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ABSTRACT

Non-determinism in high performance scientific applications has severe detri-

mental impacts for both numerical reproducibility and accuracy, and debugging. As

scientific simulations are migrated to extreme-scale platforms, the increase in platform

concurrency and the attendant increase in non-determinism is likely to exacerbate both

of these problems. In this thesis, we address the dual challenges of non-determinism’s

impact on numerical reproducibility and on debugging.

To address the numerical challenge, our work investigates the power of mathe-

matical methods to mitigate error propagation at the exascale. We focus on floating-

point error accumulation over global summations where enforcing any reduction order

is expensive or impossible. We model parallel summations with reduction trees and

identify those parameters that can be used to estimate the reduction’s sensitivity to

variability in the reduction tree. We assess the impact of these parameters on the abil-

ity of different reduction methods to successfully mitigate errors. Our results illustrate

the pressing need for intelligent runtime selection of reduction operators that ensure a

given degree of reproducible accuracy.

To address the debugging challenge, our work examines the impact of logical

clock ticking policies on the Clock-Delta Compression record-and-replay technique.

We assess three logical clock ticking policies in terms of the number of out-of-order

messages that result during recording executions under these policies. We examine

the performance of Clock-Delta Compression when using the three ticking policies in

four distinct application scenarios to probe the impact of floating-point workload and

communication intensity on recording performance. Our results illustrate the pressing

need for fine-grained logical clock ticking policies that reduce then out-of-order message

rate of the Clock-Delta Compression record-and-replay technique.

x



Chapter 1

INTRODUCTION

1.1 Problem Overview and Proposed Solutions

Scientific simulations are increasingly being migrated to extreme-scale platforms

consisting of hundreds (or thousands) of multicore servers equipped with many-core

accelerators. The increasing number of nodes and cores is resulting in an increasing

level of concurrency and ultimately non-determinism in the execution of large scale

applications on these platforms. Table 1.1 shows the concurrency levels in 2010 and

the expected levels in 2023.

2010 2023 Factor Change

System Peak 2 Pf/s 1 Ef/s 500
Power 6 MW 20 MW 3
System Memory 0.3 PB 32 PB 100
Node Performance 0.125 Gf/s 10 Tf/s 80
Node Memory BW 25 GB/s 400 GB/s 16
Node Concurrency 12 cpus 1000 cpus 83
Interconnect BW 1.5 GB/s 200 GB/s 133
System Size (nodes) 20 K nodes 1 M nodes 50
Total Concurrency 225 K 1 B 4,444
Storage 15 PB 300 PB 20
Input/Output BW 0.2 TB/s 20 TB/s 100

Table 1.1: Concurrency trends in high performance computing platforms. (Expected
increase in concurrency in bold)

From the perspective of reproducibility of applications, the trade-off between

performance and determinism presents two distinct challenges. First, permitting non-

deterministic ordering of interprocess communication opens the door to numerical ir-

reproducibility via the interaction between reduction order and the non-associativity
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of floating-point arithmetic. This is defined in this thesis as the numerical challenge.

Second, non-determinism significantly hampers debugging efforts during appli-

cation development and scaling. Specifically, there exist cases where bugs manifest

only during some executions due to a particular ordering of message receives. If the

application does not guarantee a specific message receive order then this class of bugs

becomes very hard to diagnose and treat since the cost of reproducing them signifi-

cantly increases. Recent work by Sato et. al [26], presents a case-study of the impact

of a non-deterministic bug in terms of developer time and computational resources.

This is defined in this thesis as the debugging challenge.

1.1.1 Overview of Numerical Challenge

Because floating-point numbers have finite precision, no simulation can be com-

pletely free of error. As hardware resources grow, the scientific computation taking

advantage of that hardware has become increasingly complex. A consequence of the

scale of computation is that even small errors at the beginning of the simulation may

eventually compound into significant accuracy problems, which may call into question

the validity of hours and hours of computation. Multithreading complicates matters

by introducing nondeterminism. Not only do errors accumulate throughout a com-

putation, but a scientist may run the same computation several times with differing

results. According to a recent report from the Department of Energy [2], by the end

of this decade the level of concurrency of the supercomputing platforms on which sim-

ulations are executed is expected to increase by a factor of at least 4000. The question

that must be answered is: Can the scientific community trust simulations executed on

next-generation exascale architectures?

In Chapter 2, we assess the effectiveness of several mathematical techniques

to pursue reproducible accuracy on exascale platforms with multithreading hardware

consisting of multicore processors coupled with many-core accelerators. We refer to

reproducibility as “closeness of agreement among repeated simulation results under

the same initial conditions” and accuracy as “conformity of a resulting value to an

2



accepted standard, or scientific laws” (from Van Nostrands Scientific Encyclopedia).

Rather than focusing on bitwise reproducibility, we study methodologies to minimize

the propagation of errors and, thereby, limit their impact on the results of a simulation,

increasing both the reproducibility of the simulation and the meaningfulness of the

results.

1.1.2 Overview of the Debugging Challenge

Application developers employ a variety of programming techniques to maximize

the scalability of their applications on the increasingly concurrent platforms. In the

case of message-passing applications, one notable technique is the use of non-blocking

point-to-point communication, which permits communication and computation to be

overlapped, leading to an increase in scalability. The price paid however, is the loss

of determinism mentioned above. The program’s interprocess communication does

not behave exactly the same way during each execution. Figure 1.1 shows two high

level examples of non-deterministic executions when the same destinations received the

messages in different orders and when messages are exchanged between two different

destinations. This problem is further exacerbated by use of wildcard receives (i.e.,

permitting a process to receive its next message from any available sender, rather than

a specific one). This non-determinism impedes debugging efforts by vastly increasing

the cost in computational resources and developer time needed to reproduce bugs,

necessitating the use of record-and-replay tools. The question we address is: How can

record-and-replay tools be improved so that they can continue to enable debugging on

future exascale systems.

In Chapter 3, we assess the effectiveness of multiple logical clock ticking policies,

including a novel ticking policy we develop, when used as the underlying ordering

mechanism in Clock-Delta Compression (CDC), a state-of-the-art record-and-replay

technique. We evaluate ticking policies’ effectiveness in enabling CDC’s compression

against a real application in a diverse set of runtime conditions that reflect variability

in floating-point workload and communication intensity that HPC applications exhibit.

3



…

P0

P1

PN

Execution 1

…

P0

P1

PN

Execution 2

Same destinations 
Different ordering

Different  
destinations

Figure 1.1: Two examples of non-determinism associated to message passing execu-
tions.

1.2 Thesis Statement

We claim that the massive increase in total system concurrency that will ac-

company exascale systems will significantly amplify the problems of numerical irrepro-

ducibility and impededed debugging that HPC developers currently face. We address

the numerical challenge of reproducibility by illustrating the pressing need for intel-

ligent runtime selection of reduction operators for problematic floating-point inputs.

We address the debugging challenge by demonstrating the pressing need for logical

clock ticking policies that reduce then out-of-order message rate of the Clock-Delta

Compression record-and-replay technique.

1.3 Contributions

When dealing with the numerical challenge, our contributions are as follows:

• We evaluate and compare the reproducibility of four summation techniques ap-
plied to a simulated exascale environment.

• We demonstrate that commonly accepted practices for predicting and mitigat-
ing errors offer incomplete characterizations of the reproducibility of numerical
algorithms when applied in isolation.
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• We demonstrate the need for data-aware software to intelligently choose reduc-
tion algorithms to guarantee reproducibility without an unnecessary loss in per-
formance.

When dealing with the debugging challenge, our contributions are as follows:

• We propose a logical clock ticking policy based on floating-point operations that
can be integrated in Clock-Delta Compression.

• We provide a comparison of three ticking policies’ (basic Lamport clock ticking,
wall-time-based ticking, and FLOPs-based ticking) effectiveness under diverse
runtime conditions.

• We demonstrate the potential for extending logical clock ticking policies to adapt
to applications’ non-deterministic communication patterns.

1.4 Thesis Outline

Chapter 2 introduces our work on reproducible numerical accuracy, and presents

results on selection of compensated summation algorithms based on mathematical

properties of summands. Chapter 3 introduces our work on record-and-replay tools,

and presents results on our fine-grained logical clock ticking policy as applied to the

Clock-Delta Compression record-and-replay technique. Chapter 4 lays out the plan

for extending our research on reproducibility in HPC by applying the lessons learned

in Chapter 2 and Chapter 3 to non-deterministic commmunication patterns extracted

from applications.

5



Chapter 2

THE NUMERICAL CHALLENGE

2.1 Introduction

In this chapter we first summarize both well-known and emerging sources of

numerical inaccuracy and describe techniques for supporting reproducible accuracy.

We then prove the inadequacy of conventional wisdom when dealing with this problem

and provide strong evidence of the need for intelligent reduction operations at the

extreme scale before to conclude the chapter with a short summary of our our learned

lessons.

2.2 Sources of Numerical Inaccuracy

Achieving reproducible numerical accuracy at exascale faces two fundamental

roadblocks: nonassociativity of floating-point arithmetic and nondeterminism in the

order by which operands are reduced. In this section, we provide an overview of the

challenges that arise when nonassociativity collides with nondeterministic reduction.

