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ABSTRACT

It is well known that the data centers used by cloud service providers (CSPs)

are among the most efficient data centers in terms of energy usage. Consequently,

migrating workloads to the cloud can result in a decrease in energy usage. This pa-

per presents results based on a large data set of over 40,000 machines (virtual and

physical) spread across over 300 data centers. With this data we quantify the energy

savings and the sources of the energy savings. We focus on lift-and-shift migration

along with optimal cloud instance size selection, as this type of migration is relatively

straightforward. The data indicates that this type of migration should reduce energy

usage by an average factor of 4.5 and 7.8. Relatively little of the energy savings is from

the efficiencies of CSPs data centers related to efficient cooling and lighting. Instead,

most the savings are from using modern CPUs and by correctly sizing the instances

so that systems are not underutilized. We also consider potential energy savings from

refactoring applications to make use to auto-scaling. While such refactoring has the

potential to achieve considerable energy savings, the savings are likely to be less than

what is achieved by the initial migration to the cloud. These findings contract the

popular belief that one needs to modify applications in order to achieve the benefits of

the cloud.
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Chapter 1

INTRODUCTION

1.1 Data Center Energy Consumption Overview

Data Center (DC) energy consumption continues to grow in the previous two

decades. According to the most recent report [4], US data centers consumed estimated

91 billion kilowatt-hours of electricity, or 1.8% of total U.S. electricity consumption,

in 2013 [5]. This is nearly a 1.5 times increase compared to the year 2000 [2]. The

estimated annual cost of electricity is likely to be close to $9 billion. On account of the

enormous researches on DC efficiency improvements, the annual growth decreased to

about 4% since 2010. The report [4] predicts the energy usage will continually increase

at this rate until 2020.

However, in addition to improving data center energy efficiency, migrating data

to the cloud has great potential to reduce energy consumption on a larger scale, which

would result in benefit gains in both environment and economic.

According to a recent report [5], the hyper-scale cloud computer servers use less

than 5% of data centers energy to perform a much better efficiency than the other 95%

of small, medium, corporate and multi-tenant operations. It is also analyzed that, one

of the main challenges of data center energy efficiency is the low server utilization. The

average industry server utilization is between 12 to 18 percent, while hyper-scale cloud

providers can realize 40 to 70 percent utilization rate [5][6]. In addition, the cloud

servers are renewed twice to three times more frequently than the other servers.
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1.2 Could Computing Energy Saving Overview

The cloud computing paradigm, specifically, IaaS, offers a wide range of benefits

over running workloads in traditional data centers. Benefits include the ease of de-

ployment, highly redundant systems, and access to a globally deployed infrastructure.

Todayś cloud service providers (CSPs) have developed and deployed highly efficient

computing systems, with many components of the data centers being developed by the

CSP [7]. For example, Intel provides custom CPUs that are optimized for the CSP

[8]. The result is that the data centers used by CSPs are likely to be among the most

efficient data centers in the world, and are far more efficient than data centers used in

traditional non-cloud computing. One important implication of the efficiencies of the

data centers used by CSPs as compared to traditional data centers is that energy can

be saved by moving workloads from traditional data centers to the cloud.

However, cloud migration research is still in early stages of maturity [9]. Our

study aims to make contributes for improving the maturity level and consequently trust

into cloud migration. Especially, this thesis provides a deep analysis on cost savings of

cloud migration.

1.3 Related Work

Cost saving is one of the most important motivations of migrating data from

traditional data center to the could. For enterprises to use cloud computing, they

normally use case studies to evaluate the benefits, risks and effects of cloud computing

on their typical organizations. There are currently many case studies that look into the

migration of existing IT systems to the cloud. Armbrust [10] states that elasticity and

transference of the risks of over-provisioning and under-provisioning are the important

economic benefits of cloud computing. Walker [11] compares the CPU hours of cloud

computing and IT infrastructure, and propose an optimal expect CPU utilization of

40 percent. Another case study also shows that the migration of an IT system from

an in-house data center to the cloud reduced 37% cost over 5 years[12].
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However, these studies are all based on economical or business perspective to

help with decision making. There are very few researches investigate into quantifying

energy saving of cloud migration.

Lawrence Berkeley National Laboratory provide an open-access energy-efficiency

model, Cleer[13], to analyze the estimated energy savings when moving current business

software usage to the cloud. The study concludes that the potential primary energy

savings from current use to cloud-based use is about 23 billion kWh/yr, which results

in an 87% reduction. However, this model only provides the estimation under the three

business software use scenarios, including customer relationship management, produc-

tivity, and email software. Yet the system specifications are not under consideration.

Also, this evaluation only focus on total energy consumption, which is indeed useful,

but energy efficiency is also important.

1.4 Objective

We utilize a large data set of several tens of thousands of workloads running

in several hundred data centers. With this data, we quantify the energy savings that

could be achieved by moving the workloads to the cloud. While the energy savings

identified in this thesis are qualitatively known, to the best of our knowledge, this is

the first large study to quantify the energy savings. A key conclusion is that energy

usage can be reduced by a factor of 4.5 to 7.8 by simply moving workloads to the cloud

and selecting optimal instance types, without refactoring the software.

The remainder of the thesis is as follows. Chapter 2 introduces definitions of

Cloud Computing, Data Migration and Energy Efficiency.

In Chapter 3, we present the mythology for the evaluation of energy saving. This

chapter begins with an overview of the energy reduction of migration to the could, and

discusses the data set used in this study. The following sections evaluate the energy

saving with different perspective.

In the Section 3.3 , we quantify the energy savings using a lift-and-shift mi-

gration, in particular the savings that result from using the CPUs used by CSPs as
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opposed to CPUs currently used in traditional data centers.

In Section 3.4, we examine CPU utilization and develop a new model for energy

usage as a function of CPU utilization.

Section 3.5 quantifies the energy saving that could be achievable by selecting an

instance size that meets performance goals, while Section 3.6 studies the case where

the instance type is rarely changed, examines the potential energy savings of the com-

putational abilities are frequently adjusted through auto-scaling.

It is well known that data centers used by CSPs are using highly efficient cooling,

lightly, and other non-computing systems. Chapter 3.7 provides a summary of findings

to help quantify this type of energy savings.

