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ABSTRACT

The Mallows measure is a probability measure on Sn where the probability of

a permutation π is proportional to ql(π) with q > 0 being a parameter and l(π) the

number of inversions in π. We prove three weak laws of large numbers and a central

limit theorem for the length of the longest common subsequences of two independent

permutations drawn from the Mallows measure for different regimes of the parameter

q.
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Chapter 1

INTRODUCTION

1.1 Background

1.1.1 Longest Common Subsequence Problem

Definition 1.1.1. Given two strings s, t, let si denote the i-th character in s. The

length of the longest common subsequence of s and t is defined by,

LCS(s, t) := max(m : ∃ i1 < · · · <im and j1 < · · · < jm

such that sik = tjk for all k ∈ [m]).

The length of the longest common subsequence of two permutations is defined similarly

as follows

LCS(π, τ) := max(m : ∃ i1 < · · · <im and j1 < · · · < jm

such that π(ik) = τ(jk) for all k ∈ [m]).

The longest common subsequence(LCS) problem is a classical problem which

has application in fields such as molecular biology (see, e.g., [23]) , data comparison

and software version control. Most previous works on the LCS problem are focused on

the case when the strings are generated uniformly at random from a given alphabet.

Notably, Chvátal and Sankoff [7] proved that the expected length of the LCS of two

random k-ary sequences of length n when normalized by n converges to a constant γk.

Since then, various endeavors [11, 9, 10, 19] have been made to determine the value of

γk. The exact values of γk are still unknown. The known lower and upper bounds [19]

for γ2 are

0.788071 < γ2 < 0.826280.
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In contrast to the LCS of two random strings, the LCS of two permutations is well

connected to the longest increasing subsequence(LIS) problem (cf. Proposition 3.1 in

[16]). This can be seen from the following two facts,

• For any π ∈ Sn, the length of the LCS of π and the identity in Sn is equal to the

length of the LIS of π.

• For any π, τ ∈ Sn, the length of the LCS of π and τ is equal to the length of the

LCS of τ−1 ◦ π and the identity in Sn.

From the above two properties, it is easily seen that, if π, τ are independent and

either π or τ is uniformly distributed on Sn the length of the LCS of π and τ has the

same distribution as the length of the LIS of a uniformly random permutation. The

length of the LIS of a uniformly random permutation has been well studied with major

contributions from Hammersley [15], Logan and Shepp [18], Vershik and Kerov [17]

and culminating with the groundbreaking work of Baik, Deift and Johansson [4] who

prove that, under proper scaling, the length of the LIS converges to the Tracy-Widom

distribution. Therefore, the length of the LCS of two independent permutations is only

of interest when both permutations are non-uniformly distributed.

1.1.2 Mallows Measure on Symmetric Group Sn

Definition 1.1.2. Given π ∈ Sn, the inversion set of π is defined by

Inv(π) := {(i, j) : 1 ≤ i < j ≤ n and π(i) > π(j)},

and the inversion number of π, denoted by l(π), is defined to be the cardinality of

Inv(π).

The Mallows measure on Sn is introduced by Mallows in [20] to study nonuni-

form distributions on permutations. For q > 0, the (n, q) - Mallows measure on Sn is

given by

µn,q(π) :=
ql(π)

Zn,q
, where Zn,q =

n∏
i=1

1− qi

1− q
.
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Here Zn,q is the normalizing constant, which has an explicit form (see, e.g., [25] Corol-

lary 1.3.13). In other words, under the Mallows measure with parameter q > 0, the

probability of a permutation π is proportional to ql(π).

Mallows measure has been used in modeling ranked and partially ranked data

(see, e.g., [8, 13, 21]). In [8], Critchlow provides several examples where Mallows model

gives a good fit to ranking data.

We list a couple of properties of Mallows permutation. The proofs of the fol-

lowing lemmas can be found in Section 2 in [6].

Definition 1.1.3. Given π ∈ Sn, let π−1 denote the inverse of π in Sn and πr denote

the reversal of π which is defined by πr(i) = π(n + 1 − i). Let a = (a1, . . . , ak) be an

increasing sequence of indices in [n]. Define π(a) := (π(a1), . . . , π(ak)). Let πa denote

the induced permutation of π(a) in Sk where πa(i) = j if π(ai) is the j-th smallest

term in π(a).

Lemma 1.1.4. For any q > 0, if π ∼ µn,q then πr ∼ µn,1/q and π−1 ∼ µn,q.

Lemma 1.1.5. Let a = (a1, . . . , ak) and b = (b1, . . . , bl) be two increasing sequences

of indices in [n] such that ak < b1. If π ∼ µn,q, then πa and π(b) are independent and

π(a) and πb are independent.

Lemma 1.1.6. Let I = (i, i + 1, . . . , i + m − 1) ⊂ [n] be a sequence of consecutive

indices. If π ∼ µn,q, then πI ∼ µm,q and ππ−1(I) ∼ µm,q. Moreover, conditioned on

π−1(I) = E ⊂ [n], we still have πE ∼ µm,q.

1.1.3 Limiting Laws for the LIS of Mallows Permutation

In this subsection, we introduce several limiting results about the length of

the longest increasing subseqence(LIS) of Mallows permutation. Due to the intimate

connection between the increasing subsequence and common subsequence of two per-

mutations, we have adapted many ideas from the proofs of the following results in

establishing the limiting laws of the LCS for Mallows permutation.
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In [22], Mueller and Starr prove the following weak law of large numbers for the

LIS of Mallows permutation where the parameter q is a function of n and n(1− q) has

limit in R as n→∞.

Theorem 1.1.7. Suppose {qn}∞n=1 is a sequence such that limn→∞ n(1− qn) = β with

β ∈ R. Then

lim
n→∞

µn,qn

(∣∣∣∣LIS(π)√
n
− 2κ(β)

∣∣∣∣ > ε

)
= 0, (1.1)

where

κ(β) =


β−1/2 sinh−1 (

√
eβ − 1) for β > 0;

1 for β = 0;

|β|−1/2 sin−1 (
√

1− eβ) for β < 0.

(1.2)

Their proof of Theorem 1.1.7, which makes use of the techniques developed by

Deuschel and Zeitouni in [12], is based on a coupling argument and the following classic

result of the LIS of the uniformly random permutations (cf. [17, 18])

Theorem 1.1.8. Let λn denote the uniform probability measure on Sn. Then, for any

ε > 0,

lim
n→∞

λn

(∣∣∣∣LIS(π)√
n
− 2

∣∣∣∣ < ε

)
= 1.

In [6], Bhatnagar and Peled prove the following Lp convergence of the LIS of

Mallows permutation in the regime where qn → 1 in a way such that n(1− qn)→∞.

Theorem 1.1.9. Let {qn}∞n=1 be a sequence such that

lim
n→∞

qn = 1 and lim
n→∞

n(1− qn) =∞.

Suppose πn ∼ µn,qn. Then, for any p > 0,

LIS(πn)

n
√

1− qn
Lp−→ 1.

For the regime where the parameter q is fixed with 0 < q < 1, Basu and

Bhatnagar show the following central limit theorem of the LIS of Mallows permutation

in [5].
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Theorem 1.1.10. Fix 0 < q < 1. Suppose πn ∼ µn,q. Then there exist constants

σ = σ(q) > 0 and a = a(q) > 0 such that

LIS(πn)− an
σ
√
n

d−→ N (0, 1),

as n→∞, where N (0, 1) denotes the standard normal distribution.

1.2 Main Results

1.2.1 Convergence of Empirical Measure

Our first two theorems are about the convergence of the empirical measure of

Mallows permutation. They are inspired by and are direct analogs to the following

theorem proved by Starr in [26]. The reason to prove them is that they give us an

estimate about the number of points which fall in a given rectangle, where those points

are defined by two Mallows permutations. Specifically, Theorem 2 plays the same role

in the proof of Theorem 3 as Theorem 1.2.1 in the proof of Theorem 1.1.7.

Theorem 1.2.1 (S.Starr). Suppose that (qn)∞n=1 is a sequence such that the limit β =

limn→∞ n(1− qn) exists. For any ε > 0 and any continuous function f : [0, 1]× [0, 1]→

R,

lim
n→∞

µn,qn

(∣∣∣∣ 1n
n∑
i=1

f
( i
n
,
π(i)

n

)
−
∫

[0,1]×[0,1]

f(x, y)u(x, y, β) dxdy

∣∣∣∣ > ε

)
= 0,

where

u(x, y, β) :=
(β/2) sinh(β/2)

(eβ/4 cosh(β[x− y]/2)− e−β/4 cosh(β[x+ y − 1]/2))
2 (1.3)

if β 6= 0, and u(x, y, 0) := 1.

Our first result is about the distribution of π(i)
n

in the regime of the Mallows

measure where limn→∞ n(1− qn) exists. It says that the distribution of π(i)
n

approaches

towards the measure with density u
(
i
n
, y, β

)
uniformly on i ∈ [n]. Here the ‘approach’

is in the sense that, given any continuous function f on [0, 1], the expectation of f

with respect to the empirical measure of π(i)
n

converges uniformly to the expectation of

5



f with respect to the probability with density u
(
i
n
, y, β

)
. Moreover, the covariance of

f(π(i)
n

) and f(π(j)
n

) converges to 0 uniformly on all pairs (i, j) where i 6= j.

Theorem 1. Suppose that {qn}∞n=1 is a sequence such that lim
n→∞

n(1 − qn) = β ∈ R.

For any continuous function f : [0, 1] −→ R, we have

lim
n→∞

max
i∈[n]

∣∣∣µn,qn (f (π(i)
n

))
−
∫ 1

0
f(y) · u

(
i
n
, y, β

)
dy
∣∣∣ = 0, (1.4)

and

lim
n→∞

max
i 6=j

i,j∈[n]

∣∣∣Covn

(
f
(π(i)

n

)
, f
(π(j)

n

))∣∣∣ = 0. (1.5)

Here u(x, y, β) is defined in (1.3), and

Covn

(
f
(π(i)

n

)
, f
(π(j)

n

))
:=

µn,qn

(
f
(π(i)

n

)
f
(π(j)

n

))
− µn,qn

(
f
(π(i)

n

))
µn,qn

(
f
(π(j)

n

))
.

Theorem 1 is a major step in proving the next theorem, which shows the con-

vergence of the empirical measure defined by the product of two independent Mallows

permutations.

Theorem 2. Suppose that {qn}∞n=1 and {q′n}∞n=1 are two sequences such that

limn→∞ n(1 − qn) = β and limn→∞ n(1 − q′n) = γ, with β, γ ∈ R. Let Pn denote the

probability measure on Sn×Sn such that Pn
(
(π, τ)

)
= µn,qn(π) ·µn,q′n(τ), i. e. Pn is the

product measure of µn,qn and µn,q′n. Let τ ◦ π denote the product of τ and π in Sn with

τ ◦ π(i) = τ(π(i)). Then, for any ε > 0,

lim
n→∞

Pn

(∣∣∣∣∣ 1

n

n∑
i=1

f

(
i

n
,
τ ◦ π(i)

n

)
−
∫ 1

0

∫ 1

0

f(x, y)ρ(x, y) dxdy

∣∣∣∣∣ > ε

)
= 0

for every continuous function f : [0, 1]× [0, 1]→ R, with

ρ(x, y) :=

∫ 1

0

u(x, t, β) · u(t, y, γ) dt, (1.6)

where u(x, y, β) is defined in (1.3).

6



1.2.2 Weak Law of Large Numbers for the LCS

Our next result is the following weak law of large numbers for the LCS of two

independent Mallows permutations.

Theorem 3. Let B1
↗ denote the set of nondecreasing, C1

b functions φ : [0, 1]→ [0, 1],

with φ(0) = 0 and φ(1) = 1. Define function J : B1
↗ → R,

J(φ) :=

∫ 1

0

√
φ̇(x)ρ(x, φ(x)) dx, and J̄ := sup

φ∈B1
↗

J(φ).

Here ρ(x, y) is the density defined in (1.6). Under the same conditions as in Theorem

2, for any ε > 0, we have

lim
n→∞

Pn
(∣∣∣∣ LCS(π, τ)√

n
− 2J̄

∣∣∣∣ < ε

)
= 1. (1.7)

We derive the limiting constant in the special case when β = γ.

Corollary 3. Suppose that {qn}∞n=1 and {q′n}∞n=1 are two sequences such that

limn→∞ n(1−qn) = limn→∞ n(1−q′n) = β with β 6= 0. Then, the constant J̄ in Theorem

3 is given by

J̄ =
√

β
6 sinh (β/2)

·
∫ 1

0

√
cosh (β/2) + 2 cosh

(
β[2x− 1]/2

)
dx.

There are three main ingredients in our proof of Theorem 3. The first observa-

tion, which is proved in Corollary 3.1.4, is that the length of LCS of two permutations

π and τ is equal to the length of the longest increasing points in the collection of points

z(π−1, τ−1) :=

{(
π−1(i)

n
,
τ−1(i)

n

)}
i∈[n]

.

The second observation, deduced from Lemma 2.3.1, is that the number of points in

z(π−1, τ−1) contained in any fixed rectangle, when scaled by the size of the permuta-

tion, converges in probability to a constant. The third observation, proved in Lemma

3.3.4, is that the length of the longest increasing points in z(π−1, τ−1) within a small

box R is close to the size of the LIS in the uniform case, i.e., it is approximately

7



2
√
|z(π−1, τ−1) ∩R|. With these results, we prove Theorem 3 following the method

developed by Deuschel and Zeitouni in [12] for record lengths of i.i.d. points.

Using Theorem 3 and Theorem 1.1.7, by a coupling argument, we are able to

prove the following weak law of large numbers for the LCS of two independent Mallows

permutations when the parameters qn, q
′
n belong to a different regime where one of

n(1− qn) and n(1− q′n) has limit in R and the other diverges to infinity as n→∞.

Theorem 4. Suppose that {qn}∞n=1 and {q′n}∞n=1 are two sequences such that

limn→∞ n(1 − qn) = ∞, and limn→∞ n(1 − q′n) = β with β ∈ R . Let Pn denote the

probability measure on Sn × Sn such that Pn
(
(π, τ)

)
= µn,qn(π) · µn,q′n(τ), i.e. Pn is the

product measure of µn,qn and µn,q′n. Then for any ε > 0, we have

lim
n→∞

Pn
(∣∣∣∣LCS(π, τ)√

n
− 2κ(β)

∣∣∣∣ > ε

)
= 0,

where

κ(β) =


β−1/2 sinh−1 (

√
eβ − 1) for β > 0;

1 for β = 0;

|β|−1/2 sin−1 (
√

1− eβ) for β < 0.

(1.8)

Comparing Theorem 4 with Theorem 1.1.7, it can be seen that the LCS between

π and τ in the setting of Theorem 4 observes the same weak law of large numbers as

the LIS of a Mallows permutation with a sequence of parameters which goes to 1 at the

same rate as the slower one in the setting of Theorem 4. Note that LCS(id, τ) = LIS(τ),

where id denote the identity in Sn. Hence, roughly speaking, Theorem 4 says that the

influence of a Mallows permutation π, which is concentrated near identity, to the weak

law of LCS(π, τ) is just like that of the identity in the sense that if we replace π by the

identity, the magnitude as well as the constant of the weak law of LCS(π, τ) do not

change.

The following theorem establishes the Lp convergence for the LCS of two inde-

pendent Mallows permutations with same parameter qn, such that limn→∞ qn = 1 and

limn→∞ n(1− qn) =∞.

8



Theorem 5. Suppose {qn} is a sequence such that

lim
n→∞

qn = 1 and lim
n→∞

n(1− qn) =∞.

For each n, define two independent random variables πn, τn such that πn ∼ µn,qn and

τn ∼ µn,qn. Then, for any 0 < p <∞,

LCS(πn, τn)

n
√

1− qn
Lp−→
√

6

3
,

as n tends to infinity.

The proof of Theorem 5 follows the approach developed in [6], where the authors

show Theorem 1.1.9.

1.2.3 Central Limit Theorem for the LCS

Our last result is a central limit theorem for the LCS of two independent Mallows

permutations, where the parameters 0 < q, q′ < 1 are fixed numbers.

Theorem 6. Given 0 < q, q′ < 1, for each n > 0 define two independent random

variables πn, τn such that πn ∼ µn,q and τn ∼ µn,q′. There exist constant σ = σ(q, q′) >

0 and a = a(q, q′) > 0 such that

LCS(πn, τn)− an
σ
√
n

d−→ N (0, 1)

as n → ∞. Here
d−→ denotes convergence in distribution and N (0, 1) denotes the

standard normal distribution.

The proof of Theorem 6 is based on the approach developed in [5] in which the

authors prove Theorem 1.1.10. The idea is to construct a regenerative processes such

that we can bound the LCS by the sum of some i.i.d. random variables. Then the

central limit theorem follows from the standard theory of regenerative processes.

The remainder of this dissertation is organized as follows. In Chapter 2, we prove

the convergence of the empirical measure induced by the product of two independent

Mallows permutations. In Chapter 3, we show a weak laws of large numbers for the LCS

9



when at least one sequence {qn} is such that n(1 − qn) has limit in R. In Chapter 4,

we prove the Lp convergence for the LCS when qn = q′n and n(1 − qn) → ∞. In

Chapter 5, we show the central limit theorem for the LCS when both parameters q

and q′ are constant within (0, 1). The proofs in each chapter are largely independent

of each other.

10



Chapter 2

CONVERGENCE OF EMPIRICAL MEASURES

In this chapter, we show the convergence of empirical measures of the points

defined by Mallows permutations. In [26], the author establishes Theorem 1.2.1 by

making use of the mean field theory and evaluates the density of the limit distribution

as the solution to an integrable PDE. We do not think this approach applies in our

case, since the Hamiltonian is not of mean-field type. This chapter is organized as

follows. In Section 2.1, we introduce and prove Lemma 2.1.1 and Lemma 2.1.2. In

Section 2.2 and Section 2.3, we show Theorem 1 and Theorem 2 respectively using the

two lemmas established in Section 2.1.

2.1 Two Key Lemmas

In this section we introduce the following two lemmas which play a key role in

proving the main theorems. The proofs presented in this section are largely independent

of the following sections. With these two lemmas in mind, readers can go through the

proofs of Theorem 1 and Theorem 2 without trouble.

Lemma 2.1.1. Suppose A = [y1, y2] ⊂ [0, 1]. For any β ∈ R and any sequence {qn}

such that qn > 0 and limn→∞ n(1− qn) = β,

lim
n→∞

max
i∈[n]

∣∣∣µn,qn (1A (π(i)
n

))
−
∫ y2

y1
u
(
i
n
, y, β

)
dy
∣∣∣ = 0.

Lemma 2.1.2. Suppose A = [y1, y2] ⊂ [0, 1] and B = [y3, y4] ⊂ [0, 1]. Given β ∈ R

and any sequence {qn} such that qn > 0 and limn→∞ n(1− qn) = β, define

Covn

(
1A
(π(i)

n

)
,1B

(π(j)
n

))
:=

11



µn,qn

(
1A
(π(i)

n

)
1B
(π(j)

n

))
− µn,qn

(
1A
(π(i)

n

))
µn,qn

(
1B
(π(j)

n

))
.

Then, we have

lim
n→∞

max
i 6=j

i,j∈[n]

∣∣∣Covn

(
1A
(
π(i)
n

)
,1B

(
π(j)
n

))∣∣∣ = 0.

Lemma 2.1.1 states that in the regime of the Mallows measure where n(1− qn)

has a limit in R, the probability of π(i)
n

falling in an arbitrary interval converges to a

constant uniformly for i ∈ [n]. Lemma 2.1.2 states that the covariance of 1A
(π(i)

n

)
and

1B
(π(j)

n

)
converges to 0 uniformly on all those pairs such that i 6= j.

The proofs of these two lemmas involve some computations which utilize Theo-

rem 1.2.1 and properties of the Mallows measure. It may be the case that more general

tools could be used to establish the uniform convergence of the distribution of π(i)
n

as

well as Covn(π(i)
n
, π(j)

n
).

2.1.1 Preliminaries

Let µ be a probability measure on the Borel σ-field BΣ. We use the convention

that µ(f) :=
∫

Σ
f dµ, for any measurable function f . For any π ∈ Sn, let Lπ denote

the empirical measure induced by π, that is,

Lπ(R) :=
1

n

n∑
i=1

1R

(
i

n
,
π(i)

n

)
, (2.1)

for any R ∈ B[0,1]×[0,1]. Here 1R(x, y) denotes the indicator function of R. Hence, for

any measurable function f ,

Lπ(f) =
1

n

n∑
i=1

f

(
i

n
,
π(i)

n

)
.

For any π ∈ Sn, let z(π) := {( i
n
, π(i)

n
)}i∈[n] denote the set of n points in [0, 1]×

[0, 1] defined by π. Conversely, for any n points V := {(xi, yi)}i∈[n] such that i 6= j

implies xi 6= xj and yi 6= yj, we can define a permutation π ∈ Sn as follows. Without

loss of generality, assuming x1 < · · · < xn, define

π(i) := |{j ∈ [n] : yj ≤ yi}|.

12



We will use Φ(V ) to denote the permutation induced by V as above. Similarly, we

define the number of inversions of a collection points as follows,

l(V ) := |{(i, j) : (xi − xj)(yi − yj) < 0 and i < j}|.

Note that the definition of the number of inversions of a collection of points is consistent

with the definition of the number of inversions of permutation in the sense that, for

any π ∈ Sn,

l(π) = l(z(π)) and l(V ) = l (Φ(V )) .

Definition 2.1.3. For any π ∈ Sn and i ∈ [n], define

π(i) := Φ
({(

j
n
, π(j)

n

)
: j 6= i

})
and Q(π, i) := {τ ∈ Sn : τ (i) = π(i)}.

In other words, π(i) denotes the permutation in Sn−1 which is induced from π at those

indices other than i, and Q(π, i) contains those permutations in Sn each of which has

the same relative ordering as π at those indices other than i.

The definition above is best understood when we represent a permutation by a

grid of tiles. Specifically, for any π ∈ Sn, define an n×n grid of tiles such that the tile

at j-th row and i-th column is black if only if π(i) = j. Here we index the row number

from bottom to top, i.e. the bottom row is indexed as the first row. For example, the

grid representations of π = (4, 1, 7, 3, 6, 2, 5) and π(4) = (3, 1, 6, 5, 2, 4) are shown in the

following figures.

Figure 2.1: π = (4, 1, 7, 3, 6, 2, 5) Figure 2.2: π(4) = (3, 1, 6, 5, 2, 4)

Note that the grid representation of π(i) can be easily obtained by deleting the

i-th column and π(i)-th row from the grid of π. Also, the grid representations of those

13



permutations other than π in Q(π, i) can be obtained by removing and reinserting

the π(i)-th row into the grid of π. For example, it can be easily verified that τ =

(3, 1, 7, 6, 5, 2, 4) ∈ Q(π, 4). The grid representation of τ can be obtained by removing

the third row from the grid of π and reinserting it between the sixth row and seventh

row of the grid of π (see Figure 2.3).

π = (4, 1, 7, 3, 6, 2, 5)

=⇒

Row insertion

τ = (3, 1, 7, 6, 5, 2, 4)

From this definition, it can be seen that |Q(π, i)| = n for any π ∈ Sn. Also, for

any π, τ ∈ Sn, we have either Q(π, i) = Q(τ, i) or Q(π, i) ∩Q(τ, i) = ∅.

Proposition 2.1.4. For any π, τ ∈ Q(π, i), with π(i) = j < k = τ(i), it holds that

l(τ)− l(π) = |{t > i : j + 1 ≤ π(t) ≤ k}| − |{t < i : j + 1 ≤ π(t) ≤ k}|

= |{t > i : j ≤ τ(t) ≤ k − 1}| − |{t < i : j ≤ τ(t) ≤ k − 1}|.

Proof. This result can be easily seen from the grid representations of π and τ . Note

that an inversion in a permutation corresponds to a pair of black tiles such that one

tile is located to the southeast of the other. Hence, by the discussion above, we only

need to count the change of the number of those pairs when we reinsert the j-th row

of π’s grid to get the grid form of τ . Specifically, we only need to consider those pairs

which contain the black tile on the i-th column.

Taking the same example above, l(τ) − l(π) is equal to the difference of the

number of black tiles within the rectangles A and B(see Figure 2.4). This is because,

each of those black tiles in rectangle A forms an inversion with the black tile in the

14



BA

π = (4, 1, 7, 3, 6, 2, 5)

=⇒

Block shift

BA

τ = (3, 1, 7, 6, 5, 2, 4)

fourth column in the grid representation of π but not in that of τ , whereas the opposite

holds for those black tiles in the rectangle B.

2.1.2 One dimension analog of Theorem 1.2.1

The following lemma is the one dimensional analog of Theorem 1.2.1. It says

that, in the regime of Mallows measure where limn→∞ n(1− qn) exists, the distribution

of π(an)
n

converges in distribution to a probability measure with explicit density, where

{an} is a sequence of indices such that limn→∞
an
n

exists.

Lemma 2.1.5. Suppose that {qn}∞n=1 is a sequence such that lim
n→∞

n(1− qn) = β ∈ R,

and {an} is a sequence such that lim
n→∞

an
n

= a, where a ∈ [0, 1] and an ∈ [n]. Then,

µn,qn

(
π(an)

n
∈ (·)

)
d−→ v.

Here
d−→ denotes convergence in distribution and v is the probability measure on [0, 1]

with density f(y) = u(a, y, β) where u(x, y, β) is as defined in (1.3).

We will sometimes omit the third argument and simply use u(x, y) to denote

u(x, y, β), if no confusion arises from the context. We use the symbol uβ or u to denote

the measure on [0, 1]× [0, 1] which has density u(x, y, β) with respect to the Lebesgue

measure λ.

To prove Lemma 2.1.5, we show that any convergent subsequence of the em-

pirical measures {π(an)
n
} has limiting density u(a, y, β) and the theorem follows from
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the standard result of convergence of measures (Theorem 2.1.12). It is unknown to us

whether Lemma 2.1.5 can be obtained directly from Theorem 1.2.1. In the remainder

of this section, we prove a sequence of technical lemmas to show Lemma 2.1.5. The

following lemma says that the result of Theorem 1.2.1 also holds when f is an indicator

function of any rectangle.

Lemma 2.1.6. Under the same conditions as in Theorem 1.2.1, for any ε > 0,

lim
n→∞

µn,qn

(∣∣∣∣ 1n
n∑
i=1

1R

( i
n
,
π(i)

n

)
−
∫
R

u(x, y) dxdy

∣∣∣∣ > ε

)
= 0,

for any R = [x1, x2]× [y1, y2] ⊂ [0, 1]× [0, 1].

Proof. First we show that for any R = [x1, x2] × [y1, y2] and any ε > 0, when n is

sufficiently large,

Lπ(R) < min(x2 − x1, y2 − y1) +
ε

24
, (2.2)

for any π ∈ Sn. Let s := min(x2 − x1, y2 − y1). For any π ∈ Sn, we have∣∣∣{i :
( i
n
,
π(i)

n

)
∈ R

}∣∣∣ ≤ ns+ 1,

since, of the points in
{(

i
n
, π(i)

n

)}
, there is one and only one point on each line x = i

n

or y = j
n
. Hence, Lπ(R) ≤ s + 1

n
for any π ∈ Sn. We can choose n large enough such

that 1
n
< ε

24
.

Next, given δ > 0, let Rδ := (x1− δ, x2 + δ)× (y1− δ, y2 + δ). Let D := Rδ −R. Then,

it is easily seen that D can be covered by four rectangles each of whose smaller side is

no greater than δ. For any δ > 0, by Urysohn’s lemma (cf. 12.1 in [24]), we can choose

a continuous function fRδ(x, y), such that,
fRδ(x, y) = 1 if (x, y) ∈ R,

fRδ(x, y) = 0 if (x, y) /∈ Rδ,

0 ≤ fRδ(x, y) ≤ 1 if (x, y) ∈ D.

By the triangle inequality, we have

|Lπ(R)− u(R)| > ε (2.3)
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⇒ |Lπ(fRδ)− Lπ(R)|+ |u(fRδ)− u(R)|+ |Lπ(fRδ)− u(fRδ)| > ε.

If we choose δ < ε
24

, by (2.2), we have,

|Lπ(fRδ)− Lπ(R)| ≤ Lπ(Rδ)− Lπ(R) = Lπ(D) < 4
( ε

24
+

ε

24

)
=
ε

3
,

for any π ∈ Sn, when n is sufficiently large. Since u is absolutely continuous with

respect to the Lebesgue measure, we may choose δ small enough such that

|u(fRδ)− u(R)| ≤ u(D) <
ε

3
.

Then by (2.3), for sufficiently large n, we have,

|Lπ(R)− u(R)| > ε ⇒ |Lπ(fRδ)− u(fRδ)| >
ε

3
.

Thus,

µn,q

(
|Lπ(R)− u(R)| > ε

)
≤ µn,q

(
|Lπ(fRδ)− u(fRδ)| >

ε

3

)
.

The lemma follows by Theorem 1.2.1.

The following property of Mallows permutations will be used in later proofs. It

says that in a Mallows permutation, the relative chance that π(i) takes two different

values can be bounded in terms of the difference of those two values.

Lemma 2.1.7. For any 1 ≤ i, s, t ≤ n and q > 0,

min(qd, q−d) ≤ µn,q(π(i) = s)

µn,q(π(i) = t)
≤ max(qd, q−d),

where d = |s− t|.

Proof. Suppose 0 < q < 1. We claim it suffices to show that

q ≤ µn,q(π(i) = j + 1)

µn,q(π(i) = j)
≤ 1

q
, (2.4)

for any j ∈ [n− 1]. This follows since by taking the reciprocal of (2.4), we get

q ≤ µn,q(π(i) = j)

µn,q(π(i) = j + 1)
≤ 1

q
,
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and the lemma follows by induction on d.

Consider the bijection Tj on Sn: π → (j, j + 1) ◦ π. Here ◦ denotes the group operator

of Sn, and (j, j+1) denotes the transposition of j and j+1. Specifically, for any i ∈ [n]

Tj(π)(i) =


j if π(i) = j + 1,

j + 1 if π(i) = j,

π(i) otherwise.

From the definition, it is not hard to see that |l(π) − l(Tj(π))| = 1, for any π ∈ Sn.

Hence,

q ≤ µn,q(Tj(π))

µn,q(π)
≤ 1

q
. (2.5)

Let Ai,j := {π ∈ Sn : π(i) = j}. For any fixed i ∈ [n], Tj is also a bijection of Ai,j and

Ai,j+1. Hence,

µn,q(π(i) = j + 1)

µn,q(π(i) = j)
=

∑
π∈Ai,j µn,q(Tj(π))∑
π∈Ai,j µn,q(π)

, (2.6)

and (2.4) follows from (2.5) and (2.6). For the case q > 1, the proof is similar. The

lemma clearly also holds when q = 1, which corresponds to the uniform measure on

Sn.

The following result establishes some bounds on the probability of a point in a

Mallows permutation being within an interval.

Lemma 2.1.8. Suppose that (qn)∞n=1 is a sequence such that the limit β = limn→∞ n(1−

qn) exists. For any sequence {an} with an ∈ [n] and any 0 ≤ y1 < y2 ≤ 1,

lim sup
n→∞

µn,qn

(
π(an)

n
∈ [y1, y2]

)
≤ (y2 − y1)e|β|, (2.7)

lim inf
n→∞

µn,qn

(
π(an)

n
∈ (y1, y2)

)
≥ (y2 − y1)e−|β|. (2.8)

Proof. Here we only prove the case β ≥ 0. The case β < 0 follows from the same

argument. We also assume that y2 − y1 < 1, since the case y0 = 0, y1 = 1 can be

verified easily. Since limn→∞ n(1− qn) = β and limn→∞
n log qn
n(1−qn)

= −1, we have

lim
n→∞

qnn = lim
n→∞

en log qn = e−β.
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Thus, for any δ > 1, there exists N > 0 such that qnn ∈
(
e−β

δ
, δe−β

)
, when n > N . By

Lemma 2.1.7, for any n > N and any i, s, t ∈ [n]

µn,qn(π(i) = s)

µn,qn(π(i) = t)
≤ max

(
qnn,

1

qnn

)
< δeβ. (2.9)

Let d = y2 − y1 and pn = min{t: t
n
/∈[y1,y2]} (µn,qn(π(an) = t)). Note that the set {t : t

n
/∈

[y1, y2]} is nonempty for sufficiently large n. Then, by (2.9) and the fact that,∣∣∣{k ∈ [n] : k
n
∈ [y1, y2]

}∣∣∣ ≤ nd+ 1,
∣∣∣{k ∈ [n] : k

n
/∈ [y1, y2]

}∣∣∣ ≥ n(1− d)− 1,

we have,

µn,qn

(
π(an)
n
∈ [y1, y2]

)
< (nd+ 1)δeβpn,

µn,qn

(
π(an)
n

/∈ [y1, y2]
)
≥ (n(1− d)− 1)pn.

Hence,

µn,qn

(
π(an)
n
∈ [y1, y2]

)
<

(nd+ 1)δeβ

(n(1− d)− 1) + (nd+ 1)δeβ

<
(nd+ 1)δeβ

(n(1− d)− 1) + (nd+ 1)

=
(nd+ 1)δeβ

n
,

and (2.7) follows since δ can be chosen arbitrarily close to 1. Similarly, to prove (2.8),

define p′n = min{t: t
n
∈(y1,y2)} (µn,qn(π(an) = t)). Then, by (2.9) and the fact that,∣∣∣{k ∈ [n] : k

n
∈ (y1, y2)

}∣∣∣ ≥ nd− 1,
∣∣∣{k ∈ [n] : k

n
/∈ (y1, y2)

}∣∣∣ ≤ n(1− d) + 1,

we have

µn,qn

(
π(an)
n
∈ (y1, y2)

)
≥ (nd− 1)p′n,

µn,qn

(
π(an)
n

/∈ (y1, y2)
)
< (n(1− d) + 1)δeβp′n.

Hence,

µn,qn

(
π(an)
n
∈ (y1, y2)

)
>

(nd− 1)

(n(1− d) + 1)δeβ + (nd− 1)
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>
(nd− 1)

(n(1− d) + 1)δeβ + (nd− 1)δeβ

=
(nd− 1)e−β

nδ
.

(2.8) follows since δ can be chosen arbitrarily close to 1.

In the next two lemmas, we introduce some properties of the density function

u(x, y, β) defined in Theorem 1.2.1.

Lemma 2.1.9. With u(x, y, β) defined as in (1.3), we have∫ 1

0

u(x, y, β) dx = 1, ∀y ∈ [0, 1],∫ 1

0

u(x, y, β) dy = 1, ∀x ∈ [0, 1].

Proof. Since cosh (x) is an even function, u(x, y, β) is symmetric with respect to the

line y = x. That is

u(x, y, β) = u(y, x, β), ∀x, y ∈ [0, 1].

