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The overall goal of this doctoral dissertation is to develop methods to 

accurately predict the partitioning and sorption behavior of neutral and ionic species 

from water into liquid organic phases as well as onto various forms of black and 

organic carbon. For neutral solutes, this includes the development of a novel sorption 

isotherm � the log-normal Langmuir model � that describes nonlinear partitioning onto 

carbonaceous sorbents with one sorbate-specific parameter. For charged species, a 

model has been developed that can generate the Abraham parameters that are the 

physical-chemical descriptors for charged species using quantum chemical 

computations. These solute descriptors are then used to predict both the solvent-water 

partitioning of the ionic species, as well as the sorption of ionic species onto soil 

organic carbon, using the log-normal Langmuir isotherm model developed for neutral 

species. 

To better understand the nature of non-linear adsorption of organic solutes onto 

black carbon, a non-linear sorption model � the log-normal Langmuir model � was 

developed in Chapter 2 that utilizes Langmuir isotherms with a log-normal distribution 

of binding constants and a single maximum sorption capacity. The model has two 

sorbent-specific parameters: the maximum sorption capacity, qmax� and the standard 

deviation, ��� of the log of the Langmuir binding constants; and one sorbate-specific 

parameter, the median Langmuir binding constant, ���. This is an important advance 

over previously available sorption isotherm models, for example the Freundlich 

isotherm, which has two sorbate-specific parameters. The reduction to a single 
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sorbate-specific parameter which has chemical meaning � the median Langmuir 

binding constant, ��� � is an important advance. In particular it allows quantitative 

prediction of the isotherm for a new chemical if the single sorbate-specific parameter 

can be predicted. 

In Chapter 3, the median Langmuir binding constants are predicted using an 

Abraham poly-parameter linear free energy relationship (pp-LFERs). For sorption of 

neutral organic solutes onto graphite, charcoal, Darco GAC, and F400 GAC (n = 13, 

11, 14, 44 sorbates, respectively), RMS errors of predicted median binding constants, 

�������	, of 0.129, 0.307, 0.407, and 0.424 were obtained. Predicted isotherms were 

constructed with RMS errors of the predicted sorbed concentrations, ����
��		, of 

0.0820, 0.1809, 0.183, and 0.220, respectively. This demonstrates that using the LNL 

isotherm and Abraham pp-LFER models, it is possible to predict the sorption isotherm 

of a new sorbate from only its molecular structure. 

In Chapter 4, Abraham parameters for ionic species are estimated directly from 

quantum chemical (QC) computations of solvent-water partition coefficients and 

molecular polarizability by extending a method developed by Liang & Di Toro for 

neutral species. Quantum-chemically estimated Abraham solute (QCAP) parameters 

are determined for the solvent-water partitioning of a suite of carboxylic acid anions (n 

= 60) in acetone-, acetonitrile-, dimethylsulfoxide-, and methanol-water systems, as 

well as a suite of quaternary amine cations (n = 217) in an octanol-water system. 

Using these QCAP solute parameters, predictions of experimental solvent-water 

partition coefficients are made for the carboxylate anions with RMS errors of 0.475, 

0.512, 0.460, and 0.393 for the four solvent-water systems, respectively. This is an 

improvement over both direct a priori QC calculations (RMSE = 3.43, 3.71, 0.698, 
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and 2.14, respectively) and predictions made using Absolv-estimated Abraham solute 

descriptors (AAP) (RMSE = 0.636, 0.59, 1.11, and 0.389, respectively) for the four 

solvent-water systems.  

For the quaternary amine cations, the QCAP and AAP methods showed 

comparable improvements over direct QC computations of the octanol-water partition 

coefficients (RMSE = 1.16, 2.82, and 0.997, for the QCAP, direct QC, and AAP 

methods, respectively). 

In Chapter 5, the log-normal Langmuir (LNL) isotherm is used to model non-

linear sorption of a suite of primary through quaternary amines (n = 80) onto natural 

organic carbon (Pahokee peat). The LNL model can reproduce the sorption data 

(RMSE = 0.272, N = 80) for both fully ionized, as well as partially ionized, species. 

The latter are modeled as the sum of a linear isotherm for the neutral species, the usual 

model, and a LNL model for the charged species, weighted by the fractions neutral 

and ionized species present at the experimental pH = 4.5 and 6.8.  