And finally, Chapter 4 provides concluding remarks.
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Chapter 2

BACKGROUND AND DEFINITIONS

2.1 Cloud Computing

Cloud is the hardware, software and network that can provide computing re-

sources. Cloud Computing is a method that deliver the resources via the network. The

CSPs are the companies that provide the cloud service, which enables the user to use

the service as needed, like a utility.

Compared to the traditional DC, cloud computing can save the users from build-

ing and maintaining computing infrastructures by themselves. It allows the users to

access the computational resources based on demand by offering different levels of ser-

vices: Infrastructure-as-a-Service(IaaS), Platform-as-a-Service(PaaS), and Software-as-

a-Service(SaaS).

2.1.1 SaaS

In the SaaS model, users access the applications with a client interface via Inter-

net. CSPs response for the installation, operation and maintenance of the application.

Email is an instance of SaaS.

2.1.2 PaaS

Compare to SaaS, PaaS provide more privilege on a platform, which allows the

user to develop new application with the hardware and software that CSPs provide.

2.1.3 IaaS

The CSPs offer more fundamental computing infrastructure, including servers,

storage, network and operating system to the users in IaaS. The user has the ability
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to control these computational resources without the efforts to construct and manage

them. Our study focus on the energy savings of IaaS.

2.1.4 Auto-Scaling

Auto-Scaling is a cloud computing strategy that allows users to automatically

scale out and in as demand for the services provided by the workload grows and shrinks.

Auto-scaling is implemented that a single workload is spread across multiple vir-

tual machines. Then, when demand for the services provided by the workload is high,

many virtual machines are spawned, and as the demand decreased, the number of vir-

tual machines running the workload is reduced. Not only does this approach reduce

the cost of running the workload, it also reduces the energy consumed by the work-

load. We evaluate the energy saving of auto-scaling in Section 3.6. Cloud computing

providers, such as Amazon Web Services (AWS) [14], offer this feature.

2.1.5 Data Migration

Data migration is the process of transferring data between computer storage

types or file formats. Migrating data from the companies’ data centers to the cloud

provides significant benefits, including agility, efficiency, performance improvements,

and cost savings. There are different data center migration strategies. We introduce

lift-and-shift method in this study.

2.1.6 Lift-and-Shift

Lift-and-shift migration refers to simply moving an existing workload software,

without significant changes, to cloud hardware.

It is critical to note that lift-and-shift migration is relatively straightforward.

The chief requirement is to transfer data, executables, and other files to the cloud-

based machines. There are a wide range of tools that automate this type of migration

[15][16][17]. We evaluate the energy saving of Lift-and-Shift in Section 3.3.
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Figure 2.1: A Typical Data Center Energy Breakdown[1]. The IT equipments and
cooling infrastructure consume the major energy.

2.2 Power Consumption and Energy Efficiency

2.2.1 Data Center Power Consumption

The energy consumed by a DC can be divided into multiple parts, including

server and storage, cooling, power conversion, network and lighting. According to

previous researches [18][1], the server and the cooling consume about 80% of the total

power of a DC (See Fig 2.1).

2.2.2 Data Center Energy Efficiency

Power Usage Effectiveness (PUE) is defined as the ratio of the total data cen-

ter energy consumption divided by the energy consumption of the IT equipment, as

described in Equation 2.1. PUE accounts for the effectiveness of the energy usage by

the IT infrastructure as well as the overhead consumed by the cooling, lighting and

the other data center infrastructures.

PUE =
Total Data Center Energy Consumption

IT Equipment Energy Consumption
(2.1)

A PUE of 1 would mean that all energy is consumed by computing equipment

only. However, cooling is a critical component of modern IT, and so PUE is always

larger than 1. Section 3.7 compares the PUE of traditional data center and cloud.
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Figure 2.2: A Typical Server Energy Breakdown in the Data Center[2]. CPU ac-
counts for the major share of the energy consumption.

2.2.3 Processor Power Consumption

[2] estimates the power for a typical server, in which the processor is the major

power power consume component (See Fig 2.2). Note that the values may different

from sever to sever.

2.2.4 Peak Power

Peak power is the maximum power dissipated by the processor under the worst

case conditions - at the maximum core voltage, maximum temperature and maximum

signal loading conditions.

2.2.5 Thermal Design Power

Thermal Design Power (TDP) is the average maximum power in watts the

processor dissipates when operating at Base Frequency with all cores active under a

manufacturer-defined, high-complexity workload. This parameter is used for designing

a components cooling system.

For each CPU, Intel provides the TDP, which estimates the heat that needs to

be extracted from the CPU, which is same as the energy consumed by the CPU. Note
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that TDP is not the peak energy consumed by the CPU, but is the long-term energy

usage[19].

Some research[20] states that TDP is usually 20%-30% lower than the CPU

maximum power dissipation.

2.2.6 Processor Energy Efficiency

Performance Per Watt measures the rate of computation that can be delivered

by a computer for every watt of power consumed. It is used to compare the energy

efficiency of a particular computer architecture or computer hardware. In this thesis,

we define Computational Power (CE) (See section 3.3.1) to evaluate processor’s energy

efficiency.

A CE of 1 represents the ideal case that all consumed power contributes to the

computations. Higher CE indicates higher efficiency and vice versa. As mentioned

in Section2.2.5, TDP is not reflecting the actual maximum power of the CPU, which

means the measured power consumption could exceed TDP. In other words, CE is

possibly larger than 1.

2.3 Benchmark

Measuring performance components is difficult for most users. It requires de-

tailed knowledge of the hardwares implementation, such as simulation, hardware coun-

ters, profiling tools, etc. To overcome these difficulties, benchmark enables easy com-

parison of different system by providing standardized measurements or evaluations.

A computer benchmark is typically a computer program that performs a strictly

defined set of operations and returns some form of result describing how the tested

computer performed[21].

The Standard Performance Evaluation Corporation (SPEC) benchmarks are

widely used to evaluate the performance of computer systems, and published on the

SPEC website.
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SPEC currently provides more than 20 SPEC benchmarks, in which we use

SPEC CPU2006 and SPECpower ssj2008 in our study.

2.3.1 SPEC CPU2006

SPEC CPU2006[21] focuses on computing intensive performance. This bench-

mark is widely used to compare processor capabilities.

