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Symbiotic mutualisms are essential to ecosystems and numerous species
across the tree of life. For reef-building corals, the benefits of their association
with endosymbiotic dinoflagellates differ within and across taxa, and nutrient
exchange between these partners is influenced by environmental conditions.
Furthermore, it is widely assumed that corals associated with symbionts in
the genus Durusdinium tolerate high thermal stress at the expense of lower
nutrient exchange to support coral growth. We traced both inorganic carbon
(H13CO3

–) and nitrate (15NO3
–) uptake by divergent symbiont species and quan-

tified nutrient transfer to the host coral under normal temperatures as well as
in colonies exposed to high thermal stress. Colonies representative of diverse
coral taxa associated with Durusdinium trenchii or Cladocopium spp. exhibited
similar nutrient exchange under ambient conditions. By contrast, heat-exposed
colonies withD. trenchii experienced less physiological stress than conspecifics
with Cladocopium spp. while high carbon assimilation and nutrient transfer to
the host wasmaintained. This discovery differs from the prevailing notion that
these mutualisms inevitably suffer trade-offs in physiological performance.
These findings emphasize that many host–symbiont combinations adapted
to high-temperature equatorial environments are high-functioning mutual-
isms; and why their increased prevalence is likely to be important to the
future productivity and stability of coral reef ecosystems.
1. Introduction
The process of reef-building and the creation of coral reef ecosystems relies on
mutualistic symbioses between calcifying cnidarians and dinoflagellates
(family: Symbiodiniaceae). Through photosynthesis and absorption of waste
nitrogen from the host, symbiotic dinoflagellates transform inorganic carbon
and nitrogen to organic molecules (e.g. carbohydrates, lipids and amino acids)
and transfer these products to support and promote the growth and health of
the coral colony. This exchange of nutrients is influenced by intrinsic and extrinsic
factors, which are important to the overall performance of the mutualism. While
external conditions such as light intensity, temperature, pCO2 and eutrophication
can influence symbiont physiology and alter the relative benefits to the host [1–3],
the identity of the symbiont can have a large effect on how a particular partner-
ship functions under various circumstances. Therefore, partnerships better
adapted to prevailing environmental conditions are fundamental for the pro-
ductivity and persistence of corals and the ecosystem they construct over
geological time scales [4].
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Host–symbiont combinations vary at local and regional
spatial scales [5–8]. The number of different host–symbiont
pairings is influenced by partner specificity, how symbionts
are acquired from generation to generation (i.e. horizontally
or vertically transferred), and by major environmental factors
such as irradiance and temperature [9–12]. This variation
in host–symbiont pairings enhances reef coral resilience
to anthropogenic climate change. Thermal stress from recur-
ring marine heat waves causes many coral–dinoflagellate
mutualisms to destabilize, initiating episodes of mass coral
bleaching where colonies lose most of their symbionts;
and when severe or prolonged, it leads to mass mortality
[13,14]. Despite this sensitivity, there are certain coral–
dinoflagellate combinations that endure episodic marine
heatwaves [5,15–17].

Coral populations thriving in unusually warm near-shore
or lagoonal habitats, tend to harbour symbiont species differ-
ent from what is found in coral communities living in nearby
offshore reefs with cooler open ocean waters [5,8,17,18]. Sym-
bionts in the genus Durusdinium are notably adapted to
warm or widely fluctuating temperatures [19]. Associations
with Durusdinium spp. are often resistant to thermal stress
and colonies hosting these symbionts tend tomaintain stability
at temperatures that are generally 1–2°C higher comparedwith
colonies with other symbiont species [17,20–22]. However, this
thermal tolerance may come at a steep metabolic cost to the
animal, leading to a reduction in its growth and reproductive
capabilities [23–26].

