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ABSTRACT

Non-determinism in high performance scientific applications has severe detri-
mental impacts for both numerical reproducibility and accuracy, and debugging. As
scientific simulations are migrated to extreme-scale platforms, the increase in platform
concurrency and the attendant increase in non-determinism is likely to exacerbate both
of these problems. In this thesis, we address the dual challenges of non-determinism’s
impact on numerical reproducibility and on debugging.

To address the numerical challenge, our work investigates the power of mathe-
matical methods to mitigate error propagation at the exascale. We focus on floating-
point error accumulation over global summations where enforcing any reduction order
is expensive or impossible. We model parallel summations with reduction trees and
identify those parameters that can be used to estimate the reduction’s sensitivity to
variability in the reduction tree. We assess the impact of these parameters on the abil-
ity of different reduction methods to successfully mitigate errors. Our results illustrate
the pressing need for intelligent runtime selection of reduction operators that ensure a
given degree of reproducible accuracy.

To address the debugging challenge, our work examines the impact of logical
clock ticking policies on the Clock-Delta Compression record-and-replay technique.
We assess three logical clock ticking policies in terms of the number of out-of-order
messages that result during recording executions under these policies. We examine
the performance of Clock-Delta Compression when using the three ticking policies in
four distinct application scenarios to probe the impact of floating-point workload and
communication intensity on recording performance. Our results illustrate the pressing
need for fine-grained logical clock ticking policies that reduce then out-of-order message

rate of the Clock-Delta Compression record-and-replay technique.



Chapter 1

INTRODUCTION

1.1 Problem Overview and Proposed Solutions

Scientific simulations are increasingly being migrated to extreme-scale platforms
consisting of hundreds (or thousands) of multicore servers equipped with many-core
accelerators. The increasing number of nodes and cores is resulting in an increasing
level of concurrency and ultimately non-determinism in the execution of large scale
applications on these platforms. Table 1.1 shows the concurrency levels in 2010 and

the expected levels in 2023.

’ \ 2010 \ 2023 \ Factor Change ‘
System Peak 2 Pf/s 1 Ef/s 500
Power 6 MW 20 MW 3
System Memory 0.3 PB 32 PB 100
Node Performance 0.125 Gf/s 10 Tf/s 80
Node Memory BW 25 GB/s | 400 GB/s 16
Node Concurrency 12 cpus | 1000 cpus 83
Interconnect BW 1.5 GB/s | 200 GB/s 133
System Size (nodes) | 20 K nodes | 1 M nodes 50
Total Concurrency 225 K 1B 4,444
Storage 15 PB 300 PB 20
Input/Output BW 0.2TB/s| 20 TB/s 100

Table 1.1: Concurrency trends in high performance computing platforms. (Expected
increase in concurrency in bold)

From the perspective of reproducibility of applications, the trade-off between
performance and determinism presents two distinct challenges. First, permitting non-
deterministic ordering of interprocess communication opens the door to numerical ir-

reproducibility via the interaction between reduction order and the non-associativity



of floating-point arithmetic. This is defined in this thesis as the numerical challenge.
Second, non-determinism significantly hampers debugging efforts during appli-
cation development and scaling. Specifically, there exist cases where bugs manifest
only during some executions due to a particular ordering of message receives. If the
application does not guarantee a specific message receive order then this class of bugs
becomes very hard to diagnose and treat since the cost of reproducing them signifi-
cantly increases. Recent work by Sato et. al [26], presents a case-study of the impact
of a non-deterministic bug in terms of developer time and computational resources.

This is defined in this thesis as the debugging challenge.

1.1.1 Overview of Numerical Challenge

Because floating-point numbers have finite precision, no simulation can be com-
pletely free of error. As hardware resources grow, the scientific computation taking
advantage of that hardware has become increasingly complex. A consequence of the
scale of computation is that even small errors at the beginning of the simulation may
eventually compound into significant accuracy problems, which may call into question
the validity of hours and hours of computation. Multithreading complicates matters
by introducing nondeterminism. Not only do errors accumulate throughout a com-
putation, but a scientist may run the same computation several times with differing
results. According to a recent report from the Department of Energy [2], by the end
of this decade the level of concurrency of the supercomputing platforms on which sim-
ulations are executed is expected to increase by a factor of at least 4000. The question
that must be answered is: Can the scientific community trust simulations executed on
next-generation exascale architectures?

In Chapter 2, we assess the effectiveness of several mathematical techniques
to pursue reproducible accuracy on exascale platforms with multithreading hardware
consisting of multicore processors coupled with many-core accelerators. We refer to
reproducibility as “closeness of agreement among repeated simulation results under

the same initial conditions” and accuracy as “conformity of a resulting value to an



accepted standard, or scientific laws” (from Van Nostrands Scientific Encyclopedia).
Rather than focusing on bitwise reproducibility, we study methodologies to minimize
the propagation of errors and, thereby, limit their impact on the results of a simulation,
increasing both the reproducibility of the simulation and the meaningfulness of the

results.

1.1.2 Overview of the Debugging Challenge

Application developers employ a variety of programming techniques to maximize
the scalability of their applications on the increasingly concurrent platforms. In the
case of message-passing applications, one notable technique is the use of non-blocking
point-to-point communication, which permits communication and computation to be
overlapped, leading to an increase in scalability. The price paid however, is the loss
of determinism mentioned above. The program’s interprocess communication does
not behave exactly the same way during each execution. Figure 1.1 shows two high
level examples of non-deterministic executions when the same destinations received the
messages in different orders and when messages are exchanged between two different
destinations. This problem is further exacerbated by use of wildcard receives (i.e.,
permitting a process to receive its next message from any available sender, rather than
a specific one). This non-determinism impedes debugging efforts by vastly increasing
the cost in computational resources and developer time needed to reproduce bugs,
necessitating the use of record-and-replay tools. The question we address is: How can
record-and-replay tools be improved so that they can continue to enable debugging on
future exascale systems.

In Chapter 3, we assess the effectiveness of multiple logical clock ticking policies,
including a novel ticking policy we develop, when used as the underlying ordering
mechanism in Clock-Delta Compression (CDC), a state-of-the-art record-and-replay
technique. We evaluate ticking policies’ effectiveness in enabling CDC’s compression
against a real application in a diverse set of runtime conditions that reflect variability

in floating-point workload and communication intensity that HPC applications exhibit.



PO
Execution 1 P_1
Py

PO
Execution 2 P:1 ’ K
P

Same destinations Different
Different ordering destinations

Figure 1.1: Two examples of non-determinism associated to message passing execu-
tions.

1.2 Thesis Statement

We claim that the massive increase in total system concurrency that will ac-
company exascale systems will significantly amplify the problems of numerical irrepro-
ducibility and impededed debugging that HPC developers currently face. We address
the numerical challenge of reproducibility by illustrating the pressing need for intel-
ligent runtime selection of reduction operators for problematic floating-point inputs.
We address the debugging challenge by demonstrating the pressing need for logical
clock ticking policies that reduce then out-of-order message rate of the Clock-Delta

Compression record-and-replay technique.

1.3 Contributions
When dealing with the numerical challenge, our contributions are as follows:

e We evaluate and compare the reproducibility of four summation techniques ap-
plied to a simulated exascale environment.

e We demonstrate that commonly accepted practices for predicting and mitigat-
ing errors offer incomplete characterizations of the reproducibility of numerical
algorithms when applied in isolation.



e We demonstrate the need for data-aware software to intelligently choose reduc-
tion algorithms to guarantee reproducibility without an unnecessary loss in per-
formance.

When dealing with the debugging challenge, our contributions are as follows:

e We propose a logical clock ticking policy based on floating-point operations that
can be integrated in Clock-Delta Compression.

e We provide a comparison of three ticking policies’ (basic Lamport clock ticking,
wall-time-based ticking, and FLOPs-based ticking) effectiveness under diverse
runtime conditions.

o We demonstrate the potential for extending logical clock ticking policies to adapt
to applications’ non-deterministic communication patterns.

1.4 Thesis Outline

Chapter 2 introduces our work on reproducible numerical accuracy, and presents
results on selection of compensated summation algorithms based on mathematical
properties of summands. Chapter 3 introduces our work on record-and-replay tools,
and presents results on our fine-grained logical clock ticking policy as applied to the
Clock-Delta Compression record-and-replay technique. Chapter 4 lays out the plan
for extending our research on reproducibility in HPC by applying the lessons learned
in Chapter 2 and Chapter 3 to non-deterministic commmunication patterns extracted

from applications.



Chapter 2

THE NUMERICAL CHALLENGE

2.1 Introduction

In this chapter we first summarize both well-known and emerging sources of
numerical inaccuracy and describe techniques for supporting reproducible accuracy.
We then prove the inadequacy of conventional wisdom when dealing with this problem
and provide strong evidence of the need for intelligent reduction operations at the
extreme scale before to conclude the chapter with a short summary of our our learned

lessons.