It includes two benchmark suites: CINT2006, which is used for measuring and

comparing compute-intensive integer performance; and CFP2006, used for measuring

and comparing compute-intensive floating point performance. Both of them provide

the Speed Metrics and throughput metrics (named Rate Metrics). Each metrics has

two types of compilation: the base metrics and the peak metrics, in which the base

metrics have stricter requirements than the peak metrics.

We use SPECfp2006 Rate base results in our study.

2.3.2 SPECpower ssj2008

SPECpower ssj2008[3] evaluates the power and performance characteristics of

single server and multi-node servers. It is used to compare power and performance

among different servers and serves as a tool set for use in improving server efficiency.

The benchmark seeks to measure the relationship between energy usage and CPU

utilization. While running the benchmark, the system energy is measured while running

a Java-based program that seeks to keep the CPU utilization at a target value. The

test is repeated 11 times, where the target CPU utilization varies from 0% (active idle)

to 100% (fully utilized).

10



Chapter 3

METHODOLOGY AND EVALUATION

3.1 Overview

Figure 3.1 provides an overview of the energy savings, the sources of the energy

savings, and the tasks required to achieve the energy savings. As shown, we divide the

task of migrating workloads to the cloud into three parts, namely, lift-and-shift, optimal

instance sizing, and rewriting the application to take advantages of cloud services.

By Lift-and-shift migration, we seek to utilize the exact same computational

capabilities in the cloud as the workload is using in the data center. As a result, if the

peak CPU utilization in the data center is 50%, then, after lift-and-shift migration,

the peak CPU utilization would still be 50%. As a result, we expect that a lift-and-

shift migration will achieve energy savings from two sources, namely from the fact that

the data centers used by CSPs have less energy waste for cooling, lighting, and other

non-computing tasks, and from using more efficient CPUs.

It is well known that low system utilization is an important source of energy

waste[5]. Using the CPU utilization measurements in the data set, we find that when

combined with using more efficient CPUs, the average energy usage is decreased by

around 75%. Again, achieving this reduction in energy usage by optimizing system

utilization is relatively straightforward. For example, there exists tools that optimize

cloud infrastructure [22].

Lastly, we examine the energy savings that might be achieved when the auto-

scaling is utilized. We find that auto-scaling could reduce the energy usage by another

factor of 3 or more. We utilize two models to estimate the potential energy reduction

form taking advantage of auto-scaling. However, these models only estimate the poten-

tial energy reduction. Achieving this potential depends on how suitable the application

11



Figure 3.1: Energy Reduction from Migrating to the Cloud and Optimizing Usage of
the Cloud Services

is to auto-scaling. Many applications are not suitable for auto-scaling, and hence no

energy reduction could be achieved. Moreover, even when an application is suitable

for auto-scaling, refactoring an application to support auto-scaling might be a labor

intensive task. Therefore auto-scaling, while feasible, is not realistic. On the other

hand, we include these values to understand the range of energy reduction.

Specifically, we find significant energy reduction in the straightforward exercise

of lift-and-shift migration along with infrastructure optimization. Energy reduction

from auto-scaling, while significant, is likely to be less than the initial savings achieved

by the migration. This finding differs from the somewhat popular notion that applica-

tions need to be re-factored in order to make them cloud suitable and take advantage

of the cloud [23].

The key findings of this chapter are the following.

• We quantify the energy savings that results from moving workloads from CPUs
currently deployed in data centers to the CPUs used by CSPs

• We quantify the energy savings that results from utilizing optimally sized cloud
instance

• We develop a new model for energy usage as a function of CPU utilization that
is appropriate for Intel Xeon processors released between 2013 and 2016

• We quantify the potential energy savings from utilizing auto-scaling

12



3.2 Summary of the Data Set

The data used in this study was collected by Cloudamize Inc.[22] from May

2016 to August 2016. This data set includes measurements from over 40,000 machines

(virtual and physical) in approximately 300 data centers. Note that in each data center,

not every machine was necessarily monitored. Data was collected for a minimum of

14 days with an average data collection lasting 21 days. For each machine, a wide

range of performance metrics where measured, including CPU utilization, which was

collected once every 30 seconds or once every 20 seconds, depending on the system.

A wide range of information about the underlying hardware was collected, including

details about CPU. Finally, network usage information was also collected, including

the source and destination IP addresses of packets.

Cloudamize is a business that help companies migrate systems to the cloud and

manage systems already on the cloud. The data set used in the study is from businesses

that have engaged with Cloudamize or with a partner of Cloudamize. Nearly every

business that utilizes traditional data centers are considering migrating to the cloud,

because they are actively evaluating migrating to the cloud or beginning to migrate

workload. Consequently, the data collected is neither a random sample of data centers

nor from the random machines within data centers. Instead, the data is from data

centers of companies that are interested in migrating workloads to the cloud.

As a result, the data could be biased toward workloads that are especially suit-

able or in someway been deemed to require migration to the cloud. While confirmation

is difficult, Cloudamize finds that business evaluate moving to the cloud for a large num-

ber of reasons, but mostly, the reasons stem from business concerns such as reducing

costs, improving application development cycle, improving agility, reducing business

focus on maintaining computing infrastructure, and improving focus on core business

areas. Therefore, we conclude that the data is useful for drawing conclusions regarding

computing in traditional data centers.
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Table 3.1: Major Machine Instances in CSPs

CSPs Machine Types Code Name Launch Year
Google 2.6GHz Intel Xeon E5 Sandy Bridge 2012
Google 2.5GHz Intel Xeon E5 v2 Ivy Bridge 2013-2014
Google 2.3GHz Intel Xeon E5 v3 Haswell 2014
Google 2.2GHz Intel Xeon E5 v4 Broadwell 2016
AWS 2.4GHz Intel Xeon E5 v3 Haswell 2015
AWS 2.3GHz Intel Xeon E5 v4 Broadwell 2016
AWS 2.5GHz Intel Xeon E5 v2 Ivy Bridge 2013-2014
AWS 2.9GHz Intel Xeon E5 v3 Haswell 2014
AWS 2.8GHz Intel Xeon E5 v2 Ivy Bridge 2013
AWS 2.6GHz Intel Xeon E5 Sandy Bridge 2012
AWS 2.3GHz Intel Xeon E7 v3 Haswell 2015
Azure 2.6 GHz Intel Xeon E5 Sandy Bridge 2012
Azure 2.3GHz Intel Xeon E5 v4 Broadwell 2016
Azure 2 GHz Intel Xeon E5 v3 Haswell 2015
Azure 3.2GHz Intel Xeon E5 v3 Haswell 2014

3.3 Energy Usage Change When Performing Lift-and-Shift Migration

As mentioned, a lift-and-shift migration attempts to utilize cloud computing

resources that have the exact same computational capabilities as the on-premise hard-

ware. Therefore, the change in energy usage from a lift-and-shift migration is a result of

utilizing more (or less) computationally efficient hardware in the cloud. In this section,

we first quantify and evaluate computational efficiency. Then, we use the computa-

tional efficiency to estimate the change in energy usage that results from a lift-and-shift

migration.

