
AUTOMATICALLY IDENTIFYING DEVELOPER GOALS AND

SYMPTOMS IN Q&A FORUMS TO HELP FORUM SEARCH AND

MINING

by

Zachary R. Senzer

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Honors Bachelor of Science in Computer
Science with Distinction

Spring 2017

c� 2017 Zachary R. Senzer
All Rights Reserved

AUTOMATICALLY IDENTIFYING DEVELOPER GOALS AND

SYMPTOMS IN Q&A FORUMS TO HELP FORUM SEARCH AND

MINING

by

Zachary R. Senzer

Signed:
Lori Pollock, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
K. Vijay-Shanker, Ph.D.
Committee member from the Department of Computer &
Information Sciences

Approved:
Sebastian Cioaba, Ph.D.
Committee member from the Board of Senior Thesis Readers

Approved:
Michael Arnold, Ph.D.
Director, University Honors Program

ACKNOWLEDGMENTS

I would like to thank Dr. Lori Pollock and Dr. Vijay Shanker for taking a

chance on an inexperienced freshman and guiding him along the road of success. Your

mentorship throughout my college career has been invaluable and it has been an honor

working with both of you.

I would also like to thank Dr. Sebastian Cioaba for his guidance with this

research and Samir Gupta, for his time and natural language processing expertise to

assist with parsing and pattern matching.

Lastly, I would like to thank my family. Thank you to my mother, Deborah

Senzer, for devoting your life to me with your love. Thank you to my father, Richard

Senzer, for being a role model of success. Thank you to my brother, Benjamin Senzer,

for driving me to work harder and achieve more.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi
LIST OF FIGURES . vii
ABSTRACT . viii

Chapter

1 INTRODUCTION . 1

1.1 Question and Answer Forums in Software Engineering 1
1.2 Thesis Contributions . 2

2 BACKGROUND . 3

2.1 Stack Overflow . 3
2.2 Successful Question Composition . 4
2.3 Software Developer Goals . 5
2.4 Software Developer Symptoms . 5
2.5 Motivating Example . 5
2.6 Challenges Imposed by Q&A Forums 7
2.7 Summary . 7

3 A STUDY OF STACK OVERFLOW USERS 8

4 A LEXICOSYNTACTIC APPROACH TO AUTOMATIC
IDENTIFICATION OF GOAL AND SYMPTOM
INFORMATION . 12

4.1 Key Insights . 12
4.2 Pattern Identification . 13
4.3 Pattern Matching and System Output 16
4.4 Summary . 19

iv

5 EVALUATION . 22

5.1 Subjects, Variables, and Measures . 22
5.2 Procedure . 23
5.3 Results and Qualitative Analysis . 24
5.4 Threats to Validity . 27

6 RELATED WORK . 28

7 CONCLUSIONS AND FUTURE WORK 31

BIBLIOGRAPHY . 32

Appendix

A LEXICOSYNTACTIC APPROACH WORD LISTS 34

v

LIST OF TABLES

4.1 Example goals and symptoms (patterns bolded and goals/symptoms
italicized) . 15

4.2 Frequency counts for desire verbs, goal verbs, and negative sentiment
(for 50,045 Stack Overflow posts) 16

5.1 Results for lexicosyntactic identification of goal and symptom
information . 22

5.2 Examples of cases where the lexicosyntactic approach falsely identifies
and misses goals and symptoms . 25

vi

LIST OF FIGURES

2.1 Sample Stack Overflow post with key contents bolded 6

3.1 Original search result excerpts . 10

3.2 Search results with goal and symptom information 11

4.1 Lexicosyntactic system overview . 20

4.2 Example syntactic dependency of a developer goal 21

4.3 Example developer-identified symptom syntactic dependency 21

4.4 Example system-identified symptom syntactic dependency 21

5.1 Instructions provided to human judges 23

vii

ABSTRACT

When software developers need help with their development or maintenance

task, they seek information from other developers using question and answer forums.

Developers often search the forum by submitting queries, which results in a ranked

listing of posts displayed as question title and excerpt from the question description.

This thesis presents a technique to automatically extract the questioner’s software-

related goals and symptoms from the question description. We show how explicit

identification of goal and symptom information can help developers determine relevance

of search results. Classification of natural language text in forums could also be useful

to improve forum mining techniques for other purposes.

viii

Chapter 1

INTRODUCTION

A substantial portion of modern computer science research focuses on the con-

nection between computation and linguistics. One of the more prevalent fields of study

concerning this connection is natural language processing (NLP). NLP has the goal of

automatically analyzing human (natural) language text. A text source that can reveal

powerful knowledge using NLP is question and answer forums. This thesis explores

the application of NLP on question and answer forums within software engineering.

1.1 Question and Answer Forums in Software Engineering

Question and answer (Q&A) forums are websites where a community of users

can ask questions on specific domains and receive answers, crowd-sourced from the

community. Q&A forums are a great way to e�ciently obtain information that is

tailored to one’s specific inquiry. Initially conceived only as a means of providing

answers to questions, Q&A forums now focus on knowledge creation that results in

enduring value to a large audience of people [2]. A domain in which Q&A forums

are incredibly popular is software engineering. As software development teams are

more globally distributed and the open source community has grown, developers rely

increasingly on Q&A forums for help that they might have previously obtained through

in-person conversations. These forums contain vast amounts of valuable collective

knowledge from other programmers’ experiences.

It is the popular opinion of many software developers that Stack Overflow [9]

is the best Q&A forum for the software engineering domain. Stack Overflow boasts

a community of 6.5 million users and over 13 million questions. The most popular

questions on Stack Overflow are about specific programming languages (e.g., Javascript,

1

Java, C#) and operating systems (e.g., Android, iOS). Stack Overflow has two main

use cases: (1) finding posts with similar issues that you are encountering and (2)

responding to questions to which you know the answer. To achieve these two goals,

users need to be able to quickly identify what the asker of a question is trying to achieve

and what is preventing him/her from achieving it.