2.2 Sources of Numerical Inaccuracy

Achieving reproducible numerical accuracy at exascale faces two fundamental
roadblocks: nonassociativity of floating-point arithmetic and nondeterminism in the
order by which operands are reduced. In this section, we provide an overview of the
challenges that arise when nonassociativity collides with nondeterministic reduction.
To that end, we discuss the primary mechanisms by which floating-point error arises
and propagates. We also summarize the existing body of work addressing issues of

nondeterminism at exascale.

2.2.1 Nonassociativity: A Consequence of Finite Precision

Floating-point computations suffer loss of accuracy, compared with the same ex-
pression’s evaluation in exact arithmetic, through two primary mechanisms: alignment
error and subtractive cancellation. Alignment error, by far the most common error
modality, results from summation of values whose exponents differ. Alignment error

is possible whenever two floating-point numbers that differ in magnitude by at least a



factor of two are added [6]. The amount of information about the smaller operand lost
due to alignment error is related to the disparity between the operands’ magnitudes.
The other mechanism is subtractive cancellation, which occurs when very small values
are obtained from the addition of two values with similar magnitude and opposite sign.
Subtractive cancellation, in contrast to alignment error, is not a source of error per se,
but a means by which inaccuracy in low-order mantissa bits of operands is transferred
to high-order mantissa bits of their sum.

A consequence of these inaccuracies is the well-known fact that floating-point
arithmetic operations are nonassociative, so the order in which floating-point numbers
are reduced via an operator (e.g., +, -, *, /) influences the result. For example, let
a=10% b= —10° and ¢ = 107°. In infinite precision, the summation orders (a+(b+c))
and ((a+b) 4 ¢) are equivalent, but even in double-precision floating-point arithmetic,

the two distinct summation orders yield different values.

((a+b) +c) = ((10° = 10°) 4+ 1079) = 10~°
(a+ (b+¢)) = (10° + (=10° + 107%)) = 0

For a small example such as this one, the flaw is clear, namely, that the small-magnitude

value c is “absorbed” by the much larger value b.

2.2.2 High Concurrency: A Consequence of Extreme Scale

Contemporary petascale platforms consist of up to millions of processor cores
that must act in concert to effect large simulations. Even at these scales, the cost of
achieving not only accuracy in floating-point reductions but reproducible accuracy is
felt. The scientific community at large has set its sights on deployment of an exascale
computing platform, and in response the HPC community has identified a canonical
set of challenges to implementing an exascale machine [2]. Although emerging de-
velopments in low-power hardware, advanced systems software, and algorithm design
show promise, it has become increasingly evident that achieving reproducible numerical

accuracy at exascale cannot rely on deterministic reduction. Exascale computations



will simply have to weather perturbations in their reduction trees through algorithmic
means. In this section, we summarize key results demonstrating how variability in
reduction trees induces variability in sums of floating-point numbers. Additionally, we
present a set of findings, commentary, and expert recommendations supporting our
claim that deterministic reduction trees at exascale will be unfeasible.

Throughout this section and the remainder of the chapter, we adopt the view
of a concurrent sum of floating-point numbers at the extreme scale as a reduction tree,
which we define as a full binary tree whose N leaf nodes correspond to floating-point
operands and whose internal nodes correspond to the partial reductions formed in
the process of computing the final result—the root node. Reduction trees can vary in
two ways: shape and assignment of operands to leaves. When we refer to the shape
of a reduction tree, we mean the particular way in which nodes are linked by edges.
Figure 2.1 shows two differently shaped reduction trees: a balanced (parallel) reduction
tree and an unbalanced (serial) reduction tree. For a fixed set of operands, even two
reduction trees with the same shape can yield different values for the reduction if the

assignment of operands to leaves differ between the two trees.

+ +
TN /\
+ + + X4
7 N\ 7 N\ / N\
- - - - + a3
/ N\ / N\ / N\ / N\ / N\
X1 T2 XT3 T4 I5 Tg Iy g 1 T

(a) A balanced (parallel) reduction tree (b) An unbalanced (serial) reduc-
tion tree

Figure 2.1: Two reduction trees at the opposite ends of the spectrum.

The effect of varying reduction tree shape and varying operand-to-leaf assign-
ment is explored in [7]. In their work, a set of eight identical floating-point values
is summed via three differently shaped reduction trees, yielding in each case a differ-

ent value for the sum. Another set of eight floating-point values, six small and two



large, is summed via three reduction trees of the same shape, but with different as-
signments of summands to leaves. Again, all three computed sums disagreed. One key
observation is that the consequences of nondeterministic reduction and floating-point
nonassociativity are felt even for extremely small examples.

On exascale systems the high level of concurrency will not allow the user to
enforce any specific reduction order because doing so is either too expensive or impos-
sible. At the same time variability in floating-point error accumulation may become
so great that debugging is impaired or, worse, fundamentally incorrect results are ac-
cepted. An exascale algorithm must exploit the extreme level of concurrency, minimize
communication (for speed and power reduction), tolerate frequent hardware failures,
and utilize resources as they become available [2], all the while providing some trust
in the computation’s result.

The conflict between achieving reproducible accuracy and achieving perfor-
mance is primarily due to the fact that even on current HPC platforms, communi-
cation costs dominate arithmetic costs. Simply put, the most performant reduction
trees are those that take into account the underlying physical topology of the system,
which means reducing values in an order based on which core produced them, not
necessarily their arithmetical properties. Conversely, the reduction trees that result in
the least error accumulation reduce values based on their arithmetical properties, not
their position in the topology of the system. Recently, Balaji and Kimpe [4] showed
not only that topology-aware reduction trees for MPI collective operations outperform
fixed-reduction trees but that the performance advantage of allowing the reduction
tree to conform to the system topology, as opposed to a specified ordering of partial

reduction, increases with the number of cores.

2.3 Mathematical Techniques
In response to the challenges posed by the nonassociativity of floating-point
summation and the nondeterminism at the extreme scale, mathematical techniques

can be applied to mitigate the degree to which computed sums exhibit sensitivity to



reduction order. Lower sensitivity results in increasingly reproducible results. Tech-
niques can range from simple fixed-reduction orders to more sophisticated prerounded
algorithms. In this section we provide a general overview of the techniques; however,
in the rest of the chapter, we consider only the compensated summation algorithms
(Kahan and composite precision) as well as the prerounded algorithms for our studies

because they are the only methods that can be feasibly applied at the exascale.

2.3.1 Fixed-Reduction Order

To apply fixed-reduction order, we need to ensure that all floating-point oper-
ations are evaluated in the same order from run to run. Two major problems exist
for this strategy. The obvious problem is that ensuring that the reduction proceeds
according to a user-determined reduction tree incurs massive communication and syn-
chronization costs. Additionally, determining exactly which reduction tree achieves
minimal error for a given set of summands is nontrivial. Conventional wisdom sug-
gests summing the values in ascending order if they all have the same sign, and in
descending order of magnitude if they are not. The first case is rare, however, and
the second case assumes that no error beyond initial representation error is present
in the summands; otherwise it is far more vulnerable to catastrophic cancellation. In
summary, fixing the reduction order is difficult to do correctly where it is possible, but

the salient point is that it cannot be done in a cost-effective way at exascale [10].

2.3.2 Interval Arithmetic

Techniques based on interval arithmetic replace floating-point types with custom
types representing finite-length intervals of real numbers. The actual value of the
reduction is guaranteed to lie within the interval. The width of the interval increases
with the uncertainty of the computation. While the techniques are reproducible by
design, they also cause large slowdown and are not suitable for applications needing

many digits of accuracy.

10



2.3.3 High-Precision Arithmetic

Perhaps the most obvious technique, and certainly the most popular in real ap-
plications, is to use higher-precision floating-point types. To our knowledge, the earliest
work directly addressing the issue of numerical reproducibility [14] demonstrates the
use of the double-double precision floating-point type in a critical section of code to cur-
tail variability in a global sum. In that work, the goal of using multiple floating-point
types was explicitly to achieve reproducible results. Parallel to that effort, signifi-
cant progress has been made in the field of automated floating-point precision tuning
(e.g., [24]). Precision tuning is an attempt to reduce precision where possible while
maintaining a prescribed degree of accuracy. While one can achieve greater repro-
ducibility by pursuing greater accuracy, the use of high-precision arithmetic can result
in memory-demanding algorithms. By increasing the size of floating-point variables in
most numerically sensitive parts of the algorithm, for example with manual changes
made by an expert or by some form of analysis, we can reduce the memory require-
ments. Still the technique relies on either human experts or other software and thus
is probably unsuitable for many of the use cases discussed in the recent DOE exascale

report [2].

2.3.4 Compensated Summation Algorithms

To compute the sum of n values, we obtain n — 1 partial sums in the process.
For each of these partial sums, the magnitude of error can be estimated. Based on that
estimate, an attempt can be made to compensate for that error by adding an error
term to each partial sum. Compensated summation is a relatively old technique, hav-
ing been introduced by Kahan in [17]; but families of more sophisticated compensated
summation algorithms have been developed, such as composite precision (CP) summa-
tion [28]. In Kahan’s algorithm the estimated error is added back into the sum at each
step. In CP, the error summation is kept and propagated as each of the summations

are performed and added back in only at the end.
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2.3.5 Prerounded Summation Algorithms

More recently, an approach called prerounded summation has emerged for repro-
ducible and accurate summation. The common strategy used by this type of algorithm
is splitting the operands into “high-order” and “low-order” parts with the property
that the high-order parts can be summed irrespective of summation order and the low-
order parts can be neglected, or recursed upon, for higher accuracy. The algorithms
proposed by Demmel and his group are integrated into the ReproBLAS library [11],

which at this time is undergoing active development.