Over the past several decades, the computational abilities of CPUs have been

rapidly increasing, while the power consumed by the CPUs has remained more stable.

For example, over the past decade, CPUs include dynamic voltage scaling and ACPI

(Advanced Configuration and Power Interface) have allowed energy usage to decrease.

Data centers and CSPs periodically refresh their hardware in order to utilize computa-

tionally efficient hardware. CSPs frequently offer new families of instance types, which

is similar to a hardware refresh. For example, in the past year, Azure has announced
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four new families, namely the a*v2, d, h, and n families. Table 3.1 shows that the

major CPUs used by the 3 popular CSPs are of 2012 to 2016.

The refresh rates for data centers appear to be variable and less frequent. For

example, [5] suggests that data center hardware is refreshed every three years, but it is

likely that many data centers refresh hardware less frequently. The impact of infrequent

hardware refreshes is that data centers utilize less computationally efficient hardware

than what is available on the cloud. Consequently, migrating workloads to the cloud

can improve computational efficiency and reduce energy usage while achieving the same

performance.

To quantify the change in energy usage when migrating to the cloud, we consider

the special case of ”lift-and-shift,” which we define as the exercise of moving a workload

to the cloud without any changes in the software or computational capabilities allocated

to the workload. Note that while we seek to keep the computational abilities fixed, the

computational efficiency is likely to change. For example, if the on-premise hardware

utilizes an old CPU, the same computational ability might be achievable with a single

core on a new 20 cores CPU. Amortizing the energy used by the hardware across all

cores, this single core might use considerably less energy than the old CPU.

3.3.1 CPU Computational Efficiency

We utilize the SPECCPU2006 benchmark[21] to quantify the computational

ability of a CPU. As mentioned before, this benchmark is widely used and has been

evaluated on nearly every CPU released by Intel. In many cases, a single CPU is

evaluated many times on different systems. In such instances, we use the median of

the base results.

We define the computational efficiency (CE) (Section 2.2.6) of a CPU to be the

ratio of the SPECCPU2006 benchmark and the TDP of the CPU. Figure 3.2 shows

the CE for Intel Xeon processors included in this data set. The newest CPU observed

is Intel Xeon E5-4650 v3, which is released in 2015. The oldest CPU observed is

Intel Pentium III Processor(1.00 GHz, 256K Cache, 133 MHz FSB), which is released
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Figure 3.2: Computational Efficiency (CE) for All Processors Measured

in 2000. As expected, CE widely varies over the past 15 years. However, while [5]

indicates a hardware refresh occurs every three years, Figure 3.2 shows that CPUs

found in data centers can be significantly older, and less efficient. On the other hand,

Figure 3.2 also shows that a significant number of CPUs have been recently released

and are likely to have state-of-the-art CE.

3.3.2 Computational Efficiency of Cloud Instances

To quantify the change in energy usage when performing a lift-and-shift migra-

tion, we need to quantify the CE currently being offered by CSPs. However, CSPs of-

ten utilize custom CPUs, for which Intel does not provide official product specification.

We use TDP of the CPUs with the most similar specifications compared to the cus-

tom CPUs. Table 3.2 shows the CPUs used by AWSs current generation of instances.

The CPUs used by AWS are listed in various places in the AWS documentation[24].

Note that older instances families such as M1, M2, and M3 can use older CPUs, and
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Table 3.2: Performance and Energy Usage in Processors used by AWS

Custom CPU Launch Date Similar to CFP2006 TDP CE
Xeon E5-2676 v3 Q2’15 Xeon E5-2680 v3 382.2 120 3.2
Xeon E5-2686 v4 Q2’16 Xeon E5-2697 v4 428.8 135 3.2
Xeon E5-2670 v2 Q4’13 - 301 115 2.6
Xeon E5-2666 v3 Q4’14 Xeon E5-2660 v3 345.9 105 3.3
Xeon E5-2680 v2 Q4’13 - 310 115 2.7
Xeon E7-8880 v3 Q2’15 - 460.7 150 3.1

machines with GPUs currently use older CPUs. However, this study focus on new

migrations, which would utilize the latest generation of instances offered by CSPs.

As indicated in Table 3.2, several of the CPUs used by AWS are custom CPUs.

For these cases, we search for a similar CPU which the clock rate, number of cores,

and cache size is similar to the CPU used by AWS. These similar CPUs are also listed

in the table. The average CE over all CPUs is approximately 3. We use this value as

the CE for CSPs.

3.3.3 Change in Energy Usage when Performing Lift-and-Shift Migration

Let CEdatacenter be the CE for the on-premise machine and CEcloud be the CE

for the cloud hardware. Then the change in energy usage for a lift-and-shift migration

is estimated as a ratio CEdatacenter/CEcloud. For example, if CEdatacenter = 1 and

CEcloud = 2, then the on-premise machine requires twice the energy to achieve the

same computation as the cloud hardware. Therefore, migrating the workload to the

cloud will reduce the energy by a factor of 0.5. Hence, the ratio estimates the fraction

of energy that will be used after a workload is migrated to the cloud via a lift-and-shift

migration, as compared to the energy used when the workload is hosted in the data

center.