The median Langmuir binding constants for the ionic species are predicted 

using QCAP solute descriptors (RMSE = 0.526, N = 60) with accuracies comparable 

to those of linear partition coefficients for neutral species. The parameter for the 

neutral species linear isotherm model, ���, is predicted using a previously developed 

Abraham model. The predicted isotherms, constructed using the QCAP-predicted 

median binding constants and Abraham-predicted ���, demonstrate good agreement 

with the experimental data (RMSE = 0.457, N = 60). 

The results of this dissertation research are models that can reproduce non-

linear sorption isotherm data of neutral and ionic species with only one sorbate-

specific parameter. For the cases considered: samples of graphite, powered charcoal, 
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and activated carbon, and for a natural organic carbon (Pahokee peat), the sorbate 

specific parameter can be predicted from its molecular structure only. The QCAP 

parameters can also be used to predict solvent-water partitioning of ionic compounds. 

This greatly expands the range of compounds that can be analyzed for 

physical/chemical properties that are used to evaluate the environmental risk posed by 

new compounds for which only the molecular structure is known.
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INTRODUCTION 

1.1 Motivation 

Modeling the partitioning of organic pollutants in the environment has been an 

area of concern for many years. Early work has focused primarily on the partitioning 

of neutral organic species between water and organic phases (e.g., octanol, natural 

organic matter (NOM) in soils, lipid in fish and other organisms)1-7. This work has 

focused primarily on the linear partitioning of these species between environmental 

phases, largely ignoring non-linear partitioning behavior.  

Models exist for predicting the linear partitioning of neutral organic species to 

soil organic carbon from the chemical structure or the physical chemical properties of 

the sorbates4,8. However, similar models do not exist for ionizable organic species. 

Recent work by Franco et al.9 has demonstrated that for a subset of the 117,000 

organic chemicals registered in the European REACH database, approximately 33% 

���� ���� ���	� 
� �� ���
�������
�� �������� �
 ����������
���� �������
 �� ������

(pH ~ 7.0). Consequently, � ��  of the chemical database lacks a predictive model for 

accurately determining the partitioning, and ultimately the fate and transport, of these 

chemicals in the environment. 

Previous work has attempted to extend existing predictive models for neutral 

species to predict the partitioning and sorption of ionizable species10-14. These 

methods, however, often exhibit significantly larger predictive errors14,15, or require 
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large numbers of regressions and fitting parameters to make predictions of partitioning 

for the ionized species.10-12.  

Consequently, it would be a significant improvement to develop a non-linear 

partitioning model for both neutral and ionizable pollutants onto various carbonaceous 

sorbents with the ability to predict partitioning directly from the chemical structure or 

physical chemical properties of the sorbates. 

1.2 Research Goals 

The overall goal of this doctoral dissertation is to develop methods to 

accurately predict the sorption and partitioning of neutral and ionic species into liquid 

organic phases as well as onto various forms of carbonaceous sorbents. For neutral 

solutes, this includes the development of a sorption isotherm � the log-normal 

Langmuir (LNL) isotherm model � to describe non-linear partitioning onto 

carbonaceous sorbents. This model is presented and tested in Chapter 2.  Further, it is 

important that the parameters of the isotherm model can be predicted from the 

physical chemical properties of the sorbates, a model for which is presented in Chapter 

3.   

For charged species, this includes the development of a model that can 

accurately generate physical-chemical descriptors for charged species independent of 

their neutral counterparts. These solute descriptors are then used to predict both the 

solvent-water partitioning of ionic species (Chapter 4), as well as the sorption of ionic 

species onto soil organic carbon (Chapter 5), using the LNL model developed for 

neutral species. 
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MODELING NON-LINEAR ADSORPTION TO CARBON WITH A SINGLE 
CHEMICAL PARAMETER: A LOG-NORMAL LANGMUIR ISOTHERM1 

Predictive models for linear sorption of solutes onto various media (e.g., soil 

organic carbon) are well-established. However, methods for predicting parameters for 

non-linear isotherm models (e.g., Freundlich and Langmuir models) are not. 