2.4 Inadequacy of Conventional Wisdom

The management of reproducible numerical accuracy is closely related to the
task of estimating and predicting error accumulation. Three common approaches exist,
typically used in isolation, to quantify and mitigate error accumulation. Two of the
approaches can be broadly classified as techniques for error estimation: using worst-
case error bounds and attempting to track or avoid subtractive cancellation. The third
approach is the use of summation algorithms that are believed to be inherently less
sensitive to variability in the reduction tree. We emphasize that these approaches
have significant value. However, we demonstrate that the use of any one approach, in
isolation, will not guarantee the reproducibility desired without a potentially significant

loss of performance.

2.4.1 Using Analytical Error Bounds

The analysis of the error for a single floating-point sum can be extended to pro-
duce a worst-case error bound for the reduction of multiple floating-point values. For
[EEE-compliant implementations of floating-point arithmetic, we have the following
bound on the roundoff error for a single operation. Let x,y be floating-point numbers,
let £1(x + y) be their rounded sum according to a given rounding rule, and let (z + y)

be their exact sum:

fllz+y)=(z+vy) (1+9)
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where |6| < w where u is the unit-roundoff and may be written v = 187, where
B is the base and p is the number of mantissa bits of the representation of x and y.
Equivalently, if we let z denote the exact sum x4y, we obtain a bound on the absolute
error |f1(z + y) — z| < u. With some algebra, one can prove an upper bound on the
error in a sum of n floating-point numbers. We do not include the proof here (it may
be found in [15]), but we state the result. Let xy, ..., z, be floating-point numbers, let
z denote their exact sum, and let Zn: x; denote their sum in floating-point arithmetic.

=1
Then we have the following upper bound on the absolute error in the sum:

n n
| D xi— 2z <n-u- ) x|
=1 i=1

Using analytical or statistical worst-case error bounds causes overestimation of
the errors. Figure 2.2 shows an empirical case study in which we measure the error
magnitudes for 10,000 values sampled in the range (—1000,+1000) and summed by
using 10,000 different summation orders. The figure also shows both the analytical
and statistical worst-case error bounds. Both error bounds significantly overestimate
the error magnitude. At the same time we observe the large range of measured errors
obtained for the same set of values just by randomly shuffling the order in which the

terms are summed.

2.4.2 Tracking Cancellations

When considering sets of summands with both positive and negative values,
the potential for catastrophic cancellation arises in the computation of the sum. This
numerical phenomenon can result in large relative errors in both the partial and fi-
nal sums, leading to the intuitively appealing perspective of achieving reproducible
accuracy by structuring reductions to avoid cancellation.

Cancellation in general refers to the scenario where the sum of two floating-point
values has a smaller exponent than both of the summands. In order to subtract one
floating-point number from another, their binary points are aligned and the mantissa

of their difference is determined by subtracting the mantissas of the operands bitwise
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Figure 2.2: Empirical study of error magnitudes and worst-case error bounds for
10, 000 summations of 10,000 values randomly sorted.

and then renormalizing the result. The effect of the renormalization process is that the
lower-order bits of the operands determine the higher-order bits of the result. If both
summands are exact in the sense that their mantissa bits are not carrying the error
from previous computations—as is almost never the case—then their difference can be
considered accurate. However, if the low-order bits of the operands are inaccurate due
to alignment error, many or all of the mantissa bits of the difference of the operands
may be inaccurate. This is the “catastrophic” case.

We emphasize, however, that cancellation does not in and of itself cause error to
accumulate. Rather, it reveals error that has already accumulated in the operands. In
a sense, relative error can increase because of catastrophic cancellation as uncertainty
in less-significant bits of the operands’ mantissas is transferred to uncertainty in the
most significant bits of the result’s mantissa. Nevertheless, the number of cancellations

is not a reliable indicator of the overall problem.
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To prove this claim, we generate a counterexample with a set of 1,000 floating-
point numbers uniformly distributed in [—1, 1]. We compute the sum of these numbers
using 100 distinct summation orders and determine the error for each order. We assess
cancellation for each order using the numerical library CADNA [16]. CADNA uses the
CESTAC method to identify instances of cancellation in a sum and, for each instance,
estimate the difference between the number of accurate digits in the operands and the
number of accurate digits in the result. In this sense, a cancellation resulting in the loss
of four digits of accuracy is more severe than a cancellation resulting in the loss of only
two digits. Figure 2.3 shows the cancellation counts and error magnitudes for several
summation orders of the set of interest for our counterexample. Each summation order
is represented by five bars, four showing the number of cancellations resulting in the
loss of one, two, four, and eight digits, respectively, and a fifth bar showing the error
magnitude, scaled for ease of viewing. We observe that the number of cancellations,
at any of the considered severities, does not consistently predict error magnitude.
In particular, consider summation orders 2 and 4. Order 2 has about 5X as many
digit cancellations as order 4, but only half the error. This result lends credence to
the view that although it is tempting to view “keeping track of cancellations” as a
valid strategy for managing error and ensuring reproducibility, there is not a simple
correspondence between instances of cancellation and error magnitude. Rather, the
relationship between cancellation and error depends on knowledge of how much error
has already accumulated in the operands involved in the cancellation, a quantity whose

estimation is impeded by the previously discussed loose error bound.

2.4.3 Choice of Summation Algorithm

Apart from the standard iterative summation algorithm, we examine other sum-
mation algorithms that exhibit reduced sensitivity to variability in the reduction tree.
However, each of these algorithms incurs a certain performance penalty relative to
the standard summation. Standard summation is the cheapest and least complex.

Kahan’s compensated summation, then composite precision summation, and finally
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Figure 2.3: Empirical study of cancellations vs. error magnitude for different sum-
mation orders.

prerounded summation are expected to progressively provide more accuracy at the ex-
pense of performance. To assess this performance impact, we measure the execution
times of a case study designed to emulate scenarios in scientific computing in which
partial data is locally generated on multiple processes and then is globally reduced
across the processes. Specifically, on each process, we generate a chunk of a vector of
values of length 10° from a series that is known to sum to zero under exact arithmetic.
We locally reduce these values using each of the four summation algorithms: in the
case of Kahan and composite precision, we use the summation operators in [23] and
in the case of prerounded summation, we use the dIAddd operator provided in [22].
Finally, we globally reduce the local sums by using MPI_Reduce with custom reduction
operators for Kahan, composite precision, and prerounded summations. To avoid time
variations due to network contention we run our tests on a single dedicated 48-core

AMD node. Each tests is repeated 20 times with a warmed cache. Figure 2.4 shows
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the average execution times and Figure 2.5 shows the performance penalties associated
with more-reproducible summation. The latter figure confirms the proposed ranking

of the summation algorithms in terms of performance expense.
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Number of Processes

Figure 2.4: Comparison of execution time to sum 10° terms for standard summation
(ST), Kahan’s compensated summation (K), composite precision sum-
mation (CP), and prerounded summation (PR).

We argue that applying a judicious mixture of these algorithms, as opposed to
uniformly applying a single technique, is necessary for achieving numerical reproducibil-
ity to the degree required by an application, for a cost acceptable for that application.
Figures 2.6(a) and 2.6(b) support this claim by showing the relative sensitivity of the
three summation algorithms: Kahan’s compensated summation (K), composite preci-
sion summation (CP), and prerounded summation (PR). For a fixed set of data we
generate multiple reduction trees of the same shape but with different assignments of
operands to leaves. We construct the set of summands to have mathematical prop-

erties that render its reduction especially prone to both alignment error and loss of
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Figure 2.5: Performance losses of Kahan’s compensated summation (K), compos-
ite precision (CP), and prerounded (PR) summations compared to the
standard summation (ST).

accuracy due to cancellation. For each reduction tree, we compute the sum using each
of the four algorithms. By plotting the error magnitude, we see that as a progressively
greater amount of computation is invested in compensating for roundoff error, the sum

becomes less sensitive to the varying reduction tree.

2.5 Exploring the Reproducibility Space

Previous work [7, 4] found that reduction tree shape and assignment of operands
to its leaves (or threads) can have a profound effect on the concurrent sum of n floating-
point numbers, even when the operands themselves are subject to minimal alignment
error and have the same sign avoiding cancellation. We build the work in this chapter
on this previous work by targeting a much larger reduction scale and investigating the

impact of four independent parameters on the variability of a sum when the reduction
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Figure 2.6: Empirical study of relative sensitivity of three summation algorithms:
Kahan’s compensated summation (K), composite precision summation
(CP), and prerounded summation (PR). Note that (a) zooms into (b).

order is non-deterministic. The four parameters we consider are the condition number,
the dynamic range, the level of concurrency, and the reduction algorithm. We present
three kinds of results. First, we examine the sensitivity to variations in the reduction
tree of four summation algorithms at increasing levels of concurrency. Second, we
study the impact of concurrency, condition number, and dynamic range on reproducible
numerical accuracy. Third, we provide evidence of the need for selecting application-

aware reduction algorithms.