Figure 3.3 shows 2 curves of the cumulative distribution of this ratio. The upper

curve is the distribution of the change in energy usage over all machines in the data

set, while the other curve shows the distribution of the average change in energy of
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Figure 3.3: Fraction of Energy Used After Moving to the Cloud

each data center. The mean fraction of energy used is 0.64 over all machines and 0.51

for data centers. The figure shows that not all workloads would experience a reduction

in energy usage. Around 10% of all machines measured would use more energy after

switching to the CPUs used by CSPs, and around 5% of data centers would have an

average energy usage increase on these CPUs. The reason is that some CPUs used in

data centers are recently purchased and have state-of-the-art CE, which exceeds the

CEcloud. However, in Chapter 3.5, we will see that if these machines are sized correctly,

the energy usage will decrease for nearly all machines and data centers.

Figure 3.3 also shows that half of the machines in the data set would use around

40% less energy if the workload is simply moved to the cloud. 50% of the data centers

monitored would experience around an average 50% reduction in energy usage. One

possible explanation of the difference between the average over data centers and the

average over individual machines is that the statistic computed over data centers is

biased by many small inefficient data centers. For example, if large data centers tend
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Figure 3.4: Average Fraction of Energy Usage for Each Data Center vs the Size of
the Data Center

to be more efficient than smaller data centers, since these large data centers have more

machines, per-machine statistics would be biased by the large data centers, while the

per-data center statistics would be biased by the small data centers.

Figure 3.4 explores this hypothesis. The data set used in this study does not

include the size of the data center, and not all machines in a data center are measured.

However, on the machines monitored, network traffic and the source and destination

addresses of the packets are collected. From these addresses, the number of unique

private IP addresses is computed for each data center, and is used as an indication of

the size of the data center.

Figure 3.4 shows the mean value, as well as the maximum and minimum value

of CEdatacenter/CEcloud as a function of the number of private IP addresses observed.

Specifically, the data centers are grouped into seven bins that ranged from under 10 ob-

served IP addresses to several thousands, and to several tens of thousands of observed

private IP addresses. For each group, the mean value, the maximum and minimum
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value of CEdatacenter/CEcloud are computed. This figure indicates that there is no

significant dependence of CEdatacenter/CEcloud on the size of the data center. Rather,

regardless of size, data centers can expect similar change in energy usage when migrat-

ing workloads to CPUs used by CSPs.

3.4 CPU Utilization and Relationship with Energy Usage

In this section, we examine CPU utilization and develop a new model for energy

usage as a function of CPU utilization. The function is used to quantify the savings in

the next section.

3.4.1 CPU Utilizations for Workloads in Data Centers

CSPs provide a large number of instance types, each with different computa-

tional abilities. For example, Azure currently offers over 70 instance types; Google

Cloud Platform also offers a wide range of instance types, as well as custom instance

types, where the user can adjust the number of CPU cores and amount of memory.

Moreover, a user can easily resize the instance type. For example, most clouds allow

the user to resize the machine with a few mouse clicks. This effort is considerably

different from the steps required to resize a traditional data center.

Even though virtualization in traditional data centers allows resizing the ma-

chines, it does not solve the basic problem that computing capacity must be purchased

and installed before usage. As a result, when sizing a data center, one typically pur-

chases excess capacity. As computing requirements grow, VMs are resized and moved

within the data center to utilize the excess capacity. Once the excess capacity is fully

utilizes, a data center resizing effort is initiated. Data center resizing is often a com-

plicated process that might require approval from several levels of management along

with considerable planning to purchase and deploy the capacity, and perhaps with the

requirements on expanding other capacities such as power and cooling.

Since the deployment of new capacity in a data center is a complicated process,

sufficient excess capacity is purchased so that data center resizing is infrequent. More
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Figure 3.5: Periodic Data Center Refresh and Its Potential Impact on Energy Sav-
ings when Migrating to the Cloud.
Initially, just after a data center refresh, the systems are underutilized.
Over time, as usage increases and applications grow more complicated,
the systems become more heavily utilized. Eventually, the systems be-
come over utilized shortly before a data center refresh.

specifically, when sizing a data center, system architects might design to achieve a low

CPU utilization for workloads in a data center. The target CPU utilization is not

based on performance objectives, but based on performance goals, anticipated growth,

and the desired time between data center resizing episodes.

The result is that systems in traditional data centers can experience cyclic CPU

utilization. Initially, after the data center is sized, the CPU utilization is low and the

hardware is underutilized. Over time, the hardware becomes more utilized, eventually,

reaches a level of high utilization before another data center resizing exercise is per-

formed and the cycle begins again. Figure 3.5 illustrates how system utilization might

vary between data center refreshes. Of course, this is only one possibility. Often there

are a wide range of factors that impact data center utilization and performance over

time. Unfortunately, performance of the applications is only one of many such factors.

In any case, we can expect that system utilization can be both too low as well as too
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Figure 3.6: Distribution of Observed Peak CPU Utilization

high.

Figure 3.6 and 3.7 show the peak CPU utilizations observed. Specifically, the

CPU utilization is measured every 20 or 30 seconds (depending on the system). These

high-frequency measurements are smoothed with a 5-minute smoothing window. The

maximum value of this utilization is collected for each day. The peak CPU utilization is

the 95th percentile for these daily maximum values. Note that this method is selected

so that single busy periods have little impact on the estimate of whether the system is

over or underutilized. Instead, we seek to provision based on a typical peak.

Figures 3.6 and 3.7 show that the peak CPU utilization is frequently and fairly

low. For example, Figure 3.7 shows that the peak CPU utilization is below 50% for

around 60% of the machines measured. On the other hand, a non-negligible fraction

of machines have high peak CPU utilization. To explore this further, consider Figure

3.8, which shows the mean CPU utilization along with the 10th, 25th, 75th, and 90th

percentiles of the CPU utilization as a function of the release date of the CPU. This

22



Figure 3.7: Cumulative Probability Distribution of Observed CPU Utilization

figure indicates that the peak CPU utilization of CPUs released since 2013 is typically

lower than the peak utilization of CPUs released before 2013. This observation agrees

with the data center refresh model described above, where machines in data centers

with newer hardwares are expected to have lower utilization than machines with older

hardwares.

From Figures 3.6-3.8, we can expect that many machines are over-provisioned,

so that energy can be saved by moving the workload to the machines with less com-

putational capabilities. On the other hand, a reasonably large fraction of machines

have high CPU utilization. During migration, these machines would be moved to the

machines with more computational abilities, which would increase the energy usage as

compared to a lift-and-shift migration that seeks to keep CPU utilization unchanged.