To that end, we discuss the primary mechanisms by which floating-point error arises

and propagates. We also summarize the existing body of work addressing issues of

nondeterminism at exascale.

2.2.1 Nonassociativity: A Consequence of Finite Precision

Floating-point computations suffer loss of accuracy, compared with the same ex-

pression’s evaluation in exact arithmetic, through two primary mechanisms: alignment

error and subtractive cancellation. Alignment error, by far the most common error

modality, results from summation of values whose exponents differ. Alignment error

is possible whenever two floating-point numbers that differ in magnitude by at least a
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factor of two are added [6]. The amount of information about the smaller operand lost

due to alignment error is related to the disparity between the operands’ magnitudes.

The other mechanism is subtractive cancellation, which occurs when very small values

are obtained from the addition of two values with similar magnitude and opposite sign.

Subtractive cancellation, in contrast to alignment error, is not a source of error per se,

but a means by which inaccuracy in low-order mantissa bits of operands is transferred

to high-order mantissa bits of their sum.

A consequence of these inaccuracies is the well-known fact that floating-point

arithmetic operations are nonassociative, so the order in which floating-point numbers

are reduced via an operator (e.g., +, -, *, /) influences the result. For example, let

a = 109, b = −109, and c = 10−9. In infinite precision, the summation orders (a+(b+c))

and ((a+ b) + c) are equivalent, but even in double-precision floating-point arithmetic,

the two distinct summation orders yield different values.

((a+ b) + c) = ((109 − 109) + 10−9) = 10−9

(a+ (b+ c)) = (109 + (−109 + 10−9)) = 0

For a small example such as this one, the flaw is clear, namely, that the small-magnitude

value c is “absorbed” by the much larger value b.

2.2.2 High Concurrency: A Consequence of Extreme Scale

Contemporary petascale platforms consist of up to millions of processor cores

that must act in concert to effect large simulations. Even at these scales, the cost of

achieving not only accuracy in floating-point reductions but reproducible accuracy is

felt. The scientific community at large has set its sights on deployment of an exascale

computing platform, and in response the HPC community has identified a canonical

set of challenges to implementing an exascale machine [2]. Although emerging de-

velopments in low-power hardware, advanced systems software, and algorithm design

show promise, it has become increasingly evident that achieving reproducible numerical

accuracy at exascale cannot rely on deterministic reduction. Exascale computations
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will simply have to weather perturbations in their reduction trees through algorithmic

means. In this section, we summarize key results demonstrating how variability in

reduction trees induces variability in sums of floating-point numbers. Additionally, we

present a set of findings, commentary, and expert recommendations supporting our

claim that deterministic reduction trees at exascale will be unfeasible.

Throughout this section and the remainder of the chapter, we adopt the view

of a concurrent sum of floating-point numbers at the extreme scale as a reduction tree,

which we define as a full binary tree whose N leaf nodes correspond to floating-point

operands and whose internal nodes correspond to the partial reductions formed in

the process of computing the final result–the root node. Reduction trees can vary in

two ways: shape and assignment of operands to leaves. When we refer to the shape

of a reduction tree, we mean the particular way in which nodes are linked by edges.

Figure 2.1 shows two differently shaped reduction trees: a balanced (parallel) reduction

tree and an unbalanced (serial) reduction tree. For a fixed set of operands, even two

reduction trees with the same shape can yield different values for the reduction if the

assignment of operands to leaves differ between the two trees.

x1 x2 x3 x4 x5 x6 x7 x8

+ + + +

+ +

+

(a) A balanced (parallel) reduction tree

x1 x2

+ x3

+ x4

+

(b) An unbalanced (serial) reduc-
tion tree

Figure 2.1: Two reduction trees at the opposite ends of the spectrum.

The effect of varying reduction tree shape and varying operand-to-leaf assign-

ment is explored in [7]. In their work, a set of eight identical floating-point values

is summed via three differently shaped reduction trees, yielding in each case a differ-

ent value for the sum. Another set of eight floating-point values, six small and two
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large, is summed via three reduction trees of the same shape, but with different as-

signments of summands to leaves. Again, all three computed sums disagreed. One key

observation is that the consequences of nondeterministic reduction and floating-point

nonassociativity are felt even for extremely small examples.

On exascale systems the high level of concurrency will not allow the user to

enforce any specific reduction order because doing so is either too expensive or impos-

sible. At the same time variability in floating-point error accumulation may become

so great that debugging is impaired or, worse, fundamentally incorrect results are ac-

cepted. An exascale algorithm must exploit the extreme level of concurrency, minimize

communication (for speed and power reduction), tolerate frequent hardware failures,

and utilize resources as they become available [2], all the while providing some trust

in the computation’s result.

The conflict between achieving reproducible accuracy and achieving perfor-

mance is primarily due to the fact that even on current HPC platforms, communi-

cation costs dominate arithmetic costs. Simply put, the most performant reduction

trees are those that take into account the underlying physical topology of the system,

which means reducing values in an order based on which core produced them, not

necessarily their arithmetical properties. Conversely, the reduction trees that result in

the least error accumulation reduce values based on their arithmetical properties, not

their position in the topology of the system. Recently, Balaji and Kimpe [4] showed

not only that topology-aware reduction trees for MPI collective operations outperform

fixed-reduction trees but that the performance advantage of allowing the reduction

tree to conform to the system topology, as opposed to a specified ordering of partial

reduction, increases with the number of cores.

2.3 Mathematical Techniques

In response to the challenges posed by the nonassociativity of floating-point

summation and the nondeterminism at the extreme scale, mathematical techniques

can be applied to mitigate the degree to which computed sums exhibit sensitivity to
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reduction order. Lower sensitivity results in increasingly reproducible results. Tech-

niques can range from simple fixed-reduction orders to more sophisticated prerounded

algorithms. In this section we provide a general overview of the techniques; however,

in the rest of the chapter, we consider only the compensated summation algorithms

(Kahan and composite precision) as well as the prerounded algorithms for our studies

because they are the only methods that can be feasibly applied at the exascale.

2.3.1 Fixed-Reduction Order

To apply fixed-reduction order, we need to ensure that all floating-point oper-

ations are evaluated in the same order from run to run. Two major problems exist

for this strategy. The obvious problem is that ensuring that the reduction proceeds

according to a user-determined reduction tree incurs massive communication and syn-

chronization costs. Additionally, determining exactly which reduction tree achieves

minimal error for a given set of summands is nontrivial. Conventional wisdom sug-

gests summing the values in ascending order if they all have the same sign, and in

descending order of magnitude if they are not. The first case is rare, however, and

the second case assumes that no error beyond initial representation error is present

in the summands; otherwise it is far more vulnerable to catastrophic cancellation. In

summary, fixing the reduction order is difficult to do correctly where it is possible, but

the salient point is that it cannot be done in a cost-effective way at exascale [10].

2.3.2 Interval Arithmetic

Techniques based on interval arithmetic replace floating-point types with custom

types representing finite-length intervals of real numbers. The actual value of the

reduction is guaranteed to lie within the interval. The width of the interval increases

with the uncertainty of the computation. While the techniques are reproducible by

design, they also cause large slowdown and are not suitable for applications needing

many digits of accuracy.
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2.3.3 High-Precision Arithmetic

Perhaps the most obvious technique, and certainly the most popular in real ap-

plications, is to use higher-precision floating-point types. To our knowledge, the earliest

work directly addressing the issue of numerical reproducibility [14] demonstrates the

use of the double-double precision floating-point type in a critical section of code to cur-

tail variability in a global sum. In that work, the goal of using multiple floating-point

types was explicitly to achieve reproducible results. Parallel to that effort, signifi-

cant progress has been made in the field of automated floating-point precision tuning

(e.g., [24]). Precision tuning is an attempt to reduce precision where possible while

maintaining a prescribed degree of accuracy. While one can achieve greater repro-

ducibility by pursuing greater accuracy, the use of high-precision arithmetic can result

in memory-demanding algorithms. By increasing the size of floating-point variables in

most numerically sensitive parts of the algorithm, for example with manual changes

made by an expert or by some form of analysis, we can reduce the memory require-

ments. Still the technique relies on either human experts or other software and thus

is probably unsuitable for many of the use cases discussed in the recent DOE exascale

report [2].

2.3.4 Compensated Summation Algorithms

To compute the sum of n values, we obtain n − 1 partial sums in the process.

For each of these partial sums, the magnitude of error can be estimated. Based on that

estimate, an attempt can be made to compensate for that error by adding an error

term to each partial sum. Compensated summation is a relatively old technique, hav-

ing been introduced by Kahan in [17]; but families of more sophisticated compensated

summation algorithms have been developed, such as composite precision (CP) summa-

tion [28]. In Kahan’s algorithm the estimated error is added back into the sum at each

step. In CP, the error summation is kept and propagated as each of the summations

are performed and added back in only at the end.
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2.3.5 Prerounded Summation Algorithms

More recently, an approach called prerounded summation has emerged for repro-

ducible and accurate summation. The common strategy used by this type of algorithm

is splitting the operands into “high-order” and “low-order” parts with the property

that the high-order parts can be summed irrespective of summation order and the low-

order parts can be neglected, or recursed upon, for higher accuracy. The algorithms

proposed by Demmel and his group are integrated into the ReproBLAS library [11],

which at this time is undergoing active development.

