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Abstract. We survey some of the highlights of inverse scattering theory as it has developed
over the past fifteen years, with emphasis on uniqueness theorems and reconstruction algorithms for
time harmonic acoustic waves. Included in our presentation are numerical experiments using real
data and numerical examples of the use of inverse scattering methods to detect buried objects.
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1. Introduction. The field of inverse problems is a relatively new area of math-
ematical research, having its origins in the fundamental papers of Tikhonov in the
mid-1960’s. As with any new area of mathematics, one can ask the question, why did
it start when it did and not sooner? In the case of inverse problems, the answer is one
of historical prejudice meeting scientific pressure. The historical prejudice dates back
to Hadamard, who claimed that the only problems of physical interest were those
that had a unique solution depending continuously on the given data. Such problems
were called well-posed, and problems that were not well-posed were labeled ill-posed
[30]. In particular, ill-posed problems connected with partial differential equations
of mathematical physics were considered to be of purely academic interest and not
worthy of serious study. In the meantime, the success of radar and sonar during the
Second World War caused scientists to ask if more could be determined about a scat-
tering object than simply its location. Such problems are in the category of inverse
scattering problems, and it was slowly realized that these problems, although of ob-
vious physical interest, were ill-posed. However, due to the lack of a mathematical
theory of inverse problems, together with limited computational capabilities, further
progress was not possible.

This situation was dramatically changed in the mid-1960’s with the introduction
of regularization methods for linear ill-posed problems by Tikhonov (see [74]). In
particular, Tikhonov considered ill-posed operator equations of the form

Aϕ = f, (1.1)

where A : X → Y is a compact operator mapping a Banach space X into a Banach
space Y , and he noted that since A is compact, this equation is ill-posed. A regularized
solution of (1.1) is then found by minimizing the Tikhonov functional

‖Aϕ− f‖2 + γ‖ϕ‖2, (1.2)

where γ > 0 is called the regularization parameter. It can be shown [38], [45] that
for each γ > 0 there exists a unique minimizer ϕγ to (1.2) and that ϕγ depends
continuously on f . The choice of regularization parameter is obviously crucial if ϕγ
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is to approximate a solution to (1.1), and a method for choosing this parameter as
a function of the noise level in f was given by Morozov (cf. [38], [45]). Assuming
A is known exactly and f is noisy, γ is chosen such that the defect ‖Aϕ − f‖ is
the same order of magnitude as the noise level, leading to a nonlinear equation for
the determination of the parameter γ where the equation depends on the noise level.
For the case when the operator A is noisy, similar considerations apply (see Section
2). The further development of the mathematical theory of linear ill-posed problems
by Tikhonov and his school in Russia and by Keith Miller and others in the United
States, together with the rapid development of computing facilities, set the stage for
the subsequent mathematical investigation of the inverse scattering problem.

1.1. The Inverse Scattering Problem. Before proceeding further we need
to explain in more detail what we mean by the inverse scattering problem. In this
paper, for purposes of exposition, we will primarily restrict our attention to the case of
acoustic waves. In particular, consider an acoustic wave propagating in a homogeneous
isotropic medium. In the absence of any inhomogeneities, the wave will continue
to propagate and nothing of physical interest will happen. However, if there are
inhomogeneities present, then the wave will be “scattered” and we can express the
total field as the sum of the original “incident” wave and the “scattered” wave. The
behavior of the scattered wave will depend on both the incident wave and the nature
of the inhomogeneities in the medium. The direct problem is, given this information,
to find the scattered wave and in particular its behavior at large distances from the
inhomogeneities, i.e. its “far field” behavior. The inverse problem takes this answer
to the direct scattering problem as its starting point and asks what is the nature of
the inhomogeneities which gave rise to such a far field behavior.

To be more precise, consider the scattering of a time harmonic acoustic wave by
a bounded object in three dimensional Euclidean space R3, and assume the object D
is situated in a homogeneous isotropic medium with density ρ and speed of sound c.
The wave motion can be determined from a velocity potential U = U(x, t), x ∈ R3\D̄,
which in the linearized theory satisfies the wave equation

∂2U

∂t2
= c2∆U,

where ∆ denotes the Laplacian in R3. Hence for time harmonic acoustic waves of the
form U(x, t) = Re

{
u(x)e−iωt

}
with frequency ω > 0, the space dependent part u

satisfies the Helmholtz equation

∆u+ k2u = 0 (1.3)

in R3 \ D̄, where the wave number k > 0 is given by k2 = ω2/c2. To describe the
phenomenon of scattering mathematically we must distinguish between the two cases
of impenetrable and penetrable objects. In particular, for an impenetrable sound
soft obstacle the total field u = ui + us, where ui is the incident field and us is
the scattered field, must satisfy the Helmholtz equation in R3 \ D̄ and the Dirichlet
boundary condition u = 0 on ∂D. On the other hand, the scattering by a penetrable
inhomogeneous medium D with slowly varying density ρD = ρD(x) and sound speed
cD = cD(x) differing from the density ρ and sound speed c in the surrounding medium
R3 \ D̄ leads to a transmission problem, i.e., in addition to the scattered field us in
R3 \ D̄, we have a transmitted wave v satisfying

∆v + k2n(x)v = 0 (1.4)
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in D, where k = ω/c and n(x) = c2/c2D(x) is the index of refraction. The continuity
of the pressure and normal velocity across ∂D leads to the transmission conditions

u = v
1
ρ

∂u

∂ν
=

1
ρD

∂v

∂ν

 on ∂D, (1.5)

where ν is the unit outward normal to ∂D. We will always assume for the sake of
simplicity that ∂D is of class C2, i.e., ∂D can be parameterized by functions that are
twice continuously differentiable.

To complete our description of the direct scattering problem we require that the
scattered field us satisfies the Sommerfeld radiation condition

lim
r→∞

r
(∂us

∂r
− ikus

)
= 0, (1.6)

where r = |x|. Note that of the two possible spherically symmetric solutions eikr/r
and e−ikr/r to the Helmholtz equation, only the first satisfies the radiation condition.
Since

Re
{
eikr−iωt

r

}
=

cos(kr − ωt)
r

,

this corresponds to an outgoing spherical wave, i.e., the radiation condition charac-
terizes outgoing waves.

Given the above discussion, we can now be more explicit about what we mean by
the acoustic inverse scattering problem. In particular, using Green’s theorem and the
radiation condition it is easy to show (Theorem 2.4 of [13]) that the scattered field us

has the representation

us(x) =
∫

∂D

{
(us(y)

∂Φ(x, y)
∂ν(y)

− ∂us

∂ν
(y)Φ(x, y)

}
ds(y) (1.7)

for x ∈ R3 \ D̄, where Φ is the radiating fundamental solution to the Helmholtz
equation defined by

Φ(x, y) :=
1
4π

eik|x−y|

|x− y|
, x 6= y (1.8)

and ν again denotes the unit outward normal to D. (Here we are of course assuming
the existence of a unique solution us ∈ C2(R3\D̄)∩C1(R3\D) to the direct scattering
problem.) Assuming that the incident field is a plane wave moving in the direction d,
i.e.,

ui(x) = eikx·d (1.9)

where |d| = 1, we see from (1.7) and (1.8) that us has an asymptotic behavior

us(x) =
eikr

r
u∞(x̂, d) +O

(
1
r2

)
(1.10)

as r → ∞, where x̂ = x/|x| and u∞ is the far field pattern of the scattered field us.
The inverse scattering problem that we will mainly be concerned with in this paper is
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to determine D from a knowledge of u∞(x̂, d) for x̂ and d on the unit sphere Ω := {x :
|x| = 1} and fixed wave number k. In the case of a penetrable medium we will also be
interested in the possibility of determining the index of refraction n = n(x), x ∈ D.
In both cases, we will always assume (except in discussing uniqueness) that u∞ is not
known exactly but is determined by measurements which by definition are inexact.

The inverse scattering problem, as defined above, is particularly difficult to solve
for two reasons: it is 1) nonlinear and 2) improperly posed. Of these two reasons,
it is the latter that creates the most difficulty. In particular, it is easily verified
that u∞ is an analytic function of both x̂ and d on the unit sphere, and hence, for
a given measured far field pattern (i.e., “noisy data”), in general no solution exists
to the inverse scattering problem, and, if a solution does exist, it does not depend
continuously on the measured data in any reasonable norm. Hence, before we can
begin to construct a solution to the inverse scattering problem, we must explain
what we mean by a “solution”. Motivated by Tikhonov’s theory of linear ill-posed
problems, in order to determine what we mean by a solution we must introduce
“nonstandard” information that reflects the physical situation we are trying to model
(e.g., in Tikhonov’s theory, such information is used to determine the regularization
parameter γ in (1.2)). Having resolved the question of what is meant by a solution,
we then have to actually construct this solution, and this is complicated not only by
the fact that the problem is nonlinear but also by the fact that the above mentioned
“nonstandard” information has been incorporated into the mathematical model.

1.2. A Model Inverse Scattering Problem. To fix our ideas, we now consider
a simple model problem, a version of which will be considered in more detail in Section
2. In particular, we consider the scattering problem described above where D may
now consist of several bounded components, some of which are sound soft and others
of which are penetrable (see Figure 1.1). The aim is to determine the support D from
a knowledge of the far field pattern u∞(x̂, d) for x̂, d ∈ Ω, i.e., D is illuminated by
plane waves from every direction d ∈ Ω and the resulting scattered field is observed
from all directions x̂ ∈ Ω. We call this a “model problem” since in practice D is
usually imbedded in a piecewise homogeneous background, i.e., the wave number k
is piecewise constant in R3\D, and d, x̂ are restricted to a limited aperture. A more
realistic problem such as this will be considered in the next subsection, but for now we
will outline a numerical procedure for determining D from a knowledge of u∞(x̂, d)
for x̂, d ∈ Ω. We emphasize that in the above formulation of the inverse scattering
problem it is assumed that 1) the number of components of D is unknown and 2) the
physical properties of each component are unknown, i.e., it is unknown whether or
not a given component is sound soft or penetrable and, if penetrable, what the values
of ρ and ρD are in (1.5).

A method for solving this inverse scattering problem is the linear sampling method
originally proposed by Colton and Kirsch [8] and improved by Colton, Piana and
Potthast [22] and Kirsch [39], [40]. There are two distinct versions of the linear
sampling method, which will be discussed in detail in Sections 4 and 5. To briefly
describe these two approaches we first define the far field operator F : L2(Ω) → L2(Ω)
by

(Fg)(x̂) :=
∫
Ω

u∞(x̂, d)g(d) ds(d). (1.11)

The first version of the linear sampling method [8], [22] (which can be viewed as a
modification of the dual space method of Colton and Monk [13], [16] where the origin
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Fig. 1.1. Schematic of the model inverse scattering problem. The incident field is a plane
wave (shown in blue) which interacts with the scatterer shown as two colored regions indicating
different physical properties. The inverse problem is to determine the support of the scatterer from
measurements of the far field pattern of the scattered field due to incident fields from many directions.

is now translated to an arbitrary point z ∈ D) then uses regularization methods to
solve the linear integral equation

(Fg)(x̂) = Φ∞(x̂, z), (1.12)

where Φ∞(x̂, z) = 1
4π e

−ikx̂·z is the far field pattern of Φ as defined by (1.8) and it is
assumed that z ∈ D. It can be shown that for every ε > 0, there exists a function
g = g(·, z) ∈ L2(Ω) such that ‖Fg−Φ∞‖ < ε, and both ‖g(·, z)‖ and ‖vg(·, z)‖ become
unbounded as z tends to ∂D, where vg is the Herglotz wave function with kernel g,
defined by

vg(x) :=
∫
Ω

g(d)eikx·d ds(d). (1.13)

The unknown boundary ∂D can then be found by solving (1.12) for z on a grid in R3

containing D and looking for those points z where ‖g(·, z)‖ begins to increase sharply
(see Figure 1.2).

A mathematical difficulty with this first version of the linear sampling method is
that a characterization of the range of the far field operator is unknown. In particular
it is not clear what happens to the behavior of g for z in the exterior of D. This
difficulty led Kirsch to introduce a modified version of the linear sampling method
[39], [40] which is valid for the case of a nonabsorbing medium. In particular, Kirsch
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Fig. 1.2. Schematic of the implementation of the linear sampling method for the scattering
problem of Figure 1.1. The Herglotz kernel g(·, z) is determined from equation (1.12) for z on a grid
containing the scatterer (the grid is shown in green). As z approaches the boundary of the scatterer,
‖g(·, z)‖ becomes unbounded.

showed that Φ∞(x̂, z) is in the range of (F ∗F )
1
4 , where F ∗ is the adjoint of F in

L2(Ω), if and only if z ∈ D. A modified linear sampling method then consists of using
regularization methods to solve the ill-posed equation (F ∗F )

1
4 g = Φ∞(·, z) where

(F ∗F )
1
4 is defined by means of a singular system of F . As with the original sampling

method, ∂D can be found as the locus of points z where ‖g(·, z)‖ begins to increase
sharply. Numerical examples of the implementation of both the original and modified
linear sampling method can be found in Section 2.