In order to quantify the change in energy usage from resizing the machine, we need to

1) Select a target peak CPU utilization, and

2) Understand how energy usage changes with CPU utilization.
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Figure 3.8: CPU Utilization versus the CPU Release Date

Determining the optimal CPU utilization is a complicated issue that is out-

side the scope of this thesis. Moreover, system designers select the target peak CPU

utilization based on various ”rules-of-thumb.” Therefore, in the following analysis, we

consider several target CPU utilizations, ranging from 50% to 90%. The second issue,

determining how energy usage varies with CPU utilization, is addressed in Section 3.4.2

- Section 3.4.4.

3.4.2 Energy Efficiency Metrics

To understand the relationship between energy usage and CPU utilization, we

utilize SPECpower ssj2008 benchmark[3]. Currently, 512 benchmark results have been

uploaded to the spec.org data set. These submissions include Intel Xeon CPUs (which

are the focus in this study) along with CPUs from Intel Core and AMD Opteron fam-

ilies. Currently, 488 samples of Intel Xeon have been submitted, covering 86 different
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Figure 3.9: Power Consumption to CPU Utilization Ratio, using data from
SPECpower ssj2008[3]
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Figure 3.10: Compare Computational Efficiency of Intel Xeon E3-1275L v3 and Intel
Xeon 7020, using data from SPECpower ssj2008

Intel Xeon CPUs. The included CPUs are released from 2005 to 2016. The data re-

veals that the contemporary processors are not energy proportional. Especially, their

idle power consumption is surprisingly high compare to the full load power consump-

tion. Section 3.4.3 shows detailed analysis on idle-active energy consumption. To avoid

energy waste caused by the low CPU utilization, finding the most ”power efficiency

point” becomes critical.

For the power efficiency aspect for different CPU utilization, we propose the

Average Power-to-CPU Utilization ratio (CPU%/Average Power), which is defined as

the ratio of the CPU utilization over the average power at each CPU utilization level.

The examples in Figure 3.9 shows that the power consumption is not linear with CPU

utilization, and the idle power is not zero.

The observation in Fig 3.10 shows that the peak power efficiency is different for

different CPUs. For example, the most efficient utilization for Intel Xeon E3-1275L

v3 is at 60%, while Intel Xeon 7020 is most efficient when fully utilized. Note that

the peak power efficiency are all happened above 50% utilization. The result from

all available data from SPECpower ssj2008 is in Fig 3.11, which shows that all CPUs

achieve the peak performance when running over 50%, and most CPUs can achieve
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Figure 3.11: Distribution of Observed Peak Power Efficiency

peak performance when fully utilized. We can conclude that the CPU is more energy

efficient with higher CPU utilization (above 50%).

3.4.3 Idle-Active Energy Consumption

Varsamopoulos [25] proposes idle-to-peak power ratio (IPR) as the ratio of Pidle

and Pmax, and states that the ratio reduced for the systems from 2007 to 2012. The

research also predicts the system will become more energy-proportional in the future.

Except for the energy proportionality, the ratio can also denote the energy efficiency.

Our study confirms this prediction as shown in Figure 3.12. Compared to Figure 3.2,

we can see that the ratio has the reversed trend as CE, that is, the IPR decreases as

the computational efficiency increases. Figure 3.13 demonstrates this property. We

also find out that the decrease of the idle power is the main factor to get the ratio

decrease, this assumption is in accordance to the comparison between Figure 3.14 and

Figure 3.15. The figures show a clear trend of Pidle/Pmax decrease as Pidle decreases,

but shows no similar trend with Pmax.
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Figure 3.12: Pidle/Pmax for all Measured CPUs, using data from SPECpower ssj2008

Figure 3.13: Pidle/Pmax vs Computational Efficiency (CE) for all Measured CPUs,
using data from SPECpower ssj2008
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Figure 3.14: Pidle/Pmax vs Pidle for all Measured CPUs, using data from
SPECpower ssj2008

There are massive researches [26][27][28][29] on energy efficiency effectively con-

tributes to the reduction of the idle power waste during the past decades. The idle

power for the newest CPUs is as low as about 15% of the max power consumption,

which is reduced from 60% [30] [31] ten years ago. The implemented technologies have

been used by many hardware manufacturers, for example, Intel SpeedStep [32], AMD

Cool’n’Quiet and AMD PowerNow! [33].

3.4.4 Energy Usage as a Function of CPU Utilization

During the past decades, since CPUs have undergone significant changes that

impact the relationship between energy usage and CPU utilization. For example, [34]

and Intel Turbo Boost have been implemented and refined. However, more recently,

the changes appear to have been less significant. Specifically, Figure 3.16 shows the

relationship between CPU utilization and normalized energy usage, where the energy

usage is normalized by the maximum energy usage. As expected [19] and the analysis

in Section 3.4.2, energy usage is not a linear function of CPU utilization. First, there
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Figure 3.15: Pidle/Pmax vs Pmax for all Measured CPUs, using data from
SPECpower ssj2008

Figure 3.16: System Energy Usage vs CPU Utilization from the SPECpower ssj2008
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Figure 3.17: System Energy Usage vs CPU Utilization from the SPECpower ssj2008
for CPUs Released after 2012

is a non-zero energy usage when the utilization is zero (Section 3.4.3). Second, the

energy usage is not well approximated by a linear or even an affine function. Moreover,

there is a significant spread in the energy usage for a given CPU utilization.

Although, notice that in Figure 3.16 there is a deviation at 10% utilization,

before which the slope is larger than the after. It is because the advanced energy

saving strategies for idle servers mentioned in Section 3.4.3 that cause relatively low

idle power consumption. And this phenomenon is more obvious in the modern CPUs.

Consider our data base, we only fit the power model with CPU utilization greater than

10%. Figure 3.17 shows the relationship between energy usage and CPU utilization for

CPUs released after 2012. This figure also includes the graph of the function

E (u) = 0.33 + (1− 0.33)
(
0.36u + (1− 0.36)u2

)
. (3.1)

For the CPUs released after 2012, this model gives a good fit of the normalized

energy usage as a function of CPU utilization. Note that this model is different from
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the model developed in [31]. One possible source of the differences is that our model

focuses only on recently released CPUs, while the CPUs used in [31] were older.