2.4 Inadequacy of Conventional Wisdom

The management of reproducible numerical accuracy is closely related to the

task of estimating and predicting error accumulation. Three common approaches exist,

typically used in isolation, to quantify and mitigate error accumulation. Two of the

approaches can be broadly classified as techniques for error estimation: using worst-

case error bounds and attempting to track or avoid subtractive cancellation. The third

approach is the use of summation algorithms that are believed to be inherently less

sensitive to variability in the reduction tree. We emphasize that these approaches

have significant value. However, we demonstrate that the use of any one approach, in

isolation, will not guarantee the reproducibility desired without a potentially significant

loss of performance.

2.4.1 Using Analytical Error Bounds

The analysis of the error for a single floating-point sum can be extended to pro-

duce a worst-case error bound for the reduction of multiple floating-point values. For

IEEE-compliant implementations of floating-point arithmetic, we have the following

bound on the roundoff error for a single operation. Let x, y be floating-point numbers,

let fl(x+ y) be their rounded sum according to a given rounding rule, and let (x+ y)

be their exact sum:

fl(x+ y) = (x+ y) · (1 + δ)
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where |δ| ≤ u where u is the unit-roundoff and may be written u = 1
2
β1−p, where

β is the base and p is the number of mantissa bits of the representation of x and y.

Equivalently, if we let z denote the exact sum x+y, we obtain a bound on the absolute

error |fl(x + y) − z| ≤ u. With some algebra, one can prove an upper bound on the

error in a sum of n floating-point numbers. We do not include the proof here (it may

be found in [15]), but we state the result. Let x1, . . . , xn be floating-point numbers, let

z denote their exact sum, and let
n∑

i=1

xi denote their sum in floating-point arithmetic.

Then we have the following upper bound on the absolute error in the sum:

|
n∑

i=1

xi − z| < n · u ·
n∑

i=1

|xi|.

Using analytical or statistical worst-case error bounds causes overestimation of

the errors. Figure 2.2 shows an empirical case study in which we measure the error

magnitudes for 10, 000 values sampled in the range (−1000,+1000) and summed by

using 10, 000 different summation orders. The figure also shows both the analytical

and statistical worst-case error bounds. Both error bounds significantly overestimate

the error magnitude. At the same time we observe the large range of measured errors

obtained for the same set of values just by randomly shuffling the order in which the

terms are summed.

2.4.2 Tracking Cancellations

When considering sets of summands with both positive and negative values,

the potential for catastrophic cancellation arises in the computation of the sum. This

numerical phenomenon can result in large relative errors in both the partial and fi-

nal sums, leading to the intuitively appealing perspective of achieving reproducible

accuracy by structuring reductions to avoid cancellation.

Cancellation in general refers to the scenario where the sum of two floating-point

values has a smaller exponent than both of the summands. In order to subtract one

floating-point number from another, their binary points are aligned and the mantissa

of their difference is determined by subtracting the mantissas of the operands bitwise
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Figure 2.2: Empirical study of error magnitudes and worst-case error bounds for
10, 000 summations of 10, 000 values randomly sorted.

and then renormalizing the result. The effect of the renormalization process is that the

lower-order bits of the operands determine the higher-order bits of the result. If both

summands are exact in the sense that their mantissa bits are not carrying the error

from previous computations—as is almost never the case—then their difference can be

considered accurate. However, if the low-order bits of the operands are inaccurate due

to alignment error, many or all of the mantissa bits of the difference of the operands

may be inaccurate. This is the “catastrophic” case.

We emphasize, however, that cancellation does not in and of itself cause error to

accumulate. Rather, it reveals error that has already accumulated in the operands. In

a sense, relative error can increase because of catastrophic cancellation as uncertainty

in less-significant bits of the operands’ mantissas is transferred to uncertainty in the

most significant bits of the result’s mantissa. Nevertheless, the number of cancellations

is not a reliable indicator of the overall problem.
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To prove this claim, we generate a counterexample with a set of 1, 000 floating-

point numbers uniformly distributed in [−1, 1]. We compute the sum of these numbers

using 100 distinct summation orders and determine the error for each order. We assess

cancellation for each order using the numerical library CADNA [16]. CADNA uses the

CESTAC method to identify instances of cancellation in a sum and, for each instance,

estimate the difference between the number of accurate digits in the operands and the

number of accurate digits in the result. In this sense, a cancellation resulting in the loss

of four digits of accuracy is more severe than a cancellation resulting in the loss of only

two digits. Figure 2.3 shows the cancellation counts and error magnitudes for several

summation orders of the set of interest for our counterexample. Each summation order

is represented by five bars, four showing the number of cancellations resulting in the

loss of one, two, four, and eight digits, respectively, and a fifth bar showing the error

magnitude, scaled for ease of viewing. We observe that the number of cancellations,

at any of the considered severities, does not consistently predict error magnitude.

In particular, consider summation orders 2 and 4. Order 2 has about 5X as many

digit cancellations as order 4, but only half the error. This result lends credence to

the view that although it is tempting to view “keeping track of cancellations” as a

valid strategy for managing error and ensuring reproducibility, there is not a simple

correspondence between instances of cancellation and error magnitude. Rather, the

relationship between cancellation and error depends on knowledge of how much error

has already accumulated in the operands involved in the cancellation, a quantity whose

estimation is impeded by the previously discussed loose error bound.

2.4.3 Choice of Summation Algorithm

Apart from the standard iterative summation algorithm, we examine other sum-

mation algorithms that exhibit reduced sensitivity to variability in the reduction tree.

However, each of these algorithms incurs a certain performance penalty relative to

the standard summation. Standard summation is the cheapest and least complex.

Kahan’s compensated summation, then composite precision summation, and finally
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Figure 2.3: Empirical study of cancellations vs. error magnitude for different sum-
mation orders.

prerounded summation are expected to progressively provide more accuracy at the ex-

pense of performance. To assess this performance impact, we measure the execution

times of a case study designed to emulate scenarios in scientific computing in which

partial data is locally generated on multiple processes and then is globally reduced

across the processes. Specifically, on each process, we generate a chunk of a vector of

values of length 106 from a series that is known to sum to zero under exact arithmetic.

We locally reduce these values using each of the four summation algorithms: in the

case of Kahan and composite precision, we use the summation operators in [23] and

in the case of prerounded summation, we use the dIAddd operator provided in [22].

Finally, we globally reduce the local sums by using MPI Reduce with custom reduction

operators for Kahan, composite precision, and prerounded summations. To avoid time

variations due to network contention we run our tests on a single dedicated 48-core

AMD node. Each tests is repeated 20 times with a warmed cache. Figure 2.4 shows
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the average execution times and Figure 2.5 shows the performance penalties associated

with more-reproducible summation. The latter figure confirms the proposed ranking

of the summation algorithms in terms of performance expense.

1 2 4 8 16 32
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Figure 2.4: Comparison of execution time to sum 106 terms for standard summation
(ST), Kahan’s compensated summation (K), composite precision sum-
mation (CP), and prerounded summation (PR).

We argue that applying a judicious mixture of these algorithms, as opposed to

uniformly applying a single technique, is necessary for achieving numerical reproducibil-

ity to the degree required by an application, for a cost acceptable for that application.

Figures 2.6(a) and 2.6(b) support this claim by showing the relative sensitivity of the

three summation algorithms: Kahan’s compensated summation (K), composite preci-

sion summation (CP), and prerounded summation (PR). For a fixed set of data we

generate multiple reduction trees of the same shape but with different assignments of

operands to leaves. We construct the set of summands to have mathematical prop-

erties that render its reduction especially prone to both alignment error and loss of
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Figure 2.5: Performance losses of Kahan’s compensated summation (K), compos-
ite precision (CP), and prerounded (PR) summations compared to the
standard summation (ST).

accuracy due to cancellation. For each reduction tree, we compute the sum using each

of the four algorithms. By plotting the error magnitude, we see that as a progressively

greater amount of computation is invested in compensating for roundoff error, the sum

becomes less sensitive to the varying reduction tree.

2.5 Exploring the Reproducibility Space

Previous work [7, 4] found that reduction tree shape and assignment of operands

to its leaves (or threads) can have a profound effect on the concurrent sum of n floating-

point numbers, even when the operands themselves are subject to minimal alignment

error and have the same sign avoiding cancellation. We build the work in this chapter

on this previous work by targeting a much larger reduction scale and investigating the

impact of four independent parameters on the variability of a sum when the reduction
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Figure 2.6: Empirical study of relative sensitivity of three summation algorithms:
Kahan’s compensated summation (K), composite precision summation
(CP), and prerounded summation (PR). Note that (a) zooms into (b).

order is non-deterministic. The four parameters we consider are the condition number,

the dynamic range, the level of concurrency, and the reduction algorithm. We present

three kinds of results. First, we examine the sensitivity to variations in the reduction

tree of four summation algorithms at increasing levels of concurrency. Second, we

study the impact of concurrency, condition number, and dynamic range on reproducible

numerical accuracy. Third, we provide evidence of the need for selecting application-

aware reduction algorithms.

