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Abstract

This paper introduces a new mathematical model for a dilute complex fluid based on
a Hookean bead-spring mechanism. The new model couples constitutive equations
with number density and includes bead slippage which manifests itself in higher-
order corrections. In the case of simple shear flows, we compute steady solutions and
determine the linear stability of this model along the flow curve. The linear stability
indicates a selection mechanism for multi-valued regions of the flow curve in stress-
controlled experiments. We find that the model provides a physically reasonable
extension to existing models and exhibits desirable properties such as shear thinning
and shear banding. Finally, it predicts hysteretic behavior in the effective viscosity
qualitatively similar to that which has been observed in laboratory experiments.

1 Introduction

Dilute solutions of polymeric like complex fluids play a central role in many
scientific and industrial endeavors. While there is a wealth of experimental
data, mathematical models of these solutions are only beginning to capture
some of the observed fluid phenomena. These complex fluids are characterized
by strongly varying coupled distributions of polymer mass and stress, and
exhibit both shear-banding and shear-thinning. Investigators have achieved
some success with two-fluid models, and we build on these ideas and include
higher order terms. In particular, the new model couples number density,
velocity gradients and stresses. In doing so, qualitative agreement is obtained
with experiments on micellar solutions including shear-banding and hysteresis
in stress-controlled experiments.

This paper develops and examines a model for an inhomogeneous dilute poly-
mer solution. Of particular interest are stress induced and shear rate dependent
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molecular migration or demixing, and shear banding. The model is based on
a distribution of bead-spring-dumbbells in which the finite extension of the
spring and the slippage of the bead-spring-dumbbell element is captured, the
latter a non-affine motion. The goal is to construct and analyze a consistent
generalization of the Johnson-Segalman model which allows for spatial varia-
tion in the molecular distribution. In particular, we explore the solution space
of the model for shear banding and demixing patterns as seen in micellar solu-
tions. This formulation offers a consistent resolution to non-uniqueness in the
determination of the solutions to the Johnson-Segalman model in the regions
where the flow curve is multivalued.

Beris and Mavrantzas in [4] detail an excellent comparison of their own model
[13] with the models of Bhave, Armstrong and Brown (BAB)[5] and Öttinger
[16], all of which form the foundation of our model. This model bears some
similarities to the work Apostolakis, Mavrantzas and Beris who also consider
a coupled model, but explicitly include two-fluid effects [1]. All of these works
propose constitutive equations coupled with number density, but none of them
include slippage. The model derivation in this manuscript parallels the adjust-
ments of Beris and Mavrantzas [4] to the BAB derivation[5]. The shear rate
dependent terms of the BAB model do not appear in the number density
equation, consistent with the findings of Beris and Mavrantzas [4]. However,
similar terms arise in this model due to the inclusion of slippage. In the infinite
Peclét number limit where finite extension is ignored, the number density and
constitutive equations decouple leading to a Johnson-Segalman model. In the
limit that the slippage parameter ξ goes to zero, the adjusted BAB model is
recovered. The Johnson-Segalman model and its relationship to shear banding
have been examined by a number of authors (for instance [2,7,8,12,17]). The
model presented in this paper will include nonaffine effects.

To explore this model, we study its properties when applied to a simple shear
flow. Both stress controlled and shear rate controlled results are found. The
analysis includes a linear stability analysis of the obtained steady state so-
lutions. The full mathematical model consists of a nonlinear singularly per-
turbed set of coupled partial differential equations, together with boundary
conditions and a nonlocal condition on the number density. We examine so-
lutions for their dependence on the effective viscosity, on the apparent shear
rate, and for the existence of shear banding and hysteresis effects. We find that
this model realistically couples the effective-velocity-shear-rate assumption [6]
with finite extension effects [5].
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Fig. 1. The simple bead-spring model for a polymer molecule in a solute solution.

2 The Model

The flow of the dilute (incompressible) mixture considered here is governed
by conservation of mass,

∇ · v = 0, (2.1)

and conservation of momentum,

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇ ·Π, (2.2)

where v is the mass averaged velocity, ρ the averaged density, and Π, the total
stress tensor. The total stress tensor is written as

Π = pI+ τ , (2.3)

and τ the deviatoric stress is itself decomposed into its polymer and Newtonian
(solvent) contributions

τ = τ p − ηsγ̇. (2.4)

Here

γ̇ = (∇v)t + (∇v) (2.5)

and ηs is the solvent viscosity. To obtain the polymeric contribution to the
stress we consider a distribution of bead-spring-dumbbells as in [6].

