4 33.7 64.1 50.7 10.7 61.4

the additional kills. If the improvement in foster coverage is greater, the difference

in percentage in the 7th column is positive. As shown in the table, six out of the

seven subjects have positive values which means ADA results in better mutation score

improvement in the fostered code than in the hosted code. Commons-beanutils is an

outlier that the improvement is greater in the hosted code. Similar to Section 4.2.2.4,

the binomial test is used to quantify the difference for those that have positive values.

The p-value represents the significance of the difference between fostered code and its

counterparts based on the following null hypothesis: There is no difference in the

likelihood of previously not-detected errors being found by ADA whether the faults are

in fostered coverage or not for each subject. This null hypothesis is rejected by the

p-values calculated as the p-values are below the usual significance level (0.05), shown

in the last column in Table 4.10. A similar binomial test is conducted on the fact that
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Figure 4.10: ADA improves mutation score better in fostered code and levels the
mutation scores of fostered code and hosted code.

six out of seven subjects have better improvement in fostered code. The binomial dis-

tribution, binom(7,0.5), gives a 0.0625 p-value for six positives. Although the p-value

is slightly greater than the usual 0.05 significance level threshold, the 0.0625 p-value

shows a noticeable difference. A weighted binomial test on the subjects, which tests on

the total number of mutants, would favor the rejection of the null hypothesis because

JFreeChart dominates in number.

Table 4.11 shows how ADA improves the overall mutation score respectively for

the fostered and hosted coverage for each application, before and after ADA. Columns
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2 to 4 show the mutation score before ADA, the mutation score improvement by ADA

(based on total number of mutants) and the new mutation score after ADA, for fostered

code. The same information for hosted code is shown from Column 5 to Column 7.

By comparing Column 3 with Column 6, the respective improvement for fostered code

and hosted code, the reader can see there are better improvements in fostered code

for most applications. Moreover, with less improvement in hosted code, the difference

in mutation scores between fostered and hosted code is narrowed after ADA for each

application. Figure 4.10 illustrates the effects of ADA. Each facet in Figure 4.10

represents a subject except that the bottom-right facet represents the corresponding

information of all the mutants from the subjects. For each facet, the bar on the left

represents the information of fostered code and the bar on the right represents the

information of hosted code. The gray area of a bar depicts the mutation score before

ADA, and the white area stacking on the gray area represents the improvement in

mutation score by ADA. The total height of a bar is the mutation score achieved after

ADA in fostered code or hosted code for each subject.

4.2.3 Case Study

In this subsection, I present two mutants from two different applications that

are fostered. I will show how the two mutants failed to be detected by the original test

suite for the lack of direct checks and how the two mutants get detected with additional

direct checks provided by ADA.

4.2.3.1 Case Study: Commons-CLI2

Subject commons-cli2 provides utilities for command-line processing. The

method usage in HelpLineImpl returns the usage as a string, as shown in Figure 4.11.

The cachedUsage stores the result once the usage has been computed. In Figure 4.11,

if there is no cached answer with the input settings (Line 2 to Line 4), the usage will

be computed in the body from Line 5 to Line 12. Otherwise, the method returns the

cached answer.
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The HelpLineImpl class implements the interface HelpLine which represents a

line of help information for a particular command-line option. The HelpLine interface

is primarily used by HelpFormatter, which is an application class that formats the help

output. In the test suite, there is no designated test class for HelpLineImpl. There is

a test class HelpFormatterTest for the application class HelpFormatter which is the

most closely related test class for HelpLineImpl and covers code of HelpLineImpl. In

addition, there are four other test classes that execute code of HelpLineImpl. They

are CpTest, ParserTest, BugCLI18Test and NestedGroupTest.