2.5.1 Experimental Environment and Parameters

Building on the results of small nondeterministic reduction trees established

in [7, 20], we consider reduction trees at the size expected for exascale systems con-

sisting of floating-point operands reflective of those actually reduced in simulations.

Since an exascale system is not available, we emulate the reduction process with n

threads, each computing one of the n partial sums. We consider two tree shapes at
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opposite ends of the spectrum: a completely balanced (see Figure 2.1(a)) tree and

a completely unbalanced (see Figure 2.1(b)) tree. For each tree shape, we generate

distinct reduction trees by randomly assigning operands to leaves. We also focus on

sets of floating-point summands whose mathematical properties are less amenable to

reproducible summation. We characterize sets of floating-point values by their sum

condition number and dynamic range. These are intrinsic properties of the set of val-

ues; they are independent of any imposed ordering. For a set of floating-point numbers

{x1, . . . , xn}, the sum condition number is defined as

k =

(
n∑

i=1

|xi|

)
/

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣
and the dynamic range is defined as

dr = exp(max(|xi|))− exp(min(|xi|)),

where exp(x) is the value of the exponent in the representation of x. If the dynamic

range of two numbers is larger than zero, then alignment error will occur. For this

reason, we use the dynamic range of a set of values as a rough estimator of alignment

error. The condition number does not correspond to a single mechanism by which error

accumulates. Instead, it describes how sensitive the final sum is to small errors in the

partial sums.

Table 2.1 shows small sample sets of values presenting dynamic range dr equal to

0, 8, and 16 as well as condition number k equal to 1, 1000, and∞. Note that dr equal

to 0 means “all exponents are the same” and not that the numbers are large or small; on

the other hand a larger dr, for example 8 or 16, means that a larger discrepancy exists

between the largest and smallest exponents. In other words, the sign on the summands

makes no difference, and the sum of summands makes no difference. A condition

number equal to 1 means “all values in sum have the same sign,” while a condition

number number infinity means “the sum of all the values is 0.” In [7] the operands

are well-conditioned; they have k = 1 (the best possible condition number) and, when

varying tree shape, have dr = 0. We instead focus on ill-conditioned inputs with high
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Table 2.1: Example of sample set of values with specified dynamic range, dr, and
condition number, k.

Sample Set of Values dr k

{1.23e+32, 1.35e+32, 2.37e+32, 3.54e+32} 0 1
{1.23e-32, 1.35e-32, 2.37e-32, 3.54e-32} 0 1

{-1.23e+16, -1.35e+16, -2.37e+16,-3.54e+16} 0 1
{2.37e+16, 3.41e+8, 4.32e+8, 8.14e+16} 8 1
{3.14e+32, 1.59e+16, 2.65e+18, 3.58e+24} 16 1

{2.505e+2, 2.5e+2, -2.495e+2, -2.5e+2} 0 1000
{5.00e+2, 4.99999e-1, 1.0e-6, -4.995e+2} 8 1000
{5.00e+2, 4.99...99e-1, 1.0e-14, -4.995e+2} 16 1000

{3.14e+8, 1.59e+8, -3.14e+8, -1.59e+8} 0 ∞
{3.14e+4, 1.59e-4, -3.14e+4, -1.59e-4} 8 ∞
{3.14e+8, 1.59e-8, -3.14e+8, -1.59e-8} 16 ∞

dynamic range because reality is not so rosy. For example, N -body simulations [3]

involve reductions of floating-point values that are ill-conditioned; both k and dr can

frequently be very large.

2.5.2 Sensitivity of Summation Algorithms

To examine the sensitivity of summation algorithms to variability in the reduc-

tion tree, we generate and reduce two sets of summands constructed to have the exact

sum of zero and dynamic range of 32. One set has n = 8K values, and the other

has n = 1M values. These sets of values are more prone to both alignment error and

catastrophic cancellation than are those studied in [7]. They are also more reflective of

the values that may arise in simulations (e.g., when the net force on a particle is close

to zero).

Figures 2.7(a)–(h) show the distribution of error magnitudes for sums com-

puted by using varying reduction trees for the four summation algorithms of interest

in this chapter: the standard iterative summation algorithm (ST); Kahan’s compen-

sated summation algorithm (K); the composite precision summation (CP), which can

be considered an enhanced form of compensated summation; and the prerounded sum-

mation (PR), which offers guaranteed bitwise reproducibility at a user-specified level of
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accuracy. We consider two types of reduction trees: completely balanced, with results

shown in Figures 2.7(a), (b), (c), and (d), and completely unbalanced, with results

shown in Figures 2.7(e), (f), (g), and (h). For each tree type, we consider both smaller

levels of concurrency (8K leaves in the tree) and higher levels (1M leaves in the tree).

The boxplots in the figures are obtained by considering 100 distinct reduction trees

with the same shape but randomly permuted assignments of the values to leaves. Note

that Figures 2.7(b), (d), (f), and (h) provide a zoom-in into Figures 2.7(a), (c), (e),

and (g), respectively.

The effect of nondeterminism in the reduction tree is exhibited in Figures 2.7.

For a given summation algorithm, the distribution of data points and width of the

box indicate how much the sum tends to vary when the overall shape of the reduction

tree is constant but the arrangement of summands to its leaves is variable. Within the

subfigures, we see that although Kahan summation tends in general to produce more

reproducible sums than standard summation, only composite precision and prerounded

summations offer reproducible numerical accuracy at an acceptable level. Across a row

of subfigures, we see that as the level of concurrency rises, the absolute error in the

sum rises as expected. However, by comparing results across a column of subfigures,

for example, the ST data from Figure 2.7(a) and the ST data from Figure 2.7(e), we

see that much more variation in the sum occurs when the tree is unbalanced than when

it is balanced for the standard summation algorithm. To cope with intermittent faults

and inconsistently available resources, we expect that the reduction trees employed

by an exascale system will vary not only in terms of arrangement of data among

their leaves but also in overall shape. We conclude that because of the difference in

reproducibility observed for differently shaped reduction trees, exascale applications

will need to maintain awareness of the degree of fluctuation in reduction tree shape

and employ more robust reduction operators accordingly.
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Figure 2.7: Error distributions for the four summation algorithms considered in this
chapter for balanced and unbalanced reductions: three at a smaller (8K
leaves) and one at higher (1M leaves) levels of concurrency.
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2.5.3 Effect of Concurrency, Conditioning, and Dynamic Range

For a fixed level of concurrency, the mathematical properties of the summands

can have a significant impact on the sensitivity of the sum to variations in the reduction

tree. In the previous section, we considered a set of values with a fixed condition number

k and dynamic range dr. In this section, we examine the effects of varying k and dr at

a fixed level of concurrency n = 1M ; varying dr and n at a fixed k; and varying k and

n at a fixed dr. We represent the spaces of (k, dr), (n, dr), and (n, k) as a grid of cells,

where for each cell we generate a set of floating-point values with the cell parameters.

The degree to which these sets of values can be summed reproducibly is tested. For all

sets of summands under consideration, we measure their potential for irreproducibility

by computing their sum with 1,000 distinct, balanced reduction trees obtained by

permuting the assignment of summands to leaves. As in the our previous experiment

we test four summation algorithms. However, we display results only for the first three

because the composite precision and prerounded summations performed identically for

all sets of inputs considered. Once all the sums have been computed for a cell, the

error in each sum is calculated with respect to an accurate reference sum, which we

compute in quad-double precision using the GNU MPFR high-precision library. To

visualize the level of irreproducibility observed, we compute the standard deviation of

the errors and shade the cell according to that value. Figure 2.8 illustrates the process

in a visual (and more intuitive) way.

Figure 2.9 shows how position in the space of possible (k, dr) values influences

the variability of a sum at a fixed level of concurrency. The darker cells toward the top

and right of the two leftmost grids indicate sets of summands whose sums varied much

more than the level of variation observed for sets of summands with lower condition

number. The darkest cell in the standard summation grid is anomalous but likely due

to particularly severe subtractive cancellation, since its condition number is large. The

rightmost grid shows that for all considered sets of summands, the result according to

the composite precision summation did not vary with changes in the reduction tree.

Figure 2.10 presents the impact of dynamic range for a fixed condition number.

24



k	  

dr	  

{x1,	  x2,	  ….	  xn}	  

Sσ	  =	  	  	  	  	  	  xσ(i)	  	  σ	  –	  perm.	  of	  [n]	  	  	  
1

n
∑

{Sσ_1	  ,Sσ_2	  ,Sσ_3	   …..	  Sσ_100	  }	  	  

{εσ_1	  , εσ_2	  , εσ_3	   …..	  εσ_100	  }	  	  

δ error variability   

Values	  

Sum	  of	  	  
shuffled	  values	  

MulIple	  sums	  of	  
mulIple	  permutaIons	  

Errors	  

Error	  variability	  

….. 

Figure 2.8: Overview of the grid with its cells used to study the effect of concurrency,
conditioning, and dynamic range.

Figure 2.9: Standard deviation errors for standard summation (left), Kahan summa-
tion (middle), and composite precision summation (right) for different
(k, dr) values and fixed concurrency n.