2.5.1 Experimental Environment and Parameters

Building on the results of small nondeterministic reduction trees established
in [7, 20], we consider reduction trees at the size expected for exascale systems con-
sisting of floating-point operands reflective of those actually reduced in simulations.
Since an exascale system is not available, we emulate the reduction process with n

threads, each computing one of the n partial sums. We consider two tree shapes at
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opposite ends of the spectrum: a completely balanced (see Figure 2.1(a)) tree and
a completely unbalanced (see Figure 2.1(b)) tree. For each tree shape, we generate
distinct reduction trees by randomly assigning operands to leaves. We also focus on
sets of floating-point summands whose mathematical properties are less amenable to
reproducible summation. We characterize sets of floating-point values by their sum
condition number and dynamic range. These are intrinsic properties of the set of val-
ues; they are independent of any imposed ordering. For a set of floating-point numbers

{z1,...,x,}, the sum condition number is defined as

= (szw)/ >

and the dynamic range is defined as

dr = exp(max(|z;|)) — exp(min(|x;])),

where exp(x) is the value of the exponent in the representation of x. If the dynamic
range of two numbers is larger than zero, then alignment error will occur. For this
reason, we use the dynamic range of a set of values as a rough estimator of alignment
error. The condition number does not correspond to a single mechanism by which error
accumulates. Instead, it describes how sensitive the final sum is to small errors in the
partial sums.

Table 2.1 shows small sample sets of values presenting dynamic range dr equal to
0, 8, and 16 as well as condition number k equal to 1, 1000, and co. Note that dr equal
to 0 means “all exponents are the same” and not that the numbers are large or small; on
the other hand a larger dr, for example 8 or 16, means that a larger discrepancy exists
between the largest and smallest exponents. In other words, the sign on the summands
makes no difference, and the sum of summands makes no difference. A condition
number equal to 1 means “all values in sum have the same sign,” while a condition
number number infinity means “the sum of all the values is 0.” In [7] the operands
are well-conditioned; they have k = 1 (the best possible condition number) and, when

varying tree shape, have dr = 0. We instead focus on ill-conditioned inputs with high
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Table 2.1: Example of sample set of values with specified dynamic range, dr, and
condition number, k.

Sample Set of Values dr k

{1.23e+32, 1.35e+32, 2.37e+32, 3.54e+32} 0 1
{1.23e-32, 1.35e-32, 2.37e-32, 3.54e-32} 0 1
{-1.23e+16, -1.35e+16, -2.37e+16,-3.54e+16} | 0 1
{2.37e+16, 3.41e+8, 4.32e+8, 8.14e+16} 8 1

{3.14e+32, 1.59¢+16, 2.65¢+18, 3.58c+24} | 16 | 1
{2.5056+2, 2.5e+2, -2.495¢+2, -2.5e+2} 0 | 1000
{5.00e+2, 4.99999¢-1, 1.0e-6, -4.995¢+2} 8 | 1000

{5.00e+2, 4.99...99¢-1, 1.0e-14, -4.995e+2} | 16 | 1000
{3.14¢+8, 1.59¢+8, -3.14e+8, -1.59¢+8} 0| o

{3.14e+4, 1.59¢-4, -3.14e+4, -1.59¢-4} 8 | oo
{3.14e+8, 1.59¢-8, -3.14e+8, -1.59¢-8} 16 | oo

dynamic range because reality is not so rosy. For example, N-body simulations [3]
involve reductions of floating-point values that are ill-conditioned; both £ and dr can

frequently be very large.

2.5.2 Sensitivity of Summation Algorithms

To examine the sensitivity of summation algorithms to variability in the reduc-
tion tree, we generate and reduce two sets of summands constructed to have the exact
sum of zero and dynamic range of 32. One set has n = 8K values, and the other
has n = 1M values. These sets of values are more prone to both alignment error and
catastrophic cancellation than are those studied in [7]. They are also more reflective of
the values that may arise in simulations (e.g., when the net force on a particle is close
to zero).

Figures 2.7(a)-(h) show the distribution of error magnitudes for sums com-
puted by using varying reduction trees for the four summation algorithms of interest
in this chapter: the standard iterative summation algorithm (ST); Kahan’s compen-
sated summation algorithm (K); the composite precision summation (CP), which can
be considered an enhanced form of compensated summation; and the prerounded sum-

mation (PR), which offers guaranteed bitwise reproducibility at a user-specified level of
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accuracy. We consider two types of reduction trees: completely balanced, with results
shown in Figures 2.7(a), (b), (c), and (d), and completely unbalanced, with results
shown in Figures 2.7(e), (f), (g), and (h). For each tree type, we consider both smaller
levels of concurrency (8K leaves in the tree) and higher levels (1M leaves in the tree).
The boxplots in the figures are obtained by considering 100 distinct reduction trees
with the same shape but randomly permuted assignments of the values to leaves. Note
that Figures 2.7(b), (d), (f), and (h) provide a zoom-in into Figures 2.7(a), (c), (e),
and (g), respectively.

The effect of nondeterminism in the reduction tree is exhibited in Figures 2.7.
For a given summation algorithm, the distribution of data points and width of the
box indicate how much the sum tends to vary when the overall shape of the reduction
tree is constant but the arrangement of summands to its leaves is variable. Within the
subfigures, we see that although Kahan summation tends in general to produce more
reproducible sums than standard summation, only composite precision and prerounded
summations offer reproducible numerical accuracy at an acceptable level. Across a row
of subfigures, we see that as the level of concurrency rises, the absolute error in the
sum rises as expected. However, by comparing results across a column of subfigures,
for example, the ST data from Figure 2.7(a) and the ST data from Figure 2.7(e), we
see that much more variation in the sum occurs when the tree is unbalanced than when
it is balanced for the standard summation algorithm. To cope with intermittent faults
and inconsistently available resources, we expect that the reduction trees employed
by an exascale system will vary not only in terms of arrangement of data among
their leaves but also in overall shape. We conclude that because of the difference in
reproducibility observed for differently shaped reduction trees, exascale applications
will need to maintain awareness of the degree of fluctuation in reduction tree shape

and employ more robust reduction operators accordingly.
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Figure 2.7: Error distributions for the four summation algorithms considered in this
chapter for balanced and unbalanced reductions: three at a smaller (8K
leaves) and one at higher (1M leaves) levels of concurrency.
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2.5.3 Effect of Concurrency, Conditioning, and Dynamic Range

For a fixed level of concurrency, the mathematical properties of the summands
can have a significant impact on the sensitivity of the sum to variations in the reduction
tree. In the previous section, we considered a set of values with a fixed condition number
k and dynamic range dr. In this section, we examine the effects of varying k and dr at
a fixed level of concurrency n = 1M ; varying dr and n at a fixed k; and varying k& and
n at a fixed dr. We represent the spaces of (k,dr), (n,dr), and (n, k) as a grid of cells,
where for each cell we generate a set of floating-point values with the cell parameters.
The degree to which these sets of values can be summed reproducibly is tested. For all
sets of summands under consideration, we measure their potential for irreproducibility
by computing their sum with 1,000 distinct, balanced reduction trees obtained by
permuting the assignment of summands to leaves. As in the our previous experiment
we test four summation algorithms. However, we display results only for the first three
because the composite precision and prerounded summations performed identically for
all sets of inputs considered. Once all the sums have been computed for a cell, the
error in each sum is calculated with respect to an accurate reference sum, which we
compute in quad-double precision using the GNU MPFR high-precision library. To
visualize the level of irreproducibility observed, we compute the standard deviation of
the errors and shade the cell according to that value. Figure 2.8 illustrates the process
in a visual (and more intuitive) way.

Figure 2.9 shows how position in the space of possible (k,dr) values influences
the variability of a sum at a fixed level of concurrency. The darker cells toward the top
and right of the two leftmost grids indicate sets of summands whose sums varied much
more than the level of variation observed for sets of summands with lower condition
number. The darkest cell in the standard summation grid is anomalous but likely due
to particularly severe subtractive cancellation, since its condition number is large. The
rightmost grid shows that for all considered sets of summands, the result according to
the composite precision summation did not vary with changes in the reduction tree.

Figure 2.10 presents the impact of dynamic range for a fixed condition number.
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Figure 2.8: Overview of the grid with its cells used to study the effect of concurrency,
conditioning, and dynamic range.
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Figure 2.9: Standard deviation errors for standard summation (left), Kahan summa-
tion (middle), and composite precision summation (right) for different
(k,dr) values and fixed concurrency n.

