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ABSTRACT

The Mallows measure is a probability measure on S,, where the probability of
a permutation 7 is proportional to ¢'™ with ¢ > 0 being a parameter and I(7) the
number of inversions in m. We prove three weak laws of large numbers and a central
limit theorem for the length of the longest common subsequences of two independent

permutations drawn from the Mallows measure for different regimes of the parameter

q.
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Chapter 1
INTRODUCTION

1.1 Background
1.1.1 Longest Common Subsequence Problem
Definition 1.1.1. Given two strings s,t, let s; denote the i-th character in s. The

length of the longest common subsequence of s and t is defined by,

LCS(s,t) = max(m: Jiy < -+ <ip and j1 < -+ < jim

such that s;, =t;, for all k € [m]).

The length of the longest common subsequence of two permutations is defined similarly

as follows

LCS(m,7) == max(m : Jiy < -+ <ip, and J1 < -+ < jm

such that 7w(iy) = 7(jx) for all k € [m]).

The longest common subsequence(LCS) problem is a classical problem which
has application in fields such as molecular biology (see, e.g., [23]) , data comparison
and software version control. Most previous works on the LCS problem are focused on
the case when the strings are generated uniformly at random from a given alphabet.
Notably, Chvatal and Sankoff [7] proved that the expected length of the LCS of two
random k-ary sequences of length n when normalized by n converges to a constant ;.
Since then, various endeavors [11, 9, 10, 19] have been made to determine the value of
v&- The exact values of ~y; are still unknown. The known lower and upper bounds [19]

for 7, are

0.788071 < v2 < 0.826280.



In contrast to the LCS of two random strings, the LCS of two permutations is well
connected to the longest increasing subsequence(LIS) problem (cf. Proposition 3.1 in

[16]). This can be seen from the following two facts,

e For any m € S, the length of the LCS of 7 and the identity in 5, is equal to the
length of the LIS of 7.

e For any m,7 € S, the length of the LLCS of 7 and 7 is equal to the length of the
LCS of 77! o and the identity in S,,.

From the above two properties, it is easily seen that, if 7,7 are independent and
either 7 or 7 is uniformly distributed on S,, the length of the LCS of 7 and 7 has the
same distribution as the length of the LIS of a uniformly random permutation. The
length of the LIS of a uniformly random permutation has been well studied with major
contributions from Hammersley [15], Logan and Shepp [18], Vershik and Kerov [17]
and culminating with the groundbreaking work of Baik, Deift and Johansson [4] who
prove that, under proper scaling, the length of the LIS converges to the Tracy-Widom
distribution. Therefore, the length of the LCS of two independent permutations is only

of interest when both permutations are non-uniformly distributed.

1.1.2 Mallows Measure on Symmetric Group 5,

Definition 1.1.2. Given w € S,,, the inversion set of m is defined by
Inv(m) ={(i,5): 1 <i<j<nand (i) >n(j)},

and the inversion number of w, denoted by l(m), is defined to be the cardinality of

Inv(T).

The Mallows measure on S, is introduced by Mallows in [20] to study nonuni-
form distributions on permutations. For ¢ > 0, the (n,q) - Mallows measure on S, is

given by
e n
P q(T0) = where 2, ,= H

=1

7

1—q



Here Z, , is the normalizing constant, which has an explicit form (see, e.g., [25] Corol-
lary 1.3.13). In other words, under the Mallows measure with parameter ¢ > 0, the
probability of a permutation 7 is proportional to ¢"™.

Mallows measure has been used in modeling ranked and partially ranked data
(see, e.g., [8, 13, 21]). In [8], Critchlow provides several examples where Mallows model
gives a good fit to ranking data.

We list a couple of properties of Mallows permutation. The proofs of the fol-

lowing lemmas can be found in Section 2 in [6].

Definition 1.1.3. Given © € S,,, let 7! denote the inverse of m in S, and 7" denote
the reversal of m which is defined by «" (i) = m(n+1—1). Let a = (ay,...,a;) be an
increasing sequence of indices in [n|. Define w(a) = (w(ay),...,m(ax)). Let mq denote
the induced permutation of w(a) in Sy where g (i) = j if w(a;) is the j-th smallest

term in 7(a).
Lemma 1.1.4. For any q > 0, if T ~ fipq then m" ~ 1/ and 71 ~ 1,4

Lemma 1.1.5. Let a = (ay,...,a;) and b = (by,...,b;) be two increasing sequences
of indices in [n] such that ax < by. If ™ ~ 4, then T4 and w(b) are independent and

m(a) and m, are independent.

Lemma 1.1.6. Let I = (i,i+1,...,i+m — 1) C [n] be a sequence of consecutive
indices. If T ~ [y q, then Tp ~ fymq and Tr—1r)y ~ fimq. Moreover, conditioned on

7 YI) = E C [n], we still have mg ~ fiy, 4-

1.1.3 Limiting Laws for the LIS of Mallows Permutation

In this subsection, we introduce several limiting results about the length of
the longest increasing subseqence(LIS) of Mallows permutation. Due to the intimate
connection between the increasing subsequence and common subsequence of two per-
mutations, we have adapted many ideas from the proofs of the following results in

establishing the limiting laws of the LCS for Mallows permutation.



In [22], Mueller and Starr prove the following weak law of large numbers for the
LIS of Mallows permutation where the parameter ¢ is a function of n and n(1 — ¢) has

limit in R as n — o0.

Theorem 1.1.7. Suppose {q,}52, is a sequence such that lim, o, n(1 — ¢,) = B with
B €R. Then

(‘ LIS(r)

N 2/{(5)‘ > e) =0, (1.1)

lim i, 4,

where )

5L (V) for 5 0
K(ﬁ) = 1 for 8 =0; (1.2)
1B]72sin™! (V1 —eB)  for 3 < 0.

Their proof of Theorem 1.1.7, which makes use of the techniques developed by
Deuschel and Zeitouni in [12], is based on a coupling argument and the following classic

result of the LIS of the uniformly random permutations (cf. [17, 18])

Theorem 1.1.8. Let A\, denote the uniform probability measure on S,,. Then, for any

. LIS(x) -

In [6], Bhatnagar and Peled prove the following L, convergence of the LIS of

€ >0,

Mallows permutation in the regime where ¢, — 1 in a way such that n(1 — ¢,) — oo.

Theorem 1.1.9. Let {q,}>°, be a sequence such that

lim g, =1 and lim n(l —gq,) = occ.

Suppose T, ~ fing,- Then, for any p > 0,

LiS(m,) L,
—— — 1.
ny 1 - Gn
For the regime where the parameter ¢ is fixed with 0 < ¢ < 1, Basu and
Bhatnagar show the following central limit theorem of the LIS of Mallows permutation

in [5].



Theorem 1.1.10. Fiz 0 < g < 1. Suppose m, ~ [inq. Then there ewist constants
o=o0(q) >0 and a = a(q) > 0 such that

LIS(m,) —an 4
T ovn — N(0,1),

as n — oo, where N'(0,1) denotes the standard normal distribution.

1.2 Main Results
1.2.1 Convergence of Empirical Measure

Our first two theorems are about the convergence of the empirical measure of
Mallows permutation. They are inspired by and are direct analogs to the following
theorem proved by Starr in [26]. The reason to prove them is that they give us an
estimate about the number of points which fall in a given rectangle, where those points
are defined by two Mallows permutations. Specifically, Theorem 2 plays the same role

in the proof of Theorem 3 as Theorem 1.2.1 in the proof of Theorem 1.1.7.

Theorem 1.2.1 (S.Starr). Suppose that (¢,)52, is a sequence such that the limit =
limy, 0o n(1—¢qy) exists. For any € > 0 and any continuous function f : [0,1] x [0,1] —

R

_ 1 « i (i)
lim Mn,n(‘_ f N _/ fxayuxay7ﬁ dxdy’>€>:0’
n—oo' 9 n; (n n ) [0,1]x[0,1] (@ y)ul )

where

(6/2)sinh(5/2)
(/4 cosh(Blz — y]/2) — e=¥/4 cosh(Bz +y — 1]/2))°

if 6#0, and u(x,y,0) = 1.

u(z,y, B) = (1.3)

Our first result is about the distribution of # in the regime of the Mallows
measure where lim,, ., n(1 — g, ) exists. It says that the distribution of % approaches
towards the measure with density u (%, v, 5) uniformly on ¢ € [n]|. Here the ‘approach’
is in the sense that, given any continuous function f on [0,1], the expectation of f

with respect to the empirical measure of # converges uniformly to the expectation of



f with respect to the probability with density u (%, v, 6). Moreover, the covariance of
f (#) and f (#) converges to 0 uniformly on all pairs (7, j) where i # j.

Theorem 1. Suppose that {q,}>2, is a sequence such that lim n(l —g¢,) = f € R.

n—oo
For any continuous function f :[0,1] — R, we have
Jim max | g, (f (?)) —Jy F) - u Ly 5) dy‘ =0, (14)
and
(1) @Y )| =
nh_)nolo max ‘Covn< (B2), f(2 ))‘ 0. (1.5)
1,j€[n]

Here u(z,y, ) is defined in (1.3), and

Coua(F(52), F(*2)) =
i (FC2) £ (L)) = ponn (£2)) g (£(2)).
Theorem 1 is a major step in proving the next theorem, which shows the con-

vergence of the empirical measure defined by the product of two independent Mallows

permutations.

Theorem 2. Suppose that {q,}52, and {q,}2, are two sequences such that
lim, oo (1 — @) = B and lim, o n(l — ¢,,) = ~, with 5, v € R. Let P,, denote the
probability measure on S, X S, such that P, ((7,7)) = fing, (7) - tnq (1), i. €. P, is the

product measure of finq, and pi,q . Let Tom denote the product of T and m in S, with

>e>:0

ple,y) = / u(a,t, B) - ult, v, ) dt, (L6)

Ton(i) = 7(m(z)). Then, for any e >0,

T}E&P”Q Zf(z rom( ) //fﬂ:y (x,y) dady

for every continuous function f:[0,1] x [0,1] — R, with

where u(z,y, ) is defined in (1.3).



1.2.2 Weak Law of Large Numbers for the LCS
Our next result is the following weak law of large numbers for the LCS of two

independent Mallows permutations.

Theorem 3. Let Bl denote the set of nondecreasing, Cy functions ¢ : [0,1] — [0, 1],
with ¢(0) = 0 and ¢(1) = 1. Define function J : B'x — R,

J(@) = / V@, 0(@) dv, and T = sup J(6).

1
$eBL,

Here p(x,y) is the density defined in (1.6). Under the same conditions as in Theorem

2, for any € > 0, we have

lim P, <’ m —2]
n—oo \/ﬁ

We derive the limiting constant in the special case when 5 = 7.

< e) =1 (1.7)

Corollary 3. Suppose that {q,}32, and {¢,}32, are two sequences such that
limy, oo n(1—@p) = lim, oo n(1—¢,) = B with B # 0. Then, the constant J in Theorem
3 is given by

J = ,/m -/0 \/cosh(ﬁ/Z) + 2 cosh (B[2z — 1]/2) d.

There are three main ingredients in our proof of Theorem 3. The first observa-
tion, which is proved in Corollary 3.1.4, is that the length of LCS of two permutations

7 and 7 is equal to the length of the longest increasing points in the collection of points

The second observation, deduced from Lemma 2.3.1, is that the number of points in
z(m~1,771) contained in any fixed rectangle, when scaled by the size of the permuta-
tion, converges in probability to a constant. The third observation, proved in Lemma
3.3.4, is that the length of the longest increasing points in z(7 =1, 77!) within a small

box R is close to the size of the LIS in the uniform case, i.e., it is approximately



2¢/|z(m=1,771) N R|. With these results, we prove Theorem 3 following the method
developed by Deuschel and Zeitouni in [12] for record lengths of i.i.d. points.

Using Theorem 3 and Theorem 1.1.7, by a coupling argument, we are able to
prove the following weak law of large numbers for the LCS of two independent Mallows
permutations when the parameters ¢,, ¢/, belong to a different regime where one of

n(l —¢,) and n(1 — ¢,) has limit in R and the other diverges to infinity as n — oc.

Theorem 4. Suppose that {q,}>>, and {q,}>>, are two sequences such that
lim, 0o n(1 — @) = 00, and lim, o n(1 — ¢,) = S with § € R . Let P, denote the
probability measure on S, X S, such that P, (7, 7)) = g, (T) - fing, (), i.e. P, is the

product measure of [y q, and fi, g . Then for any € > 0, we have

lim P, ('m —2k(P)| > e) =0,

n—00 \/ﬁ
B=12sinh™! (VeP —1)  for > 0;
R(B) =41 for B =0; (1.8)
1B]7Y2sin™! (V1 —€P)  for B < 0.

where )

Comparing Theorem 4 with Theorem 1.1.7, it can be seen that the LCS between
m and 7 in the setting of Theorem 4 observes the same weak law of large numbers as
the LIS of a Mallows permutation with a sequence of parameters which goes to 1 at the
same rate as the slower one in the setting of Theorem 4. Note that LCS(id, 7) = LIS(7),
where id denote the identity in S,,. Hence, roughly speaking, Theorem 4 says that the
influence of a Mallows permutation 7, which is concentrated near identity, to the weak
law of LCS(7, 7) is just like that of the identity in the sense that if we replace 7 by the
identity, the magnitude as well as the constant of the weak law of LCS(w,7) do not
change.

The following theorem establishes the L, convergence for the LCS of two inde-
pendent Mallows permutations with same parameter ¢,, such that lim, . ¢, = 1 and

lim, 0o 2(1 — ¢,) = 0.



Theorem 5. Suppose {q,} is a sequence such that

lim g, =1 and lim n(l—g¢,) = occ.

For each n, define two independent random variables m,, T, such that m, ~ i, 4. and

Tn ~ fing,- Lhen, for any 0 < p < oo,

LCS(mn,Tw) L, V6
_ H —_—,
ny1—aq, 3

as n tends to infinity.

The proof of Theorem 5 follows the approach developed in [6], where the authors
show Theorem 1.1.9.

1.2.3 Central Limit Theorem for the LCS
Our last result is a central limit theorem for the LCS of two independent Mallows

permutations, where the parameters 0 < ¢,q¢’ < 1 are fixed numbers.

Theorem 6. Given 0 < ¢q,¢' < 1, for each n > 0 define two independent random
variables m,, T, such that w, ~ 4 and T, ~ i, . There exist constant o = o(q,q’) >

0 and a = a(q,q') > 0 such that

LCS(mp, 1) — an
o\/n

as n — oo. Here % denotes convergence in distribution and N(0,1) denotes the

—L5 N(0,1)

standard normal distribution.

The proof of Theorem 6 is based on the approach developed in [5] in which the
authors prove Theorem 1.1.10. The idea is to construct a regenerative processes such
that we can bound the LCS by the sum of some i.i.d.random variables. Then the
central limit theorem follows from the standard theory of regenerative processes.

The remainder of this dissertation is organized as follows. In Chapter 2, we prove
the convergence of the empirical measure induced by the product of two independent

Mallows permutations. In Chapter 3, we show a weak laws of large numbers for the LCS



when at least one sequence {g,} is such that n(1 — ¢,) has limit in R. In Chapter 4,
we prove the L, convergence for the LCS when ¢, = ¢, and n(1 — ¢,) — oco. In
Chapter 5, we show the central limit theorem for the LCS when both parameters ¢
and ¢’ are constant within (0,1). The proofs in each chapter are largely independent

of each other.

10



Chapter 2

CONVERGENCE OF EMPIRICAL MEASURES

In this chapter, we show the convergence of empirical measures of the points
defined by Mallows permutations. In [26], the author establishes Theorem 1.2.1 by
making use of the mean field theory and evaluates the density of the limit distribution
as the solution to an integrable PDE. We do not think this approach applies in our
case, since the Hamiltonian is not of mean-field type. This chapter is organized as
follows. In Section 2.1, we introduce and prove Lemma 2.1.1 and Lemma 2.1.2. In
Section 2.2 and Section 2.3, we show Theorem 1 and Theorem 2 respectively using the

two lemmas established in Section 2.1.

2.1 Two Key Lemmas

In this section we introduce the following two lemmas which play a key role in
proving the main theorems. The proofs presented in this section are largely independent
of the following sections. With these two lemmas in mind, readers can go through the

proofs of Theorem 1 and Theorem 2 without trouble.

Lemma 2.1.1. Suppose A = [y1,y] C [0,1]. For any f € R and any sequence {q,}
such that g, > 0 and lim,_,o n(1 — q,) = B,

lim max
n—00 i€(n|

pinan (14 (F2)) = [ (2,9,8) dy| =0,

Lemma 2.1.2. Suppose A = [y1,y2] C [0,1] and B = [y3,ys] C [0,1]. Given f € R
and any sequence {q,} such that g, > 0 and lim,_,, n(1 — q,) = B, define

n

Couy, (]lA(@), ]13(@)) —

11



e (L4 (518 (2)) = s, (14C2)) i (10 (712)).

Then, we have

fm g o (1 (51 20521 ) =0
%,J)EN

Lemma 2.1.1 states that in the regime of the Mallows measure where n(1 — ¢,)
has a limit in R, the probability of % falling in an arbitrary interval converges to a
constant uniformly for ¢ € [n]. Lemma 2.1.2 states that the covariance of 1 A(#) and
1p (#) converges to 0 uniformly on all those pairs such that i # j.

The proofs of these two lemmas involve some computations which utilize Theo-
rem 1.2.1 and properties of the Mallows measure. It may be the case that more general
tools could be used to establish the uniform convergence of the distribution of @ as

@) 7()

well as Cov, (5=, ©2).

’n

2.1.1 Preliminaries
Let 1 be a probability measure on the Borel o-field By,. We use the convention
that u(f) = [ f du, for any measurable function f. For any 7 € Sy, let L, denote

the empirical measure induced by 7, that is,

L.(R) = % i 1 (% ?) , (2.1)

for any R € Bjojx[o,]- Here 1g(z,y) denotes the indicator function of R. Hence, for

any measurable function f,
1 & i (i)
L.(f)=— —— .
=225

For any 7 € S,,, let z(m) = {(£, %)}iem denote the set of n points in [0, 1] x
0,1] defined by m. Conversely, for any n points V' := {(z;,4;) }icn) such that i # j
implies z; # x; and y; # y;, we can define a permutation 7 € S5, as follows. Without

loss of generality, assuming x; < - -+ < x,,, define

m(i) = [{j € [n] : y; < yi}l.

12



We will use (V') to denote the permutation induced by V as above. Similarly, we

define the number of inversions of a collection points as follows,

[V) = [{7) : (2 = 25)(y: —y;) < 0 and 7 < 7},

Note that the definition of the number of inversions of a collection of points is consistent
with the definition of the number of inversions of permutation in the sense that, for
any m € S,

I(m) =1(z(m)) and (V)=1(®(V)).

Definition 2.1.3. For any m € S,, and i € [n], define
0 — & ({ (%, %) L # z}) and Q(m,i) = {r € S, : 70) = 70}

In other words, 7 denotes the permutation in S,_1 which is induced from T at those
indices other than i, and Q(m,i) contains those permutations in S, each of which has

the same relative ordering as m at those indices other than 1.

The definition above is best understood when we represent a permutation by a
grid of tiles. Specifically, for any © € S,,, define an n x n grid of tiles such that the tile
at j-th row and i-th column is black if only if 7(7) = j. Here we index the row number
from bottom to top, i.e.the bottom row is indexed as the first row. For example, the
grid representations of 7 = (4,1,7,3,6,2,5) and ¥ = (3,1,6,5,2,4) are shown in the

following figures.

N

Figure 2.1: 7 = (4,1,7,3,6,2,5) Figure 2.2: 7% = (3,1,6,5,2,4)

Note that the grid representation of 7(? can be easily obtained by deleting the

i-th column and 7(i)-th row from the grid of w. Also, the grid representations of those

13



permutations other than 7 in (i) can be obtained by removing and reinserting
the 7(i)-th row into the grid of m. For example, it can be easily verified that 7 =
(3,1,7,6,5,2,4) € Q(m,4). The grid representation of 7 can be obtained by removing
the third row from the grid of 7 and reinserting it between the sixth row and seventh

row of the grid of 7 (see Figure 2.3).

N |

m=(4,1,7,3,6,2,5) r=(3,1,7,6,5,2,4)

Row insertion

From this definition, it can be seen that |Q(7,7)| = n for any = € S,,. Also, for
any m, T € S, we have either Q(m,7) = Q(7,1) or Q(m,1) N Q(7,1) = .

Proposition 2.1.4. For any 7,7 € Q(m,1), with w(i) = j < k = 7(i), it holds that

Ur) —Um) = [{t > i1 j+1<m(t) SkH = [{t<i:j+1<m(t) <k

=H{t>i:j<7t(t)<k—-1}—-[{t<i:j<7(t) <k-—1}|

Proof. This result can be easily seen from the grid representations of 7 and 7. Note
that an inversion in a permutation corresponds to a pair of black tiles such that one
tile is located to the southeast of the other. Hence, by the discussion above, we only
need to count the change of the number of those pairs when we reinsert the j-th row
of m’s grid to get the grid form of 7. Specifically, we only need to consider those pairs
which contain the black tile on the i-th column.

Taking the same example above, [(7) — [(7) is equal to the difference of the
number of black tiles within the rectangles A and B(see Figure 2.4). This is because,

each of those black tiles in rectangle A forms an inversion with the black tile in the
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. A B

N

m=(4,1,7,3,6,2,5) 7=(3,1,7,6,5,2,4)
Block shift

fourth column in the grid representation of = but not in that of 7, whereas the opposite

holds for those black tiles in the rectangle B. O]

2.1.2 One dimension analog of Theorem 1.2.1

The following lemma is the one dimensional analog of Theorem 1.2.1. It says
that, in the regime of Mallows measure where lim,,_,., n(1 — g,) exists, the distribution
of @ converges in distribution to a probability measure with explicit density, where
{a,} is a sequence of indices such that lim,, . % exists.

Lemma 2.1.5. Suppose that {q,}5°, is a sequence such that lim n(l —¢q,) = € R,
n—o0

and {a,} is a sequence such that lim % = a, where a € [0,1] and a, € [n]. Then,
n—oo

T (W(a”) € (')) )

n

Here -% denotes convergence in distribution and v is the probability measure on [0, 1]

with density f(y) = u(a,y, B) where u(x,y, ) is as defined in (1.3).

We will sometimes omit the third argument and simply use u(z,y) to denote
u(z,y, B), if no confusion arises from the context. We use the symbol ug or u to denote
the measure on [0, 1] x [0, 1] which has density u(x,y, §) with respect to the Lebesgue
measure \.

To prove Lemma 2.1.5, we show that any convergent subsequence of the em-

pirical measures {@} has limiting density u(a,y, ) and the theorem follows from

15



the standard result of convergence of measures (Theorem 2.1.12). It is unknown to us
whether Lemma 2.1.5 can be obtained directly from Theorem 1.2.1. In the remainder
of this section, we prove a sequence of technical lemmas to show Lemma 2.1.5. The
following lemma says that the result of Theorem 1.2.1 also holds when f is an indicator

function of any rectangle.

Lemma 2.1.6. Under the same conditions as in Theorem 1.2.1, for any e > 0,

, 1< i (i) B
Jggoun,qn(’ﬁ;113<g, T> - /Ru(x,y) dxdy‘ > 6> =0,
for any R = [x1, %] X [y1, 9] C [0,1] x [0, 1].

Proof. First we show that for any R = [z1,xs] X [y1,¥2] and any € > 0, when n is
sufficiently large,
€

L.(R) <min(zy — x1,y2 — Y1) + o0 (2.2)

for any m € S,,. Let s := min(zy — x1,y2 — y1). For any 7 € S,,, we have

Hz (i,m) GR}‘ <ns+1,

n-n
since, of the points in {(1 M)}, there is one and only one point on each line x = %
ory = % Hence, L.(R) < s+ % for any m € S,,. We can choose n large enough such
that L < £

Next, given 6 > 0, let Rs == (x1 — §, 22 +9) X (y1 — 0,42+ ). Let D := Rs — R. Then,
it is easily seen that D can be covered by four rectangles each of whose smaller side is

no greater than 0. For any § > 0, by Urysohn’s lemma (cf. 12.1 in [24]), we can choose

a continuous function fg,(z,y), such that,

;

fRa(xvy):l if (LC,y)ER,
fR(s(Iay):O if (x7y>¢R5’

OSfRa(x7y)§1 lf($ay)€D

By the triangle inequality, we have

|L.(R) —u(R)| > ¢ (2.3)

16



= |La(fr;) = La(R)| + |u(frs) = w(R)| + [La(fr;) — u(fr;)| > €

If we choose 0 < 5, by (2.2), we have,

Le(fr) = La(B)| < L(B3) = Le(R) = La(D) <4 (57 + 57) = 5.

for any m € S,, when n is sufficiently large. Since w is absolutely continuous with

respect to the Lebesgue measure, we may choose ¢ small enough such that

|u(fr;) — u(R)| < u(D) <

Wl o

Then by (2.3), for sufficiently large n, we have,
€
|La(R) —u(R)| > ¢ = |Lx(fr,) = ulfr,)| > 3.
Thus,

ping (1+(B) = u(B)] > €) < pun(|La(frg) = ulfr) > 5).

The lemma follows by Theorem 1.2.1. O]

The following property of Mallows permutations will be used in later proofs. It
says that in a Mallows permutation, the relative chance that m(7) takes two different

values can be bounded in terms of the difference of those two values.

Lemma 2.1.7. For any 1 <i,s,t <n and q >0,
min(q?, ¢~
where d = |s — t|.

Proof. Suppose 0 < ¢ < 1. We claim it suffices to show that

_ ng(r(i) =G+ 1)

1S T =) =

1
-, (2.4)
q

for any j € [n — 1]. This follows since by taking the reciprocal of (2.4), we get

fong(T(i) = J)
T Hng(m(t) =7 +1)

17



and the lemma follows by induction on d.
Consider the bijection T; on S,: m — (j,j + 1) o m. Here o denotes the group operator
of S, and (j,j+ 1) denotes the transposition of j and j+ 1. Specifically, for any i € [n]

¢

j if w(i) =j+1,

Ty(m)(@) =< j+1 if n(i) =,

7(i)  otherwise.
\

From the definition, it is not hard to see that |[(7) — [(Tj(m))| = 1, for any © € S,.

Hence,

Let A;; =={m € S, :n(i) = j}. For any fixed i € [n], T} is also a bijection of A;; and
Ai,j-i—l- HGHCG,
Hn#](ﬂ-(z) = J + 1) Zﬂ'eAi,j Mn:Q(E(W>>
—— = : (2.6)
fin,g(m(2) = 7) > _rea,, Hng(T)

and (2.4) follows from (2.5) and (2.6). For the case ¢ > 1, the proof is similar. The

lemma clearly also holds when ¢ = 1, which corresponds to the uniform measure on

Sh. ]

The following result establishes some bounds on the probability of a point in a

Mallows permutation being within an interval.