Experiments have shown that Acropora millepora and
A. tenuis from the Great Barrier Reef experience reduced
growth and nutrient translocation when associated with
Durusdinium instead of Cladocopium [23,24,27]. These findings
support the notion that symbioses with Durusdinium may
result in physiological trade-offs for coral colonies with this
symbiont. However, ecological context of coral–Symbiodinia-
ceae associations is shaped by long-term evolutionary
processes that can influence their physiology. In equatorial
regions of the Indo-west Pacific, corals have been co-evolving
with Durusdinium dinoflagellates since the Pleistocene and
these mutualisms are widespread [5,19]. Working on coral
communities in Palau, isotopic labelling was used to quantify
inorganic carbon and nitrogen assimilation by the symbiont
and subsequent transfer to coral host tissue and skeleton in
colonies of diverse reef-building corals associated with either
Durusdinium trenchii or Cladocopium spp. Experimental heating
was then applied to measure the influence of thermal stress
on nutrient transfer. This research aims to investigate the exist-
ence of physiological trade-offs in hosts associated with
Durusdinium trenchii in regions where mutualisms with this
symbiont are abundant. These findings provide further sup-
port for the importance of continued nutrient exchange in the
maintenance of coral–dinoflagellate mutualisms exposed to
thermal stress.
2. Material and methods
(a) Coral collection
Corals from Rebotel Reef on the western barrier reef of Palau
(7.2497°N, 134.2288°E) were collected for offshore samples, while
near-shore corals were collected in Nikko Bay (7.3243°N,
134.4936°E) approximately 28 km away. The corals Acropora
muricata and Coelastrea aspera were sampled in March of 2014
from both locations and used in the initial thermal experiments.
Two additional coral species, Pachyseris rugosa and Cyphastrea
chalcidicum, were sampled from the same locations and treated
the same way in March of 2015. A total of eight colonies of
each species were collected using a hammer and chisel at a
depth of 5–10 m (offshore) or 1–5 m (near-shore) to ensure similar
irradiance conditions, and each colony was sampled a minimum
distance of 10 m from surrounding colonies to better ensure
sampling unique coral genets. While thermal experiments
were conducted in 2014 and 2015 the thermal histories and light
levels indicate similar conditions during this time period and
allowed physiological comparisons across host species and
population origin [28]. Colonies were transported to the Palau
International Coral Research Center (PICRC) and fragmented
into replicate pieces (clone ramets) and placed into a 1200 l flow-
through aquariums supplied with natural seawater and held at
27.5°C. Corals were allowed to heal for a minimum of 2 days
and were then placed on individual 5 cm2 PVC tiles with
marine epoxy (splash zone compound A-788) and returned to
the holding aquariums for 12–16 days to recover before the start
of the experiment.

(b) Experimental system
During the experiment, each treatment system consisted of 12
plastic treatment bins, each with a capacity of 56 l, connected
to a central sump with a capacity of around 1200 l. The seawater
in the sump was either heated or maintained at a control temp-
erature before being sent to the treatment bins. The control
temperature of 27.5°C was maintained using a chiller system,
while high-temperature treatments of 32°C were achieved
using titanium heating elements. All sumps and experimental
tanks were supplied by seawater collected directly off a nearby
pier at a depth of 3 m and then passed through a pressurized
sand filter and aquarium filter pads to minimize particulate
material. Water was distributed to each experimental tank with
the flow-through rate of approximately 120 l h−1 resulting in
complete seawater turn-over time every 15–20 min and mini-
mized any evaporation.

For each treatment, two replicate fragments from each coral
colony were placed in separate treatment bins. In the heated
treatment, the temperature was gradually increased from
27.5°C to 32°C over 4 days, and then maintained at 32°C for an
additional 10 days, totalling 14 days of heating. The control treat-
ment was kept at a constant temperature of 27.5°C throughout
the 14-day experiment (figure 1). All the experimental coral frag-
ments were kept outdoors, and covered by non-UV filtering clear
plastic film (Sun Selector, Ginegar Plastic Products) to protect
them from periodic rainfall. Additionally, a 60% shade cloth
was used to provide a peak midday light intensity of 800 µmol
quanta m−2 s−1, measured with a PAR sensor (LiCor LI-192),
similar to the maximum light levels of natal colony habitats at
collection depth.

To prevent algal fouling, the treatment bins and PVC tiles
were cleaned every other day. Additionally, the coral fragments
were rotated within their bins every other day to ensure even
light exposure and minimize potential tank effects.