The simple bead-spring-dumbbell model is one in which a molecule of polymer
is represented by two equal masses of mass (m) connected by a spring. In this
case, we restrict ourselves to a Hookean spring with spring constant H. In
Figure 1, we see that r is the location of the center of mass of the dumbbell,
and the beads are located at rν for ν = 1, 2. Here rν = r+Rν = r+(−1)νQ/2
where Q = r2 − r1 = R2 −R1 is the connector vector. The probability that
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a dumbbell has center of mass r and νth mass located at rν is given by the
configuration density function

ψp(r−Rν ,Q, t). (2.6)

The density of polymer is given by

ρp = m
∑

ν

∫

ψp(r−Rν ,Q, t)dQ, (2.7)

and the number density of the polymer is given by

n =
∑

ν

∫

ψp(r−Rν ,Q, t)dQ. (2.8)

The finite extension of the molecule is retained analytically in this paper as
in [5] and [4] through Taylor series expanding about the center of a mass and
keeping only linear terms in the expansion of ψ. Thus,

ψp(r−Rν ,Q, t) = ψp(r,Q, t)−
(−1)νQ

2
· ∂
∂r
ψp +O

(

Q∗Q∗

L2
ψp

)

. (2.9)

This is only valid if the quadratic terms are negligible, that is Q∗Q∗/L2 is less
than one where Q∗ is a typical molecule length, and L is a typical physical
length scale.

In order to find the constitutive equation and polymer concentration equation,
it is necessary to know the forces on the dumbbell. The forces on each bead
are given by:

(1) The spring force:

Fν
s = −(−1)νHQ. (2.10)

Note that at equilibrium the dumbbell collapses to a point.
(2) The Brownian force:

Fν
B = −kT ∂

∂rν
(lnψp(r−Rν ,Q, t)), (2.11)

where k is the Boltzmann constant and T is the temperature.
(3) The hydrodynamic force: Here we use a modified Stokes Law for drag as

in the “effective-velocity-shear rate assumption” [6]:

Fν
h = −ζ([[ṙν ]]p − vν − ṽν) (2.12)

where [[f ]]p is the momentum-weighted average over configuration space
as defined in [6,5], ζ is the drag coefficient, [[ṙν ]] is the velocity of the νth
bead and vν the fluid velocity imposed on the dumbbell as evaluated at
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the position of the νth bead.. Here ṽν is taken to be

ṽν = −1

2
ξγ̇ ·Rν = −1

4
ξ(−1)νγ̇ ·Q. (2.13)

This non-affine motion leads directly to a Gordon-Schowalter convected deriva-
tive in the stress equation. This, together with the finite extension of the dumb-
bell, result in a coupled number-density-stress equation system which reduces
to the Johnson-Segalman model as the finite extension parameter goes to zero,
and to an adjusted BAB model, or BM model, if the “slippage parameter” ξ
goes to zero. Larson [10,11] and separately Beris and Edwards [3] relate this
empirical term physically to a measure of the dumbbell’s rigidity and finite
aspect ratio. This manifests itself in a torque on the molecules leading to a
tumbling motion.

Neglecting inertial terms, the total force on the beads is zero, hence [4]

Fν
s + Fν

B + Fν
h = 0. (2.14)

Thus,

[[ṙν ]]
p − vν − ṽν = −kT

2ζ

∂

∂r
lnψp(r−Rν ,Q, t)

− (−1)ν kT
ζ

∂

∂Q
lnψp(r−Rν ,Q, t)− (−1)νHQ

ζ
. (2.15)

Then, using the linear expansion of ψp(r − Rν ,Q, t) in the above, it can be
determined that, in terms of ψp(r, Q, t),

[[ṙ]]p = v(r)− kT

2ζ

∂

∂r
lnψp(r,Q, t), (2.16)

[[

Q̇
]]p

= Q · ∇v − 1

2
ξQ · γ̇ − 2kT

ζ

∂

∂Q
lnψp(r,Q, t)− 2

HQ

ζ
. (2.17)

The diffusion equation for ψp(r−Rν ,Q, t) is [6]

∂ψp

∂t
= − ∂

∂r
· ([[ṙ]]pψp)−

∂

∂Q
·
(

[[Q̇]]pψp

)

. (2.18)

Substitution of our values for [[ṙ]]p, [[Q̇]]p, and the expansion of ψp(r−Rν)
gives, in terms of ψp(r)

∂ψp

∂t
= − ∂

∂r
·
((

v(r)− kT

2ζ

∂ lnψp

∂r

)

ψp

)

×

∂

∂Q

((

Q · ∇v − 1

2
ξQ · γ̇ − 2kT

ζ

∂ lnψ

∂Q
− 2H

ζ
Q

)

ψp

)

. (2.19)
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Finally, the second moment, {QQ} = ∫

QQψpdQ is governed by the equation

{QQ}
3
=
kT

2ζ
∇2 {QQ}+ 4nkT

ζ
δ − 4H

ζ
{QQ} , (2.20)

where

( )3 =
D( )

Dt
−∇vt · ( )− ( ) · ∇v + ξ

2
(γ̇ · ( ) + ( ) · γ̇) . (2.21)

is the Gordon-Schowalter derivative. Setting

σ = −aH {QQ} (2.22)

with a due to the non-affine motion [10], [6] and with

τ p = σ + ankTδ, (2.23)

the equation for the stress, τ p is

τ p + λτ p3 −Dtrλ∇2τ p − λkTa
{

Dn

Dt
−Dtr∇2n

}

δ = −a2nkTλγ̇, (2.24)

where λ = ζ

4H
, is the molecular relaxation time, and Dtr =

kT
2ζ

is the transla-
tional diffusivity of the molecules.