Note that the model (3.1) is only applicable to recently released CPUs. However,

the CPUs used by current CSPs such as Azure, GCP, and AWS are all recently released,

and therefore this model can be used to estimate the relative energy usage as a function

of CPU utilization for systems that have been migrated to the cloud.

3.5 Energy Usage With Optimal Sized Instances

Several studies have indicated that CPU over-provisioning is an important com-

ponent of energy waste in data centers [5][10][35]. For example, [5] states that CPU

over-provisioning results in 50% of energy being wasted. However, the conclusion is not

based on direct measurements of CPU utilization. The cloud offers several methods

that can greatly reduce energy waste (and cost) due to over-provisioning. This section

studies the case where the instance type is rarely changed, and examines the potential

energy savings by choosing the optimal sized instances.

With the model of energy usage as a function of CPU utilization given by (3.1),

we can estimate the change in energy usage that results from resizing the machine, and

focus on statically sized machines. By this we mean that we select a single machine

size, and examine the energy usage where the computational resources allocated to a

workload are allowed to varying dynamically. Using a single machine size is consider-

ably less administrative effort than dynamically sizing machines. However, statically

sizing machines does not mean that the machine size is never changed, but only that

the size is rarely changed. In this study, we assume that the machine is not resized

to accommodate the workload in the collected data. That is, we will select a single

instance size for each workload, where the instance size must be suitable for the entire

data set for that workload. This is a reasonable assumption because the typical data

set is only for a few weeks and does not include any data sets that span longer than 2

months.
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Let u (t) be the CPU utilization observed at time t. Then, the normalized

energy usage is
∫
E (u (t)) dt; this is the normalized energy usage if the system is

migrated (i.e., a lift-and-shift migration) to an instance that has the exactly same

computational capabilities as the hardware used in the on-premise data center.

We assume a simple scaling model, where the computation capabilities varies

linearly with the amount of computation resources applied. For example, if a system is

allocated 2 cores, then allocating one core will exactly double the CPU utilization (up

to a maximum of 100%). This is a reasonable model for modern multi-threaded appli-

cations of which the requests arrive at random. Moreover, we assume that fractional

resources can be allocated, e.g., where 2.4 cores can be allocated. Further, we assume

that for a fixed CPU utilization, the energy usage scales linearly with the number of

resources allocated. This means, for example, if a system is 50% utilized and if we

double the computational resources allocated to the system while the load is doubled

(so that the CPU utilization is the same on the larger system), then the energy usage

also doubled.

Combining these assumptions, we have the following model of energy usage

when the computational capabilities are increased by a factor of c

E (u (t) /c)× c,

that is, the CPU utilization decreases by a factor of c, which leads to a change

in energy usage by the machine. However, the number of machines has also increased

by a factor of c, which increases the energy usage by a factor of c. Note that if the

energy usage is linear in CPU utilization, then E (u (t) /c)×c = E (u (t)), and correctly

sizing cloud instances would not impact energy usage. However, despite efforts, energy

usage is not a linear function of CPU utilization[19].

The peak CPU utilization is defined in Section 3.4. We denote up as the observed

peak CPU utilization and uT as the target peak CPU utilization. Since we assume a

simple scaling model, we can achieve uT by adjusting the computational resources
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Figure 3.18: The fraction of energy usage after resizing to an optimally size instance,
where the size of the optimal instance achieves the target peak CPU
utilization

allocated by a factor of c = up/uT . In this case, the fraction of energy usage after

optimally resizing the cloud instance is∫
E (u (t) / (up/uT ))× (up/uT ) dt∫

E (u (t)) dt
.

Figure 3.18 shows the cumulative distribution of the change in energy usage over

all machines measured for a target peak CPU utilization of 50% to 90%. Note that

resizing the instance type does not reduce the energy in all cases. This is expected since

the figures in Section 3.4 showed that energy usage is quite large on some machines.

For example, the peak CPU utilization exceeds 50% in around 40% of the measured

machines. As a result, if the target CPU utilization is 50%, then, as expected, Figure

3.18 shows that the energy usage increases in 40% of the machines. For larger target

CPU utilization, a larger fraction of system experience a reduction in energy usage as

a result of resizing.
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Figure 3.19: Fraction of energy used after migrating the workload to the cloud via a
lift-and-shift migration and then resizing the an optimally sized instance

It is important to note that Figure 3.18 shows the ratio of the energy usage

after resizing and the energy usage when on the cloud, but before resizing. Figure 3.19

shows the fraction of energy used after first performing a lift-and-shift migration, and

then resizing. For reference, this plot also includes the fraction of energy used after

resizing alone and the ratio CEdatacenter/CEcloud, which the fraction of energy used from

performing a lift-and-shift alone. Figure 3.19 shows that a combined lift-and-shift and

instance resizing results in significant energy savings, and greatly exceeds the energy

saving of either of the steps, namely lift-and-shift migration and resizing. Table 3.3

shows the mean fraction of energy used after this type of migration.

Recall in Section 3.3, we see that when utilizing a lift-and-shift migration, the

energy usage does not decrease for all workloads. Specifically, newer CPUs are al-

ready energy efficient, perhaps more efficient than those used by CSPs. However, in

Section 3.4, we saw that the CPU utilization of newer CPUs is typically low, that is,

newer machines tend to be underutilized. Therefore, for the workloads on these newer
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Table 3.3: Mean Fraction of Energy Used after Migration and Resizing

Small Target Peak CPU Utilization Small Mean Fraction of Energy Used
50% 0.51
60% 0.43
70% 0.37
80% 0.33
90% 0.30

machines, even through there is no energy saving under a lift-and-shift, we see that

the energy usage is reduced when resizing. On the other hand, older CPUs tend to

have higher utilization, and resizing to meet performance goals will increase energy

usage. However, the CPUs used by CSPs are far more efficient than these older CPUs.

Therefore, in these cases we also see energy reduction when combining lift-and-shift

migration and optimal resizing.

The energy saving identified is significant. For reasonable values of target peak

CPU utilization of 70%-80% (the other values are included for references), the lift-

and-shift with an optimal sized instance reduces energy usage by nearly a factor of 3.

Moreover, there exists a wide range of tools that nearly automate this type of migration

[15] [16] [17] [22].