For these grids, each cell’s summands have condition number £ = 1 so that the ability
of dynamic range to estimate alignment error can be assessed. Note that the scale by
which the cells are shaded for these grids is not the same as for the grids examining the
(k,dr) or (n, k) spaces. There is a tendency for high-concurrency, high-dynamic-range
cells to exhibit greater variability; but the most valuable lesson from these visualiza-
tions is that dynamic range exerts much less influence over variability of the sums than
does the condition number, as seen in Figure 2.11. Here, we observe a strong rela-

tionship between high variability of sums and sets of summands with high condition
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number. These results suggest the need for applications to maintain awareness of the
mathematical properties of sets of floating-point values generated at runtime, and if
the reduction tree is expected to change from run to run, to select reduction algorithms

that take those mathematical properties into account.
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Figure 2.10: Standard deviation errors for standard summation (left), Kahan summa-
tion (middle), and composite precision summation (right) for different
(n,dr) values and fixed condition number k.
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Figure 2.11: Standard deviation errors for standard summation (left), Kahan summa-
tion (middle), and composite precision summation (right) for different
(n, k) values and fixed dynamic range dr.
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2.5.4 Intelligent Selection of Reduction Algorithms

Techniques such as compensated summation can reduce the amount of variabil-
ity observed in repeated summation when the summation order changes from run to
run. However, application developers are faced with the challenge of selecting the sum-
mation algorithm that gives them the level of reproducibility and accuracy required by
their application. At exascale, judicious selection of reduction algorithms will be vital
so that application-specific reproducible numerical accuracy can be achieved at toler-
able cost. In contrast to the old notion of bitwise reproducibility, application-specific
reproducibility requires developers to specify an upper bound on the amount of vari-
ability in the values of floating-point reductions that can be tolerated while maintaining
the trustworthiness of the application’s output.

A set of floating-point values occupies a position in a complex parameter space:
the number of values, reduction tree, condition number, and dynamic range all exert
influence over which reduction algorithm can cost-effectively achieve a specified level
of reproducibility. Our data suggests that in order to avoid exceeding a fixed level of
variability, if one cannot control the reduction tree, it may be possible to use standard
summation when values are uniform and well-conditioned and to adaptively switch to
a more robust summation algorithm if the values to be reduced become less uniform
or less well-conditioned. We argue that unlike attempting to achieve reproducible nu-
merical accuracy by additional data movement, as would be required to fix a reduction
tree, estimable quantities such as condition number and dynamic range can guide run-
time selection of a reduction operator with the appropriate performance /reproducibility
tradeoff for the application at hand. In Figure 2.12, we show the (k, dr) grid for several
error variability thresholds. Here cells are shaded based on the cheapest summation
algorithm that achieves a given degree of reproducibility at that cell. As we reduce the
variability threshold, effectively stepping toward bitwise reproducibility with smaller
and smaller thresholds, we see that increasingly costly summation algorithms are re-
quired for the more challenging regions in the space (i.e., those with high condition

number and high dynamic range).
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Figure 2.12: Selection of the cheapest but acceptably accurate reduction algorithm
among the Kahan (K), composite precision (CP), and prerounding (PR)
algorithms for different error variability thresholds (left to right: t =
be — 13,3e — 13,2.5e — 13, 1.5e — 13, 5e — 14).

Achieving reproducible numerical accuracy by intelligent runtime selection of
reduction algorithms depends on being able to assess the mathematical properties of
the floating-point values to be reduced. We show that if this assessment can be done,
one can avoid using a more expensive reduction algorithm when a cheaper one will do.
These results present a strong case for further research into tools that, at exascale,
profile parameters of interest (e.g., n, k, dr, and tree shape) at runtime and apply

cheaper but acceptably accurate reduction algorithms to subtrees based on the profile.

2.6 Lessons Learned

In this chapter we tackle the first of our two challenges (i.e., the numerical
challenge). We identify relevant parameters that, when analyzed in concert, can pro-
vide insight into intelligent selection of reduction algorithms to achieve reproducible
numerical accuracy on soon-to-exist exascale platforms.

Three main observations emerge from our study on reproducible numerical accu-
racy. First, reduction tree shape has a large impact on reproducible numerical accuracy.
Second, mathematical properties of a set of summands have an impact on the repro-
ducibility of their sum. In applications where the conditioning and dynamic range can
change dramatically over the course of the runtime, this effect is especially relevant.

Third, we show that if we fix a target level of reproducibility, we can classify regions of
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the parameter space by the cheapest algorithm that achieves the desired level of repro-
ducibility at that point in the space. This is an important step toward implementing

intelligent runtime selection of reduction operators on future exascale platforms.
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Chapter 3

THE DEBUGGING CHALLENGE

3.1 Introduction

In this chapter we first provide an overview of the record-and-replay approach
for debugging a class of non-deterministic applications and describe the properties of
existing record-and-replay tools. We then present our extension to the record-and-
replay approach together with the performance of the integration of our extension into

a production-grade record-and-replay tool.

3.2 Record-and-Replay Approach and Tools

To overcome the impediments to debugging associated with non-deterministic
executions, a class of debugging aids collectively referred to as record-and-replay tools
have been developed. These tools allow developers to record one execution of a target
application, then replay it exactly. In general, record-and-replay tools must establish
an order of events during the recorded execution, then write a representation of that
order to some form of persistent storage. The exact data that must be recorded de-
pend on what assumptions can be made about the form of nondeterminism the target
application exhibits. Figure 3.1 shows a general overview of these tools’ framework.

Necessary behaviors of record-and-replay tools can be sorted in two groups: dur-
ing recording and during replay. During recording, a tool must observe communication
events in an application’s execution and store (or write) information that unambigu-
ously orders the observed events into a record. One way to do this task is with logical
clocks and metadata (described in the next section). Metadata in message passing ap-
plications include processes’ rank, tag, and communication event type (e.g., completion

of a receive vs. invocation of Test-family function).
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Figure 3.1: General overview of a record-and-replay framework.

During replay, a tool must read (or query) the record followed by buffering
and re-ordering communication events in the subsequent execution. Correctness of the
replay depends on assumptions about the application (e.g., is the application send-
deterministic) [5] and inductive arguments (e.g., the n'" event is replayed correctly as
a consequence of the n — 1" event being replayed correctly).

Existing record-and-replay tools fall into two broad categories: data-replay and
order-replay. These categories refer to the content that is traced by the tool during
recording. Specifically, data-replay tools record the total content of messages, whereas
order-replay tools opt instead to record the messages’ relative ordering. The state
of the art in record-and-replay takes the order-replay approach primarily due to the
significant reduction in record size it provides by not recording possibly large message
payloads in addition to the necessary message order data.

The earliest record-and-replay tools employed the data-replay approach, but
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attempt to mitigate the growth of record size via selectively recording only those mes-
sages deemed at runtime to be a source of non-determinism. Netzer and Miller employ
vector clocks to identify racing messages and thus restrict the number of necessarily
recorded messages in their tool [21]. Later work by Clémecqn et al. used a similar vec-
tor clock approach, but extended the tool’s capabilities to record non-blocking probes
as well as wildcard receives [8]. Despite these techniques’ applicability at the time of
their creation, their use of vector clocks makes them prohibitively expensive for modern
HPC systems, since each message is saddled with a vector of n elements where n is the
number of processors in the system [13].

Later record-and-replay tools embraced the order-replay design, recognizing that
despite the need to make stronger assumptions about message contents than data
replay tools do, increasingly large systems necessitate the smaller record sizes that
order-replay tools can deliver. One early tool in this domain was the Nondeterministic
Program Evaluator (NOPE) developed by Kranzlmiiller and Volkert [18]. Last, Clock-
Delta Compression (CDC) [25] is the state-of-the-art approach to record-and-replay
that aims to overcome the problem of large record size that renders traditional record-
and-replay techniques inapplicable at extreme scale. We build our work on top of this

approach that we describe in the next section.

3.3 Clock-Delta Compression

Clock-Delta Compression (CDC) establishes an order on communication events
during recording by piggybacking logical clocks on messages between processes, and
applies a novel compression pipeline to the record that leverages properties of the pig-
gybacked clocks. In this section, we provide an overview of the CDC record format, a
high-level description of the compression pipeline, and describe the role of the piggy-
backed logical clocks with respect to the record format and the compression pipeline.

The CDC record format is a data structure built up during recording that
contains sufficient information about interprocess communication events to enable de-

terministic replay of the recorded execution. The record format consists of three main
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parts: the with-next-table, the unmatched-test-table and the matched-test-table. The
with-next-table records when multiple incoming messages match with a single receive re-
quest, as can occur if MPI_Testsome, MPI_Testall, MPI_Waitsome, or MPI_Waitall are
employed by the application. The unmatched-test-table records instances of MPI_Test-
family functions being called on a receive request when no matching send exists, as
can occur when a polling loop of test calls is used to complete a non-blocking receive.
Finally, the matched-test-table records the actual matches between receive requests and
incoming messages. This component of the record format is our focus since the most
dramatic reductions in record size that CDC offers apply to the matched-test-table.
Moreover, the specific implementation of the underlying logical clock protocol directly
effects the compressibility of the matched-test-table.

The CDC compression pipeline is applied to the CDC record format during
recording and consists of three stages: permutation encoding, linear-predictive encod-
ing (LPE), and lossless compression. The permutation encoding stage is applied only
to the matched-test-table, whereas LPE is applied to components of the matched-test-
table and unmatched-test-table. The lossless compression stage is applied to the entire
record after permutation encoding and LPE. We provide the description of the algo-
rithm for permutation encoding in Section 3.6 due to the critical reduction in size
of the matched-test-table that it provides and the degree to which its functionality is

intertwined with the notion of a logical clock ticking policy described in Section 3.4.