Lemma 2.1.8. Suppose that (¢,)2, is a sequence such that the limit § = lim,,_,o n(1—

qn) exists. For any sequence {a,} with a, € [n] and any 0 <y, < ya <1,

. T(GQp
i sup g, (79 € ] ) < (2~ ) 27)
n—oo
.. T\ Ap _
lim inf /2, ( <n ) e (yl,yz)> > (yo — y1)e . (2.8)

Proof. Here we only prove the case § > 0. The case f < 0 follows from the same
argument. We also assume that yo — y; < 1, since the case yo = 0,y = 1 can be

nloggn. — 1 we have

verified easily. Since lim,, o, n(1 — ¢,) = 8 and lim,,_,, ey =

lim ¢" = lim e"'8% =7,
n—o0 n—o0

18



Thus, for any 6 > 1, there exists N > 0 such that ¢ € (%, (56_B>, when n > N. By

Lemma 2.1.7, for any n > N and any i, s,t € [n]

fin,q, (7 (2)
[, (7(1) =

s) 1
< max | ¢", — | < de’. 2.9
t) ~ (q q”) 29

Let d = yo — y; and p,, = N &gy 1) (fng, (m(an) =t)). Note that the set {t: £ ¢
[y1,y2]} is nonempty for sufficiently large n. Then, by (2.9) and the fact that,

{rem:tebul} <nd+t, [{kem:L¢ b} =n-d-1,

we have,

—~
—

[gn (”Z" S [yl,yz]> < (nd +1)ée’p,,

fonan (222 ¢ [y 30]) > (n(1 = d) = D

—~
—

Hence,

r(an nd + 1)6e”
pan (2521 € [y 2]) < (n(l - d)( ) +>(nd T 1)oeP
(nd + 1)de?
(n(1—d)—1)+ (nd+1)
(nd + 1)de?

<

)

n

and (2.7) follows since ¢ can be chosen arbitrarily close to 1. Similarly, to prove (2.8),

define p;, = ming,. t ¢, vy (Hng, (T(an) =t)). Then, by (2.9) and the fact that,

{rem:te@umf|znd—1, |[{keml:5¢ @} <ni-d+1.

we have

3

—

un,qn< e (y17y2)> > (nd = 1)p,,

Hn.q,, (W(zn ¢ (yhyz)) < (n(l — d) + 1)(56'8]);1,

—

Hence,

(nd —1)
1 —d)+1)0ef + (nd —1)

m(an)

Hon,gn ( n o € (?/1,yz)> > (n(
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(nd — 1)
~ (n(1—d)+ 1)0ef + (nd — 1)de?
(nd —1)e="?
) '

(2.8) follows since § can be chosen arbitrarily close to 1. O

In the next two lemmas, we introduce some properties of the density function

u(z,y, f) defined in Theorem 1.2.1.

Lemma 2.1.9. With u(x,y, ) defined as in (1.3), we have

1
[ wesi=1 wepa,
0

1
/ uw(z,y,B)dy =1, Vo € [0, 1].
0

Proof. Since cosh (z) is an even function, u(x,y, 3) is symmetric with respect to the

line y = z. That is

u(x7y’/8) :u(y’x7/8)7 vx?ye [07 ]‘]'

Hence we only need to show the first identity. By Corollary 6.2 in [26],

O*Inu(z,y, )

920y = 20u(z,y, 5). (2.10)

Therefore, we have

1 1 (Olnu(l,y,B5) 9Olnu(0,y,p)
/0 u(z,y, f)dr = 55 ( oy - By ) : (2.11)
Next, by direct calculation, we have
(8/2) sinh(5/2) el
u(l,y,B) = y - ? 2.12
( ) (%e‘%(eﬁ — 1)6_%)2 ef —1 212
(8/2) sinh(5/2) Be P
= = ) 2.1
u(0,y, ) (%eg(l—e*fg)e%)Q 1 _ -5 (2.13)
Hence, we get
81nu(1,y,ﬁ) :ﬁ and alnu(oay7ﬁ) :_6
dy dy
By (2.11), the lemma follows. O
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In the remainder of this section, we will simply use u(z,y) to denote u(x,y, 3).
Lemma 2.1.10. For any 0 < a,c,d <1,

—ﬁ/ ( / u(x y)dx—i-/alu(x,y)dx) dyzanEZ”cg.

Proof. For fixed ¢,d € [0,1], define f(a) to be the left-hand side of the identity and
g(a) to be the right-hand side of the identity. Then, by Lemma 2.1.9 and (2.13), we

have
f(0) = 9(0) = f(c — d).
Hence, to prove the identity it suffices to show f'(a) = ¢'(a) for any a € (0,1). Since

u(z,y) is bounded on [0, 1] x [0, 1], we can change the order of integral and differentiation

in the following,

fla) = ~fo /( / <xy>dx+/alu<x,y>dx)dy
:—5/ 8@(/0 xy)dx+/alu(:c,y)dx)dy

_ 5 / (~ula,y) — u(a,y)) dy

d
=2ﬁ/ u(a,y) dy

By (2.10), M is the anti-derivative of 25u(z,y) with respect to y. Thus we have

Olnu(a,d) Olnu(

d
g'(a) = 50 aaa,c):25/ u(a,y) dy.

]

Lemma 2.1.11. In the context of Lemma 2.1.8, suppose {a,}n>1 is a sequence such

that lim,,_,c “* = a, where a,, € [n]. For any 0 <y <yo <1,

7(an)
s <T € (Y2, 92 + 6))
lim lim sup ! _ ula. ) =0. (2.14)

SO mooo (”(a”) e(yl,y1+e)) u(a,y1)

Forany 0 <y, <yy <1,

m(an)
Mn, n ( n S (92 — €, y?))
lim lim sup ! _ ula, ) = 0. (2.15)

=0t n—soo foan (W(Zn) € (y1 —e, y1)> u(a,yr)
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Proof. Here we only prove (2.14), since (2.15) follows from the similar argument.
To prove (2.14), we need to show that for any n > 0, there exists €y > 0 such that for
any fixed € < €g, there exists N > 0, which may depend on ¢, such that for any n > N,

we have

m(an)
MTL,QH < n € <y27y2 + E))
_ulaw)| (2.16)

Hn,qn (ﬂ(,aln) € (yi,y1 + 6)) u(a,y1)

First, we define the following two rectangles:

Ro = 1[0,a] x [y, 40], B =[a, 1] X [y, ).
Next define
G(n,\) ={m € Sy |L:(A) —u(A)| < A, for any A€ {Ry, R1}}.
Let G(n,\) == S, \ G(n,\) denote the complement of G(n, \). Then,
G(n,\) = Unc(ro,ryy {T € Su : |Lr(A) — u(A)] > A}.

Thus by Lemma 2.1.6, for any ¢y > 0 and any A > 0, we have

lim g, (G(n,A)) = 0. (2.17)

n—oo

Define
GD(n,\) ={m €S, : Q(m,a,) NG(n,\/2) # o}.

Note that, for any rectangle R and any 7,¢ € Q(7, a,),

|L-(R) = Le(R)| <

S |-

Thus, when n > %, it follows from triangle inequality that
GD(n,\) C G(n, \). (2.18)

On the other hand, by the definition of GD(n, \) and the fact that, for any i € [n],
m € Q(m,1), it follows that

G(n,\/2) € GD(n, \). (2.19)
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Hence by (2.17) and (2.19), for any A > 0, we have

lim fi,4, (GD(n, \)) = 1. (2.20)

n—oo

Next, given € € (0, ¢g) where the value of €; is to be determined, define

Av={re S, ™ ey +e)}, By={reS,: ™ e (1,10 +6)}.

n n

Then, by Lemma 2.1.8, when n is sufficiently large, we have
fingn(An) > 5P g (By) > g e,

Thus, by (2.20), there exists an Ny > 0 such that, for any n > N;, we have

fing, (Bn N GD(n, N)) _ fn,gn (Bn)
fing, (An NGD(n, A))  fng, (An)

Therefore, to prove (2.16), it suffices to show that for sufficiently large n, we have

Ui

5"

Hngn (B.NGD(n,\)  u(a,y)

tngn (An NGD(n, X)) ula, )

n
< —. 2.21

In order to prove (2.21), we are going to exploit two things. The first one is the fact

that {Q(7,a,) : m € GD(n,\)} is a partition of GD(n, ). The second is the following,
C; Z:il Ci

d—i>r,ci>0,di>0f0rVi€[m]:> S

Ci
di
Hence, to prove (2.21), it suffices to show that, for sufficiently large n, we have

fing, (Bn N Q(7,an)) — ula,ya)

_ Y2)| o
Nn,qn (An N Q(ﬂ-a an)) (av yl)

for any Q(m,a,) C GD(n,\). Note that A, N Q(m,a,) is nonempty for any © € S,,,

>,

<r ¢ >0,d; >0 for Vi € [m|] =

<.

: (2.22)

N |3

when n > 1/e. The strategy to prove (2.22) is the following, we show that when n
is sufficiently large, for any Q(m,a,) C GD(n,\) and any 7 € B, N Q(m,a,), { €
A, NQ(m,ay,), we have

l(l(T)—l(é))—I <2)\+4e—|—%. (2.23)

n
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Here

e [ (- s [ i) ao= st st

Note that £ Z"%E; = g (M)=1©), Thus, by (2.23), for any 7 € B, N Q(7,a,), £ € A, N

Q(m,ay), we have

qz(]+2>\+46+4/n) < Fn,g (T) < qZ(I—Z)\—4e—4/n)'

" Hngn (€)

Here we assume 0 < ¢, < 1. (The cases ¢, > 1 and ¢, = 1 follow by similar argument.)

By the definition of A,,, B,,, we have
ne—1<|A4,NQ(m, a,)|, |B.NQ(m,a,)| < ne+ 1.

Hence we have

ne—1 n(I+2\+4e+4/n) ~ Hngn (B, NQ(m, a,)) o ne + 1q (I—2A—de—4/n)
ne+ 1" T ng, (AN Q(ma,)) T ne—17"

By Lemma 2.1.10 and the fact that lim, . ¢ = e ? and lim,_,s ¢, = 1 , we have

lim ne — 1 qn(]+2>\+46+4/n) _ U(a, y?) 6—ﬁ(2>\+4e)

n—oo ne + 1 " U((I, yl) ’
lim ne + 1qn(1 2\—de—4/n) _ u(a, ?/2)65(2A+4e)
n—oo NE — 1 U(aa yl)

Thus, we can choose ¢y and A small enough such that, for any € € (0, ¢), (2.22) holds

for sufficiently large n.

The remaining part of the proof is to show (2.23). Suppose n is sufficiently
large such that %= € (a —€,a + ¢€). Without loss of generality, suppose % € [a,a + ¢€).
(The other case can be shown in a similar argument.) By Proposition 2.1.4, for any

Q(m,a,) C GD(n,\), and for any 7 € B, N Q(m,a,), £ € A, NQ(m,ay), we have

I(r) = 1(§)
=t > an: {(an) < (1) < (an)}|—|{t<anif(an)<5(t) < 7(an)}|
|{t . Ean) - £() <T }l |{t an . (an) < £

n n
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<His>ap <<yt —{L<ary+e< <yl
={t: (£, 49) € (a,1] X (y1,00 + )}
—{t: (£,59) € (0,0) x [y1 + €, 1]}

<I{t: (£59) € (@, 1] x (g1, 3]} + (ne+1)

— {t: (£,52) € (0,a) x [y1, g} + (ne + 1)
<|t: (%,%) € [a, 1] x [y1, 2]}

—{t: (£, 52) € [0,a] x [y, o]}| + 2ne + 4
=nL¢([a, 1] X [y1,y2]) — nLe([0,a] X [y1,y0]) + 2ne + 4

=nL¢(Ry) —nLe(Ry) + 2ne + 4.

~+

£(an)

The first inequality above follows because = > a, € (y1,51 +¢€) and

@ € (y2,y2 + €). The second inequality follows because

{ten]: Y € (yo,p0 + )} < ne+1,

{t € [n] : irf) € [y, y1 + )} <ne+ 1.
The third inequality follows because, since we change (0, a) to [0, a] in the second term,

we add two in the end to compensate the possible extra subtraction. Hence, we have

L(UT) = &) < Le(Ra) — Le(Ro) +2¢ + 2 (2.24)
< u(Ry) — u(Rg) +2X + 2+ 2

=1 +2)\+2+ 2.

Here we use the fact that, by (2.18), £ € GD(n,\) C G(n, \).
Similarly, to show the lower bound of I(7) — [(£), we have

l() = 1(&)

=[{t > an: €lan) < &(t) < 7(an)} = [{t < an: €lan) <E(8) < 7(an)}

=|{% > o 0 < S0 < TRy {1 <t ) < S0 < 7Oy
=|{t>a: ) <8O0 Ty (fan > b g S £ < T(m)y
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=[{t: (£ 52) € (a, 1] x [y1 + &, o]}
—{t: (£,59) € (0,0) x (y1, 52+ O} — 2(ne + 1)
> {t: (£,59) € (a,1] X [y1,10]}| — (ne+1)
—[{t: (£,52) € (0,a) x (y1,y2]}] — (ne +1) = 2(ne + 1)
=nLe([a, 1] x [y1, 3o]) —nLe ([0, a] x [y1,32]) — dne — 4
) —

:nLg(R ) - nLg(RQ

The first inequality above follows since, by the definition of A,, B,, we have flan) ¢

(an)

(Y1, 01 +€), = € (42,92 + €) and, since %= € [a,a + ¢€),

Hten]:%>1>a} <ne+1, {ten]:a<t<®} <ne+l

£
The second inequality follows because

{ten]: 22 e [y, y + O} < ne+1,

{t € 0] : 29 € (yo,ys + €)}] < me+ 1.
Hence, we have
L(U(r) = U(€)) = Le(Ry) — Le(Ro) — de — 4 (2:25)
=1 —2\—4e— %.

Here again we use the fact that, by (2.18), £ € GD(n,A) C G(n,A). The fact that
(2.23) follows from (2.24) and (2.25) completes the proof. O

To complete the proof of Lemma 2.1.5 we use the following result (cf. 7.2.5 in

[3]) and the next two lemmas.

26



Theorem 2.1.12. Let {u,},>1 be a sequence of finite measures on R. If {u,}n>1 is
tight, and every weakly convergent subsequence of {un}n>1 converges to the measure v,

d
then u, — v.

Lemma 2.1.13. In the context of Lemma 2.1.5, let {a,,} be a subsequence of {a,}
such that

Lty a0 (W(at") S (~)> 0.

tn
Then the distribution function F,(y) of the limit probability measure v is absolutely

continuous. Here iy, 4, <$§") € ()) denotes the probability measure induced by —W(f;")

under fiy, q, -

Proof. For any € > 0, let 6 = 5. By the definition of absolute continuity, we will

B
show that, for any {(y1,y2), (s, Ya), - - -+ (Yom—1, Yom) } With yor—1 < yor and 3537, [y2e—
Yor—1| < 0, we have D 7" | |Fy(yax) — Fo(yor—1)| < €. Without loss of generality, we may
assume that every y; is a continuous point of F,(y) with 0 < y; < 1. Since there are at
most countably many discontinuity of F,(y), we can always choose a new set of interval
{(Yhy_1, Yhe)} such that F,(y) is continuous at every v, [Yor—1,Y2r] C [Yhp_1, Yoy and
Yoy b — Yhy—1| < 0 still holds. Next, for the simplicity of notation, define

Vn = fha g, (ﬂatn) c (-)) . (2.26)

tn

By Lemma 2.1.8, there exists N; > 0 such that for any n > Ny,

Un ([Yar—1, Yor]) < 2(yar — yor_1)el?,

for all k£ € [m]. Since v, L, v, there exists Ny > 0 such that for any n > No,

€

| Fo(yor) — Fu(Yar—1) — vn ([Y26—1, Y2x))| < o’

for all k& € [m]. Let n = max (Ny, N2) + 1, we have

m

Z |Fo(y2r) — Fo(yoar—1)|

k=1
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< Z | Fo(y2r) — Fo(yor—1) — Un ([Y26-1, y2x])| + Z Un, ([Y25-1, Yor])
k=1 k=1
€ m
<5t 2¢/7! Z(yzk — Yor—1)
k=1
<< 42685
2

= €.

Lemma 2.1.14. In the context of Lemma 2.1.13, we have

F, = ’ .2 dta
) = [ et
for any y € [0,1]. Here u(x,y, ) is defined in (1.3).

Proof. For the simplicity of notation, we will use u(z,y) to denote u(z,y,5). By
Lemma 2.1.13, F,(y) is absolutely continuous. Hence F,(y) is differentiable almost
everywhere, say F)(y) = f(y) a.e. on [0,1], and moreover, we have F,(y) = [/ f(t) dt.
Here we use the fact that the support of v is [0, 1]. Note that, by Lemma 2.1.8, for any
y € (0,1) such that F/(y) = f(y), we have f(y) > e ¥l > 0. Then in order to show

f(y) = u(a,y) a.e., it suffices to show

fly2) _ ula, o) (2.27)

[ ula,y)’
for any y1,y2 € A, where A .= {y € (0,1) : F/(y) = f(y)}. This is because, for any

y € A, we have

1 IM L f(z) L u(a, z) L Yu(a, 2) L 1
ﬂw_Af@d [ﬁ@d [@wwd ﬂu@wd alay)

Here we use the fact that the Lebesgue measure of A is 1 as well as Lemma 2.1.9 in

the last equality. Next, since we have

lim v((ya2, y2 + €)) ~ lim Fy(ya +¢)
e—0t U((yl,yl + 6)) e—0+ Fv(yl + 6) - Fv(yl)
F <y2 =+ 6) — Fv<y2)/FU<y1 + E) — Fv<y1)

. v
= lim
e—0t
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_ f(yz)
f(yl)‘

Thus, to prove (2.27), it suffices to show that

(e +6)  ula,ye)

e oy +0)  alay)

e—0+

= 0. (2.28)
Next, inheriting the notation in (2.26), since v, ~%y v and F, (y) is continuous, we have

vn((y2,92 +€)  ula,yn)

v((y2, 92 +€) _ ula,ys)
vn((y, 1 +€)  ula, ) '

v((y, v +e€)  ula,p)
Since {v,} is a subsequence of {Nn,%(ﬂzn) € ()) }, by Lemma 2.1.11, (2.28) follows
from (2.29). O

lim
n—oo

(2.29)

Proof of Lemma 2.1.5. Since the support of p,,,, (@ € ()) is within [0, 1], the se-
quence {/’Ln7Qn (M € ())} is tight. The claim follows from Lemma 2.1.13, Lemma

n

2.1.14 and Theorem 2.1.12. O

2.1.3 Proof of Lemma 2.1.1 and Lemma 2.1.2
Definition 2.1.15. For any m € S, and any 1 < j < k < n, let n([j, k]) denote the

vector (m(j),n(j +1),--- ,7(k)). Let m;x denote the permutation in Si_j11 induced
by w([5, k]), i e.

W[Jk] Z]l{ﬂ-s<ﬂj+zl} Vie[k}—j'f—l].

Lemma 2.1.16. For any 0 <a <b<1 andy € [0,1], we have the following identity

/Oyu(a,t,ﬁ)dt: /Oy’u<%,t,bﬂ> dt, VB eR.
y = %ug([o b] x / / u(z,t, B) dtdx

and u(z,y, ) is defined in Theorem 1.2.1.

Here,
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We make some preparation before proving Lemma 2.1.16. Given a,b € [0, 1],
choose two sequences {a,} and {b,} such that a, € [n], b, € [n] and lim,_,, % = a,
lim,, oo %" = b. Moreover, for any § € R, choose a sequence {¢,} with ¢, > 0 such
that lim, ., n(1 —¢,) = 5.

By Lemma 2.1.5, we have

Tim fing, (222 <y) = [Vu(a,t,8)d (2.30)
We will show that
m(an)
Tim pa, qn( < y) S (8,t,08) dt. (2.31)

Lemma 2.1.16 follows from (2.30) and (2.31). First, regarding {a,} and {b,} as fixed

sequences, ¥ as a fixed number, we make the following definitions,
Ry :=[0,b] x [0,y], Ry = [b,1] x [0,y],

K, = {(v1,v2, -+ ,Vp_p,+1) 1 v; € [n] and i # j = v; # v},

fo() =H{v; €v:v; <ny} forvelkK,,

<af

Here K, consists of all possible values 7([b,,n]) can take when 7w € S,. f,.(7([bn,n]))

denotes the number of points <%, ?) inside the rectangle [%", 1] x [0, y].

Go()) = {v c K, : %fn(v) —us(Ry)

Next we show that, for any A > 0,

lim i, g, (w([bn, n]) ¢ Gn(A)) =0 (2.32)

n—oo

Proof of (2.52). First, since the difference between [22,1] x [0, y] and R; is a rectangle
with width | —

|fN(7T([bm TL])) - nLTr(Rl)|
= [+ (£, 72) € 1) x (0,9}~ 40 (2, 72) € i)
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Thus, for any A > 0, there exists a N > 0 such that for all n > N,
[ Fn(w (b, D)) = Le(R)| < |5 =0+ 5 < 3.
Here we use the fact that lim,,_, %” = b. Hence, for any n > N, we have

(b 1) = us(Fr)| 2

= [ () = £ )|+ o) = ()] 2

A
= |L7T<R1) — U5<R1)’ > 5

Thus,
Hngn (T ([bn; 1) & Gn(N))
1
=t (| o)~ s = )
A
< fina, (IL=(RD) = wa(R)| > 5
(2.32) follows from the above inequality and Lemma 2.1.6. [

Next we show that, for any ¢ > 0, we can choose a sufficiently small A and

N > 0 such that for all n > N and any v € G, (),
’un%( man) < ‘ ([bn, n]) _v) fo u(%,t,b5) dt’ <€ (2.33)

Proof of (2.33). Assume n is sufficiently large such that a,, < b,. For any v € G, ()),

here the value of A is to be determined, we have

fina (242 <y | 7((byr]) = ) (234
= tnan (v(an) <y | 7(o,n]) = v)
= Hn,q, (W[Lbnfl](an) < LnyJ fn ’ ™ bna n]) = U)

= Ub,—1,9n (T(an) < LnyJ - fn(v))
= 1, (322 < 55 (Iny) = ful0)))

\_/
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= Hbn—1,qn <Z,(1a—n1) < e <V:z_yj - f"T(v)» :
The second equality follows since, conditioned on 7([b,,n|) = v, we have
{me Sy :m(a,) <ny} ={m e Sy:mpup,—1(an) < [ny| — fu(v)}.

Note that |ny| — f.(v) is the number of ¢ < ny which is not in v. The third equality is
due to Lemma 1.1.5 and Lemma 1.1.6 with 7 ~ 1,1 4,. Next, by the following facts,

lim (b, — 1)(1 — g,) = lim 221 lim, o n(1 — g,) = bB, (2.35)
n—oo n—oo
. . Qp, . n _g
L L ) (230
im —" (1 R = L= () = L us(Ro) = o (2.37)
n—oo b, — 1 n AV _by AV b pli0) =Y ’

and Lemma 2.1.5, we have

11120 Hon—1,qn (l:ffljl) < o (Lr;—w - uB(R1)>> = foy u (%’t7bﬁ) dt.

n—

Hence, there exists N; > 0 such that for any n > Ny,

0100 (5220 < 52 (12— ws(R)) ) = i (3,08) dt| < . (2.38)

By (2.37), there exists Ny > 0 such that for all n > Ny,

<2 oand | (L’;—yJ - uﬁ(Rl)) Y| <A (2.39)
Hence, for any n > Ny and any v € G,,(\), we have
o (1 ) —y 20

sy (12— B0 — o (12— ()|

i (B = us() — v/

_|_
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Let C := 2 + 1. Since, by (2.39) and (2.40), both
b

o (% — f"T(”)) and ;5 (LT;—yJ - u5(R1)>

are in the interval (v — CA, ¢’ + C)), it follows that, for any n > Ny and any v €
Gn(N),

‘Mbn—l,qn (foj‘f < (% - fT))> (2.41)

By (2.35) and Lemma 2.1.8, there exists N3 > 0 such that for all n > Nj,

[, 1., ( bT (‘1”)1 c(y —C\ oy + C)\)) < 40N (2.42)

Therefore, we can fix A = 55ze 8l in the first place. Then, by (2.38), (2.41) and

(2.42), for any n > max (N, N2, N3) and any v € G, (A),

s (5 < 5 (B = 2)) = u(epd) | (243)
< € i € o €
6 6 3
(2.33) follows by (2.34) and (2.43). O

Now we are in the position to prove (2.31), which completes the proof of

Lemma 2.1.16.

Proof of (2.31). For simplicity, let I = foy/ u (%,t, bﬁ) dt. Since

= pus(Ro) < pusi(0.8] % [0,1)) = 1,

we have

I:/Oy/u<%,t,b,8> dt§/01u<%,t,bﬂ> dt = 1.

Then, given € > 0, fix the value of A\ such that (2.33) holds for any n > N; and any
v € G,(A). By (2.32), there exists Ny > 0 such that for any n > N,

fin.g, (7([bn; n]) & Gn(N)) < (2.44)

Wl ™
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Then, for any n > max (Ny, Ns),

o (52 24) 1
[ Soese, tnan (222 <y | wllbnl) = v) - g (7B, 1)) = 0)
= Soer, I+ ting (7((bus ) = v)

<o [nan (222 <y | w(bunl) = 0) = T| - g, (7B, 1)) = 0)

g s (22 <y | 7o) = ©) - png, (7([busn]) = 0)

+ ngcn(x) I+ ping, (7([bn, n]) = v)

< 5 D vean) Mngn (T([bnsn]) =0) + 2237 o6 ) Hnga (T([bnsn]) = v)
- € 2
33
Here we use (2.33) and (2.44) in the second to last inequality. O

Lemma 2.1.17. For any 0 < a < b <1 and any B € R, suppose we have sequences

{an}, {b,} and {qg,} such that a, € [n], b, € [n], ¢, >0 and

lim — = a, lim — = b, lim n(1 —g¢q,) = 5.
n—oo 1 n—oo M n—00

Then, for any A = [y1,y2] C [0,1] and B = [y3,y4] C [0, 1],

lm fiq, (La(™2)15(70)) — p, 0 (La(P222)) g, (Lp(7222)) = 0.

n—00 n n n

Proof. The proof is similar to the proof of Lemma 2.1.16, and we inherit those defini-

tions in the previous proof. First of all, since

e (LT ) L (F5e)))

n

= tingn (L1001 (CE) 15 (T2 )Y — i, o (L0 (R0 )1 g (20D

and

Fn,gn (]IA(@)> = Hn,gn (]1[07112}(”(:2”))) — Hn,qy, (]l[O,yl)(ﬁ(an))>,

n
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it suffices to show the cases when the interval A is of the form [0,y] or [0,y) for any

y € [0,1]. Moreover, by Lemma 2.1.5, we have

lim fi, g, (W(Z”) = y) =0, Vyelo,1].

n—oo

Hence, it suffices to show the case when A = [0, y], for any y € [0, 1].
By Lemma 2.1.16, define

= /yu(a,t,ﬁ) dt — /y/u (%t bﬂ) dt.
0 0

By Lemma 2.1.5, we have

i o, (1a(72)) = 7 u(at, B)dt = 1.

n—oo n

Hence it suffices to show the following,

n

B g, (LG < y)1p(70) — ping, (1p(7020)) - 1 =0, (2.45)

for any y € [0,1]. Given € > 0, by (2.33), there exists A > 0 and N; > 0 such that for
any n > Ny and any v € G,(\),

‘ fnan (ﬂgn) <y ( 7([bn, 7)) :v> .y ‘ < § (2.46)

By (2.32), there exists Ny > 0 such that for any n > N,

€

png, (T([bn, n]) & Ga(N) < 3. (2.47)

Moreover, by conditioning on the value of 7([b,, n]), we have

g (1222 < ) 15(2e)))

= % pnae (12 < )LL) | n([b, ) =) - g, (7B, 1)) =)

UGKn

= % pnae (172 < )| 7 n]) =0) (%) - g, (7([bn 0] =)

’UEKn

= 3 s (152 <) [ =) 15(2) g, () =)

Y e (1 <) [ 7o) =) - Lp(2) - ping, (w([ba, 0]) =)
v¢Gn(X)
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and

unv‘]n (]]‘B(F(:)Ln) ))

= 5 tnan (15D [ ([ 2]) =) - g (7, 1)) =)

veEKn

= 2 1(5) - tng, (7([bn, n]) =)

’UGKn

= 2 () ping, (x([bn, n]) =v)
vEGR(A)

+ 2 1s(%) - ng, (7([bn, n]) =)
vEGn(N)

Here v; denotes the first entry of vector v. Hence, for any n > max (N7, N3), we have

‘Mn,qn (1(”(2") < y)h(“ﬁ“)) — flngn (13(”2”))> -I‘

< 5 g (1 <) [ 7(ban]) = 0) = 1| - g, (([bsm]) =)

vEGR(A)
+2 >0 fing, (7([bn,n]) =v)
vEGn(N)

<5 X Hag, (T([ba,n])=v)+2 Y0 ping, (m([bn,n]) =)

vEGR(N) vEGn(N)

€ €
< =—4+2.—=

gheg=¢

The first inequality follows from triangle inequality and the fact that,

fnan (11(“%) <) ‘ 7([bw, 7)) :v) <1, 1p(2)<1, and <1,

n

The last two inequalities follow from (2.46) and (2.47) respectively. O

Before we start to prove Lemma 2.1.1 and Lemma 2.1.2, we briefly introduce

the following facts:

Lemma 2.1.18. For any s,t,i € [n],

min(qd,q*d) < :un,Q(ﬂ-(s) - Z) < ( d 7d)’

where d = |s — t|.
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Lemma 2.1.19. For any s,t,w,i,j € [n] such that i # j and either w < min (s,t) or

w > max (s,1),

< max(q?, ¢,

min(d o) < Fna (T € Su i 7(s) = i and 7(w) = j})
s ping ({7 € Sp 2 w(t) =i and w(w) = j})

where d = |s — t|.