At the beginning of the experiment (day 0), one fragment
from each coral colony (if available; n = 4–8) was removed, and
13C and 15N isotope measurements (described below) of
unlabelled colonies were made and included in figures for
enrichment comparison. On day 14 (4 days of temperature ramp-
ing and 10 days at 32°C), coral fragments were removed from
treatments and processed the same as day 0 (figure 1).

(c) Photophysiology
A pulse amplitude modulation fluorometer (Diving PAM, Waltz,
Germany) was used to measure the maximum quantum yield of
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Figure 1. (a) Experimental design for thermal stress experiments. Colonies of
Acropora muricata, Coelastrea aspera, Cyphastrea chalcidicum and Pachyseris
rugosa associating with Durusdinium trenchii or Cladocopium spp. were
exposed to thermal stress and compared to clones maintained at 28°C. (b)
The diagram of the coral–symbiotic dinoflagellate illustrates the three bio-
logical compartments targeted in the experiment: (a) symbiotic
dinoflagellate, (b) coral tissue and (c) skeleton. The experiment used isotopic
enrichment of inorganic carbon (13Ci) and nitrogen (15Ni) by administering
H13CO–3 and 15NO–3 following a 14-day experiment at 28°C and 32°C. Inor-
ganic elements were biologically converted into organic compounds (13Corg

and 15Norg) and elemental uptake, assimilation and translocation of isotopic
elements were quantified.
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photosystem II (PSII, Fv/Fm) 1 h after sunset in three separate
locations using a 0.6 s saturation pulse (saturation intensity
greater than 1000 µmol quanta m−2 s−1). Three intracolony Fv/Fm
measurements were averaged together to calculate the mean Fv/
Fm for each fragment. All data were arcsine transformed to meet
parametric assumptions and evaluated using a two-way ANOVA
comparing the effect of site and temperature.

(d) Symbiotic dinoflagellate densities
Coral tissue was removed using an airbrush (100 psi) and filtered
(0.22 µm) seawater. The resulting slurry, containing coral tissue
and symbiotic dinoflagellates, was homogenized for approxi-
mately 10 s using a Tissue Tearor (BioSpec Products, Bartlesville,
OK, USA). Aliquots (1 ml) were taken from the homogenized
slurry and preserved with 1% glutaraldehyde for symbiotic
algal enumeration. Algal densities were quantified using an
EVOS digital fluorescent microscope from four to six replicate
haemocytometer counts (AO Spencer Bright Line Improved
Neubauer haemocytometer) and normalized to coral surface area
using the aluminium foil method [29] for C. aspera, C. chalcidicum
and P. rugosa, and the hot wax method [30] for the branching
coral A. muricata. The influence of thermal treatments (32°C) on
areal symbiotic dinoflagellate densities were compared to clone
fragments at the control temperature (28°C) and the per cent
change of symbiotic dinoflagellates were arcsine transformed
and evaluated using t-tests.

(e) Inorganic carbon and nitrate uptake
On day 14, control and treatment fragments were placed into
glass beakers containing 400 ml of freshly filtered seawater
(0.45 µm) that was enriched with 0.633 mM of NaH13CO3 (99
atom % 13C, Cambridge Isotope Lab Inc., Andover, MA, USA),
and 1.5 µM of Na15NO–

3 (98 atom % 15N, Cambridge Isotope
Lab Inc., Andover, MA, USA). The background seawater concen-
trations of dissolved inorganic carbon (DIC) were 1863.3 ±
2.9 µM kg−1 [31] and 0.24 ± 0.11 µM of NO–

3 as determined
using a colorimetric assay as described by the US Environmental
Protection Agency (Method 353.2).