For these grids, each cell’s summands have condition number k = 1 so that the ability

of dynamic range to estimate alignment error can be assessed. Note that the scale by

which the cells are shaded for these grids is not the same as for the grids examining the

(k, dr) or (n, k) spaces. There is a tendency for high-concurrency, high-dynamic-range

cells to exhibit greater variability; but the most valuable lesson from these visualiza-

tions is that dynamic range exerts much less influence over variability of the sums than

does the condition number, as seen in Figure 2.11. Here, we observe a strong rela-

tionship between high variability of sums and sets of summands with high condition
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number. These results suggest the need for applications to maintain awareness of the

mathematical properties of sets of floating-point values generated at runtime, and if

the reduction tree is expected to change from run to run, to select reduction algorithms

that take those mathematical properties into account.

Figure 2.10: Standard deviation errors for standard summation (left), Kahan summa-
tion (middle), and composite precision summation (right) for different
(n, dr) values and fixed condition number k.

Figure 2.11: Standard deviation errors for standard summation (left), Kahan summa-
tion (middle), and composite precision summation (right) for different
(n, k) values and fixed dynamic range dr.
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2.5.4 Intelligent Selection of Reduction Algorithms

Techniques such as compensated summation can reduce the amount of variabil-

ity observed in repeated summation when the summation order changes from run to

run. However, application developers are faced with the challenge of selecting the sum-

mation algorithm that gives them the level of reproducibility and accuracy required by

their application. At exascale, judicious selection of reduction algorithms will be vital

so that application-specific reproducible numerical accuracy can be achieved at toler-

able cost. In contrast to the old notion of bitwise reproducibility, application-specific

reproducibility requires developers to specify an upper bound on the amount of vari-

ability in the values of floating-point reductions that can be tolerated while maintaining

the trustworthiness of the application’s output.

A set of floating-point values occupies a position in a complex parameter space:

the number of values, reduction tree, condition number, and dynamic range all exert

influence over which reduction algorithm can cost-effectively achieve a specified level

of reproducibility. Our data suggests that in order to avoid exceeding a fixed level of

variability, if one cannot control the reduction tree, it may be possible to use standard

summation when values are uniform and well-conditioned and to adaptively switch to

a more robust summation algorithm if the values to be reduced become less uniform

or less well-conditioned. We argue that unlike attempting to achieve reproducible nu-

merical accuracy by additional data movement, as would be required to fix a reduction

tree, estimable quantities such as condition number and dynamic range can guide run-

time selection of a reduction operator with the appropriate performance/reproducibility

tradeoff for the application at hand. In Figure 2.12, we show the (k, dr) grid for several

error variability thresholds. Here cells are shaded based on the cheapest summation

algorithm that achieves a given degree of reproducibility at that cell. As we reduce the

variability threshold, effectively stepping toward bitwise reproducibility with smaller

and smaller thresholds, we see that increasingly costly summation algorithms are re-

quired for the more challenging regions in the space (i.e., those with high condition

number and high dynamic range).
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Figure 2.12: Selection of the cheapest but acceptably accurate reduction algorithm
among the Kahan (K), composite precision (CP), and prerounding (PR)
algorithms for different error variability thresholds (left to right: t =
5e− 13, 3e− 13, 2.5e− 13, 1.5e− 13, 5e− 14).

Achieving reproducible numerical accuracy by intelligent runtime selection of

reduction algorithms depends on being able to assess the mathematical properties of

the floating-point values to be reduced. We show that if this assessment can be done,

one can avoid using a more expensive reduction algorithm when a cheaper one will do.

These results present a strong case for further research into tools that, at exascale,

profile parameters of interest (e.g., n, k, dr, and tree shape) at runtime and apply

cheaper but acceptably accurate reduction algorithms to subtrees based on the profile.

2.6 Lessons Learned

In this chapter we tackle the first of our two challenges (i.e., the numerical

challenge). We identify relevant parameters that, when analyzed in concert, can pro-

vide insight into intelligent selection of reduction algorithms to achieve reproducible

numerical accuracy on soon-to-exist exascale platforms.

Three main observations emerge from our study on reproducible numerical accu-

racy. First, reduction tree shape has a large impact on reproducible numerical accuracy.

Second, mathematical properties of a set of summands have an impact on the repro-

ducibility of their sum. In applications where the conditioning and dynamic range can

change dramatically over the course of the runtime, this effect is especially relevant.

Third, we show that if we fix a target level of reproducibility, we can classify regions of

28



the parameter space by the cheapest algorithm that achieves the desired level of repro-

ducibility at that point in the space. This is an important step toward implementing

intelligent runtime selection of reduction operators on future exascale platforms.
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Chapter 3

THE DEBUGGING CHALLENGE

3.1 Introduction

In this chapter we first provide an overview of the record-and-replay approach

for debugging a class of non-deterministic applications and describe the properties of

existing record-and-replay tools. We then present our extension to the record-and-

replay approach together with the performance of the integration of our extension into

a production-grade record-and-replay tool.

3.2 Record-and-Replay Approach and Tools

To overcome the impediments to debugging associated with non-deterministic

executions, a class of debugging aids collectively referred to as record-and-replay tools

have been developed. These tools allow developers to record one execution of a target

application, then replay it exactly. In general, record-and-replay tools must establish

an order of events during the recorded execution, then write a representation of that

order to some form of persistent storage. The exact data that must be recorded de-

pend on what assumptions can be made about the form of nondeterminism the target

application exhibits. Figure 3.1 shows a general overview of these tools’ framework.

Necessary behaviors of record-and-replay tools can be sorted in two groups: dur-

ing recording and during replay. During recording, a tool must observe communication

events in an application’s execution and store (or write) information that unambigu-

ously orders the observed events into a record. One way to do this task is with logical

clocks and metadata (described in the next section). Metadata in message passing ap-

plications include processes’ rank, tag, and communication event type (e.g., completion

of a receive vs. invocation of Test-family function).
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Figure 3.1: General overview of a record-and-replay framework.

During replay, a tool must read (or query) the record followed by buffering

and re-ordering communication events in the subsequent execution. Correctness of the

replay depends on assumptions about the application (e.g., is the application send-

deterministic) [5] and inductive arguments (e.g., the nth event is replayed correctly as

a consequence of the n− 1th event being replayed correctly).

Existing record-and-replay tools fall into two broad categories: data-replay and

order-replay. These categories refer to the content that is traced by the tool during

recording. Specifically, data-replay tools record the total content of messages, whereas

order-replay tools opt instead to record the messages’ relative ordering. The state

of the art in record-and-replay takes the order-replay approach primarily due to the

significant reduction in record size it provides by not recording possibly large message

payloads in addition to the necessary message order data.

The earliest record-and-replay tools employed the data-replay approach, but
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attempt to mitigate the growth of record size via selectively recording only those mes-

sages deemed at runtime to be a source of non-determinism. Netzer and Miller employ

vector clocks to identify racing messages and thus restrict the number of necessarily

recorded messages in their tool [21]. Later work by Clémeco̧n et al. used a similar vec-

tor clock approach, but extended the tool’s capabilities to record non-blocking probes

as well as wildcard receives [8]. Despite these techniques’ applicability at the time of

their creation, their use of vector clocks makes them prohibitively expensive for modern

HPC systems, since each message is saddled with a vector of n elements where n is the

number of processors in the system [13].

Later record-and-replay tools embraced the order-replay design, recognizing that

despite the need to make stronger assumptions about message contents than data

replay tools do, increasingly large systems necessitate the smaller record sizes that

order-replay tools can deliver. One early tool in this domain was the Nondeterministic

Program Evaluator (NOPE) developed by Kranzlmüller and Volkert [18]. Last, Clock-

Delta Compression (CDC) [25] is the state-of-the-art approach to record-and-replay

that aims to overcome the problem of large record size that renders traditional record-

and-replay techniques inapplicable at extreme scale. We build our work on top of this

approach that we describe in the next section.

3.3 Clock-Delta Compression

Clock-Delta Compression (CDC) establishes an order on communication events

during recording by piggybacking logical clocks on messages between processes, and

applies a novel compression pipeline to the record that leverages properties of the pig-

gybacked clocks. In this section, we provide an overview of the CDC record format, a

high-level description of the compression pipeline, and describe the role of the piggy-

backed logical clocks with respect to the record format and the compression pipeline.

The CDC record format is a data structure built up during recording that

contains sufficient information about interprocess communication events to enable de-

terministic replay of the recorded execution. The record format consists of three main
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parts: the with-next-table, the unmatched-test-table and the matched-test-table. The

with-next-table records when multiple incoming messages match with a single receive re-

quest, as can occur if MPI Testsome, MPI Testall, MPI Waitsome, or MPI Waitall are

employed by the application. The unmatched-test-table records instances of MPI Test-

family functions being called on a receive request when no matching send exists, as

can occur when a polling loop of test calls is used to complete a non-blocking receive.

Finally, the matched-test-table records the actual matches between receive requests and

incoming messages. This component of the record format is our focus since the most

dramatic reductions in record size that CDC offers apply to the matched-test-table.

Moreover, the specific implementation of the underlying logical clock protocol directly

effects the compressibility of the matched-test-table.