Lemma 2.1.18 and Lemma 2.1.19 follow from similar argument as in the proof
of Lemma 2.1.7. We omit their proofs. From these two lemmas, we can show the

following,

Lemma 2.1.20. For any A C [0,1] and any s,t € [n],

p (La(52)) = ing (14(52)) | < 01

where M = max (|1 — ¢?|,|1 — ¢~ %) and d = |s —t|.

Lemma 2.1.21. For any A, B C [0,1] and any s,t,w € [n] such that either w <

min (s,t) or w > max (s, 1),

M q (]IA(WS))]IB(”(:) )) — Hnyg (]IA(%)]IB(@)>‘ S M,

where M = max (|1 — ¢%,|1 — ¢7%|) and d = |s — t|.

—
—

Here we only deduce Lemma 2.1.20 from Lemma 2.1.18. Lemma 2.1.21 follows

from Lemma 2.1.19 by the similar argument.

Proof of Lemma 2.1.20. Without loss of generality, assume 0 < ¢ < 1. By Lemma

2.1.18, for any ¢ € [n], we have

fng(T(s) =1 _
e el =0)

finq(T(t) = 1)

Hence

0" 3 png(m() =) < X0 pmg(m(s) =) S g 3 pmg(m(t) =)

{i:LeA} {i:teA} {i:LeA}
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Thus
pin (L4(2) ) 0" < g (14 (52) ) < i (14(2) ) -

Therefore

]

Proof of Lemma 2.1.2. Let m be a positive integer whose value is to be determined.

Define the following m + 1 sequences {ag,,k)}, 0 < k < m, as follows,

if k=0;
a® = (2.48)

[E2], if1 <k <m.

m

(k)
Then, for any 0 < k < m, we have lim,,_,, =~ = % Also, for any 0 < k <m — 1 and

n

n > m we have

1 < a1 — o <£—|—1.
— Yn n ~m

Then, for any n > m and any i, j € [n| with ¢ < j, there exist unique k£ and [ such that

i€ laP,alf™), and je (al"V,al]. (2.49)
Clearly, we have
k<l, Ji—a® < and |j—a® <2 (2.50)
m m

Then, given € > 0, fix a sufficiently large m in the first place such that,

B € B €
ol et
e <12 e <12

Next, since lim, . g = e, there exists N; > 0 such that for any n > Ny,

n

_ ¢
12

B - €
€™ —(n < Ea

_B
e m —qn'
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Then, by triangle inequality, for any n > Ny,

n

7’1_(]7:7”

><

(2.51)

(=N e

max (‘1 — g

For the simplicity of notation, define

I
=
S
Q
3

s
=
S
—~
3
2|3
~—
=
s
—~ S
3
Js
~—
|
=
S
Q
3
/-\
A
i
@
\/
/-\
\/
~—

Then, by (2.50), (2.51), Lemma 2.1.20 and Lemma 2.1.21, for any n > max (m, N;)
and any 0 < i < j < n with corresponding k, [ defined in (2.49), we have
(Jj (7 r(all)
U =i, (15 ("2)) st (1 (F2)) = g, (14 (Z220)) |
(k)
< Jttnn (L4 () = pon (L4 (2522) )|
gmax(ll—qnﬁ E)<§,

VSmax(’l—qn% )<§.

Whence, again, by triangle inequality, for any n > max (m, Ny),

7‘1_q7:m

‘Covn(]lA( 1), 1 (T2 ))’ (2.52)
= [t (L (L) 15 (%2)) = g (14 (Z2) g, (15 (22))|
<U+V+W

< [Cova (14(22), 15(22) )| + 5.

By the same argument, it follows that for any n > max (m, Ny),

). 15("2))) (2.53)




Combining (2.52) and (2.53), for any n > max (m, N;) and any 0 < i < j < n with

corresponding k, [ defined in (2.49), we have

o (14321529

< |Cov (14222 >) 15 ( )

)l

Moreover, since m is fixed, by Lemma 2.1.17, there exists Ny > 0 such that, for any

n > Ny and any 0 < k <[ < m, we have

Cova (14(482), 1,5 (72)) | <

Thus, for n > max (m, N1, N2) and any 0 <i < j < n,

wlm

pn (L (S2) 1 (%)) = o (L4 (2)) 1, (12 (F2)) | <

]

Proof of Lemma 2.1.1. The proof of Lemma 2.1.1 is similar to the proof of Lemma
2.1.2. Firstly, since u(z,y, #) is uniformly continuous on [0,1] x [0,1], given € > 0,
there exists m; > 0 such that
€
sup |u(s,y, B) — u(t,y, B)| < -
|sft\<%1 6
s,t,y€[0,1]
Hence, for any |s —t| < m% with s, ¢ € [0, 1], we have

/ " (s, v, 8) dy - / "ty 8) dy] (2.54)

Y1 Y1

</y2| (s,9,0) —u(t,y, B)| dy

/ lu(s,y, B) — u(t,y, B)| dy

Then, choose an m > 2m; such that
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Next, since lim,, ;o ¢" = e~?, there exists N; > 0 such that for any n > Ny,

€

12

B - —£
em—qnm <E’ em—qﬁ”

€ ‘ 8 n
By triangle inequality, for any n > Ny,

) 1_qnm

,£><e
6.

max <‘1 — qn%

Next, define the m+ 1 sequences {a%k)}, 0 <k <m,asin (2.48). By (2.50) and Lemma
2.1.20, for any n > max (m, N;) and any ¢ € [n| with corresponding k defined in (2.49),

we have

(1 (5) = s (14252 259

< (1] %)

<€
6.

Secondly, by the definition of a'P in (2.48), it is easily seen that

™

_ng ()<k‘_n+1
m m

Thus, for any n > m and any ¢ € [n] with corresponding k defined in (2.49), we have

k_”<ag’f><i<ag’““>g(k+1)”+1
m m
ki _k+1 1

> —<-—<—— 4=
m n m n
i k‘ 1 1 2 1

= |- <=+ -< =< —.
n m m n m mq

Hence, by (2.54), for any n > m and any ¢ € [n] with corresponding k defined in (2.49),

’/ ,y ﬁ dy — /yzu(%,y,ﬁ> dy‘ < é (2.56)

Y1

we have

Thirdly, since lim,, % - for any 0 < k& < m, by Lemma 2.1.5, there exists

N; > 0 such that, for any n > Nl and any 0 < k < m,

() [ ba 5
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Therefore, for any n > max (m, Ny, N2) and any ¢ € [n| with corresponding & defined
in (2.49), we have

/Ln,tIn (]IA(ﬂTZ))) - yy12 u(%’y’ 5) dy )
(% Tra,,(nk)
e (1 (Z2)) = i (14 (7220))|
(k)
(L4 (520)) = [ a0 8) dy |

Y1

|l v 8) dy = J7u(v. ) dy|

<

+

<Syfifo
376 6 °°

The last inequality follows from (2.55), (2.56) and (2.57). O

2.2 Proof of Theorem 1
In this section, we show Theorem 1 using Lemma 2.1.1 and Lemma 2.1.2. In
the proof we approximate the continuous function f on [0, 1] by a sequence of simple

functions. The following elementary lemma will be used in the proof.

Lemma 2.2.1. Given random variables X, X" Y,Y" such that | X —X'| <€, |Y=Y'| < ¢
and max(| X[, | X', |Y], |Y']) < M, we have

|Cov(X,Y) — Cov(X",Y')| < 4Me.
Proof. Since XY — X'Y' = X(Y - Y')+Y'(X — X'), we have
XY — X'V < |X||Y = Y| + [Y']|X — X'| < 2Me. (2.58)

Similarly, since E(X)E(Y)—-E(X)E(Y') = E(X)E(Y —Y")+E(Y")E(X — X’), we have

IE(X)E(Y) — E(X)E(Y")| < 2Me. (2.59)

Hence

|Cov(X,Y) — Cov(X", Y| <E|XY — X'Y'| + [E(X)E(Y) — E(X)E(Y")]

< 4Me.
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Proof of Theorem 1. Given continuous function f : [0,1] — R, define a sequence of

simple functions {g, }m>1 as follows,

gm(z) =1 f (%) 14,(x), where Ay = (%, %} ,

and ¢,,(0) := f(0). Since f is continuous on a compact interval, it is uniformly con-
tinuous on [0, 1] and there exists M > 0 such that |f(x)| < M. Hence, for any € > 0,

there exists an N > 0 such that for any m > N we have

1f(2) — gm(x)] <€, Vae€l0,1].

Hence for any m > N and any i € [n] we have

e (1 () o o ()| < o

and
‘fo cu Ly, B) dy — [ gmly) -u (L, y, B) dy‘ <e. (2.61)
Moreover, we have
Hon,gn (gm (#)) - fol Im(y) - u (%79:6) dy‘
< S 1N [t (1 (52)) = 2 L) 0 (5,3:) ]

Hn,qn, <]1Ak (Wn )) fAk (n’y’5>

< M

NE

B
Il

1
Hence by triangle inequality, the first claim (1.4) follows from Lemma 2.1.1, (2.60) and
(2.61). To prove the second claim (1.5), we use the same technique by approximating
f by simple functions g,,. Note that by Lemma 2.2.1, for any m > N and any 1 < i <

7 < n, we have

Covy (F(2), F(%2)) = Cova (g (2), g (") )| < aMe.  (2.62)

Note that

’Covn (gm(ﬂ(l)>7gm(ﬂTj))> )

3
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Ms

m
k=1

< M?

P8 (4) o (108,105

~

-1
‘Covn 1, (%2), 1, (72)) |
(1.5) follows from Lemma 2.1.2 and (2.62). O

1M ;

2.3 Convergence of the Empirical Measure

Recall that, under the conditions in Theorem 2, we need to show the convergence

of the empirical measure induced by {(’ TOW(Z))}Z-E[M. Note that, by relabeling the

n

i Tom(t)

") }iem = {(—, TS))}le[n Since m and 7 are independent,

indices, we have {(*,

ﬁ,?) are independent. We

for a given i, the x coordinate and y coordinate of ( —

will exploit this property to establish the first and second moment estimates of the
number of these points which fall inside a given rectangle.

Recall that, in Section 2.1.1, for any # € S, we define L, as the empirical
probability measure of {(£ —l))}ie[n], ie.,

1 i m(i)
R) = = 11(—,—), VR e B .
) n; r( = [0,1]x[0,1]
) 7(3)

Similarly, we now define L, , to be the empirical probability measure of {(%7 =) Ve

That is
1 < m(i) (i
= — Z ]1R<Q7 ﬁ)» VR € Bp,1)x[o,1]-
n <= n o’ n
Lemma 2.1.1 and Lemma 2.1.2 imply the following weak convergence for L, ..

Lemma 2.3.1. Under the same conditions as Theorem 2, for any R = (x1,25] X

(y1, 2] € [0,1] x [0, 1], we have

lim P, (‘ L., (R)— / p(x,y) dxdy‘ > e> =0 (2.63)
n—oo R
for any € > 0. Here p(z,y) is the density function defined in Theorem 2.

Proof. Let R = [z, x2] X [y1,¥2] be the closure of R. Since, for any vertical or horizontal

line [ and any 7,7 € S, we have L, ,(I) < %, it follows that
2

’I’L

‘ LW,T(R) - LW,T(R) ‘ <
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Then, given € > 0, for any n > %, by triangle inequality and the fact that
Jrp(x,y)dedy = [5p(x,y) dedy, we get
| LW,T(R) - fR p(l’,y) dl’dy ‘ > €

Hence, it suffices to show (2.63) for R = [z1, 23] X [y1,%2]. In the remainder of the
proof, let R := [x1, 23] X [y1,y2]. We will show

lim B, (L, -(R)) = / oz, y) dedy, (2.64)
lim Var,(L -(R)) = 0. (2.65)

Then, (2.63) follows from (2.64) and (2.65) by Chebyshev’s inequality and triangle
inequality.

Let A = [z, 2] and B = [y, ys]. Define

Then, by Lemma 2.1.1 and the fact that u(z,y, 5) = u(y, z, ), for any € > 0, there

exists N7 > 0 such that, for any n > Ny,

€

Op < d y < —.
an n<3

Wl ™

Without loss of generality, assume 0 < € < 1. Then, for any n > N; and any i € [n],

we have

e (La (), (15 () = [, . B)u(fv.y) dedy|  (266)
=[(07+ [yu(e. 2. 8) de) (57 + [ u(iov.n) dy)

—-[4U($,ﬁ,ﬁ)dx-tﬂ3U(%,y,7)dy’
(0)5.0)

50

u(t,y,y)dy+

Jau(z, 5. 5)
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€ € € ___
<3 tztgz=e

Here we use Lemma 2.1.9 in the last inequality. Hence, for any n > Ny,

En(Lrr(R)) = 5 25 Jpu(: 5, B)u (%,M)dxdy‘ (2.67)
LS B (1a(Z 50) A, (e £ 8) k) deds|
<X | B (1) 15(7) ) — [l . B)u(t ) dedy)

= T [t (U4 (F2)) g, (25(2) = fu £, Bu(E.7) dv

< €.

Here the last equality follows from the fact that (m,7) ~ i q, X fing under P,, and
the last inequality follows from (2.66).
Since u(x,y, f) and u(x,y,7) are bounded on [0, 1] x [0, 1], by the definition of

Riemann integral and the dominated convergence theorem, we have

lim 5350 Jpu(z, 5 B)u(3,y.7) dedy (2.68)

= fR< hm Ly u(z, L, B)u (n,y,7)>dmdy
= fR<fo u(z,t, B)u(t y,y)dt) dxdy
= [ p(z,y) dxdy.

Hence, (2.64) follows from (2.67) and (2.68).
To show (2.65), similarly, by Lemma 2.1.2, for any € > 0, there exists Ny > 0

such that, for any n > Ns,

g, (L4 (50 L (S2)) = png, (L4 (%2) )i, (14(52))| < 5.
i,j€[n]
x|t g, (L (50) L () =t (L0 ("82) ) tn (1 (")) < 5.
i,j€[n]

Without loss of generality, assume 0 < € < 1. Then, similar to (2.66), for any n > N,

and any 1 <1< j <n,

(Cova (a (%) 1 (%), 14 (22) 15(72) )| (2.60)
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— g (14 (P2)) g, (14 (P2 st (1 (F2) s, (15 (F2)) | < 5.

Here the second equality follows from the fact that (m,7) ~ fin g, X fin,qg under Py, and
the last inequality follows by triangle inequality. Specifically, if 0 < ay,as,b1,b < 1,

lay — ag| < § and |by — bo| < §, then we have

€
\albl — a262| S ]albl — G2b1| + |Cl2b1 - a/2b2‘ S ‘CLl - &2’ + ’bl - bg‘ < 5

Here we choose

o = (L (L), o0 = g (14 (32 s (14 (22),
b= (Lo (V). b= g, (052 g, (1 ().

(2.70) follows.
Thus, for any n > max (N, 1),
Var,, (L, .(R))
= Varn <% Z?:l 114(%)]]'3 (TTZ)))

=5 2 Var (L4 (52) 15 (7))
i=1

7]
4,J€[n]
1 n nn-1) ¢
< 2 2 5 <e€

The first inequality follows by (2.69) and the fact that the variance of any indicator

function is no greater than %. m

Now we are in the position to prove Theorem 2
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Proof of Theorem 2. First of all, we make the following claim:

Claim: To prove Theorem 2, it suffices to show the case when f(x,y) =
1g(z,y), for any R = (x1,22] X (y1,y2] C [0,1] x [0,1]. This is because for any
continuous function f(z,y) and any ¢ > 0, we can find a simple function s(z,y) on

(0,1] x (0, 1] such that
€
|f(ﬂl?,y)—5($l:,y)! <§ V(a:,y)E(O,l] X (071]7
where s(z,y) is of the form

S(xvy) = Za’j]le (I, y)v
=1

with R; = (mgj),xéj)] X (yij),yéj)} C (0,1] x (0,1] and {R;}72, is a partition of
(0,1] x (0,1]. Hence, we have

LS F(E ) S LS (5 )| < g, (2.11)
and
‘fol Jo s y)p(z,y) dady — [ [ fla,y)p(z,y) dedy ‘ (2.72)
< s, y) = fx,y)] ple,y) dedy
<£.

Here we use the fact that, by Lemma 2.1.9,

fol fol p(x,y)dedy = 1.

Thus, by (2.71), (2.72) and triangle inequality, we have

LS P ) — f f fwye(a.y) dady | > e

| (2 ) 2 sy, ) dody | > 5

Hence, we get

LS (5 D) — o o S y)e(e ) dedy | > )
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< ]P’n< Ly s(L, W) — 0 [ s, y)ple, y) dedy ‘ > §>

< ZIPn( Ly Ag, (4,0 — Jr, P(@.y) dxdy‘ > m)
=

Here the last inequality follows by the union bound. Therefore, to prove Theorem 2, it
suffices to show the case when f(z,y) = 1g(z,y), with R = (21, 23] X (y1,92]. In other
words, we need to show that, for any € > 0,

lim IP’n<

n—oo

L..r(R) — /Rp(:c,y) dxdy‘ > e) =0. (2.73)

Here, as defined in (2.1),

L (R) — %gﬂ’% (%r;r(z)>

Then, for any 7,7 € S,,, we have

={(77"(@),7(d)) : i € [n]} .
The last equality follows since {7 (i) }icjn) = [n]. Thus, it follows that
Lron(R) = Lz-1 -(R), VR € Bpyx0,1)-

If (7, T) ~ png X fing, by Lemma 1.1.4, (771, 7) ~ fiy4 X ftn . Thus, given (7, 7) ~ P,

we have

d

LTOﬂ‘(R) = Lﬂ'_l,T<R) = Lﬂ,T(R)'

That is L,or(R) and L, .(R) have the same distribution when (7, 7) ~ P,,.
Therefore, (2.73) follows by Lemma 2.3.1. O
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Chapter 3

WEAK LAW OF LARGE NUMBERS WHEN AT LEAST ONE
PERMUTATION IS CLOSE TO UNIFORMLY RANDOM

In this chapter we prove Theorem 3 and Theorem 4. In Section 3.1, we argue that
the LCS of two permutations is equal to the LIS of a set of points defined by these two
permutations. In Section 3.2, we introduce the weak Bruhat order on S,, and construct
several couplings of Mallows permutations which enable us to establish Lemma 3.3.4
which says that the LIS of those points are close to the LIS of uniformly random points.
In Section 3.3, we prove Theorem 3 following the method developed by Deuschel and
Zeitouni in [12] for the record lengths of i.i.d. points. In Section 3.4 and Section 3.5,
we prove Theorem 4 by constructing couplings of Mallows permutations such that we
can bound LCS(w, 7) by either the LIS or the LCS of the coupled permutations, the

limit of which are known. Section 3.6 contains the proofs of two technical lemmas.

3.1 Reduction LCS problem to LIS problem

Definition 3.1.1. Given a set of points in R?: z = {z1,29,...,2,}, where z; =
(74, y5) € R?, we say that (zi,, ziy, - - -, 2i,,) 08 an increasing subsequence if
Ti; <$ij+17 yij<yij+17 J=L2,...,m—1

Here we do not require i; < i;41. Let LIS(z) denote the length of the longest increasing

subsequence of z.

Definition 3.1.2. Given a = (ay,...,a,) € R", b = (by,...,b,) € R", we say that

((@iy, b5y, (@i, b3y, - ooy (@, , ;) is an increasing subsequence between a and b if

Aj; < Qg bi].<b j=12 ... m-—1

CESE
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Here we do not require i; < i;41. Let LIS(a,b) denote the length of the longest increas-
ing subsequence between a and b. Let LIS(a) = LIS(id,a), LDS(a) = LIS(id",a).
Here id = (1,2,...,n) denotes the identity in S, and id" = (n,...,2,1) denotes the
reversal of identity in S,. Hence LIS(a) is the length of the longest increasing subse-
quence of a and LDS(a) is the length of the longest decreasing subsequence of a.

Note that Definition 3.1.2 allows us to define LIS(7, 7), the length of the longest
increasing subsequence of two permutations, by regarding 7= and 7 as vectors in R".
We show that LCS(w, 7) = LIS(7 !, 771), which allows us to reduce the LCS problem
to the LIS problem.

Lemma 3.1.3. Given 7,7 € S,,, we have
LCS(m,7) = LCS(oom,00T), LIS(w,7) = LIS(mo0,700),
for any o € S,,.

Proof. Suppose (a1, as, ..., ay) is a common subsequence of m and 7, then

(o(ay),...,o(ay)) is a common subsequence of o o and o o 7. Hence,
LCS(7r,7) < LCS(com,o07) <LCS(0 tooom o tooor)=LCS(m, 7).

Similarly, suppose ((m(i1),7(i1)), (7(i2),7(i2)), , (m(im), 7(i))) is an increasing
subsequence between 7 and 7, then ((me o (i), 70 0(i))),
(moa(iy),Too(iy)), ..., (mea(il,), 7o0c(il,))) is an increasing subsequence between

moo and T oo, where i}, = 07! (i;) for k € [m]. Hence,

LIS(m,7) < LIS(ro0,700) <LIS(recoo!,7o00o0 ) = LIS(x, 7).

Corollary 3.1.4. For any n,7 € S,, LCS(w,7) = LIS(m=, 771).
Proof. By the previous lemma, we have

LCS(7,7) = LCS(id, 7' o 7) = LIS(id, 7' o 7) = LIS(7 !, 7 1)
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In the second equality, we use the following trivial fact,
LCS(id, m) = LIS(m) = LIS(id, )

Here, id denotes the identity in S, i.e.id = (1,2,...,n). ]

3.2 Weak Bruhat Order
To prove Lemma 3.3.4, which says that the LIS of the points {(m M)}ie[n]

n’ n

that fall in a small box is close to the uniform case, we will establish a coupling of per-
mutations (X,Y, X', X”) such that given a = (aq,...,a;) with a; € [n], LIS(X,, Y,)
can be bounded by LIS(X}) and LDS(X/). Here X, X’ and X" are distributed accord-
ing to ji,,, and Y is independent of X with an arbitrary distribution on S,,. The main
tool we use to construct the coupling is the weak Bruhat order on S,,.

Recall that for a permutation = € S,,, I(7) denotes the number of inversions of
7 and Inv(7) denotes the set of inversions of w. Let (7, ;) denote the transposition in

S, and s; = (i,7 + 1) the adjacent transposition in .S,,.

Definition 3.2.1. The left weak Bruhat order (S,,<p) is defined as the transitive

closure of the relations
7<p7 if T=s;om and I(7)=1(m)+ 1.

We are multiplying permutations right-to-left. For instance, sy 0 2413 = 3412.

One characterization of the left weak order is the following (cf. [1]),
7 <y 7 ifand only if Inv(m) C Inv(7).

The right weak Bruhat order (S,,<g) is defined in the same way except that the

covering relationship is given by 7 = 7w o s;.

Definition 3.2.2. The right weak Bruhat order (S,, <g) is defined as the transitive

closure of the relations

T<pT if T=mos; and I(1)=1(7)+ 1.
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From the above definitions, the following proposition follows trivially.
Proposition 3.2.3. For any 7,7 € S,,, # <g 7 if and only if 7= <, 771

Definition 3.2.4. Let (2, <) be a partially ordered set. A non-empty subset A C Q) is

called increasing if

weEA and w<uw = W €A

Given two probability measures iy, ps on (2, F), we say that py is stochastically smaller

than po, denoted by py =< pa, if
p1(A) < pg(A)  for all increasing events A.
Lemma 3.2.5. Given the poset (S,, <p), for any 0 < ¢ < ¢, we have fi,q = fing -
Proof. We are going to construct a coupling of two Markov chains (X3, Y;), such that
1. Both {X;} and {Y;} are irreducible, aperiodic Markov chains on S,,.
2. The stationary distributions for {X;} and {Y;} are p,, and p, , respectively.
3. X; <1 Y, for any t > 0.
By 3, for any increasing subset A C .S,,, we have
PX, e A)=P(X; € A, X; <, Y;) <P}, € A). (3.1)
Also, by properties 1 and 2, we have
finqg(A) = tlggo P(X; € A), and p,qy(A)= tlgglo P(Y; € A). (3.2)
Combining (3.1) and (3.2), we get
fng(A) < pin g (A), for all increasing subsets A.

The remainder of the proof is devoted to the construction of the coupling (X, ;) which

satisfies the three properties above. The coupling (X, Y;) is defined as follows,
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e When time t = 0, Xy = Yy = id. That is, both chains start from the identity in
Sh-

e At each time t, sample three independent random variables: U, F, B. U samples

the integers from 1 to n—1 uniformly. F' and B are two coins with the probability

(14+¢")q

of heads being o)

1q, and respectively.

I+
Suppose U = 1. Then flip the coins F' and B and update the chains according to

the following rules:

Case 1 if X71(i) < X '(i+1) and Y(i) < Y~1(i + 1), then

F'is head X1 = X, Y=Y,

F is tail, B is head X431 =s;0X;, Y1 =5°Y%

Fis tail, Bis tail X1 = X;, Yiii=5°Y

Case 2 if X71(i) < X '(i+1) and Y1(4) > Y~1(i + 1), then

F'is head Xy = Xy, Yiii=s°Y,

F is tail, B is head X;41 =s;0X;, Y1 =Y,

Fis tail, Bis tail X311 = X;, Yo=Y,

Case 3 if X71(i) > X'+ 1) and Y(4) > Y~1(i + 1), then

F' is head Xip1=si°o Xy, Y1 =510V

F'is tail, B is head X;,1 = X}, Yo=Y,

Fis tail, Bis tail X1 =s;0X;, Y1 =Y,

By the definition above and the following facts, it is easy to check that the three
properties listed at the beginning of the proof are satisfied.

o4



The adjacent transpositions {s;} generate S,, under the group multiplication in

Sh.

o If (i) =4, 7' (i+1) =k and j < k, we have Inv(s; o 7) = Inv(r) U {(j, k)}.