The mass flux of polymer relative to the stream velocity v is

jp = ρp(vp − v)
= m

∑

ν

∫ {[[ṙν ]]− v(rν)}ψp (r−Rν ,Q, t) dQ.
(2.25)

Thus, substituting from (2.15) for [[ṙν ]] − v(rν), the difference between the
bead velocity and the flow velocity, and expanding ψp again, gives

jp = −
kT

2ζ
∇ρp +

mH

ζ
∇ · {QQ}+ m

4
ξ∇ · ({QQ} · γ̇) . (2.26)

The conservation equation

Dρp
Dt

= −∇ · jp, (2.27)

becomes, with ρp = 2nm and substitution for τ p

aDn

Dt
= Dtra∇2n+

Dtr

kT
∇∇ : τ p +

Dtrλξ

kT
{∇∇ : [(τ p − ankTδ) · γ̇]} . (2.28)

Non-dimensionalizing with

r̃ =
r

L
, t̃ =

t

λ
, ṽ =

λv

L
, τ̃ =

τ

navkT
, ñ =

n

nav
(2.29)
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where L is the characteristic length scale, nav = 1
L

∫ L
0 n(y)dy, then dropping

the tildes, gives

a
Dn

Dt
= ε

(

a∇2n+∇∇ : τp + ξ∇∇ : ((τ p − anδ) · γ̇)
)

, (2.30)

τ p + τ p3 − ε∇2τ p −
(

a
Dn

Dt
− εa∇2n

)

δ = −a2nγ̇, (2.31)

where the Deborah number De = λv
L

is the ratio of relaxation time to the
typical flow time and the Peclét number Pe = Lv

Dtr
is the ratio of the convective

material flux to diffusive material flux. Since Pe is typically >> 1, we will use
ε = De

Pe
= λ

L2Dtr
in what follows.

It should be pointed out that the derivation and the resultant equations are
identical to those of the revised [5] as in [4], except for the inclusion of slippage
or tumbling. Essentially, we replace the upper convected Maxwell derivative
with the Gordon-Schowalter derivative and include the additional term in the
number density equation.

This constitutive equation and number density equation for the polymer must
be coupled with conservation of mass (2.1) and inertialess conservation of
momentum

∇ · Π = 0. (2.32)

The boundary conditions used here are those used in [5], namely:

(1) no flux of polymer through the boundaries

n̂ · jp = n̂ · {a∇n+∇ · τ p +∇ · [(τ p − anδ) · γ̇]} = 0,

at the boundaries (2.33)

(2) conservation of polymer,
∫ 1
0 n(y)dy = 1

(3) the molecules are aligned at the wall

τ pw = anw

{

δ − H {QQ} |w
kTnw

t̂t̂

}

. (2.34)

where t̂ is the unit tangent to the solid surface in the flow direction.
Initial conditions are not dealt with in this paper as the flows considered
here are steady state (and time dependent perturbations thereof). Also
the velocity (for shear rate controlled situations) or the stress (for stress
controlled) are given at the solid boundaries. This form is independent of
the nondimensional velocity so increasing the shear rate does not affect
the velocity scale.
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3 Analytic behavior of simple shear flows

For planar shear: 0 < y < 1

v = (v(y), 0, 0), τp(y), τpzx = τpzy = 0 (3.1)

the system is:

ant − ε
[

an′′ + τ ′′pyy + ξ (τpxyv
′)
′′
]

= 0, (3.2a)

τpxx,t + τpxx−ε (τpxx + τpyy)
′′−

(2− ξ)τpxyv′ − εξ (τpxyv′)′′ = 0, (3.2b)

τpyy,t + τpyy − 2ετ ′′pyy+ξ {v′τpxy}−
εξ (τpxyv

′)
′′

= 0, (3.2c)

τpxy,t + τpxy−τpyyv′+
ξ

2
v′(τpyy + τpxx)− ετ ′′pxy = −a2nv′, (3.2d)

τpzz,t + τpzz − ε(τpyy + τpzz)
′′ − εξ (τpxyv′)′′ = 0, (3.2e)

where ( )′ = d
dy

and from inertialess conservation of momentum

τ ′pxy − βv′′ = τ ′xy = 0 (3.3)

where β is ηs/ηp and ηp = navkTλ is the characteristic polymer viscosity scale.