1. public String usage(final Set helpSettings, final Comparator comparator){
2.   if (cachedUsage == null
3.       || cachedHelpSettings != helpSettings
4.       || cachedComparator != comparator) {
         
5.       cachedHelpSettings = helpSettings;
6.       cachedComparator = comparator;
      
7.       final StringBuffer buffer = new StringBuffer();
8.       for (int i = 0; i < indent; ++i) {
9.         buffer.append("  ");
10.      }
11.      option.appendUsage(buffer, helpSettings, comparator);

12.      cachedUsage = buffer.toString();
13.  }
14.  return cachedUsage;
14.}

Figure 4.11: The usage method in HelpLineImpl.

Had there been a fault that turned any of the three conditions in Line 2 to Line 4

to a true value, the return value of the usage() method could not change. There will

be difference in speed and space since in Line 11 in Figure 4.11, the option field

cumulates the usage ever computed for the same HelpLineImpl object if the caching

mechanism is not working correctly. Since the tests that cover this mutant are not

designated for the usage() method, the checks in the tests could not be expected

to (and did not) ensure that the caching mechanism works properly. However, since

option is a field enclosed in class HelpLineImpl and modified by the usage() which

encloses the mutant, ADA found the discrepancy between the values of the option

field of the original version and the mutated version.
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4.2.3.2 Case Study: Commons-IO

Subject commons-io has an abstract class AbstractFileFilter that contains

20 sub-classes, including AndFileFilter, FalseFileFilter, OrFileFilter and Wild-

CardFileFilter. This inheritance relation is depicted in Figure 4.12 where a solid line

indicates the destination is a sub-class of the origin. FileFilterTestCase, Abstract-

FileFilter’s corresponding test class, provides one test method for each sub-class

of AbstractFileFilter as depicted in Figure 4.12. For example, method test-

Wildcard() initializes WildcardFileFilter instances and puts fundamental checks

on these instances, part of which is shown in Figure 4.14c. There are also methods like

testAnd() and testNot(). Such a relation is shown in dotted lines in Figure 4.12.

In other words, for each concrete sub-class of AbstractFileFilter, AbstractFile-

Filter provides one test method for the entire application class. Intuitively, File-

FilterTestCase only provides integration tests because: (1) there is only one method

for each application class, and (2) the tests only check the file filters’ functionality but

not their unit components, e.g., the constructors and different filtering functions.

Only three out of twenty sub-classes of AbstractFileFilter have their own

designated test classes, e.g., AndFileFilterTestCase for AndFileFilter. Figure 4.12

shows two of the three test classes. However, they are not descendants of File-

FilterTestCase. Instead, they are sub-classes of IOFileFilterAbstractTestCase.

In Figure 4.12, such class-under-test relations are shown by connecting the test class

and its class-under-test with a dashed line. In the following description, I demonstrate

how faults in fostered code are less likely to be detected, by using two examples, one

from a class that is only tested by a method from FileFilterTestCase and one from

a class that is tested both by a method from FileFilterTestCase and its designated

test class.

WildCardFileFilter is only tested by a test method testWildCard() in File-

FilterTestCase. It is not hard to imagine that the single test method is not sufficient

for the five constructors and three filtering related methods implemented in Wild-

CardFileFilter. Figure 4.14 describes a mutant in one of the constructors and the
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AbstractFileFilter

OrFileFilter

PrefixFileFilter

WildcardFileFilter

AndFileFilter

FileBasedTestCase

AndFileFilterTestCase

OrFileFilterTestCase

ConditionalFileFilterAbstractTestCase

IOFileFilterAbstractTestCase

FileFilterTestCase
testAnd()

testWildcard()
testOr()
...

Figure 4.12: Solid lines connect classes with direct inheritance relations. Dashed lines
connect classes between the test class and the class-under-test. Dotted lines connect
classes an application class has a test method in FileFilterTestCase.

corresponding parts in the test method. Figure 4.14a shows the original code snippet of

the constructor that takes in a string array and an IOCase instance. Figure 4.14b shows

the mutated version which always assigns the second argument to the caseSensitiv-

ity field in Line 7. The check if the input caseSensitivity is null in the original

version strongly implies the caseSensitivity field of a WildCardFileFilter should

not be null. Figure 4.14c shows the corresponding part for the mutated constructor

from the test method.