Identifying and classifying the di↵erent types of structured information (e.g.,

code, natural language) within developer communications, such as Q&A forums, allows

analysis tools to treat them di↵erently. This research goes beyond prior work on

identifying and classifying content in Q&A forums by further characterizing the natural

language in the forum posts to aid analyses. Specifically, natural language content is

analyzed to identify a developer’s goals and symptoms. A goal is defined as text that

indicates what the developer is trying to do or achieve. A symptom is defined as text

that indicates what is going wrong when the developer is trying to achieve a goal or

what is preventing the developer from achieving his/her goal.

Explicitly identifying the goals and symptoms of a given forum post can quickly

make it clear to a developer whether a question is relevant or not, which assists in

achieving the two use cases of Stack Overflow. If a developer is having a problem with

a project, he/she will frequently visit Stack Overflow and compose a search. The two

main types of queries one would search for are the task to be accomplished and the

di�culties being encountered. Automatically generated goal/symptom classifications

can help improve the accuracy of the mining and analyses of Q&A forums for supporting

various software engineering tasks. These analyses can use the goal and symptom

information to focus their mining on specific content within posts, as appropriate to

their analysis.

1.2 Thesis Contributions
This thesis makes the following contributions:

• A technique for the automatic identification and classification of developer goal
and symptom from Q&A forums

• An evaluation for goal and symptom identification on Stack Overflow entries

2

Chapter 2

BACKGROUND

This chapter provides background on software developer Q&A forums and the

challenges posed by the targeted research problem of identifying goal and symptom

descriptions in Q&A forums.

2.1 Stack Overflow

The standard Stack Overflow post consists of an original question and answers

to that question. Answers that are deemed “good” by the community are voted up and

rise to the top of the page. The original asker of the question can mark one answer as

accepted, indicating that it worked. To categorize posts, Stack Overflow implements

a tagging system, such that all questions are tagged with their subject areas (e.g.,

Javascript, C#). If users want to search for a question, they can specify tags, words

that appear in the title, body, or answer, and other miscellaneous features about the

status of the post. To ensure that the best answers to the question can be provided,

Stack Overflow enables users to add comments to ask for more information or to clarify

a question or answer.

A typical question on Stack Overflow can consist of natural language text, inter-

spersed with code segments, code patches, stack traces, and even small code statements

or single identifiers within natural language sentences. Thus, there exist many di↵er-

ent types of information that users need to take into account when either asking or

answering a question. The main type of question content that users of Stack Overflow

need to digest is natural language text.

3

2.2 Successful Question Composition

Stack Overflow provides recommendations on the types of questions users should

ask. It suggests to “focus on questions about an actual problem you have faced”

and “include details about what you have tried and exactly what you are trying to

do” [10]. Further, it notes that “not all questions work well in our format” and to “avoid

questions that are primarily opinion-based, or that are likely to generate discussion

rather than answers” [10]. To ensure questions meet certain standards, moderators

have the ability to close questions.

In an additional attempt to keep post quality high, Stack Overflow provides

links to articles on successful question composition. The main advice is to imagine you

are trying to answer the question being asked to ensure it is clear what is being asked

and easy to read and understand [5]. It is also important to provide context on the

language, platform, and operating system, along with any steps already attempted and

the results of any research [5].

It is important to emphasize what you are trying to get out of the question. It

is crucial to be explicit with what is trying to be accomplished and what is happening

during attempts [5]. One article notes that “too many ’questions’ are actually just

statements: when I do X, something goes wrong” [5]. Further, many posters fail to

elucidate what the large aim of the question is. Other problems include the addition of

distractions such as greetings and sign-o↵s (e.g., “Hi everyone”, “thanks”), incorrect

formatting, and grammatical errors.

Even with Stack Overflow’s resources on question composition, users ask many

questions that make the comprehension process di�cult. In certain cases, this can

be attributed to a lack of e↵ort; however, it is important to keep in mind that it

is challenging to convey a personal problem on a complex subject to others. This

motivates research on how to make Stack Overflow easier to use.

4

2.3 Software Developer Goals

A software developer’s goal is defined as text that indicates what the developer

is trying to do or achieve. Some example sentences that contain goals are: “What

I’m trying to do is increase the height of each row of my listview”, “I want to retrieve

the added year”, and “My objective is to get the elements of an xml file”. For sen-

tences containing goals, part of the sentence will typically contain the goal itself, and

a separate portion of the sentence will indicate that the sentence contains a goal. In

the example sentences, the explicit goals are: “increase the height of each row of my

listview”, “retrieve the added year”, and “get elements of an xml file”. However, it is

important to note that the main indicators of goals are words such as “trying”, “want”,

and “objective”.

2.4 Software Developer Symptoms

A software developer’s symptom is defined as text that indicates what is going

wrong when the developer is trying to achieve a goal or preventing the developer from

achieving his/her goal. Example sentences that reveal symptoms include “It presses

the button, but the file is not downloaded”, “Unfortunately, the program gives me a

run time error”, and “The console.log is saying that a variable is undefined.” The

explicit symptom text in the example sentences are: “file is not downloaded”, “run

time error”, and “variable is undefined”.

2.5 Motivating Example

To further understand software developer goals and symptoms at a high level,

consider the sample post in Figure 2.1.

For simplicity, this post is smaller and much less complex than many posts on

Stack Overflow. The text in the first sentence, “I hope someone can help me”, does

not tell the reader anything about the problem at hand and should be considered

noise. The next two sentences state that the form is being coded in C# and that

there are some problems with a text box. Each of these sentences contains key details

5

Figure 2.1: Sample Stack Overflow post with key contents bolded

pertaining to the comprehension of the post. The first sentence explains that the user

is working with a Windows Form. Since that is what the user is trying to do, that

is part of the goal. In the next sentence, since the textbox problems are preventing

the user from achieving the aforementioned goal, that is a symptom. “I am new to

programming” is also noise and does not assist with the comprehension of the post.