1.3. The Detection of Buried Objects. As mentioned in the previous sec-
tion, in most practical situations the unknown scatterer is imbedded in a piecewise
homogeneous medium and the directions of incidence and observation are restricted
to a limited aperture. An example of such a situation is the detection of buried
objects. In particular, consider an object D, which may have both sound soft and
penetrable components, lying in the lower half space. Assume that the wave number
in the lower half space is k2 and that the far field pattern of the scattered field is
measured in the upper half space which has wave number k1 (see Figure 1.3). In this
case, if ez is the unit outward normal to the plane bounding the lower half space, the
far field pattern u∞(x̂, d) is only known for d ∈ Ω− := {x : |x| = 1, x · ez < 0} and
x̂ ∈ Ω+ := {x : |x| = 1, x · ez > 0}, i.e., the scattering data is restricted to a limited
aperture. We again assume that 1) the number of components of D is unknown and
2) the physical properties of each component of D are unknown.
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Fig. 1.3. Schematic of the model problem for the detection of buried objects. The incident field
is a plane wave from the upper half space (shown in light blue) which interacts with the scatterer
buried in the lower half space (shown in yellow). The inverse problem is to determine the support
of the scatterer from measurements of the far field pattern of the scattered field in the upper half
space.

The above inverse scattering problem can be solved by using a modified version
of the linear sampling method. In particular, it can be shown that the conclusions in
Section 1.2 remain valid if we replace Fg = Φ(·, z) by the modified far field equation∫

Ω−

[u∞(x̂, d)− ub,∞(x̂, d)]g(d) ds(d) = G∞(x̂, z), x̂ ∈ Ω+ (1.14)

where z ∈ D,ub,∞ is the far field pattern due to scattering by the background medium
alone and G∞ is the far field pattern for the Green’s function for the background
medium. In particular, the solution g = g(·, z) of (1.14) becomes unbounded as z
tends to ∂D. A related expression is valid if one uses point sources as incident fields
and near field data. For mathematical details the reader is referred to [19], [15] and
[25]. Numerical examples for a closely related case can be found in Section 3.

1.4. Historical Remarks. The above examples suggest a number of mathemat-
ical problems that need to be addressed, in particular the uniqueness of the solution
to the inverse scattering problem as well as the mathematical justification of the linear
sampling method. These issues will be discussed in Sections 4 and 5 together with
brief comments on a number of reconstruction algorithms other than the linear sam-
pling method (which, however, require some knowledge of the physical properties of
the scattering object D). We note that there has also been some effort at establishing
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continuous dependence results based on a priori knowledge of the scattering object
[35], [63]. However, at the time of writing, either the a priori assumptions are too
stringent or the error estimates are too pessimistic for these results to be useful in
practice.

We conclude this Introduction by briefly highlighting the major accomplishments
in this mathematical investigation of the inverse scattering problem in preparation
for the more detailed discussion in Sections 4 and 5. For the sake of simplicity, in
the case of a penetrable medium we will only consider the situation where ρ = ρD in
(1.5).

One of the earliest results in inverse scattering theory was Schiffer’s proof that
the far field pattern u∞(x̂, d) for x̂, d ∈ Ω uniquely determines the shape of a sound-
soft obstacle D [49]. It was subsequently shown by Colton and Sleeman that if it
is known a priori that D is contained in a ball of radius R such that kR < π, then
u∞(x̂, d) for x̂ ∈ Ω, and a single incident direction d uniquely determines D [24].
Unfortunately, as pointed out in [13], Schiffer’s proof does not immediately generalize
to other boundary conditions. This problem was remedied by Kirsch and Kress who,
using an idea originally proposed by Isakov [34], showed that u∞(x̂, d) for x̂, d,∈ Ω
uniquely determines the shape of D as long as the solution of the direct scattering
problem depends continuously on the boundary data [42] (see also [13], p. 112 and
[39]). In particular, it is not necessary to know the boundary condition a priori in
order to guarantee uniqueness!

The first attempt to reconstruct the shape of a sound-soft scattering obstacle
from a knowledge of the far field pattern in a manner acknowledging the nonlinear
and ill-posed nature of the problem was made by Roger in 1981 [68]. Roger considered
the scattering of a plane wave propagating in a fixed direction by a two dimensional
sound-soft scatterer parameterized in the form x = r(x̂)x̂, where r(x̂) = |x|, and then
solved the nonlinear operator equation F (r) = u∞ by Newton’s method, where the
Fréchet derivative of F was inverted using Tikhonov regularization. A characteriza-
tion and rigorous proof of the existence of the Fréchet derivative of F was subsequently
established by Kirsch [37] and Potthast [64] (see also [13], [33] and [46]). An alterna-
tive approach to solving the inverse scattering problem for a sound-soft obstacle was
proposed by Kirsch and Kress [41] (see also [13]), who broke up the inverse scattering
problem into two parts. The first part deals with the ill-posedness by constructing
the scattered field us from the far field pattern u∞ by representing us in the form of a
surface potential defined on a surface known a priori to be contained in the unknown
scatterer D. The second part then deals with the nonlinearity of the problem by
determining the unknown boundary of the scatterer as the location of the zeros of the
total field u = ui +us where ui is again a plane wave propagating in a fixed direction.
An advantage of this approach is that the cost functional of the nonlinear part of the
problem has a particularly simple structure from which the Fréchet derivative is easily
computed. Related methods have also been proposed by Angell, Jiang and Kleinman
[1], Colton and Monk [16], Misici and Zirilli [52], and Potthast [65], among others.

The nonlinear optimization methods described above have the advantage that
only a single incident field is needed for their implementation, e.g. a plane wave prop-
agating in a fixed direction. On the other hand, to use such methods it is necessary
to know the number of components of the scatterer as well as a rough idea of the
geometry of each component in order to choose an appropriate parameterization of
the surface. In addition, it is also necessary to know the boundary condition satisfied
by the field on the surface of the scatterer, i.e. whether it is sound-soft or not. The
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linear sampling method, discussed above, avoids these problems and will be examined
in detail in Sections 4 and 5.

We now turn to the problem of reconstructing the index of refraction from a
knowledge of the far field pattern, i.e., the direct scattering problem is (1.3)–(1.5)
where u = ui + us and we wish to determine n = n(x) from a knowledge of u∞(x̂, d)
when ui(x) = eikx·d. Although most of the research in this area has made the assump-
tion (possibly motivated by the case of quantum mechanics) that n ∈ C1(R3), with
n(x) = 1 for x ∈ R3 \ D, we shall make the physically more reasonable assumption
that n is continuously differentiable in D̄ with n(x) = 1 for x ∈ R3 \D but n(x) 6= 1
for x ∈ ∂D, i.e. n has a jump discontinuity across the C2 boundary ∂D and ρ is not
necessarily equal to ρD. As already mentioned, for the sake of simplicity, we shall only
consider the special case ρ = ρD. Modifications for the case ρ 6= ρD will be indicated
in Section 5.

As with obstacle scattering, the first issue of concern is that of uniqueness, i.e.,
does the far field pattern u∞(x̂, d) for x̂, d ∈ Ω and fixed wave number k uniquely
determine the index of refraction n = n(x)? Based on the fundamental work of
Sylvester and Uhlmann [71], this question was answered in the affirmative by Nachman
[54], Novikov [57] and Ramm [66] in 1988 (see also [67]). The key step in the proof was
to show that products v1v2 of solutions to ∆v1 + k2n1v1 = 0 and ∆v2 + k2n2v2 = 0
for two different refractive indices n1 and n2 are complete in L2(D) for any bounded
domain D ⊂ R3. Such a result was in turn obtained by constructing special solutions
of ∆v + k2nv = 0 that behave asymptotically like eiz·x, where z ∈ C3, the space of
three complex variables. The original technically difficult construction of these special
solutions using Fourier integral techniques has recently been considerably simplified
by Hähner through the use of Fourier series [32].

All existing methods for determining the index of refraction from noisy far field
data without linearizing the problem are based on nonlinear optimization methods.
The simplest of these is obtained by using Green’s formula (cf. Theorem 2.1 of [13])
to rewrite the scattering problem (1.3)–(1.5) (for ρ = ρD) as the Lippmann-Schwinger
equation

u(x) = eikx·d − k2

∫
R3

∫
Φ(x, y)m(y)u(y) dy, x ∈ R3, (1.15)

where Φ is defined by (1.8) and m := 1− n. From (1.15) it is easily deduced that

u∞(x̂, d) = − k
2

4π

∫
R3

∫
e−ikx̂·ym(y)u(y) dy (1.16)

where u(y) = u(y, d). Assuming u∞(x̂, d) is known for x̂ ∈ Ω and for p incident
waves d = d1, d2, . . . , dp, a nonlinear optimization scheme for determining m and
u(y, dj), j = 1, 2, . . . , p, is easily formulated from (1.15) and (1.16). Due to the simple
manner in which m and u appear in (1.15), (1.16), the Fréchet derivative is easily com-
puted. One can also, of course, work directly with the scattering problem (1.3)–(1.5)
instead of reformulating it as the Lippmann-Schwinger integral equation. Examples of
successful numerical reconstructions using such methods have been given by Gutman
and Klibanov [29], Kleinman and van den Berg [43], Natterer and Wübbeling [55],
Tabbara et al.[73], and Wang and Chew [77], among others. As with obstacle scatter-
ing, because of the ill-posed nature of the inverse scattering problem, regularization
methods must be used to compute the solution.
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An alternative method to that discussed above for determining the index of refrac-
tion from noisy far field data has been proposed by Colton and Monk [13], [17]. This
method resembles that of Kirsch and Kress in obstacle scattering in that the problem
is broken up into a linear ill-posed part and a nonlinear optimization part, and it has
the advantage over the methods described above of being able to increase the number
of incident fields without increasing the cost of solving the inverse problem. This
method will be discussed in more detail in Section 5.

Unfortunately, the computation of n = n(x) through the use of nonlinear op-
timization methods is extremely time consuming for realistic three dimensional sit-
uations. However, in many cases of practical interest, a complete determination of
the index of refraction is far more than is needed. It is often sufficient to determine
the number of objects present and the support of each of them. Such information
is provided by the linear sampling method as described above and, in more detail,
in Sections 5 and 6. Occasionally even less information can be useful, for example a
lower bound for the volume of the scatterer. In special cases such a lower bound can
be obtained from a knowledge of the spectrum of the far field operator F defined by
(1.11). In particular, if the index of refraction of the unknown scatterer is known to
be constant with positive imaginary part, then the eigenvalues of F are all contained
inside the circle |λ|2 − 4π

k lm λ = 0 in the complex λ plane, and a knowledge of the
radius of the smallest circle with center on the axis Re λ = 0 and passing through
the origin that contains all the eigenvalues yields a lower bound to the volume of the
scatterer [12].

In concluding this Introduction, we would like to emphasize that most of the above
results for acoustic waves have analogues for electromagnetic waves and we refer the
reader to the monograph [13] and the paper [23] for details and further references.
We also make no claim to cover all the many topics in inverse scattering theory for
acoustic waves. Indeed, with the rapid growth of the field, such a task would be
impossible in a single survey paper. Instead, we have been motivated by our own
view of inverse scattering which focuses on the issues of uniqueness and numerical
reconstructions. In particular, the emphasis of this survey is on the research done at
the Universities of Delaware, Göttingen and Karlsruhe during the past fifteen years.
Nevertheless, we feel that we have succeeded in presenting some of the highlights of the
mathematical and numerical foundations of time harmonic acoustic inverse scattering
theory and hope that our effort will encourage others to enter this exciting field of
applied mathematical research.

In addition to the research program at Delaware, Göttingen and Karlsruhe, there
are of course many other groups in inverse scattering with their own research agendas.
We mention in particular the considerable effort that has been made in nonlinear
iteration techniques by Gutman and Klibanov [29], Kleinman and van den Berg [43],
Natterer and Wübbeling [55] and Wang and Chew [77], in layer striping by Chen
and Rokhlin [4] and Sylvester and Winebrenner [72] and diffraction tomography by
Devaney [28] and Langenberg [48] (see also the references in [13]).