Applying (2.34), the boundary conditions for either the stress-controlled or
shear-controlled problems are

[

an′ + τ ′pyy + ξ(τpxyv
′)′
]
∣

∣

∣

w
= 0 (3.4a)

τpxx|w = anw

(

1− H| {QQ} |w
kT

)

≡ anw (1− d) , (3.4b)

τpyy|w = anw, (3.4c)

τpzz|w = anw, (3.4d)

τpxy|w = 0, (3.4e)

v(0) = 0, (3.4f)

−βv′(1) = τ0xy (stress-controlled) or,
(3.4g)

v(1) = De (shear-controlled).
(3.4h)

where |w refers to boundary conditions at the top and bottom (i.e. y = 0
and y = 1). All quantities on the right are parameters that are provided while
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quantities on the left are unknowns. However, one or more of these parameters
(typically nw) must be chosen so that the nonlocal requirement

∫ 1

0
n(y)dy = 1, (3.5)

is satisfied.

Note that the τpzz equation decouples, that is τpzz can be determined after
the remaining quantities are, or rather the other quantities can be determined
independently of τpzz. So, for the remainder of this paper and in particular
the computations in Section 4, we consider the reduced system and leave aside
τpzz.

ant − ε
[

an′′ + τ ′′pyy + ξ (τpxyv
′)
′′
]

= 0, (3.6a)

τpxx,t + τpxx−ε (τpxx + τpyy)
′′−

(2− ξ)τpxyv′ − εξ (τpxyv′)′′ = 0, (3.6b)

τpyy,t + τpyy − 2ετ ′′pyy+ξ {v′τpxy}−
εξ (τpxyv

′)
′′

= 0, (3.6c)

τpxy,t + τpxy−τpyyv′+
ξ

2
v′(τpyy + τpxx)− ετ ′′pxy = −a2nv′, (3.6d)

τ ′pxy − βv′′ = 0 (3.6e)

The boundary conditions are

[

an′ + τ ′pyy + ξ(τpxyv
′)′
]
∣

∣

∣

w
= 0 (3.7a)

τpxx|w = anw

(

1− H| {QQ} |w
kT

)

≡ anw (1− d) , (3.7b)

τpyy|w = anw, (3.7c)

τpxy|w = 0, (3.7d)

v(0) = 0, (3.7e)

−βv′(1) = τ0xy (stress-controlled) or,
(3.7f)

v(1) = De (shear-controlled),
(3.7g)

and we must also impose the non-local requirement (3.5). If we consider the
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stress controlled system, we can integrate (3.6e) once and apply (3.7f) to yield

−βv′ + τpxy = τoxy. (3.8)

To consider steady state solutions, we set all time derivatives to zero.

Case I: ξ = 0 (revised BAB, BM)

In this case the τpyy equation decouples completely and τpyy can be determined
exactly. In fact,

τpyy = anw

{

e
−y√
2ε + e

y−1√
2ε

}

+O
(

e
−1√
2ε

)

(3.9a)

τpyy ∼ anw

{

e
−y√
2ε + e

y−1√
2ε

}

, (3.9b)

to uniformly asymptotically exponentially small terms. The τpxx equation de-
couples in that it can be solved independently after τpxy and τpyy and v′ are
known since it is not necessary to know τpxx to determine those quantities.
Using (4.1), we see that τpxy = τoxy+βv

′. Substituting this expression together
with (3.9b) into (3.6d) yields

(τoxy + βv′)− εβv′′′ − 2nw

(

e
−y√
2ε + e

y−1√
2ε

)

v′ ∼ 2nw (3.10)

to uniformly asymptotically exponentially small terms. This is, for a given nw

a linear third-order ordinary differential equation (with non-constant coeffi-
cients) to be solved for v subject to the boundary condition

v(0) = 0, v′(0) = v′(1) =
1

β
τoxy if stress controlled (3.11)

v(0) = 0, v(1) = 1 v′(0) = v′(1) if shear rate controlled. (3.12)

Since for this particular case, τpxx is solved for independently, after all other
variables are known, the magnitude of the extension of the molecule at the

wall,
HQ2

0

kT
in BAB notation, has no effect on the velocity or concentration

profiles. Integrating the steady state version of number density equation (3.6a)
(with ξ = 0) we have, using (3.9b) nw = 1

2
(1 +O (

√
ε)). Note that as ε goes

to 0, that is the solution valid away from any boundary layers, in the core,
from (3.10), τ0xy + βv′c ∼ 1.

Thus,

v′c ∼
−1− τ0xy

β
. (3.13)

On the other hand, at the wall,from (3.7e) and (3.9b) v ′w = −τ0xy

β
.
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Clearly these values are not equal, thus the boundary layers provide the mech-
anism to adjust the shear rate from its wall value to its core value. This case
was examined numerically in [5]. The analytic analysis presented here clarifies
that calculation.

Case II: ε→ 0 but ξ fixed 6= 0.