Due to the complexity of deriving meaning by looking at code, only natural language

text is considered in this research. Thus, any non-text portions (e.g., code) will be

ignored. The next sentence explicitly states what the user wants to do and should

appropriately be marked as a goal. This is followed with what is preventing the user

from achieving the goal (unhandled exception) and is a symptom.

In summary, “I am doing a Windows Form in C#” is what the user is trying to

do and contains a goal. “I have some problems with a TextBox” explains a symptom

being encountered. “I want to enter a decimal value” contains another explicit goal.

Finally, the returning of an error/exception is a symptom.

6

2.6 Challenges Imposed by Q&A Forums

There are several major challenges associated with automatically identifying

natural language text describing goals and symptoms in Q&A forums. Firstly, unclear

intentions, along with formatting, spelling, and grammatical errors, make it incredibly

di�cult for humans — let alone an automated system — to identify the goals and

symptoms present in the post. Secondly, the goal and symptom information is dis-

connected. There are no designated locations in a post where all of the goal text or

symptom text are written. The goal and symptom information is also highly inter-

spersed with other content types (e.g., code), textual context, and textual noise. In

an attempt to explain as much information as possible to other users, Stack Overflow

questions are dense with sample code, stack traces, and miscellaneous system logs.

Thirdly, the goal and symptom information is not necessarily a whole sentence.

Sometimes, the goal/symptom is described in only part of a sentence along with phrases

that are not goal/symptom information. Furthermore, part of a sentence might describe

the goal while the remainder of the sentence describes the symptoms. Thus, a sentence-

level granularity is not appropriate for identifying goal and symptom information.

Each of these factors make question understanding increasingly onerous, and automatic

identification of goal and symptom information challenging.

2.7 Summary

Stack Overflow provides a helpful platform for developers to ask questions of a

knowledgeable community. The most important pieces of information contained in a

question are the goals (what the user is trying to do/achieve) and the symptoms (what

is going wrong/preventing the user from achieving the goal). Posts on Stack Overflow

contain many obstacles involving diverse content types and natural language composi-

tion that make question comprehension, and thus goal and symptom identification, a

di�cult task.

7

Chapter 3

A STUDY OF STACK OVERFLOW USERS

Stack Overflow contains a search feature to help users discover relevant posts.

The results page lists the title, post excerpt, tags, and voting information for each

question result. The result excerpt consists of a few lines of text based on keyword

matching between the question and the search query. Unfortunately, many search

result excerpts contain fragments, code, and non-pertinent information. The structure

of the excerpt succeeds in showing that the results match terms contained in the query;

however, it often fails to provide the user with enough information to determine whether

a question is relevant to a user’s needs and contains noise.

We hypothesize that an excerpt consisting of the asker’s goals and symptoms

would make it quicker and more e�cient to understand a post and determine whether

it is relevant to one’s specific needs. To examine this hypothesis further, we considered

typical Stack Overflow search queries. For each query, we presented the search results

in two di↵erent formats:

1. original excerpts (Figure 3.1)

2. excerpts replaced with goal and symptom information for each search result (Fig-
ure 3.2).

To determine which presentation format of Stack Overflow search results is more useful,

we presented both formats to human judges. Ten human annotators examined search

result pages in both formats for three queries (30 responses). For each query, the

human annotators had to decide:

1. Which search result format was more helpful in deciding if a search result for the
query is relevant?

8

2. Which search result format was faster in helping them decide if a search result
for the query is relevant?

For each of these decisions, judges were asked to assign a score from 1 to 5, where a score

of 5 indicated that the format with goal and symptom information was significantly

more helpful/faster, a score of 1 indicated that the format with original excerpts was

significantly more helpful/faster, and a score of 3 indicated the two formats were equally

helpful/fast. The average score over all judges for all three queries for the first question,

which is concerned with the helpfulness of the format in determining relevance, was

4.30. The average score for the question asking which search result format was faster

for determining relevance was 4.43. For both questions, over 93% of responses indicated

that the search result presentation format with the goal and symptom information was

the superior option (i.e., a score of 4 or 5). These results suggest that our hypothesis

is correct, and motivate the automatic identification of goal and symptom information

from Q&A forums to enable such a result display to help search results analysis.

9

Figure 3.1: Original search result excerpts

10

Figure 3.2: Search results with goal and symptom information

11

Chapter 4

A LEXICOSYNTACTIC APPROACH TO AUTOMATIC
IDENTIFICATION OF GOAL AND SYMPTOM INFORMATION

The process of automatically identifying goals and symptoms in Q&A forum

posts consists of two components:

1. the construction of patterns/rules to determine the classification of a given text
snippet

2. the application of these patterns in a system that automatically identifies goals
and symptoms in natural language text.

4.1 Key Insights

Posts on Stack Overflow can be viewed as an interaction taking place between a

developer and a system. Goals explain what the developer is trying to get the system

to do or achieve. Symptoms explain what is going wrong with the system that is pre-

venting the developer from achieving his/her goal. This insight led to increased focus

on the subjects of the natural language text and which actions/verbs are attached to

the subject when we analyzed natural language text of forum posts for patterns of ex-

pressing developer goals and symptoms. We refer to our approach as the lexicosyntactic

approach for the remainder of the thesis, since it places emphasis on both the lexical

and syntactical structure of the text. There exist certain words that developers use to

explain goals and symptoms. However, the presence of these words is insu�cient. A

system simply built around the presence of words is too general to ensure that goals

and symptoms are being correctly identified. It is important to examine the syntactical

structure of the text that contains key diction. Specifically, these words need to be

12

associated with specific subjects. This is especially important for goals, as a goal is

what the developer is trying to do/achieve. Thus, the subject of the text needs to

be the developer. The syntactic role that specific words play in text is meaningful in

understanding natural language.

