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ABSTRACT 

 We have developed a multi-state ordinary differential equation model 

representing the dynamics of cancerous cell populations under conditions consistent 

with the gene therapy technique proposed by Martinez-Quintanilla et al.  The model is 

based on a variation of the Lotka-Volterra equations, a method to illustrate multiple 

species’ competition to utilize a scarce resource.  This system allows for investigation 

of the effectiveness of proposed anti-cancer gene therapy methods, including the 

response to selective pressures resulting from drug treatments.  In this thesis, we 

observe the stability of the system via bifurcation analysis; highlight the importance of 

delivery method of drug-susceptibility genes; finally, propose a control method to 

optimize treatment effectiveness. 



 1 

Chapter 1 

INTRODUCTION 

Gene therapy in the broadest sense has existed for several decades, 

initially proposed to replace or repair damaged human DNA [1].  The goal of therapy 

was to modify DNA to alleviate the effects of genetically determined diseases that 

although rare, respond poorly to conventional treatment methodologies.  Gene therapy 

proposed that exogenous DNA be transduced into recipient cells.  This transduction 

can occur as a simple uptake of proteins or nucleic acids, or through transfection by 

either a replication- or non-replication competent virus.  Upon gaining entry to the 

cell, foreign transfected DNA undergoes intercellular travel to the nucleus via 

transport vesicles, while potentially experiencing partial degradation due to cell 

lysosome activity.  At the nucleus, portions of foreign DNA that have arrived intact 

may become stabilized within the intrinsic DNA of the cell.  At the conclusion of this 

process, the cell expresses the transduced gene through mRNA and synthesis of 

corresponding proteins.  In this manner, health disorders caused by single gene 

deficiencies could be eliminated.  The field of opthamology in particular has seen 

numerous studies conducted utilizing gene replacement therapy.  Treatment to repair 

degenerative vision due to loss-of-function mutations may be forthcoming [2]. 

However, gene therapy applications are not limited to simple single gene 

repair.  Including the ability to ameliorate the debilitating effects of genetic disorders, 

gene therapy was also viewed as a potentially beneficial oncologic treatment.  For 

example, chemoprotective gene therapy admits a measure of resistance to 
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chemotherapy drugs.  In this treatment regimen, genes immune to the effects of 

various drugs are introduced by transfection, conferring antidrug resistance to those 

cells containing the exogenous gene within their nucleus.  Certain vital tissues, 

including bone marrow, respond particularly poorly to the toxicity of 

chemotherapeutic agents.  Ultimately, continued exposure to the drugs leads to death 

of cells not specifically targeted by chemotherapy.  The negative effects can be 

avoided through the addition of a dosage limit; however, a shorter duration of 

treatment also reduces the amount of time that cancer cells have to absorb and respond 

to the drug, potentially lessening efficacy.  Chemoprotection seeks to convert tissues 

such as marrow to a drug resistant state, meaning less overall trauma to the body.  

Simultaneously, vital tissues gain the ability to withstand higher dosage limits, 

permitting both increased duration of treatment and the resulting ability of drugs to 

inhibit tumor growth.   

Of course, transfection is not the only means by which cells acquire drug 

resistance.  The natural evolution of cancer as it progresses is to lose vulnerability to 

chemotherapeutic agents.  In fact, the very exposure to a selective stress such as 

chemotherapy could stimulate greater mutation rates of cancer cells from the wild type 

to drug resistant strains.  To counteract the presence of natural mutations, gene therapy 

has been proposed as a means to reintroduce susceptibility to chemotherapy through 

gene insertion [3]; however, the spread of transfected genes has never been sufficient 

enough to affect the post-treatment outcome [4].  The distribution of transfected genes 

throughout the cancer cell (mutant and non-mutant) population is outpaced by the 

ability of mutated cells to proliferate and confer resistance to their progeny.  It is 
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obvious that injecting susceptibility genes into the cancer cell population is an 

incomplete method on its own. 

An alternative approach to this immunity mutation problem combines 

gene therapy techniques with concepts of both positive and negative selection.  These 

methods exploit the dynamic evolutionary processes within the disease system that are 

stimulated by competition between cancer cells that occurs when a selective pressure, 

such as chemotherapy, is introduced.  The method proposed by Martinez-Quintanilla 

et al. is as follows:  Prior to chemotherapy, transfected cells are developed with the 

addition of a hybrid gene encoding both resistance to a specific chemotherapeutic 

agent, as well as susceptibility to another drug.  At the onset of treatment, 

chemosensitive cells – those vulnerable to drug effects - are eliminated from the 

disease system.  Meanwhile, cells having either artificial (transfected) chemoresistance 

or natural mutations survive due to their selective advantage.  As a result, these cells 

exhibit greater fitness than chemosensitive cells during this first stage of treatment, are 

positively selected for, and continue to propagate throughout the tumor undeterred.   

By itself, this stage of the proposed treatment has insignificant therapeutic 

effects.  After chemotherapy treatment, we may actually observe greater populations 

of cancerous cells since the only alteration to the system has been the addition of 

chemoresistance.  Furthermore, cells gaining resistance through naturally occurring 

mutations would not necessarily express the same vulnerability to the drug encoded by 

the exogenous gene expressed by transfected cells.  Therefore, introduction of this 

drug to the system would be inconsequential to mutants, while negatively selecting 

and eradicating transfected cells.  However, a significant observed bystander effect 

could theoretically eliminate all cells, including mutants, within the tumor.  The 



 4 

bystander effect is the result of transfected cells constituting a sizeable proportion of 

the total cancer cell population.  Under such conditions, transfected cells would be 

more likely to interact with a greater number of neighboring cells.  This interaction 

between transfected cells and their neighbors (or bystanders) could lead to a transfer of 

susceptibility.  For example, the method of Martinez-Quintanilla et al. relies on the 

diffusion of a selected drug, enzymatically-converted by sensitive cells, that is not 

normally metabolized by resistant mutants.  In this manner, the drug is able to act on 

all cells.  Subsequent exposure activates a gene-encoded suicide mechanism that will 

encompass the tumor, causing negative selection and complete removal of both 

transfected and natural mutant cells from the system. 

In this thesis, we examine a three state ordinary differential equation 

model to illustrate the effects of the selection processes on the cell population.  As one 

may note, cancer cells form solid tumors and thus, spatial factors should be important.  

While a partial differential equation model would be ideal, an ordinary differential 

equation model should be sufficient.  A logistic model of population growth is utilized 

to mitigate the absence of a PDE model.  This constrains the growth of the model to a 

finite area, representing a tumor.  The growth of each species of cancer cells that we 

have mentioned – chemosusceptible, transfected, and naturally occurring mutants – 

cannot exceed the carrying capacity the tumor. 

The model aims to show that the role of chemotherapy in this method is to 

amplify the proportion of cells prone to death via a second drug, by first positively 

selecting for transfected cells.  Through increasing this proportion, there is a 

subsequent expansion of the bystander effect.  Perfusion of the transfected genes is 

promoted post-chemotherapy, yielding a more efficient stage of negative selection 
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upon introduction of an additional selected drug.  However, as we will see, an 

increased bystander effect is critical in the negative selection phase.  Therefore 

optimization of the bystander effect would enhance the viability of gene therapy as an 

oncologic treatment option.
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Chapter 2 

BIOLOGICAL BACKGROUND 

Thymidine Kinase Mediated Suicide Gene Therapy [3] [4] is an anti-

cancer treatment that is applied to tumors consisting of three subpopulations: 

chemotherapy sensitive cells, natural chemotherapy resistant cells, and hybrid 

transfected cells expressing both chemoresistance and susceptibility to a second, 

chosen drug.   

Chemotherapy Sensitive Cells 

In traditional chemotherapy, tumor reduction is achieved through use of 

numerous drugs, including methotrexate (MTX) and docetaxel.  Through varying 

modes of action these drugs interfere with metabolic processes of the cell, halting the 

ability to reproduce.  Chemotherapy sensitive cells, restricted from multiplying, 

eventually die until extinction.   