Predicting non-linear partition coefficients is complicated by the number of model 

parameters to fit each isotherm (e.g., Freundlich (2), Langmuir (2), or Polanyi-Manes 

(3)). For a data set with n sorbates and a single sorbent, the number of parameters to fit 

the entire data set is 2n (Freundlich, Langmuir) or 3n (Polanyi-Manes). The purpose of 

this chapter is to present a non-linear adsorption model with only one sorbate-specific 

parameter. To accomplish this, several simplifications to a log-normal Langmuir 

(LNL) isotherm model were explored. A single sorbate-specific binding constant, the 

median Langmuir binding constant, and two sorbent-specific parameters; the total site 

density, qmax, and the standard deviation of the Langmuir binding constant, ��, were 

employed. This single sorbate-specific (ss-LNL) model (2 + n parameters) was 

demonstrated to fit adsorption data as well as the 2n parameter Freundlich model. The 

LNL isotherm model is fit to four data sets comprised of various chemicals sorbed to 

graphite, charcoal, and two types of activated carbon. The RMS errors of sorbed 

concentration (q) for the 3, 2, 2, and 1 sorbate-specific parameter LNL models were 

                                                 
1 Appeared in Environmental Science & Technology 2015, 49, 7810-7817. 

Chapter 2



 

4 
 

0.066, 0.068, 0.069, and 0.113, respectively. The median logarithmic parameter 

standard errors for the four models were 1.070, 0.454, 0.382, and 0.201 respectively. 

Further, the single sorbate-specific parameter model was the only model for which 

there were no standard errors of estimated parameters greater than a factor of 3. The 

surprising result is that very little increase in RMSE occurs when two of the three 

parameters, the standard deviation of the log of the median binding constant, �� , and 

the maximum sorption capacity, ����, are sorbate independent. However, the large 

standard errors present in the other models are significantly reduced. This remarkable 

simplification yields the single sorbate-specific parameter log-normal Langmuir (ss-

LNL) model. 

2.1 Introduction 

Many models have been developed for adsorption of organic chemicals onto 

soils and carbonaceous materials, including black carbon16,17. These models can be 

separated into two major classes: empirical and mechanistic. Although empirical 

models (e.g., the Freundlich isotherm) typically offer better fits to experimental data, 

they are not based on a mechanistic representation of the sorption process. For 

example, the Freundlich isotherm lacks a total site density parameter, never saturating 

(even at large aqueous concentrations), which is unrealistic. Conversely, mechanistic 

models (e.g., the Langmuir isotherm) employ a simplified model of the adsorption 

processes, but generally offer poor fits for the adsorption of organic sorbates onto 

black carbon16. 

Statistically derived isotherm models, while less popular than Langmuir and 

Freundlich models, offer a compromise between empirical and mechanistic models. 

The Langmuir-Freundlich (LF) isotherm, proposed in 1948 by Sips, is one such 
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model18,19. The LF isotherm offers the flexibility of the empirical models with the 

mechanistic basis of a Langmuir isotherm. It has been utilized extensively in the 

modeling of metal-ligand interactions for humic ligands20-24 and to model the 

adsorption energy distributions for organic compounds onto various types of carbon25-

29. 

The purpose of this chapter is to develop and apply a statistical isotherm model 

that accurately reproduces non-linear adsorption with only one sorbate-specific 

parameter. The model employs the basic principles of the LF model. However, the 

distribution of Langmuir binding constants is assumed to be log-normal28-30. 

2.2 Modeling and Experimental Data 

2.2.1 Log-normal Langmuir (LNL) Isotherm 

The Langmuir isotherm31 is conveniently expressed as: 

 ���� �
����	
�

� � 	
�
 (2-1) 

where ���� is the sorbed concentration (mmol/kg sorbent) at aqueous concentration � 

(mM), 	
 is the Langmuir binding constant (L/mmol sorbate) and ���� is the 

saturated monolayer sorption capacity (mmol/kg sorbent). The Freundlich isotherm 31 

is: 

 ���� � 	
�
� (2-2) 

where 	
  is the Freundlich binding constant (mmol/kg)(mM)1/�, � is the aqueous 

concentration (mM), and � is the Freundlich exponent.  The Langmuir-Freundlich 

isotherm 18 is a superposition of Langmuir isotherms 



 

6 
 

���� � ���� 	 �
�
� 
 �
� ��
���
�

�

�
� �����
�����

� 
 �
�����  (2-3) 

where ���� is the total site density (mmol/kg sorbent), 
� is the local Langmuir 

binding constant (L/mmol sorbate), and ��
�� is the probability density function (pdf) 

of the Langmuir binding constants. The approach that Sips employed was to derive a 

��
�� which produces the LF isotherm, the right-hand side of Eq. (2-3). 
�� is the LF 

binding constant (L/mmol sorbate), and � is the LF exponent. When � � � the 

isotherm reduces to the Langmuir equation, and for 
��� � �, the isotherm reduces to 

the Freundlich isotherm with Freundlich constant, 
� � �����
����, since in Eq. (2-

3) 
�� is inside the parentheses. This is to maintain consistent units of 
�� which do 

not depend on the exponent, �. 