4.2 Pattern Identification

To determine the patterns that exist for describing developer goals and symp-

toms, we evaluated 200 Stack Overflow posts, manually annotated the goals and symp-

toms text, and generalized the annotations to consider the text’s subject, verbs, and

other key diction. This analysis gave rise to three patterns (one for goals and two for

symptoms).

Since a goal is what the developer is trying to do/achieve, we expect two com-

ponents in the text that expresses the goal:

1. a verb that expresses the developer’s desire, and

2. that it is the developer who desires it.

The first component can be captured by a list of words that we call desire verbs.

These components note that the text contains a goal, but the goal itself will appear

after the desire verb as its argument. The second component can be captured by the

subject of the desire verb being “I”.

Thus, the goal pattern consists of a first person pronoun subject and a desire

verb. The first person pronoun (e.g., I, we) subject places the focus on the asker of the

Stack Overflow question. The desire verb is connected to the subject and expresses

what the asker is trying to do. Our initial list of desire verbs included “want”, “wish”,

“like”, “need”, and “try”. We also consulted a thesaurus to expand this list, and all

inflections of these verbs were taken into account. An example of this patten is:

“I want to retrieve the added year”

13

where “I” + “want” matches the pattern, and the goal itself is “retrieve the added

year”.

Symptom patterns are more complex to identify since there are many ways that

people describe what is going wrong on Q&A forums. For symptoms, it can not be

expected that the subject will always be first person. Symptoms can reveal themselves

on either side of the developer/system interaction.

We call the first symptom pattern developer-identified symptoms because the

text mentions the developer noticing/identifying a symptom. Therefore, we expect

the subject to be a first person pronoun and the text to have a verb corresponding to

observation (we call these system reference verbs). A system reference verb illustrates

an action taken by the system and directed to the developer. Our initial list of system

reference verbs includes words such as “get” and “have” (e.g., “I get an error”).

With symptoms, the developer must be noticing something wrong with the

system’s behavior. This can be stated using a range of diction, hence we look for words

that indicate undesired behavior. We call this list a negative sentiment list, intended to

capture both general and programming-related negative sentiment, including “issue”

as well as “error”, “exception”, “null”, and “undefined”. We also consulted sentiment

analysis word lists to expand our set. We extract the entire clause as the developer-

identified symptom. An example of the the developer-identified symptom pattern is:

“I have an issue with the structure”

Not all symptoms are expressed as the developer noticing an issue. In many

cases, the symptom can simply be stated as the system’s undesired response. In these

cases, we expect the subject to be indicative of the “system”, therefore, we include

words such as “console.log” and “code” as a proxy for “system”. As before, we expect

to see negative sentiment. Thus, our second symptom pattern, which we call system-

identified symptoms, consists of a system subject and negative sentiment. An example

of this pattern is:

14

Table 4.1: Example goals and symptoms (patterns bolded and goals/symptoms itali-
cized)

Goal

I’m trying to “cacheify” my angular ser-
vice factory.
I need to have a multidimensional array in
a shared memory between two processes.
I’m trying to use the str.index method for
a given DNA strand, but to no avail.
I want to have a view that exposes em-
ployee data across years.
I am having trouble passing an array to my
sorting classes because i need to sort the
same array with two di↵erent algorithms.

Developer-Identified Symptom

However it seems that I am making mis-

take in getting input to program in atoi()
function.
I got this error, pointing at the line of the
connectionstring.
I’m having some issues getting the stl to
be properly referenced.
I get an error on the line of code trying to
assign tag 102 to *tmp.
However, I don’t see an easy way to link
to such a file.

System-Identified Symptom

My console keeps giving me a message that
says “Uncaught TypeError: Cannot read
property ’replace’ of undefined ”.
It just start eating memory (will goes up to
1GB on simulator) and cause a crash.
However, when I put that date format into a
Java program and use a prepared statement
it throws a very strange and meaningless
error of “Missing IN OUT parameter at
index:: 6” which is strange because there
are only 5 parameters.
I don’t know why any entered value returns
false and the programs stops.
I am trying to place two image buttons on
my image background in a certain position,
but my buttons are not appearing.

15

Table 4.2: Frequency counts for desire verbs, goal verbs, and negative sentiment (for
50,045 Stack Overflow posts)

Rank Desire Verb Freq. Rank Goal Verb Freq. Rank Neg. Sent. Freq.

1. want 11499 1. use 2828 1. not 26350

2. trying 8129 2. get 1837 2. error 7444

3. need 5713 3. create 1760 3. just 5131

4. like 4052 4. make 1452 4. change 5097

5. tried 3775 5. add 1355 5. only 3920

6. try 2345 6. know 1248 6. no 3218

7. wanted 533 7. have 928 7. out 2693

8. attempting 296 8. run 839 8. problem 2663

9. wish 165 9. change 701 9. issue 1864

10. prefer 138 10. write 700 10. every 1754

“The console.log is saying that a variable is undefined.”

where the presence of “console.log” and “undefined” allows us to fit the pattern.

Table 4.1 shows additional examples of goals and symptoms for each pattern.

Based on our manual analysis, we compiled lists of words for desire verbs, system

reference verbs, system subjects, and negative sentiment. As shown in Figure 4.1, these

lists and patterns are incorporated into the approach as input to pattern matching.

Table 4.2 presents some frequencies of the words that people use to express goals and

symptoms on Stack Overflow.