Methotrexate is an antifolate compound that binds to the enzyme 

dihydrofolate reductase (DHFR).  DHFR is normally encoded by the DNA of cells 

throughout the body.  The typical functional role of DHFR is to act as a reducing agent 

on dihydrofolic acid, catalyzing the reaction that produces tetrahydrofolic acid.  This 

compound serves as a precursor to synthesis of amino and nucleic acids such as 

glycine, purines, and thymidine.  However, the affinity of MTX to DHFR exceeds that 

of dihydrofolic acid.  During treatment DHFR binds to MTX, thus interfering with 

normal function and subsequent DNA production [5].   
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Docetaxel is an anti-mitotic compound that disrupts the cell cycle.  The 

drug targets microtubules, the constituents of the cell cytoskeleton.  This organelle 

provides the cell with structure and facilitates intercellular transport of molecules 

through vesicles.  Microtubules are inherently unstable structures, allowing for 

rearrangement during the g2 m transition of the cell cycle, when a cell must grow and 

divide.  Docetaxel alters microtubule assembly, converting them to a more stable state.  

As a result, microtubules lose their dynamic nature in favor of a more rigid structure.  

New microtubules cannot be formed and rearranged, preventing mitotic division.   

The main effect of either drug is to impede tumor angiogenesis by 

preventing reproduction on the cellular level.  Within a tumor, there is a constant 

competition for expansion between the cells.  Chemotherapy sensitive cells exhibit a 

much lower fitness than mutant cells that gain immunity to drug effects.  Thus, 

introduction of an agent like MTX or docetaxel places sensitive cells at a selective 

disadvantage.  Susceptible cells, if not removed entirely from the tumor post-

chemotherapy, will at most constitute an insignificant (~0%) proportion of the total 

cell population. 

Natural Chemotherapy Resistant Cells 

However, there typically exists a small subpopulation of cells in a tumor 

subpopulation of cells that do not respond to chemotherapy.  Natural mutations occur 

due to the inherently unstable DNA structure of cancer cells.  Malignant cells 

constantly alter their phenotype; this ability allows them to escape the programmed 

cell death that normal cells undergo during conditions of damaged DNA.  Thus, cancer 

cell DNA is unstable because it is the very characteristic that allows for their existence 

[6].  Furthermore, the presence of a selective pressure such as chemotherapy has been 
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observed to cause exponential growth through clonal expansion of cells having 

advantageous resistance mutations [7].   

Immunity gained by double mutant dihydrofolate reductase (dmDHFR), 

for example, expresses a lower than normal binding affinity to MTX.  Despite MTX 

presence, cellular DHFR will preferentially bind to folate and function normally.  

Another example is resistance conferred by multidrug resistance gene1, which encodes 

for expression of the P-glycoprotein (PGP).  This membrane-bound protein mediates 

both extra- and intra-cellular movement of molecules.  Essentially, PGP acts as a drug 

pump, mediating the active transport of chemotherapy drugs to the extracellular space, 

decreasing intercellular concentration in resistant cells.  The ability of MDR-mutants 

to restrict drugs from entering their membrane allows them to continue to reproduce 

completely undeterred.   

If we consider a two state model of population dynamics, with 

chemotherapy sensitive and natural chemotherapy resistant cells as the individual 

species, a sizeable portion of mutants will remain post chemotherapy treatment.  In 

fact, this species will no longer compete with chemotherapy sensitive cells for 

resources, and will pervade the tumor.  Mutants have a significant fitness advantage 

during this treatment, and an alternative method is required to facilitate their complete 

removal from the tumor. 

Induced Chemotherapy Resistant Cells 

A proposed solution is the addition of engineered genes to chemotherapy 

sensitive cells, creating a second species that would survive periods of drug treatment.  

Their presence would initiate competition with natural chemotherapy resistant mutants 

for expansion throughout the tumor.  This can be achieved by transfection with either 
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MDR1 or the double mutant dmDHFR.  Additionally, these transfected genes should 

introduce susceptibility to a different drug for the new cell line.  One possibility 

commonly seen in anti-cancer gene therapy is expression of herpes simplex virus 

thymidine kinase (HSV-TK).  While MDR1 or dmDHFR presence confers a selective 

advantage during chemotherapy, HSV-TK sensitizes these hybrid cells to the antiviral 

drug ganciclovir [3] [4].   

Thymidine kinase catalyses the monophosphorylation of ganciclovir.  

Studies have shown that metabolism of the drug leads to incorporation of the 

phosphorylated product into cell DNA [8].  However, this combination also causes 

DNA double strand breaks (DSB).  Attempted cell replication under this condition 

results in g2 m cell cycle arrest, as deleterious chromosomal mutations arise.  This 

triggers a cell suicide mechanism to correct for DSBs and ensure the mutations are not 

replicated [9].   

A significant advantage or ganciclovir is the ability to affect non-sensitive 

cells.  Monophosphorylated ganciclovir within a cell membrane may transfer to 

adjacent cells through gap junctions (~2-4 nm in diameter).  In this manner, the system 

would experience a bystander effect, where natural chemotherapy resistant cells also 

enter states of programmed cell death.  This effect is dependent on the interaction 

between induced and natural chemotherapy resistant cells, requiring transfer of 

phosphorylated ganciclovir.  Fortunately, the positive selection for resistant cells that 

occurs during chemotherapy will yield a favorable induced to natural resistant ratio, 

given a sufficient transfection at the onset of treatment. 
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Selection Process and Bystander Effect 

The three species - chemotherapy sensitive cells, natural chemotherapy 

resistant cells, and hybrid transfected cells - compete and expand until selection 

removes cells susceptible to chemotherapy induced death.  The remaining states, both 

induced and naturally resistant, continue to propagate, with their progeny expressing 

the same resistance.  Treatment with antiviral drugs eliminates the induced species due 

to their HSV-TK transfection.  However, the naturally resistant mutants are prone to 

the bystander effect.  A significant bystander effect, we will show, can contribute to 

extinction of naturally occurring mutants, effectively stunting tumor angiogenesis.  

Prior experimental results conducted on mice have been promising; both 

in vitro and in vivo attempts have supported this method.  However, a number of 

dynamic issues related to this approach, including stability and delivery method 

considerations, must be explored before clinical trials in humans. We will illustrate 

these concerns using dynamical models in the following sections. 
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Chapter 3 

IN VITRO MODELING 

Preliminary Model 

A basic approach to modeling the dynamics of anti-cancer gene therapy 

can be accomplished with a three state system of ordinary differential equations.  We 

begin by investigating the in vitro case, where cell growth is not necessarily limited to 

the set amount of resources in a confined space (i.e. a tumor).  Under these 

circumstances, transfection is assumed to occur as an injection to individual cancer 

cells, followed by their reinsertion to the cell community.  This leads to a model of the 

form 

  (1) 

where x represents chemotherapy sensitive cells, y represents induced chemotherapy 

resistant cells, and z represents natural chemotherapy resistant cells.  Cells of each 

subtype multiply at the identical exponential rate, λ; they each die at a rate, d.  Cells of 

subtype x acquire immunity to chemotherapeutic agents through mutations and 

convert to subtype z at a nominal rate, µ; this is reflected as a growth parameter for 

subtype z cells.   

Drug treatments are time controlled parameters C(t) and g(t).  C(t) 

represents the effects of chemotherapy on subtype x, with selectable start time and 
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duration of treatment.  Natural and induced chemotherapy resistant cells are assumed 

immune to drug effects, and thus C(t) is absent from the equations representing 

subtype y and z growth.  These subtypes however, are removed from the system by the 

effects of antiviral treatment with the drug ganciclovir, g(t).  Induced chemotherapy 

resistant cells experience the full efficacy of the drug because of the inserted 

susceptibility gene.  Because natural chemotherapy resistant cells are not inherently 

prone to the drug, the dimensionless parameter b represents the bystander effect and 

diminished efficacy of ganciclovir. 