Sips observed that ��
�� is nearly a log-normal distribution 18. Since the 

resulting mathematics is more straightforward and, as shown below, a more 

intelligible equation results; it is assumed that 
� is a log-normally distributed random 

variable27,29,30. Defining � as the natural logarithm of 
�� 
 � � ���
�� (2-4) 

Eq. (2-1) then becomes: 

 ���� � �������
� 
 ���  (2-5) 

The normal ���� �!"!#$ %&'(!#$ )*'+#!�' )�� , is:  

 ���- .�- /�0� � �
/�123 456�7�� 7 .��0

2/�0 � (2-6) 

where .�and /� are the mean and standard deviation of � � ���
��. The LNL 

isotherm, Eq. (2-7), is the superposition of the Langmuir isotherm Eq. (2-5) weighted 

by the probability density function Eq. (2-6): 
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 ���� � � ����	
��
� 
 
���

�
��

�������� � �������� ��
����� �� 

(2-7) 

 

It is useful to transform Eq. (2-7) using a standard normal random variable, z:  

 � � �� � �
��  (2-8) 

so that Eq.(2-7) becomes: 

 ���� � ���	
��� � � �
� !"# 

� 
 �
� !"# ��������
� ���

�
��  (2-9) 

For log-normal random variables, the relationship between the median $%& and 

the log mean �� is32: 

 $%&=
�   (2-10) 

Using this relationship, the log-normal Langmuir (LNL) isotherm is: 

 ���� � ���	
��� � � �$%&
"# 

� 
 �$%&
"# ��������
� ���

�
��  (2-11) 

The isotherm has three parameters: $%&' the median Langmuir binding constant, �� the 

standard deviation of � � ()�$%&�, and ���	, the total sorption capacity. Note that, as 

in the case of the Langmuir isotherm (Eq. (2-1)), the LNL isotherm has a 

dimensionless normalized concentration, �$%&, which, as shown below, is useful in 

data analysis and display.  

The integral in the isotherm (Eq. (2-11)) can be evaluated numerically, using a 

Gauss-Hermite quadrature method, with a transformation of variables (x = z/��)33:  

 � 
�	*+�,��, - ./0+�,0�
1

023
�

��  (2-12) 
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where ���� is the argument inside the integral (Eq. (2-11)), excluding the exponential 

term (�����	
 �� ��, and 
� and �� are the weighting factors and roots of the nth order 

Hermite polynomial: 

 
� �
���� ��

�
����������

 (2-13) 

that are listed in Appendix A.1. The final functional form of the isotherm is:  

 ���� � ����
�� �
�

� !"������#$���
% & � !"������#$���

�

�'�
 (2-14) 

A computer program to evaluate this equation is presented in Appendix A.1. 

2.2.2 Experimental Data 

The experimental data used to develop the model was gathered from several 

different sources 34-36 to incorporate various types of black carbon sorbents and 

sorbates from multiple chemical classes. Table 2-1 presents a summary and Figure 2-1 

presents sample isotherm plots to illustrate the range and diversity of the data to be 

analyzed using the LNL isotherm model. 

Table 2-1.  Summary of experimental data used in construction of the log-normal 
Langmuir isotherm model (graphite36, charcoal36, Darco granular 
activated carbon (GAC)34, and F400 GAC35). 

Sorbent # of Sorbates Sorbate Chemical Classes Reference 

Graphite 13 PAHs, Nitroaromatics, Chlorinated Aromatics 36 

Charcoal 11 PAHs, Nitroaromatics, Chlorinated Aromatics 36 

Darco GAC 14 
Hydrocarbons, Ketones, Ethers, Mostly Non-

aromatic 
34 

F400 GAC 44 
PAHs, Nitroaromatics, Chlorinated 

Aromatics, Pesticides 
35 
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Figure 2-1.  Equilibrium adsorption isotherm data for graphite (A), charcoal (B), and 
Darco GAC (C). The legend on the top right corresponds to panels (A) 
and (B). The legend on the bottom right corresponds to panel (C). 