If the second argument is not null, there will be no difference between the

original version and the mutated version. Otherwise, the this.caseSensitivity field

will be IOCase.SENSITIVE for the original version and null for the mutated version. A

null value is used as the second argument for constructing the second filter instance in

the test method. Because of the fault introduced by the mutant, the caseSensitivity

field of the new filter instance is null after the execution of a constructor, which is an

erroneous state of the program. Unfortunately, due to the fact that testWildCard()

serves more like an integration test, the defect is hidden and the test passes. As depicted

in Figure 4.13, the mutated constructor will set this.sensitivity to null, which

results in an erroneous state of the filter object. This erroneous state cannot reach the

final and observable state in the test oracle because the auxiliary filtering method will
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caseSensitivity = null
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this.sensitivity = null

Stage 1: Test Input Stage 2: Filtering

When filtering:
if this.sensitivity is 
null, then set it to 

IOCase.SENSITIVITY

this.sensitivity = 
IOCase.SENSITIVITY

this.sensitivity = 
IOCase.SENSITIVITY

Stage 3: Test Oracle

Oracles

Figure 4.13: An illustration how the fault was not detected. A name filtering method
will set a null sensitivity to a default value, thus hiding the fault in the filter con-
structor.

replace the null this.sensitivity field with the default value, IOCase.SENSITIVE.

In other words, this auxiliary method reverts the system back to the correct state.

Had there been a designated test for the constructor, which checks the outcome of the

constructor before the application of the auxiliary method, the erroneous state could

be detected. This is how ADA detected the fault.

Along with the test method testAnd() from FileFilterTestCase, application

class AndFileFilter also has its designated test class AndFileFilterTestCase. De-

spite that the designated class provides detailed tests for individual methods in the

application class, there is no test for the toString() method. toString() is (only)

covered by one single line of testAnd(), as shown in Figure 4.15c. The assertion in

the test method only checks whether toString() returns null. Even some developer

left a note for better tests. No wonder the mutant that prepends an extra comma

has been covered but not killed. The original toString() is shown in Figure 4.15a,

and the mutated toString() is shown in Figure 4.15b where the mutant changes

the if-condition on Line 8. A possible explanation for the lack of proper checks on

toString() is that some of the sub-classes do not have toString() implemented. It

would confuse test developers from the (higher) FileFilterTestCase perspective.
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1. public WildcardFileFilter(String[] wildcards, IOCase caseSensitivity) {
2.   if (wildcards == null) {
3.     throw new IllegalArgumentException("The wildcard array must not be null");
4.   }
5.   this.wildcards = new String[wildcards.length];
6.   System.arraycopy(wildcard, 0, this.wildcards, 0, wildcards.length);
7.   this.caseSensitivity = caseSensitivity == null ? 
8.                                 IOCase.SENSITIVITY : caseSensitivity;
9. }

(a) Original constructor.

1. public WildcardFileFilter(String[] wildcards, IOCase caseSensitivity) {
2.   if (wildcards == null) {
3.     throw new IllegalArgumentException("The wildcard array must not be null");
4.   }
5.   this.wildcards = new String[wildcards.length];
6.   System.arraycopy(wildcard, 0, this.wildcards, 0, wildcards.length);
7.   this.caseSensitivity = false ? IOCase.SENSITIVITY : caseSensitivity;
8. }

(b) Mutated constructor.

public void testWildcard() throws Exception {

  filter = new WildcardFileFilter(new String[] {"*.java", "*.class"});
  assertFiltering(filter, new File("Test.java"), true);
  assertFiltering(filter, new File("Test.class"), true);
  assertFiltering(filter, new File("Test.jsp"), false);

  filter = new WildcardFileFilter(new String[] {"*.java", "*.class"}, (IOCase) null);
  assertFiltering(filter, new File("Test.java"), true);
  assertFiltering(filter, new File("Test.JAVA"), false);
}

(c) Corresponding tests.