2. A Model Problem Using Real Data. We now return to the model problem
considered in Section 1.2 of the Introduction. Under appropriate assumptions, the
time-harmonic electromagnetic direct scattering problem for an infinite cylinder can
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be reformulated as the problem of determining u from the equations

4u+ k2u = 0 in R2 \D,
u = ui + us,

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0

where D is the cross-section of the cylinder and u satisfies certain boundary conditions
on ∂D. More specifically, when the cylinder is impenetrable u satisfies the Dirichlet
boundary condition u = 0 on ∂D and when D is a penetrable inhomogeneous medium
the transmission boundary conditions (1.5) are satisfied for ρ = ρD and x ∈ R2. In
particular, the problem we are concerned with is the two-dimensional analogue of that
considered in Section 1.2. Our aim is to use the numerical procedure suggested by
the discussion in Section 1.2 for determining ∂D from noisy far field data, delaying
a mathematical justification of this procedure until Sections 4 and 5 of this paper.
Recall that the idea is to sample a region (by varying z) where the unknown object is
thought to be and plot ‖ϕ(·, z)‖ where ϕ is the numerical approximation to g ∈ L2(Ω)
and g satisfies either

‖Fg − Φ∞ (·, z) ‖ < ε

or

‖(F ∗F )
1
4 g − Φ∞ (·, z) ‖ < ε

depending on whether the first or second version of the linear sampling method is
used.

To determine ϕ, which minimizes the Tikhonov functional (1.2) for A being either
F or (F ∗F )

1
4 , it is sufficient to solve the normal equation

γϕ+A∗Aϕ = A∗Φ∞ (·, z) . (2.1)

Hence, once γ > 0 is chosen, using the singular value decomposition F = USV ∗, we
have from (2.1) that

‖ϕ‖2 =
N∑

i=1

(
si

s2i + γ

)2

|U∗Φ∞ (·, z)|2 (2.2)

and

‖ϕ‖2 =
N∑

i=1

si

(s2i + γ)2
|V ∗Φ∞ (·, z)|2 (2.3)

for A = F and A = (F ∗F )
1
4 , respectively, where {si} are the singular values of F.

The parameter γ is chosen by Morozov’s generalized discrepancy principle [75]
and, as a result of the singular value decomposition, is the zero of the monotonically
increasing functions

f (γ) =
N∑

i=1

γ2 − δ2s2i

(s2i + γ)2
|U∗Φ∞ (·, z)|2 (2.4)

11



or

f (γ) =
N∑

i=1

γ2 − δ2si

(si + γ)2
|V ∗Φ∞ (·, z) |2 (2.5)

for the first and second versions respectively. The parameter δ is chosen such that
‖F − Fδ‖ < δ, i.e., δ is an estimate of the noise level. To summarize, for a given
estimate δ, γ is determined by solving f(γ) = 0 and then ‖ϕ‖ is computed using (2.2)
or (2.3) respectively.

To demonstrate the capabilities of the linear sampling method, we now provide
results using the method on real data. The data is the Ipswich data provided by
the Electromagnetics Technology Division at Hanscom Air Force Base. The Ipswich
data is single frequency electric far field data measured using a multi-static system
with multiple views corresponding to different incident angles. In this case, it is not
possible to measure scattering at or near backscattering directions since the receiver
and transmitter cannot be physically coincident. As a result, the Ipswich data does
not provide a “full” view of the target for each incident angle. A more detailed
discussion of the data and the measurement process can be found in [51].

We consider two targets: Ips009 - an aluminum triangle and Ips010 - a plexiglas
triangle. The data is given for TM mode electromagnetic waves with a frequency of
10 Ghz (corresponding to a wavelength λ = 3 cm). In each case, there are 36 different
incident angles ranging from 0 to 350 degrees in increments of 10 degrees and, for
each incident angle, there are 18 observation angles given by

θo = θi + 180 + 10n for n = 0, .., 17

where θi is the incident angle and θo is the observation angle. The data only par-
tially fills in the discretized far field operator (the matrix corresponding to F ) but,
using reciprocity, almost all of the missing entries of this matrix can be determined.
The remaining unknown entries, which correspond to backscattering measurements,
are approximated by averaging the two adjacent known measurements for the same
incident angle.

The only a priori information known about the location of the obstacles is that
the minimum circumscribing circle centered at the origin has a radius of 6 cm, so a
square sampling grid (40× 40 or 1600 sampling points) is taken on a square with side
14cm centered at the origin. The results of using (2.2) and (2.3) are shown in Figures
2.1 and 2.2 respectively. In each case ‖ϕ‖−1 is plotted for the Morozov parameter
δ chosen to be 0.22. This value of δ yields the best reconstruction from those values
considered by us.

We note that the reconstruction of the (penetrable) plexiglas triangle is consid-
erably poorer than that of the (impenetrable) aluminum triangle. This is also the
case when either weak scattering techniques or nonlinear optimization methods are
used to reconstruct the same objects [61], [76] and hence is not a problem associated
specifically with the linear sampling method.

3. Numerical Experiments for the Detection of Buried Objects. We
shall now present some numerical results illustrating the use of the linear sampling
method to detect the location and shape of buried objects as described in Section 1.3
(but now using near field data). We start by discussing the forward problem, then
proceed to a method for detecting the support of buried objects motivated by the
results mentioned in Section 1.3, and finally we describe the numerical results.

12
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Fig. 2.1. Plot of ‖ϕ‖−1 for an aluminum triangle (target Ips009): (a) using the linear sampling

method associated with F and (b) using the linear sampling method associated with (F ∗F )
1
4 .
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Fig. 2.2. The same plot as Figure 2.1 but for a plexiglass triangle (target Ips010).

We suppose that the background medium consists of two homogeneous, isotropic
half spaces meeting at x3 = 0. One can think of this as a simplified model of water
over a flat sand layer. The buried object is represented by a bounded region D strictly
contained in the lower half space (i.e. D ⊂

{
x ∈ R3 | x3 < 0

}
). Acoustic waves are

excited in this system by a point source located at x = y in the upper half space
(i.e. y3 > 0) see Figure 3.1. Under appropriate assumptions, the acoustic velocity
potential u = u(x) satisfies the Helmholtz equation in each half space. We denote by
ui, i = 1, 2 the field in the upper and lower half space respectively. Then

∆u1 + k2
1u1 = δy for x ∈ R3, x3 > 0, (3.1)

∆u2 + k2
2u2 = 0 for x ∈ R3\D̄, x3 < 0. (3.2)

Here k1 and k2 are the wave numbers for the materials in the upper and lower half
space and δy is the delta function at the point y. We shall actually use wave numbers
appropriate for water and sand [3], in particular k1 = 3.6, k2 = 4.

Across the interface between the layers the pressure field is continuous but the
13



Water Source

Sand

Receivers

Fig. 3.1. Schematic of the inverse scattering problem for buried objects. The incident field is
due to a source located in the water (shown in blue) which interacts with the scatterer shown as two
colored regions indicating different physical properties (in the sand layer). The inverse problem is
to determine the support of the scatterer from measurements of the scattered field in the water due
to incident fields from many sources.

flux can jump (due to changes in density as in (1.5)). Thus, for some α > 0 we have

u1 = u2,
∂u1

∂x3
= α

∂u2

∂x3
for x ∈ R3, x3 = 0. (3.3)

For the case of water and sand an appropriate choice of α is α = 1/2 [3].
We shall restrict ourselves to a sound soft scatterer, and assume that

u = 0 on ∂D. (3.4)

Finally, we need a criterion to obtain a unique solution to this scattering problem,
and to this end we use the integral radiation condition due to Odeh [59],∫

ΣR

∣∣∣∣∂u∂r − iku

∣∣∣∣2 ds→ 0 (3.5)

as R→ 0 where

ΣR =
{
x ∈ R3 | |x| = R

}
and k = k1 in the upper half space and k = k2 in the lower half space.
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Using Odeh’s argument, it is possible to show that there exists at most one clas-
sical solution to (3.1)–(3.5). Concerning the existence of a solution, Coyle and Monk
[27] have given a variational proof of existence for a more general layered scattering
problem in R2, and these methods can also be used in R3.

The forward problem is thus to compute u1 and u2 satisfying (3.1)–(3.5) given
D, k1, k2, α and y. For our numerical experiments, these fields are computed via a
finite element method [26]. Let u(x, y) denote the solution of this problem at position
x due to the source at position y.

The inverse problem also assumes a knowledge of k1, k2 and α. But now we wish
to find D given a knowledge of u1 for a collection of source points y located in the
upper half space. More precisely, we assume that there is a rectangle R ⊂ R3 such
that we know u(x, y) for all x ∈ R and all y ∈ R. In our numerical experiments we
choose

R = {(x1, x2, x3) | , xmin ≤ x1 ≤ xmax, ymin ≤ x2 ≤ ymax,

x3 = zmin > 0}

where xmin, ymin, xmax, ymax and zmin are chosen depending on the numerical ex-
periment we wish to simulate. Since the rectangle R is of limited extent, the data
for the inverse problem is available over a limited aperture, which implies that the
solution of the inverse problem will be degraded compared to situations in which data
can be gathered on a sphere containing the object.

We shall use the linear sampling method to approximate ∂D. In order to do this
we need the Green’s function for the background layered medium (i.e., D is absent).
We denote the Green’s function by G(x, y). This is computed using Sommerfeld’s
technique [70] and details can be found in [26]. Since we make the assumption that
D is completely buried, we do not need to evaluate G(x, y) when x or y are on the
interface between the layers. Thus the integrals representing G converge rapidly and
we do not have difficulties with slowly decaying tails of the integrals as can happen
when x and y are on the interface.

In setting up the linear sampling method it is convenient to separate the field u
into an incident field

ui(x) = G(x, y)

and a resulting scattered field, so that

u = ui + us in R3 \D.

Note that ui is the solution of the layered medium problem in the absence of D. The
linear sampling method is then based on finding gz such that∫

R

us(x, y)gz(y) ds(y) = G(x, z),∀x ∈ R (3.6)

for various points z in the lower half space. (Note that this is equivalent to the
integral equation (1.14) for the case of near field data, i.e. instead of using the kernel
us − us

b, where us and us
b are the scattered fields due to point sources, we use the

scattered field us corresponding to the Green’s function as incident field (see Section
5).) In particular, it can be shown (see [25] for the case in R2) that there exists
an approximate solution ϕz to (3.6) such that ‖ϕz‖ → ∞ as z approaches ∂D for
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z ∈ D. To derive a numerical method we shall approximate the solution of the above
integral equation using Tikhonov regularization and Morozov’s discrepancy principle
for z lying on a grid in R3 in the region of interest (the region where we wish to probe
to find if a scatterer is present). We then plot the iso-surfaces of 1/‖ϕz‖ which is the
surface consisting of all points z such that 1/‖ϕz‖ = C where C is chosen close to
zero (we shall say more about this choice shortly) and this is our prediction of ∂D.

In our numerical experiments we discretize (3.6) using the trapezoidal rule so
that x and y lie at uniformly spaced lattice points on R (this corresponds to making
measurements of u for a finite number of source positions y and receiver positions x).
In this paper we shall show results for a 21×21 lattice of values on R. The probe point
z is also varied on a uniform lattice in a box known to contain D (a more efficient
adaptive approach is given in [6]).

In practice it is difficult to know when 1/‖ϕz‖ ≈ 0 since ϕz is computed from noisy
data using the Morozov technique mentioned above. We have found the “calibration”
approach of [6] is a usable heuristic. In this technique we use the desired source and
receiver combination and background to solve for the scattered field from a known
object of similar size to our intended target. We can then choose a value of C such
that the surface 1/‖ϕz‖ = C is a good approximation of the known scatterer. Using
this value of C we can then use the surface 1/‖ϕz‖ = C as a prediction of ∂D for the
unknown scatterer.

In the numerical experiments, we first choose a scatterer and source–receiver
combination and then use the finite element method to predict an approximation
to u(x, y), x, y ∈ R. Then to avoid any possibility of “inverse crimes” (these are
unrealistically good reconstructions resulting from interactions between the numerical
schemes for the forward and inverse problem, see [13]), we corrupt the field u computed
by finite elements with noise and define ũ by

ũ(x, y) = u(x, y)(1 + εχ(x, y) + iεχ1(x, y)), (3.7)

where χ and χ1 are normally distributed random numbers in [−1, 1] and ε is an error
parameter. Discretizing (3.6) using the trapezoidal rule and putting ũ in place of
u results in a matrix equation to be solved for each z. The field ũ is then used
in the Tikhonov/Morozov algorithm, and the error parameter in this technique is
the spectral norm of the difference between the matrices corresponding to the finite
element approximation of u and ũ. This does not include the error due to the finite
element method, which could be much larger than the error due to the artificial
random noise added in (3.7).

All our examples are smaller than a wavelength in size. This makes an accurate
reconstruction difficult. In the figures, the wavelength in each layer is indicated by
horizontal red lines. The sources/receivers rectangle R is denoted by a blue waffle
pattern. The brown rectangle shows the position of the interface and the green par-
allelepiped shows the region in which z is varied. The predicted scatterer is shown in
red.