Beakers were fitted with false bottoms and continually stirred
with magnetic stir bars. All beakers were held constant at the
experimental temperatures for 5 h (28°C or 32°C) and illumi-
nated by LED lights (Cree Cool White XP-G R5) set to a light
intensity of 500 µmol quanta m−2 s−1. Preliminary measure-
ments determined this irradiance level was sufficient to
maximize photosynthesis (Pmax) and the H13CO3 and 15NO–

3 con-
centrations were sufficient to be used for elemental tracing across
the biological compartments. The isotope range for each labelled
biological compartment were: symbiotic dinoflagellates AP13C
1.73–3.93 or δ13C 579–2656 and AP15N 0.39–1.02 or δ15N 68–
1790, host tissue AP13C 1.39–2.44 or δ13C 48–1241 and AP15N
0.37–0.62 or δ15N 18–696, and coral skeleton AP13C 1.13–1.31
or δ13C 7–183). After isotopic labelling, the fragments were
removed, rinsed in filtered seawater and immediately frozen at
−60°C. All isotope data were tested for normality using the Sha-
piro–Wilks and had equal variance. The impact of symbiotic
dinoflagellates on the uptake and assimilation of 13C and 15N
across biological compartments was assessed by comparing colo-
nies containing D. trenchii with colonies containing Cladocopium
spp. at a temperature of 28° using t-tests. The influence of ther-
mal treatments (32°C) on 13C and 15N uptake and assimilation
across biological compartments, were compared to clone
fragments at the control temperature (28°C) using t-tests.

( f ) Stable isotope analyses
Coral tissue was removed with an airbrush as previously
described, followed by the addition of 0.02% (w/v) sodium
dodecyl sulfate (SDS) and homogenization for 10 s with a
Tissue-Tearor (Biospec Products, Inc). Symbiotic dinoflagellates
and coral tissue were separated by two to three centrifuga-
tion washes (550 g for 5 min) with 10 s homogenization
between each wash [32]. Algal fractions were microscopically
verified to ensure the efficiency of the separation technique and
to confirm the homogeneity and removal of the bulk animal
material [33]. Clean algal cells were pelleted via centrifugation
(5000g for 5 min) and frozen at −20°C until analysed. Accumu-
lated supernatants (animal portion) were microscopically
verified to not contain symbiotic dinoflagellates or skeletal
material and were filtered onto pre-combusted (450°C for 5 h)
glass 0.7 µm filters (Whatman GF/F) until clogged and frozen
at −20°C.

Owing to the relatively high concentration of 13C assimilation
by the symbiotic dinoflagellates during incubations, coral skel-
etons were placed in 100% bleach for 24 h to remove any
remnant organic material from host-algal tissue, rinsed in fresh-
water for 24 h, and dried under low heat. Approximately 20 mg
of CaCO3 was sampled from the corallite and coenosarc regions
of the coral skeleton using a Dremel tool with a diamond
bit. Skeletal samples were stored at −20°C until analysed.
Elemental 13C and 15N analyses were performed on a Carlo
Erba CHN Elemental Analyzer (Model NA1500) coupled to



Table 1. Summary of two-way ANOVA statistics to test the effects of
symbiotic dinoflagellate association and temperature treatment for
maximum photochemical efficiency of PSII (Fv/Fm) on Acropora muricata,
Coelastrea aspera, Cyphastrea chalcidicum and Pachyseris rugosa. Statistically
significant p-values (less than 0.05) are indicated by italics.

source of variation d.f. SS F p-value

Acropora

symbiont (S) 1 0.009 21.788 <0.001

temperature (T) 1 0.020 47.825 <0.001

S × T 1 0.005 11.622 0.002

residual 27 0.011

total 30 0.047

Coelastrea

symbiont (S) 1 0.053 37.744 <0.001

temperature (T) 1 0.045 31.851 <0.001

S × T 1 0.029 20.755 <0.001

residual 28 0.039

total 31 0.166

Cyphastrea
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Thermo Finnigan Delta V Isotope Ratio Mass Spectrometer via a
Thermo Finnigan Conflo III Interface at the University of Geor-
gia, Center for Applied Isotope Studies. Enriched isotopic
data are reported as atom % of the heavy isotope (AP13C &
AP15N) [34].