Figure 4.14: WildcardFileFilter Example.
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1. @Override
2. public String toString() {
3.   StringBuilder buffer = new StringBuilder();
4.   buffer.append(super.toString());
5.   buffer.append("(");
6.   if (fileFilters != null) {
7.     for (int i = 0; i < fileFilters.size(); i++) {
8.       if (i > 0) {
9.         buffer.append(",");
10.      }
11.      Object filter = fileFilters.get(i);
12.      buffer.append(filter == null ? "null" : filter.toString());
13.    }
14.  }
15.  buffer.append(")");
16.  return buffer.toString();
17.}
    

(a) Original toString.

1. @Override
2. public String toString() {
3.   StringBuilder buffer = new StringBuilder();
4.   buffer.append(super.toString());
5.   buffer.append("(");
6.   if (fileFilters != null) {
7.     for (int i = 0; i < fileFilters.size(); i++) {
8.       if (i > -1) {
9.         buffer.append(",");
10.      }
11.      Object filter = fileFilters.get(i);
12.      buffer.append(filter == null ? "null" : filter.toString());
13.    }
14.  }
15.  buffer.append(")");
16.  return buffer.toString();
17.}
    

(b) Mutated toString.

assertNotNull(f.toString()); //TODO better tests
    

(c) Corresponding tests.

Figure 4.15: AndFileFilter Example.
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The two examples show how promiscuous the test class arrangement can be when

the application classes have complicated relations. If the test design does not start with

a proper test-testee correspondence, it is almost inevitable that the developers overlook

important aspects for testing the project.

4.2.4 Summary

In this section, I presented Fostered Code which is a technique that identifies

insufficiently covered code by whether the code has been covered by its designated

test(s). I conducted an empirical study on 7 real applications. The empirical study

shows that fostered code is common in real applications and faults in fostered code are

more difficult to be detected. The empirical study also shows that faults in fostered

code are more difficult to be detected because fostered code lacks of direct checks.

This section makes the following contributions:

(1) A definition of fostered code which is a proxy for insufficiently tested code

(2) An efficient implementation of fostered code identification

(3) An empirical study to show that fostered code is significantly under-tested

(4) An empirical study that shows fostered code lacks of direct checks

For practical use of the Fostered Code technique, the developers need to deter-

mine the association between the application classes and the test classes. The feasibility

of identifying the association depends on the testing paradigm which the developers

use for a certain software project. If the developers decide to use the Fostered Code

technique on their own projects, the developers should be able to identify their own

association. The additional cost of the Fostered Code technique is mostly associated

with identifying the class(es)-under-test. If the static name association is used, the

cost is little comparing to running the tests. For each test class, the cost associated

with the test class is to determine the class-under-test and the coverage information of

the test class and then update the existing fostered coverage. Upon evolution of the
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software project, if a test method is added to a test class, the additional cost is only

associated with the test method for determining the additional code it covers. If the

application has been changed, the whole test suite needs to be executed to determine

the change in coverage.

4.3 Comparison Between ICDC and Fostered Code

The ICDC technique and Foster Code technique share common characteristics.

First, both of them identify insufficiently tested code entities that have already been

covered with additional information obtained within reasonable cost. Second, indirectly

covered code might also be fostered code and vice versa. Third, the methodology of

the two techniques is similar. The similarities and differences of the two techniques are

discussed in the following sections.

4.3.1 Comparing the Usage

Despite the similarity, they each have their pros and cons. The ICDC technique

has the advantage that it does not need the assumption that the class-under-test can be

identified. The technique can always be applied to any application with a test suite, if

method invocations are observable. Usually such method invocations can be observed

using corresponding debuggers for different languages. The Fostered Code technique,

however, is more restricted as it depends on the technique that is used to identify

the class-under-test. If the name association is used for the identification, as in the

implementation in Section 4.2, it is not guaranteed that there is a consistent association

between application classes and test classes, especially when using the technique on

third-party applications. However, if a development team conforms to their coding

conventions, the team should be able to specify the association themselves and identify

fostered code. On the other hand, if the name association can be identified, the fostered

code technique requires even less effort to obtain the necessary information because it

only involves reading the class names and matching them.
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Table 4.12: Phi coefficient between ICDC and Fostered Code.