If 7=1(i) =4, 7 '(i+1) =k and j > k, we have Inv(s; o 7) = Inv(m) \ {(k,7)}.

7w <y 7 if and only if Inv(7) C Inv(r).

Both chains X;, Y; satisfy the detailed balance equations, i.e. that the Mallows

distribution satisfies that
fing(m) - P(Xip1 = 7|Xy = 7) = png(7) - P(Xip1 = 7| Xy = 7)
for any m,7 € S,, and similarly for the chain Y;.

]

The stochastic dominance between p,, and pu,, also holds if we change the

underlying partial order to the right weak Bruhat order.
Lemma 3.2.6. Given the poset (S,,<g), for any 0 < g < ¢, we have i, g = fnqy-

Proof. Given any increasing set A in (S, <g), let A™1 .= {7=!: 7 € A}. By Propo-
sition 3.2.3, A~! is an increasing set in (S,,<;). Since () = I(7'), we have
png(T) = pno(m™1), whence pi,4(A) = pi,,(A™"). Then, by Lemma 3.2.5 and Def-

inition 3.2.4, we have

Mn,q(A) = Mn,q(A_l) < Mn,q’(A_l) = Mn,q’(A)-

0
Definition 3.2.7. Given 7 € S, and a = (ay,as,...,a;), where a; € [n] and a; <
ag < -+ < ay, let w(a) = (n(ay),m(as),...,m(ax)). Let mq € Sk denote the permutation

induced by w(a), i. e.mq(i) = j if w(a;) is the j-th smallest term in w(a).
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Corollary 3.2.8. Let n € N, and a = (ay,aq,...,a;), where a; € [n] and a3 < as <

...<ak‘

(a) For any q > 1, we can construct a pair of random variables (U, V') such that U is
uniformly distributed on Sy, V' has the same distribution as mq, where ™ ~ [i, 4,

and U < V.

(b) For any q < 1, we can construct a pair of random variables (U, V') such that U is
uniformly distributed on Sy, V' has the same distribution as mq, where ™ ~ [i, 4,

and V <, U.

Proof. Here we only prove part (a). Part (b) follows by a similar argument. Since
g > 1, by Lemma 3.2.5 and Strassen’s theorem [27], there exist two random variables
(X,Y) defined on the same probability space such that X is the uniform measure on
Sn, Y ~ pinq and X <p Y. Then we can show X, < Y,. Since 7 <; 7 if and only if

Inv(m) C Inv(7), we have
Inv(Xge) ={(¢,7) : 1 <i<j<kand X(a;) > X(a;)}
C{(4,j):1<i<j<kandY(a)>Y(a;)}=Inv(Yy,).

Hence, if we define U = X, and V = Y,, part (a) follows by the fact that X, is

uniformly distributed on Sk. O

Lemma 3.2.9. Given w,7 € S, withw <p 7, foranyn >k, 0<g<landa; <---<

ap with a; € [n], there exists a coupling (X,Y) such that X ~ fi,q, Y ~ pin 4 and
LIS(X,,7) > LIS(Y,, 7).
Here a = (ay,as, ..., ay).

Proof. First, we claim that it suffices to show the case when 7 covers 7 in (Sg, <p),
that is [(7) = l(w) + 1 and 7 = s; o7 for some ¢ € [k — 1]. The claim can be shown
by induction on the Kendall’s tau distance of m and 7, i.e., the minimum number

of adjacent transpositions multiplied to 7 from the left to get 7. Suppose we have
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m <y o <p 7 in Sg with I(7) < I(o) < I(7). By the induction hypothesis there
exist two couplings (X,Y) and (Y’, Z), which are not necessarily defined in the same

probability space, such that X,Y, Y’ Z have the same marginal distribution p, , and
LIS(X,, ) > LIS(Y,, 0), LIS(Y,,0) > LIS(Z,, 7). (3.3)
We can construct a new coupling (X', Z’) as follows,

(1) Sample a permutation § € S, according to the distribution pi, 4.

(2) Sample X’ according to the induced distribution on S, by the first coupling
(X,Y) conditioned on Y = ¢&.

(3) Sample Z’ according to the induced distribution on S, by the second coupling
(Y', Z) conditioned on Y’ = &.

By the law of total probability, it is easily seen that X' ~ pu,, and Z" ~ p, ,. Also,
regardless of which permutation £ being sampled in the first step, by (3.3), we have

LIS(X!,7) > LIS((q, 0) > LIS(Z., 7).

In the remainder of the proof, we assume 7 = s; o and I(7) = [(7) + 1. Note that, for

any o € Sy,

oo (i,j) = (0(i),0(j) e0,  0ac(i,]) = (0°(t,))a- (3-4)

Let 7 = az—1¢;) and t = az—1(41). Since (1) = I(7) 4+ 1, we have 77(1) < 7 '(i + 1),
thus, r < t. Let A= {{o,00°(r,t)} : 0 € S,, and o(r) < o(t)}. Clearly, A is a partition

of S,. Then we construct the coupling (X,Y") as follows:

(1) Choose a set in A according to measure p, 4, i.e. the set {o,0 < (r,t)} is chosen

with probability fi, ,({o,0° (r,t)}).

(2) Suppose the set {o,0 0 (r,t)}, with o(r) < o(t), is chosen in the first step. Flip

a coin with probability of heads being
¢Ho) — gloo(r))

P= @ glleot)
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(3) If the outcome is head, then we set X =Y = o.

(4) If the outcome is tail, then, with equal probability, we set either X = o, YV =
go(r,t)or X =0o(rt),Y =o0.

Here, in the second step, the probability of heads p is nonnegative because we have

0 < ¢ <1 and the following fact:
i<jand o(i) <o(j) = (o) <l(oe°(i,j)), VYoe&S,.

It can be verified that (X,Y") thus defined has the correct marginal distribution s, .

In the following we show that
LIS(Xgom ') > LIS(Ygo 1 t). (3.5)

Then, the lemma follows by Lemma 3.1.3 because, let id denote the identity in S, we

have

LIS(Xg o 1) = LIS(Xg o 7Y, id) = LIS(X,, ),
LIS(Y, o7 ") = LIS(Y, o 7", id) = LIS(Ya, 7).

Suppose the set {o,0 ¢ (r,t)}, with o(r) < o(t), is chosen in the first step. If the
outcome in the second step is tail, we verify that Xgon™! = Y, 077!, When X = o,

Y =00(rt), by (3.4), we have

When X =oo(rt), Y =0, again by (3.4), we have

Xoom b= (oo(r,t))gom?
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ogo (@), n i+ 1))or?

-1 ~1
Y,oT  =0g0m o8
If the outcome in the second step is head, we have
Xpom t=040n ! and Yyor l=o0,0n los,.

Since o(r) < o(t), i.e., o(ar1()) < 0(az-1311)), We have o o7 (i) < ogom (i +1).

Hence Y, o 771 covers Xgom!in (Sy, <g). (3.5) follows. O
Remark. A special case of Lemma 3.2.9 is when k = n, in which the only choice for
a is the vector (1,2,3,...,n) whence Xq = X, Yo =Y.

We can prove a similar result for the case when ¢ > 1.

Lemma 3.2.10. Giwen w,7 € Sy withw <p 7, foranyn >k, ¢>1anda; < --- < ay

with a; € [n], there exists a coupling (X,Y) such that X ~ pin 4, Y ~ iy 4 and
LIS(X,,7) < LIS(Y,, 7).

Here a = (a1, az, ..., a;).

Proof. Given w € S,,, recall that 7" denote the reversal of 7. For any 7 € S,,, we have

Inv(7") ={(4,5) 1 <i<j<mnand (n+1—j,n+1—1i) ¢ Inv(m)}. Hence, m <, 7

implies 7" >, 77. By Lemma 3.2.9, there exists a coupling (U, V') such that U ~ ji,, 1/4,

V'~ pin1/q and
LIS(Ug,7") < LIS(Vg, 7).

Here a’ = (ay,d}, ..., a}) with o}, =n+ 1 — ap41-.

Define (X,Y) := (U",V"). By Lemma 1.1.4, X ~ pi,, 4, Y ~ p, ,. Moreover, we have
LIS(Xa, 7) = LIS((X,)", ") = LIS((X")a, 7") = LIS(Uy, ")
< LISV, 77) = LIS((Y")ar, 77) = LIS((Ya)", 7")
= LIS(Yg, 7).
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Lemma 3.2.11. Given a = (a3, as,...,a;), where ay < --- < ay and a; € [n], for any
0 < q <1 and any distribution v on Sy, there exists a coupling (X,Y, Z) such that the
following holds,

(a) X and Y are independent.
(b)) X ~ ping, Y ~vand Z ~ fi,4.
(¢) LIS(X,,Y) < LIS(Z).

Proof. Let idy denote the identity in S. By the definition of weak bruhat order, for
any & € Sk, we have id, <p £. Hence, given £ € S, by Lemma 3.2.9, there exists a
coupling (U, V') such that U ~ p, 4, V' ~ pin 4 and LIS(Us, §) < LIS(V,, idy) = LIS(Va).
Then we construct the coupling (X,Y, Z) as follows

e Sample Y according to the distribution v.
e Conditioned on Y = &, (X, Z) has the same distribution as (U, V') defined above.

First, we point out that X and Y are independent. Since whatever value Y takes,
the conditional distribution of X is p,,. Moreover, it can be seen that X, Y and
Z have the right marginal distribution. Finally, (c) holds by the construction of the
coupling. O]

We can prove a similar result for the case when ¢ > 1.

Lemma 3.2.12. Given a = (ay,as,...,ax), where a; < --- < a; and a; € [n], for
any q > 1 and any distribution v on Sy, there exists a coupling (X,Y, Z) such that the
following holds,

(a) X andY are independent.
(b)) X ~ ping, Y ~vand Z ~ ji,,.

(¢) LIS(Xa,Y) > LIS(Zy).
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Proof. Let id; denote the identity in Sy. By the definition of weak bruhat order, for
any £ € Sk, we have 1d, <y €. Hence, given ¢ € Si, by Lemma 3.2.10, there exists a
coupling (U, V') such that U ~ i, 4, V' ~ pin 4 and LIS(Us, §) > LIS(V,, idy) = LIS(Va).
Then we construct the coupling (X,Y, Z) as follows

e Sample Y according to the distribution v.
e Conditioned on Y = &, (X, Z) has the same distribution as (U, V') defined above.

First, we point out that X and Y are independent. Since whatever value Y takes,
the conditional distribution of X is p,,. Moreover, it can be seen that X, Y and
Z have the right marginal distribution. Finally, (c) holds by the construction of the
coupling. O

Lemma 3.2.13. Given a = (ay,as, . ..,ax), where a; < --- < aj and a; € [n]. Define
a={n+1l—ag,n+1—apq,....,n+1—ar}. For any0 < q <1 and any distribution
v on Sy, there exists a coupling (X,Y, Z) such that the following holds,

(a) X andY are independent.
(0) X ~ g, Y ~vand Z ~ fi,1/,.
(¢) LIS(Xa,Y) > LIS(Zs).

Proof. Recall that 7" denotes the reversal of m. If 7 ~ v, we use " to denote the

distribution of #". Clearly, v = (v")". By Lemma 3.2.12, there exists a coupling

(U,V, Z) such that
e U and V are independent.
o U~ pinijg, V ~vand Z ~ piy /4.
o LIS(Us, V) > LIS(Za).

Define X :=U" and Y := V". We have

LIS (Ua, V) = LIS ({ (Uali). V(D) },cy )
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The lemma follows. O

3.3 Proof of WLLN when both $ and v are finite

We start this section by introducing the following two lemmas which can be
seen as generalizations of Corollary 4.3 in [22]. That result shows that the LIS of a
Mallows permutation scaled by n='/2 can be bounded within a multiplicative interval
of el®l around 2. We postpone the proofs of these two lemmas to Section 3.6. For any

positive integer n and m € [n], define
Q(n,m) = {(b1,ba,...,by) : b; € [n] and b; < b;;; for all i}.

Lemma 3.3.1. Suppose that {q,}>, is a sequence such that ¢, > 1 and
liminf, ,oon(1 — ¢g,) = B, with § € R. For any sequence {k,}>2 | such that k, € [n]
and lim,,_, k, = 0o, we have

. L[S(] b) B
1 R . ¢ 2e2 — 2 —
nlm beln(%?in) ,un,qn (71 < Sn \/E ( (& €, + 6) 0,

for any e > 0.
Lemma 3.3.2. Suppose that {q,}2, is a sequence such that 0 < g, < 1 and

limsup,,_,.,n(1 —¢,) = B < In2. For any sequence {k,}>>, such that k, € [n] and

lim,, ,o Kk, = 00, we have

. L[S(ﬂ'b) B
1 n S 2—¢€,2 =0,
s X fin, (“E VB et

for any € > 0.
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Next, we introduce the following way to sample a permutation according to
fn,q Which will be used in the proofs. Given ¢ = {¢,¢o,...,¢n}, where ¢; € Z1 and

>, ¢ =n, define

k
do=0, dp=) ¢ VkEelm],
i=1
Ale) = {(A1, Az, ..., Ap) - {Ai}iepm) s a partition of [n], |4;] = ¢}
Given (Ay,..., A,) € A(e), define the inversion number of (Ay,..., Ay,) as follows,

l((Al, PN ,Am)) =

{(z,y) : > y and there exists i < j such that x € A;, y € A;}|.

Let a; be the vector which consists of the numbers in A; in increasing order. There
exists a bijection f. between S, and A(c) x S, X S¢, X --- X S,, such that, for any

T € Sp, fe(m) = ((A1, Ao, ..., A), 71, Toy - .., T) if and only if

{T((]) j € Al} = {di—l+1adi—1+27"'7di}7 Ta,

(3

= Ti, Vi € [m]

From the definition above, it is not hard to see that the following relation holds,

m

U(m) = 1((Ar, Aa, . A)) + D U(T). (3.6)

=1

Define the random variable X, which takes value in A(c¢) such that
P(Xc = (Al, Ao, ... ,Am)) X ql((A17A2 ,,,,, Am))'

Independent of X, let Y7,Y5,...,Y,, be independent random variables such that, for
any i € [m], Vi ~ pe,4 Define Z = f71(X.,Y1,Ys,...,Y,). By (3.6), we have
Z ~ [inq, Since

P(Z =m) « ¢'™.

As our last step in preparation for the proof of Lemma 3.3.4, we introduce the

following elementary result in analysis.
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Lemma 3.3.3. Suppose {B;}2, is a partition of N, i.e. U, B; = N and B; N B; =
@, Vi # j. Moreover, each B; is a finite nonempty set. Given a sequence {x;}2,, if

limy, 00 Ty, = @, for any sequence {b;}3°, with b; € B;, then we have lim,,_,o ©, = a.

Proof. We prove the lemma by contradiction. Suppose lim,, o z, = a does not hold.
Then there exists € > 0 and a subsequence {z,,}52, such that z,,; ¢ (a —€,a + ¢€) for
all j. Since each B; is a finite set, without loss of generality, we may assume that each
B; contains at most one n;. Then, we can construct a sequence {b;}°, with b; € B;,
such that x;, ¢ (a—¢€,a+¢€) infinitely often. Specifically, we define the sequence {b;}$°,
as follows. For each i, if there exists an n; € B;, let b; = n;, otherwise, let b; be an

arbitrary number in B;. Thus, we get the contradiction. O]

For any m,7 € S, define z(m,7) = {(#, ?)}ie[n]. Let lg(m,7) denote the
length of the longest increasing subsequence of z(m, 7) within R. The following lemma
addresses the size of the LIS of z(m, 7) in a small rectangle and this result will be the

most crucial building block used to show both the upper and lower bounds in Theorem

3.

Lemma 3.3.4. Let R = (21, 22] X (y1,y2) C [0,1] x [0,1]. Under the same conditions

as in Lemma 2.3.1, if Az|B| <In2 , we have

lim B, | 2T o (26—“5'/2 — e, 2Bl e) —1, (3.7)

for any € > 0, where p(R) = [[, p(z,y) dedy and Az = x5 — x1.

Proof. To simplify the proof, we divide the lemma into the following three cases:
Case 1: B >0or =0 and g, <1 when n is sufficiently large.
Case 2: f < 0or f=0 and ¢, > 1 when n is sufficiently large.

Case 3: g =0.
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Firstly, Case 3 follows from Case 1 and Case 2 because if lim,, o, n(1 — ¢,) = 0, we can
divide the sequence {¢,}5°, into two disjoint subsequences such that one of them falls
into Case 1 and the other falls into Case 2.

Next we argue that Case 2 follows from Case 1. If m ~ p,,, by Lemma 1.1.4, we
have 7" ~ fi,1/4. Trivially, for any =, 7 € S,, we have z(m,7) = z(a",7"). Since

lim, .o n(1 —¢,) = B € R, we have lim,,_,, ¢, = 1. Hence,

lim n(1 —1/q,) = li_)rn n(gn —1)/q, = —P.

n—oo

Therefore, Case 2 follows from Case 1 by considering the reversal of 7 and 7 in (3.7).
Specifically, if m ~ fpi,4, and 7 ~ p, 4, after reversing, we have 7" ~ 1/, and
T" ~ in1/q, and the n points induced by m and 7 do not change, i.e., z(m,7) = z(7", 77).
To prove Case 1, in the following, we assume z1,y; > 0 and z9,y, < 1. The proofs for
the cases when x1 =0 or y; =0 or 9 = 1 or y, = 1 are similar.

Let 3 = y3 = 1. Given n € N, we will sample (7, 7) according to P,, by the method

introduced before Lemma 3.3.3. Define

dni = |nz;], Cni = dp; — dpi-1, fori =1,2,3,
d;L,i = [nyi], C;M» = d;m- — d;u»_l, fori=1,2,3.

Here we assume that d,, o = d;, , = 0. Then, it is trivial that

dni = {j € [n]:
d, ;=i €lnl:

€ (O,ZL‘Z]H, Cn,2 = |{] € [TL} S (xhx?]H’

€ (0, wil}l, o =i €nl:

Sl
S s

=S
3 e

€ (y1,52)}-

VfJ = z,Vx € R, it follows that lim,,_, % = x;. Hence

Since lim,,_, .,

lim 2 = 2, — 2, = Au. (3.8)

n—oo M
Next, for any nonnegative integer ¢, define B; == {n € N : ¢, 5 = i}. Clearly, {B;}2,
thus defined is a partition of N and we show that each B; is a nonempty finite set.

Since, by (3.8), lim,, o0 ¢y2 = 00, we conclude that each B; is a finite set. From the

definition of d,;, it is easily seen that the sequence {d,} is nondecreasing and the
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increment of consecutive terms is either 0 or 1. The same is true for the sequence

{d,2}. Hence, we have

|Cnt12 — Cnal = |dnt12 — dno — (dny11, —dn1)| < 1.

Since c¢1 9 € By and lim,,_, ¢, 2 = 00, the inequality above guarantees that each B; is
nonempty.
/ /

Next, define ¢, = (cn1,Cn2,¢n3) and ¢, = (¢, 1, 9,¢,3). Define X, which

takes values in A(¢,) such that

P(X., = (A1, A3, A3)) g (ArA2,43)) V(A1 Ag, Az) € A(cy).

n

Independently, define three independent random variables Y, ;,Y,, 2,Y, s such that
Yoi ~ MHe,.q,- Independent of all the variables defined above, define X, and YYZ,I?
Y/

n,2’

Y, 5 in the same fashion. That is, X, takes value in A(c],) with
P(Xe, = (A}, Ay, A3)) oc (q) ) Ay, A), Ay) € Ale))

Y/

n,2s

and Y/

, . . . ,
1> Y, 3 are three independent random variables with Y ; ~ pier 41 . Define

= fc_nl (ch7 Yn,17 Yn,2> Yn,3)> T = fc_'i (chn? Yé,la Y7:,27 Y7:73)'

From the discussion before Lemma 3.3.3, it follows that (7, 7) thus defined has distri-

bution P,,. Moreover, given X., = (A1, Ay, As) and X = (A7, Aj, A5), we have
Ay = {z € [n]: # € (171,132]}, Ay = {l € [n]: % € (ybyQ]}-

Hence, we have

n ' n

As N AL = {@ e [n]: (“—“ &) c R}. (3.9)

Define M = |z(m,7) N R|, i.e. M denotes the number of points {(%, #) ", within
R. Then, by (3.9), we have M = |A; N A}|. Hence, M only depends on the values
of X, and X and is independent of Uiciz{Yn:, Y, ;}. Next, we point out that,
conditioning on X, = (A, Az, A3) and X = (A}, A5, AS), Ig(m, 7) is determined by

Y2 and Y, ,. To see this, we first define a new function I as follows, given any finite
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set A C Z and any a € A, define I(A,a) == k if a is the k-th smallest number in A.
Suppose Ay N Ay = {a;}jeng with a; < ag < -+ < ap. Define b € Q(cp2, M) and
b' € Q(d) , M) by

b= (I(Ag,a1),I(As,as),...,1(As,apn)),

(3.10)
b= (I(A/27 a1)7 I(A/27 a2>’ R I(A/2’ aM))
Note that b and b’ are determined by Ay and A}. Then, we have
Ir(m,7) = LIS((Ya2)b, (Y, 2)e)- (3.11)

Because, conditioning on X, = (A, As, A3), we know that {7(i) : i € Ay} = {d,1 +
1,dy1+2,...,d,2}. The value of Y}, » determines the relative ordering of 7 () for those
i € Ay. Similarly, the value of Y, , determines the relative ordering of 7(i) for those
i€ A

Now we are in the position to prove (3.7) for Case 1. From the discussion above and
Lemma 3.3.3, it suffices to show that, for any sequence {s,}°°, with s, € B,, i.e.,

when ¢, o = n, we have
[
lim P, (BT (2@‘Aw/2 — e, 2eDB/2 4 e) =1, (3.12)

for any € > 0. Note that by the definition of Py in Lemma 2.3.1, 7 and 7 above are of
size sp With m ~ fis, 0. T ~ fs, g1 -

We separate the proof of (3.12) into two parts. Specifically, we need to show

that
lim P, alm7) < 2e82 L) =1, (3.13)
and
[
lim P,, a(m7) > 20782 ) =1, (3.14)
for any € > 0.

Since {s, }n>1 is a subsequence of {i};>0, lim,_,~ S, = 00. Hence, by (3.8) and the fact
that ¢, 2 = n, we get

. n . Csp\2
lim — = lim =% = Ax.
n—oo S, n—oo S,
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Thus,
lim n(l — ¢, ) = lim Esn(l —qs,) = Azf <In2. (3.15)

n—o0 n—o00 Sy,

To prove (3.13), for any € > 0, we can choose €; > 0 sufficiently small such that
(1 =€) (26272 1 ¢€) > 2eA7A/2, (3.16)

For this fixed €, we can choose 6 > 0 such that

p(R)

AR)+0 >1—¢. (3.17)

Given n € N, define k, = [s,(p(R) +0)]. Clearly, we have lim,,_, k, = co. Moreover,
under the conditions of Case 1, ¢, < 1 for sufficiently large n. Hence, by Lemma 3.3.2,

(3.15) and (3.16), there exists N7 > 0 such that, for any n > Nj, we have

- . LIS(n) _ Azp/2 ) _
b DI fin g, (77 €8y =2 < (1—-e)(2e +e))>1—e (3.18)

Given b € Q(n, k,), for any b" which is a subsequence of b, we have LIS(np) > LIS(ny ).

Thus we can make (3.18) stronger as follows,

min 1, €5, USm (1 _ 26A$ﬂ/2+e>>1—e, 3.19
beQ(n,kn)'u sn (77 N ( 1)( ) ( )

where Q(n, k,) = Uiek,)@(n, 7). Since lim, o s, = 00, we have

lim s,(1 —¢,,) =0 and lim s,(1—q, )=1. (3.20)
n—oo

n—o0

Hence, by Lemma 2.3.1, there exists Ny > 0 such that, for any n > N,, we have

P, (w < p(R) + 5) S1-e (3.21)

In the following, let E, (A, A5) denote the event that the second entries of X, and

Xg are Ay and Aj respectively. Then, for any n > max(Ny, Na), we have

Psn( lg(m,T) < 26A9:B/2 + E)
snp(R)

. P(LBED < 2e20/2 1 e | By (Ay, Ay) ) X P(E, (A, A,
_\A OAZ’Kk v/ snp(R) ‘ +€‘ (A2 43) (En(A2, 45))
2 21=hn
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= Y PP ) gaeia | B (45, 4))
| AsNAL| <k Voo (R)
2|>Fn

x P(E, (A, Ay))

= ) P(LIS((YS”’Q)’” Cewah) o gedes/2 e) x P(E, (A2, A3))

| A2N A |<kn Vel
> N g (R < 263502 4 €)X P(E,(As, AY)
|A2N AL |<ky,

=Yt (AL < /AT (e )

oAl <k V/sn(p(R)+5) V/P(R)+6
2 21 >hn
X P(EH(A% AIQ))

> 3 i, (B < (1— )22 1 €)) X P(Ea (42, 45))
|A2NAL|<kn

> (1—¢)x Z P(E,(As, A3))

|A2mA/2|§kn

— (1—e) x P, (|2(m,7) N R| < k)

= (1 —¢) x Py, (|z(7,7) N R| < su(p(R) +9))

> (1 —¢)?

Here IP denotes the probability space on which (X, ,Y;, 1,Y5, .2, Ys, 3) and

(Xe Y5 1, YS 0, Yy 5) are defined. The first equality follows by (3.11). The second
equality follows by independence of (X, , Xe ) and (Y, 2, Y ,). Note that b and b’
are determined by A, and A} as in (3.10). The second inequality follows by Lemma
3.2.11, since Y, » and Y] , are independent with Y, o ~ pin4, . The third inequality
follows by (3.17) and the fact that k, = [sp,(p(R) + 0)| < sn(p(R) + d). The fourth
inequality follows by (3.19) and the fact that the dimension of b equals to |A; N Aj|.

The last inequality follows by (3.21). Hence, (3.13) follows.