In Figure 3.2 we show the results of running our algorithm on a single spherical
scatterer. First data is generated by a forward finite element code [26], then it is
corrupted as in (3.7) using ε = 0.07. This gives a relative error for the matrix corre-
sponding to the kernel of (3.6) of roughly 0.5% in the spectral norm (this corresponds
to an error of roughly 9% with respect to the matrix maximum norm). The measure-
ment region is located at zmin = 1 and xmin = ymin = −1.5, xmax = ymax = 1.5 and
there are 21 data points in each direction. Although this may appear to be a large
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(a) Exact scatterer (3D view) (b) Exact scatterer (view down x3

axis)

(c) Reconstructed scatterer (3D
view)

(d) Reconstructed scatterer (view
down x3 axis)

Fig. 3.2. Reconstruction of a sphere using the isovalue 1/3 when ε = 0.07. This example is
used for calibration purposes. The value of 1/3 is chosen by eye to give a reasonable reconstruction
of the sphere in the horizontal and vertical directions. In all the figures the wavelength in each layer
is indicated by horizontal red lines. The sources/receivers rectangle R is denoted by a blue waffle
pattern. The brown rectangle shows the position of the interface, and the green parallelepiped shows
the region in which z is varied. The exact or predicted scatterer is shown in red.

amount of data, the aperture (when viewed from the sphere) is only 50 degrees and so
is close to the minimum found acceptable by Colton and Piana [21]. This minimum
also seems to apply when other reconstruction techniques are used [58], [79]. By nor-
malizing the maximum value of 1/‖ϕz‖ to one and viewing a variety of iso-surfaces
we find that 1/‖ϕz‖ = 1/3 gives an acceptable reconstruction and we shall use this
value for all reconstructions using this measurement array and problem parameters.

In Figure 3.3 we show the results of reconstructing a pair of spherical scatterers
17



(a) Exact scatterer (3D view) (b) Exact scatterer (view down x3

axis)

(c) Reconstructed scatterer (3D
view)

(d) Reconstructed scatterer (view
down x3 axis)

Fig. 3.3. Reconstruction of two spheres using the same measurement array and parameters as
for Figure 3.2. In keeping with the notion of calibration we choose the isovalue for the display of
the numerical reconstruction to be 1/3.

using the same measurement array and parameters as for Figure 3.2. In keeping with
the “calibration” philosophy we show the iso-surfaces for 1/‖ϕz‖ = 1/3.

Our final figure is an L-shaped scatterer gridded using the QMG mesh generator
[53]. In this case we did not try to capture the underside of the L. Results are shown
in Figure 3.4.

As the aperture decreases or the noise level increases the quality of the recon-
struction deteriorates. For example, using double the noise (i.e., ε = 0.14 or about
1.1% spectral norm error) results in a somewhat higher calibration isovalue than for
the lower noise case shown previously. The results are now shown in Figure 3.5 (we
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(a) Exact scatterer (3D view). (b) Exact scatterer (view down x3

axis).

(c) Reconstructed scatterer (3D
view).

(d) Reconstructed scatterer (view
down x3 axis).

Fig. 3.4. Reconstruction of the L shaped scatterer using the same measurement array and
parameters as for Figure 3.2.

do not show the sphere calibration target in this case).
Although in the numerical examples here the objects are sound-soft, the same

equation for gz (equation (3.6)) is also valid for anisotropic objects, and the support
can be found in either case without knowing a priori whether or not the buried object
is sound soft or anisotropic or any of the physical properties of the material (see [25]
for proofs and numerical experiments in R2).

4. The Inverse Obstacle Problem. In this part of our paper we will be
concerned with the mathematical theory of the inverse scattering problem for a
sound soft obstacle. In particular, consider the direct scattering problem of finding
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(a) Reconstruction (3D view). (b) Reconstruction (view down x3

axis).

(c) Reconstruction (3D view). (d) Reconstruction (view down x3

axis).

Fig. 3.5. Reconstruction of the L shaped scatterer (top row) and two spheres (bottom row)
when ε = 0.14 using the isovalue of 0.4. For views of the exact scatterer see Figure 3.4 and 3.3.

u ∈ C2(R2 \ D̄) ∩ C(R3 \D) such that

∆u+ k2u = 0 in R3 \ D̄ (4.1a)
u = ui + us in R3 \ D̄ (4.1b)

u = 0 on ∂D (4.1c)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0 (4.1d)

whereD is a bounded domain with connected complement R3\D̄ and C2 boundary ∂D
having unit outward normal ν, the Sommerfeld radiation condition (4.1d) is assumed
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to hold uniformly in x̂ = x/|x| and ui(x) = eikx·d where d is a vector on the unit
sphere Ω. The existence of a unique solution to (4.1a)–(4.1d) is well known [10], [13].
From the Introduction we know that us has the asymptotic behavior

us(x) =
eikr

r
u∞(x̂, d) +O

( 1
r2

)
(4.2)

as r →∞ uniformly in x̂ where u∞ is the far field pattern of the scattered field us. The
inverse scattering problem we will study is that of determining D from a knowledge
of u∞(x̂, d) for x̂, d ∈ Ω. In what follows we will state the main mathematical results
connected with this problem, prove some of these results, give partial proofs for others,
and in some cases leave out the proofs altogether, referring the reader to the literature
for details. We will follow the same procedure in Section 5. Our aim is to expand
upon the brief statements given in the Introduction and attempt to give the reader a
flavor of the mathematical methods used in inverse scattering theory, while avoiding
some technical details.

We begin by establishing four basic results about the far field pattern and far
field operator (1.11) in the case of obstacle scattering: Rellich’s lemma and reciprocity
for the far field pattern and the normality and injectivity properties of the far field
operator. We will always assume the existence of a solution u ∈ C2(R3\D̄)∩C(R3\D)
to the direct scattering problem (4.1a)–(4.1d) as well as the fact that since ∂D is in
class C2, we have that u ∈ C1(R3 \D) [10].

Theorem 4.1. (Rellich’s Lemma): Let us be a solution of the Helmholtz
equation in the exterior of D satisfying the Sommerfeld radiation condition (4.1d)
such that the far field pattern u∞ of us vanishes. Then us = 0 in R3 \ D̄.

Proof. For sufficiently large |x| we have a Fourier expansion

us(x) =
∞∑

n=0

n∑
m=−n

am
n (r)Y m

n (x̂)

with respect to the spherical harmonics Y m
n , where the coefficients are given by

am
n (r) =

∫
Ω

u(rx̂)Y m
n (x̂) ds(x̂).

Since u ∈ C2(R3 \ D̄) and the radiation condition (2.1d) holds uniformly in x̂, we can
differentiate under the integral sign and integrate by parts to conclude that am

n is a
solution of the spherical Bessel equation

d2am
n

dr2
+

2
r

dam
n

dr
+
(
k2 − n(n+ 1)

r2

)
am

n = 0

satisfying the radiation condition, i.e.

am
n (r) = αm

n h
(1)
n (kr)

where h(1)
n is a spherical Hankel function of the first kind of order n and the αm

n are
constants depending only on n and m. From (4.2) we have that, since u∞ = 0,

lim
r→∞

∫
|x|=r

|u(x)|2 ds =
∫
Ω

|u∞(x̂)|2 ds = 0.
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But by Parseval’s equality∫
|x|=r

|u(x)|2 ds = r2
∞∑

n=0

n∑
m=−n

|am
n (r)|2.

Substituting the above expression for am
n into this identity, letting r tend to infinity

and using the asymptotic behavior of the spherical Hankel functions now yields αm
n = 0

for all n and m. Hence u = 0 outside a sufficiently large sphere. By the representation
formula (1.7) we see that u is an analytic function of x and hence we can now conclude
that u = 0 in R3 \D by analyticity.

Theorem 4.2. (Reciprocity): The far field pattern for a sound soft obstacle
with incident field ui(x) = ui(x, d) = eikx·d satisfies the reciprocity relation

u∞(x̂, d) = u∞(−d,−x̂)

for x̂, d ∈ Ω.
Proof. From Green’s theorem∫

D

(u∆v − v∆u)dx =
∫

∂D

(
u
∂v

∂ν
− v

∂u

∂ν

)
ds (4.3)

and the asymptotic expression (4.2), we can deduce that∫
∂D

{ui(·, d) ∂
∂ν
ui(·,−x̂)− ui(·,−x̂) ∂

∂ν
ui(·, d)} ds = 0

and ∫
∂D

{us(·, d) ∂
∂ν
us(·,−x̂)− us(·,−x̂) ∂

∂ν
us(·, d)} ds = 0.

In the last identity we have used the fact that from Green’s theorem, the integral
over ∂D can be replaced by an integral over the sphere |x| = r for r sufficiently large.
From the representation (1.7) we can deduce by letting |x| → ∞ that

4πu∞(x̂, d) =
∫

∂D

{us(·, d) ∂
∂ν
ui(·,−x̂)− ui(·,−x̂) ∂

∂ν
us(·, d)} ds

since the far field pattern of Φ(x, y) is Φ∞(x̂, y) = 1
4π e

−ikx̂·y = 1
4πu

i(y,−x̂). Inter-
changing the roles of x̂ and d now gives

4πu∞(−d,−x̂) =
∫

∂D

{us(·,−x̂) ∂
∂ν
ui(·, d)− ui(·, d) ∂

∂ν
us(·,−x̂)} ds.

We now subtract the last equation from the sum of the three preceding equations to
obtain

4π {u∞(x̂, d)− u∞(−d,−x̂)} =∫
∂D

{
u(·, d) ∂

∂ν
u(·,−x̂)− u(·,−x̂) ∂

∂ν
u(·, d)

}
ds
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and the result follows from the boundary condition u(·, d) = u(·,−x̂) = 0 on ∂D.
We now want to establish the fact that the far field operator F defined by (1.11)

where u∞ is the far field pattern corresponding to a sound-soft obstacle is normal, i.e.
F ∗F = FF ∗ where F ∗ is the adjoint operator to F in L2(Ω). To this end, we need
the following basic identity [13], [12].

Theorem 4.3. Let F : L2(Ω) → L2(Ω) be the far field operator corresponding to
a sound-soft obstacle. Then for every g, h ∈ L2Ω) we have

2π(Fg, h) = 2π(g, Fh) + ik(Fg, Fh)

where (·, ·) denotes the inner product on L2(Ω).
Proof. If vs and ws are radiating solutions of the Helmholtz equation with far

field patterns v∞ and w∞, then from the radiation condition we have that

vs(x)
∂ws(x)
∂r

= − ik

|x|2
v∞(x̂, d)w∞(x̂, d) +O

( 1
|x|3

)
as r = |x| → ∞ uniformly in all directions. Hence, by Green’s theorem we obtain
that ∫

∂D

(
vs ∂w

s

∂ν
− ws

∂vs

∂ν

)
ds = −2ik

∫
Ω

v∞w∞ ds. (4.4)

From the representation (1.7) we obtain

v∞(x̂) =
1
4π

∫
∂D

{vs(y)
∂e−ikx̂·y

∂ν
− ∂vs

∂ν
(y)e−ikx̂·y} ds(y) (4.5)

for x̂ ∈ Ω, and hence if wi
h is a Herglotz wave function with kernel h (see (1.13)), then

∫
∂D

(
vs(x)

∂wi
h

∂ν
(x) − wi

h(x)
∂vs

∂ν
(x)

)
ds(x)

=
∫
Ω

h(d)
∫

∂D

(
vs(x)

∂e−ikx·d

∂ν
− e−ikx̂·d ∂v

s

∂ν
(x)
)
ds(x) ds(d)

= 4π
∫
Ω

h(d)v∞(d) ds(d). (4.6)

We point out to the reader that the appearance of Herglotz wave functions in our
proof is due to the fact that Fh is the far field pattern corresponding to the incident
field wi

h.
Now let vi

g and vi
h be Herglotz wave functions with kernels g, h ∈ L2(Ω) respec-

tively and let vg, vh be the solutions of (4.1a)–(4.1d) with ui replaced by vi
g and vi

h

respectively. Let vs
g, v

s
h denote the scattered fields corresponding to vg and vh re-

spectively and let vg,∞, vh,∞ be the corresponding far field patterns. Then from the
23



boundary condition (4.1c), (4.4) and (4.6) we have

0 =
∫

∂D

(
vg
∂vh

∂ν
− vh

∂vg

∂ν

)
ds

=
∫

∂D

(vs
g

∂v̄s
h

∂ν
− v̄s

h

∂vs
g

∂ν
) ds+

∫
∂D

(vs
g

∂v̄i
h

∂ν
− v̄i

h

∂vs
g

∂ν
) ds

+
∫

∂D

(vi
g

∂v̄s
h

∂ν
− v̄s

h

∂vi
g

∂ν
) ds

= −2ik
∫
Ω

vg,∞vh,∞ ds+ 4π
∫
Ω

vg,∞h̄ ds− 4π
∫
Ω

gvh,∞ ds

= −2ik(Fg, Fh) + 4π(Fg, h)− 4π(g, Fh)

and the proof is complete.
Theorem 4.4. (Normality): The far field operator corresponding to a sound-

soft obstacle is normal.
Proof. From Theorem 4.3 we have that

(g, ikF ∗Fh) = 2π{(g, Fh)− (g, F ∗h)}

for all g, h ∈ L2(Ω), and hence

ikF ∗F = 2π(F − F ∗). (4.7)

By reciprocity we have that

(F ∗g)(x̂) =
∫
Ω

u∞(d, x̂)g(d) ds(d)

=
∫
Ω

u∞(−x̂,−d)g(d) ds(d), (4.8)

and hence if we define the reflection operator R : L2(Ω) → L2(Ω) by (Rg)(d) := g(−d),
we have that

F ∗g = RFRḡ.