In any singular perturbation analysis, this limit represents the core (or outer)
solution, that is the solution away from boundary/shear layers. In this limit,
to zeroth order, the number density equation decouples and the stress equa-
tions are the standard Johnson-Segalman model (but with the non-affine de-
pendence, a, clearly noted). These equations can be solved giving, where all
dependent variables are expanded as

( ) = ( )(0) + ε( )(1) + · · · (3.14)

τ (0)pxx = − (1 + a)a2v′
2

0 n0
1 + v′

2

0 (1− a2)
(3.15a)

τ (0)pyy =
(1− a)a2n0v′20
1 + v′

2

0 (1− a2)
. (3.15b)

τ (0)pxy = −
a2n0v

′
0

1 + v′
2

0 (1− a2)
, (3.15c)

Here v′0 is determined from the momentum equation

τ (0)pxy − βv′0 = τ (0)xy . (3.16)

If the situation is stress controlled τ (0)xy = τ0xy. If it is shear rate controlled this
is to be determined.

The flow curve for the zeroth order solution, namely (3.15c) substituted into

(3.16) gives a non-monotone curve for τ (0)xy (v
′) if β < a2n(0)

8
, thus there is

ambiguity for given τ 0xy in the multivalued region as to which v′, or linear
combination of v′’s, are selected. Furthermore it is known [19] that given v ′ in
the descending branch the solution is unstable so again, the question of the
selected solution is unclear. This is the standard Johnson-Segalman dilemma.

Note that going to 0(ε) in the number density equation, we find that

an(0) + τ (0)pyy + ξ
(

τ (0)pxyv
′
0

)

= 2anw (3.17)

11



From the previous right-hand side,

n(0) ≡ 2nw (3.18)

For ξ 6= 0, ε 6= 0 a core (or several core like regions) are anticipated which
behave like ε = 0, ξ 6= 0 but for different v′s. These are joined to each other,
and to the wall, by boundary layers O (

√
ε).

Note that as the flow is inhomogeneous across the gap v′ changes with y. The
effective viscosity across the gap is

ηeff =
∫ 1

0

τxy
v′
dy = τxy

∫ 1

0

1

v′(y)
dy (3.19)

(since τxy is constant across the gap).

4 Calculations

The goals of the numerical computations of steady solutions to the simple
shear flow problem were threefold. First, to verify the basic physical proper-
ties of solutions to the new model in parameter regimes where its behavior
should be dominated in subregions by effects already captured by the Johnson-
Segalman model. Second, to use the numerical approximations to explore pa-
rameter regimes where novel effects become important in the model. Third, to
conduct a linear stability analysis and gain insight into the dynamic behavior
of the system.

The numerical solutions for simple shear flow over a range of boundary con-
ditions requires the combination of three basic techniques:

• We use fourth order finite differences and minimize the residual of fourth
order collocation polynomial to solve the basic boundary value problem
given a fixed number density nw at the wall. This method requires an ini-
tial “guess” that is in a basin of attraction for the exact solution to the
discretization of the system for the iterations to converge [9,18].
• We use a secant method to determine the number density at the wall which

satisfies the non-local constant on the number density (3.5).
• We use a variety of continuation techniques to determine solutions over a

range of boundary conditions.
• We use second order finite differences to compute the linear stability of the

system.

We solve the nine-dimensional boundary value problem corresponding to (3.6b)-
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Parameter Value

a 0.8

β 2.41× 10−2

De 1

d 1
8 ,

6
5

ε 10−2

Table 1
Table of parameters used for flow calculations.

(3.6d) plus the integrated momentum conservation equation (3.6e)

−βv′ + τpxy = τoxy, (4.1)

and mass conservation equation (3.6a):

an′ + τ ′pyy + ξ (τpxyv
′)
′
= 0, (4.2)

after application of the no-flux boundary conditions (3.7a). Since no mass
flux conditions are satisfied by the integrated differential equation, we apply
a single Dirichlet condition

n(0) = nw, (4.3)

to make the problem well-posed. Also, we impose boundary conditions (3.7b-
3.7e) plus either (3.7f) for stress-controlled computations or (3.7g) for shear-
controlled computations. Then, a secant method determines a value for nw

that will satisfy the non-local requirement (3.5).

In these experiments, we were interested in regimes where the Johnson-Segalman
model (ε = 0) predicts multiple solutions for a fixed value of τxy. The small
parameter ε is chosen to be small enough to represent a noticeable boundary
layer of thickness

√
ε in the domain, but not so small that the computations

become painful. The physical parameters used for computations discussed in
this parameter are located in Table 1.