Bifurcation Analysis 

This model serves primarily to illustrate the significance of the bystander 

effect upon system stability.  The model is a first order system of linear ODE’s with 

non-constant coefficients C(t) and g(t).   
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Assuming chemotherapy has been successfully administered (sensitive 

cells are extinct), and treatment with ganciclovir is ongoing, evaluating stability is as 

simple as solving for the eigenvalues for the simplified matrix 

  

System stability is achieved for eigenvalues having negative valued real parts.  There 

are several possible stationary points for this system; however, the only one with 

which we are concerned coincides with stochastic extinction of all subtypes (x = y = z 
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= 0).  Holding λ, d, and g(t) constant, we were able to demonstrate the effect of a 

subcritical bystander effect, as well as appropriate behavior required for complete cell 

eradication.  The results are presented in Figure 1. 

This model is highly simplified - with the exception of µ, the growth of 

each subtype is entirely decoupled.  However, the linear model allows us to illustrate 

several phenomenon required for successful treatment in this method.  First, we 

observe chemotherapy establishing a selective pressure resulting in the positive 

selection for cells having resistance.  While sensitive cells quickly reach extinction 

due to the effects of chemotherapy drugs, the ratio of both induced and natural 

chemotherapy resistant cells were greatly amplified.  The dominance of either cell 

subtype in the post-selection environment is dependent on initial conditions at this 

point, as subtypes as subtypes y and z would grow at similar rates. 

Next, we see that treatment with ganciclovir results in a negative selection 

phase for antidrug-susceptible cells.  Cells of subtype z are not naturally sensitive and 

thus have a significant fitness advantage over subtype y.  An insufficient bystander 

effect may temporarily suspend growth in subtype z; however, a rebound in growth is 

inevitable and will occur either at the end of ganciclovir treatment or extinction of 

subtype y.  Natural chemotherapy resistant cells would continue to grow without 

bound, and ensuing rounds of treatment with either chemotherapy or ganciclovir 

would be trivial.  

Finally, we observe the results of a sufficient bystander effect.  Under this 

condition, the fitness advantage of natural chemotherapy resistant cells is negated by 

the ability of subtype y cells to transfer the metabolized ganciclovir to their neighbors.  

Ganciclovir triggers apoptosis in both cell lines, completely removing the tumor.
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Figure 1 Successful In Vitro Treatment.  Parameter values: C(t) = 0.95, g(t) = 
0.95, b = 0.95.  Chemotherapy begins at t = 5 for a duration of 24 units, 
resulting in extinction of chemotherapy sensitive cells.  Subsequent 
ganciclovir input to the system removes all remaining cells.  Note: 
although plots approach a value of 100, in actuality they reach zero.  The 
value shown is done arbitrarily due to the log plot. 
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Chapter 4 

IN VIVO MODELING 

Prior studies of anti-cancer gene therapy assume transfection is achieved 

by isolating natural chemosensitive cells from other cell lines and injecting a hybrid 

plasmid individually. These transfected cells are then reinserted to the tumor cell 

community to interact with natural chemotherapy resistant and natural chemotherapy 

sensitive cells.  This is a labor intensive process and transfection can only occur as 

quickly as plasmids can physically be inserted to each cell. 

This method of transfection is certainly a viable option for in vitro studies 

conducted on simple cell cultures where initial population conditions can be kept 

manageable.  However, anti-cancer gene therapy necessitates a much greater number 

of transfected cells to achieve sufficient bystander effect killing and therefore, 

successful treatment in humans.  Furthermore, the spread of natural chemotherapy 

resistant cells in vivo introduces time constraints to avoid dominance by this species 

and the ensuing diminished bystander effect.  Thus, individual transfection is rendered 

an impractical methodology.   

We will instead consider transfection achieved via oncospecific viral 

vectors.  Viruses can be utilized to infect tumor cells with engineered hybrid plasmids, 

without altering other tissue types.  We evaluate the feasibility of two infection 

methods: replication competent and replication defective delivery viruses.  The 

dynamics of each method can be very different, and thus multi-state models are 

developed for each case.  For the replication competent case, we must also investigate 
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the effects of a virus with varying degrees of virulence, as well as the corresponding 

changes to drug treatments that are required. 

Non-Replication Competent Delivery Virus 

Replication-defective viral vectors are capable of integrating with host cell 

DNA; however, the coding regions associated with reproduction have been deleted 

from their genes. Thus, a replication defective virus cannot accomplish full 

reproductive functionality as can a virus that is capable of entering the lytic cycle.   

Replication-defective viruses can adsorb to cell membranes to infect a 

host.  Other functions associated with the lytic cycle such as copying of genes or 

lysing of the host membrane, are unachievable.  Non-replication competent viruses 

operate in a manner similar to the lysogenic cycle [10].  This method of reproduction 

is common in certain temperate bacterial viruses, and results in creation of a prophage, 

the integration of viral nucleic acids with that of the host.  Prophages are passed to 

daughter cells as a result of mitotic division; therefore we assume that the delivery 

virus is capable of reproducing and infecting further cells in this manner. 

Inoculation of transfected genes by replication-defective viruses results in 

a fixed maximum number of free delivery virus.  Without the ability to make copies of 

their genetic material or lyse a host, growth of free virus does not occur.  The initial 

number of free delivery virus goes to zero upon infection, thus we can assume that 

after this point the free viral population does not change over time, and we do not 

require an additional state for the model.  Such an instance would yield the system of 

differential equations 
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  (2) 

where x represents chemotherapy sensitive/ganciclovir insensitive cells; y are 

chemotherapy resistant/ganciclovir insensitive cells; and z are the chemotherapy 

sensitive/ganciclovir sensitive cells. The exponential growth rates for each species are 

r, λ, and s, respectively, while dx, dy, and dz represent their natural death rates.  

 The overall	
  tumor growth, consisting of the sum of all cell species, is 

restricted by the carrying capacity, K.  This is an element of the logistic model of 

population growth that has been incorporated into the model.  In an actual system, 

cells will compete for limited resources such as nutrients or space.  It is more realistic 

for a tumor to have a finite carrying capacity due to finite resources when compared to 

the unlikely case of unrestricted growth for the linear in vitro model.  Because of this 

amendment to our model in equation (1), the set of ordinary differential equations 

becomes nonlinear.  The parameter K not only limits the maximum tumor size, but 

encourages competition for growth between the species.  Those cells exhibiting 

greater fitness, either through mutations or favorable selective pressures, will occupy a 

larger portion of the tumor.  A decrease in population size in one subtype will yield an 

increase in the others. 

Cx(t), Cy(t), and Cz(t) are inputs representing the timed application of 

chemotherapy, chosen according to its relative effect on individual species’ growth.  

Natural chemotherapy sensitive cells will obviously experience a greater effect under 
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this treatment.  The application of ganciclovir is also an input, g(t), again chosen 

according to its relative efficacy, that acts primarily on those cells that have been 

infected by the delivery virus. The bystander effect discussed in Section II is modeled 

as 

  (3) 

indicating that the effect on proximal cells increases as transfected cells achieve tumor 

dominance. 

In this model, we have elected to represent bystander killing as a 

monotonic function, having properties similar to that of the sigmoid function. This is a 

dimensionless approximation of the likelihood that both natural chemotherapy 

resistant and sensitive cells are neighbored by cells that have been infected by the 

delivery virus.  This is a reasonable assumption; as the transfected cell population 

multiplies towards the bounds of the carrying capacity, K, non-transfected cells are 

almost certain to have interaction with ganciclovir sensitivity genes.  It is impossible 

for the likelihood to decrease with each additional cell of subtype z; therefore, the 

bystander effect must be at least a positive semi-definite monotonic function (though 

we have simplified by assuming it to be strictly increasing). 