Hence we only need to show the first identity. By Corollary 6.2 in [26],

∂2 lnu(x, y, β)

∂x∂y
= 2βu(x, y, β). (2.10)

Therefore, we have∫ 1

0

u(x, y, β) dx =
1

2β

(
∂ lnu(1, y, β)

∂y
− ∂ lnu(0, y, β)

∂y

)
. (2.11)

Next, by direct calculation, we have

u(1, y, β) =
(β/2) sinh(β/2)(

1
2
e−

β
4 (eβ − 1)e−

βy
2

)2 =
βeβy

eβ − 1
, (2.12)

u(0, y, β) =
(β/2) sinh(β/2)(

1
2
e
β
4 (1− e−β)e

βy
2

)2 =
βe−βy

1− e−β
. (2.13)

Hence, we get

∂ lnu(1, y, β)

∂y
= β and

∂ lnu(0, y, β)

∂y
= −β.

By (2.11), the lemma follows.
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In the remainder of this section, we will simply use u(x, y) to denote u(x, y, β).

Lemma 2.1.10. For any 0 ≤ a, c, d ≤ 1,

−β
∫ d

c

(
−
∫ a

0

u(x, y) dx+

∫ 1

a

u(x, y) dx

)
dy = ln

u(a, d)

u(a, c)
.

Proof. For fixed c, d ∈ [0, 1], define f(a) to be the left-hand side of the identity and

g(a) to be the right-hand side of the identity. Then, by Lemma 2.1.9 and (2.13), we

have

f(0) = g(0) = β(c− d).

Hence, to prove the identity it suffices to show f ′(a) = g′(a) for any a ∈ (0, 1). Since

u(x, y) is bounded on [0, 1]×[0, 1], we can change the order of integral and differentiation

in the following,

f ′(a) = −β ∂

∂a

∫ d

c

(
−
∫ a

0

u(x, y) dx+

∫ 1

a

u(x, y) dx

)
dy

= −β
∫ d

c

∂

∂a

(
−
∫ a

0

u(x, y) dx+

∫ 1

a

u(x, y) dx

)
dy

= −β
∫ d

c

(−u(a, y)− u(a, y)) dy

= 2β

∫ d

c

u(a, y) dy.

By (2.10), ∂ lnu(x,y)
∂x

is the anti-derivative of 2βu(x, y) with respect to y. Thus we have

g′(a) =
∂ lnu(a, d)

∂a
− ∂ lnu(a, c)

∂a
= 2β

∫ d

c

u(a, y) dy.

Lemma 2.1.11. In the context of Lemma 2.1.8, suppose {an}n≥1 is a sequence such

that limn→∞
an
n

= a, where an ∈ [n]. For any 0 ≤ y1 < y2 < 1,

lim
ε→0+

lim sup
n→∞

∣∣∣∣∣∣
µn,qn

(
π(an)
n
∈ (y2, y2 + ε)

)
µn,qn

(
π(an)
n
∈ (y1, y1 + ε)

) − u(a, y2)

u(a, y1)

∣∣∣∣∣∣ = 0. (2.14)

For any 0 < y1 < y2 ≤ 1,

lim
ε→0+

lim sup
n→∞

∣∣∣∣∣∣
µn,qn

(
π(an)
n
∈ (y2 − ε, y2)

)
µn,qn

(
π(an)
n
∈ (y1 − ε, y1)

) − u(a, y2)

u(a, y1)

∣∣∣∣∣∣ = 0. (2.15)
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Proof. Here we only prove (2.14), since (2.15) follows from the similar argument.

To prove (2.14), we need to show that for any η > 0, there exists ε0 > 0 such that for

any fixed ε < ε0, there exists N > 0, which may depend on ε, such that for any n > N ,

we have ∣∣∣∣∣∣
µn,qn

(
π(an)
n
∈ (y2, y2 + ε)

)
µn,qn

(
π(an)
n
∈ (y1, y1 + ε)

) − u(a, y2)

u(a, y1)

∣∣∣∣∣∣ < η. (2.16)

First, we define the following two rectangles:

R0 := [0, a]× [y1, y2], R1 := [a, 1]× [y1, y2].

Next define

G(n, λ) := {π ∈ Sn : |Lπ(A)− u(A)| < λ, for any A ∈ {R0, R1}} .

Let G(n, λ) := Sn \G(n, λ) denote the complement of G(n, λ). Then,

G(n, λ) = ∪A∈{R0,R1} {π ∈ Sn : |Lπ(A)− u(A)| ≥ λ} .

Thus by Lemma 2.1.6, for any ε0 > 0 and any λ > 0, we have

lim
n→∞

µn,qn
(
G(n, λ)

)
= 0. (2.17)

Define

GD(n, λ) := {π ∈ Sn : Q(π, an) ∩G(n, λ/2) 6= ∅} .

Note that, for any rectangle R and any τ, ξ ∈ Q(π, an),

|Lτ (R)− Lξ(R)| ≤ 1

n
.

Thus, when n > 2
λ
, it follows from triangle inequality that

GD(n, λ) ⊂ G(n, λ). (2.18)

On the other hand, by the definition of GD(n, λ) and the fact that, for any i ∈ [n],

π ∈ Q(π, i), it follows that

G(n, λ/2) ⊂ GD(n, λ). (2.19)
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Hence by (2.17) and (2.19), for any λ > 0, we have

lim
n→∞

µn,qn (GD(n, λ)) = 1. (2.20)

Next, given ε ∈ (0, ε0) where the value of ε0 is to be determined, define

An := {π ∈ Sn : π(an)
n
∈ (y1, y1 + ε)}, Bn := {π ∈ Sn : π(an)

n
∈ (y2, y2 + ε)}.

Then, by Lemma 2.1.8, when n is sufficiently large, we have

µn,qn(An) > ε
2
e−|β|, µn,qn(Bn) > ε

2
e−|β|.

Thus, by (2.20), there exists an N1 > 0 such that, for any n > N1, we have∣∣∣∣µn,qn (Bn ∩GD(n, λ))

µn,qn (An ∩GD(n, λ))
− µn,qn(Bn)

µn,qn(An)

∣∣∣∣ < η

2
.

Therefore, to prove (2.16), it suffices to show that for sufficiently large n, we have∣∣∣∣µn,qn (Bn ∩GD(n, λ))

µn,qn (An ∩GD(n, λ))
− u(a, y2)

u(a, y1)

∣∣∣∣ < η

2
. (2.21)

In order to prove (2.21), we are going to exploit two things. The first one is the fact

that {Q(π, an) : π ∈ GD(n, λ)} is a partition of GD(n, λ). The second is the following,

ci
di
> r, ci > 0, di > 0 for ∀i ∈ [m] ⇒

∑m
i=1 ci∑m
i=1 di

> r,

ci
di
< r, ci > 0, di > 0 for ∀i ∈ [m] ⇒

∑m
i=1 ci∑m
i=1 di

< r.

Hence, to prove (2.21), it suffices to show that, for sufficiently large n, we have∣∣∣∣µn,qn (Bn ∩Q(π, an))

µn,qn (An ∩Q(π, an))
− u(a, y2)

u(a, y1)

∣∣∣∣ < η

2
, (2.22)

for any Q(π, an) ⊂ GD(n, λ). Note that An ∩ Q(π, an) is nonempty for any π ∈ Sn,

when n > 1/ε. The strategy to prove (2.22) is the following, we show that when n

is sufficiently large, for any Q(π, an) ⊂ GD(n, λ) and any τ ∈ Bn ∩ Q(π, an), ξ ∈

An ∩Q(π, an), we have ∣∣∣ 1
n

(l(τ)− l(ξ))− I
∣∣∣ < 2λ+ 4ε+

4

n
. (2.23)
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Here

I :=

∫ y2

y1

(
−
∫ a

0

u(x, y) dx+

∫ 1

a

u(x, y) dx

)
dy = u(R1)− u(R0).

Note that µn,qn (τ)

µn,qn (ξ)
= q

l(τ)−l(ξ)
n . Thus, by (2.23), for any τ ∈ Bn ∩ Q(π, an), ξ ∈ An ∩

Q(π, an), we have

qn(I+2λ+4ε+4/n)
n ≤ µn,qn(τ)

µn,qn(ξ)
≤ qn(I−2λ−4ε−4/n)

n .

Here we assume 0 < qn < 1. (The cases qn > 1 and qn = 1 follow by similar argument.)

By the definition of An, Bn, we have

nε− 1 ≤ |An ∩Q(π, an)|, |Bn ∩Q(π, an)| ≤ nε+ 1.

Hence we have

nε− 1

nε+ 1
qn(I+2λ+4ε+4/n)
n ≤ µn,qn (Bn ∩Q(π, an))

µn,qn (An ∩Q(π, an))
≤ nε+ 1

nε− 1
qn(I−2λ−4ε−4/n)
n .

By Lemma 2.1.10 and the fact that limn→∞ q
n
n = e−β and limn→∞ qn = 1 , we have

lim
n→∞

nε− 1

nε+ 1
qn(I+2λ+4ε+4/n)
n =

u(a, y2)

u(a, y1)
e−β(2λ+4ε),

lim
n→∞

nε+ 1

nε− 1
qn(I−2λ−4ε−4/n)
n =

u(a, y2)

u(a, y1)
eβ(2λ+4ε).

Thus, we can choose ε0 and λ small enough such that, for any ε ∈ (0, ε0), (2.22) holds

for sufficiently large n.

The remaining part of the proof is to show (2.23). Suppose n is sufficiently

large such that an
n
∈ (a− ε, a+ ε). Without loss of generality, suppose an

n
∈ [a, a+ ε).

(The other case can be shown in a similar argument.) By Proposition 2.1.4, for any

Q(π, an) ⊂ GD(n, λ), and for any τ ∈ Bn ∩Q(π, an), ξ ∈ An ∩Q(π, an), we have

l(τ)− l(ξ)

= |{t > an : ξ(an) < ξ(t) ≤ τ(an)}| − |{t < an : ξ(an) < ξ(t) ≤ τ(an)}|

= |{ t
n
> an

n
: ξ(an)

n
< ξ(t)

n
≤ τ(an)

n
}| − |{ t

n
< an

n
: ξ(an)

n
< ξ(t)

n
≤ τ(an)

n
}|
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≤ |{ t
n
> a : y1 <

ξ(t)
n
< y2 + ε}| − |{ t

n
< a : y1 + ε ≤ ξ(t)

n
≤ y2}|

= |{t :
(
t
n
, ξ(t)
n

)
∈ (a, 1]× (y1, y2 + ε)}|

− |{t :
(
t
n
, ξ(t)
n

)
∈ (0, a)× [y1 + ε, y2]}|

≤ |{t :
(
t
n
, ξ(t)
n

)
∈ (a, 1]× (y1, y2]}|+ (nε+ 1)

− |{t :
(
t
n
, ξ(t)
n

)
∈ (0, a)× [y1, y2]}|+ (nε+ 1)

≤ |{t :
(
t
n
, ξ(t)
n

)
∈ [a, 1]× [y1, y2]}|

− |{t :
(
t
n
, ξ(t)
n

)
∈ [0, a]× [y1, y2]}|+ 2nε+ 4

=nLξ
(
[a, 1]× [y1, y2]

)
− nLξ

(
[0, a]× [y1, y2]

)
+ 2nε+ 4

=nLξ(R1)− nLξ(R0) + 2nε+ 4.

The first inequality above follows because an
n
≥ a, ξ(an)

n
∈ (y1, y1 + ε) and

τ(an)
n
∈ (y2, y2 + ε). The second inequality follows because

|{t ∈ [n] : ξ(t)
n
∈ (y2, y2 + ε)}| ≤ nε+ 1,

|{t ∈ [n] : ξ(t)
n
∈ [y1, y1 + ε)}| ≤ nε+ 1.

The third inequality follows because, since we change (0, a) to [0, a] in the second term,

we add two in the end to compensate the possible extra subtraction. Hence, we have

1
n
(l(τ)− l(ξ)) ≤ Lξ(R1)− Lξ(R0) + 2ε+ 4

n
(2.24)

≤ u(R1)− u(R0) + 2λ+ 2ε+ 4
n

= I + 2λ+ 2ε+ 4
n
.

Here we use the fact that, by (2.18), ξ ∈ GD(n, λ) ⊂ G(n, λ).

Similarly, to show the lower bound of l(τ)− l(ξ), we have

l(τ)− l(ξ)

= |{t > an : ξ(an) < ξ(t) ≤ τ(an)}| − |{t < an : ξ(an) < ξ(t) ≤ τ(an)}|

= |{ t
n
> an

n
: ξ(an)

n
< ξ(t)

n
≤ τ(an)

n
}| − |{ t

n
< an

n
: ξ(an)

n
< ξ(t)

n
≤ τ(an)

n
}|

= |{ t
n
> a : ξ(an)

n
< ξ(t)

n
≤ τ(an)

n
}| − |{an

n
≥ t

n
> a : ξ(an)

n
< ξ(t)

n
≤ τ(an)

n
}|
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− |{ t
n
< a : ξ(an)

n
< ξ(t)

n
≤ τ(an)

n
}| − |{a ≤ t

n
< an

n
: ξ(an)

n
< ξ(t)

n
≤ τ(an)

n
}|

≥ |{ t
n
> a : y1 + ε ≤ ξ(t)

n
≤ y2}| − (nε+ 1)

− |{ t
n
< a : y1 <

ξ(t)
n
< y2 + ε}| − (nε+ 1)

= |{t :
(
t
n
, ξ(t)
n

)
∈ (a, 1]× [y1 + ε, y2]}|

− |{t :
(
t
n
, ξ(t)
n

)
∈ (0, a)× (y1, y2 + ε)}| − 2(nε+ 1)

≥ |{t :
(
t
n
, ξ(t)
n

)
∈ (a, 1]× [y1, y2]}| − (nε+ 1)

− |{t :
(
t
n
, ξ(t)
n

)
∈ (0, a)× (y1, y2]}| − (nε+ 1)− 2(nε+ 1)

=nLξ
(
[a, 1]× [y1, y2]

)
− nLξ

(
[0, a]× [y1, y2]

)
− 4nε− 4

=nLξ(R1)− nLξ(R0)− 4nε− 4.

The first inequality above follows since, by the definition of An, Bn, we have ξ(an)
n
∈

(y1, y1 + ε), τ(an)
n
∈ (y2, y2 + ε) and, since an

n
∈ [a, a+ ε),

|{t ∈ [n] : an
n
≥ t

n
> a}| ≤ nε+ 1, |{t ∈ [n] : a ≤ t

n
< an

n
}| ≤ nε+ 1.

The second inequality follows because

|{t ∈ [n] : ξ(t)
n
∈ [y1, y1 + ε)}| ≤ nε+ 1,

|{t ∈ [n] : ξ(t)
n
∈ (y2, y2 + ε)}| ≤ nε+ 1.

Hence, we have

1
n
(l(τ)− l(ξ)) ≥ Lξ(R1)− Lξ(R0)− 4ε− 4

n
(2.25)

≥ u(R1)− u(R0)− 2λ− 4ε− 4
n

= I − 2λ− 4ε− 4
n
.

Here again we use the fact that, by (2.18), ξ ∈ GD(n, λ) ⊂ G(n, λ). The fact that

(2.23) follows from (2.24) and (2.25) completes the proof.

To complete the proof of Lemma 2.1.5 we use the following result (cf. 7.2.5 in

[3]) and the next two lemmas.
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Theorem 2.1.12. Let {un}n≥1 be a sequence of finite measures on R. If {un}n≥1 is

tight, and every weakly convergent subsequence of {un}n≥1 converges to the measure v,

then un
d−→ v.

Lemma 2.1.13. In the context of Lemma 2.1.5, let {atn} be a subsequence of {an}

such that

µtn,qtn

(
π(atn)

tn
∈ (·)

)
d−→ v.

Then the distribution function Fv(y) of the limit probability measure v is absolutely

continuous. Here µtn,qtn

(
π(atn )
tn
∈ (·)

)
denotes the probability measure induced by π(atn )

tn

under µtn,qtn .

Proof. For any ε > 0, let δ = ε
4e|β|

. By the definition of absolute continuity, we will

show that, for any {(y1, y2), (y3, y4), . . . , (y2m−1, y2m)} with y2k−1 < y2k and
∑m

k=1 |y2k−

y2k−1| < δ, we have
∑m

k=1 |Fv(y2k)−Fv(y2k−1)| < ε. Without loss of generality, we may

assume that every yi is a continuous point of Fv(y) with 0 ≤ yi ≤ 1. Since there are at

most countably many discontinuity of Fv(y), we can always choose a new set of interval

{(y′2k−1, y
′
2k)} such that Fv(y) is continuous at every y′i, [y2k−1, y2k] ⊂ [y′2k−1, y

′
2k] and∑m

k=1 |y′2k − y′2k−1| < δ still holds. Next, for the simplicity of notation, define

vn := µtn,qtn

(
π(atn)

tn
∈ (·)

)
. (2.26)

By Lemma 2.1.8, there exists N1 > 0 such that for any n > N1,

vn ([y2k−1, y2k]) ≤ 2(y2k − y2k−1)e|β|,

for all k ∈ [m]. Since vn
d−→ v, there exists N2 > 0 such that for any n > N2,

|Fv(y2k)− Fv(y2k−1)− vn ([y2k−1, y2k])| <
ε

2m
,

for all k ∈ [m]. Let n = max (N1, N2) + 1, we have

m∑
k=1

|Fv(y2k)− Fv(y2k−1)|
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≤
m∑
k=1

|Fv(y2k)− Fv(y2k−1)− vn ([y2k−1, y2k])|+
m∑
k=1

vn ([y2k−1, y2k])

<
ε

2
+ 2e|β|

m∑
k=1

(y2k − y2k−1)

<
ε

2
+ 2e|β|δ

= ε.

Lemma 2.1.14. In the context of Lemma 2.1.13, we have

Fv(y) =

∫ y

0

u(a, t, β) dt,

for any y ∈ [0, 1]. Here u(x, y, β) is defined in (1.3).

Proof. For the simplicity of notation, we will use u(x, y) to denote u(x, y, β). By

Lemma 2.1.13, Fv(y) is absolutely continuous. Hence Fv(y) is differentiable almost

everywhere, say F ′v(y) = f(y) a.e. on [0, 1], and moreover, we have Fv(y) =
∫ y

0
f(t) dt.

Here we use the fact that the support of v is [0, 1]. Note that, by Lemma 2.1.8, for any

y ∈ (0, 1) such that F ′v(y) = f(y), we have f(y) ≥ e−|β| > 0. Then in order to show

f(y) = u(a, y) a.e., it suffices to show

f(y2)

f(y1)
=
u(a, y2)

u(a, y1)
, (2.27)

for any y1, y2 ∈ A, where A := {y ∈ (0, 1) : F ′v(y) = f(y)}. This is because, for any

y ∈ A, we have

1

f(y)
=

∫ 1

0

f(z)

f(y)
dz =

∫
A

f(z)

f(y)
dz =

∫
A

u(a, z)

u(a, y)
dz =

∫ 1

0

u(a, z)

u(a, y)
dz =

1

u(a, y)
.

Here we use the fact that the Lebesgue measure of A is 1 as well as Lemma 2.1.9 in

the last equality. Next, since we have

lim
ε→0+

v((y2, y2 + ε))

v((y1, y1 + ε))
= lim

ε→0+

Fv(y2 + ε)− Fv(y2)

Fv(y1 + ε)− Fv(y1)

= lim
ε→0+

Fv(y2 + ε)− Fv(y2)

ε

/Fv(y1 + ε)− Fv(y1)

ε
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=
f(y2)

f(y1)
.

Thus, to prove (2.27), it suffices to show that

lim
ε→0+

∣∣∣∣v((y2, y2 + ε))

v((y1, y1 + ε))
− u(a, y2)

u(a, y1)

∣∣∣∣ = 0. (2.28)

Next, inheriting the notation in (2.26), since vn
d−→ v and Fv(y) is continuous, we have

lim
n→∞

∣∣∣∣vn((y2, y2 + ε))

vn((y1, y1 + ε))
− u(a, y2)

u(a, y1)

∣∣∣∣ =

∣∣∣∣v((y2, y2 + ε))

v((y1, y1 + ε))
− u(a, y2)

u(a, y1)

∣∣∣∣ . (2.29)

Since {vn} is a subsequence of
{
µn,qn

(
π(an)
n
∈ (·)

)}
, by Lemma 2.1.11, (2.28) follows

from (2.29).

Proof of Lemma 2.1.5. Since the support of µn,qn

(
π(an)
n
∈ (·)

)
is within [0, 1], the se-

quence
{
µn,qn

(
π(an)
n
∈ (·)

)}
is tight. The claim follows from Lemma 2.1.13, Lemma

2.1.14 and Theorem 2.1.12.

2.1.3 Proof of Lemma 2.1.1 and Lemma 2.1.2

Definition 2.1.15. For any π ∈ Sn and any 1 ≤ j < k ≤ n, let π([j, k]) denote the

vector (π(j), π(j + 1), · · · , π(k)). Let π[j,k] denote the permutation in Sk−j+1 induced

by π([j, k]), i. e.

π[j,k](i) :=
k∑
s=j

1{π(s)≤π(j+i−1)}, ∀i ∈ [k − j + 1].

Lemma 2.1.16. For any 0 ≤ a < b ≤ 1 and y ∈ [0, 1], we have the following identity∫ y

0

u(a, t, β) dt =

∫ y′

0

u
(a
b
, t, bβ

)
dt, ∀β ∈ R.

Here,

y′ :=
1

b
uβ([0, b]× [0, y]) =

1

b

∫ b

0

∫ y

0

u(x, t, β) dtdx

and u(x, y, β) is defined in Theorem 1.2.1.
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We make some preparation before proving Lemma 2.1.16. Given a, b ∈ [0, 1],

choose two sequences {an} and {bn} such that an ∈ [n], bn ∈ [n] and limn→∞
an
n

= a,

limn→∞
bn
n

= b. Moreover, for any β ∈ R, choose a sequence {qn} with qn > 0 such

that limn→∞ n(1− qn) = β.

By Lemma 2.1.5, we have

lim
n→∞

µn,qn

(
π(an)
n
≤ y
)

=
∫ y

0
u(a, t, β) dt. (2.30)

We will show that

lim
n→∞

µn,qn

(
π(an)
n
≤ y
)

=
∫ y′

0
u
(
a
b
, t, bβ

)
dt. (2.31)

Lemma 2.1.16 follows from (2.30) and (2.31). First, regarding {an} and {bn} as fixed

sequences, y as a fixed number, we make the following definitions,

R0 := [0, b]× [0, y], R1 := [b, 1]× [0, y],

Kn := {(v1, v2, · · · , vn−bn+1) : vi ∈ [n] and i 6= j ⇒ vi 6= vj},

fn(v) := |{vi ∈ v : vi ≤ ny}| for v ∈ Kn,

Gn(λ) :=

{
v ∈ Kn :

∣∣∣∣ 1nfn(v)− uβ(R1)

∣∣∣∣ < λ

}
.

Here Kn consists of all possible values π([bn, n]) can take when π ∈ Sn. fn(π([bn, n]))

denotes the number of points
(
i
n
, π(i)

n

)
inside the rectangle [ bn

n
, 1]× [0, y].

Next we show that, for any λ > 0,

lim
n→∞

µn,qn (π([bn, n]) /∈ Gn(λ)) = 0 (2.32)

Proof of (2.32). First, since the difference between [ bn
n
, 1]× [0, y] and R1 is a rectangle

with width
∣∣ bn
n
− b
∣∣, it follows that

|fn(π([bn, n]))− nLπ(R1)|

=
∣∣∣∣∣{i :

(
i
n
, π(i)

n

)
∈ [ bn

n
, 1]× [0, y]}

∣∣− ∣∣{i :
(
i
n
, π(i)

n

)
∈ R1}

∣∣∣∣∣
≤ |bn − nb|+ 1.
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Thus, for any λ > 0, there exists a N > 0 such that for all n > N ,

∣∣ 1
n
fn(π([bn, n]))− Lπ(R1)

∣∣ ≤ ∣∣ bn
n
− b
∣∣+ 1

n
< λ

2
.

Here we use the fact that limn→∞
bn
n

= b. Hence, for any n > N , we have∣∣∣∣ 1nfn(π([bn, n]))− uβ(R1)

∣∣∣∣ ≥ λ

⇒
∣∣∣∣ 1nfn(π([bn, n]))− Lπ(R1)

∣∣∣∣+ |Lπ(R1)− uβ(R1)| ≥ λ

⇒|Lπ(R1)− uβ(R1)| > λ

2
.

Thus,

µn,qn (π([bn, n]) /∈ Gn(λ))

=µn,qn

(∣∣∣∣ 1nfn(π([bn, n]))− uβ(R1)

∣∣∣∣ ≥ λ

)
≤µn,qn

(
|Lπ(R1)− uβ(R1)| > λ

2

)
.

(2.32) follows from the above inequality and Lemma 2.1.6.

Next we show that, for any ε > 0, we can choose a sufficiently small λ and

N > 0 such that for all n > N and any v ∈ Gn(λ),∣∣∣µn,qn (π(an)
n
≤ y

∣∣∣ π([bn, n]) = v
)
−
∫ y′

0
u
(
a
b
, t, bβ

)
dt
∣∣∣ < ε

3
. (2.33)

Proof of (2.33). Assume n is sufficiently large such that an < bn. For any v ∈ Gn(λ),

here the value of λ is to be determined, we have

µn,qn

(
π(an)
n
≤ y

∣∣∣ π([bn, n]) = v
)

(2.34)

= µn,qn (π(an) ≤ ny | π([bn, n]) = v)

= µn,qn
(
π[1,bn−1](an) ≤ bnyc − fn(v)

∣∣ π([bn, n]) = v
)

= µbn−1,qn (τ(an) ≤ bnyc − fn(v))

= µbn−1,qn

(
τ(an)
bn−1

≤ 1
bn−1

(bnyc − fn(v))
)
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= µbn−1,qn

(
τ(an)
bn−1

≤ n
bn−1

(
bnyc
n
− fn(v)

n

))
.

The second equality follows since, conditioned on π([bn, n]) = v, we have

{π ∈ Sn : π(an) ≤ ny} = {π ∈ Sn : π[1,bn−1](an) ≤ bnyc − fn(v)}.

Note that bnyc− fn(v) is the number of i ≤ ny which is not in v. The third equality is

due to Lemma 1.1.5 and Lemma 1.1.6 with τ ∼ µbn−1,qn . Next, by the following facts,

lim
n→∞

(bn − 1)(1− qn) = lim
n→∞

bn−1
n
· limn→∞ n(1− qn) = bβ, (2.35)

lim
n→∞

an
bn − 1

= lim
n→∞

an
n
· lim
n→∞

n

bn − 1
=
a

b
, (2.36)

lim
n→∞

n

bn − 1

(
bnyc
n
− uβ(R1)

)
=

1

b
(y − uβ(R1)) =

1

b
uβ(R0) = y′, (2.37)

and Lemma 2.1.5, we have

lim
n→∞

µbn−1,qn

(
τ(an)
bn−1

≤ n
bn−1

(
bnyc
n
− uβ(R1)

))
=
∫ y′

0
u
(
a
b
, t, bβ

)
dt.

Hence, there exists N1 > 0 such that for any n > N1,∣∣∣µbn−1,qn

(
τ(an)
bn−1

≤ n
bn−1

(
bnyc
n
− uβ(R1)

))
−
∫ y′

0
u
(
a
b
, t, bβ

)
dt
∣∣∣ < ε

6
. (2.38)

By (2.37), there exists N2 > 0 such that for all n > N2,

n
bn−1

< 2
b

and
∣∣∣ n
bn−1

(
bnyc
n
− uβ(R1)

)
− y′

∣∣∣ < λ. (2.39)

Hence, for any n > N2 and any v ∈ Gn(λ), we have∣∣∣ n
bn−1

(
bnyc
n
− fn(v)

n

)
− y′

∣∣∣ (2.40)

≤
∣∣∣ n
bn−1

(
bnyc
n
− fn(v)

n

)
− n

bn−1

(
bnyc
n
− uβ(R1)

)∣∣∣
+
∣∣∣ n
bn−1

(
bnyc
n
− uβ(R1)

)
− y′

∣∣∣
<
(

2
b

+ 1
)
λ.

32



Let C := 2
b

+ 1. Since, by (2.39) and (2.40), both

n
bn−1

(
bnyc
n
− fn(v)

n

)
and n

bn−1

(
bnyc
n
− uβ(R1)

)
are in the interval (y′ − Cλ, y′ + Cλ), it follows that, for any n > N2 and any v ∈

Gn(λ), ∣∣∣µbn−1,qn

(
τ(an)
bn−1

≤ n
bn−1

(
bnyc
n
− fn(v)

n

))
(2.41)

− µbn−1,qn

(
τ(an)
bn−1

≤ n
bn−1

(
bnyc
n
− uβ(R1)

)) ∣∣∣
<µbn−1,qn

(
τ(an)
bn−1

∈ (y′ − Cλ, y′ + Cλ)
)
.

By (2.35) and Lemma 2.1.8, there exists N3 > 0 such that for all n > N3,

µbn−1,qn

(
τ(an)

bn − 1
∈ (y′ − Cλ, y′ + Cλ)

)
< 4Cλeb|β|. (2.42)

Therefore, we can fix λ = ε
24C

e−b|β| in the first place. Then, by (2.38), (2.41) and

(2.42), for any n > max (N1, N2, N3) and any v ∈ Gn(λ),∣∣∣µbn−1,qn

(
τ(an)
bn−1

≤ n
bn−1

(
bnyc
n
− fn(v)

n

))
−
∫ y′

0
u
(
a
b
, t, bβ

)
dt
∣∣∣ (2.43)

<
ε

6
+
ε

6
=
ε

3
.

(2.33) follows by (2.34) and (2.43).

Now we are in the position to prove (2.31), which completes the proof of

Lemma 2.1.16.

Proof of (2.31). For simplicity, let I :=
∫ y′

0
u
(
a
b
, t, bβ

)
dt. Since

y′ =
1

b
uβ(R0) ≤ 1

b
uβ([0, b]× [0, 1]) = 1,

we have

I =

∫ y′

0

u
(a
b
, t, bβ

)
dt ≤

∫ 1

0

u
(a
b
, t, bβ

)
dt = 1.

Then, given ε > 0, fix the value of λ such that (2.33) holds for any n > N1 and any

v ∈ Gn(λ). By (2.32), there exists N2 > 0 such that for any n > N2,

µn,qn (π([bn, n]) /∈ Gn(λ)) <
ε

3
. (2.44)
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Then, for any n > max (N1, N2),∣∣∣µn,qn (π(an)
n
≤ y
)
− I
∣∣∣

=
∣∣∣∑v∈Kn µn,qn

(
π(an)
n
≤ y

∣∣ π([bn, n]) = v
)
· µn,qn (π([bn, n]) = v)

−
∑

v∈Kn I · µn,qn (π([bn, n]) = v)
∣∣∣

≤
∑

v∈Gn(λ)

∣∣∣µn,qn (π(an)
n
≤ y

∣∣ π([bn, n]) = v
)
− I

∣∣∣ · µn,qn (π([bn, n]) = v)

+
∑

v/∈Gn(λ) µn,qn

(
π(an)
n
≤ y

∣∣ π([bn, n]) = v
)
· µn,qn (π([bn, n]) = v)

+
∑

v/∈Gn(λ) I · µn,qn (π([bn, n]) = v)

≤ ε
3
·
∑

v∈Gn(λ) µn,qn (π([bn, n]) = v) + 2 ·
∑

v/∈Gn(λ) µn,qn (π([bn, n]) = v)

<
ε

3
+

2ε

3
= ε.

Here we use (2.33) and (2.44) in the second to last inequality.

Lemma 2.1.17. For any 0 ≤ a < b ≤ 1 and any β ∈ R, suppose we have sequences

{an}, {bn} and {qn} such that an ∈ [n], bn ∈ [n], qn > 0 and

lim
n→∞

an
n

= a, lim
n→∞

bn
n

= b, lim
n→∞

n(1− qn) = β.

Then, for any A = [y1, y2] ⊂ [0, 1] and B = [y3, y4] ⊂ [0, 1],

lim
n→∞

µn,qn
(
1A(π(an)

n
)1B(π(bn)

n
)
)
− µn,qn

(
1A(π(an)

n
)
)
µn,qn

(
1B(π(bn)

n
)
)

= 0.

Proof. The proof is similar to the proof of Lemma 2.1.16, and we inherit those defini-

tions in the previous proof. First of all, since

µn,qn
(
1A(π(an)

n
)1B(π(bn)

n
)
)

=µn,qn
(
1[0,y2](

π(an)
n

)1B(π(bn)
n

)
)
− µn,qn

(
1[0,y1)(

π(an)
n

)1B(π(bn)
n

)
)

and

µn,qn
(
1A(π(an)

n
)
)

= µn,qn
(
1[0,y2](

π(an)
n

)
)
− µn,qn

(
1[0,y1)(

π(an)
n

)
)
,
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it suffices to show the cases when the interval A is of the form [0, y] or [0, y) for any

y ∈ [0, 1]. Moreover, by Lemma 2.1.5, we have

lim
n→∞

µn,qn

(
π(an)
n

= y
)

= 0, ∀y ∈ [0, 1].

Hence, it suffices to show the case when A = [0, y], for any y ∈ [0, 1].

By Lemma 2.1.16, define

I :=

∫ y

0

u(a, t, β) dt =

∫ y′

0

u
(a
b
, t, bβ

)
dt.

By Lemma 2.1.5, we have

lim
n→∞

µn,qn
(
1A(π(an)

n
)
)

=
∫ y

0
u(a, t, β) dt = I.

Hence it suffices to show the following,

lim
n→∞

µn,qn
(
1(π(an)

n
≤ y)1B(π(bn)

n
)
)
− µn,qn

(
1B(π(bn)

n
)
)
· I = 0, (2.45)

for any y ∈ [0, 1]. Given ε > 0, by (2.33), there exists λ > 0 and N1 > 0 such that for

any n > N1 and any v ∈ Gn(λ),∣∣∣µn,qn (π(an)
n
≤ y

∣∣∣ π([bn, n]) = v
)
− I

∣∣∣ < ε

3
. (2.46)

By (2.32), there exists N2 > 0 such that for any n > N2,

µn,qn (π([bn, n]) /∈ Gn(λ)) <
ε

3
. (2.47)

Moreover, by conditioning on the value of π([bn, n]), we have

µn,qn

(
1(π(an)

n
≤ y)1B(π(bn)

n
)
)

=
∑
v∈Kn

µn,qn

(
1(π(an)

n
≤ y)1B(π(bn)

n
)
∣∣ π([bn, n]) = v

)
· µn,qn (π([bn, n]) = v)

=
∑
v∈Kn

µn,qn

(
1(π(an)

n
≤ y)

∣∣ π([bn, n]) = v
)
· 1B(v1

n
) · µn,qn (π([bn, n]) = v)

=
∑

v∈Gn(λ)

µn,qn

(
1(π(an)

n
≤ y)

∣∣ π([bn, n]) = v
)
· 1B(v1

n
) · µn,qn (π([bn, n]) = v)

+
∑

v/∈Gn(λ)

µn,qn

(
1(π(an)

n
≤ y)

∣∣ π([bn, n]) = v
)
· 1B(v1

n
) · µn,qn (π([bn, n]) = v)
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and

µn,qn

(
1B(π(bn)

n
)
)

=
∑
v∈Kn

µn,qn

(
1B(π(bn)

n
)
∣∣ π([bn, n]) = v

)
· µn,qn (π([bn, n]) = v)

=
∑
v∈Kn

1B(v1

n
) · µn,qn (π([bn, n]) = v)

=
∑

v∈Gn(λ)

1B(v1

n
) · µn,qn (π([bn, n]) = v)

+
∑

v/∈Gn(λ)

1B(v1

n
) · µn,qn (π([bn, n]) = v) .