There are large differences in the apparent adsorption capacity and behavior of 

the sorbents. The isotherms span nine orders of magnitude in aqueous concentration 

and five orders of magnitude in sorbed concentration. For graphite (Figure 2-1A), the 
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isotherms are nearly linear on the logarithmic axes, while isotherms in the charcoal 

(Figure 2-1B) and Darco GAC (Figure 2-1C) data sets exhibit curvature. The F400 

data set, which exhibits similar curvature, is omitted from this figure due to the size of 

the data set, but is analyzed subsequently. The curvature suggests that the aqueous 

concentrations are approaching the maximum sorption capacity much more rapidly 

than the Freundlich model would predict. The LNL isotherm has a maximum sorption 

capacity, qmax, which can be estimated for each of the sorbents, including graphite. 

This result is unexpected, since the individual isotherms do not appear to saturate. The 

reason this is possible is presented below.  

2.3 Results 

The log-normal Langmuir model is fit to the isotherm data for the three sorbent 

data sets discussed above as well as the larger F400 GAC data set. For each sorbent-

sorbate isotherm pair there are three LNL isotherm parameters to be estimated: the 

maximum site density, qmax, the standard deviation of the site energy distribution, ���  
and the median Langmuir binding constant, ���. The parameters were determined by 

minimizing the root mean square of the residuals ��	
� �
����� ������ �������, with 

Eq. (2-15) as the prediction: 

 ���� � �� !"#$%&'()*+,-. / #$%"'012,-3345
-67  (2-15) 

where '()*+,- is the LNL-computed sorbed concentration (mmol/kg) and '012,- is the 

experimental sorbed concentration (mmol/kg) for the ith observation. The logarithms 

of the median binding constants were estimated to ensure positivity of the estimated ���. The standard errors of log(���3, '89:, and �� were estimated using SolverAid37.  
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When all three parameters are allowed to vary for each of the n sorbates, there 

are 3n parameters, since each sorbate is fit with its own individual LNL isotherm. 

However, there are not enough data points for each sorbate to accurately estimate 

three parameters, which leads to large standard errors of the estimated parameters and 

large correlation coefficients between the fitted parameters.  

Consequently, several simplifications to the LNL model were investigated, 

with the aim of reducing the number of sorbate-specific parameters. Three alternative 

models were investigated: either the standard deviation of the median Langmuir 

binding constants, ��, the total site density, ����, or both were made sorbate-

independent for each sorbent data set. The RMS errors and standard errors of the 

estimated LNL parameters were then used to compare the accuracy and potential 

predictive capabilities of the various models.  

Figure 2-2 summarizes the model performances when the simplifications 

discussed above were applied to the largest data set, F400 GAC (n = 44). A summary 

of the model results is presented in Table 2-2. Figure 2-2A, a box plot of the residuals 

of the sorbed concentrations, log(q), demonstrates that while the RMS errors for the 

sorbate-specific �� and qmax models, 1-3, are smaller than those for the single sorbate-

specific parameter LNL model, 4, most of the improvement is a reduction in the 

number of statistical outliers. Since model 4 has only one sorbate-specific parameter, 
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Figure 2-2.   (A) Residual box plots of ��������	
 � ������
�
 for the 
LNL isotherm models, 1 through 4, on F400 GAC, where (1) 
���, ��, and ���� , (2)  ���and ���� , (3)  ��� and ��, or (4) ��� 
are the sorbate-specific parameters within the models. Semi-
dashed lines represent +/- 0.3 log-units difference between 
predicted and observed adsorbed concentrations, dotted lines 
represent +/- 1.0 log-units difference between predicted and 
observed adsorbed concentrations. RMS errors for models 1 
through 4 are 0.0659, 0.0680, 0.0690, and 0.113, respectively. 
(B) Box plots of the logarithmic standard errors of the 
estimated parameters for models 1 through 4. Dotted line 
represents 1 order of magnitude error in the estimated 
parameters, semi-dashed line represents 2 order of magnitude 
error in the estimated parameters, solid blue line represents 
0.4 log-units error in the estimated parameters (a factor of 3). 
(C) Bar plot of the total number of estimated parameters for 
models 1 through 4. For the box plots, the interquartile range 
(IQR) contains 50% of the data, whiskers represent ±1.5IQR, 
and points represent outliers (> 1.5IQR). 
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it has significantly fewer degrees of freedom, compared to models 1-3. Consequently, 

there are more statistical outliers in model 4. However, the median residuals and the 

interquartile ranges (50% of the residuals) are not significantly different between the 

four models.  