(g) Genetic identification of symbiodiniaceae
Symbiont genetic analyses followed the same protocols as detailed
in Hoadley et al. [17]. Briefly, symbiont DNAwas extracted with a
modified PromegaWizard genomic DNA extraction protocol [35].
The dominant and co-dominant symbionts inhabiting the exper-
imental coral colonies were identified by two genetic analyses.
First, the internal transcribed spacer 2 region (ITS2) was analysed
using denaturing gradient gel electrophoresis (DGGE) fingerprint-
ing [36,37]. The dominant bands from each distinctive DGGE
fingerprint profiles were excised, re-amplified, and directly
sequenced on an Applied Biosciences sequencer (Applied Bio-
sciences, Foster City, CA) at the Pennsylvania State University
Genomics Core facility. Therefore, putative species were assigned
based on the dominant or co-dominant ITS2 sequence [38].
Second, the nuclear large-subunit ribosomal DNA (LSU) was
amplified and sequenced from a subset of samples using methods
described by Zardoya et al. [39] to verify taxonomic identity.
Symbiotic dinoflagellate taxonomic designation were assigned as
described in Butler et al. [40].
symbiont (S) 1 0.122 89.729 <0.001

temperature (T) 1 0.167 122.960 <0.001

S × T 1 0.093 68.391 <0.001

residual 27 0.037

total 30 0.424

Pachyseris

symbiont (S) 1 0.006 1.811 0.189

temperature (T) 1 0.210 65.158 <0.001

S × T 1 0.020 6.030 0.021

residual 28 0.090

total 31 0.326
3. Results
(a) Host–symbiont associations and bleaching response
We used the common physiological measurements of symbio-
tic dinoflagellate densities and the maximum photochemical
efficiency of PSII (Fv/Fm) to detect a physiological effect of
heating and compare the influence of thermal stress on corals
associating with either D. trenchii or Cladocopium spp.

Overall, Fv/Fm was similar between conspecific corals
with D. trenchii or Cladocopium spp. at 28°C, however,
photosynthetic capacity was suppressed with temperature.
A two-way ANOVA was performed to analyse the effect of
symbiont association and temperature on the maximum
photochemical efficiency of PSII (Fv/Fm). A two-way
ANOVA revealed that there was a statistically significant
interaction between symbiont association and temperature
for each species (table 1). Using post-hoc analyses we
found, with the exception of P. rugosa, that all coral species
with D. trenchii maintained Fv/Fm equivalent to the controls
during the temperature treatment, while Fv/Fm significantly
declined during the temperature treatment in all colonies
that harboured Cladocopium spp., regardless of coral species
(figure 2a–d; Tukey test: p < 0.05).

After heating at 32°C, symbiotic dinoflagellate number
was lower by approximately 50% in most colonies than
in ramets kept at 28°C (figure 2e). Regardless of symbiotic
dinoflagellate association, conspecific colonies lost similar
amounts of their symbiotic algae (figure 2e; t-test: p > 0.05)
One exception to this pattern was for C. chalcidicum that
associated with D. trenchii where symbiont densities
remained the same as control values after heating (figure 2e).

(b) Inorganic carbon assimilation by symbiotic
dinoflagellates

At 28°C, 13C assimilation by symbiotic dinoflagellates
remained largely similar between coral colonies hosting
D. trenchii and Cladocopium spp. (electronic supplementary
material, figure S1; t-test p > 0.05). However, there was a
distinction in 13C assimilation betweenD. trenchii and Cladoco-
pium spp. in C. chalcidicum. Colonies containing D. trenchii
exhibited notably higher 13C uptake compared with those
with Cladocopium spp. (electronic supplementary material,
figure S1; t-test p < 0.05).

After 14 days of heating, inorganic carbon uptake
between control and heated samples was similar in all colo-
nies with D. trenchii, as well as in Cladocopium spp. within
A. muricata (figure 3a,d,g,j). By contrast, inorganic carbon
assimilation was significantly lower at 32°C than at 28°C in
C. chalcidicum with C. patulum and C. madreporum
(figure 3g; t-test: p < 0.001).

(c) Coral photosynthetic 13C tissue incorporation and
skeletal deposition

Host tissue and skeleton 13C incorporation remained largely
similar between coral colonies hosting D. trenchii and Cladoco-
pium spp. at 28°C (electronic supplementary material,
figure S1; t-test p > 0.05). However, 13C was different between
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spp. as a function of temperature. Each connected point is from clone frag-
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colonies harbouring D. trenchii and Cladocopium spp in
C. chalcidicum, where colonies withD. trenchii had significantly
greater 13C assimilation and incorporation in the host tissue
and skeleton (electronic supplementary material, figure S1;
t-test: p < 0.05).