Here v1 denotes the first entry of vector v. Hence, for any n > max (N1, N2), we have∣∣∣µn,qn (1(π(an)
n
≤ y)1B(π(bn)

n
)
)
− µn,qn

(
1B(π(bn)

n
)
)
· I
∣∣∣

≤
∑

v∈Gn(λ)

∣∣∣µn,qn (1(π(an)
n
≤ y)

∣∣ π([bn, n]) = v
)
− I

∣∣∣ · µn,qn (π([bn, n]) = v)

+ 2
∑

v/∈Gn(λ)

µn,qn (π([bn, n]) = v)

≤ ε
3

∑
v∈Gn(λ)

µn,qn (π([bn, n]) = v) + 2
∑

v/∈Gn(λ)

µn,qn (π([bn, n]) = v)

<
ε

3
+ 2 · ε

3
= ε.

The first inequality follows from triangle inequality and the fact that,

µn,qn

(
1(π(an)

n
≤ y)

∣∣∣ π([bn, n]) = v
)
≤ 1, 1B(v1

n
) ≤ 1, and I ≤ 1.

The last two inequalities follow from (2.46) and (2.47) respectively.

Before we start to prove Lemma 2.1.1 and Lemma 2.1.2, we briefly introduce

the following facts:

Lemma 2.1.18. For any s, t, i ∈ [n],

min(qd, q−d) ≤ µn,q(π(s) = i)

µn,q(π(t) = i)
≤ max(qd, q−d),

where d = |s− t|.
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Lemma 2.1.19. For any s, t, w, i, j ∈ [n] such that i 6= j and either w < min (s, t) or

w > max (s, t),

min(qd, q−d) ≤ µn,q ({π ∈ Sn : π(s) = i and π(w) = j})
µn,q ({π ∈ Sn : π(t) = i and π(w) = j})

≤ max(qd, q−d),

where d = |s− t|.

Lemma 2.1.18 and Lemma 2.1.19 follow from similar argument as in the proof

of Lemma 2.1.7. We omit their proofs. From these two lemmas, we can show the

following,

Lemma 2.1.20. For any A ⊂ [0, 1] and any s, t ∈ [n],∣∣∣µn,q (1A(π(s)
n

))
− µn,q

(
1A
(π(t)

n

))∣∣∣ ≤M,

where M = max (|1− qd|, |1− q−d|) and d = |s− t|.

Lemma 2.1.21. For any A,B ⊂ [0, 1] and any s, t, w ∈ [n] such that either w <

min (s, t) or w > max (s, t),∣∣∣µn,q (1A(π(s)
n

)
1B
(π(w)

n

))
− µn,q

(
1A
(π(t)

n

)
1B
(π(w)

n

))∣∣∣ ≤M,

where M = max (|1− qd|, |1− q−d|) and d = |s− t|.

Here we only deduce Lemma 2.1.20 from Lemma 2.1.18. Lemma 2.1.21 follows

from Lemma 2.1.19 by the similar argument.

Proof of Lemma 2.1.20. Without loss of generality, assume 0 < q < 1. By Lemma

2.1.18, for any i ∈ [n], we have

qd ≤ µn,q(π(s) = i)

µn,q(π(t) = i)
≤ q−d.

Hence

qd
∑

{i: i
n
∈A}

µn,q(π(t) = i) ≤
∑

{i: i
n
∈A}

µn,q(π(s) = i) ≤ q−d
∑

{i: i
n
∈A}

µn,q(π(t) = i).
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Thus

µn,q

(
1A
(π(t)

n

))
· qd ≤ µn,q

(
1A
(π(s)

n

))
≤ µn,q

(
1A
(π(t)

n

))
· q−d.

Therefore ∣∣∣µn,q (1A(π(s)
n

))
− µn,q

(
1A
(π(t)

n

))∣∣∣
≤µn,q

(
1A
(π(t)

n

))
max (q−d − 1, 1− qd)

≤ max (q−d − 1, 1− qd).

Proof of Lemma 2.1.2. Let m be a positive integer whose value is to be determined.

Define the following m+ 1 sequences {a(k)
n }, 0 ≤ k ≤ m, as follows,

a(k)
n :=

1, if k = 0;⌈
kn
m

⌉
, if 1 ≤ k ≤ m.

(2.48)

Then, for any 0 ≤ k ≤ m, we have limn→∞
a

(k)
n

n
= k

m
. Also, for any 0 ≤ k ≤ m− 1 and

n > m we have

1 ≤ a(k+1)
n − a(k)

n ≤
n

m
+ 1.

Then, for any n > m and any i, j ∈ [n] with i < j, there exist unique k and l such that

i ∈
[
a(k)
n , a(k+1)

n

)
, and j ∈

(
a(l−1)
n , a(l)

n

]
. (2.49)

Clearly, we have

k < l, |i− a(k)
n | ≤

n

m
and |j − a(l)

n | ≤
n

m
. (2.50)

Then, given ε > 0, fix a sufficiently large m in the first place such that,∣∣∣e βm − 1
∣∣∣ < ε

12
,

∣∣∣e− β
m − 1

∣∣∣ < ε

12
.

Next, since limn→∞ q
n
n = e−β, there exists N1 > 0 such that for any n > N1,∣∣∣e βm − q− n

m
n

∣∣∣ < ε

12
,

∣∣∣e− β
m − q

n
m
n

∣∣∣ < ε

12
.
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Then, by triangle inequality, for any n > N1,

max
(∣∣∣1− q nmn ∣∣∣ , ∣∣∣1− q− n

m
n

∣∣∣) < ε

6
. (2.51)

For the simplicity of notation, define

U :=
∣∣∣µn,qn(1A(π(i)

n

))
µn,qn

(
1B
(π(j)

n

))
− µn,qn

(
1A
(π(a

(k)
n )
n

))
µn,qn

(
1B
(π(j)

n

))∣∣∣,
V :=

∣∣∣µn,qn(1A(π(i)
n

)
1B
(π(j)

n

))
− µn,qn

(
1A
(π(a

(k)
n )
n

)
1B
(π(j)

n

))∣∣∣,
W :=

∣∣∣µn,qn(1A(π(a
(k)
n )
n

)
1B
(π(j)

n

))
− µn,qn

(
1A
(π(a

(k)
n )
n

))
µn,qn

(
1B
(π(j)

n

))∣∣∣
=
∣∣∣Covn

(
1A
(π(a

(k)
n )
n

)
,1B

(π(j)
n

))∣∣∣.
Then, by (2.50), (2.51), Lemma 2.1.20 and Lemma 2.1.21, for any n > max (m,N1)

and any 0 ≤ i < j ≤ n with corresponding k, l defined in (2.49), we have

U =µn,qn
(
1B
(π(j)

n

))
·
∣∣∣µn,qn(1A(π(i)

n

))
− µn,qn

(
1A
(π(a

(k)
n )
n

))∣∣∣
≤
∣∣∣µn,qn(1A(π(i)

n

))
− µn,qn

(
1A
(π(a

(k)
n )
n

))∣∣∣
≤ max

(∣∣∣1− q nmn ∣∣∣ , ∣∣∣1− q− n
m

n

∣∣∣) < ε
6
,

V ≤ max
(∣∣∣1− q nmn ∣∣∣ , ∣∣∣1− q− n

m
n

∣∣∣) < ε
6
.

Whence, again, by triangle inequality, for any n > max (m,N1),∣∣∣Covn

(
1A
(π(i)

n

)
,1B

(π(j)
n

))∣∣∣ (2.52)

=
∣∣∣µn,qn(1A(π(i)

n

)
1B
(π(j)

n

))
− µn,qn

(
1A
(π(i)

n

))
µn,qn

(
1B
(π(j)

n

))∣∣∣
< U + V +W

<
∣∣∣Covn

(
1A
(
π(a

(k)
n )
n

)
,1B

(
π(j)
n

))∣∣∣+ ε
3
.

By the same argument, it follows that for any n > max (m,N1),∣∣∣Covn

(
1A
(π(a

(k)
n )
n

)
,1B

(π(j)
n

))∣∣∣ (2.53)

<
∣∣∣Covn

(
1A
(π(a

(k)
n )
n

)
,1B

(π(a
(l)
n )
n

))∣∣∣+ ε
3
.
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Combining (2.52) and (2.53), for any n > max (m,N1) and any 0 ≤ i < j ≤ n with

corresponding k, l defined in (2.49), we have∣∣∣Covn

(
1A
(π(i)

n

)
,1B

(π(j)
n

))∣∣∣
<
∣∣∣Covn

(
1A
(π(a

(k)
n )
n

)
,1B

(π(a
(l)
n )
n

))∣∣∣+ 2ε
3
.

Moreover, since m is fixed, by Lemma 2.1.17, there exists N2 > 0 such that, for any

n > N2 and any 0 ≤ k < l ≤ m, we have∣∣∣Covn

(
1A
(π(a

(k)
n )
n

)
,1B

(π(a
(l)
n )
n

))∣∣∣ < ε
3
.

Thus, for n > max (m,N1, N2) and any 0 ≤ i < j ≤ n,∣∣∣µn,qn(1A(π(i)
n

)
1B
(π(j)

n

))
− µn,qn

(
1A
(π(i)

n

))
µn,qn

(
1B
(π(j)

n

))∣∣∣ < ε.

Proof of Lemma 2.1.1. The proof of Lemma 2.1.1 is similar to the proof of Lemma

2.1.2. Firstly, since u(x, y, β) is uniformly continuous on [0, 1] × [0, 1], given ε > 0,

there exists m1 > 0 such that

sup
|s−t|< 1

m1
s,t,y∈[0,1]

|u(s, y, β)− u(t, y, β)| < ε

6
.

Hence, for any |s− t| < 1
m1

with s, t ∈ [0, 1], we have∣∣∣∣∫ y2

y1

u(s, y, β) dy −
∫ y2

y1

u(t, y, β) dy

∣∣∣∣ (2.54)

≤
∫ y2

y1

|u(s, y, β)− u(t, y, β)| dy

≤
∫ 1

0

|u(s, y, β)− u(t, y, β)| dy

<
ε

6
.

Then, choose an m > 2m1 such that∣∣∣e βm − 1
∣∣∣ < ε

12
,

∣∣∣e− β
m − 1

∣∣∣ < ε

12
.
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Next, since limn→∞ q
n
n = e−β, there exists N1 > 0 such that for any n > N1,∣∣∣e βm − q− n

m
n

∣∣∣ < ε

12
,

∣∣∣e− β
m − q

n
m
n

∣∣∣ < ε

12
.

By triangle inequality, for any n > N1,

max
(∣∣∣1− q nmn ∣∣∣ , ∣∣∣1− q− n

m
n

∣∣∣) < ε

6
.

Next, define the m+1 sequences {a(k)
n }, 0 ≤ k ≤ m, as in (2.48). By (2.50) and Lemma

2.1.20, for any n > max (m,N1) and any i ∈ [n] with corresponding k defined in (2.49),

we have ∣∣∣µn,qn(1A(π(i)
n

))
− µn,qn

(
1A
(π(a

(k)
n )
n

))∣∣∣ (2.55)

≤ max
(∣∣∣1− q nmn ∣∣∣ , ∣∣∣1− q− n

m
n

∣∣∣)
<
ε

6
.

Secondly, by the definition of a
(k)
n in (2.48), it is easily seen that

kn

m
≤ a(k)

n ≤
kn

m
+ 1.

Thus, for any n > m and any i ∈ [n] with corresponding k defined in (2.49), we have

kn

m
≤ a(k)

n ≤ i < a(k+1)
n ≤ (k + 1)n

m
+ 1

⇒ k

m
≤ i

n
≤ k + 1

m
+

1

n

⇒
∣∣∣∣ in − k

m

∣∣∣∣ ≤ 1

m
+

1

n
<

2

m
<

1

m1

.

Hence, by (2.54), for any n > m and any i ∈ [n] with corresponding k defined in (2.49),

we have ∣∣∣ ∫ y2

y1

u
( i
n
, y, β

)
dy −

∫ y2

y1

u
( k
m
, y, β

)
dy
∣∣∣ < ε

6
. (2.56)

Thirdly, since limn→∞
a

(k)
n

n
= k

m
for any 0 ≤ k ≤ m, by Lemma 2.1.5, there exists

N1 > 0 such that, for any n > N1 and any 0 ≤ k ≤ m,∣∣∣∣µn,qn(1A(π(a
(k)
n )

n

))
−
∫ y2

y1

u
( k
m
, y, β

)
dy

∣∣∣∣ < ε

3
. (2.57)
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Therefore, for any n > max (m,N1, N2) and any i ∈ [n] with corresponding k defined

in (2.49), we have∣∣∣µn,qn(1A(π(i)
n

))
−
∫ y2

y1
u
(
i
n
, y, β

)
dy
∣∣∣

≤
∣∣∣µn,qn(1A(π(i)

n

))
− µn,qn

(
1A
(π(a

(k)
n )
n

))∣∣∣
+
∣∣∣µn,qn(1A(π(a

(k)
n )
n

))
−
∫ y2

y1
u
(
k
m
, y, β

)
dy
∣∣∣

+
∣∣∣ ∫ y2

y1
u
(
k
m
, y, β

)
dy −

∫ y2

y1
u
(
i
n
, y, β

)
dy
∣∣∣

<
ε

3
+
ε

6
+
ε

6
< ε.

The last inequality follows from (2.55), (2.56) and (2.57).

2.2 Proof of Theorem 1

In this section, we show Theorem 1 using Lemma 2.1.1 and Lemma 2.1.2. In

the proof we approximate the continuous function f on [0, 1] by a sequence of simple

functions. The following elementary lemma will be used in the proof.

Lemma 2.2.1. Given random variables X,X ′, Y, Y ′ such that |X−X ′| < ε, |Y−Y ′| < ε

and max(|X|, |X ′|, |Y |, |Y ′|) < M , we have

|Cov(X, Y )− Cov(X ′, Y ′)| < 4Mε.

Proof. Since XY −X ′Y ′ = X(Y − Y ′) + Y ′(X −X ′), we have

|XY −X ′Y ′| ≤ |X||Y − Y ′|+ |Y ′||X −X ′| < 2Mε. (2.58)

Similarly, since E(X)E(Y )−E(X ′)E(Y ′) = E(X)E(Y −Y ′)+E(Y ′)E(X−X ′), we have

|E(X)E(Y )− E(X ′)E(Y ′)| < 2Mε. (2.59)

Hence

|Cov(X, Y )− Cov(X ′, Y ′)| ≤ E|XY −X ′Y ′|+ |E(X)E(Y )− E(X ′)E(Y ′)|

< 4Mε.
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Proof of Theorem 1. Given continuous function f : [0, 1] −→ R, define a sequence of

simple functions {gm}m≥1 as follows,

gm(x) :=
∑m

k=1 f
(
k
m

)
1Ak(x), where Ak :=

(
k−1
m
, k
m

]
,

and gm(0) := f(0). Since f is continuous on a compact interval, it is uniformly con-

tinuous on [0, 1] and there exists M > 0 such that |f(x)| < M . Hence, for any ε > 0,

there exists an N > 0 such that for any m > N we have

|f(x)− gm(x)| < ε, ∀x ∈ [0, 1].

Hence for any m > N and any i ∈ [n] we have∣∣∣µn,qn (f (π(i)
n

))
− µn,qn

(
gm

(
π(i)
n

))∣∣∣ < ε, (2.60)

and ∣∣∣∫ 1

0
f(y) · u

(
i
n
, y, β

)
dy −

∫ 1

0
gm(y) · u

(
i
n
, y, β

)
dy
∣∣∣ < ε. (2.61)

Moreover, we have∣∣∣µn,qn (gm (π(i)
n

))
−
∫ 1

0
gm(y) · u

(
i
n
, y, β

)
dy
∣∣∣

≤
m∑
k=1

|f( k
m

)|
∣∣∣µn,qn (1Ak (π(i)

n

))
−
∫ 1

0
1Ak(y) · u

(
i
n
, y, β

)
dy
∣∣∣

≤
m∑
k=1

M
∣∣∣µn,qn (1Ak (π(i)

n

))
−
∫
Ak
u
(
i
n
, y, β

)
dy
∣∣∣ ,

Hence by triangle inequality, the first claim (1.4) follows from Lemma 2.1.1, (2.60) and

(2.61). To prove the second claim (1.5), we use the same technique by approximating

f by simple functions gm. Note that by Lemma 2.2.1, for any m > N and any 1 ≤ i <

j ≤ n, we have∣∣∣Covn

(
f
(
π(i)
n

)
, f
(
π(j)
n

))
− Covn

(
gm
(
π(i)
n

)
, gm
(
π(j)
n

))∣∣∣ < 4Mε. (2.62)

Note that ∣∣∣Covn

(
gm
(π(i)

n

)
, gm
(π(j)

n

))∣∣∣
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=

∣∣∣∣∣
m∑
k=1

m∑
l=1

f
(
k
m

)
f
(
l
m

)
Covn

(
1Ak
(π(i)

n

)
,1Al

(π(j)
n

))∣∣∣∣∣
≤ M2

m∑
k=1

m∑
l=1

∣∣∣Covn

(
1Ak
(π(i)

n

)
,1Al

(π(j)
n

))∣∣∣ .
(1.5) follows from Lemma 2.1.2 and (2.62).

2.3 Convergence of the Empirical Measure

Recall that, under the conditions in Theorem 2, we need to show the convergence

of the empirical measure induced by {( i
n
, τ
◦π(i)
n

)}i∈[n]. Note that, by relabeling the

indices, we have {( i
n
, τ
◦π(i)
n

)}i∈[n] = {(π
−1(i)
n

, τ(i)
n

)}i∈[n]. Since π and τ are independent,

for a given i, the x coordinate and y coordinate of
(π−1(i)

n
, τ(i)
n

)
are independent. We

will exploit this property to establish the first and second moment estimates of the

number of these points which fall inside a given rectangle.

Recall that, in Section 2.1.1, for any π ∈ Sn, we define Lπ as the empirical

probability measure of {( i
n
, π(i)

n
)}i∈[n], i.e.,

Lπ(R) :=
1

n

n∑
i=1

1R

( i
n
,
π(i)

n

)
, ∀R ∈ B[0,1]×[0,1].

Similarly, we now define Lπ,τ to be the empirical probability measure of {(π(i)
n
, τ(i)
n

)}i∈[n].

That is

Lπ,τ (R) :=
1

n

n∑
i=1

1R

(π(i)

n
,
τ(i)

n

)
, ∀R ∈ B[0,1]×[0,1].

Lemma 2.1.1 and Lemma 2.1.2 imply the following weak convergence for Lπ,τ .

Lemma 2.3.1. Under the same conditions as Theorem 2, for any R = (x1, x2] ×

(y1, y2] ⊂ [0, 1]× [0, 1], we have

lim
n→∞

Pn
(∣∣∣∣Lπ,τ (R)−

∫
R

ρ(x, y) dxdy

∣∣∣∣ > ε

)
= 0 (2.63)

for any ε > 0. Here ρ(x, y) is the density function defined in Theorem 2.

Proof. Let R̄ = [x1, x2]×[y1, y2] be the closure of R. Since, for any vertical or horizontal

line l and any π, τ ∈ Sn, we have Lπ,τ (l) ≤ 1
n
, it follows that∣∣Lπ,τ (R)− Lπ,τ (R̄)

∣∣ ≤ 2

n
.
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Then, given ε > 0, for any n > 4
ε
, by triangle inequality and the fact that∫

R
ρ(x, y) dxdy =

∫
R̄
ρ(x, y) dxdy, we get∣∣Lπ,τ (R)−

∫
R
ρ(x, y) dxdy

∣∣ > ε

⇒
∣∣Lπ,τ (R̄)−

∫
R̄
ρ(x, y) dxdy

∣∣ > ε
2
.

Hence, it suffices to show (2.63) for R = [x1, x2] × [y1, y2]. In the remainder of the

proof, let R := [x1, x2]× [y1, y2]. We will show

lim
n→∞

En(Lπ,τ (R)) =

∫
R

ρ(x, y) dxdy, (2.64)

lim
n→∞

Varn(Lπ,τ (R)) = 0. (2.65)

Then, (2.63) follows from (2.64) and (2.65) by Chebyshev’s inequality and triangle

inequality.

Let A = [x1, x2] and B = [y1, y2]. Define

δ(i)
n := µn,qn

(
1A
(π(i)

n

))
−
∫
A
u
(
x, i

n
, β
)
dx,

δ
′(i)
n := µn,q′n

(
1B
(
τ(i)
n

))
−
∫
B
u
(
i
n
, y, γ

)
dy,

δn := max
i∈[n]

(|δ(i)
n |) and δ′n := max

i∈[n]
(|δ′(i)n |).

Then, by Lemma 2.1.1 and the fact that u(x, y, β) = u(y, x, β), for any ε > 0, there

exists N1 > 0 such that, for any n > N1,

δn <
ε

3
and δ′n <

ε

3
.

Without loss of generality, assume 0 < ε < 1. Then, for any n > N1 and any i ∈ [n],

we have ∣∣∣µn,qn(1A(π(i)
n

))
µn,q′n

(
1B
( τ(i)

n

))
−
∫
R
u
(
x, i

n
, β
)
u
(
i
n
, y, γ

)
dxdy

∣∣∣ (2.66)

=
∣∣∣(δ(i)

n +
∫
A
u
(
x, i

n
, β
)
dx
)(
δ
′(i)
n +

∫
B
u
(
i
n
, y, γ

)
dy
)

−
∫
A
u
(
x, i

n
, β
)
dx ·

∫
B
u
(
i
n
, y, γ

)
dy
∣∣∣

≤
∣∣∣δ′(i)n

∣∣∣ ∫A u(x, in , β) dx+
∣∣∣δ(i)
n

∣∣∣ ∫B u( in , y, γ) dy +
∣∣∣δ(i)
n δ

′(i)
n

∣∣∣
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< ε
3

+ ε
3

+ ε
3

= ε.

Here we use Lemma 2.1.9 in the last inequality. Hence, for any n > N1,∣∣∣∣En(Lπ,τ (R))− 1
n

∑n
i=1

∫
R
u
(
x, i

n
, β
)
u
(
i
n
, y, γ

)
dxdy

∣∣∣∣ (2.67)

=

∣∣∣∣ 1
n

∑n
i=1 En

(
1R
(π(i)

n
, τ(i)
n

))
− 1

n

∑n
i=1

∫
R
u
(
x, i

n
, β
)
u
(
i
n
, y, γ

)
dxdy

∣∣∣∣
≤ 1

n

∑n
i=1

∣∣∣En(1A(π(i)
n

)
1B
( τ(i)

n

))
−
∫
R
u
(
x, i

n
, β
)
u
(
i
n
, y, γ

)
dxdy

∣∣∣
= 1

n

∑n
i=1

∣∣∣µn,qn(1A(π(i)
n

))
µn,q′n

(
1B
( τ(i)

n

))
−
∫
R
u
(
x, i

n
, β
)
u
(
i
n
, y, γ

)
dxdy

∣∣∣
< ε.

Here the last equality follows from the fact that (π, τ) ∼ µn,qn × µn,q′n under Pn, and

the last inequality follows from (2.66).

Since u(x, y, β) and u(x, y, γ) are bounded on [0, 1]× [0, 1], by the definition of

Riemann integral and the dominated convergence theorem, we have

lim
n→∞

1
n

∑n
i=1

∫
R
u
(
x, i

n
, β
)
u
(
i
n
, y, γ

)
dxdy (2.68)

=
∫
R

(
lim
n→∞

1
n

∑n
i=1 u

(
x, i

n
, β
)
u
(
i
n
, y, γ

))
dxdy

=
∫
R

( ∫ 1

0
u(x, t, β)u(t, y, γ) dt

)
dxdy

=
∫
R
ρ(x, y) dxdy.

Hence, (2.64) follows from (2.67) and (2.68).

To show (2.65), similarly, by Lemma 2.1.2, for any ε > 0, there exists N2 > 0

such that, for any n > N2,

max
i 6=j

i,j∈[n]

∣∣∣µn,qn(1A(π(i)
n

)
1A
(π(j)

n

))
− µn,qn

(
1A
(π(i)

n

))
µn,qn

(
1A
(π(j)

n

))∣∣∣ < ε
4
,

max
i 6=j

i,j∈[n]

∣∣∣µn,q′n(1B( τ(i)
n

)
1B
( τ(j)

n

))
− µn,q′n

(
1B
( τ(i)

n

))
µn,q′n

(
1B
( τ(j)

n

))∣∣∣ < ε
4
.

Without loss of generality, assume 0 < ε < 1. Then, similar to (2.66), for any n > N2

and any 1 ≤ i < j ≤ n,∣∣∣Covn

(
1A
(π(i)

n

)
1B
( τ(i)

n

)
,1A

(π(j)
n

)
1B
( τ(j)

n

)) ∣∣∣ (2.69)
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=
∣∣∣En (1A(π(i)

n

)
1B
( τ(i)

n

)
1A
(π(j)

n

)
1B
( τ(j)

n

))
− En

(
1A
(π(i)

n

)
1B
( τ(i)

n

))
En
(
1A
(π(j)

n

)
1B
( τ(j)

n

)) ∣∣∣
=
∣∣∣µn,qn(1A(π(i)

n

)
1A
(π(j)

n

))
µn,q′n

(
1B
( τ(i)

n

)
1B
( τ(j)

n

))
(2.70)

− µn,qn
(
1A
(π(i)

n

))
µn,qn

(
1A
(π(j)

n

))
µn,q′n

(
1B
( τ(i)

n

))
µn,q′n

(
1B
( τ(j)

n

))∣∣∣ < ε
2
.

Here the second equality follows from the fact that (π, τ) ∼ µn,qn×µn,q′n under Pn, and

the last inequality follows by triangle inequality. Specifically, if 0 ≤ a1, a2, b1, b2 ≤ 1,

|a1 − a2| < ε
4

and |b1 − b2| < ε
4
, then we have

|a1b1 − a2b2| ≤ |a1b1 − a2b1|+ |a2b1 − a2b2| ≤ |a1 − a2|+ |b1 − b2| <
ε

2
.

Here we choose

a1 = µn,qn
(
1A
(
π(i)
n

)
1A
(
π(j)
n

))
, a2 = µn,qn

(
1A
(
π(i)
n

))
µn,qn

(
1A
(
π(j)
n

))
,

b1 = µn,q′n
(
1B
( τ(i)

n

)
1B
( τ(j)

n

))
, b2 = µn,q′n

(
1B
( τ(i)

n

))
µn,q′n

(
1B
( τ(j)

n

))
.

(2.70) follows.

Thus, for any n > max (N2,
1
ε
),

Varn(Lπ,τ (R))

= Varn

(
1
n

∑n
i=1 1A

(π(i)
n

)
1B
( τ(i)

n

))
= 1

n2

n∑
i=1

Varn
(
1A
(π(i)

n

)
1B
( τ(i)

n

))
+ 1

n2

∑
i 6=j

i,j∈[n]

Covn
(
1A
(π(i)

n

)
1B
( τ(i)

n

)
,1A

(π(j)
n

)
1B
( τ(j)

n

))
<

1

n2
· n

4
+
n(n− 1)

n2
· ε

2
< ε.

The first inequality follows by (2.69) and the fact that the variance of any indicator

function is no greater than 1
4
.

Now we are in the position to prove Theorem 2
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Proof of Theorem 2. First of all, we make the following claim:

Claim: To prove Theorem 2, it suffices to show the case when f(x, y) =

1R(x, y), for any R = (x1, x2] × (y1, y2] ⊂ [0, 1] × [0, 1]. This is because for any

continuous function f(x, y) and any ε > 0, we can find a simple function s(x, y) on

(0, 1]× (0, 1] such that

|f(x, y)− s(x, y)| < ε

3
∀(x, y) ∈ (0, 1]× (0, 1],

where s(x, y) is of the form

s(x, y) =
m∑
j=1

aj1Rj(x, y),

with Rj =
(
x

(j)
1 , x

(j)
2

]
×
(
y

(j)
1 , y

(j)
2

]
⊂ (0, 1]× (0, 1] and {Rj}mj=1 is a partition of

(0, 1]× (0, 1]. Hence, we have∣∣∣ 1
n

∑n
i=1 f

(
i
n
, τ
◦π(i)
n

)
− 1

n

∑n
i=1 s

(
i
n
, τ
◦π(i)
n

) ∣∣∣ < ε
3
, (2.71)

and ∣∣∣∫ 1

0

∫ 1

0
s(x, y)ρ(x, y) dxdy −

∫ 1

0

∫ 1

0
f(x, y)ρ(x, y) dxdy

∣∣∣ (2.72)

≤
∫ 1

0

∫ 1

0
|s(x, y)− f(x, y)| ρ(x, y) dxdy

< ε
3
.

Here we use the fact that, by Lemma 2.1.9,∫ 1

0

∫ 1

0
ρ(x, y) dxdy = 1.

Thus, by (2.71), (2.72) and triangle inequality, we have∣∣∣ 1
n

∑n
i=1 f

(
i
n
, τ
◦π(i)
n

)
−
∫ 1

0

∫ 1

0
f(x, y)ρ(x, y) dxdy

∣∣∣ > ε

⇒
∣∣∣ 1
n

∑n
i=1 s

(
i
n
, τ
◦π(i)
n

)
−
∫ 1

0

∫ 1

0
s(x, y)ρ(x, y) dxdy

∣∣∣ > ε
3
.

Hence, we get

Pn
(∣∣∣ 1

n

∑n
i=1 f

(
i
n
, τ
◦π(i)
n

)
−
∫ 1

0

∫ 1

0
f(x, y)ρ(x, y) dxdy

∣∣∣ > ε
)
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≤Pn
(∣∣∣ 1

n

∑n
i=1 s

(
i
n
, τ
◦π(i)
n

)
−
∫ 1

0

∫ 1

0
s(x, y)ρ(x, y) dxdy

∣∣∣ > ε
3

)
≤

m∑
j=1

Pn
(∣∣∣ 1

n

∑n
i=1 1Rj

(
i
n
, τ
◦π(i)
n

)
−
∫
Rj
ρ(x, y) dxdy

∣∣∣ > ε
3m|aj |

)
.

Here the last inequality follows by the union bound. Therefore, to prove Theorem 2, it

suffices to show the case when f(x, y) = 1R(x, y), with R = (x1, x2]× (y1, y2]. In other

words, we need to show that, for any ε > 0,

lim
n→∞

Pn
(∣∣∣Lτ◦π(R)−

∫
R

ρ(x, y) dxdy
∣∣∣ > ε

)
= 0. (2.73)

Here, as defined in (2.1),

Lτ◦π(R) :=
1

n

n∑
i=1

1R

(
i

n
,
τ ◦ π(i)

n

)
.

Then, for any π, τ ∈ Sn, we have

{(
i, τ ◦ π(i)

)
: i ∈ [n]

}
=
{(
π−1(π(i)), τ(π(i))

)
: i ∈ [n]

}
=
{(
π−1(i), τ(i)

)
: i ∈ [n]

}
.

The last equality follows since {π(i)}i∈[n] = [n]. Thus, it follows that

Lτ◦π(R) = Lπ−1,τ (R), ∀R ∈ B[0,1]×[0,1].

If (π, τ) ∼ µn,q×µn,q′ , by Lemma 1.1.4, (π−1, τ) ∼ µn,q×µn,q′ . Thus, given (π, τ) ∼ Pn,

we have

Lτ◦π(R) = Lπ−1,τ (R)
d
= Lπ,τ (R).

That is Lτ◦π(R) and Lπ,τ (R) have the same distribution when (π, τ) ∼ Pn.

Therefore, (2.73) follows by Lemma 2.3.1.
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Chapter 3

WEAK LAW OF LARGE NUMBERS WHEN AT LEAST ONE
PERMUTATION IS CLOSE TO UNIFORMLY RANDOM

In this chapter we prove Theorem 3 and Theorem 4. In Section 3.1, we argue that

the LCS of two permutations is equal to the LIS of a set of points defined by these two

permutations. In Section 3.2, we introduce the weak Bruhat order on Sn and construct

several couplings of Mallows permutations which enable us to establish Lemma 3.3.4

which says that the LIS of those points are close to the LIS of uniformly random points.

In Section 3.3, we prove Theorem 3 following the method developed by Deuschel and

Zeitouni in [12] for the record lengths of i.i.d. points. In Section 3.4 and Section 3.5,

we prove Theorem 4 by constructing couplings of Mallows permutations such that we

can bound LCS(π, τ) by either the LIS or the LCS of the coupled permutations, the

limit of which are known. Section 3.6 contains the proofs of two technical lemmas.

3.1 Reduction LCS problem to LIS problem

Definition 3.1.1. Given a set of points in R2: z = {z1, z2, . . . , zn}, where zi =

(xi, yi) ∈ R2, we say that (zi1 , zi2 , . . . , zim) is an increasing subsequence if

xij < xij+1
, yij < yij+1

, j = 1, 2, . . . ,m− 1.

Here we do not require ij < ij+1. Let LIS(z) denote the length of the longest increasing

subsequence of z.

Definition 3.1.2. Given a = (a1, . . . , an) ∈ Rn, b = (b1, . . . , bn) ∈ Rn, we say that

((ai1 , bi1), (ai2 , bi2), . . . , (aim , bim)) is an increasing subsequence between a and b if

aij < aij+1
, bij < bij+1

, j = 1, 2, . . . ,m− 1
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Here we do not require ij < ij+1. Let LIS(a, b) denote the length of the longest increas-

ing subsequence between a and b. Let LIS(a) := LIS(id,a), LDS(a) := LIS(idr,a).

Here id = (1, 2, . . . , n) denotes the identity in Sn and idr = (n, . . . , 2, 1) denotes the

reversal of identity in Sn. Hence LIS(a) is the length of the longest increasing subse-

quence of a and LDS(a) is the length of the longest decreasing subsequence of a.

Note that Definition 3.1.2 allows us to define LIS(π, τ), the length of the longest

increasing subsequence of two permutations, by regarding π and τ as vectors in Rn.

We show that LCS(π, τ) = LIS(π−1, τ−1), which allows us to reduce the LCS problem

to the LIS problem.

Lemma 3.1.3. Given π, τ ∈ Sn, we have

LCS(π, τ) = LCS(σ ◦ π, σ ◦ τ), LIS(π, τ) = LIS(π ◦ σ, τ ◦ σ),

for any σ ∈ Sn.