In Table 1, the values for β and ε are the same as those primarily used in
[5]. There is still work to be done on clarifying the boundary condition for
the connector Q, thus for the stress, at the wall. BAB chose the value of d
very large, O(300), presumably to represent the stretch of the molecules at
the wall. In fact, we observed in Section 3 that this value affects only τpxx in
their planar shear situation, the size of this parameter had no effect on their
results for n(y), v(y), τpxy(y) and so forth in the BAB model. Mavrantzas and
Beris [14] analyzed the wall effect in simple shear but not including slippage
or stress diffusive effect (that is their analysis was for ξ = 0, ε = 0). They
found that |QQ|w = 0. More precisely they wrote QQ = nc and found that
cyy = 0 at the wall, cxx = 1 at the wall, and that n|w = 0. The boundary
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0 5 10 15 20 25
De

0

0.1

0.2

0.3

0.4

0.5

0.6

-τ
xy

d=1/8
d=6/5

Steady solutions

Fig. 2. Comparison of flow curves with very different boundary conditions for τpxx.
Flow curves with d = 1

8 and d = 6
5 have similar properties.

conditions at the wall in the presence of ξ and ε need more investigation. In our
work we see that in order for the Taylor series expansion of the configuration
distribution function to be valid, we should have dumbbell extensions that are
small compared to the typical length scale in the boundary layer. Thus we
considered d = 1/8, but we also examined d = 6

5
. The latter case is somewhat

in line with the analysis of Mavrantzas and Beris in the specification of the
stresses. As noted above that in their situation n is zero at the wall. They
can have this situation and have the dumbbells aligned because they have
factored the dumbbell connector length as nc. In our case this factorization
is not appropriate, thus choosing d = 6

5
comes closer to a comparator value

for τpxx at the wall. Calculations of the flow curves for the full model with the
parameters in Table 1 at these two distinct values of τpxx show no substantial
differences (see Figure 2 and later Figures 5 and 6.). Choosing d much larger
than O(1), as in BAB, violates the Taylor series validity in the boundary layer
and in the core.

For small values of De in Figure 3, and large values of De on the right side of the
solution curve, the basin of attraction for the boundary value problem solver is
large and the method converges readily if one uses the Johnson-Segalman so-
lution as an initial guess. However, near regions where the Johnson-Segalman
model predicts multiple solutions, it is necessary to use extrapolation methods
either in De or τxy to generate a workable initial guess. Most of the computa-
tions carried out were under shear controlled conditions thus we used De as
the continuation parameter. However, near the folded region of the flow curve
where the slope is close to vertical, we used τxy as the continuation variable
and applied stress-controlled boundary conditions to obtain steady solutions.
Since the Jacobian of the collocation matrix becomes singular when the sta-
bility of the steady solutions changes, we found it necessary to extrapolate
known solutions to generate initial guesses for new solutions when continu-
ing in either v(1) or τxy. A third-order Adams-Bashforth scheme worked well
when continuing through regions where steady solutions change from stable

14
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Fig. 3. Stability of steady solutions for d = 1
8 . The plot on the left shows the

stability of steady solutions when there is a constant shear stress applied along the
top plate. The plot on the right shows the stability of steady solutions where a
constant shear is applied along the top plate. The positions of the steady solution
curves are identical on the left and right, but the stability properties are different.
Johnson-Segalman solutions are shown for comparison. Details of solutions marked
with letters A, B and C are given in Figure 4 and Figure 10. More detailed stability
analysis near D, E, F and G is presented in Figures 7-9. For completeness, the plot
on the right shows the stability of systems where the velocity of the upper plate is
fixed.

to unstable or vice-versa.

The solutions, on the portions of the flow curve that are single-valued with re-
spect to τxy, can be characterized as having a central core region with bound-
ary layers on the left and right sides. The width of the boundary layers is
O(
√
ε) ' 0.1 as predicted. When the imposed shear is small, the boundary

layers are evident in the velocity profile. For large shears on the right side
of the flow curve, one sees a more linear velocity profile as one would expect
with a Newtonian flow, but the boundary layer and core structure still exist
as seen in the velocity derivative. Details of instances of these steady solutions
are shown in Figure 4. Again, the differences between solutions with d = 1

8

and d = 6
5
shown in Figures 5 and 6 are minor. The presence of the bound-

ary layers at small values of v(1) (or τxy) forces the curve to deviate from
the Johnson-Segalman description. Thus, for the same stress τxy the velocity
gradient in the core of the new model solution (A) corresponds to the the
Johnson-Segalman solution (A′) as seen in Figure 3. For greater shear stresses
on the right side, the effect of the boundary layers on the core is diminished
so that new model and the Johnson-Segalman model correspond closely.