4.3 Pattern Matching and System Output

Our automated system accepts a Stack Overflow post as input and generates

the Stack Overflow post with a goal and symptom header. The di↵erent steps of the

automated system, as depicted in Figure 4.1, include:

1. Preprocess the Stack Overflow post for natural language text analysis

2. Tokenize and split the natural language text into sentences

3. Identify syntactic dependencies for each sentence using a dependency parser

4. Apply the patterns to extract goals and symptoms by using the syntactic depen-
dency information

16

Given the original content for a Stack Overflow post, the preprocessing step

removes all code blocks and replaces any in-line code with a noun-phrase placeholder,

“IN-LINE CODE”. This ensures that only the natural language text is analyzed, and

any embedded code snippets do not misguide the parse during the goal/symptom

identification.

Next, we tokenize the natural language text into a sequence of tokens and split

the text into sentences using the Stanford CoreNLP toolkit [7]. We then apply the

Stanford Constituent Parser [6]. The parse tree is converted into syntactic dependencies

using the syntactic dependencies converter [3].

Stanford dependencies provide a representation of grammatical relations be-

tween words in a sentence. They are often represented as a directed graph where the

words in the phrase or sentence are nodes, and the grammatical relations are edge

labels. The dependencies are expressed as triplets: name of the relation, governor (or

head), and dependent. The dependencies use the Penn Treebank part-of-speech tags

and phrasal labels.

As shown in Figure 4.2, one such dependency triplet is nsubj (I, retrieve), where

the relation is nsubj (nominal subject), the governor of the relation is “retrieve”, and

the dependent is “I”, respectively. The edge labeled nsubj leads from “retrieve” to

“I”. The use of syntactic dependencies allows us to examine sentences at a level that

abstracts away from many textual variations. In addition, we use the “CCprocessed”

dependency representation [3], which allows for an appropriate treatment of sentences

that involve conjunctions.

To implement the patterns to extract goals and symptoms, we translated the

patterns into constraints on the dependency representation of the sentences. The goal

pattern requires the presence of a desire verb. We identify verbs by using the part

of speech information and see if any of the words is a “desire verb”. Next, the goal

pattern requires that its subject is a first person pronoun. This gets translated into a

constraint that there be an nsubj dependency in which the governor is the desire verb

(“want” in Figure 4.2) and in which the dependent is a first person pronoun (“I”). All

17

desire verbs take an infinitival clause (subordinate clause whose verb is in the infinitive

form such as “to retrieve”) as their arguments. As this corresponds to an open clausal

complement, xcomp, dependency, we need to look for an xcomp relation with governor

as the same desire verb.

We will retrieve the entire verb phrase that is dependent on the xcomp relation.

To obtain the full verb phrase (which will be the actual goal), we start with the

dependent verb (“retrieve”) and need to consider all relations starting from this verb.

This verb phrase will be retrieved as the goal (“to retrieve the added year”).

To recognize developer-identified symptoms, we first look for system reference

verbs (“have” in Figure 4.3). Our pattern for developer-identified symptoms requires

that the subject of the system reference verb be a first person pronoun (“I”). Thus,

similar to the goal pattern, we look for an nsubj syntactic dependency edge from the

system reference verb (“have”) and the first person pronoun (“I”). Then, we extract

the complete phrases, which are dependents of the system reference verb (“have an

issue with the structure”) and look for negative sentiment words within these phrases.

In the example illustrated in Figure 4.3, the presence of negative sentiment (“issue”),

allows us to conclude that this sentence describes a developer-identified symptom.

For system-identified symptoms, we need to consider the subjects of the verb

and consider whether they refer to the system. When we find the presence of such

a system subject, similar to the developer-identified symptoms pattern, we look for

negative sentiment in the clause headed by this verb. Figure 4.4 depicts the syntactic

dependency of such a case for system-identified symptoms, where the system subject

is “console.log”, which is the subject of the verb “saying”, indicated by the nsubj edge

between them. The clause headed by “saying”, “saying that a variable is undefined”,

contains the negative sentiment “undefined” and is extracted as a symptom.

The patterns for goal and symptom identification have been translated as pat-

terns on the dependency representation of sentences. We use Semgrex, which is a part

of the Stanford NLP Toolkit, to specify the translated patterns as regular expressions

based on lemmas, part-of-speech tags, and dependency labels, which will automatically

18

match with the sentence dependency parse structure.

4.4 Summary

Our approach leverages the words and syntax present in a post to derive pat-

terns for goal and symptom identification. A Stack Overflow post is first preprocessed

to remove instances of code. The post with only natural language text then undergoes

sentence splitting, tokenization, and dependency parsing. Finally, the goal and symp-

tom patterns allow us to perform pattern matching to obtain the desired output of a

Stack Overflow post with a goal and symptom header.

19

Figure 4.1: Lexicosyntactic system overview

20

Figure 4.2: Example syntactic dependency of a developer goal

Figure 4.3: Example developer-identified symptom syntactic dependency

Figure 4.4: Example system-identified symptom syntactic dependency

21

Chapter 5

EVALUATION

We designed our evaluation study to answer one primary question:

How well does our goal/symptom identification technique classify text

snippets in Q&A forums?

5.1 Subjects, Variables, and Measures

The subjects in our goal/symptom identification are the natural language ques-

tion text representing 75 randomly selected Stack Overflow questions from April 2014.

Each subject question contains at least one code segment, as the majority of symp-

toms on Stack Overflow are stated in regard to code that a developer is referencing.

Additionally, questions were filtered to ensure that the main goal and symptom infor-

mation did not contain anaphoric expressions such as “this”, “that”, “they”, “these”,

and “those”.

The independent variable is the technique for goal/symptom identification of

natural language text. The dependent variable is the e↵ectiveness of the approach

in terms of the precision, recall, and F-measure in identifying the goal and symptom

content in question text from Q&A forum posts.