Proof. Suppose (a1, a2, . . . , am) is a common subsequence of π and τ , then

(σ(a1), . . . , σ(am)) is a common subsequence of σ ◦ π and σ ◦ τ . Hence,

LCS(π, τ) ≤ LCS(σ ◦ π, σ ◦ τ) ≤ LCS(σ−1 ◦ σ ◦ π, σ−1 ◦ σ ◦ τ) = LCS(π, τ).

Similarly, suppose ((π(i1), τ(i1)), (π(i2), τ(i2)), . . . , (π(im), τ(im))) is an increasing

subsequence between π and τ , then ((π ◦ σ(i′1), τ ◦ σ(i′1)),

(π ◦ σ(i′2), τ ◦ σ(i′2)), . . . , (π ◦ σ(i′m), τ ◦ σ(i′m))) is an increasing subsequence between

π ◦ σ and τ ◦ σ, where i′k = σ−1(ik) for k ∈ [m]. Hence,

LIS(π, τ) ≤ LIS(π ◦ σ, τ ◦ σ) ≤ LIS(π ◦ σ ◦ σ1, τ ◦ σ ◦ σ−1) = LIS(π, τ).

Corollary 3.1.4. For any π, τ ∈ Sn, LCS(π, τ) = LIS(π−1, τ−1).

Proof. By the previous lemma, we have

LCS(π, τ) = LCS(id, π−1 ◦ τ) = LIS(id, π−1 ◦ τ) = LIS(τ−1, π−1)
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In the second equality, we use the following trivial fact,

LCS(id, π) = LIS(π) = LIS(id, π)

Here, id denotes the identity in Sn, i.e. id = (1, 2, . . . , n).

3.2 Weak Bruhat Order

To prove Lemma 3.3.4, which says that the LIS of the points {(π(i)
n
, τ(i)
n

)}i∈[n]

that fall in a small box is close to the uniform case, we will establish a coupling of per-

mutations (X, Y,X ′, X ′′) such that given a = (a1, . . . , ak) with ai ∈ [n], LIS(Xa, Ya)

can be bounded by LIS(X ′a) and LDS(X ′′a). Here X,X ′ and X ′′ are distributed accord-

ing to µn,q and Y is independent of X with an arbitrary distribution on Sn. The main

tool we use to construct the coupling is the weak Bruhat order on Sn.

Recall that for a permutation π ∈ Sn, l(π) denotes the number of inversions of

π and Inv(π) denotes the set of inversions of π. Let (i, j) denote the transposition in

Sn and si := (i, i+ 1) the adjacent transposition in Sn.

Definition 3.2.1. The left weak Bruhat order (Sn,≤L) is defined as the transitive

closure of the relations

π ≤L τ if τ = si ◦ π and l(τ) = l(π) + 1.

We are multiplying permutations right-to-left. For instance, s2 ◦ 2413 = 3412.

One characterization of the left weak order is the following (cf. [1]),

π ≤L τ if and only if Inv(π) ⊆ Inv(τ).

The right weak Bruhat order (Sn,≤R) is defined in the same way except that the

covering relationship is given by τ = π ◦ si.

Definition 3.2.2. The right weak Bruhat order (Sn,≤R) is defined as the transitive

closure of the relations

π ≤R τ if τ = π ◦ si and l(τ) = l(π) + 1.
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From the above definitions, the following proposition follows trivially.

Proposition 3.2.3. For any π, τ ∈ Sn, π ≤R τ if and only if π−1 ≤L τ−1.

Definition 3.2.4. Let (Ω,≤) be a partially ordered set. A non-empty subset A ⊂ Ω is

called increasing if

ω ∈ A and ω ≤ ω′ ⇒ ω′ ∈ A.

Given two probability measures µ1, µ2 on (Ω,F), we say that µ1 is stochastically smaller

than µ2, denoted by µ1 � µ2, if

µ1(A) ≤ µ2(A) for all increasing events A.

Lemma 3.2.5. Given the poset (Sn,≤L), for any 0 < q < q′, we have µn,q � µn,q′.

Proof. We are going to construct a coupling of two Markov chains (Xt, Yt), such that

1. Both {Xt} and {Yt} are irreducible, aperiodic Markov chains on Sn.

2. The stationary distributions for {Xt} and {Yt} are µn,q and µn,q′ respectively.

3. Xt ≤L Yt for any t ≥ 0.

By 3, for any increasing subset A ⊆ Sn, we have

P(Xt ∈ A) = P(Xt ∈ A, Xt ≤L Yt) ≤ P(Yt ∈ A). (3.1)

Also, by properties 1 and 2, we have

µn,q(A) = lim
t→∞

P(Xt ∈ A), and µn,q′(A) = lim
t→∞

P(Yt ∈ A). (3.2)

Combining (3.1) and (3.2), we get

µn,q(A) ≤ µn,q′(A), for all increasing subsets A.

The remainder of the proof is devoted to the construction of the coupling (Xt, Yt) which

satisfies the three properties above. The coupling (Xt, Yt) is defined as follows,
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• When time t = 0, X0 = Y0 = id. That is, both chains start from the identity in

Sn.

• At each time t, sample three independent random variables: U, F,B. U samples

the integers from 1 to n−1 uniformly. F and B are two coins with the probability

of heads being 1
1+q′

and (1+q′)q
(1+q)q′

respectively.

Suppose U = i. Then flip the coins F and B and update the chains according to

the following rules:

Case 1 if X−1(i) < X−1(i+ 1) and Y −1(i) < Y −1(i+ 1), then

F is head Xt+1 = Xt, Yt+1 = Yt

F is tail, B is head Xt+1 = si ◦Xt, Yt+1 = si ◦ Yt

F is tail, B is tail Xt+1 = Xt, Yt+1 = si ◦ Yt

Case 2 if X−1(i) < X−1(i+ 1) and Y −1(i) > Y −1(i+ 1), then

F is head Xt+1 = Xt, Yt+1 = si ◦ Yt

F is tail, B is head Xt+1 = si ◦Xt, Yt+1 = Yt

F is tail, B is tail Xt+1 = Xt, Yt+1 = Yt

Case 3 if X−1(i) > X−1(i+ 1) and Y −1(i) > Y −1(i+ 1), then

F is head Xt+1 = si ◦Xt, Yt+1 = si ◦ Yt

F is tail, B is head Xt+1 = Xt, Yt+1 = Yt

F is tail, B is tail Xt+1 = si ◦Xt, Yt+1 = Yt

By the definition above and the following facts, it is easy to check that the three

properties listed at the beginning of the proof are satisfied.
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• The adjacent transpositions {si} generate Sn under the group multiplication in

Sn.

• If π−1(i) = j, π−1(i+ 1) = k and j < k, we have Inv(si ◦ π) = Inv(π) ∪ {(j, k)}.

• If π−1(i) = j, π−1(i+ 1) = k and j > k, we have Inv(si ◦ π) = Inv(π) \ {(k, j)}.

• π ≤L τ if and only if Inv(π) ⊆ Inv(τ).

• Both chains Xt, Yt satisfy the detailed balance equations, i.e. that the Mallows

distribution satisfies that

µn,q(π) · P(Xt+1 = τ |Xt = π) = µn,q(τ) · P(Xt+1 = π|Xt = τ)

for any π, τ ∈ Sn and similarly for the chain Yt.

The stochastic dominance between µn,q and µn,q′ also holds if we change the

underlying partial order to the right weak Bruhat order.

Lemma 3.2.6. Given the poset (Sn,≤R), for any 0 < q < q′, we have µn,q � µn,q′.

Proof. Given any increasing set A in (Sn,≤R), let A−1 := {π−1 : π ∈ A}. By Propo-

sition 3.2.3, A−1 is an increasing set in (Sn,≤L). Since l(π) = l(π−1), we have

µn,q(π) = µn,q(π
−1), whence µn,q(A) = µn,q(A

−1). Then, by Lemma 3.2.5 and Def-

inition 3.2.4, we have

µn,q(A) = µn,q(A
−1) ≤ µn,q′(A

−1) = µn,q′(A).

Definition 3.2.7. Given π ∈ Sn and a = (a1, a2, . . . , ak), where ai ∈ [n] and a1 <

a2 < · · · < ak, let π(a) = (π(a1), π(a2), . . . , π(ak)). Let πa ∈ Sk denote the permutation

induced by π(a), i. e.πa(i) = j if π(ai) is the j-th smallest term in π(a).
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Corollary 3.2.8. Let n ∈ N, and a = (a1, a2, . . . , ak), where ai ∈ [n] and a1 < a2 <

· · · < ak.

(a) For any q ≥ 1, we can construct a pair of random variables (U, V ) such that U is

uniformly distributed on Sk, V has the same distribution as πa, where π ∼ µn,q,

and U ≤L V .

(b) For any q ≤ 1, we can construct a pair of random variables (U, V ) such that U is

uniformly distributed on Sk, V has the same distribution as πa, where π ∼ µn,q,

and V ≤L U .

Proof. Here we only prove part (a). Part (b) follows by a similar argument. Since

q ≥ 1, by Lemma 3.2.5 and Strassen’s theorem [27], there exist two random variables

(X, Y ) defined on the same probability space such that X is the uniform measure on

Sn, Y ∼ µn,q and X ≤L Y . Then we can show Xa ≤L Ya. Since π ≤L τ if and only if

Inv(π) ⊆ Inv(τ), we have

Inv(Xa) = {(i, j) : 1 ≤ i < j ≤ k and X(ai) > X(aj)}

⊂ {(i, j) : 1 ≤ i < j ≤ k and Y (ai) > Y (aj)} = Inv(Ya).

Hence, if we define U := Xa and V := Ya, part (a) follows by the fact that Xa is

uniformly distributed on Sk.

Lemma 3.2.9. Given π, τ ∈ Sk with π ≤L τ , for any n ≥ k, 0 < q ≤ 1 and a1 < · · · <

ak with ai ∈ [n], there exists a coupling (X, Y ) such that X ∼ µn,q, Y ∼ µn,q and

LIS(Xa, π) ≥ LIS(Ya, τ).

Here a = (a1, a2, . . . , ak).

Proof. First, we claim that it suffices to show the case when τ covers π in (Sk,≤L),

that is l(τ) = l(π) + 1 and τ = si ◦ π for some i ∈ [k − 1]. The claim can be shown

by induction on the Kendall’s tau distance of π and τ , i.e., the minimum number

of adjacent transpositions multiplied to π from the left to get τ . Suppose we have
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π ≤L σ ≤L τ in Sk with l(π) < l(σ) < l(τ). By the induction hypothesis there

exist two couplings (X, Y ) and (Y ′, Z), which are not necessarily defined in the same

probability space, such that X, Y, Y ′, Z have the same marginal distribution µn,q and

LIS(Xa, π) ≥ LIS(Ya, σ), LIS(Y ′a, σ) ≥ LIS(Za, τ). (3.3)

We can construct a new coupling (X ′, Z ′) as follows,

(1) Sample a permutation ξ ∈ Sn according to the distribution µn,q.

(2) Sample X ′ according to the induced distribution on Sn by the first coupling

(X, Y ) conditioned on Y = ξ.

(3) Sample Z ′ according to the induced distribution on Sn by the second coupling

(Y ′, Z) conditioned on Y ′ = ξ.

By the law of total probability, it is easily seen that X ′ ∼ µn,q and Z ′ ∼ µn,q. Also,

regardless of which permutation ξ being sampled in the first step, by (3.3), we have

LIS(X ′a, π) ≥ LIS(ξa, σ) ≥ LIS(Z ′a, τ).

In the remainder of the proof, we assume τ = si ◦ π and l(τ) = l(π) + 1. Note that, for

any σ ∈ Sn,

σ ◦ (i, j) = (σ(i), σ(j)) ◦ σ, σa ◦ (i, j) = (σ ◦ (ai, aj))a. (3.4)

Let r = aπ−1(i) and t = aπ−1(i+1). Since l(τ) = l(π) + 1, we have π−1(i) < π−1(i + 1),

thus, r < t. Let A := {{σ, σ ◦(r, t)} : σ ∈ Sn and σ(r) < σ(t)}. Clearly, A is a partition

of Sn. Then we construct the coupling (X, Y ) as follows:

(1) Choose a set in A according to measure µn,q, i. e. the set {σ, σ ◦ (r, t)} is chosen

with probability µn,q({σ, σ ◦ (r, t)}).

(2) Suppose the set {σ, σ ◦ (r, t)}, with σ(r) < σ(t), is chosen in the first step. Flip

a coin with probability of heads being

p =
ql(σ) − ql(σ◦(r,t))

ql(σ) + ql(σ◦(r,t))
.
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(3) If the outcome is head, then we set X = Y = σ.

(4) If the outcome is tail, then, with equal probability, we set either X = σ, Y =

σ ◦ (r, t) or X = σ ◦ (r, t), Y = σ.

Here, in the second step, the probability of heads p is nonnegative because we have

0 < q ≤ 1 and the following fact:

i < j and σ(i) < σ(j) ⇒ l(σ) < l(σ ◦ (i, j)), ∀σ ∈ Sn.

It can be verified that (X, Y ) thus defined has the correct marginal distribution µn,q.

In the following we show that

LIS(Xa ◦ π
−1) ≥ LIS(Ya ◦ τ

−1). (3.5)

Then, the lemma follows by Lemma 3.1.3 because, let id denote the identity in Sk, we

have

LIS(Xa ◦ π
−1) = LIS(Xa ◦ π

−1, id) = LIS(Xa, π),

LIS(Ya ◦ τ
−1) = LIS(Ya ◦ τ

−1, id) = LIS(Ya, τ).

Suppose the set {σ, σ ◦ (r, t)}, with σ(r) < σ(t), is chosen in the first step. If the

outcome in the second step is tail, we verify that Xa ◦ π
−1 = Ya ◦ τ

−1. When X = σ,

Y = σ ◦ (r, t), by (3.4), we have

Xa ◦ π
−1 = σa ◦ π

−1,

Ya ◦ τ
−1 = (σ ◦ (r, t))a ◦ π

−1 ◦ si

= (σ ◦ (r, t))a ◦ (π−1(i), π−1(i+ 1)) ◦ π−1

= (σ ◦ (r, t) ◦ (r, t))a ◦ π
−1

= σa ◦ π
−1.

When X = σ ◦ (r, t), Y = σ, again by (3.4), we have

Xa ◦ π
−1 = (σ ◦ (r, t))a ◦ π

−1
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= σa ◦ (π−1(i), π−1(i+ 1)) ◦ π−1

= σa ◦ π
−1 ◦ si,

Ya ◦ τ
−1 = σa ◦ π

−1 ◦ si.

If the outcome in the second step is head, we have

Xa ◦ π
−1 = σa ◦ π

−1 and Ya ◦ τ
−1 = σa ◦ π

−1 ◦ si.

Since σ(r) < σ(t), i. e. , σ(aπ−1(i)) < σ(aπ−1(i+1)), we have σa ◦ π
−1(i) < σa ◦ π

−1(i+ 1).

Hence Ya ◦ τ
−1 covers Xa ◦ π

−1 in (Sk,≤R). (3.5) follows.

Remark. A special case of Lemma 3.2.9 is when k = n, in which the only choice for

a is the vector (1, 2, 3, . . . , n) whence Xa = X, Ya = Y .

We can prove a similar result for the case when q ≥ 1.

Lemma 3.2.10. Given π, τ ∈ Sk with π ≤L τ , for any n ≥ k, q ≥ 1 and a1 < · · · < ak

with ai ∈ [n], there exists a coupling (X, Y ) such that X ∼ µn,q, Y ∼ µn,q and

LIS(Xa, π) ≤ LIS(Ya, τ).

Here a = (a1, a2, . . . , ak).

Proof. Given π ∈ Sn, recall that πr denote the reversal of π. For any π ∈ Sn, we have

Inv(πr) = {(i, j) : 1 ≤ i < j ≤ n and (n + 1 − j, n + 1 − i) /∈ Inv(π)}. Hence, π ≤L τ

implies πr ≥L τ r. By Lemma 3.2.9, there exists a coupling (U, V ) such that U ∼ µn,1/q,

V ∼ µn,1/q and

LIS(Ua′ , π
r) ≤ LIS(Va′ , τ

r).

Here a′ = (a′1, a
′
2, . . . , a

′
k) with a′i = n+ 1− ak+1−i.

Define (X, Y ) := (U r, V r). By Lemma 1.1.4, X ∼ µn,q, Y ∼ µn,q. Moreover, we have

LIS(Xa, π) = LIS((Xa)r, πr) = LIS((Xr)a′ , π
r) = LIS(Ua′ , π

r)

≤ LIS(Va′ , τ
r) = LIS((Y r)a′ , τ

r) = LIS((Ya)r, τ r)

= LIS(Ya, τ).
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Lemma 3.2.11. Given a = (a1, a2, . . . , ak), where a1 < · · · < ak and ai ∈ [n], for any

0 < q ≤ 1 and any distribution ν on Sk, there exists a coupling (X, Y, Z) such that the

following holds,

(a) X and Y are independent.

(b) X ∼ µn,q, Y ∼ ν and Z ∼ µn,q.

(c) LIS(Xa, Y ) ≤ LIS(Za).

Proof. Let idk denote the identity in Sk. By the definition of weak bruhat order, for

any ξ ∈ Sk, we have idk ≤L ξ. Hence, given ξ ∈ Sk, by Lemma 3.2.9, there exists a

coupling (U, V ) such that U ∼ µn,q, V ∼ µn,q and LIS(Ua, ξ) ≤ LIS(Va, idk) = LIS(Va).

Then we construct the coupling (X, Y, Z) as follows

• Sample Y according to the distribution ν.

• Conditioned on Y = ξ, (X,Z) has the same distribution as (U, V ) defined above.

First, we point out that X and Y are independent. Since whatever value Y takes,

the conditional distribution of X is µn,q. Moreover, it can be seen that X, Y and

Z have the right marginal distribution. Finally, (c) holds by the construction of the

coupling.

We can prove a similar result for the case when q ≥ 1.

Lemma 3.2.12. Given a = (a1, a2, . . . , ak), where a1 < · · · < ak and ai ∈ [n], for

any q ≥ 1 and any distribution ν on Sk, there exists a coupling (X, Y, Z) such that the

following holds,

(a) X and Y are independent.

(b) X ∼ µn,q, Y ∼ ν and Z ∼ µn,q.

(c) LIS(Xa, Y ) ≥ LIS(Za).
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Proof. Let idk denote the identity in Sk. By the definition of weak bruhat order, for

any ξ ∈ Sk, we have idk ≤L ξ. Hence, given ξ ∈ Sk, by Lemma 3.2.10, there exists a

coupling (U, V ) such that U ∼ µn,q, V ∼ µn,q and LIS(Ua, ξ) ≥ LIS(Va, idk) = LIS(Va).

Then we construct the coupling (X, Y, Z) as follows

• Sample Y according to the distribution ν.

• Conditioned on Y = ξ, (X,Z) has the same distribution as (U, V ) defined above.

First, we point out that X and Y are independent. Since whatever value Y takes,

the conditional distribution of X is µn,q. Moreover, it can be seen that X, Y and

Z have the right marginal distribution. Finally, (c) holds by the construction of the

coupling.

Lemma 3.2.13. Given a = (a1, a2, . . . , ak), where a1 < · · · < ak and ai ∈ [n]. Define

ā := {n+ 1− ak, n+ 1− ak−1, . . . , n+ 1− a1}. For any 0 < q ≤ 1 and any distribution

ν on Sk, there exists a coupling (X, Y, Z) such that the following holds,

(a) X and Y are independent.

(b) X ∼ µn,q, Y ∼ ν and Z ∼ µn,1/q.

(c) LIS(Xa, Y ) ≥ LIS(Zā).

Proof. Recall that πr denotes the reversal of π. If π ∼ ν, we use νr to denote the

distribution of πr. Clearly, ν = (νr)r. By Lemma 3.2.12, there exists a coupling

(U, V, Z) such that

• U and V are independent.

• U ∼ µn,1/q, V ∼ νr and Z ∼ µn,1/q.

• LIS(Uā, V ) ≥ LIS(Zā).

Define X := U r and Y := V r. We have

LIS
(
Uā, V

)
= LIS

({(
Uā(i), V (i)

)}
i∈[k]

)
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= LIS
({(

(Uā)r(i), V r(i)
)}

i∈[k]

)
= LIS

({(
(U r)a(i), V r(i)

)}
i∈[k]

)
= LIS

({(
Xa(i), Y (i)

)}
i∈[k]

)
= LIS(Xa, Y ),

The lemma follows.

3.3 Proof of WLLN when both β and γ are finite

We start this section by introducing the following two lemmas which can be

seen as generalizations of Corollary 4.3 in [22]. That result shows that the LIS of a

Mallows permutation scaled by n−1/2 can be bounded within a multiplicative interval

of e|β| around 2. We postpone the proofs of these two lemmas to Section 3.6. For any

positive integer n and m ∈ [n], define

Q(n,m) := {(b1, b2, . . . , bm) : bi ∈ [n] and bi < bi+1 for all i}.

Lemma 3.3.1. Suppose that {qn}∞n=1 is a sequence such that qn ≥ 1 and

lim infn→∞ n(1 − qn) = β, with β ∈ R. For any sequence {kn}∞n=1 such that kn ∈ [n]

and limn→∞ kn =∞, we have

lim
n→∞

max
b∈Q(n,kn)

µn,qn

(
π ∈ Sn :

LIS(πb)√
kn

/∈ (2e
β
2 − ε, 2 + ε)

)
= 0,

for any ε > 0.

Lemma 3.3.2. Suppose that {qn}∞n=1 is a sequence such that 0 < qn ≤ 1 and

lim supn→∞ n(1 − qn) = β < ln 2. For any sequence {kn}∞n=1 such that kn ∈ [n] and

limn→∞ kn =∞, we have

lim
n→∞

max
b∈Q(n,kn)

µn,qn

(
π ∈ Sn :

LIS(πb)√
kn

/∈ (2− ε, 2e
β
2 + ε)

)
= 0,

for any ε > 0.
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Next, we introduce the following way to sample a permutation according to

µn,q which will be used in the proofs. Given c = {c1, c2, . . . , cm}, where ci ∈ Z+ and∑m
i=1 ci = n, define

d0 := 0, dk :=
k∑
i=1

ci ∀k ∈ [m],

A(c) := {(A1, A2, . . . , Am) : {Ai}i∈[m] is a partition of [n], |Ai| = ci}.

Given (A1, . . . , Am) ∈ A(c), define the inversion number of (A1, . . . , Am) as follows,

l((A1, . . . , Am)) :=

|{(x, y) : x > y and there exists i < j such that x ∈ Ai, y ∈ Aj}| .

Let ai be the vector which consists of the numbers in Ai in increasing order. There

exists a bijection fc between Sn and A(c) × Sc1 × Sc2 × · · · × Scm such that, for any

π ∈ Sn, fc(π) = ((A1, A2, . . . , Am), τ1, τ2, . . . , τm) if and only if

{π(j) : j ∈ Ai} = {di−1 + 1, di−1 + 2, . . . , di}, πai = τi, ∀i ∈ [m].

From the definition above, it is not hard to see that the following relation holds,

l(π) = l((A1, A2, . . . , Am)) +
m∑
i=1

l(τi). (3.6)

Define the random variable Xc which takes value in A(c) such that

P(Xc = (A1, A2, . . . , Am)) ∝ ql((A1,A2,...,Am)).

Independent of Xc, let Y1, Y2, . . . , Ym be independent random variables such that, for

any i ∈ [m], Yi ∼ µci,q. Define Z := f−1
c (Xc, Y1, Y2, . . . , Ym). By (3.6), we have

Z ∼ µn,q, since

P(Z = π) ∝ ql(π).

As our last step in preparation for the proof of Lemma 3.3.4, we introduce the

following elementary result in analysis.
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Lemma 3.3.3. Suppose {Bi}∞i=1 is a partition of N, i.e.∪∞i=1Bi = N and Bi ∩ Bj =

∅, ∀i 6= j. Moreover, each Bi is a finite nonempty set. Given a sequence {xi}∞i=1, if

limn→∞ xbn = a, for any sequence {bi}∞i=1 with bi ∈ Bi, then we have limn→∞ xn = a.

Proof. We prove the lemma by contradiction. Suppose limn→∞ xn = a does not hold.

Then there exists ε > 0 and a subsequence {xnj}∞j=1 such that xnj /∈ (a − ε, a + ε) for

all j. Since each Bi is a finite set, without loss of generality, we may assume that each

Bi contains at most one nj. Then, we can construct a sequence {bi}∞i=1 with bi ∈ Bi,

such that xbi /∈ (a−ε, a+ε) infinitely often. Specifically, we define the sequence {bi}∞i=1

as follows. For each i, if there exists an nj ∈ Bi, let bi = nj, otherwise, let bi be an

arbitrary number in Bi. Thus, we get the contradiction.

For any π, τ ∈ Sn, define z(π, τ) := {(π(i)
n
, τ(i)
n

)}i∈[n]. Let lR(π, τ) denote the

length of the longest increasing subsequence of z(π, τ) within R. The following lemma

addresses the size of the LIS of z(π, τ) in a small rectangle and this result will be the

most crucial building block used to show both the upper and lower bounds in Theorem

3.

Lemma 3.3.4. Let R = (x1, x2]× (y1, y2] ⊂ [0, 1]× [0, 1]. Under the same conditions

as in Lemma 2.3.1, if ∆x|β| < ln 2 , we have

lim
n→∞

Pn

(
lR(π, τ)√
nρ(R)

∈
(

2e−∆x|β|/2 − ε, 2e∆x|β|/2 + ε
))

= 1, (3.7)

for any ε > 0, where ρ(R) :=
∫∫

R
ρ(x, y) dxdy and ∆x := x2 − x1.

Proof. To simplify the proof, we divide the lemma into the following three cases:

Case 1: β > 0 or β = 0 and qn ≤ 1 when n is sufficiently large.

Case 2: β < 0 or β = 0 and qn ≥ 1 when n is sufficiently large.

Case 3: β = 0.
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Firstly, Case 3 follows from Case 1 and Case 2 because if limn→∞ n(1− qn) = 0, we can

divide the sequence {qn}∞n=1 into two disjoint subsequences such that one of them falls

into Case 1 and the other falls into Case 2.

Next we argue that Case 2 follows from Case 1. If π ∼ µn,q, by Lemma 1.1.4, we

have πr ∼ µn,1/q. Trivially, for any π, τ ∈ Sn, we have z(π, τ) = z(πr, τ r). Since

limn→∞ n(1− qn) = β ∈ R, we have limn→∞ qn = 1. Hence,

lim
n→∞

n(1− 1/qn) = lim
n→∞

n(qn − 1)/qn = −β.

Therefore, Case 2 follows from Case 1 by considering the reversal of π and τ in (3.7).

Specifically, if π ∼ µn,qn and τ ∼ µn,q′n , after reversing, we have πr ∼ µn,1/qn and

τ r ∼ µn,1/q′n and the n points induced by π and τ do not change, i.e., z(π, τ) = z(πr, τ r).

To prove Case 1, in the following, we assume x1, y1 > 0 and x2, y2 < 1. The proofs for

the cases when x1 = 0 or y1 = 0 or x2 = 1 or y2 = 1 are similar.

Let x3 = y3 = 1. Given n ∈ N, we will sample (π, τ) according to Pn by the method

introduced before Lemma 3.3.3. Define

dn,i := bnxic, cn,i := dn,i − dn,i−1, for i = 1, 2, 3,

d′n,i := bnyic, c′n,i := d′n,i − d′n,i−1, for i = 1, 2, 3.

Here we assume that dn,0 = d′n,0 = 0. Then, it is trivial that

dn,i = |{j ∈ [n] : j
n
∈ (0, xi]}|, cn,2 = |{j ∈ [n] : j

n
∈ (x1, x2]}|,

d′n,i = |{j ∈ [n] : j
n
∈ (0, yi]}|, c′n,2 = |{j ∈ [n] : j

n
∈ (y1, y2]}|.

Since limn→∞
bnxc
n

= x, ∀x ∈ R, it follows that limn→∞
dn,i
n

= xi. Hence

lim
n→∞

cn,2
n

= x2 − x1 = ∆x. (3.8)

Next, for any nonnegative integer i, define Bi := {n ∈ N : cn,2 = i}. Clearly, {Bi}∞i=0

thus defined is a partition of N and we show that each Bi is a nonempty finite set.

Since, by (3.8), limn→∞ cn,2 = ∞, we conclude that each Bi is a finite set. From the

definition of dn,i, it is easily seen that the sequence {dn,1} is nondecreasing and the

65



increment of consecutive terms is either 0 or 1. The same is true for the sequence

{dn,2}. Hence, we have

|cn+1,2 − cn,2| = |dn+1,2 − dn,2 − (dn+1,1,−dn,1)| ≤ 1.

Since c1,2 ∈ B0 and limn→∞ cn,2 =∞, the inequality above guarantees that each Bi is

nonempty.

Next, define cn = (cn,1, cn,2, cn,3) and c′n = (c′n,1, c
′
n,2, c

′
n,3). Define Xcn which

takes values in A(cn) such that

P(Xcn = (A1, A2, A3)) ∝ ql((A1,A2,A3))
n , ∀(A1, A2, A3) ∈ A(cn).

Independently, define three independent random variables Yn,1, Yn,2, Yn,3 such that

Yn,i ∼ µcn,i,qn . Independent of all the variables defined above, define Xc′n and Y ′n,1,

Y ′n,2, Y ′n,3 in the same fashion. That is, Xc′n takes value in A(c′n) with

P(Xc′n = (A′1, A
′
2, A

′
3)) ∝ (q′n)l((A

′
1,A
′
2,A
′
3)), ∀(A′1, A′2, A′3) ∈ A(c′n)

and Y ′n,1, Y
′
n,2, Y

′
n,3 are three independent random variables with Y ′n,i ∼ µc′n,i,q′n . Define

π := f−1
cn (Xcn , Yn,1, Yn,2, Yn,3), τ := f−1

c′n
(Xc′n , Y

′
n,1, Y

′
n,2, Y

′
n,3).

From the discussion before Lemma 3.3.3, it follows that (π, τ) thus defined has distri-

bution Pn. Moreover, given Xcn = (A1, A2, A3) and Xc′n = (A′1, A
′
2, A

′
3), we have

A2 =
{
i ∈ [n] : π(i)

n
∈ (x1, x2]

}
, A′2 =

{
i ∈ [n] : τ(i)

n
∈ (y1, y2]

}
.

Hence, we have

A2 ∩ A′2 =
{
i ∈ [n] :

(
π(i)
n
, τ(i)
n

)
∈ R

}
. (3.9)

Define M = |z(π, τ) ∩ R|, i. e.M denotes the number of points {(π(i)
n
, τ(i)
n

)}ni=1 within

R. Then, by (3.9), we have M = |A2 ∩ A′2|. Hence, M only depends on the values

of Xcn and Xc′n and is independent of ∪i∈[3]{Yn,i, Y ′n,i}. Next, we point out that,

conditioning on Xcn = (A1, A2, A3) and Xc′n = (A′1, A
′
2, A

′
3), lR(π, τ) is determined by

Yn,2 and Y ′n,2. To see this, we first define a new function I as follows, given any finite
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set A ⊂ Z and any a ∈ A, define I(A, a) := k if a is the k-th smallest number in A.

Suppose A2 ∩ A′2 = {aj}j∈[M ] with a1 < a2 < · · · < aM . Define b ∈ Q(cn,2,M) and

b′ ∈ Q(c′n,2,M) by

b := (I(A2, a1), I(A2, a2), . . . , I(A2, aM)),

b′ := (I(A′2, a1), I(A′2, a2), . . . , I(A′2, aM)).
(3.10)

Note that b and b′ are determined by A2 and A′2. Then, we have

lR(π, τ) = LIS((Yn,2)b, (Y
′
n,2)b′). (3.11)

Because, conditioning on Xcn = (A1, A2, A3), we know that {π(i) : i ∈ A2} = {dn,1 +

1, dn,1 +2, . . . , dn,2}. The value of Yn,2 determines the relative ordering of π(i) for those

i ∈ A2. Similarly, the value of Y ′n,2 determines the relative ordering of τ(i) for those

i ∈ A′2.

Now we are in the position to prove (3.7) for Case 1. From the discussion above and

Lemma 3.3.3, it suffices to show that, for any sequence {sn}∞n=1 with sn ∈ Bn, i.e.,

when csn,2 = n, we have

lim
n→∞

Psn

(
lR(π, τ)√
snρ(R)

∈
(

2e−∆xβ/2 − ε, 2e∆xβ/2 + ε
))

= 1, (3.12)

for any ε > 0. Note that by the definition of Psn in Lemma 2.3.1, π and τ above are of

size sn with π ∼ µsn,qsn , τ ∼ µsn,q′sn .

We separate the proof of (3.12) into two parts. Specifically, we need to show

that

lim
n→∞

Psn

(
lR(π, τ)√
snρ(R)

< 2e∆xβ/2 + ε

)
= 1, (3.13)

and

lim
n→∞

Psn

(
lR(π, τ)√
snρ(R)

> 2e−∆xβ/2 − ε

)
= 1, (3.14)

for any ε > 0.

Since {sn}n≥1 is a subsequence of {i}i≥0, limn→∞ sn =∞. Hence, by (3.8) and the fact

that csn,2 = n, we get

lim
n→∞

n

sn
= lim

n→∞

csn,2
sn

= ∆x.
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Thus,

lim
n→∞

n(1− qsn) = lim
n→∞

n

sn
sn(1− qsn) = ∆xβ < ln 2. (3.15)

To prove (3.13), for any ε > 0, we can choose ε1 > 0 sufficiently small such that

(1− ε1)(2e∆xβ/2 + ε) > 2e∆xβ/2. (3.16)

For this fixed ε1, we can choose δ > 0 such that√
ρ(R)

ρ(R) + δ
> 1− ε1. (3.17)

Given n ∈ N, define kn = bsn(ρ(R) + δ)c. Clearly, we have limn→∞ kn =∞. Moreover,

under the conditions of Case 1, qn ≤ 1 for sufficiently large n. Hence, by Lemma 3.3.2,

(3.15) and (3.16), there exists N1 > 0 such that, for any n > N1, we have

min
b∈Q(n,kn)

µn,qsn

(
η ∈ Sn : LIS(ηb)√

kn
< (1− ε1)

(
2e∆xβ/2 + ε

))
> 1− ε. (3.18)

Given b ∈ Q(n, kn), for any b′ which is a subsequence of b, we have LIS(ηb) ≥ LIS(ηb′).