The stability of steady solutions for the two different boundary conditions is
also provided in Figure 3. The stability is determined by a linear perturbation
of the dynamic equations (3.6) for simple shear flow about the steady solution,
and solving the corresponding eigenvalue problem for unstable modes. Thus,
we consider the growth or decay of small perturbations to the computed steady
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Fig. 4. Characteristics of solutions in the single-valued regions of the parameter
space when d = 1

8 . Notice that both sets of solutions are characterized by a central
core region with boundary layers near the plates on the top and bottom. These
solutions correspond to positions A and B in parameter space as indicated in Figure
3. Notice that the core region of solution A has the same velocity gradient as the
corresponding point A′ on the Johnson-Segalman curve. While the boundary layer
is hard to see in the velocity profile for solution B because of its magnitude, the
boundary layer and core are easy to identify in v′.

solutions.

n(y, t) = n̄(y) + δñ(y)eλt (4.4a)

τpxx(y, t) = τ̄pxx(y) + δτ̃pxx(y)e
λt (4.4b)

τpyy(y, t) = τ̄pyy(y) + δτ̃pyy(y)e
λt (4.4c)

τpxy(y, t) = τ̄pxy(y) + δτ̃pxy(y)e
λt (4.4d)

v(y, t) = v̄(y) + δṽ(y)eλt (4.4e)16
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Fig. 5. Comparison of solutions at A for d = 1
8 and d = 6

5 . In this region of the
flow curve where the Johnson-Segalman effects dominate the governing system of
equations, solutions differ substantially only in the values of τpxx.

where δ ¿ 1. Substituting (4.4e) into (3.6) and collecting terms that are O(δ),
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Fig. 6. Comparison of solutions at B for d = 1
8 and d = 6

5 . In this region of the
flow curve where the solvent effects dominate the governing system of equations,
solutions differ substantially only in the values of τpyy.

we define the following eigenvalue problem.

λn̄ =εn′′ +
ε

a
τ ′′pyy + Ξ/a, (4.5a)

λτ̃pxx =− τ̃pxx + ε
(

τ̃ ′′pxx + τ̃ ′′pyy
)

+ (2− ξ) (τ̄pxyṽ′ + v̄′τ̃pxy) + Ξ, (4.5b)

λτ̃pyy =− τ̃pyy + 2ετ̃ ′′pyy − ξ (τ̄pxyṽ′ + v̄′τ̃pxy) + Ξ, (4.5c)

λτ̃pxy =− τ̃pxy −
ξ

2
v̄′ (τ̃pxx + τ̃pyy)−

ξ

2
(τ̄pxx + τ̄pyy) ṽ

′+

(τ̄pxyṽ
′ + v̄′τ̃pxy) + ετ̃ ′′pxy − a2(n̄ṽ′ + v̄′ñ), (4.5d)

λRe ṽ =− τ̃ ′pxy + βṽ′′, (4.5e)

where Ξ =εξ

[(

v̄′ +
τ̄pxy
β

)

τ̃ ′′pxy + τ̄pxy

(

ṽ′ +
τ̃pxy
β

)

+
4

β
τ̄ ′pxy τ̃

′
pxy

]

(4.5f)
18
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Fig. 7. Shifts in spectra as steady solutions approach critical parameter values at
d = 1

8 (see Figure 3). We present the fifty eigenvectors with the largest real part.

One should recall that we assume that Reynolds number is very small (Re ¿
1).

Notice that mass conservation in the dynamic equation (3.6a) cannot be inte-
grated once so the first equation is a second order ordinary differential equa-
tion. Therefore, we must return to the no flux condition (3.7a) when we enforce
boundary conditions, and we cannot merely fix nw as we did for the steady
problem. From (3.7g) and (3.7f), the linearized boundary conditions for the
shear and stress controlled experiments are as follows.

añ′|w = −
[

τ̃ ′pyy − ξ (τ̄pxyṽ′ + v̄′τ̃pxy)
′
]

|w, (4.6a)

τ̃pxx|w = añw (1− d) (4.6b)

τ̃pyy|w = añw (4.6c)

τ̃pxy|w = 0 (4.6d)

ṽ(0) = 0 (4.6e)

ṽ′(1) = 0 (stress-controlled) or, (4.6f)

ṽ(1) = 0 (shear-controlled). (4.6g)

To perform the linear stability analysis, the eigenfunction problem (4.5f) is
discretized using second order finite differences. The appropriate system of
boundary conditions ((4.6) with either (4.6f) or (4.6g)) is discretized with
second order finite differences and used to constrain the problem. We found
that 1000 evenly spaced mesh points is more than adequate for resolving the
eigenfunction problem and at this resolution is efficient enough to compute
the spectrum of all the steady solutions over the full set of steady solutions
shown in Figure 3 in roughly an hour on a desktop machine. In all cases,
transitions in stability corresponded to a single real eigenvalue crossing the

19



-0.03 -0.02 -0.01 0 0.01
ℜ(λ)

-0.05

0

0.05

ℑ
(λ

)

Damped oscillations near of instability from position E
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and Figure 7) for d = 1

8 . In this view of the spectra as one approaches position
E (Moving to the right toward E in order © → 2 → 3 → 4), we see a pair of
eigenvalues approaching the imaginary axis and then reversing direction right at
the onset. Similar weakly damped oscillations have been observed in experiments
in this region of parameter space. Notice from the scale that this is a very small
portion of the spectra in Figure 7(left), but we contend the eigenvalue positions
are fully resolved. A view of the corresponding region of the plot in Figure 7(right)
reveals only real eigenvalues.