The CDC compression pipeline is applied to the CDC record format during

recording and consists of three stages: permutation encoding, linear-predictive encod-

ing (LPE), and lossless compression. The permutation encoding stage is applied only

to the matched-test-table, whereas LPE is applied to components of the matched-test-

table and unmatched-test-table. The lossless compression stage is applied to the entire

record after permutation encoding and LPE. We provide the description of the algo-

rithm for permutation encoding in Section 3.6 due to the critical reduction in size

of the matched-test-table that it provides and the degree to which its functionality is

intertwined with the notion of a logical clock ticking policy described in Section 3.4.

3.4 Logical Clocks

Logical clocks, originally defined by Lamport in [19], provide a method for

establishing a partial order on events in a distributed system. Within the context of

the CDC record-and-replay technique, we describe the rules of the logical clock protocol

that CDC employs, we define the notion of logical clock ticking policy, and we discuss

how recording events are distinguished by the logical clock values associated to them.

CDC establishes a partial order on all communication events that occur during

recording by maintaining in each process p an integer value referred to as the local clock
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of that process. Whenever p sends a message to another process, p attaches a copy of

its local clock to the message, then increments its local clock by some value t, hereafter

referred to as a “tick”. When another process q receives p’s message, it sets its own

local clock to the maximum of its current value and the value attached to the message

it just received. Then q increments its local clock by some amount (i.e., q ticks its local

clock). Two immediate consequences of this protocol are that within a process, if an

event e0 occurred before another event e1, the logical clock values associated to those

events (e.g., c0 and c1) satisfy c0 < c1, and between a sender process and a receiver

process, a send event’s clock will always be less than its corresponding receive event’s

clock.

So far we have discussed logical clocks’ ticks without specifying what values they

must take. In Lamport’s paper on logical clocks [19], ticks are assumed to always equal

1, but in fact all that is necessary to establish a partial order is that the ticks have

positive value. In the context of record-and-replay, since the replayed execution must

exactly match the recorded execution, we require the additional constraint that the

ticks be deterministic (i.e., during replay), for all processes, the ith tick applied to a

process’s local clock must match the ith tick that was applied to its local clock during

recording. We define a logical clock ticking policy to be a mechanism for deciding what

value each tick applied to each process’s logical clock will take.

3.5 In- and Out-of-order Received Messages

In this section, we define the concept of an event (e.g., message receive) being in-

order or out-of-order with respect a logical clock reference order, and how out-of-order

messages impact the size of the matched-test-table. In CDC, every receive completion

event is associated to a logical clock value that is piggybacked on a received message.

Specifically, each process has a “local clock” (LC) that is initially zero. When a process

(e.g., P0) sends a message, its LC is attached to the message as the “sent clock” (SC).

Afterward, the sending process’s LC is incremented by one. When a process (e.g., P1)

receives a message from another process (e.g., P0), it updates its LC by the Lamport
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Clock protocol LC = max(LC, SC) + 1 and records the receive event. The list of SC

values that every receiving process builds up over the course of recording an execution

defines whether a received message is in-order or out-of order: if the new SC is larger

than the previous received SC, then the message is in-order; if it is smaller, then then

the message is out-of-order. The SC values are the input to the permutation encoding

step of the CDC compression pipeline, and the degree of monotonicity in this list of

values determines the effectiveness of the compression. Moreover, the list of SC values

is not the same logical clock value that any receiving process updates its local clock

to, and as such does not impose a partial order on events in the same way. Figure 3.2

shows examples of in-order or out-of-order messages: Figure 3.2.(a) shows an example

of an in-order received message and Figure 3.2.(b) shows an example of an out-of-order

received message. In Figure 3.2.(a), the SC of P0 is 17; because the SC value is larger

than the precious SC of P1 (in the figure the SCprevious is 15), the received in-order

message is annotated in the SC list but will not be recorded in the matched-test table.

This is not the case in Figure 3.2.(b) in which the the SC of the sending P0 is still 17

but the previously annotated SC is larger (i.e., equal to 19), causing the recording of

the event in the matched-test table.

Sen
t	cl
ock
	(SC

)	

LC	=	17		

17	

Record	SC	
If	SC	>	SCprevious	
à In-order	message	
à Do	not	need	to	record	

P0 
LC	=	18		

LC	=	16		 LC	=	18		
P1 

…….	15 …….		15		17SC	list	
Before	 AHer	
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If	SC	<	SCprevious	
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	P0 

17	

LC	=	17		 LC	=	18		
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Figure 3.2: Example of in-order (a) and out-of-order (b) messages.
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Figure 3.3 show a larger five-stage example in which multiple messages are

received by a process P0. For each stage, the upper figure shows the snapshot with the

sent and received messages up to that point for process P0; the bottom figure shows

the associated SC list. In Stage 1, P0 receives a message from, for example, P1. P0

updates its local clock (LC), which was initially equal to 1, by using the Lamport Clock

protocol to 4 (i.e., LC of P0 becomes the max of LC and SC plus one) and temporally

records the time of the received message (i.e., SC time is equal to 3). In Stage 2, P0

receives a second message from P2; P0 updates its LC following the same procedure as

in Stage 1. The LC of P0 becomes 6 and the process also records the received SC value

(in this case SC is equal to 5). We observe that at the end of Stage 2 the received

clocks’ values are monotonically increasing “in-order”. The process takes note of the

message’s SC but does not forward the SC value to its matched-test table. In Stage

3, P0 sends messages. Its LC increases each time a send is initiated but no clock is

recorded. In Stage 5, two additional messages from a different process than P1 are

received by P0. This time the first message is out-of-order (i.e., with a SC equal to

4 smaller than 5) and is thus used for building the process’ matched-test table. The

second is in-order (i.e., with a SC equal to 7 larger than 4) and is not considered for

the process’ matched-test table.

3.6 Permutation Encoding

During recording, the process receiving messages with the attached logical clock

values builds up the matched-test table. The table collects only information on out-of-

order messages and therefore, the number of out-of-order messages determines the size

of the matched-test table.

Sato et al. made the observation that for most processes, the list of received

clock values tended to consist of values that were nearly-sorted in increasing order

(i.e., in-order messages), as show in the authors’ manuscript [25]. The observed sim-

ilarity between the actual order of received clock values (referred to hereafter as the

observed order) and the ordering of received clock values in ascending order (referred
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Figure 3.3: Example of a five-stage execution in which in-order and out-of-order
messages are received by process P0. We show in-order receives in stages
1, 2, 3, and 5. We show an out-of-order receive in stage 4, in which a sent
clock of 4 is received after P0 has already received a larger sent clock of
5.

to hereafter as the logical clock reference order) suggests that there is a compact way

of representing the difference between the observed order and the reference order. This

difference, which can be thought of as the permutation that maps the reference order

to the observed order, is what the permutation encoding stage computes. Representing

the matched-test table by this permutation suffices for replay because during replay,

messages arriving in arbitrary order can be buffered, sorted based on their piggybacked

logical clock values into the reference order, and then un-sorted into exactly the ob-

served order from recording by applying the recorded permutation.

The permutation encoding stage works by computing a minimal set of edits that

effectively map the logical clock reference order back to the observed order. Each edit
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is represented as a pair of integers (i.e., an index and an offset). Consider that if a

process receives all its inbound messages such that their piggybacked logical clock values

are received in strictly ascending order, then the observed order and the logical clock

reference order are identical (i.e., all messages are received in-order). Since permutation

encoding is an effective compression technique to the extent that the observed order is

similar to the logical clock reference order, a reduction in the number of out-of-order

message receives translates to a reduction in the size of the matched-test table, and

consequently a reduction in the size of the total record. Figure 3.4 shows how, for

the example in Figure 3.3, we need to swap only the 2nd and 3rd message receives to

create our observed sequence of messages starting from a totally in-order set of message.

Therefore, “swap(2,3)” is written to the matched-test table for P0 and everything else

is discarded.
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Figure 3.4: Process to transform a totally in-order set of message receives into the
order we observed for Figure 3.3.

During the replay stage, a record-and-replay tool buffers incoming messages

and re-orders them so that the processes receive the messages in the same order the

processes did during the recorded execution. Figure 3.5 shows the the steps followed

by the replay stage for the example in Figure 3.3.
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3.7 Logical Clock Ticking Policies

To minimize the size of the matched-test table, and hence the size of the overall

record, it is necessary to minimize the number of messages that are received out-of-

order. Sato et al. propose to accomplish this minimization by means of a logical clock

ticking policy designed to accurately reflect the number messages received. This policy

that we call “basic ticking” ticks by 1 each time a message reception is completed, as

shown in Figure 3.6.(a).

In an ideal recording scenario, all messages arrive at their receiving processes

such that their attached clock values are received in ascending order. In light of this,

it is tempting to attempt to implement a ticking policy based on wall-time values, as

depicted in Figure 3.6.(b). However, such a ticking policy cannot provide deterministic

ticks, and hence causes incorrect replay. Nevertheless, we integrated this polices in

Sato’s record-and-replay tool ReMPI and we collected data on the rate of out-of-order
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messages observed under a wall-time based ticking policy to investigate the degree to

which a specialized ticking policy can improve over the baseline policy of setting each

tick equal to 1. As we will show below, empirical investigation indicates that a ticking

policy that matches closely with wall-time based ticking but retains replayability can

reduce the rate of out-of-order messages, and hence reduce the size of the matched-test

table.
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Figure 3.6: High level overview of the three ticking policies considered in this work:
(a) basic ticking, (b) wall-clock ticking, and (c) FLOPs-based ticking.