Subject Both Indirect Only Fostered Only Neither φ

Commons CLI2 272 194 194 960 0.42
Commons IO 164 382 506 1,851 0.09
Commons Beanutils 1,028 180 287 817 0.66
Commons Collections 181 640 326 3,376 0.21
Commons Language 551 159 1,252 1,452 0.52
Joda-Time 2,011 562 1,510 4,100 0.62
JFreeChart 3,396 5,284 1,104 15,059 0.62

4.3.2 Comparing the Code Entities Identified

In addition to their differences and similarities in usage listed above, it is nec-

essary to quantify how much overlap the two techniques have. That is, how often is

a code entity fostered and also indirectly covered? I compared the fostered code and

the indirectly covered code in the 7 subjects in Table 4.7. Since the ICDC technique

only identifies code entities from public methods, for this comparison, I excluded code

entities from non-public methods from the Fostered Code technique. A phi coefficient,

usually denoted by φ, is computed for the two binary variables using R of version 3.2.3.

The phi coefficient is a measure of association for two binary variables. It ranges from

−1 to 1 where 0 indicates no relationship and ±1 indicates perfect agreement or dis-

agreement. The first column of Table 4.12 shows the 7 subjects used in this comparison.

The four columns from the second through the fifth column contain the data necessary

for computing the phi coefficient. Specifically, the second column named Both shows

the numbers of code entities (statements) that are both identified as fostered and indi-

rectly covered for each subject. The third column shows the numbers of code entities

that are indirectly covered but not fostered. The fourth column shows the numbers

of code entities that are fostered but not indirectly covered. The fifth column shows

the numbers of code entities that are neither fostered nor indirectly covered. The last

column gives the phi coefficient for each subject. The phi values provided in the table

have been scaled with respect to the maximum possible φ value[39].

The phi values in every subject show that fostered code and indirectly covered
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code are usually positively related. That is, when a code entity is fostered, it is likely

also indirectly covered, and vice versa. In Table 4.12, 5 out of the 7 subjects have phi

values close to or greater than 0.5 which indicates relatively strong agreement between

the two techniques. It is intuitive because if one incidentally covered (fostered) code

entity from a test class is not designated for these entities, it is very likely the entities

are covered indirectly, and vice versa. However, none of the phi values is close to 1

which would indicate a nearly perfect agreement. This indicates that there are still

considerable numbers of code entities that are, for example, covered in their designated

test class only because the caller method has been used in tests or covered directly in

a test which does not belong to the designated test class for these code entities.

4.3.3 Summary of Comparison

For usability, the two techniques vary in the following aspects: (1) The ICDC

technique is more applicable in real-world applications than the Fostered Code tech-

nique, especially when evaluating a third-party application. This is because the relation

between caller-callee is available among most software projects. However, the associa-

tion between the application classes and the test classes vary in different designs and

testing paradigms., and (2) The Fostered Code technique is more efficient by using an

efficient method for identifying class-under-test, such as the name association. For the

comparison of identifying insufficiently tested code entities, I find that: (1) The two

techniques have positive correlations, which is consistent with intuition., (2) The posi-

tive correlation is relatively strong. That indicates, in the real world, if test developers

forget or do not want to test a certain set of code entities in their designated test class,

given the fact that the entities have been covered, they are probably covered indirectly

only., and (3) The two techniques have neither perfect agreement nor subsumption re-

lations. One of the common situations is that the test developers cover a few methods

from another class to construct a test input of the class-under-test.
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Chapter 5

CONCLUSIONS

5.1 Summary of Contributions

In this dissertation, I provide three techniques that can improve the quality of

existing test suites. In summary, they are:

(1) a definition and an implementation of a new technique that can automatically

analyze tests to detect both brittle assertions and unused inputs

(2) a definition and an implementation of a new technique to interpret coverage

information based on the concepts of direct coverage and indirect coverage

(3) a definition and an implementation of a new technique to interpret coverage

information based on the relation between the test class and the class-under-test

.