For the purposes of this thesis and our ODE model, we have chosen to 

further simplify our system equations with a linear approximation of the generically 

sigmoid function, b.  This ensures that the bystander effect is a function having a first 

derivative that is strictly positive.  It should be notes that a partial differential model in 

this instance would likely represents a more appropriate choice in modeling the 

system; nonetheless, the dynamics of anti-cancer gene therapy have not previously 
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been investigated with mathematical models of any sort.  This ODE model should be 

sufficient for a preliminary investigation. 

Chemotherapy System Effects 

Initial conditions for our model can be changed to demonstrate system 

dynamics under different starting points.  Realistically, they should reflect a tumor 

population that is largely chemotherapy sensitive, with few cells having the natural 

resistance mutation.  This is because, prior to the initial chemotherapy treatment, 

resistant cells have never enjoyed a selective advantage associated with a selective 

pressure.  Mutant cells may grow in number, but the absence of a chemotherapy input, 

C(t), does not enable them to outcompete other cells.  They remain a subset of the 

tumor population, occupying a smaller ratio than sensitive cells whose growth rate is 

much larger than the mutation rate. 

Upon administering a chemotherapeutic agent however, the input causes a 

dramatic decrease in the number of sensitive cells.  Subtype x is the population 

especially vulnerable to decline due to the high chemotherapy efficacy for the species 

(Cx).  This sudden drop causes a temporary reduction in overall tumor size since 

chemotherapy sensitive cells were the dominant population prior to treatment.  Yet, 

cells of subtypes y and z have a significant selective advantage because the drug 

efficacy for these cells, Cy and Cz, are negligible.  Because of their chemoresistance, 

their growth rates outpace that rate of death due to drug inputs.  Their continued 

growth yields a rebound in tumor size, approaching pre-chemotherapy levels.  The 

extinction of sensitive cells allows chemotherapy resistant cells to compete for and 

occupy the space vacated by those removed.  
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Under the conditions of our model, subtypes y and z grow at an identical 

rate (r = λ, dy = dz).  Therefore, the cell line that is able to achieve tumor dominance 

post-selection is dependent on the system initial conditions.  Whichever subtype 

existed in greater numbers prior to chemotherapy will outcompete the other.  This is 

critical when considering the required level of delivery virus infection.  Successful 

ganciclovir treatment at this phase is entirely dependent on the concentration of 

ganciclovir sensitive cells, z.  Initial conditions may mandate explosive growth of 

subtype y cells if the natural mutation is sufficiently high, or the inoculation with 

transfected genes has not sufficiently spread.  Under this scenario, a weaker bystander 

effect will inevitably lead to ganciclovir failure.  This sensitivity to initial conditions 

may be seen in Figure 2, where natural chemotherapy resistant cells constitute a larger 

portion of the initial tumor population. 

Conversely, if the delivery virus can more efficiently infect chemotherapy 

sensitive cells, we can assume a number of subtype z cells greater than those of 

subtype y.  Under these conditions, infected cells are amplified most by chemotherapy, 

making them the most populous tumor cell species and enhancing bystander effect 

killing.  Obviously, the ratio between these species will depend on the difference 

between their initial conditions.  As the initial disparity increases, the steady state 

values for each species will grow further apart until the ideal bystander effect (when 

all y cells are indirectly killed by ganciclovir) is achieved. 

Ganciclovir treatment affects sensitive and bystander effect-sensitive cells, 

causing a reduction in tumor size.  Ideally, this reduction results in a tumor size nadir 

that would coincide with stochastic extinction of all cells.  However, an insufficient 

bystander effect will permit the tumor size to rebound following ganciclovir treatment.  
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This represents the worst-case scenario, as cells of subtype y will be the only subtype 

to survive the treatment. As the lone tumor cell type, treatment with either drug 

becomes useless.  Further treatments using this method are no longer an option.
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Figure 2 Initial Condition Effects.  Parameter Values: x0 = 90, y0 = 10, z0 = 5, 
Cx = 1, Cy = Cz = 0, g = 0.  Application of chemotherapy results in a 
steep decline in sensitive cells and overall tumor size.  The greater initial 
number of natural resistant cells allows them to outcompete the cells 
with transfected genes.  Application with ganciclovir would only 
eliminate subtype z.
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Ganciclovir Timing 

To avoid the aforementioned instance where the entire tumor is resistant 

to further treatment, we seek to find the appropriate timing for the ganciclovir input.  

Because our ultimate goal is to induce stochastic extinction of all cell types in the 

system, ganciclovir input should be chosen to maximize the bystander effect.  Given 

equal initial conditions for both natural and transfected chemotherapy resistant cells, 

we restrict our investigation to possible differences in cell fitness under periods of 

extended chemotherapy.  Appropriate ganciclovir input can change if either species of 

resistant cells is less responsive to chemotherapy than the other.  

Until now, our model has only considered the possibility that subtype y 

and z cells enjoy the same selective advantage under chemotherapy.  We now 

introduce the condition that their fitness levels are less similar.  It is reasonable to 

assume that one subtype may exhibit a greater degree of fitness than the other.  For 

example, natural mutations may confer dmDHFR resistance while infected cells may 

carry the gene expressing MDR1.  Mutants with dmDHFR resistance would be 

immune to the effects of MTX, while infected cells could only regulate the 

intracellular drug concentration to limit its effect.  To model this, we can manipulate 

the system parameters Cy(t) and Cz(t).  The observed dynamics may provide incentive 

to prolong chemotherapy, administering ganciclovir simultaneously. 

If natural chemotherapy resistant cells have even a marginally greater 

fitness over transfected cells (Cy(t) < Cz(t)), subtype y will be preferably selected for 

by chemotherapy treatment.  This will be observed as a continuous rise in the y 

population that is able to outgrow any possible reduction in number due to 

chemotherapy.  Cell of subtype z however, can only increase to a maximum point 
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before decaying.  The initial increase is due to the ability of transfected cells to 

outcompete chemotherapy sensitive cells; however, transfected cells are outcompeted 

themselves by natural mutations.  Figure 2 illustrates this effect, where we assume a 

chemotherapy efficacy of 0.1 for transfected cells, while natural resistance confers 

complete immunity.  The greatest bystander effect achievable by the system under 

these circumstances is created when ganciclovir is administered at this maximum 

point. 

Alternatively, transfected genes may be engineered to grant a more 

significant degree of chemoresistance to subtype z. If transfected cells enjoy a 

selective advantage over natural chemotherapy resistant cells (Cy(t) > Cz(t)), we would 

observe dynamics similar to the previous case; however, subtypes y and z exchange 

roles.  In this favorable scenario, ganciclovir treatment would be postponed to allow 

for further transfected cell growth and thereby, the bystander effect. 
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Figure 3 Natural Chemotherapy Resistant Cell Advantage.  Parameter values:  
x0 = 90, y0 = z0 = 5, Cx = 1, Cy = 0.1, Cz = 0, g = 0.  Under 
chemotherapy treatment, the cell that is most resistant to drug effects 
will become most dominant.  Here, transfected cells reach a maximum 
point before decaying.  The greatest bystander effect possible would be 
at this point (t = 28.6).
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Figure 4 Transfected Chemotherapy Resistant Cell Advantage.  Parameter 
values:  x0 = 90, y0 = z0 = 5, Cx = 1, Cy = 0, Cz = 0.1, g = 0.  Under 
chemotherapy treatment, the cell that is most resistant to drug effects 
will become most dominant.  Here, natural chemotherapy resistant cells 
reach a maximum, followed by extended decay.  Bystander effect only 
increases over time.
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 Replication Competent Delivery Virus 

Replication competent viruses reproduce primarily via the lytic cycle.  In 

addition to the spread of ganciclovir susceptibility through host mitosis, the free virus 

population grows exponentially with the release of multiple viruses for each cell lysis.  