Thus we can make (3.18) stronger as follows,

min
b∈Q̄(n,kn)

µn,qsn

(
η ∈ Sn : LIS(ηb)√

kn
< (1− ε1)

(
2e∆xβ/2 + ε

))
> 1− ε, (3.19)

where Q̄(n, kn) = ∪i∈[kn]Q(n, i). Since limn→∞ sn =∞, we have

lim
n→∞

sn(1− qsn) = β and lim
n→∞

sn(1− q′sn) = γ. (3.20)

Hence, by Lemma 2.3.1, there exists N2 > 0 such that, for any n > N2, we have

Psn
(
|z(π, τ) ∩R|

sn
≤ ρ(R) + δ

)
> 1− ε. (3.21)

In the following, let En(A2, A
′
2) denote the event that the second entries of Xcsn and

Xc′sn
are A2 and A′2 respectively. Then, for any n > max(N1, N2), we have

Psn
(

lR(π,τ)√
snρ(R)

< 2e∆xβ/2 + ε
)

≥
∑

|A2∩A′2|≤kn

P
(

lR(π,τ)√
snρ(R)

< 2e∆xβ/2 + ε
∣∣ En(A2, A

′
2)
)
× P(En(A2, A

′
2))
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=
∑

|A2∩A′2|≤kn

P
(

LIS((Ysn,2)b, (Y ′sn,2)b′ )√
snρ(R)

< 2e∆xβ/2 + ε
∣∣ En(A2, A

′
2)
)

× P(En(A2, A
′
2))

=
∑

|A2∩A′2|≤kn

P
(

LIS((Ysn,2)b, (Y ′sn,2)b′ )√
snρ(R)

< 2e∆xβ/2 + ε
)
× P(En(A2, A

′
2))

≥
∑

|A2∩A′2|≤kn

µn,qsn

(
LIS(ηb)√
snρ(R)

< 2e∆xβ/2 + ε
)
× P(En(A2, A

′
2))

=
∑

|A2∩A′2|≤kn

µn,qsn

(
LIS(ηb)√
sn(ρ(R)+δ)

<

√
ρ(R)√
ρ(R)+δ

(2e∆xβ/2 + ε)
)

× P(En(A2, A
′
2))

≥
∑

|A2∩A′2|≤kn

µn,qsn

(
LIS(ηb)√

kn
< (1− ε1)(2e∆xβ/2 + ε)

)
× P(En(A2, A

′
2))

≥ (1− ε)×
∑

|A2∩A′2|≤kn

P(En(A2, A
′
2))

= (1− ε)× Psn
(
|z(π, τ) ∩R| ≤ kn

)
= (1− ε)× Psn

(
|z(π, τ) ∩R| ≤ sn(ρ(R) + δ)

)
> (1− ε)2.

Here P denotes the probability space on which (Xcsn , Ysn,1, Ysn,2, Ysn,3) and

(Xc′sn
, Y ′sn,1, Y

′
sn,2, Y

′
sn,3) are defined. The first equality follows by (3.11). The second

equality follows by independence of (Xcsn , Xc′sn
) and (Ysn,2, Y

′
sn,2). Note that b and b′

are determined by A2 and A′2 as in (3.10). The second inequality follows by Lemma

3.2.11, since Ysn,2 and Y ′sn,2 are independent with Ysn,2 ∼ µn,qsn . The third inequality

follows by (3.17) and the fact that kn = bsn(ρ(R) + δ)c ≤ sn(ρ(R) + δ). The fourth

inequality follows by (3.19) and the fact that the dimension of b equals to |A2 ∩ A′2|.

The last inequality follows by (3.21). Hence, (3.13) follows.

The proof of (3.14) is analogous to the proof of (3.13). First, by (3.15) and the

fact that limn→∞ qn = 1, we have

lim
n→∞

n(1− 1/qsn) = lim
n→∞

n(qsn − 1)

qsn
= −∆xβ. (3.22)
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For any ε > 0, we can choose ε1 > 0 sufficiently small such that

(1 + ε1)(2e−∆xβ/2 − ε) < 2e−∆xβ/2. (3.23)

For this fixed ε1, we can choose δ > 0 such that√
ρ(R)

ρ(R)− δ
< 1 + ε1. (3.24)

Given n ∈ N, define k′n = dsn(ρ(R)− δ)e. Clearly, we have limn→∞ k
′
n =∞. Moreover,

under conditions of Case 1, 1/qn ≥ 1 for sufficiently large n. Hence, by Lemma 3.3.1,

(3.22) and (3.23), there exist N3 > 0 such that, for any n > N3, we have

min
b∈Q(n,k′n)

µn,1/qsn

(
η ∈ Sn : LIS(ηb)√

k′n
> (1 + ε1)

(
2e−∆xβ/2 − ε

))
> 1− ε. (3.25)

Given b ∈ Q(n, k′n), for any b′ such that b is a subsequence of b′, we have LIS(ηb) ≤

LIS(ηb′). Thus we can make (3.25) stronger as follows,

min
b∈Q̂(n,k′n)

µn,1/qsn

(
η ∈ Sn : LIS(ηb)√

k′n
> (1 + ε1)

(
2e−∆xβ/2 − ε

))
> 1− ε, (3.26)

where Q̂(n, k′n) = ∪k′n≤i≤nQ(n, i).

By (3.20) and Lemma 2.3.1, there exists N4 > 0 such that, for any n > N4, we have

Psn
(
|z(π, τ) ∩R|

sn
≥ ρ(R)− δ

)
> 1− ε. (3.27)

Again, let En(A2, A
′
2) denote the event that the second entries of Xcsn and Xc′sn

are

A2 and A′2 respectively. Then, for any n > max(N3, N4), we have

Psn
(

lR(π,τ)√
snρ(R)

> 2e−∆xβ/2 − ε
)

≥
∑

|A2∩A′2|≥kn

P
(

lR(π,τ)√
snρ(R)

> 2e−∆xβ/2 − ε
∣∣ En(A2, A

′
2)
)
× P(En(A2, A

′
2))

=
∑

|A2∩A′2|≥k′n

P
(

LIS((Ysn,2)b, (Y ′sn,2)b′ )√
snρ(R)

> 2e−∆xβ/2 − ε
∣∣ En(A2, A

′
2)
)

× P(En(A2, A
′
2))

=
∑

|A2∩A′2|≥k′n

P
(

LIS((Ysn,2)b, (Y ′sn,2)b′ )√
snρ(R)

> 2e−∆xβ/2 − ε
)
× P(En(A2, A

′
2))

70



≥
∑

|A2∩A′2|≥k′n

µn,1/qsn

(
LIS(ηb̄)√
snρ(R)

> 2e−∆xβ/2 − ε
)
× P(En(A2, A

′
2))

=
∑

|A2∩A′2|≥k′n

µn,1/qsn

(
LIS(ηb̄)√
sn(ρ(R)−δ)

>

√
ρ(R)√
ρ(R)−δ

(2e−∆xβ/2 − ε)
)

× P(En(A2, A
′
2))

≥
∑

|A2∩A′2|≥k′n

µn,1/qsn

(
LIS(ηb̄)√

k′n
> (1 + ε1)(2e−∆xβ/2 − ε)

)
× P(En(A2, A

′
2))

≥ (1− ε)×
∑

|A2∩A′2|≥k′n

P(En(A2, A
′
2))

= (1− ε)× Psn
(
|z(π, τ) ∩R| ≥ k′n

)
= (1− ε)× Psn

(
|z(π, τ) ∩R| ≥ sn(ρ(R)− δ)

)
> (1− ε)2.

Here P denotes the probability space on which (Xcsn , Ysn,1, Ysn,2, Ysn,3) and

(Xc′sn
, Y ′sn,1, Y

′
sn,2, Y

′
sn,3) are defined. The first equality follows by (3.11). The second

equality follows by independence of (Xcsn , Xc′sn
) and (Ysn,2, Y

′
sn,2). The second inequal-

ity follows by Lemma 3.2.13, since Ysn,2 and Y ′sn,2 are independent with Ysn,2 ∼ µn,qsn .

The third inequality follows by (3.24) and the fact that k′n = dsn(ρ(R) − δ)e ≥

sn(ρ(R) − δ). The fourth inequality follows by (3.26) and the fact that b̄ has the

same dimension as of b which equals to |A2∩A′2|. The last inequality follows by (3.27).

Hence, (3.14) follows and this completes the proof of Lemma 3.3.4.

The following lemma establishes certain degree of smoothness of the densities u

and ρ defined in Lemma 2.3.1.

Lemma 3.3.5. The density functions u(x, y, β) defined in (1.3) and ρ(x, y) defined in

(1.6) satisfy the following,

(a) e−|β| ≤ u(x, y, β) ≤ e|β|, e−|β|−|γ| ≤ ρ(x, y) ≤ e|β|+|γ|,

(b) u(x, y, β) ∈ C1
b , ρ(x, y) ∈ C1

b ,

(c) max
(∣∣∂u

∂x

∣∣, ∣∣∂u
∂y

∣∣) ≤ |β|e|β|,
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(d) max
(∣∣ ∂ρ

∂x

∣∣, ∣∣∂ρ
∂y

∣∣) ≤ (|β|+ |γ|)e|β|+|γ|,

where (x, y) ∈ [0, 1]× [0, 1].

Proof. First we show that e−|β| ≤ u(x, y, β) ≤ e|β| for any 0 ≤ x, y ≤ 1. Here we

assume β > 0. The proof for the case when β < 0 is similar. By (1.3), we have

u(x, y, β) =
(β/2) sinh(β/2)

(eβ/4 cosh(β[x− y]/2)− e−β/4 cosh(β[x+ y − 1]/2))
2

=
β(eβ − 1)

(2eβ/2 cosh(β[x− y]/2)− 2 cosh(β[x+ y − 1]/2))
2 . (3.28)

Since −1 ≤ x− y ≤ 1 and −1 ≤ x+ y − 1 ≤ 1, we have

2eβ/2 ≤ 2eβ/2 cosh(β[x− y]/2) ≤ eβ + 1, (3.29)

2 ≤ 2 cosh(β[x+ y − 1]/2) ≤ eβ/2 + e−β/2. (3.30)

Since eβ/2 + e−β/2 < 2eβ/2, from (3.29) and (3.30), we have

eβ/2 − e−β/2 ≤ 2eβ/2 cosh(β[x− y]/2)− 2 cosh(β[x+ y − 1]/2) ≤ eβ − 1. (3.31)

By (3.28) and (3.31), it follows that

β

eβ − 1
≤ u(x, y, β) ≤ β(eβ − 1)

(eβ/2 − e−β/2)2
. (3.32)

It is easily verified that

β

eβ − 1
≥ e−β ⇐⇒ e−β ≥ 1− β, (3.33)

β(eβ − 1)

(eβ/2 − e−β/2)2
≤ eβ ⇐⇒ (eβ − 1)(eβ − 1− β) ≥ 0. (3.34)

By the inequality ex ≥ 1 + x, the right-hand side of (3.33) and (3.34) hold. It follows

from (3.32) and the left-hand side of (3.33) and (3.34) that

e−β ≤ u(x, y, β) ≤ eβ, ∀ 0 ≤ x, y ≤ 1.

By the definition of ρ(x, y), it follows trivially that

e−|β|−|γ| ≤ ρ(x, y) ≤ e|β|+|γ|, ∀ 0 ≤ x, y ≤ 1.
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In [26], Starr shows that ∂2 lnu(x,y,β)
∂x∂y

= 2βu(x, y, β). Thus∫ x

0

u(t, y, β) dt =
1

2β

(
∂ lnu(x, y, β)

∂y
− ∂ lnu(0, y, β)

∂y

)
. (3.35)

By direct calculation, we have u(1, y, β) = βeβy

eβ−1
, u(0, y, β) = βe−βy

1−e−β . Therefore, we get

∂ lnu(1,y,β)
∂y

= β and ∂ lnu(0,y,β)
∂y

= −β. By (3.35), it follows that

∂u(x, y, β)

∂y
= 2βu(x, y, β)

(∫ x

0

u(t, y, β) dt− 1

2

)
, (3.36)

and ∫ x

0

u(t, y, β) dt ≤
∫ 1

0

u(t, y, β) dt = 1. (3.37)

From (3.36) and (3.37), we get∣∣∣∣∂u∂y
∣∣∣∣ ≤ |β|u(x, y, β) ≤ |β|e|β|. (3.38)

Since u(x, y, β) is uniformly continuous on [0, 1]×[0, 1],
∫ x

0
u(t, y, β) dt is also continuous

on [0, 1]×[0, 1]. Hence, by (3.36), ∂u
∂y

is bounded and continuous on [0, 1]×[0, 1]. Similar

argument can be made for ∂u
∂x

. Thus we have shown that u(x, y, β) ∈ C1
b and

max

(∣∣∣∂u
∂x

∣∣∣, ∣∣∣∂u
∂y

∣∣∣) ≤ |β|e|β|.
Next, since

∣∣∂u(x,t,β)
∂x

· u(t, y, γ)
∣∣ ≤ |β|e|β|+|γ| for any 0 ≤ x, y, t ≤ 1, by dominated

convergence theorem, we have

∂ρ(x, y)

∂x
=

∂

∂x

(∫ 1

0

u(x, t, β)u(t, y, γ) dt
)

=

∫ 1

0

∂u(x, t, β)

∂x
u(t, y, γ) dt. (3.39)

Hence,
∣∣ ∂ρ
∂x

∣∣ ≤ |β|e|β|+|γ|. Moreover, ∂u(x,t,β)
∂x
·u(t, y, γ) as a function of x, y, t is uniformly

continuous on [0, 1]× [0, 1]× [0, 1]. Thus, by (3.39), ∂ρ
∂x

is continuous on [0, 1]× [0, 1].

By a similar argument, it can be shown that ∂ρ
∂y

is continuous on [0, 1] × [0, 1], and∣∣∂ρ
∂y

∣∣ ≤ |γ|e|β|+|γ|. Therefore, ρ(x, y) ∈ C1
b and

max

(∣∣∣∂ρ
∂x

∣∣∣, ∣∣∣∂ρ
∂y

∣∣∣) ≤ (|β|+ |γ|)e|β|+|γ|.
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The next lemma shows that for any non-decreasing curve in the unit square,

in a strip of small width around it, with probability approaching to 1, there exists an

increasing subsequence whose length can be bounded from below. The proof of Lemma

3.3.7 uses similar arguments as in the proof of Lemma 8 in [12]. Before stating the

lemma, we need the following notation.

Definition 3.3.6. Let B↗ be the set of nondecreasing, right continuous functions φ :

[0, 1] → [0, 1]. For φ ∈ B↗, we have φ(x) =
∫ x

0
φ̇(t) dt + φs(x), where φs is singular

and has a zero derivative almost everywhere. Define function J : B↗ → R,

J(φ) :=

∫ 1

0

√
φ̇(x)ρ(x, φ(x)) dx and J̄ := sup

φ∈B↗
J(φ).

Here ρ(x, y) is the density defined in (1.6).

Remark. By Theorems 3 and 4 in [12] it follows from Lemma 3.3.5 (a) and (b), that

sup
φ∈B↗

J(φ) = sup
φ∈B1

↗

J(φ),

where B1
↗ is defined in Theorem 3. Hence we use the same notation J̄ to denote the

supremum over B↗.

Lemma 3.3.7. Under the same conditions as in Theorem 3, for any φ ∈ B1
↗ and any

δ, ε > 0, define the event

En :=
{

(π, τ) ∈ Sn × Sn : ∃ an increasing subsequence of
{(π(i)

n
, τ(i)
n

)}
i∈[n]

which is wholly contained in the δ neighborhood of φ(·)

and the length of which is greater than 2J(φ)(1− ε)
√
n
}
.

Here we say a point (x, y) is in the δ neighborhood of φ if φ(x) − δ < y < φ(x) + δ.

Then

lim
n→∞

Pn(En) = 1.
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Proof. Given δ, ε > 0, fix an integer K. Let ∆x := 1/K. Let xi := i∆x and yi := φ(xi)

for i ∈ [K]. Let x0 := 0, y0 := 0. Define the rectangles Ri := [xi−1, xi] × [yi−1, yi] for

i ∈ [K]. Since φ is in C1
b , for any 0 < δ′ < 1, we can choose K large enough such that

max
i

(yi − yi−1) < δ, e−∆x|β|/2 > 1− δ′, ∆x|β| < ln 2 (3.40)

max
i

max
x,y∈Ri

max

(
ρ(x, y)

ρ(xi, yi)
,
ρ(xi, yi)

ρ(x, y)

)
<

1

1− δ′
, (3.41)

and
K∑
i=1

√
ρ(xi, yi)(yi − yi−1)∆x > (1− δ′)J(φ). (3.42)

(3.41) follows from the uniform continuity of ρ(x, y) on [0, 1]× [0, 1] and the fact that

ρ(x, y) is bounded away from 0, which is proved in Lemma 3.3.5 (a). (3.42) follows

since

lim
K→∞

K∑
i=1

√
ρ(xi, yi)(yi − yi−1)∆x

= lim
K→∞

K∑
i=1

√
ρ(xi, yi)

yi − yi−1

xi − xi−1

∆x

= J(φ).

Here the last equality follows from the definition of Riemann integral, the mean value

theorem and the fact that φ ∈ C1
b .

Next, for any i ∈ [K], define ρ(Ri) :=
∫∫

Ri
ρ(x, y) dxdy. By (3.41), we have

ρ(Ri)

1− δ′
> ρ(xi, yi)(yi − yi−1)∆x.

Hence, for any i ∈ [K], we have

lRi(π, τ)

2
√
nρ(xi, yi)(yi − yi−1)∆x

≥ lRi(π, τ)
√

1− δ′

2
√
nρ(Ri)

. (3.43)

By fixing the ε in Lemma 3.3.4 to be 2δ′, we have

lim
n→∞

Pn

(
lRi(π, τ)√
nρ(Ri)

> 2e−∆x|β|/2 − 2δ′

)
= 1. (3.44)
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Moreover,

Pn

(
lRi(π, τ)

2
√
nρ(xi, yi)(yi − yi−1)∆x

> (1− 2δ′)
√

1− δ′
)

(3.45)

≥ Pn

(
lRi(π, τ)

2
√
nρ(Ri)

> 1− 2δ′

)

≥ Pn

(
lRi(π, τ)√
nρ(Ri)

> 2e−∆x|β|/2 − 2δ′

)
.

The first inequality follows by (3.43), and the second inequality follows by (3.40), since

2e−∆x|β|/2 − 2δ′ > 2(1− δ′)− 2δ′ = 2(1− 2δ′).

Hence, by (3.44) and (3.45), we get

lim
n→∞

Pn

(
lRi(π, τ)

2
√
nρ(xi, yi)(yi − yi−1)∆x

> (1− 2δ′)
√

1− δ′
)

= 1, (3.46)

for any i ∈ [K].

Note that by concatenating the increasing subsequences of
{(π(i)

n
, τ(i)
n

)}
i∈[n]

in each

Ri we get a increasing subsequence in [0, 1] × [0, 1] which is wholly contained in a

δ neighborhood of φ. Combining (3.42) and (3.46), it follows that, with probability

converging to 1 as n → ∞, there exists an increasing subsequence of
{(

π(i)
n
, τ(i)
n

)}
i∈[n]

in a δ neighborhood of φ whose length is at least

K∑
i=1

2
√
n(1− 2δ′)

√
1− δ′

√
ρ(xi, yi)(yi − yi−1)∆x > 2

√
n(1− 2δ′)(1− δ′)

3
2J(φ).

The lemma follows since we can choose δ′ small enough in the first place such that

(1− 2δ′)(1− δ′) 3
2 > 1− ε.

Definition 3.3.8. Given K,L ∈ N and multi-indices b = (b0, b1, . . . , bK) such that

0 = b0 ≤ b1 ≤ · · · ≤ bK = KL − 1, for any i ∈ [K], define the rectangle Ri :=

((i − 1)∆x, i∆x] × (bi−1∆y, (bi + 1)∆y], where ∆x := 1
K

and ∆y := 1
KL

. Let Mi :=

sup(x,y)∈Ri ρ(x, y) and mi := inf(x,y)∈Ri ρ(x, y). Define

JK,Lb :=
K∑
i=1

√
Mi(bi − bi−1 + 1)∆x∆y.
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Lemma 3.3.9.

lim
K→∞
L→∞

max
b
JK,Lb ≤ J̄

where J̄ is defined in Definition 3.3.6, and the maximum is taken over all

b = (b0, b1, . . . , bK) such that 0 = b0 ≤ b1 ≤ · · · ≤ bK = KL− 1.

Proof. Let M be an upper bound of ρ(x, y). In the context of Definition 3.3.8, let φb(x)

be the piecewise linear function on [0, 1] such that φb(i∆x) = bi∆y, i = 0, 1, . . . , K.

From the two definitions above, we have

J(φb) =

∫ 1

0

√
φ̇b(x)ρ(x, φb(x)) dx (3.47)

=
K∑
i=1

∫ i∆x

(i−1)∆x

√
φ̇b(x)ρ(x, φb(x)) dx

=
K∑
i=1

∫ i∆x

(i−1)∆x

√
(bi − bi−1)∆y

∆x
· ρ(x, φb(x)) dx

≥
K∑
i=1

∫ i∆x

(i−1)∆x

√
(bi − bi−1)∆y

∆x
·mi dx

=
K∑
i=1

√
mi(bi − bi−1)∆x∆y

≥
K∑
i=1

√
Mi(bi − bi−1)∆x∆y −

K∑
i=1

√
(Mi −mi)(bi − bi−1)∆x∆y.

Here the last inequality follows since, for a, b ≥ 0,
√
a+
√
b ≥
√
a+ b. Moreover,

K∑
i=1

√
Mi(bi − bi−1)∆x∆y (3.48)

= JK,Lb −
K∑
i=1

(√
Mi(bi − bi−1 + 1)∆x∆y −

√
Mi(bi − bi−1)∆x∆y

)
= JK,Lb −

K∑
i=1

Mi∆x∆y√
Mi(bi − bi−1 + 1)∆x∆y +

√
Mi(bi − bi−1)∆x∆y

≥ JK,Lb −
K∑
i=1

Mi∆x∆y√
Mi(bi − bi−1 + 1)∆x∆y

≥ JK,Lb −
K∑
i=1

Mi∆x∆y√
Mi∆x∆y
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≥ JK,Lb −
√
M

K∑
i=1

√
∆x∆y

= JK,Lb −
√
M

L
.

Next, define

D1(b) := {i ∈ [K] : (bi − bi−1 + 1)∆y ≤ 3
√

∆x},

D2(b) := {i ∈ [K] : (bi − bi−1 + 1)∆y >
3
√

∆x}.

For i ∈ D1(b), the height of Ri is no greater than 3
√

∆x, and for i ∈ D2(b), the height

of Ri is greater than 3
√

∆x. To bound the cardinality of D2(b), we have

|D2(b)| 3
√

∆x ≤
∑

i∈D2(b)

(bi − bi−1 + 1)∆y (3.49)

≤
∑

i∈D2(b)

(bi − bi−1)∆y + |D2(b)|∆y

≤
K∑
i=1

(bi − bi−1)∆y +K∆y

≤ 1 +
1

L

≤ 2.

Given ε > 0, by the uniform continuity of ρ(x, y) on [0, 1]× [0, 1], there exists K0 > 0

such that, for any K > K0 and any i ∈ D1(b), we have Mi − mi < ε2. We can also

choose K0 sufficiently large such that, for any K > K0,

2
√
M(∆x)

1
6 < ε. (3.50)

Thus, for any K > K0, we have

K∑
i=1

√
(Mi −mi)(bi − bi−1)∆x∆y (3.51)

≤
∑

i∈D1(b)

√
ε2(bi − bi−1)∆x∆y +

∑
i∈D2(b)

√
M(bi − bi−1)∆x∆y
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≤ ε
K∑
i=1

√
(bi − bi−1)∆x∆y +

∑
i∈D2(b)

√
M∆x

≤ ε
√∑K

i=1 ∆x

√∑K
i=1(bi − bi−1)∆y + 2

√
M(∆x)

1
6

<ε+ ε.

Here the second to last inequality follows by Cauchy-Schwarz inequality and (3.49).

Let L0 :=
⌈
M
ε2

⌉
. By combining (3.47), (3.48) and (3.51), we get, for any K > K0,

L > L0 and any b,

JK,Lb ≤ J(φb) +

√
M

L
≤ J(φb) + 3ε ≤ J̄ + 3ε.

Here the last inequality follows from the fact that φb ∈ B↗ and Definition 3.3.6.

Definition 3.3.10. In the context of Definition 3.3.8, we call a sequence of points

(z1, . . . , zm) with zi = (xi, yi) a b-increasing sequence if the following two conditions

are satisfied.

(a) (z1, . . . , zm) is an increasing sequence, that is xi < xi+1 and yi < yi+1 for all

i ∈ [m− 1].

(b) Every point in the sequence is contained in some rectangle Rj with j ∈ [K]. In

other words, (j − 1)∆x < xi ≤ j∆x implies bj−1∆y < yi ≤ (bj + 1)∆y.

Given a collection of points z = {zi}i∈[n], let LISb(z) denote the length of the longest

b-increasing subsequence of z. That is

LISb(z) := max{m : ∃(i1, i2, . . . , im)

such that (zi1 , zi2 , . . . , zim) is a b-increasing sequence}.

Here we do not require ij < ij+1.

Lemma 3.3.11. Under the same conditions as in Lemma 2.3.1, for any δ > 0, there

exist K0, L0 such that, for any K > K0, L > L0 and any b = (b0, b1, . . . , bK) with

0 = b0 ≤ b1 ≤ · · · ≤ bK = KL− 1,

lim
n→∞

Pn
(
LISb(z(π, τ)) > 2

√
n(J̄ + δ)

)
= 0. (3.52)
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Here z(π, τ) :=
{(

π(i)
n
, τ(i)
n

)}
i∈[n]

.

Proof. Given δ > 0, by Lemma 3.3.9, there exist K1, L1 > 0 such that, for any K >

K1, L > L1 and any b = (b0, b1, . . . , bK) with 0 = b0 ≤ b1 ≤ · · · ≤ bK = KL − 1, we

have

JK,Lb < J̄ +
δ

2
.

Then, we get

Pn
(
LISb(z(π, τ)) > 2

√
n(J̄ + δ)

)
≤ Pn

(
LISb(z(π, τ)) > 2

√
n(JK,Lb + δ/2)

)
.

Hence, to show (3.52), it suffices to show that there exists K2, L2 such that, for any

K > K2, L > L2 and any b,

lim
n→∞

Pn
(

LISb(z(π, τ)) > 2
√
n(JK,Lb + δ/2)

)
= 0. (3.53)

Given K,L > 0, whose values are to be determined, and any b = (b0, . . . , bK) with

0 = b0 ≤ b1 ≤ · · · ≤ bK = KL− 1, we inherit all the notations introduced in Definition

3.3.8. Let lRi(π, τ) denote the length of the longest increasing subsequence of z(π, τ)

wholly contained in the rectangle Ri. For any i ∈ [K], define

Ei(b) :=
{

(π, τ) : lRi(π, τ) ≥ 2
√
n
(√

Mi(bi − bi−1 + 1)∆x∆y + δ∆x/2
)}
.

Since LISb(z(π, τ)) ≤
∑K

i=1 lRi(π, τ), we get{
LISb(z(π, τ)) > 2

√
n(JK,Lb + δ/2)

}
⊂
⋃
i∈[K]

Ei(b).

Hence, to show (3.53), it suffices to show

lim
n→∞

Pn(Ei(b)) = 0, ∀i ∈ [K]. (3.54)

Since e∆x|β|/2 − 1 = Θ(∆x), there exists K2 > 0 such that, for any K > K2, we have

e∆x|β|/2 < 1 +
δ
√

∆x

2
√
M

and ∆x|β| < ln 2. (3.55)
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Here M := sup0≤x,y≤1 ρ(x, y). Moreover, for any i ∈ [K],

Pn(Ei(b)) (3.56)

≤Pn
(
lRi(π, τ) ≥ 2

√
n
√
Mi(bi − bi−1 + 1)∆x∆y

(
1 + δ∆x

2
√
M∆x

))
≤Pn

(
lRi(π, τ) ≥ 2

√
nρ(Ri)

(
1 + δ

√
∆x

2
√
M

))
.

Here the first inequality follows since (bi − bi−1 + 1)∆y ≤ 1 and Mi ≤M . The second

one follows since

Mi(bi − bi−1 + 1)∆x∆y ≥
∫
Ri

ρ(x, y) dxdy = ρ(Ri).

Hence, combining (3.55), (3.56) and Lemma 3.3.4, we get, for any K > K2, L > 0 and

any b,

lim
n→∞

Pn(Ei(b)) = 0, ∀i ∈ [K].

Thus, (3.54) as well as the lemma follow.

Proof of Theorem 3. Lemma 1.1.4, if π ∼ µn,q, π
−1 has the same distribution µn,q.

Hence, if (π, τ) ∼ µn,q × µn,q′ , (π−1, τ−1) has the same distribution µn,q × µn,q′ . Thus,

by Corollary 3.1.4, to prove Theorem 3, it suffices to show

lim
n→∞

Pn
(∣∣∣∣ LIS(z(π, τ))√

n
− 2J̄

∣∣∣∣ < ε

)
= 1, (3.57)

for any ε > 0. Here we use the trivial fact that LIS(π, τ) = LIS(z(π, τ)).

By Lemma 3.3.7 and the definition of J̄ , we have

lim
n→∞

Pn
(

LIS(z(π, τ))√
n

> 2J̄ − ε
)

= 1. (3.58)

To show the upper bound in (3.57), note that, for any K,L > 0 and any increasing

sequence of points {(xj, yj)}j∈[n] with 0 < xj, yj ≤ 1, there exists a choice of b =

(b0, b1, . . . , bK) such that {(xj, yj)}j∈[n] is a b - increasing sequence. Specifically, we can

define b as follows. Let ∆x := 1
K
,∆y := 1

KL
.

• Define b0 := 0, bK := KL− 1.
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• For i ∈ [K − 1], define bi := bmax {yj : (i− 1)∆x < xj ≤ i∆x} ·KLc.

It can be easily verified that with b thus defined, every point (xj, yj) is in some rectangle

Ri, where Ri is defined in Definition 3.3.8. Hence, we get

Pn
(

LIS(z(π, τ))√
n

> 2J̄ + ε

)
(3.59)

=Pn
(

max
b

(
LISb(z(π, τ))

)
>
√
n
(
2J̄ + ε

))
≤
∑
b

Pn
(
LISb(z(π, τ)) >

√
n
(
2J̄ + ε

))
.

Here, the maximum and summation are taken over all possible b with 0 = b0 ≤ b1 ≤

· · · ≤ bK = KL− 1. By Lemma 3.3.11, we can choose K,L sufficiently large such that,

for any b,

lim
n→∞

Pn
(
LISb(z(π, τ)) >

√
n
(
2J̄ + ε

))
= 0.

Hence, by (3.59) and the fact that the number of different choices of b is bounded

above by (KL)K , we have

lim
n→∞

Pn
(

LIS(z(π, τ))√
n

> 2J̄ + ε

)
= 0. (3.60)

(3.57) follows from (3.58) and (3.60)

The following lemma let us solve for the supremum J̄ when the underlying

density ρ(x, y) satisfies ρ
(
x+y

2
, x+y

2

)
≥ ρ(x, y).

Lemma 3.3.12. Given a density ρ(x, y) on [0, 1] × [0, 1] such that ρ(x, y) is C1
b and

c < ρ(x, y) < C for some C, c > 0, if ρ(x, y) ≤ ρ
(
x+y

2
, x+y

2

)
for any 0 ≤ x, y ≤ 1, then

we have

J̄ =

∫ 1

0

√
ρ(x, x) dx,

i. e. the supremum of J(φ) on B↗ is attained for φ(x) = x.

Proof. By the remark following Definition 3.3.6, it suffices to show that, for any

φ ∈ B1
↗, we have

J(φ) ≤
∫ 1

0

√
ρ(x, x) dx. (3.61)
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Define gφ(x) := x+ φ(x). Since φ̇(x) ≥ 0, we have ġφ(x) ≥ 1. Next, we reparameterize

φ(x) as follows,

t :=
gφ(x)

2
=
x+ φ(x)

2
. (3.62)

Thus, we have x = g−1
φ (2t) and φ(x) = 2t−x = 2t−g−1

φ (2t) where t ∈ [0, 1]. Moreover,

since gφ(x) is strictly increasing, x is strictly increasing as a function of t. Hence we

have

ρ
(
x, φ(x)

)
= ρ
(
g−1
φ (2t), 2t− g−1

φ (2t)
)
≤ ρ(t, t). (3.63)

Here the last inequality follows since ρ(x, y) ≤ ρ
(
x+y

2
, x+y

2

)
. Next, by taking derivative

with respect to t on both sides of (3.62), we have

1 =
1

2

(
dx

dt
+ φ̇(x)

dx

dt

)
. (3.64)

By multiplying 2 dx
dt

on both sides of (3.64), we get

φ̇(x)

(
dx

dt

)2

= 2
dx

dt
−
(
dx

dt

)2

≤ 1. (3.65)

Hence, by (3.63) and (3.65), we have

J(φ) =

∫ 1

0

√
φ̇(x) ρ(x, φ(x)) dx

≤
∫ 1

0

√
φ̇(x) ρ(t, t) · dx

dt
dt

=

∫ 1

0

√
ρ(t, t) φ̇(x)

(
dx

dt

)2

dt

≤
∫ 1

0

√
ρ(t, t) dt.

Therefore, J̄ is attained for φ(x) = x.

Proof of Corollary 3. Note that in the special case where β = γ, the density ρ(x, y) in

(1.6) is given by

ρ(x, y) :=

∫ 1

0

u(x, t, β) · u(t, y, β) dt. (3.66)
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In this case, we will show that ρ(x, y) ≤ ρ
(
x+y

2
, x+y

2

)
for any 0 ≤ x, y ≤ 1. Hence, by

Lemma 3.3.5 and Lemma 3.3.12, J̄ defined in Theorem 3 is attained when φ(x) = x.

In fact, by direct calculation, it can be shown that

u(x, t, β) · u(t, y, β) ≤ u

(
x+ y

2
, t, β

)
· u
(
t,
x+ y

2
, β

)
, (3.67)

for any 0 ≤ x, y, t ≤ 1.

By the definition of u(x, y, β), we have

u(x, t, β) · u(t, y, β) (3.68)

=
(β/2) sinh(β/2)

(eβ/4 cosh(β[x− t]/2)− e−β/4 cosh(β[x+ t− 1]/2))
2

× (β/2) sinh(β/2)

(eβ/4 cosh(β[t− y]/2)− e−β/4 cosh(β[t+ y − 1]/2))
2

=
β(eβ − 1)

(2eβ/2 cosh(β[x− t]/2)− 2 cosh(β[x+ t− 1]/2))
2

× β(eβ − 1)

(2eβ/2 cosh(β[t− y]/2)− 2 cosh(β[t+ y − 1]/2))
2 .