The proof of (3.14) is analogous to the proof of (3.13). First, by (3.15) and the

fact that lim,,_.. ¢, = 1, we have

lim n(l —1/g,,) = lim g, = 1) _ —Azf. (3.22)

n—o0 n—o0 an
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For any € > 0, we can choose ¢; > 0 sufficiently small such that
(14 €)(2e7220/2 _ ¢) < 2¢7228/2, (3.23)

For this fixed €1, we can choose § > 0 such that

p(R)
—— <1 . 3.24
2(R)—3 + € ( )
Given n € N, define k], = [s,(p(R) —0)]. Clearly, we have lim,,_,, k!, = co. Moreover,
under conditions of Case 1, 1/¢, > 1 for sufficiently large n. Hence, by Lemma 3.3.1,

(3.22) and (3.23), there exist N3 > 0 such that, for any n > N3, we have

i . €8, : W) - (1 2e—AuB/2 _ >1—e 3.25
b, fon g, (77 i > +e)(2e ) € (3.25)

Given b € Q(n, k), for any b’ such that b is a subsequence of b, we have LIS(n) <
LIS(nmy). Thus we can make (3.25) stronger as follows,

min i, €S, W) - (1 4 ¢)(2eAB/2 _ ¢ ) >1—¢, 3.26
beQ(n,k;)u 1/qsn, <7] \/E ( 1)( ) ( )

where Q(nu k':’],) = Uk%SZSnQ("’%Z)
By (3.20) and Lemma 2.3.1, there exists Ny > 0 such that, for any n > N,, we have

P,, (M > p(R) — 5) Sl—e (3.27)

Sn
Again, let E,(Ay, A;) denote the event that the second entries of X, and X are

Ay and A respectively. Then, for any n > max (N3, N;), we have

P, (M S 9e-Aup/2 _ 6)
" snp(R)

> P(LBEEL > 9e-8082 — ¢ | F,(Ay, 4})) X P(Ey(As, A
_Ar§>k Voot 26 © | Bulfer £3)) > BEn(dr, 43)

= Y p(MEmn el o geaed2 | B (A5, AY))
sl 5k \/Snp(R) )
21=%n

x P(E, (A, Ay))

- LIS((Ysn,2)b, (Y2 2)pr) —AzB/2 ) /
- AZ|>I<: IP( L Tel) > 9 €) x P(E, (A, AL))
A K,
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LIS(n;, _Az
> D i, (T > 28— ) X (B, (A, AY)

|A2NA5| >k,

. /o(R
- Z Hn1/qs, <\/LIS(%) > ATy (26_Axﬂ/2 - 6))

Ay AT sn(p(R)=0) ~ \/p(R)—0
2 21 vn

X P(En(Az, A3))

> 3 g, (P > (L en)(2e72 ) x P(E(A, A7)
|[A2nAY |2k, !

>(1-0x Y PB4, A)

[A2NAG| >k,

=(1—¢) X ]P’Sn(\z(ﬂ,T) NR| > k;)

— (1—¢) x P, (|2(r,7) N B| > sa(p(R) - 5))

> (1—¢)2

Here P denotes the probability space on which (X, , Y5, 1,Y5, 2, Y5, 3) and

(Xe, Y9 1, Y 5, Y, 3) are defined. The first equality follows by (3.11). The second
equality follows by independence of (X, , X ) and (Y, 2, Yy 5). The second inequal-
ity follows by Lemma 3.2.13, since Y;, » and Y, , are independent with Y o ~ i, 4, -
The third inequality follows by (3.24) and the fact that &/, = [s,(p(R) — )] >
sn(p(R) — §). The fourth inequality follows by (3.26) and the fact that b has the
same dimension as of b which equals to |43 N A}|. The last inequality follows by (3.27).

Hence, (3.14) follows and this completes the proof of Lemma 3.3.4. O]

The following lemma establishes certain degree of smoothness of the densities u

and p defined in Lemma 2.3.1.

Lemma 3.3.5. The density functions u(x,y, 5) defined in (1.3) and p(z,y) defined in
(1.6) satisfy the following,

(a) €_|B| S u(x)yj/@) S €‘B|, €_|B‘_h‘ S p(l‘,y) S elBH'I'Y"
(b) ulz,y,B) € Cy, p(z,y) € Cy,

() max (| 34], [32]) < [8lel?,
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(4) max (|2

where (z,y) € [0,1] x [0, 1].

e}
121) < (81 + el

Proof. First we show that e/l < u(z,y,8) < el for any 0 < z,y < 1. Here we

assume 3 > 0. The proof for the case when 5 < 0 is similar. By (1.3), we have

(5/2) sinh(8/2)
(e8/4 cosh(Blx — y]/2) — e~/ cosh(Bz + y — 1]/2))°
B(e? — 1)
(26772 cosh(Blz — y/2) — 2 cosh(Blz +y — 1]/2))"

Since —1<z—y<land -1<z+y—1<1, we have

u(z,y, B) =

2612 < 9812 cosh(f[z — y]/2) < e’ +1,

2 < 2cosh(Blz +y —1]/2) < P2 4 e P2,
Since €%/2 + e7#/2 < 2¢8/2 from (3.29) and (3.30), we have
12 — e7P12 < 26812 cosh(Blx — y]/2) — 2cosh(Blz +y —1]/2) < e — 1.

By (3.28) and (3.31), it follows that

B Ble’ —1)
It is easily verified that
8 >efPe=ef>1-5,
ef —1
B’ - 1)

(3.28)

(3.29)
(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

By the inequality e® > 1 + z, the right-hand side of (3.33) and (3.34) hold. It follows

from (3.32) and the left-hand side of (3.33) and (3.34) that
e’ <u(z,ypB)<e’, VO<zy<L
By the definition of p(x,y), it follows trivially that

e IBI=hl < plz,y) < B+l VO<ay<l.
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In [26], Starr shows that Plou(zyf) _ 2pu(z,y, ). Thus

0xdy
’ 1 (Olnu(z,y,p) 3111“(0,?1,5))
u(t,y, B) dt = — _ . 3.35
[t = g5 (P . (3.35)
By direct calculation, we have u(1,y, ) = f;ﬁi, u(0,y, ) = f —
%;’y’m S and M —B. By (3.35), it follows that
ou(x,y, v 1
PEIT) ssuten ) ([ atepsar-3) (3.36)
Y 0 2
and
T 1
[utey s [Cuttypya=1. (3.37)
0 0

From (3.36) and (3.37), we get

0
‘8—3’ < Blu(z, y, B) < |l (3.38)

Since u(x,y, ) is uniformly continuous on [0, 1] x [0, 1] fo u(t,y, ) dt is also continuous
on [0,1]x [0, 1]. Hence, by (3.36), 5% 5, is bounded and continuous on [0, 1] x [0, 1]. Similar
argument can be made for g—g. Thus we have shown that u(z,y, 3) € C} and

max <(a“ a“() < |8leM.

0

Next, since }a (@.t8) (t,y,y)‘ < |Ble!*Nl for any 0 < x,9,¢t < 1, by dominated

convergence theorem, we have

0 9 [ ‘o
—p((;; v) = %</0 u(z,t, B)u(t,y,vy) dt) :/0 wu(t,?/ﬁ) dt. (3.39)

Hence, {%{ < |Ble!PHhl. Moreover, au(gg’f’ﬁ) u(t,y,v) as a function of z, y, t is uniformly
continuous on [0, 1] x [0,1] x [0,1]. Thus, by (3.39), % is continuous on [0, 1] x [0, 1].
By a similar argument, it can be shown that ?—)5 is continuous on [0, 1] x [0, 1], and

}2—5\ < |7|e|5|+w\, Therefore, p(z,y) € Cbl and

max ()%

Op 181411
[22]) < a1+ e
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The next lemma shows that for any non-decreasing curve in the unit square,
in a strip of small width around it, with probability approaching to 1, there exists an
increasing subsequence whose length can be bounded from below. The proof of Lemma
3.3.7 uses similar arguments as in the proof of Lemma 8 in [12]. Before stating the

lemma, we need the following notation.

Definition 3.3.6. Let B » be the set of nondecreasing, right continuous functions ¢ :
0,1] = [0,1]. For ¢ € B, we have ¢(z) = [ G(t) dt + ¢4(x), where ¢y is singular

and has a zero derivative almost everywhere. Define function J : B » — R,

10 = [ ol o) e and Ti= sup J(o)

¢€B/

Here p(x,y) is the density defined in (1.06).

Remark. By Theorems 3 and 4 in [12] it follows from Lemma 3.53.5 (a) and (b), that

sup J(¢) = sup J(¢),

1
$EB ~ peB,

where Blf is defined in Theorem 3. Hence we use the same notation J to denote the

supremum. over B .

Lemma 3.3.7. Under the same conditions as in Theorem 3, for any ¢ € Blf and any

0,e > 0, define the event

E, = {(7‘(‘, T) € S, X S, : 3 an increasing subsequence of {(M, &) }ie[n]

n n

which is wholly contained in the § neighborhood of ¢(+)

and the length of which is greater than 2J(¢)(1 — €)v/n }

Here we say a point (x,y) is in the § neighborhood of ¢ if ¢(x) — 3§ < y < ¢(x) + 0.
Then
lim P,(E,) = 1.

n—oo
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Proof. Given 0,¢ > 0, fix an integer K. Let Az = 1/K. Let z; := iAz and y; == ¢(z;)
for i € [K]. Let xy := 0, yo := 0. Define the rectangles R; = [z;_1,x;] X [y;_1,y;] for

i € [K]. Since ¢ is in C}, for any 0 < ¢’ < 1, we can choose K large enough such that

max(y; — yi_1) <0, e 22 51§ Az|g| <1n2 (3.40)
plz,y) plzi, yz-)) 1
max max max , < , 3.41
i eyeR <p(xi7 i) p(z,y) 1=o (34D
and
K
> Vi y) (i — yim) Az > (1-6)J(9). (3.42)
i=1

(3.41) follows from the uniform continuity of p(x,y) on [0, 1] x [0,1] and the fact that
p(x,y) is bounded away from 0, which is proved in Lemma 3.3.5 (a). (3.42) follows

since

K
I}i_{noo Z \/P($i7 Yi) (Vi — Yi—1) Az
:Ipinoolzl\/ xz,yz Ty — Tj—1 A

= J(9).

Here the last equality follows from the definition of Riemann integral, the mean value
theorem and the fact that ¢ € C’l}.
Next, for any i € [K], define p(R;) = [[, p(z,y)dzdy. By (3.41), we have

p(R:)
11—

> p(wi, vi) (i — Yio1) Az,

Hence, for any i € [K], we have

g, (m,T) S lp,(m, T)V/1—¢

> (3.43)
2v/np(xi, yi) (Y — Yi1) Az 2¢/np(R;)
By fixing the € in Lemma 3.3.4 to be 2§, we have
. lp,(m,7) —Az|B/2 /
lim P, | === > 2 ="PV=-2§' | = 1. (3.44)
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Moreover,

I, (7, 7T) /
]P)n : _ 5 / _ 5/ ‘4
2v/np(i, yi) (Y — yio1) Az > (1 =20)v1 > (3.45)

>P, M > 1 =24
2y/np(R;)

np(R;)
The first inequality follows by (3.43), and the second inequality follows by (3.40), since

2e~ 2002 _ 95" > 2(1 — ') — 20" = 2(1 — 26").

Hence, by (3.44) and (3.45), we get

: lRi (7T7 T) / 7R
lim P, (WHpmyi)(yi — > (1—-20")V1 - 5) =1, (3.46)

for any i € [K].

(@) 7()

Note that by concatenating the increasing subsequences of {( )}ie[n} in each

R; we get a increasing subsequence in [0, 1] x [0,1] which is wholly contained in a
d neighborhood of ¢. Combining (3.42) and (3.46), it follows that, with probability

converging to 1 as n — 00, there exists an increasing subsequence of {(M ﬂ) }ie[n]

in a 0 neighborhood of ¢ whose length is at least
K

S 21— 28T = 0/ pla,y) (Wi — yi) Az > 2v/n(1 — 28)(1 - &)2J(6).

i=1

The lemma follows since we can choose ¢’ small enough in the first place such that
(1-26)(1—0)% >1—e
O

Definition 3.3.8. Given K,L € N and multi-indices b = (bg, by, ...,bx) such that
0=0by <b <--- <bg =KL-—1, for any i € [K], define the rectangle R; =
((i = 1)Az,iAz] x (bi—1 Ay, (b; + 1)Ay], where Az = & and Ay = 5. Let M; =

SUP (,y)eR; p(x,y) and m; = inf(,.)er; p(w,y). Define

K
=1
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Lemma 3.3.9.

where J is defined in Definition 3.5.6, and the mazimum is taken over all

b:(bo,bl,...,b[() such thatO:bOSblggbK:KL—l

Proof. Let M be an upper bound of p(x,y). In the context of Definition 3.3.8, let ¢p(2)
be the piecewise linear function on [0, 1] such that ¢p(iAz) = b;Ay, i = 0,1,..., K.

From the two definitions above, we have

J(dp) = /0 1 \/ Ob(x)p(x, dp(x)) da (3.47)
- fj [ Wb(a:)p@, u(2) d

=Z/ AN gy
Z/@_ \/%xly-midx

:Z\/mz z_ i— leAy

=1

K K
i=1 =1

v

Here the last inequality follows since, for a,b > 0, v/a + Vb > v/a + b. Moreover,

Z\/M — bi_1)AzAy (3.48)

K
= JEK’L - Z (\/Mz(bz — b + D)AzAy — /M;(b; — bi_1)AzAy)

1

=

—JK’L Z MAZL'AZ/
b p \/M, b —bi_1 + 1)AxzAy + \/M —b;_1)AzAy

M;AxzA
2=y =
i=1 \/ 7; - z 1+ 1)A$Ay

=

=

M;AxAy
- Z:; VM; Az Ay
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K
>J;<’L — \/MZ vV AzxAy
i=1
| M
_ kL M
=J, T
Next, define

Dy (b) = {i € [K] : (b — biy + 1)Ay < VAz},
Do(b) == {i € [K]: (bi — bi_y + 1)Ay > VAz}.

For i € Dy(b), the height of R; is no greater than v/Ax, and for i € Dy(b), the height
of R; is greater than v/Az. To bound the cardinality of Do(b), we have

1Dy(B)|VAz < > (b — iy +1)Ay (3.49)
1€D2(b)
< Z (bi — bi—1)Ay + [ Dy (b)|Ay
iGDz(b)

Z — b)) Ay + KAy

IN
-

1+

<2

Given € > 0, by the uniform continuity of p(z,y) on [0, 1] x [0, 1], there exists Ky > 0
such that, for any K > K, and any i € D;(b), we have M; — m; < ¢2. We can also

choose K sufficiently large such that, for any K > K,

2V M(Az)s < e. (3.50)
Thus, for any K > K, we have
Z \/ M; —m;)(b; — bi—1)AzAy (3.51)
< Y Vebi—bi)AzAy + > /M(bi—bi_y)AzAy
i€D1(b) i€Da(b)
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K

SZ i—zlAfL‘A?J"’ZV MAz
=1 i€Do(b)

<e ¢ HAWZM — b)) Ay + 2V AT (M)
+

Here the second to last inequality follows by Cauchy-Schwarz inequality and (3.49).
Let Ly == [%]. By combining (3.47), (3.48) and (3.51), we get, for any K > Kj,
L > Ly and any b,

JEE < I () + \/g < J(¢p) + 3¢ < J + 3e.
Here the last inequality follows from the fact that ¢, € B » and Definition 3.3.6. [

Definition 3.3.10. In the context of Definition 3.3.8, we call a sequence of points
(21, ..., 2m) with z; = (x;,y;) a b-increasing sequence if the following two conditions

are satisfied.
(a) (z1,...,2m) is an increasing sequence, that is x; < x;11 and y; < Y1 for all
i€[m-—1].
(b) Every point in the sequence is contained in some rectangle R; with j € [K|. In
other words, (j —1)Ax < x; < jAx implies b;_1Ay < y; < (b; + 1)Ay.

Given a collection of points z = {2;}icin), let LISy(z) denote the length of the longest

b-increasing subsequence of z. That is
LISy(z) == max{m : 3(i1, 2, ..., 0m)
such that (zi,, iy, - . ., 2i,,) 1S a b-increasing sequence}.
Here we do not require 1; < 1j4;.

Lemma 3.3.11. Under the same conditions as in Lemma 2.3.1, for any > 0, there
exist Ko, Lo such that, for any K > Ky, L > Ly and any b = (b, by, ...,bx) with
0=0by<by <---<bxk=KL-—-1,

lim P, (LISy(2(m, 7)) > 2v/n(J +6)) = 0. (3.52)

n—oo
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Here z(m,7) = {(%”,%”)} -
1€n

Proof. Given § > 0, by Lemma 3.3.9, there exist Ky, L; > 0 such that, for any K >
Kl,L > Ll and any b= (bo,bl,...,b[{) with 0 = bo < bl < ... < bK =KL — 1, we
have

)

Jé{’L<j+§

Then, we get
P, (LISy(2(m, 7)) > 2v/n(J +0)) < P, (Llsb(z<7r, 7)) > 2v/n(JE + 5/2)) .

Hence, to show (3.52), it suffices to show that there exists K3, Lo such that, for any
K > Ky, L > Ly and any b,

lim P, (LISb(z(w, 7)) > 2v/n(JEE + 5/2)) — 0. (3.53)
Given K,L > 0, whose values are to be determined, and any b = (by,...,bx) with

0=0byg <b <---<bg=KL-—1, we inherit all the notations introduced in Definition
3.3.8. Let lg,(m,7) denote the length of the longest increasing subsequence of z(m,7)

wholly contained in the rectangle R;. For any ¢ € [K]|, define

Ei(b) = {(m,7) : Ip,(m,7) > 2/n(v/Mi(b; — bi_1 + 1) AxAy + 6Az/2) }.
Since LISy(2(m, 7)) < S8, Ig, (7, 7), we get

{LISb(z(W,T)) > 2/n(JE + 5/2)} c | E®).

1€[K]

Hence, to show (3.53), it suffices to show

lim P,(E;(b)) =0,  VielK]. (3.54)

n—o0

Since e278/2 — 1 = ©(Ax), there exists Ky > 0 such that, for any K > K5, we have

(Aal3/2 OVAz
2V M

<1+ and Az|f| <In2. (3.55)
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Here M = supy<, ,<; p(,y). Moreover, for any i € [K],

P,(Es(b)) (3.56)
<P, (lRi<7T? 7) > 2y/n/M;(b; — by + 1) AzAy(1 + 2%))
SPn

<lRi(7r, 7) > 2¢/np(R;) (1 + 5&))

2vV M

Here the first inequality follows since (b; — b;_1 + 1)Ay < 1 and M; < M. The second

one follows since

Mi(bi — by + 1) AzAy > / plx,y) dedy = p(Ry).
R;

Hence, combining (3.55), (3.56) and Lemma 3.3.4, we get, for any K > Ky, L > 0 and

any b,
lim P, (E;(b) =0, Vi€ [K]
n—oo
Thus, (3.54) as well as the lemma follow. O

Proof of Theorem 3. Lemma 1.1.4, if T ~ p,,, 7 ' has the same distribution fi,, .
Hence, if (71,7) ~ ping X fng, (771, 771) has the same distribution i, 4 X pin,. Thus,

by Corollary 3.1.4, to prove Theorem 3, it suffices to show

(’ LIS(T/(%T,T» Y

for any € > 0. Here we use the trivial fact that LIS(m, 7) = LIS(z(m, 7)).

lim P,
n—oo

< e> =1, (3.57)

By Lemma 3.3.7 and the definition of .J, we have

lim P, (%\/(gﬂ) > 2] — e) = 1. (3.58)

To show the upper bound in (3.57), note that, for any K, L > 0 and any increasing
sequence of points {(z;,9;)}jep with 0 < xj,7; < 1, there exists a choice of b =
(bo, b1, ..., bk) such that {(x;,y;)};em is a b - increasing sequence. Specifically, we can

define b as follows. Let Az := %, Ay = ﬁ

e Define by :=0, b = KL — 1.
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e For i € [K — 1], define b; := [max{y; : (i — 1)Azr < z; <iAz} - KL|.

It can be easily verified that with b thus defined, every point (z;, y,) is in some rectangle
R;, where R; is defined in Definition 3.3.8. Hence, we get
LIS -
p, (MSETT) o7 (3.59)
Vn
=P, <ml?x (LISp(z(m,7))) > vn(2J + e)>
<Y P, (LISy(2(m, 7)) > Vn(2] +¢)) .
b
Here, the maximum and summation are taken over all possible b with 0 = by < b; <
- <bg = KL—1. By Lemma 3.3.11, we can choose K, L sufficiently large such that,
for any b,
lim P, (LISy(2(m, 7)) > v/n(2J +¢€)) = 0.

n—00

Hence, by (3.59) and the fact that the number of different choices of b is bounded
above by (K L)X, we have

LI -
lim P, (M > o] + e> — 0. (3.60)
n—00 \/ﬁ
(3.57) follows from (3.58) and (3.60) O

The following lemma let us solve for the supremum J when the underlying

density p(z,y) satisfies p (x;y, ’”;y) > p(z,y).

[0,

1] such that p(z,y) is C} and
,%) forany 0 < x,y <1, then

Lemma 3.3.12. Given a density p(x,y) on [0, 1]

X
¢ < p(z,y) < C for some C,c >0, if p(z,y) < p (2L

we have
1
1= [ Vilea)d,
0

i. e. the supremum of J(¢) on B » is attained for ¢(z) = .

Proof. By the remark following Definition 3.3.6, it suffices to show that, for any

¢ € BY,, we have

< /0 Vp(x,x)de. (3.61)
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Define g4(x) = z 4 ¢(x). Since ¢(z) > 0, we have g4(x) > 1. Next, we reparameterize

¢(x) as follows,
= gd’éx) . +2¢<x). (3.62)

Thus, we have z = g;1(2t) and ¢(z) =2t —x = 2t—g;1(2t) where t € [0, 1]. Moreover,

t:

since g4(x) is strictly increasing, x is strictly increasing as a function of ¢. Hence we
have
plz, o)) = p(g,"(2t),2t — g, ' (2t)) < p(t,1). (3.63)

x+y Tty

Here the last inequality follows since p(z,y) < p (252, ZE4). Next, by taking derivative

with respect to ¢ on both sides of (3.62), we have

1= % (i—? + é(x) %) . (3.64)

By multiplying 2 ‘i—f on both sides of (3.64), we get
. dz\’ dx dz\ >
¢(z) (E) =2— = <E) <1 (3.65)

Hence, by (3.63) and (3.65), we have

10)= [ 900) oo, o) do

< [ oot & a
-/ \/pw) H(z) (fl—f)zdt

< /1 Vp(t, 1) dt.

Therefore, J is attained for ¢(z) = x. O

Proof of Corollary 3. Note that in the special case where § = ~, the density p(x,y) in
(1.6) is given by
1
plany) = [ ulet.p)-ult.y.9) . (3.66)
0
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In this case, we will show that p(z,y) < p (%%, Z£¥) for any 0 < z,y < 1. Hence, by
Lemma 3.3.5 and Lemma 3.3.12, J defined in Theorem 3 is attained when ¢(r) =

In fact, by direct calculation, it can be shown that

zmx¢,5>wway,5>s?t(fggﬂ,uﬂ)-zt(uffgﬂ,ﬁ), (3.67

for any 0 < z,y,t < 1.

By the definition of u(x,y, 3), we have

u(z,t,8) - u(t, y, B) (3.68)
(8/2) sinh(5/2)
(e8/4 cosh(Blz — t]/2) — e=B/4 cosh(Blz + t — 1]/2))?
) (5/2)sin(5/2)
(4 cosh(Blt — 5]/2) — P/ cosh(Blt + 5 — 11/2))°
) 5’ — 1)
(2e8/2 cosh(B[x — t]/2) — 2 cosh(B[z +t — 1]/2))”
) B — 1)
(2e8/2 cosh (B[t — y]/2) — 2 cosh(B[t +y — 1]/2))*

Considering the term inside the square of the denominator, by using the hyperbolic

trigonometric identities,

cosh(z) cosh(y) = (cosh(z + y) + cosh(z —y))/2,
cosh(xz + y) = cosh(z) cosh(y) + sinh(z) sinh(y),
cosh(z — y) = cosh(z) cosh(y) — sinh(x) sinh(y),

we get

(2¢%/% cosh(B[x — ]/2) — 2 cosh(Blz + t — 1]/2)) (3.69)
x (26”72 cosh(Bt — y]/2) — 2 cosh(B[t +y — 1]/2))
=2¢”(cosh(B[x — y]/2) + cosh(Bz +y — 2t]/2))
—2¢?%(cosh(Blz +y — 1]/2) + cosh(Blz — y — 2t + 1]/2))
— 272 (cosh(Blx — y + 2t — 1]/2) + cosh(B[z + y — 1]/2))

+ 2(cosh(Bz + y + 2t — 2]/2) + cosh(B[z — y]/2))
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=S, + 5.

Here S; denotes the sum of those terms in the above equation containing the term
x —y. S denotes the sum of those which contain the term z + y. After further

simplification using the identities above, we have
Sy = 2cosh(B[z — y]/2)(e” — 2¢/ cosh(B[2t — 1]/2) + 1). (3.70)

It is easily seen that the minimum of e — 2¢#/2 cosh(B[2t — 1]/2) + 1 for 0 < t < 1
is attained when ¢t = 0,1, and the minimum is 0. Hence, for any ¢ € [0,1], S, is
minimized when x = y. Thus to prove (3.67), it suffices to show that S,” > 0, since
S;+.S;" is the term inside the square of the denominator of (3.68). After simplification,

we have
S = Qeﬁ(cosh(ﬂ[x +y — 1]/2) cosh(B[2t — 1]/2) (3.71)
— sinh(Bla + y — 1]/2) sinh(B[2t — 1] /2))
— 4¢P/ cosh(Blz +y — 1]/2)
+2( cosh(Bfe +y — 1)/2) cosh(B[2t — 1]/2)

+sinh(Blz +y — 1]/2) sinh(8[2t — 1] /2)).

Next, we make change of variables. Define r := e#@+ty=1/2 5 .= ¢fCt=1)/2  Then, from
(3.71), we have
A 1 1 1 1 1
5+~ (- )
2 r 5 r 5 T
1 1 1 1 1
A6 -0
2 r s r s
1 1
= ¢ <C + f) — 26872 <r + —) + <7’S + —) (3.72)
s T r rs
B B B/2
(Lo 4 (224 L2
s rors r

> 0.
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Here the last inequality follows since z +y > 2,/zy for any =,y > 0. We complete the
proof of Corollary 3 by showing:

/1 uw(z,t, ) - ut,z,5)dt =
0

B( cosh(B/2) + 2cosh (B[2z — 1]/2)) 3.73)
6sinh (5/2) ’ (3.
for0 <z <1.
By the same change of variables as above, since y = z, let r = #22=1/2,
s = eP=1D/2 Then, we have
dt 1 1
- == 3.74
ds % sf (3.74)
By (3.70), we have,
1
S, =2 (eﬁ — P2 <s + —) + 1) . (3.75)
s
Then, by (3.72) and (3.75), it can be easily verified that
rs (S +S7) = (eP(r +s) — (7"5—1—1))2. (3.76)
Hence, we have

/1 U(l’,t,ﬂ) ’ u(thvﬂ) dt
0

(3.77)
R
2 (S +57)"s

/66/2 B(ef —1)%rs s
e=B/2 (rs (St+ + S{))2

B2

B(e? —1)%r%s
7 ds
=82 (eB12(r +5) — (rs+1))

B2
Ble? —1? [

7 ds
-/2 ((eB/2 —r)s + eP/2r — 1)

eB/2
6(66 . 1)266(22—1)/

S

S
e

ds.
Here the first equality follows from (3.68), (3.69), (3.74) and change of variables. The

—a2 (eP/2(1 — ePla—1))g 4 efr — 1)4
third equality follows from (3.76). Then we make another change of variable by defining

eP2(1 — efe)g 4 efr — 1
w =

el —1

)
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from which we have

ds B 1 1 when s = /2,

@5 _ d _
dw — P(L—em)y TN

when s = e /2,

Hence, by (3.77), we have

/1 u(z,t,B) - u(t,z, f)dt
0

3 e28==1) Lo —1Dw—ef+1
(ef —1)(1 — eflz=1)2 /emzl) wt

3 eP—1) 1—¢ef  efr—1
(ef —1)(1 — eflz=1))2 < 2w? w3 )
B(1+ e +2eP7 + 2e7P=1)
B 6(cP — 1)
B3 (cosh(3/2) + 2 cosh (B[2z — 1]/2))

6sinh (3/2) '

dw

1

eﬁ(l_l)

3.4 More Couplings of Mallows Permutations

In this section, we will prove the following lemmas. Based on these lemmas, we
can construct couplings of pairs of independent Mallows permutations such that there
exists ordering of the length of the LCS in terms of the ordering of the underlying

parameters.