Free virus particles are then capable of further infecting potential hosts, which in turn 

leads to demise in host cell population.   

Plasmid delivery by replication-competent viruses has certain advantages 

over the replication defective case.  A delivery virus capable of infecting all cells 

would rather quickly cause infected cells to become the most populous tumor cell 

species.  These infected cells would all express the susceptibility gene, and would 

consequently be eliminated during ganciclovir treatment.  This would avoid the 

aforementioned possibility in replication defective systems of ganciclovir treatment 

failure, leading to unrestrained growth of natural resistant cells.  A nonspecific 

delivery virus would always be in the presence of viable hosts (unless each subtype 

has reached extinction), continually spreading ganciclovir susceptibility.   

Of course, there are tradeoffs and this choice of delivery virus might not 

always produce desired results.  Because viral replication requires the destruction of 

host cells, this method is beneficial only if the infection can spread through all cell 

lines, equally inhibiting growth.  If the virus is specific to one cell type, such as the 

natural chemotherapy sensitive cells, the virus itself will have effectively established a 

selective advantage for the species that is not infected.  We will show that in this case, 

infected cell populations will reach a peak before declining once susceptible hosts 

have been depleted.  As is the case when ganciclovir treatment fails with a non-

replication competent delivery virus, the remaining subtype is allowed to propagate 
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through the tumor completely free of competition and any future bystander effect 

killing. 

Virus particles can be more than one thousand times smaller in size than 

host cells.  As a result, they are not in direct competition with the remaining subtypes 

for the carrying capacity of the tumor.  We will not consider free viruses subject to the 

same spatial constraints dictated by the logistic model of population growth.   

We model transfection of ganciclovir susceptibility genes by replication 

competent viruses by implementing a fourth state and including additional parameters 

to our original model of equation 1. 

  (4) 

In this model, v is introduced as the free virus population having the gene that will 

confer both chemoresistance and ganciclovir susceptibility.  If we assume all subtypes 

are prone to infection, free virus particles are able to infect hosts proportional to the 

mass action rates βx and βy.  These rates depend on the interaction between the virus 

and non-infected cells.  An infection in subtype x or y is reflected in the model by a 

decline in population and an increase in that of subtype z. 

 Once infected, hosts cells are lysed at the lytic rate, a.  This rate is a 

reflection of the relative virulence of the infecting virus and can have significant 

consequences for system dynamics.  Virulence refers to the ability of the virus to 
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directly cause host cell death.  A virus displaying low virulence, for example, will 

have longer latent periods, during which time free virus particles are produced within 

the cell.  A highly virulent virus, however, will induce cell lysis after only a short post- 

infection delay.  High virulence can be represented with larger values for the 

parameter a.  For every instance of cell lysis, multiple free virus particles are released.  

The amount per cell is referred to as the burst constant, k.  These viruses decay at the 

rate u, similar to the natural death parameters for each cell subtype. 

 The results of our model simulations were fairly predictable.  As Figure 5 

shows, infected cells will outcompete other subtypes if the delivery virus is able to 

infect subtype x and y cells.  As the most populous cell species, infected cells will 

undergo apoptosis and cause a great degree of bystander effect killing under 

ganciclovir.   

 The characteristic of naturally occurring mutants to have a degree of 

genetic instability may cause them to be less prone to viral infection.  Constant 

changes in their DNA could possibly make successful integration and transcription of 

the transfected gene problematic.  Additionally, natural mutations might result in the 

ejection of ganciclovir sensitivity genes, similar to the manner in which subtype y 

cells are considered to have initially lost chemotherapy sensitivity.  Susceptibility of 

all cells to infection by the delivery virus should not be assumed; in fact, a delivery 

virus specific to subtype x may be more realistic.  We will see that depending on the 

virulence of the virus, this may necessitate a more dynamic treatment approach.Figure 

6, however, demonstrates the problem consistent with a species specific delivery virus.  

Subtype x cells are most populous when the virus is introduced to the system.  This 

abundance of hosts coincides with a rise in infected cells that produce further free 
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virus particles, but also causes a rapid decline in the population x.  Subtype z can only 

maintain its level of growth in the presence of x, and begins to decline once the virus 

has caused complete transfer from natural chemotherapy sensitivity to resistance. 
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Figure 5 All Cells Infection-Susceptible.  Parameter values:  Cx(t) = 0.95, Cy(t) 
= Cz(t) = 0,  gx(t) = gy(t) = gz(t) = 0, βx = βy = 0.0015, k =1.  If all cells 
can become infected, subtype z will gain prevalence while subtype will 
gain prevalence while subtype will gain prevalence while subtype y 
peaks and begins gradual decline.  Ganciclovir has yet to be 
administered in this figure. 
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Chapter 5 

OPTIMAL CONTROL 

Use of a replication competent delivery virus specific to natural 

chemotherapy sensitive cells requires a single alteration to the model in equation 4.  

Removing the possibility of subtype y infection translates to a removal of the mass 

action term signifying interaction with free virus, βy, and yields the set 

    (5) 

Intuitively, we might consider a delivery virus that quickly spreads as the 

best choice to accelerate the treatment schedule, or shorten the duration.  Yet, it is not 

really this simple; a fast-spreading virus would be one that rapidly infects hosts.  Such 

a characteristic could be represented in the model by increasing the interaction term, 

βx.  The rate of interaction between free virus and natural chemotherapy sensitive 

cells, however, can only increase if they are more likely to meet – i.e. there are more 

free viruses present in the system. 

A fast spreading virus will attempt to saturate the tumor with free virus 

particles by increasing the lytic rate, a, to quickly replicate and release new virions 
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into the system.  An increased lytic rate physically means that the period between 

infection and lysis is shortened, thus reducing the time the virus has to produce genetic 

copies.  This in turn, results in a smaller burst size, k, for the fast-spreading virus.  

This tradeoff between virus particles per lysis (larger k) and virus particles per time 

(larger a) favors the latter.   

For this reason, the infection rate and virus-induced cell death rate are 

coupled in nature.  In this section, we investigate the both the low and high virulence 

cases for a replication competent delivery virus.  Through our model, we simulate the 

actions of a fast spreading, high virulence and slow spreading, low virulence delivery 

virus.  Each instance represents different dynamics, which will have implications for 

the overall drug treatment method. 

Low Virulence 

Perhaps contrary to our intuition, simulation revealed that the system 

dynamics associated with a slow spreading delivery virus would coincide with the 

simplest treatment scheduling.  As in previous cases, introduction of chemotherapy 

caused only sensitive cells to reach extinction levels.  This decline is further 

accelerated by interaction with the virus and transfer to a chemotherapy resistant state.  

However, a relatively small lytic rate will not cause subtype x to decrease before 

infected cells attain a certain critical population level.  At this point, the sheer number 

of infected cells allows them to out-compete natural mutants simply by their natural 

growth rate.  Once this critical level is reached and the virus has few remaining 

targets, infected cells are the most prevalent in the tumor.   

Simultaneous to the initial growth of infected cells, natural chemotherapy 

resistant cells begin to increase in number – a drug induced consequence of the 
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declining numbers of their sensitive counterparts.  However, their growth is far 

outpaced by the infected cell population that grows by both natural replication 

(mitosis) as well as newly infected cells.  At the previously mentioned critical level, 

the natural mutant population will reach a maximum before beginning a gradual 

decrease.  Their decline is exponential in nature, but with a very long half-life, as it is 

driven only by the competition for resources, rather than the efficacy of drug 

treatment.  Theoretically, natural mutations could be removed from the system in this 

manner; however, time to completely decay is prohibitively long to make this a viable 

treatment option.  Of course, ganciclovir treatment can be administered and will cause 

infected cells, sensitive to its effects, to decay.  As a result of the significantly large 

bystander effect, the natural chemotherapy resistant cells also decay to zero.  