3.4 Logical Clocks
Logical clocks, originally defined by Lamport in [19], provide a method for
establishing a partial order on events in a distributed system. Within the context of
the CDC record-and-replay technique, we describe the rules of the logical clock protocol
that CDC employs, we define the notion of logical clock ticking policy, and we discuss
how recording events are distinguished by the logical clock values associated to them.
CDC establishes a partial order on all communication events that occur during

recording by maintaining in each process p an integer value referred to as the local clock
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of that process. Whenever p sends a message to another process, p attaches a copy of
its local clock to the message, then increments its local clock by some value ¢, hereafter
referred to as a “tick”. When another process ¢ receives p’s message, it sets its own
local clock to the maximum of its current value and the value attached to the message
it just received. Then ¢ increments its local clock by some amount (i.e., ¢ ticks its local
clock). Two immediate consequences of this protocol are that within a process, if an
event e occurred before another event ey, the logical clock values associated to those
events (e.g., ¢o and ¢;) satisfy ¢g < ¢, and between a sender process and a receiver
process, a send event’s clock will always be less than its corresponding receive event’s
clock.

So far we have discussed logical clocks’ ticks without specifying what values they
must take. In Lamport’s paper on logical clocks [19], ticks are assumed to always equal
1, but in fact all that is necessary to establish a partial order is that the ticks have
positive value. In the context of record-and-replay, since the replayed execution must
exactly match the recorded execution, we require the additional constraint that the
ticks be deterministic (i.e., during replay), for all processes, the ith tick applied to a
process’s local clock must match the ith tick that was applied to its local clock during
recording. We define a logical clock ticking policy to be a mechanism for deciding what

value each tick applied to each process’s logical clock will take.

3.5 In- and Out-of-order Received Messages

In this section, we define the concept of an event (e.g., message receive) being in-
order or out-of-order with respect a logical clock reference order, and how out-of-order
messages impact the size of the matched-test-table. In CDC, every receive completion
event is associated to a logical clock value that is piggybacked on a received message.
Specifically, each process has a “local clock” (LC) that is initially zero. When a process
(e.g., Fy) sends a message, its LC is attached to the message as the “sent clock” (SC).
Afterward, the sending process’s LC is incremented by one. When a process (e.g., P)

receives a message from another process (e.g., F), it updates its LC by the Lamport
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Clock protocol LC' = max(LC, SC) + 1 and records the receive event. The list of SC
values that every receiving process builds up over the course of recording an execution
defines whether a received message is in-order or out-of order: if the new SC is larger
than the previous received SC, then the message is in-order; if it is smaller, then then
the message is out-of-order. The SC values are the input to the permutation encoding
step of the CDC compression pipeline, and the degree of monotonicity in this list of
values determines the effectiveness of the compression. Moreover, the list of SC values
is not the same logical clock value that any receiving process updates its local clock
to, and as such does not impose a partial order on events in the same way. Figure 3.2
shows examples of in-order or out-of-order messages: Figure 3.2.(a) shows an example
of an in-order received message and Figure 3.2.(b) shows an example of an out-of-order
received message. In Figure 3.2.(a), the SC of F, is 17; because the SC value is larger
than the precious SC of P, (in the figure the SCprepious i 15), the received in-order
message is annotated in the SC list but will not be recorded in the matched-test table.
This is not the case in Figure 3.2.(b) in which the the SC of the sending P, is still 17
but the previously annotated SC is larger (i.e., equal to 19), causing the recording of

the event in the matched-test table.

Before After Before After
SClist | ... 5] | 1517 SClist | ... 19 L1917
[C=16 g LC=18 P [C=20 g LC=21
P 1
1
IfSC> Scprevious IfSC< SCprevious
& ~In-order message ~0ut-of-Order message
9 Do not need to record “Record compressed
representation of event
P
P, 0
(a) In-order (b) Out-of-order

Figure 3.2: Example of in-order (a) and out-of-order (b) messages.
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Figure 3.3 show a larger five-stage example in which multiple messages are
received by a process Fy. For each stage, the upper figure shows the snapshot with the
sent and received messages up to that point for process Fy; the bottom figure shows
the associated SC list. In Stage 1, F, receives a message from, for example, P;. F
updates its local clock (LC), which was initially equal to 1, by using the Lamport Clock
protocol to 4 (i.e., LC of Py becomes the max of LC and SC plus one) and temporally
records the time of the received message (i.e., SC time is equal to 3). In Stage 2, P,
receives a second message from Ps; Py updates its LC following the same procedure as
in Stage 1. The LC of Fy becomes 6 and the process also records the received SC value
(in this case SC is equal to 5). We observe that at the end of Stage 2 the received
clocks’ values are monotonically increasing “in-order”. The process takes note of the
message’s SC but does not forward the SC value to its matched-test table. In Stage
3, Py sends messages. Its LC increases each time a send is initiated but no clock is
recorded. In Stage 5, two additional messages from a different process than P; are
received by Fy. This time the first message is out-of-order (i.e., with a SC equal to
4 smaller than 5) and is thus used for building the process’ matched-test table. The
second is in-order (i.e., with a SC equal to 7 larger than 4) and is not considered for

the process’ matched-test table.

3.6 Permutation Encoding

During recording, the process receiving messages with the attached logical clock
values builds up the matched-test table. The table collects only information on out-of-
order messages and therefore, the number of out-of-order messages determines the size
of the matched-test table.

Sato et al. made the observation that for most processes, the list of received
clock values tended to consist of values that were nearly-sorted in increasing order
(i.e., in-order messages), as show in the authors’ manuscript [25]. The observed sim-
ilarity between the actual order of received clock values (referred to hereafter as the

observed order) and the ordering of received clock values in ascending order (referred
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Figure 3.3: Example of a five-stage execution in which in-order and out-of-order
messages are received by process Fy. We show in-order receives in stages
1, 2, 3, and 5. We show an out-of-order receive in stage 4, in which a sent
clock of 4 is received after P, has already received a larger sent clock of

5.

to hereafter as the logical clock reference order) suggests that there is a compact way
of representing the difference between the observed order and the reference order. This
difference, which can be thought of as the permutation that maps the reference order
to the observed order, is what the permutation encoding stage computes. Representing
the matched-test table by this permutation suffices for replay because during replay,
messages arriving in arbitrary order can be buffered, sorted based on their piggybacked
logical clock values into the reference order, and then wun-sorted into exactly the ob-
served order from recording by applying the recorded permutation.

The permutation encoding stage works by computing a minimal set of edits that

effectively map the logical clock reference order back to the observed order. Each edit
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is represented as a pair of integers (i.e., an index and an offset). Consider that if a
process receives all its inbound messages such that their piggybacked logical clock values
are received in strictly ascending order, then the observed order and the logical clock
reference order are identical (i.e., all messages are received in-order). Since permutation
encoding is an effective compression technique to the extent that the observed order is
similar to the logical clock reference order, a reduction in the number of out-of-order
message receives translates to a reduction in the size of the matched-test table, and
consequently a reduction in the size of the total record. Figure 3.4 shows how, for
the example in Figure 3.3, we need to swap only the 2nd and 3rd message receives to
create our observed sequence of messages starting from a totally in-order set of message.

Therefore, “swap(2,3)” is written to the matched-test table for Py and everything else

is discarded.

swap(2,3) I\

(0] (0]

> >

© ©

> >

X X

(&) (&)

o o

(@) 4 8547 (@) E 5 7

vy 1 2 3 4 ¥
Number of clocks received Number of clocks received

Figure 3.4: Process to transform a totally in-order set of message receives into the
order we observed for Figure 3.3.

During the replay stage, a record-and-replay tool buffers incoming messages
and re-orders them so that the processes receive the messages in the same order the
processes did during the recorded execution. Figure 3.5 shows the the steps followed

by the replay stage for the example in Figure 3.3.
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Figure 3.5: Steps performed by the replay stage in a record-and-replay tool to recreate
the observed execution built during the record stage.

3.7 Logical Clock Ticking Policies

To minimize the size of the matched-test table, and hence the size of the overall
record, it is necessary to minimize the number of messages that are received out-of-
order. Sato et al. propose to accomplish this minimization by means of a logical clock
ticking policy designed to accurately reflect the number messages received. This policy
that we call “basic ticking” ticks by 1 each time a message reception is completed, as
shown in Figure 3.6.(a).

In an ideal recording scenario, all messages arrive at their receiving processes
such that their attached clock values are received in ascending order. In light of this,
it is tempting to attempt to implement a ticking policy based on wall-time values, as
depicted in Figure 3.6.(b). However, such a ticking policy cannot provide deterministic
ticks, and hence causes incorrect replay. Nevertheless, we integrated this polices in

Sato’s record-and-replay tool ReMPI and we collected data on the rate of out-of-order
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messages observed under a wall-time based ticking policy to investigate the degree to
which a specialized ticking policy can improve over the baseline policy of setting each
tick equal to 1. As we will show below, empirical investigation indicates that a ticking
policy that matches closely with wall-time based ticking but retains replayability can
reduce the rate of out-of-order messages, and hence reduce the size of the matched-test

table.