While coral tissue 13C was significantly reduced at
32°C in A. muricata and C. chalcidicum with D. trenchii, this
loss in C-incorporation with heating was even lower in
these corals with Cladocopium spp. (figure 3b,h; t-test: p <
0.05). 13C carbon transfer to host tissue diminished signifi-
cantly relative to controls in all coral species harbouring
Cladocopium spp. except for C. aspera where 13C enrichment
remained similar between the two temperatures (figure 3b,e,
h,k; t-test p < 0.05).

Temperature had no effect on inorganic carbon (13C) skel-
eton deposition in all colonies with D. trenchii (figure 3c,f,i,l).
By contrast, all colonies with Cladocopium spp. held at 32°C
had significantly lower skeletal 13C values than 28°C control
treatments (figure 3c,f,i,l; t-test: p < 0.05).
(d) Nitrate uptake and 15N assimilation by symbiotic
dinoflagellates

At 28°C, 15N uptake by symbiotic dinoflagellates remained
similar between coral colonies hosting D. trenchii and Cladoco-
pium spp. (electronic supplementary material, figure S1; t-test
p > 0.05). However, after the 32°C temperature treatment
there were mixed responses found in 15N incorporation
across coral taxa. No effects of temperature on NO3

– uptake
were detected in A. muricata or P. rugosa regardless of Cladoco-
pium spp. orD. trenchii symbioses (figure 4a,g). During heating,
all C. aspera colonies, regardless of symbiotic dinoflagellate
association, were found to significantly increase the uptake of
NO3

– than clones maintained at the control temperature of 28°
C (figure 4c; t-test: p < 0.001). Cyphastrea chalcidicum colonies
with D. trenchii also had significantly greater symbiotic algal
NO3

– uptake during thermal stress (figure 4e; t-test, p < 0.05);
however, NO3

– uptake significantly declined in C. chalcidicum
with Cladocopium spp. at 32°C (figure 4e; t-test, p < 0.05).

(e) Nitrogen incorporation into coral tissue
There were no differences detected in 15N assimilation in
coral tissue between coral colonies with D. trenchii or Cladoco-
pium spp. at 28°C. Fourteen-day exposure to 32°C decreased
15N assimilation to host tissue in C. chalcidicum and P. rugosa
with D. trenchii (figure 4f,h; t-test: p < 0.05) and no differences
were detected in A. muricata or C. aspera with D. trenchii
(figure 4b,d). Host tissue 15N was significantly reduced in
all heated colonies with Cladocopium spp. (figure 4b,f,h;
t-test: p < 0.05) except for C. aspera, which remained similar
to the control temperature (figure 4d ).

( f ) Symbiotic dinoflagellate identification
All corals from the near-shore habitat were found to contain
only D. trenchii, as confirmed through ITS2 screening and
LSU rDNA sequencing. In offshore corals, C. aspera and
P. rugosa contained C. madreporum, however, in two colonies
of offshore P. rugosa, D. trenchii were observed as the domi-
nant symbiont. Offshore colonies of A. muricata harboured
Cladocopium C21, and most colonies of C. chalcidicum con-
tained C. patulum as the dominant symbiont with a single
colony that contained C. madreporum. The dominant sym-
biont remained consistent in all corals and treatments
throughout the experiment.
4. Discussion
Carbon and nitrogen assimilation and transport in host colo-
nies with D. trenchii and colonies with Cladocopium spp. were
similar at ambient seawater temperatures (figure 3a–h, S1).
This equivalent performance was unexpected given how
past comparative experiments established that thermally
tolerant mutualisms involving Durusdinium came at the
expense of growth and calcification [23–27,41] (but see
Grottoli et al. [42] and Turnham et al. [43]. Consistent with
this observation, comparative studies conducted on corals
from the same reef habitats, which examined colony biomass,
energy reserves, symbiont cell densities and photobiology,
have shown that conspecifics from offshore and near-shore
populations are physiologically similar despite having differ-
ent dinoflagellate genera and species [44,45]. A large
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disparity in functionality between these mutualisms only
emerged once thermal stress was applied (see discussion
below). Ultimately, thermally tolerant mutualisms may also
sustain or promote coral growth under certain environmental
contexts, especially in warm regions where these mutualisms
have long coexisted.