In Figure 6, we see the initial decline in the natural sensitive cell 

population that occurs during periods of chemotherapy.  The selective advantage of 

both infected cells and natural mutants causes subtypes y and z to increase; the 

number of infected cells is shown to increase more rapidly due largely to new 

infections and smaller lytic rate.  Finally, Figure 6 shows significant bystander effect 

killing once natural chemotherapy cells have been driven to extinction and infected 

cells have become prevalent.   

While this treatment option is simple and is nearly guaranteed to be 

effective, a slow spreading, low virulence delivery virus requires a longer time to 

operate than would a high virulence virus.  Ganciclovir treatment must be delayed 

until natural chemotherapy resistant cells can be driven to extinction by bystander 

effect.  Furthermore, the system is within a human cancer patient, and treatment time 

should be minimized as much as possible. 
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Figure 6 Low Virulence Delivery Virus.  Parameter Values:  Cx(t) = 0.95 for 
t∈[t0,30], gz(t) = 0.9 for t∈[32,tfinal], b = 1.5, βx = βy = 0.0015, k =1.  
Chemotherapy successfully amplifies the ratio of transfected cells.  
Ganciclovir is only effective if treatment is delayed until ratio of 
transfected cells has reach critical level.  Entire tumor is reduced with a 
sufficient bystander effect.
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High Virulence 

In order to reduce treatment time, a highly virulent delivery virus should 

be utilized.  Theoretically, this would allow for the infected cell population to grow at 

the quickest rate possible.  However, the coupling of the infection rate, βx, with the 

virus-induced host cell death rate, a, causes unanticipated system behavior.  

Additional infected cells are gained when free viruses interact with susceptible hosts.  

However, the spread of infection is negated because frequent interaction requires 

numerous free viruses, and therefore frequent host cell lysis.  The two actions of the 

delivery virus are offset by each other as newly infected cells increase the population 

at a rate similar to the decline due to lysis.  As a result, the net growth of the infected 

cell population remains mostly unchanged.  While they cannot be outcompeted by the 

natural chemotherapy resistant cells, they cannot achieve tumor prevalence either 

without some favorable selective pressure.  Without the additional growth due new 

infections, ganciclovir sensitive cells will never replicate quick enough to induce 

efficient bystander effect killing. 

The use of a highly virulent delivery virus renders the simple treatment 

seen in the low virulence case useless.  We still intend to maximize the bystander 

effect, therefore ganciclovir should only by introduced at the peak value for 

  (6) 

A more dynamic approach is required to find the optimal timing for chemotherapy.  

This lead to the optimal control formulation to find the appropriate treatment schedule, 

Cx, satisfying 
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⎦ 
⎥  (7) 

subject to equation 5 and the given initial conditions.  C defines the set of all 

clinically acceptable application schedules. 

 Here, t0, describes the point at which cells of subtype y obtain prevalence 

in the tumor.  As in all previous iterations of this model, successful ganciclovir 

treatment is most likely to occur at this point; however, that likelihood is dependent on 

the ability of the chemotherapy schedule to effectively amplify the infected cell ratio.  

Certain chemotherapy application schedules will induce a greater maximum than 

others.  Therefore, an optimal control method is the ideal approach to find the 

schedule coinciding with the maximum peak. 

Maximizing Cost Function 

For simplicity of implementation, chemotherapy treatment is considered 

to be either applied at full efficacy, or not applied at any given time (Cx(t)=1 or 

Cx(t)=0).  Application of chemotherapeutic agents is decimated into ten intervals over 

a length of fifty units of time.  For each of these five unit long intervals, application of 

chemotherapy or non-application can alternate; however, the transition time is finite.  

Cycling through all possible combinations of chemotherapy treatment - of which there 

are 210 - allows us to identify the switching method that maximizes the cost function.   

As seen in figure 7, the optimal chemotherapy application for a highly 

virulent delivery virus is not likely to be the simple, single-dose schedule.  Instead, a 

sort of pulsed chemotherapy delivery is preferred, with multiple timed pulses.  A 

single, continuous application of chemotherapy rapidly drives the sensitive cells to 

extinction.  By pulsing chemotherapy, chemotherapy sensitive cells are allowed to 
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recover for a period of time, allowing for further infection.  This has previously been 

shown in other cases of combination chemotherapies involving gene therapies, 

illustrating the necessity of a model-based approach to sequence design [12] [13]. 

 This pulsing established by the optimal controller in turn maximizes the 

bystander effect because the greatest possible percentage of infected cells in the tumor 

coincides with the optimal chemotherapy treatment schedule.  Subsequent introduction 

of ganciclovir achieves the greatest possible reduction of tumor size, completely 

eliminated all cell species.  While complete tumor removal was also achieved in the 

low virulence case, optimal control with a highly virulent delivery virus significantly 

decreases the duration of treatment, exposing a patient to drugs for the shortest length 

of time possible. 
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Figure 7 High Virulence Delivery Virus.  Parameter Values:  Cx = 1, gz(t) = 0.9, 
b = 1.5, βx = βy = 0.0015, k =1.  Pulsed chemotherapy successfully 
amplifies the ratio of transfected cells.  Ganciclovir is effective if 
applied when the cost function is maximized.  This point is reached 
quicker than in the low virulence case, shortening treatment duration.  
Entire tumor is reduced with a sufficient bystander effect. 
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CONCLUSIONS 

In this thesis, we utilized mathematical models to gain insights to the 

dynamics of a novel anti-cancer gene therapy technique.  By first modeling an in vitro 

system with limitless possible population growth, we displayed the ability of 

chemotherapy to act as a favorable selective advantage for resistant cells, and 

ganciclovir to establish negative selection for sensitive cells.  The model also 

demonstrated the result of a sufficient bystander effect in killing cells not directly 

sensitive to ganciclovir.   

The in vivo model of a non-replication competent delivery virus pointed 

out the phenomena associated with chemotherapy as a selective pressure under 

different initial conditions.  The dynamics reveal the need for an initial population of 

chemotherapy resistant/ganciclovir sensitive cells to be greater than the initial 

population of natural chemotherapy resistant mutants.  Furthermore, the model 

illustrated the dynamics of a system where cells of one species were relatively more fit 

to survive chemotherapy.  Even a slight competitive advantage allows the cells of 

greater fitness to become prevalent in the tumor. 

The in vivo model of a replication competent delivery virus introduced the 

concept of virulence.  A delivery virus of low virulence allowed for infected cells to 

outcompete natural chemotherapy resistant cells purely due to the nature of their 

growth.  However, we saw the problem inherent with this application – unrealistic 

treatment duration.  The spread of infection was simply too slow, necessitating the use 

of a more virulent delivery virus. 
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Finally, the in vivo model of a fast-spreading delivery virus demonstrated 

the need for optimal control.  This model allowed for an optimal chemotherapy 

treatment schedule that would provide the system with the benefits of a highly virulent 

virus (quick spread), without the drawbacks (prohibitive lytic rate).  Optimal treatment 

illustrated the desired result of complete tumor cell clearance in a feasible length of 

time.   