Table 5.1: Results for lexicosyntactic identification of goal and symptom information

Class Precision Recall F-measure
Goal 76.85 72.81 74.77
Overall Symptom 64.83 69.12 66.90
Developer-Identified Symptom 57.89 N/A N/A
System-Identified Symptom 78.00 N/A N/A

22

Introduction:

Typically, a Stack Overflow post includes information
about a developer’s goal(s) and his/her encountered
symptom(s).

In the context of a Q&A forum, we define a goal as:
"text that indicates what the developer is trying to do
or achieve."

We define a symptom/problem as: "text that indicates
what is going wrong when the developer is trying to
achieve their goal or preventing the developer from
achieving his/her goal."

Study Instructions:

This study seeks to identify goals and symptoms in
Stack Overflow posts.

Attached, you will find a ZIP file containing 75 PDF
files. Each PDF file is a Stack Overflow post with the
file name, [StackOverflowID].pdf.

For each PDF file, highlight the goal(s) in green and
highlight the symptom(s) in pink. Only consider the
English text in the question portion of the post (ignore
titles, answers, and code). If you have questions
about whether a section should be considered, please
ask me.

Note: You should even highlight restated/repeated
goals and symptoms. Cover all question text and
CONSIDER WHETHER ALL TEXT CONTAINS
EITHER A GOAL OR A SYMPTOM.

Note: Some posts might not contain a goal or a
symptom. Some posts might contain multiple goals
and multiple symptoms. Highlight however many you
feel apply.

Please save each PDF with the colored highlights and
compress/ZIP a folder containing the 75 highlighted
PDF files.

Thank you for your participation!

Figure 5.1: Instructions provided to human judges

5.2 Procedure

Our lexicosyntactic identification system was run on the 75 Stack Overflow

posts. As a gold set, the system’s classifications of goal and symptom were compared

with that of our human annotators. Three human annotators were given the 75 Stack

23

Overflow posts and asked to highlight which natural language text were goals and

which text were symptoms. They were given the opportunity to look at the complete

content of each Stack Overflow post that they were analyzing. Each of the 75 Stack

Overflow posts was evaluated by the three (non-author) annotators. The instructions

provided to our human judges are shown in Figure 5.1. If 2/3+ of the human judges

had a text segment highlighted as a goal or symptom, it was added to the gold set. The

overlap between human judge highlights was determined by checking whether the head

goal verb (for goals) and head symptom verb and negative sentiment (for symptoms)

were shared. The same overlap methodology was used to determine overlap between

system and gold set highlights.

5.3 Results and Qualitative Analysis

Table 5.1 presents the precision, recall, and F-measure for goal and symptom

identification for the lexicosyntactic approach.

The lexicosyntactic approach correctly identifies at least one goal in over 81%

of posts and at least one symptom in over 80% of posts. All measures for our data

indicate that our lexicosyntactic system is a bit more e↵ective at identifying goals

than it is at identifying symptoms. This is essentially due to a lower precision for

the developer-identified symptoms than the system-identified symptoms. The system-

identified symptom pattern had precision of 78%, while the developer-identified symp-

tom pattern had precision of 57.9%.

To obtain more insight into the challenges of our lexicosyntactic system, we

analyzed the di↵erences between our system and the gold set developed with human

judges. Table 5.2 shows specific examples of false positives and false negatives for goals

and symptoms. This qualitative analysis leads to several future improvements to the

technique.

For goal precision, the largest issue involved the tense of desire verbs. Since

our approach uses lemmas, all tenses of the desire verb were considered. Many times,

a question would contain “I tried...”. This past tense led human judges to consider

24

Table 5.2: Examples of cases where the lexicosyntactic approach falsely identifies and
misses goals and symptoms

Class Text Explanation

Goals: False Pos.
Everyone that use my application
will be able to publish events to my
facebook page, so I don’t want
to give admin or contributor
to everyone.

Desire verb nega-
tion

I tried to do some countif op-
erations in Excel, but it was pro-
hibitively slow.

Past tense desire
verb

You may notice that I needed to
escape the quotation marks to
keep them in the string.

Past tense desire
verb

Goals: False Neg.
I’m getting an image from
a base64 string, stored in a
datatable.

No desire verb

But the goal is that the javascript
is triggered when the user
clicks the button and an item
is printed to the screen.

No first person
pronoun

Any ideas how to get it to stick
the right content into the right
containers?

No first person
pronoun

Symp.: False Pos.
When the controller handles the
POST, I can access the posted
form field with no problem.

Negative senti-
ment negation

I don’t work in linux much so
please try to be explicit with any
answers.

Negative senti-
ment incorrectly
applied

Now as I had no errors or ex-
ceptions thrown I believe I have
succeed in writing an output file.

Negative senti-
ment negation

Symp.: False Neg.
The lattice graphs display just fine,
the image.png doesn’t display
at all.

System missing
subject

Why is my current use giving a
gray box and in no way copy-
ing or drawing the pixels in
the image?

System missing
subject

EDIT: Nneoneo’s answer works
if “exisiting folder” exists, but
does not behave properly if
“existing folder” and “exist-
ing folder 1” exist.

System missing
subject

25

the statement as more of an already attempted troubleshooting step, as opposed to a

currently open goal. Having the system filter according to tense, specifically removing

past-tense desire verbs, would increase goal precision. Additionally, our system was

unable to detect the negation of desire verbs. Thus, “I don’t want...” was marked by

our system as a goal, but not by our human judges. A future system should notice

that the negation of certain keywords should invalidate the goal identification. The

main source of recall challenges for goals was the lack of a pattern to address “how to”

goals (e.g., “how to add the numbers in my array”). These goals appeared relatively

frequently, but did not contain a first person pronoun or a desire verb, and thus, were

not marked as goals by our system. The inclusion of a pattern to incorporate “how

to” goals would lead to a drastic increase in goal recall.