Lemma 3.4.1. Givenq € (0,1] and 0 < q1 < qo, there exists a coupling (X1,Y1, Xs,Y3)
such that

(@) X1~ png, Xo~ fing, Y1~ fng and Yz ~ [y g,
(b) X1 and Yy are independent. X5 and Ys are independent.
(¢) LCS(Xy1,Y1) > LOS(X3,Ys).
Lemma 3.4.2. Given q € (0,1] and ¢’ > 0, there exists a coupling (X,Y, Z) such that

(a) X ~ Hngq, Y ~ Hn g and Z ~ M g -
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(b) Y and Z are independent.
(¢) LIS(X) > LCS(Y, Z).

Lemma 3.4.3. Given ¢ > 1 and 0 < q; < qq, there exists a coupling
(X1, Y1, Xo,Ys) such that

(a) X1~ fing, Xo~ fing, Y1~ [ng and Yo ~ [ing,.
(b) X1 and Yy are independent. Xy and Yy are independent.
(¢) LCS(X1,Y1) < LCS(Xs,Ys).
Lemma 3.4.4. Given ¢ > 1 and ¢’ > 0, there exists a coupling (X,Y, Z) such that
(a) X ~ ping, Y ~ ping and Z ~ fiy 4.
(b) Y and Z are independent.
(¢c) LIS(X) < LCS(Y, Z).

The following two lemmas play the key role in the proofs of the four lemmas

above.

Lemma 3.4.5. Given w,7 € S, withm <g 7, for any q € (0,1}, there exists a coupling
(X,Y) such that X ~ piyq, Y ~ pinq and

LCS(X,7) > LCS(Y, 7).

Lemma 3.4.6. Given 7,7 € S,, with m <g T, for any q > 1, there exists a coupling

(X,Y) such that X ~ pinq, Y ~ pin, and
LCS(X,m) < LCS(Y,T).

Proof of Lemma 3.4.5. The proof of this lemma is similar to the proof of Lemma 3.2.9.
Firstly, we claim that it suffices to show the case when 7 covers 7 in (S, <g), that

is (1) = l(r) + 1 and 7 = wos; for some i € [n — 1]. The claim can be shown

38



by induction on the Kendall’s tau distance of 7 and 7, i.e., the minimum number
of adjacent transpositions multiplied to 7 from the right to get 7. Suppose we have
m <r 0 <gr 7 in S,. By induction hypothesis there exist two couplings (X', Z) and
(Z',Y"), which are not necessarily defined in the same probability space, such that

X', Z,Z'Y" have the same marginal distribution fx, , and
LCS(X',7) > LCS(Z,0), LCS(Z',0) > LCS(Y', 7). (3.78)
We can construct a new coupling (X, Y") as follows,
e Sample a permutation £ € S,, according to the distribution fi, 4.

e Sample X according to the induced distribution on S,, by the first coupling
(X', Z) conditioned on Z = €.

e Sample Y according to the induced distribution on S,, by the second coupling

(Z',Y") conditioned on Z" = €.

By the law of total probability, it is easily seen that X ~ p,, and Y ~ p,,. Also,
regardless of which permutation £ is being sampled in the first step, by (3.78), we have

LCS(X,m) > LCS(¢,0) > LCS(Y, 7).

In the remainder of the proof, we assume 7 = meos; and I(7) = I(7) + 1. Note that, for
any o € Sy,
oo (i,4) = (o(0), 07)) 0 (3.79)

Here (7, j) denotes the transposition of i and j. Hence we have
T=mos; = (m(i),m(i +1))om. (3.80)

Since I(7) = I(m) + 1, we have 7(i) < w(i +1). Let r = 7(i) and ¢t :== 7(i + 1). Let
A= {{o,(r,t)eo} : 0 € S,and o7 (r) < o7 (t)}. Clearly, A is a partition of S,,.

Then we construct the coupling (X,Y") as follows:
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(1) Choose a set in A according to measure p, 4, i.e. the set {o, (r,t) c o} is chosen

with probability i, ,({c, (r,t)cc}).

(2) Suppose the set {o, (r,t) oo}, with 071(r) < o71(¢), is chosen in the first step.

Flip a coin with probability of heads being
ql(U) — ql((ht)w)

p= 7@ g

(3) If the outcome is head, then we set X =Y =o.

(4) If the outcome is tail, then, with equal probability, we set either X = o, ¥ =
(r,t)ec or X = (r,t)co, Y =o0.

Here, in the second step, the probability of head p is nonnegative because 0 < ¢ < 1

and the following fact:
i<jand o7 (i) <o '(j) = o) <l((i,j)o0), Vo €S,

It can be verified that (X,Y’) thus defined has the correct marginal distribution i, 4.

In the following we show that
LIS(m o X) > LIS(7 1o Y). (3.81)

Then, the lemma follows from the following facts. Let i¢d denote the identity in .S,,, we

have

LIS(m o X) = LCS(n ' o X, id) = LCS(X, 7), (3.82)
LIS(t7'oY) = LCS(7 ! o Y, id) = LCS(Y, 7). (3.83)

Here we use the facts that LIS(7) = LCS(m,id) for any = € S,, and
LCS(m,7) = LCS(oem,007), (3.84)

for any o, 7w, 7 € S,,. To prove (3.81), suppose the set {o, (r,t)oc}, with o 71 (r) < o71(1),
is chosen in the first step. If the outcome in the second step is tail, we verify that

7o X =771oY. Specifically, when X = o, Y = (r,t) oo, we have

tleX =rtog,
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oY =nto(rt)o(rt)eo=n""too.
When X = (r,t) o0, Y = o, we have

7 loX =a"to(rt)oo,

oY =7l o(r,t) 00
On the other hand, if the outcome in the second step is head, we have

7 leX =n"1og,

oY =1 to(rt)oo=s0m too.

Then, since

(mltoo) i+ 1) =0 Hr(i+ 1)) =0 (1),

the fact o~!(r) < o~ '(¢) implies that 77 oY covers 771 o X in (S,,<r). Hence, we

have (3.81). O

Lemma 3.4.6 can be proved in a similar argument and we omit its proof. We
complete this section by proving Lemma 3.4.1 and Lemma 3.4.2 using Lemma 3.4.5.

Lemma 3.4.3 and Lemma 3.4.4 follow from Lemma 3.4.6 in the same way.

Proof of Lemma 3.4.1. By Lemma 3.2.6, we have fi,, 4, = finq, With the underlying
partial order being the right weak Bruhat order. By Strassen’s theorem [27], there
exists a coupling (Y7, Ys) such that Y7 ~ pi,4,, Yo ~ fing, and Yy <p Y. Next, for
any (m,7) with 7 <g 7, let (X;,,Yz,) be the coupling constructed in Lemma 3.4.5.
Then we define (X, X5) as follows. Conditioned on (Y7, Y3) = (7, 7), define X; = X, .,
Xy =Y, ;. We show that (X1, X, Y1, Ys) thus defined satisfies all three requirements.
Firstly, since both marginal distributions of (X ., Y% ,) are p,, for any (7, 7) with
m <g 7, the X;, X5 defined above both have distribution p,,. Next, note that no

matter what value (Y7,Y3) takes, the conditional distribution of X; is always ji, 4.
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Hence X; is independent of (Y7,Y3). Finally, LCS(Xy,Y]) > LCS(X,,Y3) follows by

the construction of the coupling and Lemma 3.4.5. O]

Proof of Lemma 3.4.2. Since the identity id is the minimum of (S, <g), for any 7 €
Sy, define (X;,Y;) to be the coupling constructed in Lemma 3.4.5 with 7 being the
identity id. Then, we define the coupling (X, Y, Z) as follows. First sample Z according
to fin,q. Then, conditioned on Z = 7, define X = X, Y = Y,. Since X, and Y, are
both p, ,-distributed for any 7 € S,,, X and Y thus defined are both p, ,-distributed.
By the definition of Y, the distribution of Y is independent of the choice of 7. Hence Y
and Z are independent. Finally, by Lemma 3.4.5, we have LCS(Y, Z) < LCS(X, id) =
LIS(X). O

3.5 Proof of WLLN when only [ is finite

Given v > 0 and two sequences {q,}5°, {¢,}32, such that lim, ,, n(1 —

)
n=1

¢n) = oo, and lim, ,n(l — ¢,) = [, define a new sequence {g,} by setting

Gn = max(qn,1 — ). Note that, for n sufficiently large, we have ¢, < 1 — 1. Hence
lim, oo n(1 — @,) = 7.
Assuming g > 0, by Lemma 3.4.1 and Lemma 3.4.2, for sufficiently large n, we

can construct a coupling (X, Y,, Z,, X/, Y) such that

/ 1A
® X~ fngu, Yo ™~ Hng,s Zn ™~ Hng,s Xp ~ fing, and Y ~ i, g

e X, and Y, are independent. X! and Y, are independent.

LCS(X',Y!) < LCS(X,,Y,) < LIS(Z,). (3.85)

n' - n

By Theorem 1.1.7,

LIS(Z,
\/% ) 2, 26(3). (3.86)
On the other hand, by Theorem 3,
LCS(X!,Y! -
M RN 25, (3.87)

NG
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where Jg, = supye B, J (¢, ps). Here Bl denotes the set of nondecreasing, Cy func-
tions ¢ : [0,1] — [0, 1], with ¢(0) = 0 and ¢(1) =1 and

paA(T,y) = /0 ug(z, t)uy(t, y) dt, (3.88)

o (3/2) sinh(8/2)
) = o coh(Ble /) — e coh(Blz g — 2 )

when § # 0,and up(z,y) =1,

J(6,p5,) = / (@)ps(x, 6(2)) do. (3.90)

By (3.85), (3.86) and (3.87), to prove Theorem 4, it suffices to show

lim Js., = #(B). (3.91)

Y—00

For the case 8 < 0, the same argument applies except that we construct the coupling

(Xn, Y, Zn, X, Y) based on Lemma 3.4.3 and Lemma 3.4.4 such that

n’ - n

LIS(Z,) < LCS(X,,Y,) < LCS(X’,Y)). (3.92)

n’ - n

For the case 8 = 0, we can split {¢/,} into two subsequences with one has those ¢/, < 1
and the other has those ¢/, > 1. The argument for the case when § > 0 applies for
the first subsequence and the argument for the case when # < 0 applies for the second
subsequence.

To show (3.91), we will prove that pg.(z,y) converges uniformly to ug(z,y) on

[0,1] x [0,1] as 7 goes to infinity, and the following lemma is a key step.

Lemma 3.5.1. For any € > 0, there exists N such that, when v > N, for any x,y €

0, 1] with |x —y| > €, we have u,(z,y) < e.

Proof. By (3.89), we have u,(z,y) = u,(y,z). Hence, without loss of generality, we

assume r > y. Given v > 0, we have

(v/2) sinh(v/2)
(e7/* cosh(v[z — y]/2) — e/ cosh(y[z +y — 1]/2))”
(1 —e)
4 (cosh(y[z — y]/2) — e7/2 cosh(y[z + y — 1]/2))’

u7($7y) =
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(1 —e™)

= 3.93
(e”/(:v—y)/2 4+ ey—2)/2 — ev(zt+y—2)/2 _ e—v(x+y)/2)2 ( )
Y
. 3.94
— (evlryl/2 — 1)2 ( )

Here the last inequality (3.94) follows, because, considering the term inside the square

in the denominator of (3.93), we have
Y@=9)/2 4 (y=2)/2 _ (ety=2)/2 _ —v(z+y)/2

— (o(E=y)/2 _ _ A(@ty—2)/2 Yy—z)/2 _ —v(zty)/2
(e 1)+ (1—e )+ (e e ). (3.95)

Each term inside the three parentheses in (3.95) are non negative. Then, since |x —y| >

€, by (3.94), we have
v
(1

We can choose N such that for any v > N, W < e. O

s () < (3.96)

The following two facts about the density ug(x,y), which are proved in Lemma
2.1.9 and Lemma 3.3.5 respecively, will be used in the proof of next lemma. The first

one is that ug(x,y) has uniform marginal measure.

/01 ug(z,y)dy =1, Vz € [0, 1]. (3.97)

The second one is that ug(z,y) € C}. Specifically, we have

0 0
e < ug(z,y) < P, max (\%), 2 ) < |Ble. (3.98)
Lemma 3.5.2.
lim sup |pg~(z,y) —us(z,y)| = 0. (3.99)

Y0 5 4e(0,1]
Proof. Given € > 0, by Lemma 3.5.1, we can choose N > 0 such that, for any v > N,
we have u,(z,y) < € whenever |[x —y| > €. Define A, . == [0, 1]\ [y — €,y +€]. Assuming
that ug, u, and ps, are all zero outside of the unit square [0, 1] x [0, 1], for any v > N,
we have

yt+e
‘Pﬁ,v(% y) — / ug (@, t)uy (L, y) dt (3.100)
Yy

—€
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1 y+e
/ ug(x, t)uy(t,y) dt—/ ug(x, t)uy(t,y) dt
0 y—e€
:/ ug(x, t)u,(t,y) dt
Ay.e
ge/ ug(x,t)dt
Ay.e

<e.

Here the last inequality follows from (3.97). By (3.98), for any t € [y — €,y + €], we
have
lug(z,y) — ug(z,t)| < €|Blel’l.

By (3.97) and Lemma 3.5.1, we have

y+e
12/ uv(t,y)dtzl—/ uy(t,y)dt > 1 —e.
Yy

—€ Ay.e

Hence, we have

yte
/ ug(x, t)u,(t,y) dt (3.101)
y—e e

< (us(y) + €lBle) / s () dt

y—e€

<ug(z,y) + €|Ble!”,
and

y+e
/ ws(e, s (2, y) dt (3.102)
y—e

y+e

> (us(ary) = el3le) [ s (ty) d

> (ug(z,y) — €|Ble!”) (1 —¢)

> ug(w,y) — e (e + |Ble)

Here we use the fact that ug(x,y) < el’l in the last inequality. By combining (3.100),
(3.101) and (3.102), it follows that, for any v > N and any z,y € [0, 1],

105, y) — us(a,y)| < e (1+ e+ 8l .
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Now we are in the position to show (3.91) which completes the proof of Theorem

Proof of Theorem 4. In [22], Mueller and Starr show that

R(8) = sup J(6,ug) = sup / Vo@)us(e, o(x)) do (3.103)

qseBl ¢€B1

In fact, they show that the supremum is attained when ¢(z) = z, i.e.

= /01 \Jug(x, x)de, (3.104)

We claim that, to show (3.91), it suffices to show that

lim sup |J(, psy) — J (¢, us)| = 0. (3.105)

T geBl,

To see this, let g denote the identity function, i.e., g(z) = z. Since Js. > J(g, ps),
we have

liminf Jg ., > hmmf J(g, pp~) = J(g,ug) = K(5). (3.106)

y—+00

Here we use the fact follows by (3.105) that

~y—00

On the other hand, choose {7,} and {¢,} such that 7, — oo, ¢, € Bl and

hm J(bn, pprn) = limsup Jg . (3.107)
~y—00
By (3.105), we have
lim J(¢n, psq,) = Hm J(¢n, up) < k(5). (3.108)
n—oo n—oo

The claim follows from (3.106), (3.107) and (3.108).

Given 0 < e < ¢ w\

, by Lemma 3.5.2, there exists N such that, for any v > N and any
z,y € [0,1], we have |pg~(z,y) — ug(z,y)| < e. Hence, by (3.98), we have

eflﬁ‘

P (T,y) > ug(r,y) — € > (3.109)
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Therefore, when v > N, for any ¢ € Bl., we have

(¢, ps7) = (9, us) (3.110)

(235/,6()) = Volw)us(z, o) | s
()3 (2, 6() — us(w, 6())|

/ W 2)93:(2,6(2) + 1/ w)us(, 6(2))
366\2/2/0 \/%da; < 66\2/2 (/Olqa(x)dmy/z

dx

colBlr2
— 7
Here the last inequality follows by Cauchy-Schwarz inequality. (3.105) follows from
(3.110). O

3.6 Proof of Lemma 3.3.1 and Lemma 3.3.2
We first introduce two corollaries of these two lemmas. Recall that, for any

positive integer n and m € [n], we define
Q(n,m) = {(b1,ba,...,by) : b; € [n] and b; < b;;; for all i}.

By choosing k,, = n in these two lemmas and the fact that Q(n,n) contains a

single member {(1,2,...,n)}, we can recover Corollary 4.3 of [22]:

Corollary 3.6.1. Suppose that {q,}5, is a sequence such that g, > 1 and
liminf, .. n(1 — g,) = 8, with 5 € R. We have

) ~LIS(m) 8
n11_>r1010 T <7r €S, NG ¢ (2e

—e,2+e)) =0,

for any e > 0.

Corollary 3.6.2. Suppose that {q,}5°, is a sequence such that 0 < ¢, < 1 and
limsup,,_,.,n(1 —¢,) = 8 < In2. We have

LIS(m) 8 B
nl1_>munqn <7r€Sn. NG ¢ (2—¢2e —l—e))—O,

for any € > 0.



To prove these two lemmas, we use the same techniques developed in the proof
of Corollary 4.3 in [22], in which they constructed a coupling of two point processes.
A point process is a random, locally finite, nonnegative integer valued measure. Let
X, denote the set of all Borel measures ¢ on R¥ such that £(A) € {0,1,2,...} for any
bounded Borel set A in R*. Then, a point process on R¥ is a random variable which
takes value in AX,.

Suppose 1, v are two measures on R¥. We say pu < v if u(A) < v(A) for any
A € B(RF).

Lemma 3.6.3. Suppose & and o are two measures on [0, 1] with density f(x), g(z)
respectively. If, for any x € [0,1], f(x) > p-g(x) for some 1 > p > 0, then there exist
random variables X, Y and B, such that the following hold.

o X is a-distributed, Y is a-distributed and B, is Bernoulli distributed with
P(B,=1) =p.

e B, and Y are independent.
e Define two point processes n, & on [0, 1] as follows,
§(A) = 14(X) and n(A):= B,-14(Y), VA€ B([0,1]).
Then, we have n < & almost surely.

Proof. Let Y, Y'" and B, be independent random variables defined on the same proba-
bility space such that Y is a-distributed, B, is Bernoulli distributed with P(B, = 1) = p
and the density of the distribution of Y is %’;’)Q(m). Define X = B,Y + (1 — B,)Y".
It can be easily verified that X thus defined is a-distributed. Because,

pOce ) =p [owde+(-p) [ L2084 [ iy a,

for any A € B([0,1]). Finally, the two point processes ¢ and 7 thus defined satisfy
n < &, since for any A € B([0,1]), when B, = 1, we have £(A) = n(A), and, when
B, =0, we have n(A) = 0. O
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Lemma 3.6.4. Suppose & and « are two measures on [0,1] with density f(z), g(x)
respectively. If, for any x € [0,1], (1 — 01)g(z) < f(z) < (1 + b)g(x) for some
01,05 > 0 with 01 + 05 < 1, then there exist random wvariables X, Y, Z and By such
that the following hold.

o X is a-distributed, Y and Z are a-distributed and By is Bernoulli distributed
with P(By = 1) = 0, where 6 = 61 + 0s.

o By, Y and Z are independent.
e Define two point processes £, ¢ on [0,1] as follows,
§(A) =1a(X) and ((A)=1a(Y)+ By -14(2), VA€ B([0,1]).
Then, we have & < ( almost surely.

Proof. Let Y, Z and By be independent random variables defined on the same proba-
bility space such that Y, Z is a-distributed, By is Bernoulli distributed with P(By =

1) = 0. We define a new random variable X as follows. Conditioned on ¥ = y and

Z =z,
o if By =0, define X =y

LE=1=0)9G) 1t he

e if By =1, we flip a coin W with probability of head being £ (Z)_e(.lg(z)

result is head, define X = 2. Else, define X = y.

Note that, without loss of generality, here we may assume g(z) > 0, since

P(g(Z) = 0) = 0. It is straight forward that the two point processes ¢ and ( thus
defined satisfy £ < ( a.s.. We complete the proof by verifying that X thus defined has
distribution f(z).

For any A € B([0,1]), the event {X € A} can be partitioned into three parts:
{By=0,Y € A}, {By=1,Wishead ,Z € A} and {By = 1,W is tail , Y € A}. We

have

P({By =0,Y € A}) = (1 -0) [, g9(x) dz = (1 = §)a(A),
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P({By=1,Wishead ,Z € A}) =0 [, %ﬁ;)g(z)g(z) dz

= Juf(z)dz = (1= 0)a(A),

P({By =1, W is tail ,Y € A}) = 6 [, g(y) dy (1 - %j’))g()) 9(2) dz

= a(A) [y (1+62)9(z) — f(2) dz
= a(A) bs.

Here we evaluate the last two probabilities by conditioning on the value of Z. Summing

up the three probabilities, we get

P({X € A}) = /Af(z) dz.

Next, we define a triangular array of random variables in [0, 1].

Definition 3.6.5. Suppose that {q,}>, is a sequence such that q, > 0. For any
n € N, we define the random vector (Yl(”),YQ(”),...,Y,E”’) as follows. Let {Y;}I,
be i.1. d. uniform random variables on [0,1]. Let {Y{;}i, be the order statistics of
{Y;}i . Independently, let ™ be a fiyq, -distributed random variable on S,. We define
Yi(n) =Yy for alli € [n].

In the remainder of this paper, we use (Yl(”), YQ(”), o Yn(")) specifically to denote
the random vector defined as above. Also, we define the function ® which maps vectors

in R™ or n points in R? to the induced permutation in S,,.

Definition 3.6.6. Suppose © = (x1,22,...,2,) is a vector in R™ such that all its
entries are different. Let ®(x) denote the permutation in S, such that, for any i € [n],
O(x)(i) = j if x; is the j-th smallest entry in x. Similarly, suppose z = {(x;,y;) }iy
are n points in R? such that they share no x coordinate nor any y coordinate. Let ®(x)
denote the permutation in S, such that, for any i € [n], ®(2)(i) = j if there exits
k € [n], such that xy is the i-th smallest term in {x;} | and yy is the j-th smallest

term in {y; } ;.
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Remark. From the above definitions, it can be easily seen that

(a) For any x1 < w9 < -+ < x, and Yy = (Y1,Y2,---,Yn) € R", we have ®(y) =
O({ (i, i) Ha)-

(b) For any y = (y1,Y2,---,Yn) € R" and b = (by,ba,...,b,) € Q(n,m), we have
q)(y)b = (P((ybp Ybys - - - 7ybm))'

(c) <I>((Y1(n), YQ(n), . ,Yn(n))) iS fn,q, -distributed.

It is not hard to show that the density function of (Y™, V™, ..., ¥,\") is the

following (in the sense of a.s.),

oY) = ting, (2(y)) - n! for all y € [0,1]" \ Diagonal.

Here the set Diagonal consists of all those vectors which contain (at least two) identical
entries. Since {Y;™}7, = {¥;}", are n i.id.uniform samples from [0,1], we have
P((Y™, Y™, ..., Y™) € Diagonal) = 0. Intuitively, for any 0 < 1 < -+ < yo <
1, there are n! ways to choose the vector (Y1,...,Y},) such that {Y;}, = {v:},.
Conditioned on {Y;}1;, = {y;}",, the probability of (Yl("), . ,Yn(")) = (Yr(1)s - - -+ Yn(n))

iS lu’n:Qn (ﬂ-) :

Lemma 3.6.7. Given i € [n] and a vector (yi,...,Yi1,Yit1s---+Yn) € [0,1]771\
Diagonal, let & denote the distribution of Yi(n) conditioned on the event {Y;»(") =
y; for all j € [n]\{i}}. Then & has density f(y) on [0,1] such that, excluding a set G

of measure zero, for any y,y" € [0,1]\ G, we have

Fy) > min (q qi) 1) ~ () < max (q qi) -1

Proof. Since (Y, Y™, ... V") has density fu(y) = png, (®(y)) - n! on [0,1]"\
Diagonal, the density f(y) of & is given by

f(y) o Hn,qy, ((I)<<y17 Y2, -5 Yi-1, Y, Yig1s - - - 73/71)))
- 1
fo Mg (¢((y17 Y2, - Yi—1, ta Yit1, - - - ayn))) dt

Y
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for any y € [07 1]/{91792, s Yim1, Yi 1, - - Jyn}

It can be seen from the definition that f(y) is a simple function which takes at most n
different values. Let M and m denote the maximum and minimum of f(y) respectively.

Then we have M > 1 and 0 < m < 1. Moreover, for any y,y € [0,1], let y =

(Y1, Y2y - Yio1s Ys Uit 1y - > Yn) a0d Y = (Y1, Y2, - - s Yio1, Y s Yis1, - - -, Yn)- We have
U(@(y) —Ue(y) <n-—1

That is, if y and gy’ differ at one entry, the number of inversions of the induced per-

mutations differ at most by n — 1. Hence, assuming ¢, > 1, for any y,y" € [0, 1], we

have

— < <q
T W)
Choose y' such that f(y') = M, we have f(y) > M/q"' > 1/¢". For the second

part, we choose y,y’ such that f(y) = M and f(y') = m. Then we have M/m — 1 <
qZﬁl—lqu—l. Thus, M —m < q — 1, since 0 <m < 1.
On the other hand, assuming 0 < ¢, < 1, by the similar argument it follows

that for any y,y" € [0, 1], we have

IN

_1‘
qn

Choose y' such that f(y') = M, we have f(y) > Mq"' > ¢". For the second part, we
choose y, 4’ such that f(y) = M and f(y') = m. Then we have M/m—1<1/¢"'—1 <
1/qr — 1. Thus, M —m < 1/q} — 1, since 0 <m < 1.

Combining the two cases above, the lemma follows. O]
Lemma 3.6.8. Givenn € N and ¢, > 1, for anym < n and any b = (by, b, ..., by) €
Q(n,m), there exists a random vector (V1,Va,...,V,,) € [0,1]" and 2m independent
random variables {U; Y™, U{B;}, such that (V1,Va, ..., V,,) has the same distribution
as (Yl(n),Y'Q(n),...,Yn(")), each U; is uniformly distributed on [0,1] and each B; is a
Bernoulli random variable with P(B; = 1) = é. Moreover, if we define two point

processes as follows,

&"(A4) =D 1a((V5), mn(A4) =D B 1a((i, V), VA € BN x [0,1]),
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we have 1, < 5,(,”) almost surely.