While the efficiency of PSII reaction centers (Fv/Fm)
declined in all colonies after 14 days of thermal stress, photo-
chemical loss was considerably greater in all colonies
harbouring Cladocopium spp. (figure 2a–d). This observation
is consistent with a large body of field and experimental
work showing that colonies with Durusdinium tend to toler-
ate physiological stress better than other partnerships
[5,8,17,20,46]. However, explanations for reduced Fv/Fm can
differ among symbionts. For some, it is a clear proxy for
photodamage [47], but for others, it may correspond with
the temporary downregulation of functional Photosystem II
reaction centres [48,49]. That is why measurement of cell
densities relative to control offered an additional indicator
of a mutualism’s physiological condition.

At 32°C, most mutualisms were under stress, as indicated
by the proportional loss of symbionts (figure 2e). Although D.
trenchii retained a higher Fv/Fm than Cladocopium spp. in con-
specific host colonies, there was no relationship between
symbiotic dinoflagellate identity and algal loss with heating
in three of the tested coral taxa (figure 2). However, one
notable exception was for Cyphastrea, where D. trenchii den-
sities remained similar at 32°C and 28°C (figure 2). These
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findings corroborate previous observations that Cyphastrea
are better able to tolerate high-temperatures than other
coral taxa [50–52]. Such thermal tolerance may be due to a
mutually beneficial relationship with D. trenchii.

The uptake of inorganic carbon and the translocation
of organic carbon are critical processes in the physiology of
reef-building corals. They play an imperative role in enhancing
coral reef productivity and ensuring their long-term persist-
ence [3,53,54]. In this experiment, the ability of D. trenchii in
all hosts, Cladocopium C21 in Acropora and C. madreporum in
Coelastrea to assimilate DIC (i.e. CO2) after 14 days of thermal
stresswere similar to controls. Notable exceptionswere the pre-
cipitous decline, in AP13C in Cladocopium patulum in Cyphastrea
at high-temperatures, whereas carbon fixation increased in
colonies of Pachyseris with C. madreporum (figure 3). Thus,
with one exception, inorganic carbon assimilation was
maintained by most symbiont species.

The application of heat stress revealed significant differ-
ences in nutrient translocation, offering insights into the
stability of host–symbiont partnerships under physiological
challenges. While most symbionts maintained stable carbon
assimilation, host colonies harbouring Cladocopium spp.
(except for Coelastrea) experienced marked reductions in
carbon translocation. This difference between symbiont 13C
and host tissue 13C relative to controls indicates a disruption
in the transfer of photosynthetic products (e.g. carbohydrates)
from symbiont to host. The signal of diminished carbon flow
was further amplified in the skeleton, as colonies associated
with Cladocopium spp. exhibited a significant decline in mean
skeletal carbon assimilation (figure 3). In marked contrast;
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however, skeletal carbon incorporation was unaffected by ther-
mal stress in colonies associatedwithD. trenchii, indicating that
the carbon translocation from symbiont to host tissue and sub-
sequent metabolism into the skeleton remained stable during
thermal stress. This difference between Durusdinium colonies
and Cladocopium colonies has important implications for
understanding how metabolic processes influence differences
in the thermal tolerance of these mutualisms [16,17].