imaginary axis. The stability of steady solutions for both stress controlled and
shear controlled experiments are presented, but for the rest of this paper, we
examine stress-controlled conditions only. Figure 7 presents the appearance of
the spectra. In Figure 8, we see that while complex eigenvalues never cross into
the right half-plane, the decay timescale decreases as one travels from D to
E, which may correspond to damped oscillations that some have observed in
experiments prior to the loss of stability. This is in stark contrast to behavior
traveling to the left toward F where the eigenvalues close to the imaginary
axis are all pure real and remain this way during the onset of instability. The
eigenvectors corresponding to the onset of instability are shown in Figure 9.
We observe that if we increase the shear stress from position E, we will observe
internal layers in the instability. If we decrease the shear stress from position
F, we note that changes occur in the core and in the top plate velocity. We
speculate that this corresponds to movement toward the far left branch where
v(1) is substantially reduced.

For the stress-controlled experiment, in parameter regimes where there are
multiple steady solutions for a simple shear stress, we find that internal layers
form on solutions corresponding to the unstable branch. The internal layers
become resolvable when the unstable solution is separated on the flow curve
from the stable solutions corresponding to the same shear stress. In Figure
10, we give an example of this behavior where the solution along the unstable
branch is a composition of core regions from the stable branches to the left
and right linked by an internal layer. The three solutions corresponding to
the same shear stress are well separated on the flow curve. The solution at
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Fig. 9. Modes corresponding to the onset of instability at d = 1
8 . We see that if

we move to the left from position E (left plot), the most unstable mode includes
internal layers. If we move to the right from position F (right plot), we see that the
unstable mode involves growth, either positive or negative, in the core region.
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Fig. 10. Numerical solutions along the unstable branch in the stress-controlled exper-
iment correspond to regions where the underlying Johnson-Segalman curve permits
multiple solutions. The unstable solution for the full model contains information
from both stable branches on the left and right. Notice that the slope in the central
layer corresponds to the left branch of the Johnson-Segalman solution and the slope
in the outer layers corresponds to the right branch. These positions are indicated
by the open circles. The internal layer is evident in the plot of v′(y) at right. This
solution corresponds to position C indicated in Figure 3 (d = 1

8).

point C, shown in Figure 10, would be stable in the shear-rate controlled ex-
periment. While we made attempts to find solutions with more internal layers
by using initial guesses with piecewise Johnson-Segalman cores corresponding
to the same stress, these solutions were always attracted to the internal layer
structure shown in Figure 10.

Finally, to explore bulk fluid properties, we compute the effective viscosity of
the flow (ηeff) in Figure 4. The motivation for this calculation comes from an
experiment on a dilute micellar solution where the applied stress on the top
plate is increased in uniform increments. At each stage of the upward sweep,
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Fig. 11. A comparison between experimental and model predictions of shear thinning
behavior. At left, data supplied by Dr. Gareth McKinley from a stress-controlled
experiment on a dilute micellar solution [15]. Measurements are taken at constant
stress increments, first increasing the stress in an upward sweep and then decreasing
the stress in a downward sweep. At right, we perform the same experiment using our
computed data and determine the shear rate and effective viscosity ηeff as defined in
(3.19). Sweeps are performed with constant stress increments of ∆τxy = 1.0× 10−2.
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Fig. 12. Another view of the shear thinning behavior. This is the same data presented
in Figure 4 but ηeff is shown as a function of applied shear rather than strain rate.
The progression of the experiment follows steps 1 through 6. The jumps in ηeff
correspond to hysteresis at steps 2 and 5.

the experimenters measure the strain rate and apparent viscosity. After several
measurements, the process is reversed, again in equal increments, in a down-
ward sweep. We can perform the same operations with our model simulations
to see if this model captures the essential qualities of the laboratory fluid. We
see that the model behavior compares favorably with the experimental data
though it is not hysteretic in v(1). The jumps in ηeff are manifestations of the
the hysteresis in the flow. Another way to see this is in Figure 12 where ηeff is
plotted against τpxy, and the hysteric qualities are apparent.
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5 Summary

This paper presents a model of a inhomogeneous dilute polymer fluid which
contains the Johnson-Segalman model in the homogeneous limit. The results
clarify the solutions in the region of the flow curve which, in the Johnson-
Segalman model, predicts non-uniqueness. In particular, the effect of the cou-
pling of the stress equation to the number density equation is to diminish
the size of the region over which the flow curve is multivalued. In the shear
controlled case the model predicts a small shear rate region in which solutions
exist for two different stresses. Linear stability analysis was carried out for
the steady state base solutions. It was determined that solutions with multi-
ple internal regions (corresponding to C in Figure 3) were unstable in stress
controlled experiments and stable in shear rate controlled experiments. This
instability in the stress controlled regime is quite different from that arising
as you move to the left at F. Further work remains in several distinct areas
including model refinement, numerical solutions to time-dependent problems,
and examination of flows in other geometries, particularly those with curvature
effects.
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