From the analysis, it is evident that mathematical modeling of systems is 

vital to understanding the complex dynamics involved.  Combination therapy 

strategies show promise to provide an alternative option to traditional anti-cancer 

treatment methods, specifically when such regimes would fail.  Before this technique 

can be implemented on human subjects, however, a more thorough understanding of 

the system must be gained.  We have created several models in this thesis but 

acknowledge that many of the parameters have been considered in ideal or simplified 

states.  Future investigations should better investigate the spatial effects, and utilize 

estimation of parameters from existing tumor and viral vector models. 
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Appendix A 

MATLAB CODE 

InVitro.m 
% Preliminary In Vitro Model 
% This matlab program includes an ODE solver 
% that finds the state values over a chosen 
% run time.  The values are then plotted over 
% time on a log-scale 
 
 
function InVitro 
clc; 
close all; 
 
%Model Parameter Definitions 
global lambda d myu e1 e2 b t0 t1 t2 t3 C G 
lambda = 1;   % Natural cell growth rate 
d = 0.4;        % Natural cell death rate 
myu = 0.001;     % Chemoresistance mutation rate 
e1 = 0.95;      % Chemotherapy (MTX) drug efficacy 
e2 = 0.95;      % Antiviral (GCV) drug efficacy 
b = 0.95;        % Bystander Effect 
% ------------------------------------------------------- 
 
% Treatment times 
t0 = 5;    % Chemo treatment beginning time 
t1 = 29;   % Chemo treatment end time 
t2 = 30;     % GVC treatment begin time 
t3 = 95;   % GVC treatment end time 
% ------------------------------------------------------- 
 
% ODE 
Tr = 100; 
sol = ode45(@therapy, [0, Tr], [100 20 1]); 
% ------------------------------------------------------- 
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% Plots 
lw = 2; 
figure; 
subplot(3,1,1) 
plot(sol.x, sol.y(1,:),'-', 'LineWidth',lw); 
ylabel('Chemo sensitive cell level'); 
xlabel('time (days)'); 
title('Cell Populations vs time'); 
hold all 
subplot(3,1,2) 
plot(sol.x, sol.y(2,:),':', 'LineWidth',lw); 
ylabel('Induced chemo resistant cell level'); 
xlabel('time (days)'); 
hold all 
subplot(3,1,3) 
plot(sol.x, sol.y(3,:),'--', 'LineWidth',lw); 
ylabel('Natural chemo reisistan cell level'); 
xlabel('time (days)'); 
  
figure; 
semilogy(sol.x, sol.y(1,:),':', 'LineWidth',1); 
hold all 
semilogy(sol.x, sol.y(2,:),'-.', 'LineWidth',1); 
hold all 
semilogy(sol.x, sol.y(3,:),'-', 'LineWidth',1); 
hold all 
legend('Chemotherapy Sensitive Cells', 'Induced 
Chemotherapy Resistant Cells', 'Natural Chemotherapy 
Resistant Cells') 
ylabel('cell populations x(t), y(t), z(t)'); 
xlabel('time'); 
title('Log Scale Plot of Cell Populations vs Time'); 
% ------------------------------------------------------- 
 
% Differntial Equation Functions 
function ddt = therapy(t,y) 
global lambda d myu e1 e2 b t0 t1 t2 t3 C G 
X = floor(y(1)); 
Y = floor(y(2)); 
Z = floor(y(3)); 
C = e1 * (t>t0) * (t < t1); 
G = e2 *(t>t2) * (t<t3); 
ddt = [ (lambda-d-myu)*X - C*X 
    (lambda-d)*Y - G*Y 
    (lambda-d)*Z + myu*X - b*G*Z]; 
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InVivo.m  
% This matlab program simulates the in vivo 
% model including both delivery viruses. 
function InVivo 
clc; 
close all; 
% -------------------------------------------------------  
%Model Parameter Definitions 
global r e K d n C I lambda delta b s a G t0 t1 t2 t3 q j 
Beta p L k f u w Cn Ci Gr XGr YGr ZGr I 
lambda = 1; % NCR growth rate 
s = 1;      % ICR growth rate 
r =1;       % CS growth rate 
q = 1;      % uninfected tumor growth rate 
e = 1;      % exponent 
K = 100;    % carrying capacity  
d = .1;     % natural death rate uninfected tumor 
n = .00;    % rate of change to chemoresistant tumor 
C = 0.95;   % Chemotherapy treatment efficacy  
Cn = 1;     % Chemotherapy treatment efficacy  
Ci = 1;     % Chemotherapy treatment efficacy  
I = 0.90;   % rate of change to induced chemo resistant 
f = 0.9;    % growth rate of natural chemo resistant  
delta =.1;  % death rate of natural chemo resistant  
b = 1.5; 
j = 1;      % growth rate of induced chemo resistant  
a = I*.1;   % deat rate of induced chemo resistant tumor  
G = .9;     % death rate due to ganciclovir (GCV)  
Beta = I*.0015;  % virus mass action rate 
p = .3;     % virus death rate 
L = .01;    % Lytic rate 
k = 1;      % Burst size 
u = .1;     % Chemotherapy efficacy on chemoresistant 
w = .0;     % Chemotherapy efficacy on Induced Resistant 
            % resistant back to sensitive term? 
% -------------------------------------------------------  
% Treatment Times 
t0 = 0;    % Chemo treatment beginning time (day) 
t1 = 5;    % Chemo treatment end time (day) 
t2 = 21;   % GCV treatment begin time (day) 
t3 = 23;   % GCV treatment end time (day) 
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% ------------------------------------------------------  
 
% ODE 
Tr = 50; 
sol = ode45(@go, [0, Tr], [90 5 5 50]); 
% -------------------------------------------------------  
 
% Plots 
lw = 2; 
  
Gr = sol.y(1,:)+sol.y(2,:)+sol.y(3,:); 
XGr = sol.y(1,:).*(Gr.^-1); 
YGr = sol.y(2,:).*(Gr.^-1); 
ZGr = sol.y(3,:).*(Gr.^-1); 
KXGr = sol.y(1,:)/K; 
KYGr = sol.y(2,:)/K; 
KZGr = sol.y(3,:)/K; 
  
figure; 
subplot(3,1,1:2) 
plot(sol.x, KXGr, '-', 'LineWidth', lw); 
hold all  
plot(sol.x, KYGr, '--', 'LineWidth', lw); 
hold all 
plot(sol.x, KZGr, ':', 'LineWidth', lw); 
ylabel('Cell Population Ratio'); 
legend('Chemo-Sensitive Cells ', 'Natural Chemo-Resistant 
Cells', 'Transfected Cells') 
axis([0 Tr 0 1]) 
title(['Chemotherapy Only' ]) 
subplot(3,1,3) 
plot(sol.x, Gr, '-', 'LineWidth', lw) 
xlabel('Time') 
ylabel('Tumor Size') 
% -------------------------------------------------------  
 
% Differntial Equation Functions 
function ddt = go(t,y) 
global r e K d n C I lambda delta b s a G t0 t1 t2 t3 q j 
bb Beta p L k f u w GG CCi CCn Cn Ci 
X = (y(1)); 
Y = (y(2)); 
Z = (y(3)); 
V = (y(4)); 
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% Floor Functions 
if X < .9 
    r = 0; 
else if X > .9 
        r = q; 
    end 
end 
if Y < .9 
    lambda = 0; 
else if Y > .9 
        lambda = f; 
    end 
end 
if Z < .9 
    s = 0; 
else if Z > .9 
        s = j; 
    end 
end 
 
% Treatment Times 
CC = C*(t>t0)*(t<t1); 
CCn = Cn*(t>t0)*(t<t1); 
CCi = Ci*(t>t0)*(t<t1); 
GG = G*(t>t2)*(t<t3); 
bb = b*(t>t2)*(t<t3); 
  
% Differential Equations 
%INFECTION SUSCEPTIBLE RESISTANT CELLS 
% ddt = [r*X*(1-CC)*(1 - ((X + Y + Z)^e)/(K^e)) - X*(d + 

Beta*V + bb*(Z/(X+Y+Z))) 
%     Y*Cn*lambda*(1 - ((X + Y + Z)^e)/(K^e)) - Y*(delta  

+ Beta*V + bb*(Z/(X+Y+Z))) 
%     Beta*X*V + Beta*Y*V + Z*Ci*s*(1 - ((X + Y +  

Z)^e)/(K^e)) - Z*(a + GG + L) 
%     k*L*Z - p*V]; 
%INFECTION RESTRICTED TO CS AND ICR CELLS 
ddt = [r*X*(1-CC)*(1 - ((X + Y + Z)^e)/(K^e)) - X*(d +  