_ Wy
LC=5 sec. f,
lc=3 w, FLOPs
* ION

v v v v v v 4 v v

5>3 W, > W, f, >f,
out-of-order out-of-order out-of-order
(a) Basic ticking (b) Wall-clock ticking (¢) FLOPs-based ticking

Figure 3.6: High level overview of the three ticking policies considered in this work:
(a) basic ticking, (b) wall-clock ticking, and (c) FLOPs-based ticking.

In the message-passing HPC applications that record-and-replay tools target,
processes often alternate between progressing through intensive floating-point work-
loads and communicating with other processes. As such, we propose a FLOPs-based
ticking that uses the number of floating-point instructions completed by a process
as a proxy for wall-time. We use the Performance Application Programming Inter-
face (PAPI) to monitor floating-point instructions completed, and derive ticks from
those values. FEmpirical investigation not shown in this thesis indicates that the
PAPI_FP_INS performance counter, which measures floating-point instructions com-
pleted, yields deterministic values, and hence deterministic ticks, when limited to count-
ing floating-point instructions at the application level exclusively. We use the MPI pro-
filing interface (PMPI) to intercept MPI function calls made by applications and halt

PAPT’s counters until control returns to the application, as shown in Figure 3.6.(c).
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Figure 3.7: MCB communication patterns: the neighbor-to-neighbor particle ex-
change (a), the non-blocking gather (b), and the non-blocking scatter

(c).

3.8 Applicability to Real Applications with Real Record-and-Replay Tool

To evaluate the effectiveness of our PAPI_FP_INS-based ticking policy in reduc-
ing the rate of out-of-order message receives, we record multiple executions of a repre-
sentative message-passing application, the Monte Carlo Benchmark (MCB) [1], with a
record-and-replay tool that implements CDC, called Reproducible MPI (ReMPI) [25].
In this section, we provide our rationale for evaluating our ticking policy using MCB
and ReMPI.

MCB is an MPI application that simulates particle dynamics in a domain that
is decomposed over a set of MPI processes. Particles that exit one process’s subdomain
are buffered and subsequently sent to a neighbor process’s subdomain via non-blocking
point-to-point communication. MCB progresses its simulation by alternating between
three distinct communication patterns, as shown in Figure 3.7. The three patterns
are: neighbor-to-neighbor particle exchange where processes communicate with their
neighbors in a Cartesian grid; non-blocking gather where processes are organized into
a binary tree topology and send messages to their parents in the tree; and non-blocking
scatter where processes are once again organized as a binary tree, but the direction of

communication is from parent to child. MCB is known to exhibit non-deterministic
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communication due to its use of non-blocking point-to-point communication and wild-
card receives (i.e., allowing a pending receive request to match with the first message
that arrives), rather than a message from a specific sender. Moreover, run-to-run
variability in MCB’s numerical outputs has been observed [9] that is attributable to
non-deterministic communication. Consequently, MCB is an ideal candidate applica-
tion for testing a record-and-replay tool.

We implement our ticking policies in ReMPI. ReMP1I is, to the best of our knowl-
edge, the only record-and-replay tool that implements CDC. Additionally, ReMPTI’s
design as a composition of PMPI modules [12] [27] simplified the implementation of
our ticking policy. By default ReMPI uses the basic ticking policy where all ticks are
set to 1.

3.9 Assessing Different Ticking Policies

We compare our ticking policy based on floating-point operations against the
baseline ReMPI ticking policy. In our analysis we consider the effect of application-level
parameters (i.e., floating-point workload per process and rate of messaging between

processes) on the rate of out-of-order messages.

3.9.1 Experimental Setting

By varying the number of particles that each MPI process initially simulates,
we can effectively vary the intensity of each process’s floating-point workload (i.e.,
the more particles are simulated per process, the more floating point operation are
performed). Note that we consider a homogeneous distributed of particles per process.
By varying the size of the communication buffer between two processes each process
uses to accumulate particles en-route to a neighbor process, we can effectively vary
the rate of communication (i.e., by decreasing the buffer size we increase the number
of messages issued). In Figure 3.8 we show the four scenarios we test in this thesis

(in green). We consider either 1K or 1M particles for process and either a buffer size
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containing data for 5 or for 5,000 particles leaving a process subdomain for the neighbor

process sharing the buffer.
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Figure 3.8: Tested scenarios (in green cells) in the space of application parameters
considered in this thesis. Gray cells are left for future work.

For each one of the four MCB scenarios we evaluate our FLOPs-based ticking
(referred in the figures in the next section as PAPI_FP_INS-ticking) against the baseline
ticking policy built into ReMPT (hereafter referred to as MPI_SEND-ticking) and a
non-replayable wall-time-based ticking policy (referred to as MPI_ WTIME-ticking).
For each scenario and each ticking policy, we record 100 executions of MCB with
the extended ReMPI set to log the number of messages received in-order and the
number of messages received out-of-order by each MPI process. For each process, we
compute the percentage of messages received out-of-order, and then aggregate these
percentages across all 100 executions, thereby obtaining a global view of the ticking
policies’ effectiveness at minimizing the rate of out-of-order messages.

We conduct our tests on Vulcan, a BlueGene/Q cluster at Lawrence Livermore
National Laboratory. Each node of Vulcan consists of 16 1.6 GHz PowerA2 processors
and is equipped with 16 GB of RAM. The nodes are networked to each other in a 5D

torus. We consider three scenarios consisting of one single node running a 16-processes
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MCB, four nodes running a 64-processes MCB, and 16 nodes running a 256-processes

MCB.

3.9.2 Results
Figures 3.9 plot the distributions of out-of-order message percentages for each
ticking policy and the median out-of-order percentage for each ticking policy over all

executions on a single node of Vulcan. At the single-node scale, we observe that
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Figure 3.9: Distributions of out-of-order message percentages and median out-of-
order percentage for each ticking policy over all executions on a single
node of Vulcan. The test cases are: 1K particles per process, buffer
size 5 (a); 1K particles per process, buffer size 5K (b); 1M particles per
process, buffer size 5 (c); and 1M particles per process, buffer size 5K

().

MPI_WTIME-ticking improves the median out-of-order message percentage relative
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to MPI_.SEND-ticking best when communication intensity is low (i.e., when the MCB
buffer size is large). The median improvement is 9% in the low floating-point work-
load case, and 11% in the high floating-point workload case. Conversely, when the
communication intensity is high due to a small MCB buffer size, the improvement
MPI_WTIME-ticking offers is minimized—6% and 3% respectively. We conjecture that
this is due to the fact that when more messages are sent per unit of wall-clock time,
ticking by 1 per message send more closely resembles the passage of wall-clock time
than in the case where message sends are less frequent. In all four cases however, we
note that the PAPI_FP_INS-based ticking does not improve the median out-of-order
percentage relative to MPI_SEND-ticking, contrary to our expectation. We do note
however that in the low communication intensity and high floating-point workload
case, the out-of-order message rate of PAPI_FP_INS-ticking closely approaches that of
MPI_SEND-ticking.

In the four-node tests shown in Figures 3.10, we observe that while MPT_WTIME-
ticking continues to excel in the low communication intensity cases, MPI_SEND-ticking
matches it very closely in the high communication intensity cases, even slightly exceed-
ing it when the per-process floating-point workload is also low. Also notable is that in
the two high floating-point workload cases, PAPI_FP_INS-ticking matches very closely
with MPI_SEND-ticking, lending further credence to the idea that PAPI_FP_INS-
ticking can be useful for applications where per-process floating-point workload strongly
influences the timing of message sends.

At the 16-node scale shown in Figures 3.11, we observe that even in the low
communication intensity, low floating-point workload case, MPI_SEND-ticking gets
very close to the performance of MPI_WTIME-ticking. The trend we have so far ob-
served of strong agreement between all three ticking policies in the high communication
intensity, high floating-point workload case continues, as does the trend of strong agree-
ment between MPI_SEND-ticking and PAPI_FP_INS-ticking in the low communication

intensity, high floating-point workload case.
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Figure 3.10: Distributions of out-of-order message percentages and median out-of-
order percentage for each ticking policy over all executions on four
nodes of Vulcan. The test cases are: 1K particles per process, buffer
size 5 (a); 1K particles per process, buffer size 5K (b); 1M particles per
process, buffer size 5 (c); and 1M particles per process, buffer size 5K

(d).

3.10 Lessons Learned

The work in this chapter was motivated from the question whether a ticking

policies that resembles the non-replayable wall-clock ticking policy such as our FLOPs-

based ticking policies can outperform the baseline ticking policy built into ReMPI.