Proof. Given n, m and b € Q(n, m), define (Yl("), Y2(n), . ,Yn(n)) as in Definition 3.6.5
and, independently, define 2m independent random variables {U;}7, U {B;}*, such
that each Uj; is uniformly distributed on [0, 1] and each B; is a Bernoulli random variable

with P(B; =1) = qin. We define the random vector (Vi, Vs, ..., V,) as follows,

e Sample the random vector (Yl("), Yz(”)7 . ,Yn(”)), say, we get
(}/i(n)a }/2(71)7 s 7YTL(n)) = (ylvg/Qa s 7yn)

o For j € [n] \ {bi}2, let V; = g

e For each i € [m], we resample YbE") one by one, conditioned on the current value
of other Yj(n). Let g, denote the new value of Y}?(in) after the resampling and define
Vi, =1, - Specifically, for each i € [m], we sample a value y; according to the

distribution of YE)E_"), conditioned on the event

{Y;)(J") =y, for Vj < and Y™ =y for Vk € [n] \ {bj}je[i]} :

e In each resampling step, say, resampling ngn), let & denote the above conditional
distribution of Yb(n) By Lemma 3.6.7, we know that that & has density f(y) with
f(y) > 1/ almost surely. Hence, we can couple this resampling procedure with
variables U; and B; in the same fashion as in the proof of Lemma 3.6.3, with «

in that lemma being the uniform measure on [0, 1]. Thus we have 1 4((i, V},)) >

B;-14((i,U;)) a.s. for any A € B(N x [0, 1]).

It can be easily seen from the above procedure that (Vi, V5, ..., V,) thus defined has
the same distribution as (Yl(n) , Y2(n), . ,Yn(n)), and

Mm(A) = ZBZ- 4G, Uy)) < Zm((i,v;,i)) — &M (A) as.

for any A € B(N x [0, 1]).
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Lemma 3.6.9. Giwven n € N and 0 < ¢, < 1 such that q} > %, for any m < n
and any b = (by,ba, ..., by) € Q(n,m), there exists a random vector (V1,Va,..., V,) €
[0,1]" and 3m independent random wvariables {U;}™, U {U/}™, U {B;}, such that
(Vi, Va, ..., V) has the same distribution as (Yl(”), YQ(n), . ,er”)), each U;, U] are uni-
formly distributed on [0,1] and each B; is a Bernoulli random variable with P(B; =

1) = qin — 1. Moreover, if we define two point processes as follows,

n

&7 (A) =" 1a((3, i), VA € B(N x [0, 1))
(m(A) = Z 14((5,U7)) 4+ By - 14((i, Uy)), VA e B(N x [0,1])

i=1

we have fl(,n) < (G almost surely.

Proof. The proof of this lemma is similar to the proof of Lemma 3.6.8. Given n, m
and b € Q(n, m), define (Yl("), Y2(n), e ,Yn(n)) as in Definition 3.6.5 and, independently,
define 3m independent random variables {U;}™, U {U/}", U {B;}!", such that each
U;, U! are uniformly distributed on [0, 1] and each B; is a Bernoulli random variable
with P(B; = 1) = 1/q — 1. Then we define the random vector (Vi,V5,...,V,,) by the
same steps as in the proof of Lemma 3.6.8, except that, in each resampling step, we
couple the resampling of Y;)E") with the variables U;, U] and B; in the same fashion as in
the proof of Lemma 3.6.4, with « in that lemma being the uniform measure on [0, 1].
Note that the second inequality in Lemma 3.6.7 ensures that the conditions in Lemma
3.6.4 are met. Specifically, in each resampling step, let f(y) denote the density of the
conditional distribution of Y;,E") Let M, m be the maximum and minimum of f(y)
respectively. Define 6; := 1 —m and 0, := M — 1. Hence, 1 —6; < f(y) < 146, almost
surely and 6 +0, =M —m < 1/q! —1 < 1. H

Recall that X, denotes the set of all Borel measures & on R? such that £(A) €
{0,1,2,...} for any bounded Borel set A in R
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Definition 3.6.10. For any £ € X, we define the length of the longest increasing

subsequence of € as follows,

LIS(E) =max{k : 3 (x1,11), (T2, %2), ..., (T, yx) € R* such that
§{(wi,y)}) = 1, Vi€ [k] and (z; — x;)(yi —y;) >0, Vi # j}.
It is easily seen that the function LIS() is non-decreasing on X5 in the sense
that, if £,¢ € &, with £ < ¢, we have LIS(§) < LIS(¢). Moreover, for any n points

{(z;,y;)}7; in R? such that z; # x; and y; # y; for all ¢ # j, define the integer-valued

measure £ as follows,

§(A) = Z La((zi, 1), VA€ B(R?).

Then we have LIS(¢) = LIS({(x;, y;) }I,), where the latter one is defined in Definition
3.1.1.

Lemma 3.6.11. Let (V4,...,V,) be a random vector which has the same distribution
as (Yl(n), o ,Yn(")). For anym <n and b = (by,bs,...,by) € Q(n,m), define the point
process §t(,") as in the previous two lemmas, that s,

m

s(A) =Y " 1a((i, V), VA € BN x [0,1)).

=1

Then L]S(f,()n)) and LIS(my) have the same distribution, where ™ ~ fi, 4. .

Proof. By the remarks after Definition 3.6.6, we have
CI)({(Zv ‘/bz)}:r;l) = q)((vbn Vg ovs %m>> = (I)((Vvla Vo, ..o, Vn>>b

where ®((V1, V3, ..., V,)) in the last term has the distribution s, 4,. The lemma follows
by the fact that

LIS(&") = LIS({(4, Vi) }y) = LIS(®({(i, Vi) 1))
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Now we are in the position to prove Lemma 3.3.1 and Lemma 3.3.2. In the

following, we use A, to denote the uniform measure on S,,.

Proof of Lemma 3.3.1. The lemma can be divided into two parts. For the first part,
we show that, for any sequence {k,}°°; such that k, € [n] and lim,,_, k, = o0,

. LIS(T&'b)
] . e s, =) g _0, 3.111
n 300 bEQnfen) " (7T Vkn e ( )

for any € > 0.

Since we have ¢, > 1, by Corollary 3.2.8 (a), for any b € Q(n,k,), there exist two
random variables (U, V') such that U ~ Xg,, V has the same distribution as m, with
T~ flng, and U <; V. Hence we have LIS(U) > LIS(V'), since LIS() is non-increasing

on the poset (S,, <r). Therefore, we have

/an,qn(ﬂ'ESn: \/k}_nb >2+€)§)\kn<ﬂ'€5kni \/E >2—|—€ .

Then (3.111) follows by the result of Vershik and Kerov [17] that, under uniform

measure, LIS(7)/y/n converges in probability to 2 as n goes to infinity. Note that
(3.111) only depends on the fact that ¢, > 1.

For the second part, we need to show that, for any € > 0,

LI
lim max fi,,, | 7€ Sy S(mo) <2%%—¢)=0. (3.112)
n—00 beQ(n,kn) vV,

Given n > 0, for any b € Q(n, k,), by Lemma 3.6.11, LIS(S,()")) and LIS(7mp) have the

same distribution, where f,(,”) is the point process as defined in that lemma. Moreover,
by Lemma 3.6.8, there exists a point process 7, such that n;, < 5,@ almost surely

and 7y, is defined by
kn
Moo (A) =Y By~ 14((i,U;)) VA € B(N x [0,1]), (3.113)
=1

where {U;}, U {B,;}f, are 2k, independent random variables with each U; being

uniformly distributed on [0, 1] and each B, ; being a Bernoulli random variable with
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P(By;=1) =1/q,.

Hence, we have

(n)
P (WESwMgzei—e):P<%§26§_6>

Here the last inequality follows by the monotonicity of LIS() on A».
We complete the proof of (3.112) as well as Lemma 3.3.1 by showing the following,

lim P (M > 2¢5 — e) =1, (3.114)
e\ VR,

for any € > 0.

From the inequality In(1 + z) < x for all x > —1, we have
1

_n — e_nln‘Zn Z e‘”(‘]n—l)
4y

en(l_Qn) .

Since liminf, ,,, n(1 — g,) = 3, for any ¢ > 0, there exists N; > 0 such that, for any

n > Np, we have 1/¢" > ¢?~¢1. Thus, by the law of large numbers, we have

lim P (ngl B> kneﬁ’q) —1. (3.115)

n—oQ

Here we use the fact that lim, ,k, = co. Given U = (Uy,...,U;,) and B =
(Bui, -+, Buk,), let A(U, B) denote the set of points in R? defined by
AU, B) ={(i,U;) :i € [k,) and B,,; = 1}.
By the definition of n;, and Definition 3.6.10, we have
LIS(ng,) = LIS(A(U, B)).

Moreover, conditioned on Zf;l B,,; = m, by the independence of U and B, it is easily
seen that LIS(A(U, B)) has the same distribution as LIS(7) with 7 ~ A,,.
For any 0 < €3,€e3 < 1, by the result of Vershik and Kerov [17] again, there exists

M > 0 such that, for any m > M,

Am, (Lljg) > 2 — €2> > 1 —es. (3.116)

107



Since lim,,_,, k, = oo and (3.115), there exists N > Nj such that, for any n > N, we
have

Fa” 0 > M and P (S0 B> ke 0) > 1 -
Let s = |k,e?~¢| + 1. For any n > N, we have
P(LIS(n,) > (2 = &2)VEne? )
> f'f P<Lls(nkn) > (2= &) Ve

m=s

kn kn,
S) By, =m)P ZBm:m)
=1 L

> ggP(LIS(nkn) > (2 —€)v/m f:Bm = m)]P’<fZ§Bn,,- = m>

_ mi; A (LIS(m) > (2 - 62)m>p<§13n7i — )
> (1) 35 B( 3 Bus = m)

m=s i=1
kn,
—(1—e) IP’( SY B, > kneﬁ—ﬂ)
i=1

> (1 — 63)2.

Here the second inequality follows since m > s > k,e?~“. The third inequailty follows
from (3.116) and the fact that m > k,e’~¢* > M. Therefore, we have shown that
limn%mP(LIS(nkn) > (2- @JW) = 1, and (3.114) follows from the fact that,
by choosing €; and €5 small enough, (2 — 62)\/65Tel can be arbitrarily close to %e73.

O

The proof of Lemma 3.3.2 is similar to the proof of Lemma 3.3.1.

Proof of Lemma 3.5.2. Again, we split the proof into two parts. For the first part, we

need to show that, for any € > 0,

LIS
lim max fi,g4, (7‘(‘ €S, : LIS (m) <2-— e) = 0. (3.117)
n—00 beQ(n,kn) vk,

For this part, since 0 < ¢, < 1, we use Corollary 3.2.8 (b). For any b € Q(n, k,), there

exist two random variables (U, V) such that U ~ A, , V has the same distribution
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as m, with ™ ~ p,,, and V' <, U. Hence we have LIS(V) > LIS(U), since LIS() is

non-increasing on the poset (S,, <r). Therefore, we have

LIS(7p) LIS(r)
[Ln,qn(ﬂ'GSn: \/E <2—€)§>\kn<ﬂ‘€skni \/k_n <2—¢€].

Then (3.117) follows by the result of Vershik and Kerov [17] that, under uniform

measure, LIS(7)//n converges in probability to 2 as n goes to infinity. Note that
(3.117) only depends on the fact that 0 < ¢, < 1.

For the second part, we need to show that, for any € > 0,

LIS
lim max i, <7T €S, : () > ek + 6) = 0. (3.118)
n—r00 bEQ(TL,k‘n) ’ \/ kn

First, we point out that, for any sequence {g, }>>, with 0 < ¢, < 1 and limsup,, ., n(1—
¢n) = B < In2, we have

. 1 . .
lim sup — = ehmsupnﬂw —nlngn _ ehmsuanOo n(l—gn) _ 65 <9

Here the second equality follows from the fact that lim,_,; % = 1. Thus, for any
0 < € <In2— 3, there exists N; > 0 such that, for all n > N;, we have 1/¢? < ef*e1,

Given n > Ny, for any b € Q(n,k,), by Lemma 3.6.11, LIS( l()n)> and LIS(mp)
have the same distribution, where 52") is the point process as defined in that lemma.
Moreover, by Lemma 3.6.9, there exists a point process (, such that fl(,n) < (k,, almost

surely and (j, is defined by

G (A) = S 1a((6,U) + Bug 14((,U7) YA€ BN [0,1]),  (3.119)

i=1

where {U; Yo, U{U/}», U {B,;}", are 3k, independent random variables with each
Ui, U/ being uniformly distributed on [0,1] and each B, ; being a Bernoulli random
variable with P(B,,; = 1) = qin — 1.

Hence, we have

LI LI (n)
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Here the last inequality follows by the monotonicity of LIS() on As.
We complete the proof of (3.118) as well as Lemma 3.3.2 by showing that, for any

e >0,
LI
lim P (M < 2% + e) = 1. (3.120)
n—00 vk,

First, since, for all n > Ny, we have P(B,; = 1) = 1/¢7 — 1 < €79 — 1, by the law of

large numbers, we get

lim P (ngl B < kn(efa — 1)) ~ 1. (3.121)

n—oo

Here we use the fact that lim,, ;. k, = co. Given U’ = (U7, .. ., U, ) U= (U,...,Uy,)
and B = (By1,...,Bu, ), let A(U',U, B) denote the set of points in R? defined by

AU, U,B) = {(i,U;) : i € [k,] and B, ; = 1}| J{(i,U]) : i € [k,]}.
By the definition of (i, and Definition 3.6.10, we have
LIS((,) = LIS(A(U', U, B)). (3.122)
Based on U’, U and B, define another set of points in R? as follows,
AU U, B) = {(i+1/2,U;) : i € [k,) and By, = 1} J{(5,U)) : i € [kn]}-

Then, we have

LIS(A(U",U, B)) < LIS(A*(U',U, B)). (3.123)

Since, by Definition 3.1.1, no two points with the same x coordinates can be both
within an increasing subsequence, by increasing the x coordinates of those points in
A(U',U, B) which reside on the same vertical line as other points by 1/2, the relative
ordering of the shifted point with other points does not change, except the one which

has the same z coordinate when unshifted. Combining (3.122) and (3.123), we have

LIS(G, ) < LIS(A(U', U, B)). (3.124)
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Moreover, conditioned on Zf;l B,.; = m, by independence of U’, U and B, it is easily
seen that LIS(AT(U’, U, B)) has the same distribution as LIS(7) with 7 ~ Ay, 1,,,. For
any 0 < €9, €3 < 1, by the result of Vershik and Kerov [17] again, there exists M > 0
such that, for any k& > M,

LI
)\k< \S/(Eﬂ') <2+€2) > 1 — e3.

Since lim,, _,, k, = oo and (3.121), there exists N > Nj such that, for any n > N, we

have

Fa> M and P (S0 Bug < ka(e?t = 1)) > 1 g,

Let s = [k,(e?*1 —1)] — 1. For any n > N, we have

( IS(G,) < (2+62)¢W)

> fj[@(LIS < 2+ e)VhknePta Z - >P<%Bnlzm>
" A o
> mZ:OIP’(LIS Go) < @+ )V | 3B, )P(izl B = m>
> 3 IP’(LIS (A (U U, B)) < 2+ eV Tm | 3 B m)
m=0 i=1

_ i:o Mot (LIS(W) <2+ 62)\/m)1@( kz B = m>

> (1— ) mzijop(iflen,i _ m)
= (1 —e€3) P(iBn,i < k‘n(€5+61 — 1))
> (1 —e3)%

The second inequality follows because
kp+m <ky,+s <k, +ky(e"T — 1) = kpefte,

and the third inequality follows from (3.124). Therefore, we have shown that

lim P(LIS(@”) <2+ 62)\//%@%61) — 1.

n—oo
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(3.120) follows from the fact that, by choosing €; and e, small enough, (2 + €)Vefta

can be arbitrarily close to %5 .
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Chapter 4

WEAK LAW OF LARGE NUMBERS WHEN NEITHER
PERMUTATION IS CLOSE TO UNIFORMLY RANDOM

In this chapter we prove Theorem 5, the weak law of large numbers for the LCS
of two independent Mallows permutations when ¢, = ¢/, ¢, — 1 and n(1 — g,) — oc.
Since LCS(m, 7) has the same distribution as LIS(m, 7), we once again reduce the LCS
problem to the LIS problem. The remainder of the proof follows the approach used in
[6] to prove a weak law for the LIS of a Mallows permutation (Theorem 1.1.9). We
approximate LIS(w,7) by the sum of LIS(7g,, 75,), where {B;} are disjoint blocks of
indices which partition [n]. We choose the size of B; such that the limiting size of
LIS(7p,,7p,) can be obtained from Corollary 3. We believe that the approach can
be extended to the case that lim,, . g—,: = 1, but to keep the computation simple we

restrict to the case that ¢, = ¢,.

4.1 Mallows process

In this section we describe a random process on permutations which was known
to Mallows [20], and is termed as Mallows process in [6]. Given ¢ > 0, the ¢-Mallows
process is a permutation-valued stochastic process (pp)n>1, where p, € S,,. The process
is initialized by setting p; to be the only permutation on one element. The process iter-
atively constructs p, from p,_; and an independent random variable p,(n) distributed
as a truncated geometric. Precisely, let {p,(n)},>1 be a sequence of independent ran-

dom variables with the distributions

. ¢! (1—q)¢ !
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Each permutation p, is defined iteratively by

p
pn—l(i)7 when pn—l(l) < pn(n)7

Pa(t) = po_1(i) + 1, when p,_1(i) > pn(n);

pn(n), when i = n.

\

The Mallows process constructed as above has the following property (cf. Lemma 2.1

in [6]).

Lemma 4.1.1. Let ¢ > 0 and let {py}n>1 be the g-Mallows process. Then p, is

distributed according to fiy/q-
The next lemma says that p;(i) is determined by the value of p,, on [i].

Lemma 4.1.2. For any 1 < i < n, we have

Z_pz Z]l pn >pn )) (41)

Proof. By the definition of Mallows process, p; is a permutation in S;. Hence we have

Here the last equality follows since the relative ordering of previous indices will not

change by the following updates. Thus

i — pi(i Zl_]l pa(t) < pul(i)) = Z]l(pn(t) > pn(7)) -
L]

A direct corollary of Lemma 4.1.2 is that the number of inversion of p,, can be

written as a function of p; (7).

Corollary 4.1.3.

U(py) = @ -3, (4.2)
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Lemma 4.1.4. For any 1 < i < n, we have

n

i) = pi(i) +n—i— Y 1 (palt) > pal)) . (4.3)

t=i+1

Moreover, if k € [n] \ {pn(t) : i + 1 < t < n} satisfy the following equation,

k=pi(i)+n—i— Y 1(pa(t)>Fk).

t=i+1

we have k = py(i).

Proof. Since p,, is a permutation in .S,,, we have
pa(i) =1 =Y 1 (pa(t) > pali)).
t=1

Hence (4.3) follows from (4.1). We prove the second claim by contradiction. Suppose
we have j < k with j, k € [n] \ {pn(t) : i+ 1 <t < n} such that

n

J=pl)tn—i— > L(palt) > j),

t=i+1

k=pi(i)+n—i— Y 1(pa(t)>k).

t=i+1

By subtracting these two equations, we have

n n

k==Y 1@ <pt)<k)= D 1(G<pu(t)<k—1),

t=it1 t=i+1
which is a contradiction. Because {p,(t) : i + 1 < t < n} are distinct numbers and

there are only k — j — 1 slots within (j, k& — 1]. O

Let 7, and 7, be as defined in Theorem 5. By Lemma 3.2.11, for any n > 1,

there exists a coupling (7, 7,,, Z,,) such that Z,, ~ p,, and
LIS(m,, 7,) < LIS(Z,). (4.4)

In [6] Section 5.1, the authors show that, given p > 0, when ¢ is sufficiently close to 1,

: . LIS(Z»)
the family of random variables { ‘n—\/ﬂ

p
} indexed by ¢ is uniformly integrable. Hence
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. . LIS(7n,mn) p
by (4.4), the family of random variables {‘n—\/ﬁ

} is also uniformly integrable. In

the following we show that
LIS(my, n
LIS(t, 1) 14, V6. (4.5)
ny1—aq, 3

as n — oo. Then, by the uniform integrability of {‘M

ny/1—q

p
}, for any p > 0, we

have

LIS(m,, Tn) Ly V6
- H _’
ny/1—qn 3

as n — 00. Theorem 5 follows from Corollary 3.1.4 and the fact that (m,,7,) has the

(4.6)

same distribution as (7', 7. 1). The proof of (4.5) follows the approach developed in

[6] in which the authors prove a similar result for the length of the LIS of a Mallows

permutation.

4.2 Block decomposition
Let n = n(q) be a function of ¢ such that

(IJI_IETL =00, and (lzl_rg n(l—q) = occ. (4.7)

Let m ~ finq, T ~ pinq and m and 7 are independent. To prove (4.5), it suffices to show
that
LIS(m,7) 1, V6

nVT:E——+?;, (4.8)

as ¢ — 1. In the following, we will partition [n] into blocks of size %} for some large
B. We consider the LIS formed by m and 7 when restricted to each blocks and show
that the concatenation of these increasing subsequences within each block is close to
LIS(m, 7).

Given 8 > 0, define a function 5(q) such that %‘2 is an integer and $(q) —

me= |22 (19)

as ¢ — 1. Define

For 1 < ¢ < m define

B; = ((i—1)f(—q>+1,...,¢@).

—q 1—g¢q
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Hence, each B; is a block of consecutive integers of size ( ) . To make {B;} a partition

of [n], define B,, 1 = (ml(Tq; + 1,...,n>. For 1 <i<m+1, let
X, = LIS(ng,, 8,)

be the length of the longest increasing subsequence of the restriction of 7 and 7 to B;.
By Lemma 1.1.5, the X; are independent. By Lemma 1.1.6, each X; has the distribution
of the LIS of two independent Mallows permutations of size f(qu and parameter q.
Moreover, by Lemma 1.1.4, and using Corollary 3.1.4 in another direction, X; has
the distribution of the LCS of two independent Mallows permutations of size ( and

parameter q.

By triangle inequality, we have

‘LIS(T[‘ )=y X

LIS -3 X,
lim imE <‘ (7.7) = 2icy ) =0, (4.10)
B—ro0 g—1 ny1—gq
i T E [ |2 VO] (4.11)
B—ro0 q—1 ny1—gq 3

These equalities imply that

g (| S ) V6l 0.
B—o0 q—1 ny/1—gq 3

and since m and 7 do not depend on 3, we have

liH}E ( LIS(m, 7) @ > _o,
q—

ny/1 —gq 3
Since {B;} partition [n], it follows trivially that

which is exactly (4.8).

m+1

LIS(r, 7) ZX (4.12)
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We will show a bound in the other direction by using the g-Mallows process. Given

two independent ¢-Mallows processes {p;} and {p;}, define two permutations 7 and 7
by
m(j) =n+1=pu(j),  7() =n+1-p,(j), (4.13)

for 1 < j <n. By Lemma 4.1.1 and Lemma 1.1.4, it follows that @ ~ p,, ; and 7 ~ 4, .
Let a = a(f) > 0 be any function of § satisfying

a— oo and %—)O, as ff — o0. (4.14)

For each i € [m] define

a a
E, =<7€B;:pmaxn (7)) < , F,=<7€eB;:p:(y) > .
{]E Pmax B, (J) 1_q} {JG p;(J) 1_q}

That is E; consists of those indices in B; at which the first g-Mallows process is at most
IL—q after the entire block B; is assigned. F; consists of those indices in B; at which
its initial position is greater than 1%(1. For the second g-Mallows process, we define E
and F/ similarly.

Let I; = (i1,...,ix) C B; be the indices of an arbitrary longest increasing

subsequence of m and 7 in the restriction of B;. That is 7(i;) < 7(i;41) and 7(i;) <

7(ij41) for any j € [k —1]. Note that by the definition of X;, we have |I;| = X;. Define
I''=L\(E;UF,UE/UF)).

In other words, I/ is obtained by delete those indices in E;UF;UE!UF; from I; without
changing the ordering of the remaining indices in I;. The definitions of B;, E;, F;, E!
and F imply that the concatenation of {I;};cm) is a set of indices along which defines
an increasing subsequence of m and 7. To see this, suppose j, k come from the same
I! with j comes before k in I/, then by the definition of I} we have 7(j) < 7(k) and
7(j) < 7(k). On the other hand, suppose j € I] and k € I;, with i; < 45. By the
F,

definition of F; , F;,, we have

19

a . .
pk(k) S 1—_(] < pmaxBil (j) S pk(])a
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which implies that p,(k) < p.(j), thus w(k) > =(j). 7(k) > 7(j) follows from the

similar argument. Hence
LIS(m, 7) Z |I].

Moreover, the definitions of I; and I! imply that

Xi=|LI<|+ ) LIS(ma,7a),
AG{EZ‘,EQ,FZ',FZ-/}

for 1 <7 < m. From (4.15) and (4.16), we have

LIS(r, 7) Xm:X, f: > LIS(ma,Ta).
i=1 =1 Ae{E;E} F; F!}

Thus from (4.12) and (4.17), we get

E (’LIS(W, ) =YX
=1

i=1 AE{EhEl’-,Fi,F{}

Therefore, (4.10) is a direct consequence of the next lemma.

Lemma 4.2.1.

T T Xm+1 o
I e (7 ) <o

hm hm Zl 1 E(LIS(WAN TA ))
B—ro00 g—1 ny1—gq
fO’/’ Az S {Ez, E;, E, E’}

=0,

)gz Z E (LIS(7m4,74)) + E(Xpi1).

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Before proving Lemma 4.2.1, we state the following technical lemma whose proof

will be presented at the end of this section. Both Lemma 4.2.2 and Lemma 3.2.11 will

be used to reduce the claim in Lemma 4.2.1 to the result of Lemma 5.1 in [6].

Lemma 4.2.2. Given consecutive indices B C [n], 0 < ¢ < 1 and any constant C' > 0,

there exists a coupling of q-Mallows processes {p;},{p.} and {p;} such that

e {p;} and {p.} are independent.
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o Let m,7 be as defined in (4.13). Define 7(j) =n+1— p,(j) and
F={jeB:p(j)>C}, F:={jeB:p;(j)>C}.
Then, we have F = F and LIS(mp,75) < LIS(7 ).

Proof of Lemma 4.2.1. To prove (4.19), Define X := LIS(7p By Lemma 3.2.11,

m—+1 ) *

letting @ = B,,,11, we have
E(Xm-l-l) = E<LIS(7TBm+17 TBerl)) < E(X)7

and (4.19) follows from the first equation in Lemma 5.1 in [6].
To prove (4.20), by symmetry, we only need to show (4.20) holds when A; =
E;, F;. For the case when A; = FE;, define

= <1’2’. o \‘]— - J) ) 0 = Pmax B;» El = 0-71([)' (421>

—dq

We have

LIS<7TE¢7 TEi) < LIS(WEE? TEi) = LIS<<pn>E,7 (p;)El)
= LIS<O_E17 (pinaxBi El)
)"

— LIS((05)"s (P 5)5)")- (4.22)

By Lemma 1.1.6 and (4.21), conditioned on the value of E;, we have og, ~ Pl | 1/g
1—ql’

By Lemma 1.1.4, we have (0z,)" ~ Ble g Moreover, conditioned on the value of E;,
1—q ]’
(05,)" and ((Pluaxp,) ;)" are independent. Thus, by choosing @ = I in Lemma 3.2.11,

there exists a random variable Z with Z ~ JENp such that
1—ql’

LIS((05,)", (Pmax 8,)5:)") < LIS(Z).