From this, observing that (Rg,Rh) = (g, h) = (h̄, ḡ) for all g, h ∈ L2(Ω), we find that

(F ∗g, F ∗h) = (RFRh̄,RFRḡ) = (FRh̄, FRḡ),

and hence, using Theorem 4.3 again,

ik(F ∗g, F ∗h) = 2π{(FRh̄,Rḡ)− (Rh̄, FRḡ)}
= 2π{(g, F ∗h)− (F ∗g, h)}.

If we now proceed as in the derivation of (4.7) we find that

ikFF ∗ = 2π(F − F ∗) (4.9)
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and the proof is finished.
We note that if we define the scattering operator S by

S = I +
ik

2π
F,

then from (4.7) and (4.9) we see that SS∗ = S∗S = I, i.e. for a sound-soft obstacle
the scattering operator is unitary.

Theorem 4.5. (Injectivity): The far field operator corresponding to a sound-
soft obstacle is injective with dense range if and only if there does not exist a Dirichlet
eigenfunction for D which is a Herglotz wave function.

Proof. From (4.8) we see that (F ∗g)(x̂) = (Fh)(−x̂) where h(d) = g(−d). Hence
F is injective if and only if its adjoint F ∗ is injective. Observing that in L2(Ω) we have
N(F ∗)⊥ = F (L2(Ω)) for bounded operators F , we must only show the injectivity of
F . To this end, we note that Fg = 0 with g 6= 0 is equivalent to the existence of a
nontrivial Herglotz wave function vi

g with kernel g for which the far field pattern of
the corresponding scattered field vs is v∞ = 0. By Rellich’s lemma (Theorem 4.1)
this implies vs = 0 in R3 \ D and the boundary condition vi

g + vs = 0 on ∂D now
shows that vi

g = 0 on ∂D. The proof is finished.
Having established the basic properties of the far field pattern and far field opera-

tor, we now turn our attention to the uniqueness of a solution to the inverse scattering
problem for a sound-soft obstacle. There are two proofs of this result, due to Schiffer
[49] and Kirsch and Kress [42]. Since the proof of Kirsch and Kress readily extends to
scattering problems with boundary conditions other than Dirichlet’s, whereas Schif-
fer’s does not (cf. [13], p. 109), we will only consider the approach used by Kirsch
and Kress (which was in turn motivated by the ideas of Isakov [34]). We begin with
a simple completeness result.

Lemma 4.6. Assume that k2 is not a Dirichlet eigenvalue for the bounded domain
B and R3 \ B̄ is connected. Let ui(x, d) = eikx·d. Then the restriction of the set of
plane waves {ui(·, d) : d ∈ Ω} to ∂B is complete in L2(∂B).

Proof. Let ϕ ∈ L2(∂B) satisfy∫
∂B

ϕ(y)e−iky·d ds(y) = 0

for all d ∈ Ω. Then the single layer potential

u(x) :=
∫

∂B

ϕ(y)Φ(x, y) ds(y)

where Φ is defined by (1.8) has vanishing far field pattern u∞ = 0. Hence by Rellich’s
lemma u = 0 in R3 \ B̄. The L2 jump relation for single layer potentials now implies
that

ϕ(x)− 2
∫

∂B

ϕ(y)
∂Φ(x, y)
∂ν(x)

ds(y) = 0, x ∈ ∂B

and from this it can be shown ([13], p. 110) that ϕ ∈ C(∂B) and u solves the homoge-
neous Dirichlet problem in B. Thus, by our assumption on B, we conclude that u = 0
in B and the jump relation for the normal derivative of the single layer potential now
implies that ϕ = 0.

25



Theorem 4.7. Assume that D1 and D2 are two sound-soft scatterers such that for
a fixed wave number the far field patterns for both scatterers coincide for all incident
directions d. Then D1 = D2.

2

ν(x )*

 x * D

D1

Fig. 4.1. The geometry of the scatterers considered in the proof of Theorem 4.7. We assume
the scatterers are not identical and derive a contradiction.

Proof. By Rellich’s lemma we can conclude that the scattered fields us(·, d) for
the incident fields ui(x, d) = eikx·d coincide in the unbounded component G of the
complement of D̄1 ∪ D̄2. Choose x0 ∈ G and consider the two exterior Dirichlet
problems for radiating solutions to

∆ws
j + k2ws

j = 0 in R3 \ D̄j , j = 1, 2 (4.10a)
ws

j + Φ(·, x0) = 0 on ∂Dj , j = 1, 2. (4.10b)

We will show that ws
1 = ws

2 in G. To this end, choose a bounded domain B such that
R3 \ B is connected, D̄1 ∪ D̄2 ⊂ B, x0 /∈ B̄ and k2 is not a Dirichlet eigenvalue for
B. Then by Lemma 4.6 there exists a sequence (vn) in span{ui(·, d) : d ∈ Ω} such
that ‖vn − Φ(·, x0)‖L2(∂B) → 0 as n → ∞, and from potential theoretic arguments
(cf. Theorem 5.4 of [13]) one can conclude that vn → Φ(·, x0) as n → ∞, uniformly
on D̄1 ∪ D̄2. Since the vn are linear combinations of plane waves, the corresponding
scattered fields vs

n,1 and vs
n,2 for the obstacles D1 and D2 coincide in G. We can

now conclude from the well-posedness of the radiating exterior Dirichlet problem that
vs

n,j → ws
j , n → ∞, uniformly on compact subsets of R3 \ D̄j for j = 1, 2 and hence

ws
1 = ws

2 in G. Now assume that D1 6= D2. Then, without loss of generality, there
exists x∗ ∈ ∂G such that x∗ ∈ ∂D1 and x∗ /∈ D̄2. We can choose h > 0 such that the
sequence

xn := x∗ +
h

n
ν(x∗), n = 1, 2, . . .

is contained in G and consider the solutions ws
n,j to the exterior Dirichlet problem

(4.10a), (4.10b) with x0 replaced by xn. Then ws
n,1 = ws

n,2 in G. But considering
ws

n = ws
n,2 as the scattered field corresponding to the obstacle D2 we have that ws

n is
uniformly bounded with respect to the maximum norm on closed subsets of R3 \ D̄2,
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in particular ws
n(x∗) remains bounded as n → ∞. On the other hand, considering

ws
n = ws

n,1 as the scattered field corresponding to the obstacle D1 we have that
ws

n(x∗) + Φ(x∗, xn) = 0 and hence ws
n(x∗) becomes unbounded as n → ∞. This is a

contradiction. Therefore D1 = D2, and the proof is complete.
An open problem is to determine if one incoming plane wave for a single direction

at a fixed wave number k is sufficient to uniquely determine the scatterer D. If it
is known a priori that D is contained in a ball of radius R and kR < π then, as
mentioned in the Introduction, it was shown by Colton and Sleeman [24] (see also
Corollary, 5.3 of [13]) that a sound soft obstacle is uniquely determined by its far field
pattern for a single incident direction d and fixed wave number k.

We now turn our attention to methods for reconstructing D from an inexact
knowledge of the far field pattern u∞. We first consider the application of Newton’s
method. To this end we note that the solution to the direct scattering problem with
a fixed incident plane wave ui defines an operator F : ∂D → u∞ which maps the
boundary ∂D of the sound soft scatterer D onto the far field pattern u∞ of the
scattered field. In terms of this operator, the inverse problem consists in solving the
nonlinear equation F(∂D) = u∞. Having in mind that for ill-posed problems the
norm in the data space has to be suitable for describing the measurement error, we
make the assumption that u∞ is in the Hilbert space L2(Ω). For ∂D we need to
choose a class of admissible surfaces described by some suitable parameterization and
equipped with an appropriate norm. For the sake of simplicity, we restrict ourselves to
the class of domains D that are star-like with respect to the origin with C2 boundary
∂D, i.e. we assume that ∂D is represented in its parametric form

x = r(x̂)x̂, x̂ ∈ Ω

for a positive function r ∈ C2(Ω). We now view the operator F as a mapping from
C2(Ω) into L2(Ω) and write F(∂D) = u∞ as

F(r) = u∞.

The following basic theorem was first proved by Kirsch [37] using variational methods
and subsequently by Potthast [64] using a boundary integral equation approach (see
also Theorem 5.14 of [13] and [46]).

Theorem 4.8. The operator F : r → u∞ is Fréchet differentiable from C2(Ω)
into L2(Ω). The derivative is given by

F ′q = v∞

where v∞ denotes the far field pattern of the solution vs to the Helmholtz equation in
R3 \D satisfying the Sommerfeld radiation condition and the boundary condition

vs = −ν · xq
∂u

∂ν
on ∂D

where xq = q(x̂)x̂ and ∂D is parameterized by x = r(x̂)x̂.
Theorem 4.8 now allows us to apply Newton’s method to solve

F(r) = u∞.

In particular, given a far field pattern u∞ and initial guess r0 to r, the nonlinear
equation F(r) = u∞ is replaced by the linearized equation

F(r0) + F ′q = u∞ (4.11)
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which is then solved for q to yield the new approximation r1 given by r1 = r0 + q.
Newton’s method then consists in iterating this procedure [44], [47]. From Theorem
4.8 it is seen that the Fréchet derivative F ′ is a compact operator and hence regu-
larization methods must be used in solving (4.11), reflecting the fact that the inverse
scattering problem is ill-posed. In this regard, the following theorem is important.

Theorem 4.9. The linear operator F ′ is injective.
Proof. Assume that F ′q = 0. Then the solution vs to the scattering problem

stated in Theorem 4.8 has a vanishing far field pattern and hence by Rellich’s lemma
vs = 0 in R3 \ D̄ and consequently vs = 0 on ∂D. Since by Holmgren’s uniqueness
theorem [2] ∂u/∂ν cannot vanish on open subsets of ∂D (recall that u = 0 on ∂D),
we now have that ν · xq = 0 on ∂D. A short calculation now shows that this implies
that q = 0.

An alternative to Newton’s method for solving the inverse scattering problem of
determining a sound soft scattering obstacle from the far field pattern of the scattered
field is the linear sampling method. As pointed out in the Introduction, this method
has several advantages over Newton’s method, although it has the disadvantage of
requiring a knowledge of u∞(x̂, d) for all x̂, d ∈ Ω (this assumption can be weakened -
see [25] and the previous section of this paper). To describe the basic idea behind the
linear sampling method, assume that for every z ∈ D there exists a unique solution
g = g(·, z) ∈ L2(Ω) to the far field equation (1.12), i.e.∫

Ω

u∞(x̂, d)g(d) ds(d) =
e−ikx̂·z

4π
(4.12)

where u∞ is the far field pattern corresponding to the scattering of the plane wave
eikx·d by the sound soft obstacle D. Then, since the righthand side of (4.12) is the
far field pattern of the fundamental solution Φ(x, z), it follows from Rellich’s lemma
that ∫

Ω

us(x, d)g(d) ds(d) = Φ(x, z), x ∈ R3 \D.

From the boundary condition u = 0 on ∂D it now follows that

vg(x) + Φ(x, z) = 0, x ∈ ∂D (4.13)

where vg is the Herglotz wave function defined by (1.13). We now see from (4.13)
that vg becomes unbounded as z → x ∈ ∂D and hence

lim
z→∂D

‖g(·, z)‖L2(Ω) = ∞.

Unfortunately, in general the far field equation Fg = Φ∞(·, z) does not have a
unique solution. However, following the idea of the proof of Lemma 4.6 and using
the Jacobi-Anger expansion ([13], p. 32), we can show that if k2 is not a Dirichlet
eigenvalue then for z ∈ D the unique solution v of

∆v + k2v = 0 in D
v + Φ(·, z) = 0 on ∂D

can be approximated in L2(∂D) by a Herglotz wave function vg. If ∂D is analytic
then v can be uniquely continued as a solution of the Helmholtz equation to a domain
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D∗ ⊃ D where k2 is not a Dirchlet eigenvalue for D∗ and this fact can be used to
show that v can be approximated in C(D̄) by a Herglotz wave function [22]. We then
have the following result:

Theorem 4.10. Assume that ∂D is analytic and let z ∈ D. Then for every ε > 0
there exists a solution g = g(·, z) ∈ L2(Ω) of the inequality ‖Fg − Φ∞(·, z)‖L2(Ω) < ε
such that

lim
z→∂D

‖g(·, z)‖L2(Ω) = ∞,

and the Herglotz wave function vg with kernel g becomes unbounded as z → x ∈ ∂D.
The above theorem now suggests a numerical procedure for determining ∂D from

noisy far field data (see Section 2 of this paper). In particular, let uδ
∞ be the measured

far field data, i.e. ‖uδ
∞ − u∞‖ < δ, and assume g is such that ‖Fg − Φ∞(·, z)‖ < ε.