By comparing the performances of our FLOPs-based ticking against the baseline

ticking policy built into ReMPI and a non-replayable wall-time-based ticking policy in

four distinct scenarios, we have begun to develop insight into the interaction between
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Figure 3.11: Distributions of out-of-order message percentages and median out-of-
order percentage for each ticking policy over all executions on 16 nodes
of Vulcan. The test cases are: 1K particles per process, buffer size 5 (a);
1K particles per process, buffer size 5K (b); 1M particles per process,
buffer size 5 (c¢); and 1M particles per process, buffer size 5K (d).

application behaviors and the effectiveness of different ticking policies. Although we

were not able to observe improvement in median out-of-order percentage for the base-

line ticking policy built into our FLOPs-based ticking relative to the baseline ticking

policy built into ReMPI, we posit that our ticking policy may still form the basis of a

future ticking policy that takes additional application-level information into account to

reduce the out-of-order message rate. Additionally, we posit that applications exhibit-

ing greater imbalance between processes’ floating-point workloads may benefit more

from FLOPs-based ticking policies than MCB does.
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One aspect we need to consider is that the MCB application does not have one
single communication pattern that is a source of non-determinism, In other words, the
tests we showed in this chapter do not identify whether the out-of-order messages are
more caused by one of the three patterns. This aspect is further discussed in the next

chapter.
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Chapter 4

CONCLUSION AND FUTURE WORK

4.1 Introduction
In this chapter, we outline the directions of our future research on non-determinism

and its impact on reproducibility of HPC applications. So far, we have discussed the
numerical challenge of reproducibility in HPC separately from the debugging chal-
lenge; work in progress seeks to establish connections between the two problems and
their solutions. To this end, in future work we will study connections between run-
to-run numerical variability in large scale applications (as explored in Chapter 2) and
non-deterministic communication patterns identified with record-and-replay tools (as
explored in Chapter 3). The study and generalization of non-deterministic communica-
tion patterns not only addresses un-answered questions that were raised in the previous
chapter, but also provides a platform for identifying code motifs in applications that
lack in numerical reproducibility. We will build our work on non-deterministic com-
munication patterns on top of preliminary findings from our attempts to attribute
out-of-order receives to particular communication patterns in MCB described in the
next section. The non-determinism in communication patterns cannot be addressed
without the development of better ticking policies that mitigate the number of out-of-
order events in HPC applications. Therefore we will look at strategies to improve the

results presented in Chapter 3.

4.2 Out-of-Order Events and Communication Patterns
In Chapter 3 we investigate the overall rate of out-of-order messages originating
from any of three communication patterns in MCB (i.e., the neighbor-to-neighbor par-

ticle exchange, the non-blocking gather, and the non-blocking scatter in Figure 3.7).
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In this section, we refine our perspective by presenting data on the messages exchanged
between particular pairs of processes which, combined with knowledge of which pro-
cesses receive from which others during each communication pattern, provides insight
into which communication patterns are responsible for the majority of out-of-order
message receives.

To capture the specific senders of out-of-order messages to each receiving process
for each communication pattern, we instrumented the ReMPI code to write to a log file
for each received message. Note that the log file is separate from the actual record file
generated for ReMPI use during replay. We repeated the tests described in Figure 3.8.
For each of the four cells in Figure 3.8, we built a first heatmap with total number of
messages and a second heatmap with the total out-of-order messages. Specifically, in
the first heatmap, for each receiving process on the row of the heatmap, we collected
the total number of messages this process receives from each sending process on the
columns of the heatmap; the second heatmap is built in the same way but with the
number of out-of-order messages. The intensity of a cell’s coloring in the two heatmaps
indicates the number of messages. Cells colored grey indicate that no messages are
communicated between the process on the cell’s row (receiving process) and the process
on the cell’s column (sending process).

Figure 4.2 shows the total number of messages received by each receiving process
from each process that sent to it. This data is collected from a 1-node, 16-process
run of MCB which was recorded using ReMPI with MPI_SEND-ticking (the best of
the two replayable record-and replay techniques in Chapter 3. Figure 4.2.(a) refer to
high communication intensity with low floating-point workload (i.e., 1K particles per
process with a buffer size of 5); Figure 4.2.(b) refers to low communication intensity
with low floating point workload (i.e., 1K particles per process with a buffer size of 5K);
Figure 4.2.(c) refers to low communication intensity with high floating-point workload
(i.e., 1M particles per process, with a buffer size of 5); and Figure 4.2.(d) refers to
high communication intensity with low floating-point workload (i.e., 1M particles per

process, with a buffer size of 5K).
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Figure 4.1: Interpreting a heatmap of message receives. The receiving processes are
listed per row; the sending processes are listed per column.

Figure 4.3 shows heatmaps counting only the out-of-order receives. This data
is a subset of that shown in Figure 4.2 and refers to the same four communication
intensity and floating-point workload scenarios studied above.

The heatmaps with the total number of communicated message in Figure 4.2
outline how some processes only receive from some other processes during certain com-
munication patterns. For example, process Fy does not receive messages from process
P, during the neighbor-to-neighbor particle exchange, but does receive messages from
process P, during the nonblocking gather. The four heatmaps in the figure confirm
the three communication patterns that we had previously extracted with the manual
inspection of the MCB code in Figure 3.7.

The inspection of the heatmaps of out-of-order messages outline which one, if

any, of the three communication patterns impacts the non-determinism the most. In
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Figure 4.2: Total number of messages received by each receiving process i per sender
process j for a testcase of 1K particles per process, buffer size 5 (a); 1K
particles per process, buffer size 5K (b); 1M particles per process, buffer
size 5 (c¢); and 1M particles per process, buffer size 5K (d).

Figure 4.3 we observe that the nonblocking gather pattern is responsible for a dispro-
portionate amount of the out-of-order messages received. In Figure 4.4, we highlight
cells of the heatmaps to indicate attribution of out-of-order receives to particular com-
munication patterns. Once again we observe that cells indicating the greatest number
of out-of-order receives correspond to messages sent during the non-blocking gather

communication pattern, whereas the non-blocking scatter pattern exhibits the least.
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().

These results are a first insight in the impact of single communication patters on non-

determinism.
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Figure 4.4: Linking out-of-order receives to one of the three MCB communication
patterns presented in Figure 3.7. Because of space constraints only a
quarter of each heatmap is shown. Each row shows heatmaps with re-
ceiving processes highlighted that participate in a given communication
pattern. Column (a) shows heatmaps of total number of receives; column
(b) shows the communication pattern; and column (c) shows heatmaps
of the number of out-of-order receives.
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4.3 Adaptive Ticking Policies

Our observation that particular out-of-order receives can be attributed to par-
ticular communication patterns suggests a general technique for improving a ticking
policy. We propose to develop an adaptive ticking policy that is based on application-
level events such as floating-point instructions, but also takes into account processes’
placement in the communication topology and the phase of communication the ap-
plication is currently engaged. Our future work in on adaptive ticking policies will
proceed along two branches.

We will first expand our investigation of communication patterns that are found
in non-deterministic HPC applications, and enrich our understanding of how these
communication patterns interact, specifically, with ticking policies, and more generally,
with record and replay tools. We will progress this line of research by identifying
non-deterministic communication patterns in real applications, modeling their critical
characteristics, and developing microbenchmarks based on these patterns so that their
responses to ticking policies and record-and-replay tools can be studied in isolation.
By doing so, we will systematize adaptation of tools to applications.

Second, we will investigate the feasibility of enhancing ticking policies such as
our FLOPs-ticking with high-level information about application behavior, such as
what kind of communication pattern the application is currently engaged in. Since we
have shown that a ticking policy that works well in one scenario (e.g., low communi-
cation intensity and low floating-point workload) may not offer the same benefits in
another scenario, it behooves us to investigate the feasibility of ticking policies that

can adapt to application characteristics on the fly.

4.4 Investigating Numerical Irreproducibility via Record-and-replay

In addition to gleaning insight into how patterns of non-deterministic commu-
nication impact the cost of applying record-and-replay techniques such as CDC, our
efforts to develop a taxonomy of non-deterministic communication patterns will provide

insight into how numerical accuracy is impacted by non-deterministic communication.
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Specifically, the ordering of receives in message-passing applications impacts numeri-
cal reproducibility of those applications when variability in message arrivals re-orders
floating-point operands. We will explore the use of record-and-replay tools for cap-
turing executions exhibiting highly accurate results, as well as those exhibiting highly
inaccurate results, in order to ascertain the internal properties of those executions that

induced, respectively, accuracy or inaccuracy.

4.5 Summary

In this thesis, we tackled the dual challenges of loss of numerical reproducibil-
ity and loss of debuggability that non-determinism in HPC applications presents. In
response to the numerical challenge we presented a strong case for selection of summa-
tion algorithms based on characteristics of the floating-point operands an application
is likely deal with, and showed a quantitative comparison of compensated summation
algorithms’ responses to the dynamic range and conditioning of their inputs.

In response to the debugging challenge, we investigated a fine-grained logical
clock ticking policy based on floating-point operations for use in the Clock-Delta Com-
pression record-and-replay technique. Although our ticking policy did not provide im-
mediate improvements over the baseline ticking policy of CDC, we have demonstrated
the feasibility of implementing ticking policies based on application level events, and
we present preliminary findings support further investigation into ticking policies that
mold themselves to applications’ communication patterns. Finally, we propose to merge
approaches from both the numerical and debugging perspectives on non-determinism
in HPC applications in order to develop general methodologies for addressing the re-

producibility challenge.
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