3.6 Energy Usage with Idealized Auto-Scaling

The IaaS paradigm has many useful characteristics. One useful characteristic

is that users are charged based on the duration that machines are running. As a

result, there are significant financial advantages to utilizing auto-scaling. This section

examines the potential energy savings of the computational abilities are frequently

adjusted through auto-scaling.

Here is a simple idealized model for energy usage when auto-scaling is employed.

Let c (t) be the resources allocated to the workload at time t. Then, let u (t) be the

observed CPU utilization of the workload in the data center. The CPU utilization in the

cloud at time t would be u (t) /c (t), while the energy usage would be E (u (t) /c (t))×
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Figure 3.20: Fraction of Energy Used After Employing Idealized Auto-Scaling

c (t). Let uT be the target CPU utilization. Then, we set c so that uT = u (t) /c (t).

Therefore, the energy used is E (uT )× u (t) /uT . The fraction of energy used by auto-

scaling as compared to the energy usage after a lift-and-shift migration is∫
E (uT )× u (t) /uTdt∫

E (u (t)) dt
.

Figure 3.20 shows the cumulative distribution of the fraction of energy used

after auto-scaling is implemented, as compared to the energy used after migrating to

the cloud and optimally sizing the instance type. Clearly, significant energy savings

are possible. However, there are significant drawbacks of this model. First, not all

workloads are suitable for auto-scaling. Even workloads are suitable might require

a significant rewrite. Second, the model that the allocated computational resources,

c (t) = u (t) /uT , is highly idealized. Specifically, it assumes that the computational

resources are changed instantaneously and continuously. While this type of energy
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Figure 3.21: Fraction of Energy Used After Employing Idealized Auto-Scaling where
the Instance is Resized Once Each Hour

usage might be reasonable for a PaaS system such as AWSs Lambda service. It perhaps

too idealized for most workloads and IaaS.

Figure 3.21 shows the energy savings in a slightly more realistic scenario. Here

we assume that

c (t) =
1

uT

max
s∈hour(t)

u (s) ,

where hour (t) is the hour of time t, i.e., hour (8 : 15) = {t : 8 : 00 ≤ t < 9 : 00}. That

is, this model assumes that the computational resources allocated to the workload

are adjusted only once an hour, and they are adjusted based on the CPU utilization

over that hour. Clearly, this model suffers from the drawback where it assumes the

CPU utilization can be accurately predicted. Methods to predict CPU utilization and

the impact of inaccuracy are out of scope of this study. However, Figure 3.21 shows

that there are likely to be significant energy savings by refactoring applications to take

advantage of auto-scaling. For example, the mean fraction of the energy used is around

0.3, implying a reduction of energy usage by a factor of 3.
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3.7 CLOUD DATA CENTER EFFICIENCY

It is well known that the data centers used by CSPs are highly optimized and

are far more efficient than what can be accomplished by all but the largest companies

[7]. A key characteristic of this optimization is a significant reduction in the energy

used by systems not directly related to computing, such as cooling and lighting. As

mentioned in Section 2.2.2, PUE is a widely used metric that evaluates this type of

efficiency.

Unfortunately, computing PUE is difficult and is not always computed by com-

panies. For example, only 27% of companies reported that they compute PUE [36].

As a result, it is difficult to estimate the value of PUE in traditional data centers.

While there have been surveys on PUE, they tend to be contradictory. In particular,

the Uptime Institute publishes results of an industry survey each year. This survey

includes PUE until 2014, but not includes PUE in 2015 and 2016. The surveys from

prior to 2015 report rather low PUE as compared to the surveys performed by Digital

Realty Trust. In particular, the Uptime Institute survey of 2014 reports an average

PUE of 1.7 [37] while Digital Realty Trust reports an average PUE of 2.9 [36]. More-

over, Digital Realty Trust reports that only one in five companies have a PUE below

2, indicating a significant discrepancy between these two studies. One possible source

of the difference between these two results is that the Uptime Institute survey includes

data from CSPs as well as very large and highly efficient companies with hyper-scale

computing facilities such as Facebook ,which reports a PUE of 1.09 [38]. In fact, Up-

time Institute reports that half of those surveyed are from CSPs or similar companies.

Another indication is that the Uptime Institute survey samples CSPs and companies

with hyper-scale computing facilities and reports only 7% of the respondents are using

the cloud. This value is far smaller than other studies such as [39], which reports that

20% of workloads are on the cloud.

While estimating current PUE for traditional data centers is difficult, PUE of

CSPs is slightly easier. Specifically, Google reports a PUE of 1.12 [40] and Microsoft

reports 1.125 [41]. AWS does not report their PUE. Nonetheless, we assume that the
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PUE for workloads in the cloud are 1.123.

We conclude that by migrating to the cloud, the PUE experienced by the work-

load decreased from a value of between 1.7 and 2.9 to a value around 1.123. That is,

the PUE is effectively reduced by a factor of 1.5 to 2.6. Notably, these values imply

that while PUE is a critical component of energy efficiency, the other components, us-

ing a more efficient CPU and correctly sizing the instance, play a bigger role in energy

reduction.
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Chapter 4

CONCLUSION

This paper presented results regarding energy savings that will be achieved

by migrating workloads to the cloud. The results are based on a large set of data

collected from over 40,000 machines spread across over 300 data centers. We focus on

lift-and-shift migration along with optimal instance sizing, as this type of migration

is relatively straightforward to perform. The data indicates that such migrations will

reduce energy usage by a factor of between 4.5 and 7.8. Much of the savings are from

two sources, namely moving workloads off of old and inefficient CPUs to newer CPUs

used by CSPs, and by correctly provisioning the cloud infrastructure. These sources

of energy savings are considerably larger than the energy savings that results from

moving from less efficient data centers to more efficient data centers owned by CSPs.

It is critical to note that lift-and-shift and optimal instance sizing can be preformed

nearly automatically [15][16][17][22].

This study focused on energy usage. The sources of the energy are also im-

portant to consider. For example, CSPs often utilize solar and wind farms to offset

their energy usage. As a result, migrating workloads to the cloud could reduce carbon

emissions beyond what would be achieved by only reducing energy usage. However,

further study is required to clarify and quantify the impact that cloud migration has

on carbon emission.
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