In the message-passing HPC applications that record-and-replay tools target,

processes often alternate between progressing through intensive floating-point work-

loads and communicating with other processes. As such, we propose a FLOPs-based

ticking that uses the number of floating-point instructions completed by a process

as a proxy for wall-time. We use the Performance Application Programming Inter-

face (PAPI) to monitor floating-point instructions completed, and derive ticks from

those values. Empirical investigation not shown in this thesis indicates that the

PAPI FP INS performance counter, which measures floating-point instructions com-

pleted, yields deterministic values, and hence deterministic ticks, when limited to count-

ing floating-point instructions at the application level exclusively. We use the MPI pro-

filing interface (PMPI) to intercept MPI function calls made by applications and halt

PAPI’s counters until control returns to the application, as shown in Figure 3.6.(c).
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Figure 3.7: MCB communication patterns: the neighbor-to-neighbor particle ex-
change (a), the non-blocking gather (b), and the non-blocking scatter
(c).

3.8 Applicability to Real Applications with Real Record-and-Replay Tool

To evaluate the effectiveness of our PAPI FP INS-based ticking policy in reduc-

ing the rate of out-of-order message receives, we record multiple executions of a repre-

sentative message-passing application, the Monte Carlo Benchmark (MCB) [1], with a

record-and-replay tool that implements CDC, called Reproducible MPI (ReMPI) [25].

In this section, we provide our rationale for evaluating our ticking policy using MCB

and ReMPI.

MCB is an MPI application that simulates particle dynamics in a domain that

is decomposed over a set of MPI processes. Particles that exit one process’s subdomain

are buffered and subsequently sent to a neighbor process’s subdomain via non-blocking

point-to-point communication. MCB progresses its simulation by alternating between

three distinct communication patterns, as shown in Figure 3.7. The three patterns

are: neighbor-to-neighbor particle exchange where processes communicate with their

neighbors in a Cartesian grid; non-blocking gather where processes are organized into

a binary tree topology and send messages to their parents in the tree; and non-blocking

scatter where processes are once again organized as a binary tree, but the direction of

communication is from parent to child. MCB is known to exhibit non-deterministic
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communication due to its use of non-blocking point-to-point communication and wild-

card receives (i.e., allowing a pending receive request to match with the first message

that arrives), rather than a message from a specific sender. Moreover, run-to-run

variability in MCB’s numerical outputs has been observed [9] that is attributable to

non-deterministic communication. Consequently, MCB is an ideal candidate applica-

tion for testing a record-and-replay tool.

We implement our ticking policies in ReMPI. ReMPI is, to the best of our knowl-

edge, the only record-and-replay tool that implements CDC. Additionally, ReMPI’s

design as a composition of PMPI modules [12] [27] simplified the implementation of

our ticking policy. By default ReMPI uses the basic ticking policy where all ticks are

set to 1.

3.9 Assessing Different Ticking Policies

We compare our ticking policy based on floating-point operations against the

baseline ReMPI ticking policy. In our analysis we consider the effect of application-level

parameters (i.e., floating-point workload per process and rate of messaging between

processes) on the rate of out-of-order messages.

3.9.1 Experimental Setting

By varying the number of particles that each MPI process initially simulates,

we can effectively vary the intensity of each process’s floating-point workload (i.e.,

the more particles are simulated per process, the more floating point operation are

performed). Note that we consider a homogeneous distributed of particles per process.

By varying the size of the communication buffer between two processes each process

uses to accumulate particles en-route to a neighbor process, we can effectively vary

the rate of communication (i.e., by decreasing the buffer size we increase the number

of messages issued). In Figure 3.8 we show the four scenarios we test in this thesis

(in green). We consider either 1K or 1M particles for process and either a buffer size
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containing data for 5 or for 5,000 particles leaving a process subdomain for the neighbor

process sharing the buffer.
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Figure 3.8: Tested scenarios (in green cells) in the space of application parameters
considered in this thesis. Gray cells are left for future work.

For each one of the four MCB scenarios we evaluate our FLOPs-based ticking

(referred in the figures in the next section as PAPI FP INS-ticking) against the baseline

ticking policy built into ReMPI (hereafter referred to as MPI SEND-ticking) and a

non-replayable wall-time-based ticking policy (referred to as MPI WTIME-ticking).

For each scenario and each ticking policy, we record 100 executions of MCB with

the extended ReMPI set to log the number of messages received in-order and the

number of messages received out-of-order by each MPI process. For each process, we

compute the percentage of messages received out-of-order, and then aggregate these

percentages across all 100 executions, thereby obtaining a global view of the ticking

policies’ effectiveness at minimizing the rate of out-of-order messages.

We conduct our tests on Vulcan, a BlueGene/Q cluster at Lawrence Livermore

National Laboratory. Each node of Vulcan consists of 16 1.6 GHz PowerA2 processors

and is equipped with 16 GB of RAM. The nodes are networked to each other in a 5D

torus. We consider three scenarios consisting of one single node running a 16-processes
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MCB, four nodes running a 64-processes MCB, and 16 nodes running a 256-processes

MCB.

3.9.2 Results

Figures 3.9 plot the distributions of out-of-order message percentages for each

ticking policy and the median out-of-order percentage for each ticking policy over all

executions on a single node of Vulcan. At the single-node scale, we observe that

(a) (b)

(c) (d)

Figure 3.9: Distributions of out-of-order message percentages and median out-of-
order percentage for each ticking policy over all executions on a single
node of Vulcan. The test cases are: 1K particles per process, buffer
size 5 (a); 1K particles per process, buffer size 5K (b); 1M particles per
process, buffer size 5 (c); and 1M particles per process, buffer size 5K
(d).

MPI WTIME-ticking improves the median out-of-order message percentage relative
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to MPI SEND-ticking best when communication intensity is low (i.e., when the MCB

buffer size is large). The median improvement is 9% in the low floating-point work-

load case, and 11% in the high floating-point workload case. Conversely, when the

communication intensity is high due to a small MCB buffer size, the improvement

MPI WTIME-ticking offers is minimized–6% and 3% respectively. We conjecture that

this is due to the fact that when more messages are sent per unit of wall-clock time,

ticking by 1 per message send more closely resembles the passage of wall-clock time

than in the case where message sends are less frequent. In all four cases however, we

note that the PAPI FP INS-based ticking does not improve the median out-of-order

percentage relative to MPI SEND-ticking, contrary to our expectation. We do note

however that in the low communication intensity and high floating-point workload

case, the out-of-order message rate of PAPI FP INS-ticking closely approaches that of

MPI SEND-ticking.

In the four-node tests shown in Figures 3.10, we observe that while MPI WTIME-

ticking continues to excel in the low communication intensity cases, MPI SEND-ticking

matches it very closely in the high communication intensity cases, even slightly exceed-

ing it when the per-process floating-point workload is also low. Also notable is that in

the two high floating-point workload cases, PAPI FP INS-ticking matches very closely

with MPI SEND-ticking, lending further credence to the idea that PAPI FP INS-

ticking can be useful for applications where per-process floating-point workload strongly

influences the timing of message sends.

At the 16-node scale shown in Figures 3.11, we observe that even in the low

communication intensity, low floating-point workload case, MPI SEND-ticking gets

very close to the performance of MPI WTIME-ticking. The trend we have so far ob-

served of strong agreement between all three ticking policies in the high communication

intensity, high floating-point workload case continues, as does the trend of strong agree-

ment between MPI SEND-ticking and PAPI FP INS-ticking in the low communication

intensity, high floating-point workload case.
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(a) (b)

(c) (d)

Figure 3.10: Distributions of out-of-order message percentages and median out-of-
order percentage for each ticking policy over all executions on four
nodes of Vulcan. The test cases are: 1K particles per process, buffer
size 5 (a); 1K particles per process, buffer size 5K (b); 1M particles per
process, buffer size 5 (c); and 1M particles per process, buffer size 5K
(d).

3.10 Lessons Learned

The work in this chapter was motivated from the question whether a ticking

policies that resembles the non-replayable wall-clock ticking policy such as our FLOPs-

based ticking policies can outperform the baseline ticking policy built into ReMPI.