The main source of precision challenges for symptoms was due to the developer-

identified symptom pattern. The identification of developer-identified symptoms mainly

struggled due to the incorrect detection of negative sentiment. There were too many

times when a negative sentiment word was not truly describing a symptom, but since

the text contained the word, it was marked as a symptom by our system. Future work

should further analyze the occurrences of negative sentiment in our symptom pattern

matches and examine the specific contexts in which it is not linked to a symptom.

Thus, these instances could be generalized and filtered by our system. Additionally,

negative sentiment could be weighted to increase the confidence that there is enough

negative sentiment present in the text to identify it as a symptom. The overarch-

ing issue with symptom recall was the lack of certain nouns from our system subject

list. Since some system subjects were missing, the negative sentiment attached to the

subject was not detected and we were unable to extract the symptom. To increase

symptom recall, a list of the frequencies of subjects across a set of Stack Overflow

posts should be analyzed. From there, if we notice that a subject appears frequently

in the Stack Overflow domain and is indicative of the system, it can be added to our

system subject list.

26

5.4 Threats to Validity

Our techniques pulled from Stack Overflow questions for the development sets.

The results may not transfer to other Q&A forums; we chose Stack Overflow as it is the

most used and we believe that it is a good representation of most software developer

forums. A study that uses larger development sets might yield di↵erent results. As is

the case with any study that uses human judges to obtain the ground truth, there might

exist cases where the humans may not have accurately answered their portion of the

study. To limit this threat, we ensured that our judges had considerable programming

experience and familiarity with Q&A forums. We also ensured each forum post was

judged by at least three judges, leading us to take the majority opinion. It is also

possible that scaling to more forum posts in our evaluation study would yield di↵erent

results, but we needed to make the human judgement work reasonable to recruit judges.

We plan to expand the evaluation studies in the near future with more participants.

27

Chapter 6

RELATED WORK

To our knowledge, our work is the first that strives to automatically distin-

guish goal and symptom information in Q&A forums. However, there has been related

research on information categorization, recommendation, and mining within forums

and requirement documents. The goal and symptom information that we are identify-

ing, along with the granularity with which we analyze the question content on Stack

Overflow di↵erentiates our work from the others in the field.

Allamanis and Sutton [1] categorized Stack Overflow questions based on pro-

gramming concepts and type of information being sought. Concepts included cate-

gories such as “applets” and “games”. It was also discovered that certain topics, such

as memory management and compatibility issues, do not typically involve the use of

code snippets. Question types represented “the kind of information requested in a way

that is orthogonal to any particular technology.” A major discovery was that ques-

tion type distributions did not vary among programming languages. The insights from

their study were used to perform analyses such as, “what types of questions are most

commonly asked about the Date object in Java?” The words and phrases present in

the question were used to categorize a given Stack Overflow question.

de Souza et al. [4] created a recommendation strategy that leverages the in-

formation in Stack Overflow to “suggest question/answer pairs that may be useful

to the programming task that a developer needs to solve.” The recommendations

were based upon both textual similarity and post score. They classified questions

from Stack Overflow into five categories: how-to-do-it, conceptual, seeking-something,

28

debug-corrective, and miscellaneous. However, only questions classified in the how-to-

do-it category were used for the recommendation strategy. Recommendations consid-

ered both relevance and reproducibility criteria.

Also exploring Stack Overflow recommendation, Ponzanelli et al. [11] developed

Prompter, a “plug in for the Eclipse IDE, which automatically searches and identifies

relevant Stack Overflow discussions, evaluates their relevance given the code context in

the IDE, and notifies the developer if and only if a user-defined threshold is surpassed.”

Since developers have to exit their development environment to find information online,

the information retrieval process can be disruptive. Prompter was able to retrieve and

recommend relevant Stack Overflow discussions within the development environment.

Relevance was determined by evaluating code and textual similarity.

Wong et al. [12] built AutoComment, which automatically generates code com-

ments by analyzing Q&A sites. They used Stack Overflow to develop a set of code-

description matches by taking a code snippet and mapping it to the title and paragraph

preceding the code. This text was identified as a candidate description. Natural lan-

guage processing techniques were used to filter the descriptions and code cloning was

used to match new code to the existing mapping database.

Nguyen et al. [8] developed a “rule-based approach to automatically extract goal

and use case models from natural language requirements documents.” Their approach

could “automatically categorize goals and ensure that they are properly specified.”

Their objective was to ensure that requirements were being properly specified. The

format and diction of requirements specification documents di↵ers greatly from that

of Q&A forums. Requirements documents concern multiple levels including business,

product, and service. Conversely, forums are much more targeted to a specific issue

that a developer is trying to solve.

Lastly, Zhang and Hou [13] explored the automatic extraction of “problematic

API design features from forum threads.” They leveraged the insight that API prob-

lems “tend to be described in negative sentences using negative sentiment words and

29

phrases.” They utilized sentiment analysis and natural language parse trees to iden-

tify negative sentences. From there, these negative sentences and their neighboring

sentences were used to identify desired natural language patterns. This work focuses

on more general developer forums and not question and answer forums, which di↵er in

structure.

30

Chapter 7

CONCLUSIONS AND FUTURE WORK

This thesis investigates whether the natural language text of software developer

Q&A forum posts can be further characterized towards improving mining analyses and

search. We created a lexicosyntactic system for automatic identification of developer

goals and symptoms from Q&A forum posts. Our goal/symptom identification tech-

nique shows promise by being able to classify natural language text with goal precision

of 76.85% and symptom precision of 64.83%. This system can serve as a base sys-

tem for researchers and tool developers who want to utilize a standard XML-based

representation of forum posts, which could be expanded to other kinds of developer

communications. In presenting formats of Stack Overflow search results in original

excerpt form and in a format with goal and symptom headers, 93% of the responses

indicated that the search results presentation format with goal and symptom headers

was the superior option for being helpful in deciding if a search result is relevant. This

provides strong motivation for this work.