Prolonged temperature stress can also disrupt the transfer
of the symbiont-derived organic nitrogen to the host, further
destabilizing the mutualism [55,56]. Indeed, less 15N was
assimilated into coral tissue during thermal stress regardless
of symbiont identity in all but one coral species (Coelastrea)
that increased 15N assimilation with heating when harboring
D. trenchii (figure 4). The rapid acclimation response to high-
temperature stress, and associated cellular damage, raises the
demand for nitrogen needed for increased production, modi-
fication, and/or repair of proteins and lipids [47,56,57].
Nitrogen assimilation in cells of D. trenchii was either unaf-
fected or increased depending on the host species in which
it occurred (figure 4). Similarly nitrogen assimilation by
Cladocopium spp. varied depending on host identity but
diminished significantly in C. patulum from Cyphastrea
(figure 4). While thermal stress had a minimal or increased
effect on nitrogen assimilation by symbiotic dinoflagellates,
with one notable exception (i.e. Cyphastrea; figure 4e), as
with carbon, nitrogen transfer to the host tissue was more
adversely affected (figure 4b,f,h). These results demonstrate
that D. trenchii often assimilates nitrogen at higher tempera-
tures relative to Cladocopium spp. Assuming the model of
nitrogenmovement by Pernice et al. [58], after rapid acquisition
of inorganic N by the symbiont, the subsequent transfer of
organic nitrogen from D. trenchii to the host remains stable or
is reduced, depending on the host partner (figure 4b,d,f,h).
The physiological advantages of maintaining nitrogen assimi-
lation and transfer may explain, in part, the resiliency of these
mutualisms during episodic heatwaves [3,55]. Excess nitrogen
pollution from agricultural and sewer runoff, however, can
alter important cellular processes, disrupt host–symbiont
nutrient exchange and make corals more thermally susceptible
[59,60], but these external factors do not apply here. Ultimately,
gauging the internal cycling of nutrients between host and
symbiont is vital in assessing a colony’s response and
resiliency to environmental change [3,61,62].

The correspondence between physiological stress and
diminished nutrient transfer between symbiont and host
further supports ideas that disruptions to carbon and nitro-
gen cycling play an important role in the breakdown of
thermally sensitive partner combinations [3,63,64]. The
diminished transfer of carbon and nitrogen from symbiont
to the host, and resulting engergetic deficit, probably has a
destabilizing effect on the mutualism (fig. 4 in [65]). Retain-
ing photosynthetic function and the capacity to transfer
carbon and nitrogen is clearly important for the persistence
of these mutualisms. In this regard, the continued physiologi-
cal function of D. trenchii under thermal duress probably
helps to stabilize its mutualisms with these Pacific
Ocean corals [17].

How do these findings differ from previous conclusions
regarding associating with thermally tolerant symbionts like
Durusdinium, that resulted in reduced productivity [24–27]?
Notably, physiological trade-offs in hosts dominated by
Durusdinium were primarily studied in Acropora colonies
from the Great Barrier reef where these mutualisms are not
as common as in the near-shore reef communities of Palau
[66,67] or where the symbiont was recently introduced [26].
Though widespread throughout the west Indo-Pacific,
the prevalence and diversity of symbionts in the genus
Durusdinium are most abundant in the equatorial regions
around the Indo-west Pacific (e.g. [5]). This diversity appears
to be a product of a recent adaptive radiation during the
Pleistocene [19,68]. Thus, prevalent mutualisms involving
Durusdinium from equatorial lagoonal environments likely
evolved to thrive in reef environments that are inhospitable
to many other host–symbiont combinations. Indeed, for
coralswhere the host and symbiont have co-evolved,metabolic
trade-offs affecting colony productivity is not apparent [43].
5. Conclusion
While these observations are limited to the short-term uptake
and assimilation of C and N during acute thermal stress exper-
iments, it may be concluded that symbioses co-evolved to live
in warm water habitats exhibit high functionality over a range
of thermal conditions. The finding of high nutrient assimilation
and translocation under normal and thermally stressful con-
ditions helps to explain why corals with D. trenchii thrive in
warmer water environments. The lack of apparent physiologi-
cal trade-offs requires further investigation to determine the
seasonal and long-term physiological performance of these
mutualisms and the tracking of fitness proxies such as colony
growth and gamete production. Nevertheless, the data pre-
sented here support the contention that corals associated
with Durusdinium do not necessarily experience significant
physiological trade-offs during non-stressful periods and
retain greater physiological function at increased temperatures.
As mutualisms adapted to thriving in less hospitable reef
environments, the proliferation and spread of Durusdinium
spp. may play an essential role in reef coral persistence and
growth as oceans continue to warm [69].
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