If Fδ is the operator F with the kernel u∞ replaced by uδ
∞ then we want to find an

approximation to g by solving Fδϕ = Φ∞(·, z), i.e. we view both the operator and
the right hand side as being inexact. For each fixed z we now determine ϕ = ϕ(·, z)
by minimizing the Tikhonov functional

‖Fδϕ− Φ∞(·, z)‖2 + γ‖ϕ(·, z)‖2

where the regularization parameter is chosen by Morozov’s generalized discrepancy
principle [75], i.e. assuming that ε << δ, γ = γ(z) is chosen such that ‖Fδϕ −
Φ∞(·, z)‖ ≈ δ‖ϕ(·, z)‖. The unknown boundary ∂D is now determined by looking for
those points z where ‖ϕ(·, z)‖ begins to sharply increase.

In the above theorem, the assumption that ∂D is analytic is not of major concern
since the far field pattern depends continuously on C2 deformations of the boundary
(cf. Theorem 4.8) and is assumed to be inexact in any case. However, a more serious
problem is that nothing is said about what happens when z ∈ R3 \D. This problem
was resolved by Kirsch [39], who proposed replacing the equation Fg = Φ∞(·, z) by
(F ∗F )

1
4 g = Φ∞(·, z) where F ∗ is the adjoint of F in L2(Ω). We will now outline the

main ideas of Kirsch’s method. In what follows S : L2(∂D) → L2(∂D) is the single
layer potential defined by

(Sϕ)(x) =
∫

∂D

ϕ(y)Φ(x, y) ds(y), x ∈ ∂D (4.14)

and G : L2(∂D) → L2(Ω) is defined by Gh = v∞ where v∞ is the far field pattern
of the solution to the radiating exterior Dirichlet problem with boundary data h ∈
L2(∂D). The relation between the operators F,G and S is given by the following
lemma [39] (see also [46]):

Lemma 4.11. The relation

F = −4πGS∗G∗

is valid where G∗ : L2(Ω) → L2(∂D) and S∗ : L2(∂D) → L2(∂D) are the L2 adjoints
of G and S, respectively.

Proof. Define the operator H : L2(Ω) → L2(∂D) by

(Hg)(x) :=
∫
Ω

g(d)eikx·d ds(d).
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Note that Hg is the Herglotz wave function with density g. The adjoint operator
H∗ : L2(∂D) → L2(Ω) is given by

(H∗ϕ)(x̂) =
∫

∂D

ϕ(y)e−ikx̂·y ds(y)

and we note that 1
4πH

∗ϕ is the far field pattern of the single layer potential (4.14).
The single layer potential with continuous density ϕ is continuous in R3 and thus
1
4πH

∗ϕ = GSϕ, i.e. by a denseness argument

H = 4πS∗G∗ (4.15)

on L2(∂D). We now observe that Fg is the far field pattern of the solution to the
radiating exterior Dirichlet problem with boundary data −(Hg)(x), x ∈ ∂D, and
hence

Fg = −GHg. (4.16)

Substituting (4.15) into (4.16) now yields the lemma.
We now assume that k2 is not a Dirichlet eigenvalue for D. Then by Theorems 4.4

and 4.5 the far field operator F is normal and one-to-one. In particular, there exist
eigenvalues λj ∈ C of F, j = 1, 2, . . ., with λj 6= 0 and the corresponding eigenfunctions
ψj ∈ L2(Ω) form a complete orthonormal system in L2(Ω). From Theorem 4.3 we
can deduce the fact that the λj all lie on the circle of radius 2π/k and center 2πi/k.
We also note that {|λj |, ψj , sign (λj)ψj} is a singular system of F (cf. [13], p. 91)
where sign(λj) = λj/|λj |. By the above lemma we have that

−4πGS∗G∗ψj = λjψj .

If we define the functions ϕj ∈ L2(∂D) by

G∗ψj = −
√
λjϕj ,

where we choose the branch of
√
λj such that lm (

√
λj) > 0 we see that

GS∗ϕj =

√
λj

4π
ψj . (4.17)

A central result of Kirsch is that the functions ϕj form a Riesz basis in the Sobolev
space H− 1

2 (∂D), i.e. H− 1
2 (∂D) consists exactly of functions ϕ of the form

ϕ =
∞∑

j=1

αjϕj with
∞∑

j=1

|αj |2 <∞.

We can now prove the main result of [39]:
Theorem 4.12. Assume k2 is not a Dirichlet eigenvalue for D. Then the ranges

of G : H
1
2 (∂D) → L2(Ω) and (F ∗F )

1
4 coincide.

Proof. We use the fact that S∗ : H− 1
2 (∂D) → H

1
2 (∂D) is an isomorphism.

Suppose Gϕ = ψ for some ϕ ∈ H
1
2 (∂D). Then (S∗)−1ϕ ∈ H

1
2 (∂D) and thus

(S∗)−1ϕ =
∞∑

j=1

αjϕj with
∞∑

j=1

|αj |2 <∞. Therefore by (2.17) we have that

ψ = Gϕ = GS∗((S∗)−1ϕ) =
1
4π

∞∑
j=1

αj

√
λjψj =

∞∑
j=1

ρjψj
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with ρj = 1
4παj

√
λj and thus

∞∑
j=1

|ρj |2

|λj |
=

1
(4π)2

∞∑
j=1

|αj |2 <∞. (4.18)

On the other hand, let ψ =
∞∑

j=1

ρjψj with the ρj satisfying (4.18) and define ϕ :=

∞∑
j=1

αjϕj with αj = 4πρj/
√
λj . Then

∞∑
j=1

|αj |2 <∞ and hence ϕ ∈ H− 1
2 (∂D), S∗ϕ ∈

H
1
2 (∂D), and

G(S∗ϕ) =
1
4π

∞∑
j=1

αj

√
λjψj

=
∞∑

j=1

ρjψj

= ψ.

Since
√
|λj | and ψj are the eigenvalues and eigenfunctions respectively of the self-

adjoint operator (F ∗F )
1
4 , we have that

R((F ∗F )
1
4 ) = {

∞∑
j=1

ρjψj :
∞∑

j=1

|ρj |2

|λj |
<∞}

and as we have shown above this is precisely R(G).
Since Φ∞(x̂, z) = 1

4π e
−ikx̂·z is the far field pattern of the fundamental solution

Φ(x, z), it is easy to verify that Φ∞ is in the range of G if and only if z ∈ D, i.e.
(F ∗F )

1
4 g = Φ∞(·, z) is solvable if and only if z ∈ D. In particular, if regularization

methods are used to solve (F ∗F )
1
4 g = Φ∞(·, z) then as the noise level on u∞ tends to

zero the norm of the regularized solution remains bounded if and only if z ∈ D [39],
[75].

For further applications of spectral methods in inverse scattering theory, see Mast,
et. al. [50] and Norris [56].

5. The Inverse Medium Problem. We now turn our attention to the scatter-
ing of plane waves by a penetrable inhomogeneous medium of compact support and
consider the mathematical problems associated with determining either the index of
refraction or the support of the inhomogeneous medium from the far field pattern of
the scattered field. In particular, consider the direct scattering problem of finding
u ∈ C2(D) ∩ C1(D̄), u0 ∈ C2(R3 \ D̄) ∩ C1(R3 \D) such that

∆u+ k2n(x)u = 0 in D (5.1a)
∆u0 + k2u0 = 0 in R3 \ D̄ (5.1b)

u0(x) = eikx·d + us(x) in R3 \ D̄ (5.1c)
u0 = u on ∂D (5.1d)

∂u0

∂ν
= α

∂u

∂ν
on ∂D (5.1e)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0 (5.1f)
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whereD is a bounded domain with connected complement R3\D̄ and C2 boundary ∂D
having unit outward normal ν, n ∈ C1(D̄) is the index of refraction where Im n(x) ≥
0 for x ∈ D such that n(x) 6= 1 for x ∈ ∂D and α is a positive constant. As in the
previous section, d is a vector on the unit sphere Ω and the radiation condition (5.1f)
is assumed to hold uniformly for x̂ = x/|x| on Ω. The existence of a unique solution
to (5.1a)–(5.1f) has been established by Werner [78] (see also [21] and [34]). Although
from a physical point of view (5.1a)–(5.1f) is somewhat restricted as far as a model for
acoustic wave propagation is concerned, it suffices to demonstrate the salient features
of the inverse scattering problem we want to consider.

For the direct scattering problem (5.1a)–(5.1f), there are only minor differences
in the analysis for the case α = 1 and α 6= 1. However, for the inverse scattering
problem different techniques are often needed for these two cases and at the time of
this writing significant questions remain for the case where α 6= 1. Hence, for most of
this section of our paper we will restrict our attention to the case where α = 1 and
only mention in passing the corresponding results (or lack thereof) for the case α 6= 1.
For both cases, the basic results on the far field pattern, i.e. Rellich’s lemma and
the reciprocity relation, remain valid and the proofs of Theorems 4.3 and 4.4 can be
easily modified to show that if α is real and n is real valued then the far field operator
is normal. However, if Im n(x) > 0 for some x ∈ D then the far field operator F is
no longer normal and for both real and complex valued refractive indices the issue of
injectivity of F is not as simple as in the case of scattering by a sound soft obstacle.
In order to discuss these issues, we now restrict our attention to the case α = 1, i.e.
we will consider the scattering problem

∆u+ k2n(x)u = 0 in R3 \ ∂D (5.2a)
u(x) = eikx·d + us(x) (5.2b)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0 (5.2c)

where u is twice continuously differentiable in R3 \∂D and continuously differentiable
in R3.

We first turn out attention to the analogue of the basic identity in Theorem 4.3
for the case of the scattering problem (5.2a)–(5.2c) where again

us(x) =
eikr

r
u∞(x̂, d) +O

( 1
r2

)
(5.3)

and the far field operator is defined by (1.11). Using the same notation as in Theorem
4.3, and the fact that

∫
∂D

(
vi

g

∂vi
h

∂ν
− vi

h

∂vi
g

∂ν

)
ds = 0

32



by Green’s theorem, we have from Green’s theorem again that

2ik2

∫
D

∫
Im nvgvhdx =

∫
∂D

(
vg
∂vh

∂ν
− vh

∂vg

∂ν

)
ds

=
∫

∂D

(
vs

g

∂vs
h

∂ν
− vs

h

∂vs
g

∂ν

)
ds+

∫
∂D

(
vs

g

∂vi
h

∂ν
− vi

h

∂vs
g

∂ν

)
ds

+
∫

∂D

(
vi

g

∂vs
h

∂ν
− vs

h

∂vi
g

∂ν

)
ds.

Following the proof of Theorem 4.3 now yields the following basic identity for the far
field operator corresponding to the scattering problem (5.2a)–(5.2c) [13], [11]:

Theorem 5.1. Let vi
g and vi

h be Herglotz wave functions with kernels g, h ∈ L2(Ω)
respectively and let vg, vh be the solutions of (5.2a)–(5.2c) with ui(x) = eikx·d replaced
by vi

g and vi
h respectively. Then

ik2

∫
D

∫
Im nvgvhdx = 2π(Fg, h)− 2π(g, Fh)− ik(Fg, Fh)

where (·, ·) denotes the inner product on L2(Ω).
From Theorem 5.1, setting g = h and using the fact that vg = 0 if and only if

g = 0, we see that if Im n(x) > 0 for some x ∈ D then F is injective. In particular,
Fg = 0 and Im n(x) > 0 for some x ∈ D implies by Theorem 5.1 that vg(x) = 0
for x in some ball contained in D and hence by unique continuation vg(x) = 0 for
x ∈ D. The invertibility of the Lippmann-Schwinger equation (1.15) now implies that
vi

g(x) = 0 for x ∈ D and hence g = 0. On the other hand, when n is real valued we
can use the following result to investigate injectivity.

Theorem 5.2. The far field operator corresponding to (5.2a)–(5.2b) is injective
with dense range if and only if there does not exist w ∈ C2(D)∩C1(D̄) and a Herglotz
wave function v such that v, w is a solution to the homogeneous interior transmission
problem

∆v + k2v = 0
∆w + k2n(x)w = 0

}
in D (5.4a)

v = w
∂v

∂ν
=
∂w

∂ν

}
on ∂D. (5.4b)

Proof. As in the case of Theorem 4.5, it suffices to establish conditions for which
the far field operator F is injective. To this end, we note that Fg = 0 with g 6= 0 is
equivalent to the vanishing of the far field pattern of ws where w is the solution of
(5.2a)–(5.2c) with eikx·d replaced by the Herglotz wave function v with kernel g. By
Rellich’s lemma, ws = 0 in R3 \D and hence if w = v + ws we have

w = v
∂w

∂ν
=

∂v

∂ν

}
on ∂D.