Considering the term inside the square of the denominator, by using the hyperbolic

trigonometric identities,

cosh(x) cosh(y) =
(

cosh(x+ y) + cosh(x− y)
)
/2,

cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y),

cosh(x− y) = cosh(x) cosh(y)− sinh(x) sinh(y),

we get (
2eβ/2 cosh(β[x− t]/2)− 2 cosh(β[x+ t− 1]/2)

)
(3.69)

×
(
2eβ/2 cosh(β[t− y]/2)− 2 cosh(β[t+ y − 1]/2)

)
= 2eβ

(
cosh(β[x− y]/2) + cosh(β[x+ y − 2t]/2)

)
− 2eβ/2

(
cosh(β[x+ y − 1]/2) + cosh(β[x− y − 2t+ 1]/2)

)
− 2eβ/2

(
cosh(β[x− y + 2t− 1]/2) + cosh(β[x+ y − 1]/2)

)
+ 2
(

cosh(β[x+ y + 2t− 2]/2) + cosh(β[x− y]/2)
)
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=S−t + S+
t .

Here S−t denotes the sum of those terms in the above equation containing the term

x − y. S+
t denotes the sum of those which contain the term x + y. After further

simplification using the identities above, we have

S−t = 2 cosh(β[x− y]/2)
(
eβ − 2eβ/2 cosh(β[2t− 1]/2) + 1

)
. (3.70)

It is easily seen that the minimum of eβ − 2eβ/2 cosh(β[2t − 1]/2) + 1 for 0 ≤ t ≤ 1

is attained when t = 0, 1, and the minimum is 0. Hence, for any t ∈ [0, 1], S−t is

minimized when x = y. Thus to prove (3.67), it suffices to show that S+
t ≥ 0, since

S−t +S+
t is the term inside the square of the denominator of (3.68). After simplification,

we have

S+
t = 2eβ

(
cosh(β[x+ y − 1]/2) cosh(β[2t− 1]/2) (3.71)

− sinh(β[x+ y − 1]/2) sinh(β[2t− 1]/2)
)

− 4eβ/2 cosh(β[x+ y − 1]/2)

+ 2
(

cosh(β[x+ y − 1]/2) cosh(β[2t− 1]/2)

+ sinh(β[x+ y − 1]/2) sinh(β[2t− 1]/2)
)
.

Next, we make change of variables. Define r := eβ(x+y−1)/2, s := eβ(2t−1)/2. Then, from

(3.71), we have

S+
t =

eβ

2

((
r +

1

r

)(
s+

1

s

)
−
(
r − 1

r

)(
s− 1

s

))
− 2eβ/2

(
r +

1

r

)
+

1

2

((
r +

1

r

)(
s+

1

s

)
+
(
r − 1

r

)(
s− 1

s

))
= eβ

(r
s

+
s

r

)
− 2eβ/2

(
r +

1

r

)
+
(
rs+

1

rs

)
(3.72)

=
(eβr
s

+ rs− 2eβ/2r
)

+
(eβs
r

+
1

rs
− 2eβ/2

r

)
≥ 0.
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Here the last inequality follows since x+ y ≥ 2
√
xy for any x, y ≥ 0. We complete the

proof of Corollary 3 by showing:∫ 1

0

u(x, t, β) · u(t, x, β) dt =
β
(

cosh(β/2) + 2 cosh
(
β[2x− 1]/2

))
6 sinh (β/2)

, (3.73)

for 0 ≤ x ≤ 1.

By the same change of variables as above, since y = x, let r := eβ(2x−1)/2,

s := eβ(2t−1)/2. Then, we have
dt

ds
=

1
ds
dt

=
1

sβ
. (3.74)

By (3.70), we have,

S−t = 2

(
eβ − eβ/2

(
s+

1

s

)
+ 1

)
. (3.75)

Then, by (3.72) and (3.75), it can be easily verified that

rs
(
S+
t + S−t

)
=
(
eβ/2(r + s)− (rs+ 1)

)2
. (3.76)

Hence, we have∫ 1

0

u(x, t, β) · u(t, x, β) dt (3.77)

=

∫ eβ/2

e−β/2

β2(eβ − 1)2(
S+
t + S−t

)2

1

sβ
ds

=

∫ eβ/2

e−β/2

β(eβ − 1)2r2s(
rs
(
S+
t + S−t

))2 ds

=

∫ eβ/2

e−β/2

β(eβ − 1)2r2s

(eβ/2(r + s)− (rs+ 1))
4 ds

= β(eβ − 1)2r2

∫ eβ/2

e−β/2

s

((eβ/2 − r)s+ eβ/2r − 1)
4 ds

= β(eβ − 1)2eβ(2x−1)

∫ eβ/2

e−β/2

s

(eβ/2(1− eβ(x−1))s+ eβx − 1)4
ds.

Here the first equality follows from (3.68), (3.69), (3.74) and change of variables. The

third equality follows from (3.76). Then we make another change of variable by defining

w :=
eβ/2(1− eβ(x−1))s+ eβx − 1

eβ − 1
,
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from which we have

ds

dw
=

eβ − 1

eβ/2(1− eβ(x−1))
, and w =

 1 when s = eβ/2,

eβ(x−1) when s = e−β/2.

Hence, by (3.77), we have∫ 1

0

u(x, t, β) · u(t, x, β) dt

=
β e2β(x−1)

(eβ − 1)(1− eβ(x−1))2

∫ 1

eβ(x−1)

(eβ − 1)w − eβx + 1

w4
dw

=
β e2β(x−1)

(eβ − 1)(1− eβ(x−1))2

(
1− eβ

2w2
+
eβx − 1

3w3

) ∣∣∣∣1
eβ(x−1)

=
β
(
1 + eβ + 2eβx + 2e−β(x−1)

)
6(eβ − 1)

=
β
(
cosh(β/2) + 2 cosh

(
β[2x− 1]/2

))
6 sinh (β/2)

.

3.4 More Couplings of Mallows Permutations

In this section, we will prove the following lemmas. Based on these lemmas, we

can construct couplings of pairs of independent Mallows permutations such that there

exists ordering of the length of the LCS in terms of the ordering of the underlying

parameters.

Lemma 3.4.1. Given q ∈ (0, 1] and 0 < q1 < q2, there exists a coupling (X1, Y1, X2, Y2)

such that

(a) X1 ∼ µn,q, X2 ∼ µn,q, Y1 ∼ µn,q1 and Y2 ∼ µn,q2.

(b) X1 and Y1 are independent. X2 and Y2 are independent.

(c) LCS(X1, Y1) ≥ LCS(X2, Y2).

Lemma 3.4.2. Given q ∈ (0, 1] and q′ > 0, there exists a coupling (X, Y, Z) such that

(a) X ∼ µn,q, Y ∼ µn,q and Z ∼ µn,q′.
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(b) Y and Z are independent.

(c) LIS(X) ≥ LCS(Y, Z).

Lemma 3.4.3. Given q ≥ 1 and 0 < q1 < q2, there exists a coupling

(X1, Y1, X2, Y2) such that

(a) X1 ∼ µn,q, X2 ∼ µn,q, Y1 ∼ µn,q1 and Y2 ∼ µn,q2.

(b) X1 and Y1 are independent. X2 and Y2 are independent.

(c) LCS(X1, Y1) ≤ LCS(X2, Y2).

Lemma 3.4.4. Given q ≥ 1 and q′ > 0, there exists a coupling (X, Y, Z) such that

(a) X ∼ µn,q, Y ∼ µn,q and Z ∼ µn,q′.

(b) Y and Z are independent.

(c) LIS(X) ≤ LCS(Y, Z).

The following two lemmas play the key role in the proofs of the four lemmas

above.

Lemma 3.4.5. Given π, τ ∈ Sn with π ≤R τ , for any q ∈ (0, 1], there exists a coupling

(X, Y ) such that X ∼ µn,q, Y ∼ µn,q and

LCS(X, π) ≥ LCS(Y, τ).

Lemma 3.4.6. Given π, τ ∈ Sn with π ≤R τ , for any q ≥ 1, there exists a coupling

(X, Y ) such that X ∼ µn,q, Y ∼ µn,q and

LCS(X, π) ≤ LCS(Y, τ).

Proof of Lemma 3.4.5. The proof of this lemma is similar to the proof of Lemma 3.2.9.

Firstly, we claim that it suffices to show the case when τ covers π in (Sn,≤R), that

is l(τ) = l(π) + 1 and τ = π ◦ si for some i ∈ [n − 1]. The claim can be shown
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by induction on the Kendall’s tau distance of π and τ , i.e., the minimum number

of adjacent transpositions multiplied to π from the right to get τ . Suppose we have

π ≤R σ ≤R τ in Sn. By induction hypothesis there exist two couplings (X ′, Z) and

(Z ′, Y ′), which are not necessarily defined in the same probability space, such that

X ′, Z, Z ′, Y ′ have the same marginal distribution µn,q and

LCS(X ′, π) ≥ LCS(Z, σ), LCS(Z ′, σ) ≥ LCS(Y ′, τ). (3.78)

We can construct a new coupling (X, Y ) as follows,

• Sample a permutation ξ ∈ Sn according to the distribution µn,q.

• Sample X according to the induced distribution on Sn by the first coupling

(X ′, Z) conditioned on Z = ξ.

• Sample Y according to the induced distribution on Sn by the second coupling

(Z ′, Y ′) conditioned on Z ′ = ξ.

By the law of total probability, it is easily seen that X ∼ µn,q and Y ∼ µn,q. Also,

regardless of which permutation ξ is being sampled in the first step, by (3.78), we have

LCS(X, π) ≥ LCS(ξ, σ) ≥ LCS(Y, τ).

In the remainder of the proof, we assume τ = π ◦ si and l(τ) = l(π) + 1. Note that, for

any σ ∈ Sn,

σ ◦ (i, j) = (σ(i), σ(j)) ◦ σ. (3.79)

Here (i, j) denotes the transposition of i and j. Hence we have

τ = π ◦ si = (π(i), π(i+ 1)) ◦ π. (3.80)

Since l(τ) = l(π) + 1, we have π(i) < π(i + 1). Let r := π(i) and t := π(i + 1). Let

A := {{σ, (r, t) ◦ σ} : σ ∈ Sn and σ−1(r) < σ−1(t)}. Clearly, A is a partition of Sn.

Then we construct the coupling (X, Y ) as follows:
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(1) Choose a set in A according to measure µn,q, i. e. the set {σ, (r, t) ◦ σ} is chosen

with probability µn,q({σ, (r, t) ◦ σ}).

(2) Suppose the set {σ, (r, t) ◦ σ}, with σ−1(r) < σ−1(t), is chosen in the first step.

Flip a coin with probability of heads being

p =
ql(σ) − ql((r,t)◦σ)

ql(σ) + ql((r,t)◦σ)
.

(3) If the outcome is head, then we set X = Y = σ.

(4) If the outcome is tail, then, with equal probability, we set either X = σ, Y =

(r, t) ◦ σ or X = (r, t) ◦ σ, Y = σ.

Here, in the second step, the probability of head p is nonnegative because 0 < q ≤ 1

and the following fact:

i < j and σ−1(i) < σ−1(j) ⇒ l(σ) < l((i, j) ◦ σ), ∀σ ∈ Sn.

It can be verified that (X, Y ) thus defined has the correct marginal distribution µn,q.

In the following we show that

LIS(π−1 ◦X) ≥ LIS(τ−1 ◦ Y ). (3.81)

Then, the lemma follows from the following facts. Let id denote the identity in Sn, we

have

LIS(π−1 ◦X) = LCS(π−1 ◦X, id) = LCS(X, π), (3.82)

LIS(τ−1 ◦ Y ) = LCS(τ−1 ◦ Y, id) = LCS(Y, τ). (3.83)

Here we use the facts that LIS(π) = LCS(π, id) for any π ∈ Sn and

LCS(π, τ) = LCS(σ ◦ π, σ ◦ τ), (3.84)

for any σ, π, τ ∈ Sn. To prove (3.81), suppose the set {σ, (r, t)◦σ}, with σ−1(r) < σ−1(t),

is chosen in the first step. If the outcome in the second step is tail, we verify that

π−1 ◦X = τ−1 ◦ Y . Specifically, when X = σ, Y = (r, t) ◦ σ, we have

π−1 ◦X = π−1 ◦ σ,
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τ−1 ◦ Y = π−1 ◦ (r, t) ◦ (r, t) ◦ σ = π−1 ◦ σ.

When X = (r, t) ◦ σ, Y = σ, we have

π−1 ◦X = π−1 ◦ (r, t) ◦ σ,

τ−1 ◦ Y = π−1 ◦ (r, t) ◦ σ.

On the other hand, if the outcome in the second step is head, we have

π−1 ◦X = π−1 ◦ σ,

τ−1 ◦ Y = π−1 ◦ (r, t) ◦ σ = si ◦ π
−1 ◦ σ.

Then, since

(π−1 ◦ σ)−1(i) = σ−1(π(i)) = σ−1(r),

(π−1 ◦ σ)−1(i+ 1) = σ−1(π(i+ 1)) = σ−1(t),

the fact σ−1(r) < σ−1(t) implies that τ−1 ◦ Y covers π−1 ◦ X in (Sn,≤L). Hence, we

have (3.81).

Lemma 3.4.6 can be proved in a similar argument and we omit its proof. We

complete this section by proving Lemma 3.4.1 and Lemma 3.4.2 using Lemma 3.4.5.

Lemma 3.4.3 and Lemma 3.4.4 follow from Lemma 3.4.6 in the same way.

Proof of Lemma 3.4.1. By Lemma 3.2.6, we have µn,q1 � µn,q2 with the underlying

partial order being the right weak Bruhat order. By Strassen’s theorem [27], there

exists a coupling (Y1, Y2) such that Y1 ∼ µn,q1 , Y2 ∼ µn,q2 and Y1 ≤R Y2. Next, for

any (π, τ) with π ≤R τ , let (Xπ,τ , Yπ,τ ) be the coupling constructed in Lemma 3.4.5.

Then we define (X1, X2) as follows. Conditioned on (Y1, Y2) = (π, τ), define X1 = Xπ,τ ,

X2 = Yπ,τ . We show that (X1, X2, Y1, Y2) thus defined satisfies all three requirements.

Firstly, since both marginal distributions of (Xπ,τ , Yπ,τ ) are µn,q for any (π, τ) with

π ≤R τ , the X1, X2 defined above both have distribution µn,q. Next, note that no

matter what value (Y1, Y2) takes, the conditional distribution of Xi is always µn,q.
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Hence Xi is independent of (Y1, Y2). Finally, LCS(X1, Y1) ≥ LCS(X2, Y2) follows by

the construction of the coupling and Lemma 3.4.5.

Proof of Lemma 3.4.2. Since the identity id is the minimum of (Sn,≤R), for any τ ∈

Sn, define (Xτ , Yτ ) to be the coupling constructed in Lemma 3.4.5 with π being the

identity id. Then, we define the coupling (X, Y, Z) as follows. First sample Z according

to µn,q′ . Then, conditioned on Z = τ , define X = Xτ , Y = Yτ . Since Xτ and Yτ are

both µn,q-distributed for any τ ∈ Sn, X and Y thus defined are both µn,q-distributed.

By the definition of Y , the distribution of Y is independent of the choice of τ . Hence Y

and Z are independent. Finally, by Lemma 3.4.5, we have LCS(Y, Z) ≤ LCS(X, id) =

LIS(X).

3.5 Proof of WLLN when only β is finite

Given γ > 0 and two sequences {qn}∞n=1, {q′n}∞n=1 such that limn→∞ n(1 −

qn) = ∞, and limn→∞ n(1 − q′n) = β, define a new sequence {q̄n}∞n=1 by setting

q̄n = max(qn, 1 − γ
n
). Note that, for n sufficiently large, we have qn < 1 − γ

n
. Hence

limn→∞ n(1− q̄n) = γ.

Assuming β > 0, by Lemma 3.4.1 and Lemma 3.4.2, for sufficiently large n, we

can construct a coupling (Xn, Yn, Zn, X
′
n, Y

′
n) such that

• Xn ∼ µn,qn , Yn ∼ µn,q′n , Zn ∼ µn,q′n , X ′n ∼ µn,q̄n and Y ′n ∼ µn,q′n ,

• Xn and Yn are independent. X ′n and Y ′n are independent.

•

LCS(X ′n, Y
′
n) ≤ LCS(Xn, Yn) ≤ LIS(Zn). (3.85)

By Theorem 1.1.7,
LIS(Zn)√

n

p−→ 2κ(β). (3.86)

On the other hand, by Theorem 3,

LCS(X ′n, Y
′
n)√

n

p−→ 2J̄β,γ (3.87)
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where J̄β,γ = supφ∈B1
↗
J(φ, ρβ,γ). Here B1

↗ denotes the set of nondecreasing, C1
b func-

tions φ : [0, 1]→ [0, 1], with φ(0) = 0 and φ(1) = 1 and

ρβ,γ(x, y) :=

∫ 1

0

uβ(x, t)uγ(t, y) dt, (3.88)

uβ(x, y) :=
(β/2) sinh(β/2)

(eβ/4 cosh(β[x− y]/2)− e−β/4 cosh(β[x+ y − 1]/2))
2 (3.89)

when β 6= 0, and u0(x, y) := 1,

J(φ, ρβ,γ) :=

∫ 1

0

√
φ̇(x)ρβ,γ(x, φ(x)) dx. (3.90)

By (3.85), (3.86) and (3.87), to prove Theorem 4, it suffices to show

lim
γ→∞

J̄β,γ = κ(β). (3.91)

For the case β < 0, the same argument applies except that we construct the coupling

(Xn, Yn, Zn, X
′
n, Y

′
n) based on Lemma 3.4.3 and Lemma 3.4.4 such that

LIS(Zn) ≤ LCS(Xn, Yn) ≤ LCS(X ′n, Y
′
n). (3.92)

For the case β = 0, we can split {q′n} into two subsequences with one has those q′n ≤ 1

and the other has those q′n > 1. The argument for the case when β > 0 applies for

the first subsequence and the argument for the case when β < 0 applies for the second

subsequence.

To show (3.91), we will prove that ρβ,γ(x, y) converges uniformly to uβ(x, y) on

[0, 1]× [0, 1] as γ goes to infinity, and the following lemma is a key step.

Lemma 3.5.1. For any ε > 0, there exists N such that, when γ > N , for any x, y ∈

[0, 1] with |x− y| > ε, we have uγ(x, y) < ε.

Proof. By (3.89), we have uγ(x, y) = uγ(y, x). Hence, without loss of generality, we

assume x > y. Given γ > 0, we have

uγ(x, y) =
(γ/2) sinh(γ/2)

(eγ/4 cosh(γ[x− y]/2)− e−γ/4 cosh(γ[x+ y − 1]/2))
2

=
γ(1− e−γ)

4 (cosh(γ[x− y]/2)− e−γ/2 cosh(γ[x+ y − 1]/2))
2

93



=
γ(1− e−γ)

(eγ(x−y)/2 + eγ(y−x)/2 − eγ(x+y−2)/2 − e−γ(x+y)/2)
2 (3.93)

≤ γ

(eγ|x−y|/2 − 1)
2 . (3.94)

Here the last inequality (3.94) follows, because, considering the term inside the square

in the denominator of (3.93), we have

eγ(x−y)/2 + eγ(y−x)/2 − eγ(x+y−2)/2 − e−γ(x+y)/2

= (eγ(x−y)/2 − 1) + (1− eγ(x+y−2)/2) + (eγ(y−x)/2 − e−γ(x+y)/2). (3.95)

Each term inside the three parentheses in (3.95) are non negative. Then, since |x−y| >

ε, by (3.94), we have

uγ(x, y) ≤ γ

(eγε/2 − 1)
2 . (3.96)

We can choose N such that for any γ > N , γ

(eγε/2−1)
2 < ε.

The following two facts about the density uβ(x, y), which are proved in Lemma

2.1.9 and Lemma 3.3.5 respecively, will be used in the proof of next lemma. The first

one is that uβ(x, y) has uniform marginal measure.∫ 1

0

uβ(x, y) dy = 1, ∀x ∈ [0, 1]. (3.97)

The second one is that uβ(x, y) ∈ C1
b . Specifically, we have

e−|β| ≤ uβ(x, y) ≤ e|β|, max

(∣∣∣∂uβ
∂x

∣∣∣, ∣∣∣∂uβ
∂y

∣∣∣) ≤ |β|e|β|. (3.98)

Lemma 3.5.2.

lim
γ→+∞

sup
x,y∈[0,1]

|ρβ,γ(x, y)− uβ(x, y)| = 0. (3.99)

Proof. Given ε > 0, by Lemma 3.5.1, we can choose N > 0 such that, for any γ > N ,

we have uγ(x, y) < ε whenever |x−y| > ε. Define Ay,ε := [0, 1]\ [y− ε, y+ ε]. Assuming

that uβ, uγ and ρβ,γ are all zero outside of the unit square [0, 1]× [0, 1], for any γ > N ,

we have ∣∣∣∣ρβ,γ(x, y)−
∫ y+ε

y−ε
uβ(x, t)uγ(t, y) dt

∣∣∣∣ (3.100)
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=

∣∣∣∣∫ 1

0

uβ(x, t)uγ(t, y) dt−
∫ y+ε

y−ε
uβ(x, t)uγ(t, y) dt

∣∣∣∣
=

∫
Ay,ε

uβ(x, t)uγ(t, y) dt

≤ ε
∫
Ay,ε

uβ(x, t) dt

≤ ε.

Here the last inequality follows from (3.97). By (3.98), for any t ∈ [y − ε, y + ε], we

have

|uβ(x, y)− uβ(x, t)| ≤ ε|β|e|β|.

By (3.97) and Lemma 3.5.1, we have

1 ≥
∫ y+ε

y−ε
uγ(t, y) dt = 1−

∫
Ay,ε

uγ(t, y) dt > 1− ε.

Hence, we have ∫ y+ε

y−ε
uβ(x, t)uγ(t, y) dt (3.101)

≤ (uβ(x, y) + ε|β|e|β|)
∫ y+ε

y−ε
uγ(t, y) dt

≤uβ(x, y) + ε|β|e|β|,

and ∫ y+ε

y−ε
uβ(x, t)uγ(t, y) dt (3.102)

≥ (uβ(x, y)− ε|β|e|β|)
∫ y+ε

y−ε
uγ(t, y) dt

≥ (uβ(x, y)− ε|β|e|β|)(1− ε)

≥uβ(x, y)− ε
(
e|β| + |β|e|β|

)
.

Here we use the fact that uβ(x, y) ≤ e|β| in the last inequality. By combining (3.100),

(3.101) and (3.102), it follows that, for any γ > N and any x, y ∈ [0, 1],

|ρβ,γ(x, y)− uβ(x, y)| ≤ ε
(
1 + e|β| + |β|e|β|

)
.
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Now we are in the position to show (3.91) which completes the proof of Theorem

4.

Proof of Theorem 4. In [22], Mueller and Starr show that

κ(β) = sup
φ∈B1

↗

J(φ, uβ) = sup
φ∈B1

↗

∫ 1

0

√
φ̇(x)uβ(x, φ(x)) dx. (3.103)

In fact, they show that the supremum is attained when φ(x) = x, i.e.

κ(β) =

∫ 1

0

√
uβ(x, x) dx, (3.104)

We claim that, to show (3.91), it suffices to show that

lim
γ→∞

sup
φ∈B1

↗

|J(φ, ρβ,γ)− J(φ, uβ)| = 0. (3.105)

To see this, let g denote the identity function, i.e., g(x) = x. Since J̄β,γ ≥ J(g, ρβ,γ),

we have

lim inf
γ→∞

J̄β,γ ≥ lim inf
γ→∞

J(g, ρβ,γ) = J(g, uβ) = κ(β). (3.106)

Here we use the fact follows by (3.105) that

lim
γ→∞
|J(g, ρβ,γ)− J(g, uβ)| = 0.

On the other hand, choose {γn} and {φn} such that γn →∞, φn ∈ B1
↗ and

lim
n→∞

J(φn, ρβ,γn) = lim sup
γ→∞

J̄β,γ. (3.107)

By (3.105), we have

lim
n→∞

J(φn, ρβ,γn) = lim
n→∞

J(φn, uβ) ≤ κ(β). (3.108)

The claim follows from (3.106), (3.107) and (3.108).

Given 0 < ε < e−|β|

2
, by Lemma 3.5.2, there exists N such that, for any γ > N and any

x, y ∈ [0, 1], we have |ρβ,γ(x, y)− uβ(x, y)| < ε. Hence, by (3.98), we have

ρβ,γ(x, y) ≥ uβ(x, y)− ε ≥ e−|β|

2
. (3.109)
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Therefore, when γ > N , for any φ ∈ B1
↗, we have

|J(φ, ρβ,γ)− J(φ, uβ)| (3.110)

≤
∫ 1

0

∣∣∣√φ̇(x)ρβ,γ(x, φ(x))−
√
φ̇(x)uβ(x, φ(x))

∣∣∣ dx
=

∫ 1

0

φ̇(x)
∣∣ρβ,γ(x, φ(x))− uβ(x, φ(x))

∣∣√
φ̇(x)ρβ,γ(x, φ(x)) +

√
φ̇(x)uβ(x, φ(x))

dx

≤ εe
|β|/2
√

2

∫ 1

0

√
φ̇(x) dx ≤ εe|β|/2√

2

(∫ 1

0

φ̇(x) dx

)1/2

=
εe|β|/2√

2
.

Here the last inequality follows by Cauchy-Schwarz inequality. (3.105) follows from

(3.110).

3.6 Proof of Lemma 3.3.1 and Lemma 3.3.2

We first introduce two corollaries of these two lemmas. Recall that, for any

positive integer n and m ∈ [n], we define

Q(n,m) := {(b1, b2, . . . , bm) : bi ∈ [n] and bi < bi+1 for all i}.

By choosing kn = n in these two lemmas and the fact that Q(n, n) contains a

single member {(1, 2, . . . , n)}, we can recover Corollary 4.3 of [22]:

Corollary 3.6.1. Suppose that {qn}∞n=1 is a sequence such that qn ≥ 1 and

lim infn→∞ n(1− qn) = β, with β ∈ R. We have

lim
n→∞

µn,qn

(
π ∈ Sn :

LIS(π)√
n

/∈ (2e
β
2 − ε, 2 + ε)

)
= 0,

for any ε > 0.

Corollary 3.6.2. Suppose that {qn}∞n=1 is a sequence such that 0 < qn ≤ 1 and

lim supn→∞ n(1− qn) = β < ln 2. We have

lim
n→∞

µn,qn

(
π ∈ Sn :

LIS(π)√
n

/∈ (2− ε, 2e
β
2 + ε)

)
= 0,

for any ε > 0.
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To prove these two lemmas, we use the same techniques developed in the proof

of Corollary 4.3 in [22], in which they constructed a coupling of two point processes.

A point process is a random, locally finite, nonnegative integer valued measure. Let

Xk denote the set of all Borel measures ξ on Rk such that ξ(A) ∈ {0, 1, 2, . . .} for any

bounded Borel set A in Rk. Then, a point process on Rk is a random variable which

takes value in Xk.

Suppose µ, ν are two measures on Rk. We say µ ≤ ν if µ(A) ≤ ν(A) for any

A ∈ B(Rk).

Lemma 3.6.3. Suppose α̂ and α are two measures on [0, 1] with density f(x), g(x)

respectively. If, for any x ∈ [0, 1], f(x) ≥ p · g(x) for some 1 > p > 0, then there exist

random variables X, Y and Bp such that the following hold.

• X is α̂-distributed, Y is α-distributed and Bp is Bernoulli distributed with

P(Bp = 1) = p.

• Bp and Y are independent.

• Define two point processes η, ξ on [0, 1] as follows,

ξ(A) := 1A(X) and η(A) := Bp · 1A(Y ), ∀A ∈ B([0, 1]).

Then, we have η ≤ ξ almost surely.

Proof. Let Y , Y ′ and Bp be independent random variables defined on the same proba-

bility space such that Y is α-distributed, Bp is Bernoulli distributed with P(Bp = 1) = p

and the density of the distribution of Y ′ is f(x)−p·g(x)
1−p . Define X = BpY + (1− Bp)Y

′.

It can be easily verified that X thus defined is α̂-distributed. Because,

P(X ∈ A) = p

∫
A

g(x) dx+ (1− p)
∫
A

f(x)− p · g(x)

1− p
dx =

∫
A

f(x) dx,

for any A ∈ B([0, 1]). Finally, the two point processes ξ and η thus defined satisfy

η ≤ ξ, since for any A ∈ B([0, 1]), when Bp = 1, we have ξ(A) = η(A), and, when

Bp = 0, we have η(A) = 0.
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Lemma 3.6.4. Suppose α̂ and α are two measures on [0, 1] with density f(x), g(x)

respectively. If, for any x ∈ [0, 1], (1 − θ1)g(x) ≤ f(x) ≤ (1 + θ2)g(x) for some

θ1, θ2 ≥ 0 with θ1 + θ2 < 1, then there exist random variables X, Y , Z and Bθ such

that the following hold.

• X is α̂-distributed, Y and Z are α-distributed and Bθ is Bernoulli distributed

with P(Bθ = 1) = θ, where θ = θ1 + θ2.

• Bθ, Y and Z are independent.

• Define two point processes ξ, ζ on [0, 1] as follows,

ξ(A) := 1A(X) and ζ(A) := 1A(Y ) +Bθ · 1A(Z), ∀A ∈ B([0, 1]).

Then, we have ξ ≤ ζ almost surely.

Proof. Let Y , Z and Bθ be independent random variables defined on the same proba-

bility space such that Y , Z is α-distributed, Bθ is Bernoulli distributed with P(Bθ =

1) = θ. We define a new random variable X as follows. Conditioned on Y = y and

Z = z,

• if Bθ = 0, define X = y

• if Bθ = 1, we flip a coin W with probability of head being f(z)−(1−θ1)g(z)
θ·g(z) . If the

result is head, define X = z. Else, define X = y.

Note that, without loss of generality, here we may assume g(z) > 0, since

P(g(Z) = 0) = 0. It is straight forward that the two point processes ξ and ζ thus

defined satisfy ξ ≤ ζ a. s.. We complete the proof by verifying that X thus defined has

distribution f(x).

For any A ∈ B([0, 1]), the event {X ∈ A} can be partitioned into three parts:

{Bθ = 0, Y ∈ A}, {Bθ = 1,W is head , Z ∈ A} and {Bθ = 1,W is tail , Y ∈ A}. We

have

P({Bθ = 0, Y ∈ A}) = (1− θ)
∫
A
g(x) dx = (1− θ)α(A),
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P({Bθ = 1,W is head , Z ∈ A}) = θ
∫
A
f(z)−(1−θ1)g(z)

θ·g(z) g(z) dz

=
∫
A
f(z) dz − (1− θ1)α(A),

P({Bθ = 1,W is tail , Y ∈ A}) = θ
∫
A
g(y) dy

∫ 1

0

(
1− f(z)−(1−θ1)g(z)

θ·g(z)

)
g(z) dz

= α(A)
∫ 1

0
(1 + θ2)g(z)− f(z) dz

= α(A) θ2.

Here we evaluate the last two probabilities by conditioning on the value of Z. Summing

up the three probabilities, we get

P({X ∈ A}) =

∫
A

f(z) dz.

Next, we define a triangular array of random variables in [0, 1].

Definition 3.6.5. Suppose that {qn}∞n=1 is a sequence such that qn > 0. For any

n ∈ N, we define the random vector (Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n ) as follows. Let {Yi}ni=1

be i. i. d. uniform random variables on [0, 1]. Let {Y(i)}ni=1 be the order statistics of

{Yi}ni=1. Independently, let π be a µn,qn-distributed random variable on Sn. We define

Y
(n)
i := Y(π(i)) for all i ∈ [n].

In the remainder of this paper, we use (Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n ) specifically to denote

the random vector defined as above. Also, we define the function Φ which maps vectors

in Rn or n points in R2 to the induced permutation in Sn.

Definition 3.6.6. Suppose x = (x1, x2, . . . , xn) is a vector in Rn such that all its

entries are different. Let Φ(x) denote the permutation in Sn such that, for any i ∈ [n],

Φ(x)(i) = j if xi is the j-th smallest entry in x. Similarly, suppose z = {(xi, yi)}ni=1

are n points in R2 such that they share no x coordinate nor any y coordinate. Let Φ(x)

denote the permutation in Sn such that, for any i ∈ [n], Φ(z)(i) = j if there exits

k ∈ [n], such that xk is the i-th smallest term in {xi}ni=1 and yk is the j-th smallest

term in {yi}ni=1.
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Remark. From the above definitions, it can be easily seen that

(a) For any x1 < x2 < · · · < xn and y = (y1, y2, . . . , yn) ∈ Rn, we have Φ(y) =

Φ({(xi, yi)}ni=1).

(b) For any y = (y1, y2, . . . , yn) ∈ Rn and b = (b1, b2, . . . , bm) ∈ Q(n,m), we have

Φ(y)b = Φ((yb1 , yb2 , . . . , ybm)).

(c) Φ((Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n )) is µn,qn-distributed.

It is not hard to show that the density function of (Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n ) is the

following (in the sense of a. s. ),

fn(y) = µn,qn(Φ(y)) · n ! for all y ∈ [0, 1]n \Diagonal.

Here the set Diagonal consists of all those vectors which contain (at least two) identical

entries. Since {Y (n)
i }ni=1 = {Yi}ni=1 are n i.i.d. uniform samples from [0, 1], we have

P((Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n ) ∈ Diagonal) = 0. Intuitively, for any 0 ≤ y1 < · · · < yn ≤

1, there are n! ways to choose the vector (Y1, . . . , Yn) such that {Yi}ni=1 = {yi}ni=1.

Conditioned on {Yi}ni=1 = {yi}ni=1, the probability of (Y
(n)

1 , . . . , Y
(n)
n ) = (yπ(1), . . . , yπ(n))

is µn,qn(π).

Lemma 3.6.7. Given i ∈ [n] and a vector (y1, . . . , yi−1, yi+1, . . . , yn) ∈ [0, 1]n−1 \

Diagonal, let α̂ denote the distribution of Y
(n)
i conditioned on the event {Y (n)

j =

yj for all j ∈ [n] \ {i}}. Then α̂ has density f(y) on [0, 1] such that, excluding a set G

of measure zero, for any y, y′ ∈ [0, 1] \G, we have

f(y) ≥ min

(
qnn,

1

qnn

)
, f(y)− f(y′) ≤ max

(
qnn,

1

qnn

)
− 1.

Proof. Since (Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n ) has density fn(y) = µn,qn(Φ(y)) · n ! on [0, 1]n \

Diagonal, the density f(y) of α̂ is given by

f(y) =
µn,qn(Φ((y1, y2, . . . , yi−1, y, yi+1, . . . , yn)))∫ 1

0
µn,qn(Φ((y1, y2, . . . , yi−1, t, yi+1, . . . , yn))) dt

,
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for any y ∈ [0, 1]/{y1, y2, . . . , yi−1, yi+1, . . . , yn}.

It can be seen from the definition that f(y) is a simple function which takes at most n

different values. Let M and m denote the maximum and minimum of f(y) respectively.