Hence it follows from (4.22) that LIS(7g,, 75,) < LIS(Z). For any a > 5, since 0 < ¢ <

1, we have Lﬁj > 5. Thus

120



Hence, by Theorem 1.3 in [6], there exists a constant ¢ such that

J\/l—qé fa

Hence, from the definition of m in (4.9) and the property of a as defined in (4.14), it

E(LIS(7g,, 7r,)) < E(LIS(Z)) < ¢ L -

—q q

follows that

— S E(LIS(7g,, TE -
lim lim 2zt E(LIS(75, 7)) < Tim Tim —%
B—o0 g—1 ny1—gq B—o0 g—1 n(l — q)

-— +— Ca -— Ca
< lim lim — = lim —

T B—oog—l B(q) B—roo B

which completes the proof of (4.20) when A; = E;. For the case when A; = F;, by

Lemma 4.2.2, there exists a coupling such that
E(LIS(7pg, 7r,)) < E(LIS(7g,)). (4.23)
The claim follows directly from the third equation in Lemma 5.1 in [6]. [l

Next we establish (4.11), which combined with (4.10) imply (4.8), whence com-
pletes the proof of Theorem 5. We will make use of Theorem 3, specifically Corollary
3. Define

J(B) = ,/ggﬁf%zﬁj~jﬁ \/cosh(ﬁ/z)+—2cosh(¢q2x-—:u/z)dx. (4.24)

First we show that

G
s e = e (4.25)
Since lim,_,, coth(z) = 1, by (4.24), it suffices to show
1
gggajg /14 2cosh (B[2 — 1)/2) / cosh (8/2) dx = 1. (4.26)

Note that

cosh (B[22 — 1]/2)
. cosh (3/2)
B22-1)/2 4 —B(20-1)/2
eB/2 1 e—B/2

=142
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Ble=1) | o—Bx

—142.5 T
* 14+e P

<1+4+2(1+1)=5.

for any x € [0,1] and § > 0. Hence, by dominated convergence theorem, we have

lim /1 \/1 + 2cosh (B[2z — 1]/2) / cosh (8/2) dx

B—o0 0

- /01 lim /1 + 2cosh (B[22 — 1]/2) / cosh (8/2) d

B—o0

1
:/ ldx =1.
0

(4.26) as well as (4.25) follow.

We continue with the notation defined in Section 4.2. Suppose n = n(q) is such
that (4.7) holds. Recall that X; denotes the length of the LIS of two independent
Mallows permutations with the same distribution p s . Since

(1—q)”’
)
—11—gq

-(1-q) =05,

we can apply Corollary 3 and Corollary 3.1.4 to X; and deduce that

1—g¢q P 7

—— - X7 — 2J(B). 4.27

OB (8) (4.27)
Now fix By sufficiently large and ¢y sufficiently close to 1 such that g > £y and gy <
q < 1 imply % <g<l1l-— fB(q)) By (68) in [6] and Lemma 3.2.11, it follows that

/1 v 2
{ ( B( )q ' Xl) } indexed by ¢y < ¢ < 1 are uniformly integrable. (4.28)
q

Since f(q) — f as ¢ — 1, (4.27) and (4.28) imply that for any fixed 8 > fy,

1= _
5 — x5 2(9),
as ¢ — 1. Hence, for any fixed 5 > 3y, we have
11— _
lim /=4 E(X,)=2J(8) and lim(l —q) - Var(X;) = 0. (4.29)
q—1 ﬁ q—1
Let YV = Zi/ﬁ To prove (4.11), we first show that
lim T E(v) = YO, (4.30)
B—ro0 g—1 3
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lim lim Var(Y) = 0. (4.31)

B—o0 g—1

To prove (4.30), note that since {X;};cpy) are i.i.d. random variables, we have

m mpf V1—q
E(Y) = ——E(Xy) = : -E(Xq). 4.32
( ) n\/l——q( 1) n(l—q) 3 ( 1) ( )
By the definition of m and (4.7), we have
lim —"0 4. (4.33)
=1 n(l—q)
Hence, from (4.32) and using (4.29), it follows that
. 1. T4 _2J(B)

Thus, (4.30) follows from (4.25), since

lim imE(Y) = lim 2J(6) = \/—6
B—ro0 g—1 B—oo /B 3

To prove (4.31), again since {X;}icpy) are i.i.d., by (4.33), we have

lim Var(Y') = lim ——— Var(X))

q—1 a—1n%(1 — q)

.1 . 1

Hence, for 8 > fy, (4.7) and (4.29) imply that

lim Var(Y) = 0,

q—1

proving (4.31). Finally, by the triangle and Jensen’s inequalities we have

)

E’Y— %6‘ < E’Y—E(Y)‘ n ’E(Y) - %5‘ < /Var(Y) + ‘E(Y) .

which shows that (4.30) and (4.31) imply (4.11).

4.3 Proof of Lemma 4.2.2
Let M := max{i € B}. Let {p;} be a ¢-Mallows process. Given a constant C,
recall that we define F':= {i € B : p;(i) > C}. First we will prove the following claim.
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Claim 1: Given increasing indices v = (vy,vs,...,v;) with v; € B, for any

1 <j <k <[ and any permutation b = (b1, by, ...,by) € Sy with b,; < b,,, we have
Here b o (v;,vx) denotes the permutation obtained by switching b,, and b,, in b.

Proof of Claim 1. If P (pM =b ‘ F;, = 'v) = 0, the claim holds trivially. Suppose
P (pM =b | F;, = v) > 0, i.e. there exists t = (¢1,...,t)) such that

(i) 1<t <4,
(ii) ifi € B, t; > C'if only if i € v,

(iii) if p;(¢) = t; for i € [M], we have py; = b.

Define
.
ti =1 if 1 <i<wjoruv <i<M;
ti=t;—1 by, < pu(i) < by if v, <i <y
( o) j (4.35)
to, = — 2221 1 (p(i) > by,)
\tAvk =vp — 2 1 (par(i) > byy) -
We show that, if at each step of the ¢g-Mallows process {p;},
pi(i) =1; for any i € [M], (4.36)

we have py; = bo(v;,vg). Moreover, if we define F':== {i € B : p;(i) > C}, then F = F.
We first show that fvi as defined in (4.35) satisfy that C' < fvi < v;. We will

prove this claim in different cases depending on the value of 7.

eFor1 <i<jork<i<I wehavet, = t,. Thus by (i), it follows that
C< tAvZ. S V; .

e For j <1 < k, we have
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On the other hand, by the definition of Mallows process, pas(v;) > by, if and only
if pu, (v;) > pu, (v;). Hence if 1 (b, < par(v;) < by,) = 1, we have

tvi = Du; (U%) > pvi(vj) Z t'Uj > 07
which means 1 (bvj < pu(v;) < bvk) = 1 implies ¢,, > C'+ 1. Thus

by, = to, — 1 (by, < par(vi) < by,) > C.

e To show C < fvj < vj, note that by the definition of fvj in (4.35), we have fvj < wj.

To show fvj > C, note that since p,; is a permutation in S,;, we have

v
v; — by, = Z 1 (pvj (i) > tvj)
i=1
v

S ) > ) 2 D L owli) >b). (437)

i=1
Here the last inequality follows since b,, < b,,. The definition of fvj and (4.37)
imply fvj > ty, > C.

e To show C < ka < vy, again by the definition of ka in (4.35), we have ka < V.

To show ka > (), note that since p,, is a permutation in S,, , we have

v
Vg — ty, = Z 1 (pvk (1) > tvj)
i=1
vk

Uk
>3 "1 (po, (i) > po, (1)) = > 1 (par(i) > by,) - (4.38)
i=1 =1
Here the inequality follows since ¢,; = p,,(v;) < py, (v;). The definition of £,, and
(4.38) imply £,, > ty, > C
For i € B\ v, by the definition of #;, we have #; < C. For v; < i < v,

1 (by, < pa(i) < by, ) =1 implies t; = p;(i) > p;(v;) > 1. Hence

tAZ' =t —1 (bvj < pM(Z) < bvk) > 1.
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Therefore, we have shown F = F. The claim that p;(i) = #; at every step i € [M]
will result to pps = bo (v;,v;) can be proved by induction. The induction is taken in
reverse order with the base case ¢ = M and the induction step is established by using
the second part of Lemma 4.1.4 and the definition of #;. Here we omit the proof.

To prove the Claim 1, note that conditioned on F' = v, the random variables

pi(7) are still independent with truncated geometric distribution. Hence, we have

P ({p:(i) =t : i € [M]} | F = v) = c-¢==t, (4.39)
P ({p(i) =i :i € [M]} | F=v) =c- gl (4.40)

Here c is a normalizing constant. By Corollary 4.1.3, we have

M

th‘ = M —[(b), Zﬂ = w —I(be (vj,v)).

Since by, < by, implies [(b) < I(bo (v}, vy)), we have Zf\il t; > Zf\il t;. Thus, by (4.39)
and (4.40),

P({pi(i)=t;:i€ M)} |[F=v) <P({p(i)=t;:ic[M]}|F=nv).
By (iii) and (4.36), Claim 1 follows. O

Based on Claim 1, we next prove the following claim.
Claim 2: For any x € Sy and any w € [M — 1] such that k! (w) < k™ (w+1),
there exists a coupling of two g-Mallows process {p;} and {p;} such that the following

are satisfied.
e With F:={ie B:p;(i) >C}and F = {i € B: p;(i) > C}, we have F = F.
[} LIS(([;M)F, KF) S LIS((ﬁM)F, ((w, w + ].) o HJ)F).

Proof of Claim 2. By Lemma 4.1.2, we know that the values of {p;(i)}icar is deter-

mined by py;. Hence, to construct a coupling of {p;} and {p;}, it suffices to define a

coupling of (s, ).
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Let {p;} be a g-Mallows process. Define F' := {i € B:p;(i) > C}. Let v =
{v1,-+- ,u} be an arbitrary increasing indices in [M]. Conditioned on F' = v, we

defined (par, pas) as follows.
o If i l(w) ¢ vor k H(w+1) ¢ v, define P = P = pus-

o If k' (w) = v; and K *(w + 1) = vk, note that we can partition Sy into
pairs of permutations {b,b o (v;,v;)} with b,, < b,,. Then, first choose a
pair of permutation such that {b,b o (v;,v;)} being chosen with probability
P (pM =b | F = v) +P (pM =bo (vj,v) } F= v). Then flip a coin with proba-
bility of head being

2-P(py =b|F =v)

h = '
P (par = b[F = ) + P (pas = bo (05,00 | F = v)

(4.41)

If the outcome is tail, define pys = par = be (vj,vi). If the outcome is head, then,
with equal probability, define either py; = b, par = bo (v, vy) or pyr = bo (v}, vk),
pu =b.

For the first case, note that k(i) ¢ v or k™ '(i + 1) ¢ v imply Ky = ((1,7 + 1) 0 K)y.
Hence, by setting pys = par = par, the two conditions in the claim are satisfied trivially.
For the second case, note that by Claim 1, the probability of being head h defined in
(4.41) is no greater than 1. Also as shown in the proof of Claim 1, when one of py,
and pys equals b and the other equals b e (vj,vy), we have F=F=w. Moreover, it is
easy to verify that ((w,w+1) oK), = Ky o (J, k) and (be (v;,v%))s = by o (4, k). Hence,

when the outcome of the coin is head we have

LIS((BarJos o) = LIS((Bar o, (1w, + 1) 0 ).

When is outcome is tail, we need to show that

LIS((b o (vj,Vk))vs ku) < LIS((b o (vj, Uk))w, (W, w 4 1) 0 K),). (4.42)
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Note that we have (bo (v;, ;) = by (j, k) and ((w,w+1)e k), = (1,7 + 1) K,. Here
r denote the rank of w among r restricted on v. Moreover, we have (k,) (1) = j <

k = (ky)"'(r +1). Hence by Lemma 3.1.3, we have

LIS((b (1, 08))os ) = LIS(by = (j k), ) (4.43)
= LIS(by » (j, k) * (o), id),
LIS((b > (v, v))us (w,w + 1) 0 £),) = LIS(by o (. k), (rr + D)o ry)  (444)
= LIS(by © (4, k) o (ko) L, (r,7 4+ 1)).

Here id denotes the identity in S;. Note that

b, © (]7 k) © (Hv)_l(r) = by ° (]a k)(]) = bv(k)v (445)
by o (j, k) o (ko) (r + 1) = by o (4, k) (k) = by (). (4.46)

Since by, < by,, we have by (j) < by (k), which means {7, 7+ 1} is a pair of inversion for

the permutation b, o (j, k) o (k) ~'. Hence (4.42) follows from (4.43) and (4.44).
Finally, it can be easily verified that py; and py; thus defined have the right

marginal distribution, i.e. both p,; and py; have the same distribution as pj;.

]

Proof of Lemma 4.2.2. Let id}; denote the reversal of identity in S);. Considering the
poset (Syr, <pr), here < denotes the left weak Bruhat order as defined in 3.2.1, we have
that id’, is the maximum element in (Sy;, <p). Hence for any permutation s # id},,

we can find a sequence of permutations {k;} such that
k=ro <p K1 <p - <p Km = id)y,

and k;;1 covers k;, i.e.there exists w € [M — 1] such that (w,w + 1) e k; = K;41 and

M(M-1)
2

l(kiz1) = l(k;) + 1. Note that here m = — (k). Then by Claim 2 and induction

on m, it can be shown that, for any xk € S}, there exists a coupling, denoted by C,, of

two g-Mallows processes {p;} and {p;} such that the following are satisfied.

e With F:={ie B:p;(i) >C}and F = {i € B: p;(i) > C}, we have F' = F.
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o LIS((pa)r, kr) < LIS((Par)r, (idyy)r).

To construct the coupling {p;}, {p;} and {p;} in Lemma 4.2.2, note that, by Definition

3.1.2, we have
LIS(mp, 7p) = LIS(n(F), 7(F)) = LIS(pu(F), p, (1)) (4.47)
= LIS(p (F), iy (F)) = LIS((par) r, (Phr) ),
LIS(ip) = LIS(#(F), idn(F)) = LIS(pn(F), (id,,)(F))) (4.48)
= LIS(pa (F), (id}y ) (F)) = LIS((Par) p, (i) r)-

Here id,, denotes the identity in S,,. Hence by (4.47) and (4.48) we have

We define the coupling {p;}, {p}} and {p;} as follows. For any i > M, we simply let
pi, P and p; be ii.d. truncated geometric distributed. For 1 <i < M, let p)y; ~ fiarq-
Conditioned on p); = k, define {p;} and {p;} such that they have joint distribution C,.
The lemma follows from (4.49) and the property of C,. O
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Chapter 5

CENTRAL LIMIT THEOREM FOR THE LCS

In this chapter we prove Theorem 6. In the first section, we introduce the con-
struction of Mallows permutation from a sequence of i.i.d. geometric random variables,
which enables us to decompose the common subsequence of two permutations as the
concatenation of common subsequences within disjoint blocks. In the second section,

we prove Theorem 6 by using the central limit theorem for the regenerative processes.

5.1 Bound LCS via Regenerative Process
5.1.1 Constructing Mallows Permutations

For a given parameter 0 < ¢ < 1, Gnedin and Olshanski [14] constructed an
infinite Mallows permutation with parameter ¢ on N by an insertion process, which we
will refer to as Mallows(q) process. The process is as follows. Given an i.i.d.sequence
{Z:}is—1 of Geom(1 — ¢) variables, construct a permutation IT of the natural numbers
inductively according the following rule: Set II(1) = Z;. For i > 1, set II(i) = k where
k is the Z;-th number in the increasing order from the set N\ {II(j) : 1 < j < i}. For
example, suppose that the realizations of the first five independent geometric random
variables are Z; = 4, Zy = 4, Z3 = 1, Zy = 2, Z5 = 3. Then we have I1(1) = 4, I1(2) = 5,
I1(3) = 1, I1(4) = 3 and I1(5) = 7. We represent the process step-by-step below.

w w W

W

—_ = =
[N R N R O \V]
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Let II,, be the permutation on [n] induced by II, i.e. II,(i) = j if II(i) has rank j
when the set {II(k) : k € [n]} is arranged in increasing order. Consider the example
above when n = 5. Then we have II5(1) = 3, II5(2) = 4, II5(3) = 1, II5(4) = 2 and
II5(5) = 5. The following lemma (cf. Lemma 2.1 in [5]) says that II,, thus defined is

Mallows distributed with parameter q.

Lemma 5.1.1. Let IT be an infinite Mallows(q) permutation and let I1,, be the induced

permutation on [n] as defined above. Then 11, is a Mallows(q) permutation on [n].

5.1.2 The Regenerative Process Representation

A stochastic process {X(t) : t > 0} is said to be a regenerative process if there
exist regeneration times 0 < Ty < 177 < Ty < --- such that for each & > 1, the
process {X (T} +t) : t > 0} has the same distribution as {X (75 +¢) : t > 0} and
is independent of {X(¢) : 0 < ¢ < T;}. Below we will define a regenerative process
using the Mallows(q) process defined above such that we can bound the LCS of two
independent Mallows permutations by the sum of i.i.d. random variables.

Let IT and I’ be two independent infinite Mallows permutations with parameters
q,¢ respectively. Suppose for a given m € N we have II([m]) = IT'([m]) = [m], i.c. the
permutations IT and I’ restricted to [m] defines two bijections from [m] to [m]. Define

two infinite permutations II,, and ﬁ;n as follows,

M) =TG+m)—m, I =1I'(Gi+m)—m, VieN.

From the construction of II and IT', it is obvious that II, and II', are also infi-
nite Mallows permutations with parameters ¢ and ¢’ respectively. Together with
the independence of the geometric variables {Z;} as well as {Z!}, it follows that
{(fl(z) — 4, II'(3) — i)}iGN is a regenerative process with regeneration times 0 = T <

Ty <15 < --- where for i > 1 we have,

7= min {j > Ty {01(k) k€ [j]} = {IV(R) < k € [j)} = )]}
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Let X; =T, —T;_; for j > 1. Clearly, X; are independent and identically distributed.
For 7 > 1, define

2i(0) =i+ Tj0) = Tya, Bj6) =i+ Tj) =Ty, Vi€ X))

Then, both ¥; and ¥ are permutations of [Xj]. Furthermore, the {X;};cn are ii.d.
and {X’}jen are i.i.d.. Let Y; :== LCS(X;, ¥) i.e. Y; denotes the length of the longest
common subsequence between Y; and Y. Clearly, {Y;};en are ii.d.. Then we have

the following bounds for the LCS of two independent Mallows permutation.

Lemma 5.1.2. Let S, = min{j : T; > n}. Then we have

Sn—1 Sh
> Y < LOSL,IL) < )Y
j=1 j=1

Proof. Given j > 0, let LCSiz,_, 41,7,)(II,,, IT},) denote the length of the longest common
subsequence of II,,, IT), restricted on [T;_; 4+ 1,7}]. From the definition of T}, we have

I,([Tjos + 1,T3]) = I, ([Tj-1 + 1, T3)) = [Tj-1 + 1,T;). Thus, we get

Sp—1 Sn
> LCSir,_ 417y (TLy, IT,) < LCS(IL,, IT,) < > LCSiy 41,7, (I, 1T,,).
Jj=1 j=1

It follows from the definition of 3i; and X that there exists a bijection between the com-
mon subsequences of IL,,, IT/, restricted on [T;_; + 1,7}| and the common subsequences

of ¥, ¥%. Hence we have LCSiz,_, 41.7,)(I,, IT},) = Y;. The lemma follows. O

5.2 Renewal Time Estimate and the CLT

In this section, we first prove that the inter-renewal times X; as defined in the
previous section has finite first and second moments, which are the conditions required
to apply results from the theory of regenerative processes to show Theorem 6. Again
we follow the approach developed in [5], in which the author introduce the following
Markov chain.

Let {M,, },>0 denote the Markov chain with the state space @ = NU {0} and
the one step transition defined as follows: M, = max{M,_1,7Z,} — 1 where {Z;} is
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a sequence of i.i.d. Geom(1 — ¢) variables. Likewise, for the parameter ¢, we define a
Markov chain {M] },>¢ in the same fashion, i.e., the one step transition rule is defined
by M} = max{M, _,,Z,} —1 where {Z/} is a sequence of i.i.d. Geom(1 — ¢) variables.
Let {M®},>0 denote the product chain of {M,} and {M]}. Let Rj denote the first

return time to (0,0) of this chain, i.e.
R$ =min{k > 0: M2 = (0,0)}.

Lemma 5.2.1. For the Markov chain {M%} started at M = (0,0), the first return

time RE L Ty. In other words, X; has the same distribution as Ry

Proof. We couple the Markov chain M = (M, M) with the infinite Mallows permu-
tations II, IT" with parameters ¢ and ¢’ respectively by using the same i.i.d. sequences
{Z;} and {Z!} with Z; ~ Geom(1 — ¢) and Z] ~ Geom(1 — ¢'). Under this coupling,
it is easy to verify that

M, = max {TI(j)} —n, M = max {II'(j)} — n.

1<j<n 1<j<n
The lemma follows from the definition of 7} and R . ]

We analyze the Markov chain M® and the first return time Ry in the next few

lemmas.
Lemma 5.2.2. The Markov chain M is a positive recurrent Markov chain with unique
stationary distribution v = (v, )i j>0 where

_ ' _ (@Y '
Z()ILo =4 Z(@) Lo (1= (a))

Here Z(q) =1/TT=, (1 —¢*).

V@j .

Note that Z(q) is finite since limy o, log (=) /¢" = 1.

Proof. The claim follows directly from Lemma 4.2 in [5] and the fact that M2 is the
product chain of M, and M;,. O
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Let R; denote the first time the chain MY to reach a state (i,7) such that
¢+ j < t. In the following, we shall denote by E;; the expectation with respect to
the chain started at the state (i, j) and E, denote the expectation with respect to the

chain started from stationary distribution.
Lemma 5.2.3. For any i,j5 > 0 with 1+ 7 > 0, we have
EijRivj1 2 EijaRivy,  EijRigja 2 Bipy iRy

Proof. By symmetry of the two entries M, and M/ in M2 it suffices to show the
first inequality. We couple two chains (M, M’) and (M,, M) which start from (i, ;)
and (i,j + 1) respectively by using the same sequences {Z;} and {Z!}. It is easily
seen from the one step transition rule that, at any time n, we have M, = M, and

0< ]\Nﬂl — M/ < 1. Thus we have
0<(M,+M)—(M,+M)<1, Yn>0.
Therefore, M, + M) <i+ j — 1 implies M, + M;L <14 7. m
As the immediate corollary of Lemma 5.2.3, we have
Corollary 5.2.4. For anyi,j > 0 with i+ 7 > 0,
max{Eq 1Ry, EioRo} > E;;jRitj_1.

The positive recurrence of the chain MY implies that Eo; Ry and Eq Ry are

finite. Let n = maX{Eo’lRo, ]EI,ORO}‘
Lemma 5.2.5. For any i,j5 > 0 with v+ 7 > 0, we have

Proof. We proof this lemma by induction on the sum of 7 and j. When i 4+ j = 1, the
claim holds trivially. Suppose the claim holds for any {i,7 > 0:i+ j < k}. Given s,t
with s +¢ = k 4+ 1, by the Markov property, we have

E.Ro=Y_ Y (n+Ei;Ro) Py (R =n M = (i,]))

n>1i+j<k
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IN

ZZ (n+kn) Py (R = n, MY = (i,5))

i+5<k

n>1i+5<k

:k:17+2n-]P’5,t(Rk:n)

n>1

= /W? + Es,tRk
< (k+ 1)n.

Here the first inequality follows from induction hypothesis and the last inequality fol-
lows from Corollary 5.2.4. O

Lemma 5.2.6. For the Markov chain MY, E,Ry < oc.

Proof. Due to Lemma 4.2 in [5], define

i

q

Hi = Vij = 7 ;
]Z:; -1() [Tioi (1 —d)

R - (@) . 5.9
2 = Z T = @) o2

Note that since pu; < ¢'/Z(q)*, we have Y ;o ip; < oo. Similarly we also have

(5.1)

> jHy < oo. Hence, we have

E, Ry = Z v iRy < Z vij(i+ j)n

1,20 1,720
=Y ipi+n Y ju; < oo
i=0 §=0
O

In the next lemma, we show that the first and second moments of the first return

time Ry are finite by using Kac’s formula.

Lemma 5.2.7.
EO,ORS_ < 00, E070(R3—)2 < 0.
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Proof. 1t is a basic fact about Markov chain that EggRj = —=. By lemma 5.2.2 and

10,0

the remark, we have ﬁ = Z(q) - 2(¢') < oo. The finiteness of the second moment of

R follows from Lemma 5.2.6 and Kac’s formula (cf. Corollary 2.24 in [2]),

_ 2E,(Ry)+1

Vo,0

Eoo(R{)?
]

In the remainder of this section, we complete the proof of Theorem 6 by using

the following version of central limit theorem due to Anscombe.

Theorem 5.2.8 (Anscombe’s Theorem). Let {X;};>1 be a sequence of i.i.d. random
variables with mean 0 and positive, finite variance o*. Forn > 1, let Q, = >.1 | X;.
Suppose {N(t),t > 0} is a family of positive integer-valued random variables such that
for some 0 < ¢ < 00,

N(t
#Lc ast — o0.

Then,

RA0 L N(0,c0%)  ast — .

Vit

Recall that in section 5.1.2, we define X; to be the inter-renewal times and

S, =min{j: 37 X; >n}.

Lemma 5.2.9. For vy as defined in Lemma 5.2.2,

Sn a.s.
— — g0
n
Proof. Observer that
Sp—1 Sn
Zj:l Xj < n < Zj:l XJ
Sh - S, Su
As n — oo, by SLLN, both the left and right hand sides of the above inequality

converge almost surely to 1. O

As our last step in preparation for the proof of Theorem 6, we introduce the

following basic result (cf. Lemma 5.5 in [5]).
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Lemma 5.2.10. Let Wy, W5, ... be an i.i.d. sequence of non-negative random variables

with EW? < oo. Then we have for any constant ¢ > 0,
maxlf/i%m W, 0

We inherit the notations defined in section 5.1.2. Let a == vyoE(Y;) and §? =
Var(Y; —aXj). Since 1 <Y; < Xj, we have |Y] —aX;| < (1+a)X;. Hence by Lemma
5.2.1 and Lemma 5.2.7, we have §%> < oo. Trivially, 62 > 0 since Y; is clearly not
constant. Hence, using Theorem 5.2.8 and Lemma 5.2.9, we can show the following

regenerative reversion of central limit theorem.

Theorem 5.2.11 (Regenerative CLT). Let (X;,Y:)i>1 and S, be as defined in section
5.1.2. Let Qs, = 21‘521 Y;. Then we have
QS —an 4 2
_ 0,0 .
\/ﬁ N( ) Vo,o)
Proof. Define Qg, = 2521 Y; — aX;. Then, by Theorem 5.2.8 we have

% i) N (0, 521/070) .

vn

By the definition of S, we have
Qs, < Qs, —an < Qs, +a-Xg, < anJra'lIg?ZXXi-

Here the last inequality follows since S,, < n. By Lemma 5.2.10, we have

maxlg\/i_gn Xz p 0.
n

The theorem follows. O

Proof of Theorem 6. 1t follows from Lemma 5.1.2 that
Qs, —an Ys, < LCS(IL,,, IT])) — an < Qs, —an
vn v vn Tovn
Since 1 <Y; < X;, we have E(Y;?) < E(X?) < oo by Lemma 5.2.7. Hence, by Lemma
5.2.10, it follows that

maxj<i<n Yi »

0.
Vi
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Since S, < n, we have Yg, < maxj<i<, Y;. Thus

Ys,

vn

Therefore, by setting o := 6,/V 0, it follows from Theorem 5.2.11 that

250.

LCS(IL,, TT,) —
NG

Theorem 6 follows from (5.3) and Lemma 5.1.1.

a4y A0, 1).
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