In the future, we would like to extend our goal and symptom identification

system in three ways: (1) adding new patterns to handle cases such as “how to”

questions, (2) having the lexicosyntactic system consider tense and negation, and (3)

analyzing the use of negative sentiment and system subjects across Stack Overflow to

assist with pattern generalization. These extra measures would help our system discern

for the vast majority of cases whether natural language text should be classified in a

certain way.

31

BIBLIOGRAPHY

[1] Miltiadis Allamanis and Charles Sutton. Why, when, and what: Analyzing stack
overflow questions by topic, type, and code. In 2013 10th Working Conference on
Mining Software Repositories (MSR), pages 53–56, May 2013.

[2] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. Dis-
covering value from community activity on focused question answering sites: A
case study of stack overflow. In Proceedings of the 18th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’12, pages
850–858, New York, NY, USA, 2012. ACM.

[3] Marie-Catherine de Marne↵e and Christopher D. Manning. Stanford typed de-
pendencies manual. Sep 2008.

[4] Lucas B. L. de Souza, Eduardo C. Campos, and Marcelo de A. Maia. Ranking
crowd knowledge to assist software development. In Proceedings of the 22Nd Inter-
national Conference on Program Comprehension, ICPC 2014, pages 72–82, New
York, NY, USA, 2014. ACM.

[5] Jonskeet. Writing the perfect question. https://codeblog.jonskeet.uk/2010/
08/29/writing-the-perfect-question/, 2016.

[6] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Pro-
ceedings of the 41st Annual Meeting on Association for Computational Linguistics
- Volume 1, ACL ’03, pages 423–430, Stroudsburg, PA, USA, 2003. Association
for Computational Linguistics.

[7] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The stanford corenlp natural language processing
toolkit. Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 55–60, Jun 2014.

[8] Tuong Huan Nguyen, John Grundy, and Mohamed Almorsy. Rule-based extraction
of goal-use case models from text. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, pages 591–601, New
York, NY, USA, 2015. ACM.

[9] Stack Overflow. Stack Overflow. http://stackoverflow.com/.

32

[10] Stack Overflow. Welcome to Stack Overflow–Tour. https://stackoverflow.

com/tour.

[11] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. Prompter: A self-confident recommender system. In 2014 IEEE
International Conference on Software Maintenance and Evolution, pages 577–580,
Sept 2014.

[12] Edmund Wong, Jinqiu Yang, and Lin Tan. Autocomment: Mining question and
answer sites for automatic comment generation. In Automated Software Engineer-
ing (ASE), 2013 IEEE/ACM 28th International Conference on, pages 562–567,
Nov 2013.

[13] Yingying Zhang and Daqing Hou. Extracting problematic api features from forum
discussions. In Program Comprehension (ICPC), 2013 IEEE 21st International
Conference on, pages 142–151, May 2013.

33

Appendix A

LEXICOSYNTACTIC APPROACH WORD LISTS

Desire Verbs

• aim

• anticipate

• aspire

• assume

• attempt

• believe

• can

• demand

• desire

• expect

• expectation

• goal

• hope

• imagine

• intend

• intent

• intention

• interested

• like

• must

• need

• objective

• ought

• picture

• plan

• prefer

• presume

• purpose

• require

• seek

• should

• strive

• suppose

• think

• try

• want

• wish

Negative Sentiment

• abnormal

• abnormality

• accident

• always

• anomaly

• aren’t

• arent

• atypical

• bad

• break

• bug

• can’t

34

• cant

• change

• complication

• conflict

• couldn’t

• couldnt

• crash

• defect

• defective

• deficient

• defunct

• delay

• deviate

• diappear

• didn’t

• didnt

• di�culty

• dilemma

• disable

• discontinued

• doesn’t

• doesnt

• don’t

• dont

• duplicate

• empty

• error

• every

• exception

• exhaust

• expose

• fade

• fail

• fault

• faulty

• flaw

• forget

• freeze

• glitch

• hadn’t

• hadnt

• hasn’t

• hasnt

• haven’t

• havent

• illegal

• imperfect

• inaccurate

• inadequate

• inadvertently

• incapable

• incompatible

• incomplete

• incorrect

• incorrectly

• ine↵ective

• ine�cient

• infinite

• insecure

• insists

• instead

• interrupt

• invalid

• irregular

• irregularity

• isn’t

• isnt

• issue

• just

• lag

• leak

• long

• lose

• lot

• malfunction

• mightn’t

• mightnt

• miscalculate

• miscalculation

• misprint

35

• mistake

• mustn’t

• mustnt

• negative

• never

• nil

• no

• none

• not

• null

• obsolete

• obstacle

• oddity

• only

• opposite

• out

• oversight

• poor

• predicament

• problem

• reject

• setback

• shouldn’t

• shouldnt

• skip

• slow

• stall

• stop

• strange

• stuck

• symptom

• too

• trouble

• unable

• unacceptable

• uncommon

• undefined

• unintended

• unintentionally

• unprotected

• unreachable

• unresponsive

• unsatisfactory

• unsecure

• unstable

• untypical

• unusable

• unusual

• vanish

• void

• warning

• wasn’t

• wasnt

• weren’t

• werent

• won’t

• wont

• worry

• wouldn’t

• wouldnt

• wrong

• wrongly

• zero

System Subjects

• algorithm

• application

• array

• boolean

• button

• char

• class

• client

• code

36

• column

• compiler

• console

• console.log

• data

• database

• environment

• float

• function

• instance

• int

• interface

• it

• item

• library

• loop

• method

• object

• output

• package

• page

• platform

• process

• program

• result

• row

• script

• server

• set

• string

• structure

• system

• table

• thread

• type

• value

• variable

• view

37