Then we have M ≥ 1 and 0 < m ≤ 1. Moreover, for any y, y′ ∈ [0, 1], let y :=

(y1, y2, . . . , yi−1, y, yi+1, . . . , yn) and y′ := (y1, y2, . . . , yi−1, y
′, yi+1, . . . , yn). We have

|l(Φ(y))− l(Φ(y′))| ≤ n− 1.

That is, if y and y′ differ at one entry, the number of inversions of the induced per-

mutations differ at most by n − 1. Hence, assuming qn ≥ 1, for any y, y′ ∈ [0, 1], we

have
1

qn−1
n

≤ f(y)

f(y′)
≤ qn−1

n .

Choose y′ such that f(y′) = M , we have f(y) ≥ M/qn−1
n ≥ 1/qnn. For the second

part, we choose y, y′ such that f(y) = M and f(y′) = m. Then we have M/m − 1 ≤

qn−1
n − 1 ≤ qnn − 1. Thus, M −m ≤ qnn − 1, since 0 < m ≤ 1.

On the other hand, assuming 0 < qn < 1, by the similar argument it follows

that for any y, y′ ∈ [0, 1], we have

qn−1
n ≤ f(y)

f(y′)
≤ 1

qn−1
n

.

Choose y′ such that f(y′) = M , we have f(y) ≥Mqn−1
n ≥ qnn. For the second part, we

choose y, y′ such that f(y) = M and f(y′) = m. Then we have M/m−1 ≤ 1/qn−1
n −1 ≤

1/qnn − 1. Thus, M −m ≤ 1/qnn − 1, since 0 < m ≤ 1.

Combining the two cases above, the lemma follows.

Lemma 3.6.8. Given n ∈ N and qn ≥ 1, for any m ≤ n and any b = (b1, b2, . . . , bm) ∈

Q(n,m), there exists a random vector (V1, V2, . . . , Vn) ∈ [0, 1]n and 2m independent

random variables {Ui}mi=1∪{Bi}mi=1 such that (V1, V2, . . . , Vn) has the same distribution

as (Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n ), each Ui is uniformly distributed on [0, 1] and each Bi is a

Bernoulli random variable with P(Bi = 1) = 1
qnn

. Moreover, if we define two point

processes as follows,

ξ
(n)
b (A) :=

m∑
i=1

1A((i, Vbi)), ηm(A) :=
m∑
i=1

Bi · 1A((i, Ui)), ∀A ∈ B(N× [0, 1]),
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we have ηm ≤ ξ
(n)
b almost surely.

Proof. Given n, m and b ∈ Q(n,m), define (Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n ) as in Definition 3.6.5

and, independently, define 2m independent random variables {Ui}mi=1 ∪ {Bi}mi=1 such

that each Ui is uniformly distributed on [0, 1] and each Bi is a Bernoulli random variable

with P(Bi = 1) = 1
qnn

. We define the random vector (V1, V2, . . . , Vn) as follows,

• Sample the random vector (Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n ), say, we get

(Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n ) = (y1, y2, . . . , yn).

• For j ∈ [n] \ {bi}mi=1, let Vj := yj.

• For each i ∈ [m], we resample Y
(n)
bi

one by one, conditioned on the current value

of other Y
(n)
j . Let y′bi denote the new value of Y

(n)
bi

after the resampling and define

Vbi := y′bi . Specifically, for each i ∈ [m], we sample a value y′bi according to the

distribution of Y
(n)
bi

, conditioned on the event{
Y

(n)
bj

= y′bj for ∀j < i and Y
(n)
k = yk for ∀k ∈ [n] \ {bj}j∈[i]

}
.

• In each resampling step, say, resampling Y
(n)
bi

, let α̂ denote the above conditional

distribution of Y
(n)
bi

. By Lemma 3.6.7, we know that that α̂ has density f(y) with

f(y) ≥ 1/qnn almost surely. Hence, we can couple this resampling procedure with

variables Ui and Bi in the same fashion as in the proof of Lemma 3.6.3, with α

in that lemma being the uniform measure on [0, 1]. Thus we have 1A((i, Vbi)) ≥

Bi · 1A((i, Ui)) a. s. for any A ∈ B(N× [0, 1]).

It can be easily seen from the above procedure that (V1, V2, . . . , Vn) thus defined has

the same distribution as (Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n ), and

ηm(A) =
m∑
i=1

Bi · 1A((i, Ui)) ≤
m∑
i=1

1A((i, Vbi)) = ξ
(n)
b (A) a. s.

for any A ∈ B(N× [0, 1]).
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Lemma 3.6.9. Given n ∈ N and 0 < qn ≤ 1 such that qnn > 1
2
, for any m ≤ n

and any b = (b1, b2, . . . , bm) ∈ Q(n,m), there exists a random vector (V1, V2, . . . , Vn) ∈

[0, 1]n and 3m independent random variables {Ui}mi=1 ∪ {U ′i}mi=1 ∪ {Bi}mi=1 such that

(V1, V2, . . . , Vn) has the same distribution as (Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n ), each Ui, U

′
i are uni-

formly distributed on [0, 1] and each Bi is a Bernoulli random variable with P(Bi =

1) = 1
qnn
− 1. Moreover, if we define two point processes as follows,

ξ
(n)
b (A) :=

m∑
i=1

1A((i, Vbi)), ∀A ∈ B(N× [0, 1])

ζm(A) :=
m∑
i=1

1A((i, U ′i)) +Bi · 1A((i, Ui)), ∀A ∈ B(N× [0, 1])

we have ξ
(n)
b ≤ ζm almost surely.

Proof. The proof of this lemma is similar to the proof of Lemma 3.6.8. Given n, m

and b ∈ Q(n,m), define (Y
(n)

1 , Y
(n)

2 , . . . , Y
(n)
n ) as in Definition 3.6.5 and, independently,

define 3m independent random variables {Ui}mi=1 ∪ {U ′i}mi=1 ∪ {Bi}mi=1 such that each

Ui, U
′
i are uniformly distributed on [0, 1] and each Bi is a Bernoulli random variable

with P(Bi = 1) = 1/qnn − 1. Then we define the random vector (V1, V2, . . . , Vn) by the

same steps as in the proof of Lemma 3.6.8, except that, in each resampling step, we

couple the resampling of Y
(n)
bi

with the variables Ui, U
′
i and Bi in the same fashion as in

the proof of Lemma 3.6.4, with α in that lemma being the uniform measure on [0, 1].

Note that the second inequality in Lemma 3.6.7 ensures that the conditions in Lemma

3.6.4 are met. Specifically, in each resampling step, let f(y) denote the density of the

conditional distribution of Y
(n)
bi

. Let M , m be the maximum and minimum of f(y)

respectively. Define θ1 := 1−m and θ2 := M −1. Hence, 1−θ1 ≤ f(y) ≤ 1+θ2 almost

surely and θ1 + θ2 = M −m ≤ 1/qnn − 1 < 1.

Recall that X2 denotes the set of all Borel measures ξ on R2 such that ξ(A) ∈

{0, 1, 2, . . .} for any bounded Borel set A in R2.
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Definition 3.6.10. For any ξ ∈ X2, we define the length of the longest increasing

subsequence of ξ as follows,

LIS(ξ) := max{k : ∃ (x1, y1), (x2, y2), . . . , (xk, yk) ∈ R2 such that

ξ({(xi, yi)}) ≥ 1, ∀ i ∈ [k] and (xi − xj)(yi − yj) > 0, ∀ i 6= j}.

It is easily seen that the function LIS() is non-decreasing on X2 in the sense

that, if ξ, ζ ∈ X2 with ξ ≤ ζ, we have LIS(ξ) ≤ LIS(ζ). Moreover, for any n points

{(xi, yi)}ni=1 in R2 such that xi 6= xj and yi 6= yj for all i 6= j, define the integer-valued

measure ξ as follows,

ξ(A) :=
n∑
i=1

1A((xi, yi)), ∀A ∈ B(R2).

Then we have LIS(ξ) = LIS({(xi, yi)}ni=1), where the latter one is defined in Definition

3.1.1.

Lemma 3.6.11. Let (V1, . . . , Vn) be a random vector which has the same distribution

as (Y
(n)

1 , . . . , Y
(n)
n ). For any m ≤ n and b = (b1, b2, . . . , bm) ∈ Q(n,m), define the point

process ξ
(n)
b as in the previous two lemmas, that is,

ξ
(n)
b (A) :=

m∑
i=1

1A((i, Vbi)), ∀A ∈ B(N× [0, 1]).

Then LIS(ξ
(n)
b ) and LIS(πb) have the same distribution, where π ∼ µn,qn.

Proof. By the remarks after Definition 3.6.6, we have

Φ({(i, Vbi)}mi=1) = Φ((Vb1 , Vb2 , . . . , Vbm)) = Φ((V1, V2, . . . , Vn))b

where Φ((V1, V2, . . . , Vn)) in the last term has the distribution µn,qn . The lemma follows

by the fact that

LIS(ξ
(n)
b ) = LIS({(i, Vbi)}mi=1) = LIS(Φ({(i, Vbi)}mi=1)).
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Now we are in the position to prove Lemma 3.3.1 and Lemma 3.3.2. In the

following, we use λn to denote the uniform measure on Sn.

Proof of Lemma 3.3.1. The lemma can be divided into two parts. For the first part,

we show that, for any sequence {kn}∞n=1 such that kn ∈ [n] and limn→∞ kn =∞,

lim
n→∞

max
b∈Q(n,kn)

µn,qn

(
π ∈ Sn :

LIS(πb)√
kn

> 2 + ε

)
= 0, (3.111)

for any ε > 0.

Since we have qn ≥ 1, by Corollary 3.2.8 (a), for any b ∈ Q(n, kn), there exist two

random variables (U, V ) such that U ∼ λkn , V has the same distribution as πb with

π ∼ µn,qn and U ≤L V . Hence we have LIS(U) ≥ LIS(V ), since LIS() is non-increasing

on the poset (Sn,≤L). Therefore, we have

µn,qn

(
π ∈ Sn :

LIS(πb)√
kn

> 2 + ε

)
≤ λkn

(
π ∈ Skn :

LIS(π)√
kn

> 2 + ε

)
.

Then (3.111) follows by the result of Vershik and Kerov [17] that, under uniform

measure, LIS(π)/
√
n converges in probability to 2 as n goes to infinity. Note that

(3.111) only depends on the fact that qn ≥ 1.

For the second part, we need to show that, for any ε > 0,

lim
n→∞

max
b∈Q(n,kn)

µn,qn

(
π ∈ Sn :

LIS(πb)√
kn

≤ 2e
β
2 − ε

)
= 0. (3.112)

Given n > 0, for any b ∈ Q(n, kn), by Lemma 3.6.11, LIS(ξ
(n)
b ) and LIS(πb) have the

same distribution, where ξ
(n)
b is the point process as defined in that lemma. Moreover,

by Lemma 3.6.8, there exists a point process ηkn such that ηkn ≤ ξ
(n)
b almost surely

and ηkn is defined by

ηkn(A) :=
kn∑
i=1

Bn,i · 1A((i, Ui)) ∀A ∈ B(N× [0, 1]), (3.113)

where {Ui}kni=1 ∪ {Bn,i}kni=1 are 2kn independent random variables with each Ui being

uniformly distributed on [0, 1] and each Bn,i being a Bernoulli random variable with
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P(Bn,i = 1) = 1/qnn.

Hence, we have

µn,qn

(
π ∈ Sn :

LIS(πb)√
kn

≤ 2e
β
2 − ε

)
= P

(
LIS(ξ

(n)
b )√
kn

≤ 2e
β
2 − ε

)

≤ P
(

LIS(ηkn)√
kn

≤ 2e
β
2 − ε

)
.

Here the last inequality follows by the monotonicity of LIS() on X2.

We complete the proof of (3.112) as well as Lemma 3.3.1 by showing the following,

lim
n→∞

P
(

LIS(ηkn)√
kn

> 2e
β
2 − ε

)
= 1, (3.114)

for any ε > 0.

From the inequality ln(1 + x) ≤ x for all x > −1, we have

1

qnn
= e−n ln qn ≥ e−n(qn−1) = en(1−qn).

Since lim infn→∞ n(1− qn) = β, for any ε1 > 0, there exists N1 > 0 such that, for any

n > N1, we have 1/qnn > eβ−ε1 . Thus, by the law of large numbers, we have

lim
n→∞

P
(∑kn

i=1Bn,i > kne
β−ε1

)
= 1. (3.115)

Here we use the fact that limn→∞ kn = ∞. Given U = (U1, . . . , Ukn) and B =

(Bn,1, . . . , Bn,kn), let Λ(U ,B) denote the set of points in R2 defined by

Λ(U ,B) := {(i, Ui) : i ∈ [kn] and Bn,i = 1}.

By the definition of ηkn and Definition 3.6.10, we have

LIS(ηkn) = LIS(Λ(U ,B)).

Moreover, conditioned on
∑kn

i=1Bn,i = m, by the independence of U and B, it is easily

seen that LIS(Λ(U ,B)) has the same distribution as LIS(π) with π ∼ λm.

For any 0 < ε2, ε3 < 1, by the result of Vershik and Kerov [17] again, there exists

M > 0 such that, for any m > M ,

λm

(
LIS(π)√

m
> 2− ε2

)
> 1− ε3. (3.116)
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Since limn→∞ kn =∞ and (3.115), there exists N > N1 such that, for any n > N , we

have

kne
β−ε1 > M and P

(∑kn
i=1Bn,i > kne

β−ε1
)
> 1− ε3.

Let s = bkneβ−ε1c+ 1. For any n > N , we have

P
(

LIS(ηkn) > (2− ε2)
√
kneβ−ε1

)
≥

kn∑
m=s

P
(

LIS(ηkn) > (2− ε2)
√
kneβ−ε1

∣∣∣ kn∑
i=1

Bn,i = m
)
P
( kn∑
i=1

Bn,i = m
)

≥
kn∑
m=s

P
(

LIS(ηkn) > (2− ε2)
√
m
∣∣∣ kn∑
i=1

Bn,i = m
)
P
( kn∑
i=1

Bn,i = m
)

=
kn∑
m=s

λm

(
LIS(π) > (2− ε2)

√
m
)
P
( kn∑
i=1

Bn,i = m
)

> (1− ε3)
kn∑
m=s

P
( kn∑
i=1

Bn,i = m
)

= (1− ε3) P
( kn∑
i=1

Bn,i > kne
β−ε1

)
> (1− ε3)2.

Here the second inequality follows since m ≥ s ≥ kne
β−ε1 . The third inequailty follows

from (3.116) and the fact that m ≥ kne
β−ε1 > M . Therefore, we have shown that

limn→∞ P
(

LIS(ηkn) > (2 − ε2)
√
kneβ−ε1

)
= 1, and (3.114) follows from the fact that,

by choosing ε1 and ε2 small enough, (2− ε2)
√
eβ−ε1 can be arbitrarily close to 2e

β
2 .

The proof of Lemma 3.3.2 is similar to the proof of Lemma 3.3.1.

Proof of Lemma 3.3.2. Again, we split the proof into two parts. For the first part, we

need to show that, for any ε > 0,

lim
n→∞

max
b∈Q(n,kn)

µn,qn

(
π ∈ Sn :

LIS(πb)√
kn

< 2− ε
)

= 0. (3.117)

For this part, since 0 < qn ≤ 1, we use Corollary 3.2.8 (b). For any b ∈ Q(n, kn), there

exist two random variables (U, V ) such that U ∼ λkn , V has the same distribution
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as πb with π ∼ µn,qn and V ≤L U . Hence we have LIS(V ) ≥ LIS(U), since LIS() is

non-increasing on the poset (Sn,≤L). Therefore, we have

µn,qn

(
π ∈ Sn :

LIS(πb)√
kn

< 2− ε
)
≤ λkn

(
π ∈ Skn :

LIS(π)√
kn

< 2− ε
)
.

Then (3.117) follows by the result of Vershik and Kerov [17] that, under uniform

measure, LIS(π)/
√
n converges in probability to 2 as n goes to infinity. Note that

(3.117) only depends on the fact that 0 < qn ≤ 1.

For the second part, we need to show that, for any ε > 0,

lim
n→∞

max
b∈Q(n,kn)

µn,qn

(
π ∈ Sn :

LIS(πb)√
kn

≥ 2e
β
2 + ε

)
= 0. (3.118)

First, we point out that, for any sequence {qn}∞n=1 with 0 < qn ≤ 1 and lim supn→∞ n(1−

qn) = β < ln 2, we have

lim sup
n→∞

1

qnn
= elim supn→∞−n ln qn = elim supn→∞ n(1−qn) = eβ < 2.

Here the second equality follows from the fact that limx→1
lnx
x−1

= 1. Thus, for any

0 < ε1 < ln 2− β, there exists N1 > 0 such that, for all n > N1, we have 1/qnn < eβ+ε1 .

Given n > N1, for any b ∈ Q(n, kn), by Lemma 3.6.11, LIS(ξ
(n)
b ) and LIS(πb)

have the same distribution, where ξ
(n)
b is the point process as defined in that lemma.

Moreover, by Lemma 3.6.9, there exists a point process ζkn such that ξ
(n)
b ≤ ζkn almost

surely and ζkn is defined by

ζkn(A) :=
kn∑
i=1

1A((i, U ′i)) +Bn,i · 1A((i, Ui)) ∀A ∈ B(N× [0, 1]), (3.119)

where {Ui}kni=1 ∪ {U ′i}
kn
i=1 ∪ {Bn,i}kni=1 are 3kn independent random variables with each

Ui, U
′
i being uniformly distributed on [0, 1] and each Bn,i being a Bernoulli random

variable with P(Bn,i = 1) = 1
qnn
− 1.

Hence, we have

µn,qn

(
π ∈ Sn :

LIS(πb)√
kn

≥ 2e
β
2 + ε

)
= P

(
LIS(ξ

(n)
b )√
kn

≥ 2e
β
2 + ε

)
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≤ P
(

LIS(ζkn)√
kn

≥ 2e
β
2 + ε

)
.

Here the last inequality follows by the monotonicity of LIS() on X2.

We complete the proof of (3.118) as well as Lemma 3.3.2 by showing that, for any

ε > 0,

lim
n→∞

P
(

LIS(ζkn)√
kn

< 2e
β
2 + ε

)
= 1. (3.120)

First, since, for all n > N1, we have P(Bn,i = 1) = 1/qnn − 1 < eβ+ε1 − 1, by the law of

large numbers, we get

lim
n→∞

P
(∑kn

i=1Bn,i < kn(eβ+ε1 − 1)
)

= 1. (3.121)

Here we use the fact that limn→∞ kn =∞. Given U ′ = (U ′1, . . . , U
′
kn

), U = (U1, . . . , Ukn)

and B = (Bn,1, . . . , Bn,kn), let Λ(U ′,U ,B) denote the set of points in R2 defined by

Λ(U ′,U ,B) := {(i, Ui) : i ∈ [kn] and Bn,i = 1}
⋃
{(i, U ′i) : i ∈ [kn]}.

By the definition of ζkn and Definition 3.6.10, we have

LIS(ζkn) = LIS(Λ(U ′,U ,B)). (3.122)

Based on U ′, U and B, define another set of points in R2 as follows,

Λ+(U ′,U ,B) := {(i+ 1/2, Ui) : i ∈ [kn] and Bn,i = 1}
⋃
{(i, U ′i) : i ∈ [kn]}.

Then, we have

LIS(Λ(U ′,U ,B)) ≤ LIS(Λ+(U ′,U ,B)). (3.123)

Since, by Definition 3.1.1, no two points with the same x coordinates can be both

within an increasing subsequence, by increasing the x coordinates of those points in

Λ(U ′,U ,B) which reside on the same vertical line as other points by 1/2, the relative

ordering of the shifted point with other points does not change, except the one which

has the same x coordinate when unshifted. Combining (3.122) and (3.123), we have

LIS(ζkn) ≤ LIS(Λ+(U ′,U ,B)). (3.124)
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Moreover, conditioned on
∑kn

i=1Bn,i = m, by independence of U ′,U and B, it is easily

seen that LIS(Λ+(U ′,U ,B)) has the same distribution as LIS(π) with π ∼ λkn+m. For

any 0 < ε2, ε3 < 1, by the result of Vershik and Kerov [17] again, there exists M > 0

such that, for any k > M ,

λk

(
LIS(π)√

k
< 2 + ε2

)
> 1− ε3.

Since limn→∞ kn =∞ and (3.121), there exists N > N1 such that, for any n > N , we

have

kn > M and P
(∑kn

i=1Bn,i < kn(eβ+ε1 − 1)
)
> 1− ε3.

Let s = dkn(eβ+ε1 − 1)e − 1. For any n > N , we have

P
(

LIS(ζkn) < (2 + ε2)
√
kneβ+ε1

)
≥

s∑
m=0

P
(

LIS(ζkn) < (2 + ε2)
√
kneβ+ε1

∣∣∣ kn∑
i=1

Bn,i = m
)
P
( kn∑
i=1

Bn,i = m
)

≥
s∑

m=0

P
(

LIS(ζkn) < (2 + ε2)
√
kn +m

∣∣∣ kn∑
i=1

Bn,i = m
)
P
( kn∑
i=1

Bn,i = m
)

≥
s∑

m=0

P
(

LIS(Λ+(U ′,U ,B)) < (2 + ε2)
√
kn +m

∣∣∣ kn∑
i=1

Bn,i = m
)

× P
( kn∑
i=1

Bn,i = m
)

=
s∑

m=0

λkn+m

(
LIS(π) < (2 + ε2)

√
kn +m

)
P
( kn∑
i=1

Bn,i = m
)

> (1− ε3)
s∑

m=0

P
( kn∑
i=1

Bn,i = m
)

= (1− ε3) P
( kn∑
i=1

Bn,i < kn(eβ+ε1 − 1)
)

> (1− ε3)2.

The second inequality follows because

kn +m ≤ kn + s < kn + kn(eβ+ε1 − 1) = kne
β+ε1 ,

and the third inequality follows from (3.124). Therefore, we have shown that

lim
n→∞

P
(

LIS(ζkn) < (2 + ε2)
√
kneβ+ε1

)
= 1.
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(3.120) follows from the fact that, by choosing ε1 and ε2 small enough, (2 + ε2)
√
eβ+ε1

can be arbitrarily close to 2e
β
2 .
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Chapter 4

WEAK LAW OF LARGE NUMBERS WHEN NEITHER
PERMUTATION IS CLOSE TO UNIFORMLY RANDOM

In this chapter we prove Theorem 5, the weak law of large numbers for the LCS

of two independent Mallows permutations when qn = q′n, qn → 1 and n(1− qn)→∞.

Since LCS(π, τ) has the same distribution as LIS(π, τ), we once again reduce the LCS

problem to the LIS problem. The remainder of the proof follows the approach used in

[6] to prove a weak law for the LIS of a Mallows permutation (Theorem 1.1.9). We

approximate LIS(π, τ) by the sum of LIS(πBi , τBi), where {Bi} are disjoint blocks of

indices which partition [n]. We choose the size of Bi such that the limiting size of

LIS(πBi , τBi) can be obtained from Corollary 3. We believe that the approach can

be extended to the case that limn→∞
qn
q′n

= 1, but to keep the computation simple we

restrict to the case that qn = q′n.

4.1 Mallows process

In this section we describe a random process on permutations which was known

to Mallows [20], and is termed as Mallows process in [6]. Given q > 0, the q-Mallows

process is a permutation-valued stochastic process (pn)n≥1, where pn ∈ Sn. The process

is initialized by setting p1 to be the only permutation on one element. The process iter-

atively constructs pn from pn−1 and an independent random variable pn(n) distributed

as a truncated geometric. Precisely, let {pn(n)}n≥1 be a sequence of independent ran-

dom variables with the distributions

P(pn(n) = j) =
qj−1

1 + q + · · ·+ qn−1
=

(1− q)qj−1

1− qn
, ∀1 ≤ j ≤ n.
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Each permutation pn is defined iteratively by

pn(i) =


pn−1(i), when pn−1(i) < pn(n);

pn−1(i) + 1, when pn−1(i) ≥ pn(n);

pn(n), when i = n.

The Mallows process constructed as above has the following property (cf. Lemma 2.1

in [6]).

Lemma 4.1.1. Let q > 0 and let {pn}n≥1 be the q-Mallows process. Then pn is

distributed according to µn,1/q.

The next lemma says that pi(i) is determined by the value of pn on [i].

Lemma 4.1.2. For any 1 ≤ i ≤ n, we have

i− pi(i) =
i∑
t=1

1 (pn(t) > pn(i)) . (4.1)

Proof. By the definition of Mallows process, pi is a permutation in Si. Hence we have

pi(i) =
i∑
t=1

1 (pi(t) ≤ pi(i))

=
i∑
t=1

1 (pn(t) ≤ pn(i)) .

Here the last equality follows since the relative ordering of previous indices will not

change by the following updates. Thus

i− pi(i) =
i∑
t=1

1− 1 (pn(t) ≤ pn(i)) =
i∑
t=1

1 (pn(t) > pn(i)) .

A direct corollary of Lemma 4.1.2 is that the number of inversion of pn can be

written as a function of pi(i).

Corollary 4.1.3.

l(pn) =
(n+ 1)n

2
−

n∑
i=1

pi(i). (4.2)
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Lemma 4.1.4. For any 1 ≤ i ≤ n, we have

pn(i) = pi(i) + n− i−
n∑

t=i+1

1 (pn(t) > pn(i)) . (4.3)

Moreover, if k ∈ [n] \ {pn(t) : i+ 1 ≤ t ≤ n} satisfy the following equation,

k = pi(i) + n− i−
n∑

t=i+1

1 (pn(t) > k) .

we have k = pn(i).

Proof. Since pn is a permutation in Sn, we have

pn(i) = n−
n∑
t=1

1 (pn(t) > pn(i)) .

Hence (4.3) follows from (4.1). We prove the second claim by contradiction. Suppose

we have j < k with j, k ∈ [n] \ {pn(t) : i+ 1 ≤ t ≤ n} such that

j = pi(i) + n− i−
n∑

t=i+1

1 (pn(t) > j) ,

k = pi(i) + n− i−
n∑

t=i+1

1 (pn(t) > k) .

By subtracting these two equations, we have

k − j =
n∑

t=i+1

1 (j < pn(t) ≤ k) =
n∑

t=i+1

1 (j < pn(t) ≤ k − 1) ,

which is a contradiction. Because {pn(t) : i + 1 ≤ t ≤ n} are distinct numbers and

there are only k − j − 1 slots within (j, k − 1].

Let πn and τn be as defined in Theorem 5. By Lemma 3.2.11, for any n ≥ 1,

there exists a coupling (πn, τn, Zn) such that Zn ∼ µn,q and

LIS(πn, τn) ≤ LIS(Zn). (4.4)

In [6] Section 5.1, the authors show that, given p > 0, when q is sufficiently close to 1,

the family of random variables
{∣∣∣LIS(Zn)

n
√

1−q

∣∣∣p} indexed by q is uniformly integrable. Hence
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by (4.4), the family of random variables
{∣∣∣LIS(πn,τn)

n
√

1−q

∣∣∣p} is also uniformly integrable. In

the following we show that
LIS(πn, τn)

n
√

1− qn
L1−→
√

6

3
, (4.5)

as n → ∞. Then, by the uniform integrability of
{∣∣∣LIS(πn,τn)

n
√

1−q

∣∣∣p}, for any p > 0, we

have
LIS(πn, τn)

n
√

1− qn
Lp−→
√

6

3
, (4.6)

as n → ∞. Theorem 5 follows from Corollary 3.1.4 and the fact that (πn, τn) has the

same distribution as (π−1
n , τ−1

n ). The proof of (4.5) follows the approach developed in

[6] in which the authors prove a similar result for the length of the LIS of a Mallows

permutation.

4.2 Block decomposition

Let n = n(q) be a function of q such that

lim
q→1

n =∞, and lim
q→1

n(1− q) =∞. (4.7)

Let π ∼ µn,q, τ ∼ µn,q and π and τ are independent. To prove (4.5), it suffices to show

that
LIS(π, τ)

n
√

1− q
L1−→
√

6

3
, (4.8)

as q → 1. In the following, we will partition [n] into blocks of size β
1−q for some large

β. We consider the LIS formed by π and τ when restricted to each blocks and show

that the concatenation of these increasing subsequences within each block is close to

LIS(π, τ).

Given β > 0, define a function β(q) such that β(q)
1−q is an integer and β(q) → β

as q → 1. Define

m :=

⌊
n(1− q)
β(q)

⌋
. (4.9)

For 1 ≤ i ≤ m define

Bi :=

(
(i− 1)

β(q)

1− q
+ 1, . . . , i

β(q)

1− q

)
.

116



Hence, each Bi is a block of consecutive integers of size β(q)
1−q . To make {Bi} a partition

of [n], define Bm+1 :=
(
mβ(q)

1−q + 1, . . . , n
)

. For 1 ≤ i ≤ m+ 1, let

Xi := LIS(πBi , τBi)

be the length of the longest increasing subsequence of the restriction of π and τ to Bi.

By Lemma 1.1.5, theXi are independent. By Lemma 1.1.6, each Xi has the distribution

of the LIS of two independent Mallows permutations of size β(q)
1−q and parameter q.

Moreover, by Lemma 1.1.4, and using Corollary 3.1.4 in another direction, Xi has

the distribution of the LCS of two independent Mallows permutations of size β(q)
1−q and

parameter q.

By triangle inequality, we have∣∣∣∣∣LIS(π, τ)

n
√

1− q
−
√

6

3

∣∣∣∣∣ ≤
∣∣∣∣LIS(π, τ)−

∑m
i=1Xi

n
√

1− q

∣∣∣∣+

∣∣∣∣∣
∑m

i=1 Xi

n
√

1− q
−
√

6

3

∣∣∣∣∣ .
We will prove that

lim
β→∞

lim
q→1

E
(∣∣∣∣LIS(π, τ)−

∑m
i=1 Xi

n
√

1− q

∣∣∣∣) = 0, (4.10)

lim
β→∞

lim
q→1

E

(∣∣∣∣∣
∑m

i=1 Xi

n
√

1− q
−
√

6

3

∣∣∣∣∣
)

= 0. (4.11)

These equalities imply that

lim
β→∞

lim
q→1

E

(∣∣∣∣∣LIS(π, τ)

n
√

1− q
−
√

6

3

∣∣∣∣∣
)

= 0,

and since π and τ do not depend on β, we have

lim
q→1

E

(∣∣∣∣∣LIS(π, τ)

n
√

1− q
−
√

6

3

∣∣∣∣∣
)

= 0,

which is exactly (4.8).

Since {Bi} partition [n], it follows trivially that

LIS(π, τ) ≤
m+1∑
i=1

Xi. (4.12)

117



We will show a bound in the other direction by using the q-Mallows process. Given

two independent q-Mallows processes {pi} and {p′i}, define two permutations π and τ

by

π(j) := n+ 1− pn(j), τ(j) := n+ 1− p′n(j), (4.13)

for 1 ≤ j ≤ n. By Lemma 4.1.1 and Lemma 1.1.4, it follows that π ∼ µn,q and τ ∼ µn,q.

Let a = a(β) > 0 be any function of β satisfying

a→∞ and
a

β
→ 0, as β →∞. (4.14)

For each i ∈ [m] define

Ei :=

{
j ∈ Bi : pmaxBi(j) ≤

a

1− q

}
, Fi :=

{
j ∈ Bi : pj(j) >

a

1− q

}
.

That is Ei consists of those indices in Bi at which the first q-Mallows process is at most

a
1−q after the entire block Bi is assigned. Fi consists of those indices in Bi at which

its initial position is greater than a
1−q . For the second q-Mallows process, we define E ′i

and F ′i similarly.

Let Ii = (i1, . . . , ik) ⊂ Bi be the indices of an arbitrary longest increasing

subsequence of π and τ in the restriction of Bi. That is π(ij) < π(ij+1) and τ(ij) <

τ(ij+1) for any j ∈ [k− 1]. Note that by the definition of Xi, we have |Ii| = Xi. Define

I ′i := Ii \ (Ei ∪ Fi ∪ E ′i ∪ F ′i ).

In other words, I ′i is obtained by delete those indices in Ei∪Fi∪E ′i∪F ′i from Ii without

changing the ordering of the remaining indices in Ii. The definitions of Bi, Ei, Fi, E
′
i

and F ′i imply that the concatenation of {I ′i}i∈[m] is a set of indices along which defines

an increasing subsequence of π and τ . To see this, suppose j, k come from the same

I ′i with j comes before k in I ′i, then by the definition of I ′i we have π(j) < π(k) and

τ(j) < τ(k). On the other hand, suppose j ∈ I ′i1 and k ∈ I ′i2 with i1 < i2. By the

definition of Ei1 , Fi2 , we have

pk(k) ≤ a

1− q
< pmaxBi1

(j) ≤ pk(j),
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which implies that pn(k) < pn(j), thus π(k) > π(j). τ(k) > τ(j) follows from the

similar argument. Hence

LIS(π, τ) ≥
m∑
i=1

|I ′i|. (4.15)

Moreover, the definitions of Ii and I ′i imply that

Xi = |Ii| ≤ |I ′i|+
∑

A∈{Ei,E′i,Fi,F ′i}

LIS(πA, τA), (4.16)

for 1 ≤ i ≤ m. From (4.15) and (4.16), we have

LIS(π, τ) ≥
m∑
i=1

Xi −
m∑
i=1

∑
A∈{Ei,E′i,Fi,F ′i}

LIS(πA, τA). (4.17)

Thus from (4.12) and (4.17), we get

E
(∣∣∣∣LIS(π, τ)−

m∑
i=1

Xi

∣∣∣∣) ≤ m∑
i=1

∑
A∈{Ei,E′i,Fi,F ′i}

E (LIS(πA, τA)) + E(Xm+1). (4.18)

Therefore, (4.10) is a direct consequence of the next lemma.

Lemma 4.2.1.

lim
β→∞

lim
q→1

E
(

Xm+1

n
√

1− q

)
= 0, (4.19)

lim
β→∞

lim
q→1

∑m
i=1 E(LIS(πAi , τAi))

n
√

1− q
= 0, (4.20)

for Ai ∈ {Ei, E ′i, Fi, F ′i}.

Before proving Lemma 4.2.1, we state the following technical lemma whose proof

will be presented at the end of this section. Both Lemma 4.2.2 and Lemma 3.2.11 will

be used to reduce the claim in Lemma 4.2.1 to the result of Lemma 5.1 in [6].

Lemma 4.2.2. Given consecutive indices B ⊂ [n], 0 < q < 1 and any constant C > 0,

there exists a coupling of q-Mallows processes {pi}, {p′i} and {p̂i} such that

• {pi} and {p′i} are independent.
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• Let π, τ be as defined in (4.13). Define π̂(j) := n+ 1− p̂n(j) and

F := {j ∈ B : pj(j) > C} , F̂ := {j ∈ B : p̂j(j) > C} .

Then, we have F = F̂ and LIS(πF , τF ) ≤ LIS(π̂F ).

Proof of Lemma 4.2.1. To prove (4.19), Define X := LIS(πBm+1). By Lemma 3.2.11,

letting a = Bm+1, we have

E(Xm+1) = E(LIS(πBm+1 , τBm+1)) ≤ E(X),

and (4.19) follows from the first equation in Lemma 5.1 in [6].