The proof is now finished.
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Knowing that the values of k for which the far field operator is not injective form a
discrete set is of considerable importance in the inverse scattering problem associated
with (5.2a)–(5.2c) just as it is in the case of obstacle scattering, where it is known that
the set of Dirichlet eigenvalues forms a discrete set. In the case of the linear sampling
method, for example, this enables us to conclude that the method can fail only for a
discrete set of values of k. From Theorem 5.2 we see that F is injective if there does
not exist a nontrivial solution v, w to the interior transmission problem. Values of k
for which there exists a nontrivial solution to (5.4a), (5.4b) are called transmission
eigenvalues. It was shown by Colton, Kirsch and Päiväiranta ([9] and Section 8.6
of [13]) and by Rynne and Sleeman [69] that the set of transmission eigenvalues is
discrete. The analogous problem for the case when α 6= 1 remains open.

We now turn to the problem of the unique determination of n = n(x) in (5.2a)–
(5.2c) from a knowledge of the far field pattern u∞(x̂, d) for x̂, d ∈ Ω. The proof is
based on the following two lemmas, where H2(B) denotes the usual Sobolev space on
B (for proofs, see [13], [32] or [38]).

Lemma 5.3. Let B be an open ball centered at the origin and containing the
support of m = 1 − n. Then there exists a positive constant C such that for each
z ∈ C3 with z · z = 0 and | Re z| ≥ 2k2‖n‖∞ there exists a solution v ∈ H2(B) to
∆v + k2nv = 0 in B of the form

v(x) = eiz·x[1 + r(x)]

where

‖r‖L2(B) ≤
C

| Re z|
.

Lemma 5.4. Let B1 and B2 be two open balls centered at the origin and containing
the support of m = 1−n such that B1 ⊂ B2. Then the set of total fields {u(·, d), d ∈ Ω}
satisfying (3.2a)–(3.2c) is complete in the closure of

H := {v ∈ C2(B2) : ∆v + k2nv = 0 in B2}

with respect to the L2(B1) norm.
Now we are ready to prove the following uniqueness result for the inverse medium

problem.
Theorem 5.5. The refractive index n in the scattering problem (5.2a)–(5.2c) is

uniquely determined by a knowledge of the far field pattern u∞(x̂, d) for x̂, d ∈ Ω and
a fixed wave number k.

Proof. Assume that n1 and n2 are two refractive indices such that u1,∞(·, d) =
u2,∞(·, d), d ∈ Ω, and let B1 and B2 be two open balls centered at the origin and
containing the supports of 1 − n1 and 1 − n2 such that B̄1 ⊂ B2. Then by Rellich’s
lemma we have that u1(·, d) = u2(·, d) in R3 \ B̄1 for all d ∈ Ω. Hence u = u1 − u2

satisfies u = ∂u/∂ν = 0 on ∂B1 and the differential equation

∆u+ k2n1u = k2(n2 − n1)u2.

in B1. From this and the differential equation for ũ1 = u1(·, d̃), d̃ ∈ Ω, we obtain

k2ũ1u2(n2 − n1) = ũ1(∆u+ k2n1u) = ũ1∆u− u∆ũ1.
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From Green’s theorem and the fact that the Cauchy data for u vanishes on ∂B1 we
now have that ∫

B1

∫
u1(·, d̃)u2(·, d)(n1 − n2)dx = 0

for all d, d̃ ∈ Ω. It follows from Lemma 5.4 that∫
B1

∫
v1v2(n1 − n2)dx = 0 (5.5)

for all solutions v1, v2 ∈ C2(B̄2) of ∆v1 + k2n1v1 = 0 and ∆v2 + k2n2v2 = 0 in B2.
Given y ∈ R3 \ {0} and ρ > 0, we now choose vectors a, b ∈ R3 such that {y, a, b}

is an orthogonal basis in R3 with the properties that |a| = 1 and |b|2 = |y|2 + ρ2.
Then for z1 := y + ρa+ ib, z2 := y − ρa− ib we have that

zj · zj = | Re zj |2 − |Im zj |2 + 2i Re zj · Im zj

= |y|2 + ρ2 − |b|2

= 0

and

| Re zj |2 = |y|2 + ρ2 ≥ ρ2.

In (5.5) we now substitute the solutions v1 and v2 from Lemma 5.3 for the refractive
indices n1 and n2 and the vectors z1 and z2 respectively. Since z1 + z2 = 2y this gives∫

B1

∫
e2iy·x[1 + r1(x)][1 + r2(x)][n1(x)− n2(x)]dx = 0

and passing to the limit as ρ→∞ gives∫
B1

∫
e2iy·x[n1(x)− n2(x)]dx = 0.

Since this equation is true for arbitrary y ∈ R3, by the Fourier integral theorem we
have that n1(x) = n2(x) in B1 and the proof is finished.

Uniqueness theorems for the inverse scattering problem associated with (5.1a)–
(5.1d) with α 6= 1 have been given by Isakov [36], [34]. The basic idea of the proofs
in this case is a combination of the above ideas together with those of Theorem 4.7
for the case of obstacle scattering.

Having established uniqueness for the inverse scattering problem, we now turn
our attention to the reconstruction of the index of refraction n, focusing our attention
on the scattering problem (5.2a)–(5.2c). As mentioned in the Introduction, there are
a variety of optimization methods for reconstructing the index of refraction in this
case. We shall briefly describe one of these, the dual space method, which has the
advantage over other methods of being able to increase the number of incident fields
without increasing the cost of solving the inverse problem. The dual space method
can also be extended to the inverse scattering problem associated with (5.1a)–(5.1d)
for α 6= 1 [5].
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We begin our description of the dual space method for solving the inverse scat-
tering problem associated with (3.2a)–(3.2c) by assuming that there exist functions
vp ∈ C2(D)∩C1(D̄) and wp ∈ C2(D)∩C1(D̄) which satisfy the interior transmission
problem

∆vp + k2vp = 0
∆wp + k2n(x)wp = 0

}
in D (5.6)

wp − vp = up

∂wp

∂ν
− ∂vp

∂ν
=

∂up

∂ν

}
on ∂D (5.7)

where

up(x) := h(1)
p (k|x|)Yp(x̂)

and h(1)
p is a spherical Hankel function of the first kind of order p and Yp is a spherical

harmonic of order p. If we further assume that vp is a Herglotz wave function written
in the form

vp(x) =
∫
Ω

e−ikx·dgp(d) ds(d) (5.8)

where gp ∈ L2(Ω), then from the representation (4.5) for u∞, Green’s formula and
theorem and the radiation condition we have for every d ∈ Ω that∫

Ω

u∞(x̂, d)gp(x̂) ds(x̂) =

=
1
4π

∫
∂D

(
us ∂vp

∂ν
− vp

∂us

∂ν

)
ds

=
1
4π

∫
∂D

(
u
∂vp

∂ν
− vp

∂u

∂ν

)
ds

=
1
4π

∫
∂D

(
u
∂wp

∂ν
− wp

∂u

∂ν

)
ds− 1

4π

∫
∂D

(
u
∂up

∂ν
− up

∂u

∂ν

)
ds

= − 1
4π

∫
∂D

(
eikx·d ∂up

∂ν
(x)− up(x)

∂eikx·d

∂ν

)
ds(x) =

ip−1

k
Yp(d).

We can now conclude that the identity∫
Ω

u∞(x̂, d)gp(x̂) ds(x̂) =
ip−1

k
Yp(d) (5.9)

is satisfied if and only if there exists a solution of the interior transmission problem
(5.6), (5.7) such that vp is a Herglotz wave function of the form (5.8). As will be
shown later, a weak solution of the interior transmission problem exists if k is not a
transmission eigenvalue and, if vp, wp is such a weak solution, vp can be approximated
by a Herglotz wave function. Letting B be a ball centered at the origin and containing
D in its interior and using Green’s formula to rewrite the interior transmission problem
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(5.6), (5.7) as the operator equation (note that if m := 1 − n then m(x) = 0 for
x ∈ R3 \D)

wp + k2Twp = vp in B
up + k2Twp = 0 on ∂B (5.10)

where

(Twp)(x) :=
∫
B

∫
Φ(x, y)m(y)wp(y) dy

and Φ is defined by (1.8) now leads to the dual space method for determining m
in the case when k is not a transmission eigenvalue: for 0 ≤ p ≤ P, determine gp

from (5.9), define vp by (5.8) and then use your favorite optimization method to
determine m (and wp) from (5.10). The first step in this procedure motivates the
name dual space method since the determination of gp defines a linear functional on
L2(Ω) having prescribed values on the set of far field patterns for a fixed incident
direction d. For further details we refer the reader to Sections 10.3 and 10.6 of [13]. If
k is a transmission eigenvalue, the far field equation (5.9) must be modified, leading
to the concept of modified far field operators [7], [18] and the shifting of eigenvalues
[11].

As we have previously mentioned, a reconstruction of the complete index of re-
fraction is often more than is necessary. Instead, it is frequently sufficient to determine
the support of m = 1−n. This can be done by extending the linear sampling method
for obstacle scattering to the case of scattering by an inhomogeneous medium. We
now proceed to describe this extension for the case of problem (5.2a)–(5.2c), when
α = 1. The situation when α 6= 1 has been studied by Colton and Piana [21] and we
refer the reader to this paper for details of the linear sampling method in this case
(when α 6= 1 the associated interior transmission problem is changed in an obvious
way and this requires a different analysis than that which follows). As with obstacle
scattering, there are two versions of the linear sampling method corresponding to the
far field operator F and the operator (F ∗F )

1
4 respectively [8], [22], [40]. Since for

arbitrary but fixed values of the wave number k the method associated with (F ∗F )
1
4

is restricted to non-absorbing media, i.e. Im n = 0, we only consider the far field
equation Fg = Φ∞(·, z) which does not have this restriction. However, to avoid the
problem of transmission eigenvalues we will limit our attention to the case when there
exists a positive constant c such that

Im n(x) ≥ c (5.11)

for x ∈ D where D̄ is the support of m = 1 − n. If instead of (5.11) we have that
Im n(x) = 0 for x ∈ D, then the analysis which follows remains valid if we assume
that k is not a transmission eigenvalue.

The derivation of the linear sampling method for the inverse scattering problem
associated with (5.2a)–(5.2c) is based on a projection theorem for Hilbert spaces where
the inner product is replaced by a bounded sesquilinear form together with an analysis
of a special interior transmission problem ([22], Section 10.7 of [13]). We begin with
the projection theorem. Let X be a Hilbert space with the scalar product (·, ·) and
norm ‖ · ‖ induced by (·, ·) and let 〈·, ·〉 be a bounded sesquilinear form on X such
that

|〈ϕ,ϕ〉| ≥ C‖ϕ‖2 (5.12)
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for all ϕ ∈ X where C is a positive constant. Then, using the Lax-Milgram theorem,
we have the following theorem where ⊕s is the orthogonal decomposition with respect
to the sesquilinear form 〈·, ·〉 and H⊥s is the orthogonal complement of H̄ with respect
to 〈·, ·〉.

Theorem 5.6. For every closed subspace H̄ ⊂ X we have the orthogonal decom-
position

X = H⊥s ⊕s H.

The projection operator P : X → H⊥s defined by this decomposition is bounded in
X.

We next turn our attention to the problem of showing the existence of a unique
weak solution v, w of the interior transmission problem

∆v + k2v = 0
∆w + k2n(x)w = 0

}
in D (5.13a)

w − v = Φ(·, z)
∂w

∂ν
− ∂v

∂ν
=

∂

∂ν
Φ(·, z)

}
on ∂D (5.13b)

where z ∈ D,n is assumed to satisfy (5.11), D̄ is the support of m = 1−n where it is
assumed that ∂D is twice continuously differentiable with unit outward normal ν and
Φ as usual is defined by (1.8). To motivate the following definition of a weak solution
of (5.13a), (5.13b) we note that if a solution v, w ∈ C2(D)∩C1(D̄) to (5.13a), (5.13b)
exists, then from Green’s formula and Rellich’s lemma we have that

w(x) + k2

∫
D

∫
Φ(x, y)m(y)w(y)dy = v(x), x ∈ D (5.14a)

−k2

∫
D

∫
Φ(x, y)m(y)w(y)dy = Φ(x, z), x ∈ ∂B (5.14b)

where B is a ball centered at the origin with D̄ ⊂ B.
Definition 5.7. Let H be the linear space of all Herglotz wave functions and H̄

the closure of H in L2(D). For ϕ ∈ L2(D) define the volume potential by

(Tϕ)(x) :=
∫
D

∫
Φ(x, y)m(y)ϕ(y)dy, x ∈ R3.

Then a pair v, w with v ∈ H̄ and w ∈ L2(D) is said to be a weak solution of the
interior transmission problem (5.13a), (5.13b) with point source z ∈ D if v and w
satisfy the integral equation

w + k2Tw = v

and the boundary condition

−k2Tw = Φ(·, z) on ∂B.