By comparing the performances of our FLOPs-based ticking against the baseline

ticking policy built into ReMPI and a non-replayable wall-time-based ticking policy in

four distinct scenarios, we have begun to develop insight into the interaction between
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(a) (b)

(c) (d)

Figure 3.11: Distributions of out-of-order message percentages and median out-of-
order percentage for each ticking policy over all executions on 16 nodes
of Vulcan. The test cases are: 1K particles per process, buffer size 5 (a);
1K particles per process, buffer size 5K (b); 1M particles per process,
buffer size 5 (c); and 1M particles per process, buffer size 5K (d).

application behaviors and the effectiveness of different ticking policies. Although we

were not able to observe improvement in median out-of-order percentage for the base-

line ticking policy built into our FLOPs-based ticking relative to the baseline ticking

policy built into ReMPI, we posit that our ticking policy may still form the basis of a

future ticking policy that takes additional application-level information into account to

reduce the out-of-order message rate. Additionally, we posit that applications exhibit-

ing greater imbalance between processes’ floating-point workloads may benefit more

from FLOPs-based ticking policies than MCB does.
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One aspect we need to consider is that the MCB application does not have one

single communication pattern that is a source of non-determinism, In other words, the

tests we showed in this chapter do not identify whether the out-of-order messages are

more caused by one of the three patterns. This aspect is further discussed in the next

chapter.
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Chapter 4

CONCLUSION AND FUTURE WORK

4.1 Introduction

In this chapter, we outline the directions of our future research on non-determinism

and its impact on reproducibility of HPC applications. So far, we have discussed the

numerical challenge of reproducibility in HPC separately from the debugging chal-

lenge; work in progress seeks to establish connections between the two problems and

their solutions. To this end, in future work we will study connections between run-

to-run numerical variability in large scale applications (as explored in Chapter 2) and

non-deterministic communication patterns identified with record-and-replay tools (as

explored in Chapter 3). The study and generalization of non-deterministic communica-

tion patterns not only addresses un-answered questions that were raised in the previous

chapter, but also provides a platform for identifying code motifs in applications that

lack in numerical reproducibility. We will build our work on non-deterministic com-

munication patterns on top of preliminary findings from our attempts to attribute

out-of-order receives to particular communication patterns in MCB described in the

next section. The non-determinism in communication patterns cannot be addressed

without the development of better ticking policies that mitigate the number of out-of-

order events in HPC applications. Therefore we will look at strategies to improve the

results presented in Chapter 3.

4.2 Out-of-Order Events and Communication Patterns

In Chapter 3 we investigate the overall rate of out-of-order messages originating

from any of three communication patterns in MCB (i.e., the neighbor-to-neighbor par-

ticle exchange, the non-blocking gather, and the non-blocking scatter in Figure 3.7).
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In this section, we refine our perspective by presenting data on the messages exchanged

between particular pairs of processes which, combined with knowledge of which pro-

cesses receive from which others during each communication pattern, provides insight

into which communication patterns are responsible for the majority of out-of-order

message receives.

To capture the specific senders of out-of-order messages to each receiving process

for each communication pattern, we instrumented the ReMPI code to write to a log file

for each received message. Note that the log file is separate from the actual record file

generated for ReMPI use during replay. We repeated the tests described in Figure 3.8.

For each of the four cells in Figure 3.8, we built a first heatmap with total number of

messages and a second heatmap with the total out-of-order messages. Specifically, in

the first heatmap, for each receiving process on the row of the heatmap, we collected

the total number of messages this process receives from each sending process on the

columns of the heatmap; the second heatmap is built in the same way but with the

number of out-of-order messages. The intensity of a cell’s coloring in the two heatmaps

indicates the number of messages. Cells colored grey indicate that no messages are

communicated between the process on the cell’s row (receiving process) and the process

on the cell’s column (sending process).

Figure 4.2 shows the total number of messages received by each receiving process

from each process that sent to it. This data is collected from a 1-node, 16-process

run of MCB which was recorded using ReMPI with MPI SEND-ticking (the best of

the two replayable record-and replay techniques in Chapter 3. Figure 4.2.(a) refer to

high communication intensity with low floating-point workload (i.e., 1K particles per

process with a buffer size of 5); Figure 4.2.(b) refers to low communication intensity

with low floating point workload (i.e., 1K particles per process with a buffer size of 5K);

Figure 4.2.(c) refers to low communication intensity with high floating-point workload

(i.e., 1M particles per process, with a buffer size of 5); and Figure 4.2.(d) refers to

high communication intensity with low floating-point workload (i.e., 1M particles per

process, with a buffer size of 5K).
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Figure 4.1: Interpreting a heatmap of message receives. The receiving processes are
listed per row; the sending processes are listed per column.

Figure 4.3 shows heatmaps counting only the out-of-order receives. This data

is a subset of that shown in Figure 4.2 and refers to the same four communication

intensity and floating-point workload scenarios studied above.

The heatmaps with the total number of communicated message in Figure 4.2

outline how some processes only receive from some other processes during certain com-

munication patterns. For example, process P0 does not receive messages from process

P2 during the neighbor-to-neighbor particle exchange, but does receive messages from

process P2 during the nonblocking gather. The four heatmaps in the figure confirm

the three communication patterns that we had previously extracted with the manual

inspection of the MCB code in Figure 3.7.

The inspection of the heatmaps of out-of-order messages outline which one, if

any, of the three communication patterns impacts the non-determinism the most. In
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(a) (b)

(c) (d)

Figure 4.2: Total number of messages received by each receiving process i per sender
process j for a testcase of 1K particles per process, buffer size 5 (a); 1K
particles per process, buffer size 5K (b); 1M particles per process, buffer
size 5 (c); and 1M particles per process, buffer size 5K (d).

Figure 4.3 we observe that the nonblocking gather pattern is responsible for a dispro-

portionate amount of the out-of-order messages received. In Figure 4.4, we highlight

cells of the heatmaps to indicate attribution of out-of-order receives to particular com-

munication patterns. Once again we observe that cells indicating the greatest number

of out-of-order receives correspond to messages sent during the non-blocking gather

communication pattern, whereas the non-blocking scatter pattern exhibits the least.
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(a) (b)

(c) (d)

Figure 4.3: Total number of out-of-order messages received by each receiving process
i per sender process j for a test case of 1K particles per process, buffer
size 5 (a); 1K particles per process, buffer size 5K (b); 1M particles per
process, buffer size 5 (c); and 1M particles per process, buffer size 5K
(d).

These results are a first insight in the impact of single communication patters on non-

determinism.
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Figure 4.4: Linking out-of-order receives to one of the three MCB communication
patterns presented in Figure 3.7. Because of space constraints only a
quarter of each heatmap is shown. Each row shows heatmaps with re-
ceiving processes highlighted that participate in a given communication
pattern. Column (a) shows heatmaps of total number of receives; column
(b) shows the communication pattern; and column (c) shows heatmaps
of the number of out-of-order receives.
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4.3 Adaptive Ticking Policies

Our observation that particular out-of-order receives can be attributed to par-

ticular communication patterns suggests a general technique for improving a ticking

policy. We propose to develop an adaptive ticking policy that is based on application-

level events such as floating-point instructions, but also takes into account processes’

placement in the communication topology and the phase of communication the ap-

plication is currently engaged. Our future work in on adaptive ticking policies will

proceed along two branches.

We will first expand our investigation of communication patterns that are found

in non-deterministic HPC applications, and enrich our understanding of how these

communication patterns interact, specifically, with ticking policies, and more generally,

with record and replay tools. We will progress this line of research by identifying

non-deterministic communication patterns in real applications, modeling their critical

characteristics, and developing microbenchmarks based on these patterns so that their

responses to ticking policies and record-and-replay tools can be studied in isolation.

By doing so, we will systematize adaptation of tools to applications.

Second, we will investigate the feasibility of enhancing ticking policies such as

our FLOPs-ticking with high-level information about application behavior, such as

what kind of communication pattern the application is currently engaged in. Since we

have shown that a ticking policy that works well in one scenario (e.g., low communi-

cation intensity and low floating-point workload) may not offer the same benefits in

another scenario, it behooves us to investigate the feasibility of ticking policies that

can adapt to application characteristics on the fly.

4.4 Investigating Numerical Irreproducibility via Record-and-replay

In addition to gleaning insight into how patterns of non-deterministic commu-

nication impact the cost of applying record-and-replay techniques such as CDC, our

efforts to develop a taxonomy of non-deterministic communication patterns will provide

insight into how numerical accuracy is impacted by non-deterministic communication.
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Specifically, the ordering of receives in message-passing applications impacts numeri-

cal reproducibility of those applications when variability in message arrivals re-orders

floating-point operands. We will explore the use of record-and-replay tools for cap-

turing executions exhibiting highly accurate results, as well as those exhibiting highly

inaccurate results, in order to ascertain the internal properties of those executions that

induced, respectively, accuracy or inaccuracy.

4.5 Summary

In this thesis, we tackled the dual challenges of loss of numerical reproducibil-

ity and loss of debuggability that non-determinism in HPC applications presents. In

response to the numerical challenge we presented a strong case for selection of summa-

tion algorithms based on characteristics of the floating-point operands an application

is likely deal with, and showed a quantitative comparison of compensated summation

algorithms’ responses to the dynamic range and conditioning of their inputs.

In response to the debugging challenge, we investigated a fine-grained logical

clock ticking policy based on floating-point operations for use in the Clock-Delta Com-

pression record-and-replay technique. Although our ticking policy did not provide im-

mediate improvements over the baseline ticking policy of CDC, we have demonstrated

the feasibility of implementing ticking policies based on application level events, and

we present preliminary findings support further investigation into ticking policies that

mold themselves to applications’ communication patterns. Finally, we propose to merge

approaches from both the numerical and debugging perspectives on non-determinism

in HPC applications in order to develop general methodologies for addressing the re-

producibility challenge.
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