Beta*V + bb*(Z/(X+Y+Z))) 
    Y*(Cn)*lambda*(1 - ((X + Y + Z)^e)/(K^e)) - Y*(delta  

+ bb*(Z/(X+Y+Z))) 
    Beta*X*V + Z*(Ci)*s*(1 - ((X + Y + Z)^e)/(K^e)) –  

Z*(a + L + GG) 
    k*L*Z - p*V]; 
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%NON COMPETENT REPLICATION VIRUS 
% ddt = [r*X*(1-CC)*(1 - ((X + Y + Z)^e)/(K^e)) - X*(d +  

GG*(Z/(X+Y+Z))) 
%     Y*(Cn)*lambda*(1 - ((X + Y + Z)^e)/(K^e)) - Y*(d +  

GG*(Z/(X+Y+Z))) 
%     Z*(Ci)*s*(1 - ((X + Y + Z)^e)/(K^e)) - Z*(d + GG) 
%     0]; 



 50 

findoptimalsequence.m 
% This matlab program runs simultaneously 
% with InVivoFinal to run through all possible 
% chemotherapy treatment schedules over a 
% selected duration, to find the optimal 
% sequence to maximize the cost function. 
function [seqoptim,costoptim] = findoptimalsequence(N); 
% N = 10; 
NN = 2^N; 
cost1 = 0; 
costold = cost1; 
Tmax = 0; 
for ii = 0:NN-1 
    seq1 = dec2bin(ii,N); 
    [cost1, Tmax1] = PancOptimTest(seq1); 
    if cost1 > costold 
        seqoptim = seq1; 
        costold = cost1; 
        Tmax = Tmax1; 
    end 
end 
costoptim = costold; 
PancPlotOptim(seqoptim, Tmax); 
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InVivoOptim.m 
% This matlab program runs simultaneously with 
% findoptimalsequence.m to maximize the cost 
% function to find the best chemotherapy treatment 
% schedule. 
function InVivoOptim(seq1, Tmax) 
clc; 
close all; 
tttt=cputime; 
length = max(size(seq1)); 
  
% -------------------------------------------------------  
%Model Parameter Definitions 
global CCC GGG h Tmax seq r e K d n C I lambda delta b s 
a G t0 t1 t2 t3 q j Beta p L k f u w Cn Ci Gr XGr YGr ZGr 
I t4 t5 ti interval 
  
seq = seq1; 
q = 1;      % uninfected tumor growth rate 
e = 1;      % B-R exponent 
K = 100;    % B-R carrying capacity  
d = .1;     % natural death rate uninfected tumor 
n = .0007;  % rate of change to chemoresistant tumor 
C = .95;    % Chemotherapy treatment efficacy  
Cn = 0;     % Chemotherapy treatment efficacy  
Ci = 0;     % Chemotherapy treatment efficacy  
I = 1.5;    % Beta-a ratio 
f = 1;      % growth rate of natural chemo resistant  
delta =.1;  % death rate of natural chemo resistant  
b = 1.5;    % death rate due to bystander effect 
j = 1;      % growth rate of induced chemo resistant  
a = I*.1;   % deat rate of induced chemo resistant  
G = .9;     % death rate of  due to ganciclovir  
Beta = I*.001;  % virus mass action rate 
p = .3;     % virus death rate 
L = .00;    % Lytic rate 
k = .5;     % Burst size 
u = .1;     % Chemotherapy efficacy on chemoresistant 
w = .0;     % Chemotherapy efficacy on Induced Resistant 
            % resistant back to sensitive term? 
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% ------------------------------------------------------- 
for ti = 0:0 
% Treatment Times 
%ti = 15; % Pulse time increment 
t0 = 0; % Chemo treatment beginning time (day) 
t1 = 0; % Chemo treatment end time (day) 
t2 = 0;  % GCV treatment begin time (day) 
t3 = 0;  % GCV treatment end time (day) 
interval = 5; %Fastest switch time in days 
  
% ------------------------------------------------------- 
% ODE 
%Tr = 100; 
Tr = interval*length; 
sol = ode45(@go, [0.01, Tr], [95 5 0 100]); 
  
ymax=min(sol.y(2,:)); 
zmax=max(sol.y(3,:)); 
Cost = 
max(sol.y(3,:)./(sol.y(1,:)+sol.y(2,:)+sol.y(3,:))); 
% ------------------------------------------------------- 
end 
 
% Plots 
lw = 2; 
Gr = sol.y(1,:)+sol.y(2,:)+sol.y(3,:); 
XGr = sol.y(1,:).*(Gr.^-1); 
YGr = sol.y(2,:).*(Gr.^-1); 
ZGr = sol.y(3,:).*(Gr.^-1); 
KXGr = sol.y(1,:)/K; 
KYGr = sol.y(2,:)/K; 
KZGr = sol.y(3,:)/K; 
figure; 
subplot(8,1,1:4) 
plot(sol.x, KXGr, '-', 'LineWidth', lw); 
hold all  
plot(sol.x, KYGr, '--', 'LineWidth', lw); 
hold all 
plot(sol.x, KZGr, ':', 'LineWidth', lw); 
%xlabel('time'); 
ylabel('Cell Population Ratio'); 
legend('Chemo-Sensitive Cells ', 'Natrual Chemo-Resistant 
Cells', 'Transfected Cells') 
axis([0 Tr 0 1]) 
title(['Optimal Control']) 
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subplot(8,1,5:6) 
plot(sol.x, Gr, '-', 'LineWidth', lw) 
%xlabel('Time') 
ylabel('Tumor Size') 
axis([0 Tr min(Gr) 100]) 
subplot(8,1,7) 
plot(CCC, 'Linewidth', lw) 
axis([0 Tr  0 1]) 
ylabel('Chemo') 
subplot(8,1,8) 
plot(GGG, 'LineWidth', lw) 
xlabel('Time') 
ylabel('GCV') 
axis([0 Tr 0 1]) 
  
% -------------------------------------------------------  
% Differntial Equation Functions 
function ddt = go(t,y) 
global CCC GGG h Tmax seq r e K d n C I lambda delta b s 
a G t0 t1 t2 t3 q j bb Beta p L k f u w GG CCi CCn Cn Ci 
t4 t5 ti interval 
X = (y(1)); 
Y = (y(2)); 
Z = (y(3)); 
V = (y(4)); 
% Floor Functions 
if X < .9 
    r = 0; 
else if X > .9 
        r = q; 
    end 
end 
if Y < 1.5 
    lambda = 0; 
else if Y > 1.5 
        lambda = f; 
    end 
end 
if Z < .9 
    s = 0; 
else if Z > .9 
        s = j; 
    end 
end 
rn = round(rand); 
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% Treatment Times0 
if str2num(seq(ceil(t/interval))) == 1 
    CC = C; 
    CCn = Cn; 
    CCi = Ci; 
    GG = 0; 
    bb = 0; 
end 
if str2num(seq(ceil(t/interval))) == 0 
    CC = 0; 
    CCn = 0; 
    CCi = 0; 
    GG = 0; 
    bb = 0; 
end 
if t > Tmax 
    CC = 0; 
    CCn = 0; 
    CCi = 0; 
    GG = G; 
    bb = b; 
end 
  
h = round(t)+1; 
CCC(h) = CC; 
GGG(h) = GG; 
  
% Differential Equations 
ddt = [r*X*(1-CC)*(1 - ((X + Y + Z)^e)/(K^e)) - X*(d + n  

+ Beta*V + bb*(Z/(X+Y+Z))) 
    n*X + Y*(1-Cn)*lambda*(1 - ((X + Y + Z)^e)/(K^e)) –  

Y*(delta + bb*(Z/(X+Y+Z))) 
    Beta*X*V + Z*(1-Ci)*s*(1 - ((X + Y + Z)^e)/(K^e)) –  

Z*(a + GG + L) 
    k*a*Z - p*V]; 
  
 
 