To prove (4.20), by symmetry, we only need to show (4.20) holds when Ai =

Ei, Fi. For the case when Ai = Ei, define

I :=

(
1, 2, . . . ,

⌊
a

1− q

⌋)
, σ := pmaxBi , Ēi := σ−1(I). (4.21)

We have

LIS(πEi , τEi) ≤ LIS(πĒi , τĒi) = LIS((pn)Ēi , (p
′
n)Ēi)

= LIS(σĒi , (p
′
maxBi

)Ēi)

= LIS((σĒi)
r, ((p′maxBi

)Ēi)
r). (4.22)

By Lemma 1.1.6 and (4.21), conditioned on the value of Ēi, we have σĒi ∼ µb a
1−qc,1/q.

By Lemma 1.1.4, we have (σĒi)
r ∼ µb a

1−qc,q. Moreover, conditioned on the value of Ēi,

(σĒi)
r and ((p′maxBi

)Ēi)
r are independent. Thus, by choosing a = I in Lemma 3.2.11,

there exists a random variable Z with Z ∼ µb a
1−qc,q such that

LIS((σĒi)
r, ((p′maxBi

)Ēi)
r) ≤ LIS(Z).

Hence it follows from (4.22) that LIS(πEi , τEi) ≤ LIS(Z). For any a > 5, since 0 < q <

1, we have
⌊

a
1−q

⌋
> 5. Thus

1− 4⌊
a

1−q

⌋ ≥ 1− 5
a

1−q
> q.
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Hence, by Theorem 1.3 in [6], there exists a constant c such that

E(LIS(πEi , τEi)) ≤ E(LIS(Z)) ≤ c

⌊
a

1− q

⌋√
1− q ≤ ca√

1− q
.

Hence, from the definition of m in (4.9) and the property of a as defined in (4.14), it

follows that

lim
β→∞

lim
q→1

∑m
i=1 E(LIS(πEi , τEi))

n
√

1− q
≤ lim

β→∞
lim
q→1

mca

n(1− q)

≤ lim
β→∞

lim
q→1

ca

β(q)
= lim

β→∞

ca

β
= 0,

which completes the proof of (4.20) when Ai = Ei. For the case when Ai = Fi, by

Lemma 4.2.2, there exists a coupling such that

E(LIS(πFi , τFi)) ≤ E(LIS(π̂Fi)). (4.23)

The claim follows directly from the third equation in Lemma 5.1 in [6].

Next we establish (4.11), which combined with (4.10) imply (4.8), whence com-

pletes the proof of Theorem 5. We will make use of Theorem 3, specifically Corollary

3. Define

J̄(β) =
√

β
6 sinh (β/2)

·
∫ 1

0

√
cosh (β/2) + 2 cosh

(
β[2x− 1]/2

)
dx. (4.24)

First we show that

lim
β→∞

J̄(β)√
β

=
1√
6
. (4.25)

Since limx→∞ coth(x) = 1, by (4.24), it suffices to show

lim
β→∞

∫ 1

0

√
1 + 2 cosh

(
β[2x− 1]/2

)/
cosh (β/2) dx = 1. (4.26)

Note that

1 + 2 ·
cosh

(
β[2x− 1]/2

)
cosh (β/2)

= 1 + 2 · e
β(2x−1)/2 + e−β(2x−1)/2

eβ/2 + e−β/2
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= 1 + 2 · e
β(x−1) + e−βx

1 + e−β
< 1 + 2(1 + 1) = 5.

for any x ∈ [0, 1] and β > 0. Hence, by dominated convergence theorem, we have

lim
β→∞

∫ 1

0

√
1 + 2 cosh

(
β[2x− 1]/2

)/
cosh (β/2) dx

=

∫ 1

0

lim
β→∞

√
1 + 2 cosh

(
β[2x− 1]/2

)/
cosh (β/2) dx

=

∫ 1

0

1 dx = 1.

(4.26) as well as (4.25) follow.

We continue with the notation defined in Section 4.2. Suppose n = n(q) is such

that (4.7) holds. Recall that X1 denotes the length of the LIS of two independent

Mallows permutations with the same distribution µ β(q)
(1−q) ,q

. Since

lim
q→1

β(q)

1− q
· (1− q) = β,

we can apply Corollary 3 and Corollary 3.1.4 to X1 and deduce that√
1− q
β(q)

·X1
p−→ 2J̄(β). (4.27)

Now fix β0 sufficiently large and q0 sufficiently close to 1 such that β > β0 and q0 ≤

q < 1 imply 1
2
< q < 1− 4(1−q)

β(q)
. By (68) in [6] and Lemma 3.2.11, it follows that{(√

1− q
β(q)

·X1

)2
}

indexed by q0 < q < 1 are uniformly integrable. (4.28)

Since β(q)→ β as q → 1, (4.27) and (4.28) imply that for any fixed β > β0,√
1− q
β
·X1

L2−→ 2J̄(β),

as q → 1. Hence, for any fixed β > β0, we have

lim
q→1

√
1− q
β
· E(X1) = 2J̄(β) and lim

q→1
(1− q) · Var(X1) = 0. (4.29)

Let Y :=
∑m
i=1 Xi

n
√

1−q . To prove (4.11), we first show that

lim
β→∞

lim
q→1

E(Y ) =

√
6

3
, (4.30)
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lim
β→∞

lim
q→1

Var(Y ) = 0. (4.31)

To prove (4.30), note that since {Xi}i∈[m] are i.i.d. random variables, we have

E(Y ) =
m

n
√

1− q
E(X1) =

mβ

n(1− q)
·
√

1− q
β

· E(X1). (4.32)

By the definition of m and (4.7), we have

lim
q→1

mβ

n(1− q)
= 1. (4.33)

Hence, from (4.32) and using (4.29), it follows that

lim
q→1

E(Y ) =
1√
β
· lim
q→1

√
1− q
β
· E(X1) =

2J̄(β)√
β
. (4.34)

Thus, (4.30) follows from (4.25), since

lim
β→∞

lim
q→1

E(Y ) = lim
β→∞

2J̄(β)√
β

=

√
6

3
.

To prove (4.31), again since {Xi}i∈[m] are i.i.d., by (4.33), we have

lim
q→1

Var(Y ) = lim
q→1

m

n2(1− q)
Var(X1)

= lim
q→1

1

βn
Var(X1) = lim

q→1

1

βn(1− q)
(1− q)Var(X1).

Hence, for β > β0, (4.7) and (4.29) imply that

lim
q→1

Var(Y ) = 0,

proving (4.31). Finally, by the triangle and Jensen’s inequalities we have

E
∣∣∣Y − √6

3

∣∣∣ ≤ E
∣∣∣Y − E(Y )

∣∣∣+
∣∣∣E(Y )−

√
6

3

∣∣∣ ≤√Var(Y ) +
∣∣∣E(Y )−

√
6

3

∣∣∣ ,
which shows that (4.30) and (4.31) imply (4.11).

4.3 Proof of Lemma 4.2.2

Let M := max{i ∈ B}. Let {pi} be a q-Mallows process. Given a constant C,

recall that we define F := {i ∈ B : pi(i) > C}. First we will prove the following claim.
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Claim 1: Given increasing indices v = (v1, v2, . . . , vl) with vi ∈ B, for any

1 ≤ j < k ≤ l and any permutation b = (b1, b2, . . . , bM) ∈ SM with bvj < bvk , we have

P
(
pM = b

∣∣F = v
)
≤ P

(
pM = b ◦ (vj, vk)

∣∣F = v
)
.

Here b ◦ (vj, vk) denotes the permutation obtained by switching bvj and bvk in b.

Proof of Claim 1. If P
(
pM = b

∣∣Fi = v
)

= 0, the claim holds trivially. Suppose

P
(
pM = b

∣∣Fi = v
)
> 0, i.e. there exists t = (t1, . . . , tM) such that

(i) 1 ≤ ti ≤ i,

(ii) if i ∈ B, ti > C if only if i ∈ v,

(iii) if pi(i) = ti for i ∈ [M ], we have pM = b.

Define 

t̂i := ti if 1 ≤ i < vj or vk < i ≤M ;

t̂i := ti − 1
(
bvj < pM(i) < bvk

)
if vj < i < vk;

t̂vj := vj −
∑vj

i=1 1 (pM(i) > bvk) ;

t̂vk := vk −
∑vk

i=1 1
(
pM(i) > bvj

)
.

(4.35)

We show that, if at each step of the q-Mallows process {p̂i},

p̂i(i) = t̂i for any i ∈ [M ], (4.36)

we have p̂M = b ◦(vj, vk). Moreover, if we define F̂ := {i ∈ B : p̂i(i) > C}, then F = F̂ .

We first show that t̂vi as defined in (4.35) satisfy that C < t̂vi ≤ vi. We will

prove this claim in different cases depending on the value of i.

• For 1 ≤ i < j or k < i ≤ l, we have t̂vi = tvi . Thus by (i), it follows that

C < t̂vi ≤ vi.

• For j < i < k, we have

t̂vi ≤ tvi ≤ vi.

124



On the other hand, by the definition of Mallows process, pM(vi) > bvj if and only

if pvi(vi) > pvi(vj). Hence if 1
(
bvj < pM(vi) < bvk

)
= 1, we have

tvi = pvi(vi) > pvi(vj) ≥ tvj > C,

which means 1
(
bvj < pM(vi) < bvk

)
= 1 implies tvi > C + 1. Thus

t̂vi = tvi − 1
(
bvj < pM(vi) < bvk

)
> C.

• To show C < t̂vj ≤ vj, note that by the definition of t̂vj in (4.35), we have t̂vj ≤ vj.

To show t̂vj > C, note that since pvj is a permutation in Svj , we have

vj − tvj =

vj∑
i=1

1
(
pvj(i) > tvj

)
=

vj∑
i=1

1
(
pM(i) > bvj

)
≥

vj∑
i=1

1 (pM(i) > bvk) . (4.37)

Here the last inequality follows since bvj < bvk . The definition of t̂vj and (4.37)

imply t̂vj ≥ tvj > C.

• To show C < t̂vk ≤ vk, again by the definition of t̂vk in (4.35), we have t̂vk ≤ vk.

To show t̂vk > C, note that since pvk is a permutation in Svk , we have

vk − tvj =

vk∑
i=1

1
(
pvk(i) > tvj

)
≥

vk∑
i=1

1 (pvk(i) > pvk(vj)) =

vk∑
i=1

1
(
pM(i) > bvj

)
. (4.38)

Here the inequality follows since tvj = pvj(vj) ≤ pvk(vj). The definition of t̂vk and

(4.38) imply t̂vk ≥ tvj > C

For i ∈ B \ v, by the definition of t̂i, we have t̂i ≤ C. For vj < i < vk,

1
(
bvj < pM(i) < bvk

)
= 1 implies ti = pi(i) > pi(vj) ≥ 1. Hence

t̂i = ti − 1
(
bvj < pM(i) < bvk

)
≥ 1.

125



Therefore, we have shown F = F̂ . The claim that p̂i(i) = t̂i at every step i ∈ [M ]

will result to p̂M = b ◦ (vj, vk) can be proved by induction. The induction is taken in

reverse order with the base case i = M and the induction step is established by using

the second part of Lemma 4.1.4 and the definition of t̂i. Here we omit the proof.

To prove the Claim 1, note that conditioned on F = v, the random variables

pi(i) are still independent with truncated geometric distribution. Hence, we have

P
(
{pi(i) = ti : i ∈ [M ]}

∣∣F = v
)

= c · q
∑M
i=1 ti , (4.39)

P
({
pi(i) = t̂i : i ∈ [M ]

} ∣∣F = v
)

= c · q
∑M
i=1 t̂i , (4.40)

Here c is a normalizing constant. By Corollary 4.1.3, we have

M∑
i=1

ti =
(M + 1)M

2
− l(b),

M∑
i=1

t̂i =
(M + 1)M

2
− l(b ◦ (vj, vk)).

Since bvj < bvk implies l(b) < l(b ◦ (vj, vk)), we have
∑M

i=1 ti >
∑M

i=1 t̂i. Thus, by (4.39)

and (4.40),

P
(
{pi(i) = ti : i ∈ [M ]}

∣∣F = v
)
< P

({
pi(i) = t̂i : i ∈ [M ]

} ∣∣F = v
)
.

By (iii) and (4.36), Claim 1 follows.

Based on Claim 1, we next prove the following claim.

Claim 2: For any κ ∈ SM and any w ∈ [M−1] such that κ−1(w) < κ−1(w+1),

there exists a coupling of two q-Mallows process {p̄i} and {p̂i} such that the following

are satisfied.

• With F̄ := {i ∈ B : p̄i(i) > C} and F̂ := {i ∈ B : p̂i(i) > C}, we have F̄ = F̂ .

• LIS((p̄M)F , κF ) ≤ LIS((p̂M)F , ((w,w + 1) ◦ κ)F ).

Proof of Claim 2. By Lemma 4.1.2, we know that the values of {pi(i)}i∈[M ] is deter-

mined by pM . Hence, to construct a coupling of {p̄i} and {p̂i}, it suffices to define a

coupling of (p̄M , p̂M).
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Let {pi} be a q-Mallows process. Define F := {i ∈ B : pi(i) > C}. Let v =

{v1, · · · , vl} be an arbitrary increasing indices in [M ]. Conditioned on F = v, we

defined (p̄M , p̂M) as follows.

• If κ−1(w) /∈ v or κ−1(w + 1) /∈ v, define p̄M = p̂M = pM .

• If κ−1(w) = vj and κ−1(w + 1) = vk, note that we can partition SM into

pairs of permutations {b, b ◦ (vj, vk)} with bvj < bvk . Then, first choose a

pair of permutation such that {b, b ◦ (vj, vk)} being chosen with probability

P
(
pM = b

∣∣F = v
)

+ P
(
pM = b ◦ (vj, vk)

∣∣F = v
)
. Then flip a coin with proba-

bility of head being

h :=
2 · P

(
pM = b

∣∣F = v
)

P
(
pM = b

∣∣F = v
)

+ P
(
pM = b ◦ (vj, vk)

∣∣F = v
) . (4.41)

If the outcome is tail, define p̄M = p̂M = b ◦ (vj, vk). If the outcome is head, then,

with equal probability, define either p̄M = b, p̂M = b ◦ (vj, vk) or p̄M = b ◦ (vj, vk),

p̂M = b.

For the first case, note that κ−1(i) /∈ v or κ−1(i + 1) /∈ v imply κv = ((i, i + 1) ◦ κ)v.

Hence, by setting p̄M = p̂M = pM , the two conditions in the claim are satisfied trivially.

For the second case, note that by Claim 1, the probability of being head h defined in

(4.41) is no greater than 1. Also as shown in the proof of Claim 1, when one of p̄M

and p̂M equals b and the other equals b ◦ (vj, vk), we have F̄ = F̂ = v. Moreover, it is

easy to verify that ((w,w + 1) ◦ κ)v = κv ◦ (j, k) and (b ◦ (vj, vk))v = bv ◦ (j, k). Hence,

when the outcome of the coin is head we have

LIS((p̄M)v, κv) = LIS((p̂M)v, ((w,w + 1) ◦ κ)v).

When is outcome is tail, we need to show that

LIS((b ◦ (vj, vk))v, κv) ≤ LIS((b ◦ (vj, vk))v, ((w,w + 1) ◦ κ)v). (4.42)

127



Note that we have (b ◦ (vj, vk))v = bv ◦ (j, k) and ((w,w+ 1) ◦κ)v = (r, r+ 1) ◦κv. Here

r denote the rank of w among κ restricted on v. Moreover, we have (κv)−1(r) = j <

k = (κv)−1(r + 1). Hence by Lemma 3.1.3, we have

LIS((b ◦ (vj, vk))v, κv) = LIS(bv ◦ (j, k), κv) (4.43)

= LIS(bv ◦ (j, k) ◦ (κv)−1, id),

LIS((b ◦ (vj, vk))v, ((w,w + 1) ◦ κ)v) = LIS(bv ◦ (j, k), (r, r + 1) ◦ κv) (4.44)

= LIS(bv ◦ (j, k) ◦ (κv)−1, (r, r + 1)).

Here id denotes the identity in Sl. Note that

bv ◦ (j, k) ◦ (κv)−1(r) = bv ◦ (j, k)(j) = bv(k), (4.45)

bv ◦ (j, k) ◦ (κv)−1(r + 1) = bv ◦ (j, k)(k) = bv(j). (4.46)

Since bvj < bvk , we have bv(j) < bv(k), which means {r, r+ 1} is a pair of inversion for

the permutation bv ◦ (j, k) ◦ (κv)−1. Hence (4.42) follows from (4.43) and (4.44).

Finally, it can be easily verified that p̄M and p̂M thus defined have the right

marginal distribution, i.e. both p̄M and p̂M have the same distribution as pM .

Proof of Lemma 4.2.2. Let idrM denote the reversal of identity in SM . Considering the

poset (SM ,≤L), here ≤L denotes the left weak Bruhat order as defined in 3.2.1, we have

that idrM is the maximum element in (SM ,≤L). Hence for any permutation κ 6= idrM ,

we can find a sequence of permutations {κi} such that

κ = κ0 ≤L κ1 ≤L · · · ≤L κm = idrM ,

and κi+1 covers κi, i.e. there exists w ∈ [M − 1] such that (w,w + 1) ◦ κi = κi+1 and

l(κi+1) = l(κi)+1. Note that here m = M(M−1)
2
− l(κ). Then by Claim 2 and induction

on m, it can be shown that, for any κ ∈ SM , there exists a coupling, denoted by Cκ, of

two q-Mallows processes {p̄i} and {p̂i} such that the following are satisfied.

• With F̄ := {i ∈ B : p̄i(i) > C} and F̂ := {i ∈ B : p̂i(i) > C}, we have F̄ = F̂ .
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• LIS((p̄M)F , κF ) ≤ LIS((p̂M)F , (id
r
M)F ).

To construct the coupling {pi}, {p′i} and {p̂i} in Lemma 4.2.2, note that, by Definition

3.1.2, we have

LIS(πF , τF ) = LIS(π(F ), τ(F )) = LIS(pn(F ), p′n(F )) (4.47)

= LIS(pM(F ), p′M(F )) = LIS((pM)F , (p
′
M)F ),

LIS(π̂F ) = LIS(π̂(F ), idn(F )) = LIS(p̂n(F ), (idrn)(F )) (4.48)

= LIS(p̂M(F ), (idrM)(F )) = LIS((p̂M)F , (id
r
M)F ).

Here idn denotes the identity in Sn. Hence by (4.47) and (4.48) we have

LIS(πF , τF ) ≤ LIS(π̂F )⇔ LIS((pM)F , (p
′
M)F ) ≤ LIS((p̂M)F , (id

r
M)F ). (4.49)

We define the coupling {pi}, {p′i} and {p̂i} as follows. For any i > M , we simply let

pi, p
′
i and p̂i be i.i.d. truncated geometric distributed. For 1 ≤ i ≤ M , let p′M ∼ µM,q.

Conditioned on p′M = κ, define {pi} and {p̂i} such that they have joint distribution Cκ.

The lemma follows from (4.49) and the property of Cκ.
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Chapter 5

CENTRAL LIMIT THEOREM FOR THE LCS

In this chapter we prove Theorem 6. In the first section, we introduce the con-

struction of Mallows permutation from a sequence of i.i.d. geometric random variables,

which enables us to decompose the common subsequence of two permutations as the

concatenation of common subsequences within disjoint blocks. In the second section,

we prove Theorem 6 by using the central limit theorem for the regenerative processes.

5.1 Bound LCS via Regenerative Process

5.1.1 Constructing Mallows Permutations

For a given parameter 0 < q < 1, Gnedin and Olshanski [14] constructed an

infinite Mallows permutation with parameter q on N by an insertion process, which we

will refer to as Mallows(q) process. The process is as follows. Given an i.i.d. sequence

{Zi}i>=1 of Geom(1− q) variables, construct a permutation Π̃ of the natural numbers

inductively according the following rule: Set Π̃(1) = Z1. For i > 1, set Π̃(i) = k where

k is the Zi-th number in the increasing order from the set N \ {Π̃(j) : 1 ≤ j < i}. For

example, suppose that the realizations of the first five independent geometric random

variables are Z1 = 4, Z2 = 4, Z3 = 1, Z4 = 2, Z5 = 3. Then we have Π̃(1) = 4, Π̃(2) = 5,

Π̃(3) = 1, Π̃(4) = 3 and Π̃(5) = 7. We represent the process step-by-step below.

1 · · ·

1 2 · · ·

3 1 2 · · ·

3 4 1 2 · · ·

3 4 1 2 5 · · ·
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Let Πn be the permutation on [n] induced by Π̃, i.e. ,Πn(i) = j if Π̃(i) has rank j

when the set {Π̃(k) : k ∈ [n]} is arranged in increasing order. Consider the example

above when n = 5. Then we have Π5(1) = 3, Π5(2) = 4, Π5(3) = 1, Π5(4) = 2 and

Π5(5) = 5. The following lemma (cf. Lemma 2.1 in [5]) says that Πn thus defined is

Mallows distributed with parameter q.

Lemma 5.1.1. Let Π̃ be an infinite Mallows(q) permutation and let Πn be the induced

permutation on [n] as defined above. Then Πn is a Mallows(q) permutation on [n].

5.1.2 The Regenerative Process Representation

A stochastic process {X(t) : t ≥ 0} is said to be a regenerative process if there

exist regeneration times 0 ≤ T0 < T1 < T2 < · · · such that for each k ≥ 1, the

process {X(Tk + t) : t ≥ 0} has the same distribution as {X(T0 + t) : t ≥ 0} and

is independent of {X(t) : 0 ≤ t < Tk}. Below we will define a regenerative process

using the Mallows(q) process defined above such that we can bound the LCS of two

independent Mallows permutations by the sum of i.i.d. random variables.

Let Π̃ and Π̃′ be two independent infinite Mallows permutations with parameters

q, q′ respectively. Suppose for a given m ∈ N we have Π̃([m]) = Π̃′([m]) = [m], i.e. the

permutations Π̃ and Π̃′ restricted to [m] defines two bijections from [m] to [m]. Define

two infinite permutations Π̃m and Π̃′m as follows,

Π̃m(i) := Π̃(i+m)−m, Π̃′m := Π̃′(i+m)−m, ∀i ∈ N.

From the construction of Π̃ and Π̃′, it is obvious that Π̃m and Π̃′m are also infi-

nite Mallows permutations with parameters q and q′ respectively. Together with

the independence of the geometric variables {Zi} as well as {Z ′i}, it follows that{(
Π̃(i) − i, Π̃′(i) − i

)}
i∈N is a regenerative process with regeneration times 0 = T0 <

T1 < T2 < · · · where for i > 1 we have,

Ti := min
{
j > Ti−1 :

{
Π̃(k) : k ∈ [j]

}
=
{

Π̃′(k) : k ∈ [j]
}

= [j]
}
.
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Let Xj := Tj −Tj−1 for j ≥ 1. Clearly, Xj are independent and identically distributed.

For j ≥ 1, define

Σj(i) := Π̃(i+ Tj−1)− Tj−1, Σ′j(i) := Π̃′(i+ Tj−1)− Tj−1, ∀i ∈ [Xj].

Then, both Σj and Σ′j are permutations of [Xj]. Furthermore, the {Σj}j∈N are i.i.d.

and {Σ′j}j∈N are i.i.d.. Let Yj := LCS(Σj,Σ
′
j) i.e.Yj denotes the length of the longest

common subsequence between Σj and Σ′j. Clearly, {Yj}j∈N are i.i.d.. Then we have

the following bounds for the LCS of two independent Mallows permutation.

Lemma 5.1.2. Let Sn := min{j : Tj ≥ n}. Then we have

Sn−1∑
j=1

Yj < LCS(Πn,Π
′
n) ≤

Sn∑
j=1

Yj.

Proof. Given j > 0, let LCS[Tj−1+1,Tj ](Πn,Π
′
n) denote the length of the longest common

subsequence of Πn,Π
′
n restricted on [Tj−1 + 1, Tj]. From the definition of Tj, we have

Πn([Tj−1 + 1, Tj]) = Π′n([Tj−1 + 1, Tj]) = [Tj−1 + 1, Tj]. Thus, we get

Sn−1∑
j=1

LCS[Tj−1+1,Tj ](Πn,Π
′
n) < LCS(Πn,Π

′
n) ≤

Sn∑
j=1

LCS[Tj−1+1,Tj ](Πn,Π
′
n).

It follows from the definition of Σj and Σ′j that there exists a bijection between the com-

mon subsequences of Πn, Π′n restricted on [Tj−1 + 1, Tj] and the common subsequences

of Σj, Σ′j. Hence we have LCS[Tj−1+1,Tj ](Πn,Π
′
n) = Yj. The lemma follows.

5.2 Renewal Time Estimate and the CLT

In this section, we first prove that the inter-renewal times Xi as defined in the

previous section has finite first and second moments, which are the conditions required

to apply results from the theory of regenerative processes to show Theorem 6. Again

we follow the approach developed in [5], in which the author introduce the following

Markov chain.

Let {Mn}n≥0 denote the Markov chain with the state space Ω = N ∪ {0} and

the one step transition defined as follows: Mn := max{Mn−1, Zn} − 1 where {Zi} is
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a sequence of i.i.d. Geom(1 − q) variables. Likewise, for the parameter q′, we define a

Markov chain {M ′
n}n≥0 in the same fashion, i.e., the one step transition rule is defined

by M ′
n := max{M ′

n−1, Z
′
n}− 1 where {Z ′i} is a sequence of i.i.d. Geom(1− q′) variables.

Let {M⊗
n }n≥0 denote the product chain of {Mn} and {M ′

n}. Let R+
0 denote the first

return time to (0, 0) of this chain, i.e.

R+
0 := min{k > 0 : M⊗

k = (0, 0)}.

Lemma 5.2.1. For the Markov chain {M⊗
n } started at M⊗

0 = (0, 0), the first return

time R+
0

d
= T1. In other words, Xi has the same distribution as R+

0 .

Proof. We couple the Markov chain M⊗
n = (Mn,M

′
n) with the infinite Mallows permu-

tations Π̃, Π̃′ with parameters q and q′ respectively by using the same i.i.d. sequences

{Zi} and {Z ′i} with Zi ∼ Geom(1 − q) and Z ′i ∼ Geom(1 − q′). Under this coupling,

it is easy to verify that

Mn = max
1≤j≤n

{
Π̃(j)

}
− n, M ′

n = max
1≤j≤n

{
Π̃′(j)

}
− n.

The lemma follows from the definition of T1 and R+
0 .

We analyze the Markov chain M⊗
n and the first return time R+

0 in the next few

lemmas.

Lemma 5.2.2. The Markov chain M⊗
n is a positive recurrent Markov chain with unique

stationary distribution ν = (νi,j)i,j≥0 where

νi,j :=
qi

Z(q)
∏i

k=1

(
1− qk

) · (q′)j

Z(q′)
∏j

k=1

(
1− (q′)k

) .
Here Z(q) := 1/

∏∞
k=1

(
1− qk

)
.

Note that Z(q) is finite since limk→∞ log
(

1
1−qk

)
/qk = 1.

Proof. The claim follows directly from Lemma 4.2 in [5] and the fact that M⊗
n is the

product chain of Mn and M ′
n.
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Let Rt denote the first time the chain M⊗
n to reach a state (i, j) such that

i + j ≤ t. In the following, we shall denote by Ei,j the expectation with respect to

the chain started at the state (i, j) and Eν denote the expectation with respect to the

chain started from stationary distribution.

Lemma 5.2.3. For any i, j ≥ 0 with i+ j > 0, we have

Ei,jRi+j−1 ≥ Ei,j+1Ri+j, Ei,jRi+j−1 ≥ Ei+1,jRi+j.

Proof. By symmetry of the two entries Mn and M ′
n in M⊗

n , it suffices to show the

first inequality. We couple two chains (Mn,M
′
n) and (M̃n, M̃

′
n) which start from (i, j)

and (i, j + 1) respectively by using the same sequences {Zi} and {Z ′i}. It is easily

seen from the one step transition rule that, at any time n, we have Mn = M̃n and

0 ≤ M̃ ′
n −M ′

n ≤ 1. Thus we have

0 ≤ (M̃n + M̃ ′
n)− (Mn +M ′

n) ≤ 1, ∀n ≥ 0.

Therefore, Mn +M ′
n ≤ i+ j − 1 implies M̃n + M̃ ′

n ≤ i+ j.

As the immediate corollary of Lemma 5.2.3, we have

Corollary 5.2.4. For any i, j ≥ 0 with i+ j > 0,

max{E0,1R0, E1,0R0} ≥ Ei,jRi+j−1.

The positive recurrence of the chain M⊗
n implies that E0,1R0 and E1,0R0 are

finite. Let η := max{E0,1R0, E1,0R0}.

Lemma 5.2.5. For any i, j ≥ 0 with i+ j > 0, we have

Ei,jR0 ≤ (i+ j)η.

Proof. We proof this lemma by induction on the sum of i and j. When i+ j = 1, the

claim holds trivially. Suppose the claim holds for any {i, j ≥ 0 : i+ j ≤ k}. Given s, t

with s+ t = k + 1, by the Markov property, we have

Es,tR0 =
∑
n≥1

∑
i+j≤k

(n+ Ei,jR0) · Ps,t
(
Rk = n,M⊗

n = (i, j)
)
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≤
∑
n≥1

∑
i+j≤k

(n+ kη) · Ps,t
(
Rk = n,M⊗

n = (i, j)
)

= kη +
∑
n≥1

∑
i+j≤k

n · Ps,t
(
Rk = n,M⊗

n = (i, j)
)

= kη +
∑
n≥1

n · Ps,t (Rk = n)

= kη + Es,tRk

≤ (k + 1)η.

Here the first inequality follows from induction hypothesis and the last inequality fol-

lows from Corollary 5.2.4.

Lemma 5.2.6. For the Markov chain M⊗
n , EνR0 <∞.

Proof. Due to Lemma 4.2 in [5], define

µi :=
∞∑
j=0

νi,j =
qi

Z(q)
∏i

k=1

(
1− qk

) , (5.1)

µ′j :=
∞∑
i=0

νi,j =
(q′)j

Z(q′)
∏j

k=1

(
1− (q′)k

) . (5.2)

Note that since µi < qi/Z(q)2, we have
∑∞

i=0 iµi < ∞. Similarly we also have∑∞
j=0 jµ

′
j <∞. Hence, we have

EνR0 =
∑
i,j≥0

νi,jEi,jR0 ≤
∑
i,j≥0

νi,j(i+ j)η

= η

∞∑
i=0

iµi + η

∞∑
j=0

jµ′j <∞.

In the next lemma, we show that the first and second moments of the first return

time R+
0 are finite by using Kac’s formula.

Lemma 5.2.7.

E0,0R
+
0 <∞, E0,0(R+

0 )2 <∞.
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Proof. It is a basic fact about Markov chain that E0,0R
+
0 = 1

ν0,0
. By lemma 5.2.2 and

the remark, we have 1
ν0,0

= Z(q) · Z(q′) <∞. The finiteness of the second moment of

R+
0 follows from Lemma 5.2.6 and Kac’s formula (cf. Corollary 2.24 in [2]),

E0,0(R+
0 )2 =

2Eν(R0) + 1

ν0,0

.

In the remainder of this section, we complete the proof of Theorem 6 by using

the following version of central limit theorem due to Anscombe.

Theorem 5.2.8 (Anscombe’s Theorem). Let {Xi}i≥1 be a sequence of i.i.d. random

variables with mean 0 and positive, finite variance σ2. For n ≥ 1, let Qn :=
∑n

i=1 Xi.

Suppose {N(t), t ≥ 0} is a family of positive integer-valued random variables such that

for some 0 < c <∞,
N(t)

t

p−→ c as t→∞.

Then,
QN(t)√

t

d−→ N (0, cσ2) as t→∞.

Recall that in section 5.1.2, we define Xi to be the inter-renewal times and

Sn = min{j :
∑j

i=1Xi ≥ n}.

Lemma 5.2.9. For ν0,0 as defined in Lemma 5.2.2,

Sn
n

a.s.−→ ν0,0.

Proof. Observer that ∑Sn−1
j=1 Xj

Sn
≤ n

Sn
≤
∑Sn

j=1 Xj

Sn
.

As n → ∞, by SLLN, both the left and right hand sides of the above inequality

converge almost surely to ν−1
0,0 .

As our last step in preparation for the proof of Theorem 6, we introduce the

following basic result (cf. Lemma 5.5 in [5]).
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Lemma 5.2.10. Let W1,W2, . . . be an i.i.d. sequence of non-negative random variables

with EW 2
i <∞. Then we have for any constant c > 0,

max1≤i≤cnWi√
n

p−→ 0.

We inherit the notations defined in section 5.1.2. Let a := ν0,0E(Y1) and δ2 :=

Var(Y1− aX1). Since 1 ≤ Y1 ≤ X1, we have |Y1− aX1| < (1 + a)X1. Hence by Lemma

5.2.1 and Lemma 5.2.7, we have δ2 < ∞. Trivially, δ2 > 0 since Y1 is clearly not

constant. Hence, using Theorem 5.2.8 and Lemma 5.2.9, we can show the following

regenerative reversion of central limit theorem.

Theorem 5.2.11 (Regenerative CLT). Let (Xi, Yi)i≥1 and Sn be as defined in section

5.1.2. Let QSn :=
∑Sn

i=1 Yi. Then we have

QSn − an√
n

d−→ N
(
0, δ2ν0,0

)
.

Proof. Define Q̃Sn =
∑Sn

i=1 Yi − aXi. Then, by Theorem 5.2.8 we have

Q̃Sn√
n

d−→ N
(
0, δ2ν0,0

)
.

By the definition of Sn, we have

Q̃Sn ≤ QSn − an ≤ Q̃Sn + a ·XSn ≤ Q̃Sn + a · max
1≤i≤n

Xi.

Here the last inequality follows since Sn ≤ n. By Lemma 5.2.10, we have

max1≤i≤nXi√
n

p−→ 0.

The theorem follows.

Proof of Theorem 6. It follows from Lemma 5.1.2 that

QSn − an√
n

− YSn√
n
≤ LCS(Πn,Π

′
n)− an√
n

≤ QSn − an√
n

.

Since 1 ≤ Yi ≤ Xi, we have E(Y 2
i ) < E(X2

i ) <∞ by Lemma 5.2.7. Hence, by Lemma

5.2.10, it follows that
max1≤i≤n Yi√

n

p−→ 0.
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Since Sn ≤ n, we have YSn ≤ max1≤i≤n Yi. Thus

YSn√
n

p−→ 0.

Therefore, by setting σ := δ
√
ν0,0, it follows from Theorem 5.2.11 that

LCS(Πn,Π
′
n)− an

σ
√
n

d−→ N (0, 1). (5.3)

Theorem 6 follows from (5.3) and Lemma 5.1.1.
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