The uniqueness of a weak solution to the interior transmission problem follows
from a limiting argument using (3.11) and a simple application of Green’s theorem
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([13], [22]). To prove existence we will use Theorem 5.6 applied to the sesquilinear
form in L2(D) defined by

〈ϕ,ψ〉 :=
∫
D

∫
m(y)ϕ(y)ψ(y)dy

and H as defined in the above definition.
Theorem 5.8. For every source point z ∈ D there exists a weak solution to the

interior transmission problem.
Proof. By a translation we can assume without loss of generality that z = 0. We

consider the space

H0
1 := span {jp(k|x|)Y q

p (x̂), p = 1, 2, · · · ,−p < q ≤ p}

and the closure H1 of H0
1 in L2(D) where jp is a spherical Bessel function and Y q

p a
spherical harmonic. It can be shown that there exists a nontrivial ψ ∈ H⊥s

1 ∩ H̄ such
that 〈j0, ψ〉 6= 0.

Now let P be the projection operator from L2(D) ontoH⊥s as defined by Theorem
5.6. We first consider the integral equation

u+ k2PTu = k2PTψ (5.15)

in L2(D). Since T is compact and P is bounded, the operator PT is compact in
L2(D). In order to apply the Riesz theory for compact operators [45], we will prove
uniqueness for the homogeneous equation. To this end, assume that w ∈ L2(D)
satisfies

w + k2PTw = 0.

Then w ∈ H⊥s and v := k2(I − P )Tw ∈ H̄ satisfy

w + k2Tw = v.

Since 〈w,ϕ〉 = 0 for all ϕ ∈ H, from the addition formula for Bessel functions we
conclude that

Tw = 0 on ∂B.

Hence by uniqueness of the weak interior transmission problem we have that v = w =
0. By the Riesz theory we now obtain the continuous invertibility of I + k2PT in
L2(D).

Now let u be the solution of (5.15) and note that u ∈ H⊥s . We define the constant
c and function w ∈ L2(D) by

c := − 1
k2〈j0, ψ〉

, w := c(u− ψ).

Then we compute

w + k2PTw = −cψ

and hence

w + k2Tw = v
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where v := k2(I − P )Tw − cψ ∈ H̄. Since

〈h,w〉 = c〈h, u− ψ〉 = 0

for all h ∈ H1 and

〈j0, w〉 = c〈j0, u− ψ〉 = − 1
k2

we have from the addition formula for Bessel functions that

−k2(Tw)(x) = ikh
(1)
0 (k|x|) = Φ(x, 0), x ∈ ∂B,

where h(1)
0 is a spherical Hankel function of the first kind of order zero, and the proof

is complete.
We are now in a position to indicate how the support D of m can be determined

from the far field pattern u∞ corresponding to the scattering problem (5.2a)–(5.2c).
It suffices to determine ∂D. Following [8] and [22], we do this by looking for special
approximate solutions of the far field equation Fg = Φ∞(·, z), i.e.∫

Ω

u∞(x̂, d)g(d) ds(d) = Φ∞(x̂, z) (5.16)

where, as in the previous section, Φ∞(·, z) is the far field pattern of the fundamental
solution Φ(·, z). Following the proof of Theorem 5.2 we see that (5.16) has a solution
if and only if the interior transmission problem (5.13a), (5.13b) with source point
z ∈ D has a solution v, w ∈ C2(D) ∩ C1(D̄) such that v is a Herglotz wave function
with kernel g. This is true only in very special cases. However, by Theorem 5.8 we
know that there exists a (unique) weak solution of the interior transmission problem
v, w and that v can be approximated in L2(D) by a Herglotz wave function. This fact
then enables us to establish the following result analogous to Theorem 4.10 for the
case of obstacle scattering [8], [22]:

Theorem 5.9. For every ε > 0 and z ∈ D there exists a solution g = g(·, z) ∈
L2(Ω) of the inequality ‖Fg − Φ∞(·, z)‖L2(Ω) < ε such that

lim
z→∂D

‖g(·, z)‖L2(Ω) = ∞

and if vg(·, z) is the Herglotz wave function with kernel g then

lim
z→∂D

‖vg(·, z)‖L2(D) = ∞.

As in the discussion following Theorem 4.10, the above theorem suggests a nu-
merical procedure for determining ∂D from noisy far field data (see Section 2). We
note in passing that the linear sampling method has a connection with the idea of
“focusing”. In particular, in the time harmonic case, focusing of energy into the scat-
terer is accomplished by choosing the incident field to be a Herglotz wave function
with kernel g equal to the eigenfunction of the largest eigenvalue of the far field oper-
ator whereas in the linear sampling method the kernel g = g(·, z) is chosen to be (an
approximate) solution of the far field equation leading to a focusing of energy on the
boundary ∂D of the scatterer as z → ∂D [50].
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In many, if not most, areas of application the unknown anomaly having support
D is situated in a piecewise homogeneous background medium rather than a homoge-
neous background. Furthermore, the directions of the incident fields and observation
directions of the scattered field are restricted to a limited aperture as in Section
3 of this paper. For now will only address the issue of a piecewise homogeneous
background medium. Following [19] and [15], we consider the scattering problem
(5.2a)–(5.2c) where k is piecewise constant in R3, i.e.

∆u+ k2n(x)u = 0 in D0 (5.17a)
∆u+ k2

0u = 0 in R3 \ D̄0 (5.17b)
u(x) = eik0x·d + us(x) (5.17c)

lim
r→∞

r
(∂us

∂r
− ik0u

s
)

= 0 (5.17d)

where D̄ ⊂ D0, n(x) = 1 for x ∈ D0 \D,D0 is bounded with a C2 boundary ∂D0 and
u is continuously differentiable across ∂D0. We can now rewrite (5.17c) as

u(x) =
(
eik0x·d + us

b(x)
)

+
(
us(x)− us

b(x)
)

where us
b is the scattering due to the background medium alone, i.e. the scattered

field for (5.17a)–(5.17d) in the case when n(x) = 1 for x ∈ D0.
We now let G∞(·, z) be the far field pattern of the Green’s function G(·, z) for

the background medium with source point z ∈ D and consider the modified far field
equation ∫

Ω

[u∞(x̂, d)− us
b,∞(x̂, d)]g(d) ds(d) = G∞(x̂, z). (5.18)

Noting that the kernel of the integral operator is the far field pattern corresponding
to the incident field ub(x, d) = eik0x·d + us

b(x), we see from Rellich’s lemma and
Holmgren’s uniqueness theorem [2] that if g is a solution of (5.18) then

U(x) :=
∫
Ω

u(x, d)g(d) ds(d)

and

V (x) :=
∫
Ω

ub(x, d)g(d) ds(d)

satisfy the interior transmission problem

∆V + k2V = 0
∆U + k2n(x)U = 0

}
in D (5.19a)

U − V = G(x, z)
∂U

∂ν
− ∂V

∂ν
=

∂

∂ν
G(x, z)

}
on ∂D. (5.19b)

Provided we can construct a (unique) weak solution to the interior transmission prob-
lem (5.19a), (5.19b), we can now prove a result analogous to Theorem 5.9 for the
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Fig. 5.1. In this section we assume that the unknown anomaly D is located inside a known
background medium D0. The problem is to determine the support of D.

modified far field equation and thus have a method for numerically determining the
support D of m = 1− n by solving (5.18). But, for x ∈ D,G(x, z) = Φ(x, z) + h(x, z)
where h is a regular solution of the Helmholtz equation in D and hence we can rewrite
(5.19a), (5.19b) in the form (5.13a), (5.13b) where w = U and v = V + h. We can
now use our previous results to construct a weak solution to (5.19a), (5.19b).

We conclude our survey by briefly considering the inverse scattering problem for
an orthotropic medium. This problem arises if one considers the scattering of a TE
polarized electromagnetic wave by an anisotropic infinite cylinder where the index of
refraction has the form  n11(x) n12(x) 0

n21(x) n22(x) 0
0 0 n33(x)


and the nij are independent of the coordinate lying along the axis of the cylinder.
The magnetic field is then of the form (0, 0, u) where u satisfies

∇ ·N(x)∇u+ k2u = 0 in R2 (5.20a)
u = ui + us (5.20b)

lim
r→∞

√
r
(∂us

∂r
− ikus

)
= 0 (5.20c)
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with ui(x) = eikx·d and

N(x) =
1

n11n22 − n12n21

(
n11(x) n12(x)
n21(x) n22(x)

)
.

We make the assumption that N is continuously differentiable in R2 such that I −N
has support D̄ ⊂ R2 where D is a bounded domain with connected complement and
C2 boundary ∂D. We further assume that M(x) := I −N(x) can be pointwise diag-
onalized with a unitary complex matrix U(x) and that if M(x) = U∗(x)MD(x)U(x)
where MD is a diagonal matrix then I −MD has a positive definite real part and
a negative definite imaginary part. This implies that for x ∈ D the matrix N is
coercive, i.e.

Im (aNa) ≥ γ(x)|a|2

for every a ∈ C2 where γ(x) > 0 for x ∈ D.
Under the above assumptions, Potthast [62] was able to use the method of integral

equations to show that there exists a unique solution to the direct scattering problem
(5.20a)–(5.20c). From the point of view of the inverse scattering problem, the use of
integral equations in solving (5.20a)–(5.20c) is crucial since this approach now enables
us to follow the ideas discussed above for the isotropic case to establish the validity
of the linear sampling method for determining the support of M . In particular, from
the two dimensional version of (1.7) it follows that

us(x) =
eikr

√
r
u∞(x̂, d) +O

( 1
r

3
2

)
as r →∞ and the inverse scattering problem of interest is to determine the support D
of M from a knowledge of u∞(x̂, d) for x̂, d ∈ Ω where Ω is now the unit circle in R2.
(We note that u∞ does not uniquely determineN = N(x) but does uniquely determine
the support D [14], [31], [60]). It was shown in [23] that D can be determined in a
manner now familiar by solving the far field equation∫

Ω

u∞(x̂, d)g(d) ds(d) = Φ∞(x̂, z), x̂ ∈ Ω

where Φ∞ is the far field pattern of the two dimensional fundamental solution

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|), x 6= y

and H(1)
0 is a Hankel function of the first kind of order zero.

The analysis in [23] establishing the validity of the linear sampling method for
orthotropic media is considerably more technical than the case of isotropic media
since the integral operators of concern are now strongly singular. In particular, the
analysis requires that M = I on ∂D and this means that the proof of the existence
of a unique weak solution to the interior transmission problem

∆v + k2v = 0
∇ ·N∇u+ k2u = 0

}
in D

u− v = Φ(·, z)
∂u

∂ν
− ∂v

∂ν
=

∂

∂ν
Φ(·, z)

}
on ∂D
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must be carried out in the weighted space L2
Γ(D) with inner product

(a, b)Γ :=
∫
D

∫
a(x) · Γ(x)b(x)dx

where Γ(x) = U∗(x)ImMD(x)U(x). The proof of the existence of a weak solution to
the interior transmission problem now requires that ‖Γ(x)‖ ≤ c for all x ∈ D with a
sufficiently small constant c. For the case when N = N(x) is real, we refer the reader
to [20].
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[9] D. Colton, A. Kirsch, and L. Päiväirinta, Far field patterns for acoustic waves in an
inhomogeneous medium, SIAM J. Math. Anal., 20 (1989), pp. 1472–1483.

[10] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley, New
York, 1983.

[11] , Eigenvalues of the far field operator and inverse scattering theory, SIAM J. Math.
Anal., 26 (1995), pp. 601–615.

[12] , Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium,
SIAM J. Appl. Math., 55 (1995), pp. 1724–1735.

[13] , Inverse Acoustic and Electromagnetic Scattering Theory, no. 93 in Applied Mathemat-
ical Sciences, Springer-Verlag, New York, second ed., 1998.

44



[14] D. Colton, R. Kress, and P. Monk, Inverse scattering from an orthotropic medium, J.
Comp. Applied Math., 81 (1997), pp. 269–298.

[15] D. Colton and P. Monk, A linear sampling method for the detection of leukemia using
microwaves II. To appear in SIAM J. Appl. Math..

[16] , The numerical solution of the three dimensional inverse scattering problem for time-
harmonic acoustic waves, SIAM J. Sci. Stat. Comp., 8 (1987), pp. 278–291.

[17] , The inverse scattering problem for time harmonic acoustic waves in an inhomogeneous
medium, Quart. Jour. Mech. Appl. Math., 41 (1988), pp. 97–125.

[18] , On a class of integral equations of the first kind in inverse scattering theory, SIAM J.
Appl. Math., 53 (1993), pp. 847–860.

[19] , A linear sampling method for the detection of leukemia using microwaves, SIAM J.
Appl. Math., 58 (1998), pp. 926–941.
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