To be specific, OraclePolish is a new technique for automatically analyzing

test oracles. The technique is based on dynamic tainting and can detect both brit-

tle assertions—assertions that depend on values that are derived from uncontrolled

inputs—and unused inputs—inputs provided by the test that are not checked by an

assertion. I also present OraclePolish, an implementation of the technique that can

analyze tests that are written in Java based on JUnit testing framework. Using Ora-

clePolish, I conducted an empirical evaluation of the tool’s performance on more than

4,000 tests from 19 real applications. The results of the evaluation demonstrate that

OraclePolish is able to detect both brittle assertions and unused inputs in real tests.

The evaluation identified 164 brittle assertions and 1,618 unused inputs among 4,718

tests in the applications. The evaluation also showed that the cost of the technique is
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5 to 30 times than the cost for running the application on pure JVM, which can be

considered reasonable for an automatic tool.

ICDC is a new approach for interpreting coverage information to identify in-

sufficiently tested methods. The technique is based on partitioning the set of covered

entities into entities that are directly covered and entities that are indirectly covered.

I also presented the results of an empirical study of 17 applications that demonstrates:

(1) real test suites indirectly cover large portions (10%–60%) of their corresponding

applications, (2) faults located in code that is indirectly covered are significantly less

likely to be detected than faults that are located in code that is directly covered,

(3) the majority of methods are either completely directly covered or completely in-

directly covered, and (4) a significant portion of indirectly covered methods are likely

due to testers improperly considering inheritance or method overloading relations.

Fostered Code is a new approach for identifying insufficiently tested code entities.

The technique is based on partitioning covered entities into entities that are intention-

ally covered and entities that are incidentally covered. I also presented the results of an

empirical study of 7 applications that demonstrates: (1) real test suites foster a large

portion (10%–60%) of code from their corresponding applications, (2) faults located in

fostered code are significantly less likely to be detected, (3) there are less assertions on

return values and field values related to fostered coverage, and (4) fostered code can

be salvaged by adding assertions on related return values and field values. As a result,

I believe that identifying fostered code can be an effective approach for helping testers

improve the quality of their test suites by directing them to insufficiently tested code.

I anticipate that my research can improve the quality of test suites and thus

help developers to reduce the cost of testing, debugging, and maintenance.

5.2 Future Work

The future work of this dissertation can also be divided with respect to each

technique:
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• For OraclePolish, I will implement the automated generation of recommendations

to fix the reported oracle problems. The possible fixes follow very regular and

specific patterns so that templates will be provided for the developers. I will

investigate the possibility of extending the technique to analyze entire test suites

rather than individual tests. This will allow the technique to more precisely

handle certain situations, such as when logically connected assertions are split

among multiple test cases (e.g., the one assertion per test style). I am also

planning on conducting additional evaluations of the technique. In particular, I

am interested in conducting human studies with testers to qualitatively assess the

technique more fully, such as the importance that developers would give to such

reported issues, and increase the number and type of subjects that I consider.

Finally, I will investigate how my technique could be integrated with existing test

generation approaches to improve the quality of the generated tests.

• For ICDC, I plan to investigate the insufficiently tested methods that my tool

identified in more detail in order to expand the categorization of these methods.

In addition, I will implement an automated tool for generating recommendations

for possibly missing test inputs or oracles of the identified methods. Finally, I

will extend my empirical evaluation to consider additional coverage metrics (e.g.,

branch coverage).

• For Fostered Code, I plan to investigate the following topics: (1) techniques that

identify class-under-test efficiently other than name association, (2) the effective-

ness of fostered coverage approach on other popular coverage criteria (e.g., branch

coverage), (3) the focus of field values assertion when code is intentionally tested

and narrow down the assertions in the generated test templates when removing

fostered coverage, and (4) a generic design requirement to impose the criterion

that code needs to be intentionally tested.
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