Table 2-2.   Summary of LNL isotherm models, sorbent and sorbate-specific 
parameters, RMS errors, and median standard errors (SE) of the 
estimated parameters. 

Model 
Sorbent-
specific 

Parameters 

Sorbate-
specific 

Parameters 

Number of 
Estimated 
Parameters 

RMSE 
Median SEs of 

Estimated 
Parameters 

(1)  ���� ��� ��	
 132 0.066 1.07 
(2) �� ���� ��	
 89 0.068 0.454 
(3) ��	
 ���� �� 89 0.069 0.382 
(4) ��� ��	
 ��� 46 0.113 0.201 

By contrast, the reduction in the number of estimated parameters from 3n in 

model 1 to 2n +1 in models 2 and 3 to n + 2 in model 4 has a dramatic effect on the 

standard errors of the estimated parameters. The sorbate-specific ���, ��, and qmax 

model 1 has a median standard error of the estimated parameters of 1.070 with an 

interquartile range of 0.58 to 2.00 log-units. Half of the parameters have standard 

errors in excess of one log-unit. The standard errors are smaller for the individual �� 

and qmax sorbate-specific models 2 and 3, with median standard errors of 0.454 and 

0.382 and interquartile ranges of 0.287-0.644 and 0.175-0.562 log-units respectively.  

While the median and interquartile ranges (IQR) of standard errors are 

significantly smaller for the individual �� and qmax sorbate-specific models, they still 

contain a significant number of parameters with standard errors in excess of one log-

unit (N = 4 and N = 7, respectively). The sorbent-specific �� and qmax model 4 offers a 

similar goodness of fit to models 1-3 (Figure 2-2). However, the standard errors of the 



 

14 
 

estimated parameters are significantly smaller than the other three models, with a 

median standard error of 0.201 and an interquartile range of 0.167-0.261 log-units. 

Further, the model has no standard errors in excess of 0.5 log-units. By eliminating the 

sorbate-specificity of the �� and qmax parameters, the remaining parameter, ���, is the 

only sorbate-specific parameter.  

Others have proposed methods for reducing the number of sorbate-specific 

parameters; for example, the use of a fixed activity linear partition coefficient as a 

predictive parameter for non-linear adsorption onto heterogeneous sorbents34. While 

this method offers a single sorbate-specific parameter, the selection of the fixed 

activity, as well as whether the fixed activity should be the sorbed or aqueous activity, 

is unclear. Further, sorption isotherms cannot be recreated directly from a single fixed 

activity partition coefficient. These fixed activity coefficients must then be related 

back to isotherm parameters(e.g., Freundlich Kf and v)34. Consequently, the single 

sorbate-specific parameter of the LNL isotherm model greatly simplifies constructing 

a predictive model, as shown in consequent chapters.  

 It is remarkable that �� and qmax can be assumed to be sorbate independent and 

still achieve a fit to the data that is nearly as good as with sorbate-specific �� and qmax. 

The median Langmuir binding constant, ���, is unique for each chemical. Thus the 

isotherm model analyzed subsequently has two sorbent-specific parameters: the 

maximum site density, qmax, and the standard deviation of the Langmuir binding 

constants, ��; and one sorbate-specific parameter, ���. It should be noted that this 

significant reduction in the number of estimated parameters also significantly reduces 

the number of sorbates needed to describe the sorbent-specific parameters, ���	 and 

��. To control standard errors of the estimated parameters, it is suggested that a 
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minimum of 10 sorbates be included when estimating ���� and ��for a new sorbent, 

giving a redundancy in the number of data points per parameter of approximately 8:1 

(with 5 isotherm data points per sorbate).  Estimated isotherm parameters for the four 

sorbent data sets are presented in Tables A-1a,b and A-2a-d in Appendix A. A 

discussion of the method for estimating the standard errors of the median Langmuir 

binding constants, ��	, separately can be found in section A.4 of the Appendix.  

 

 

Figure 2-3.   Adsorption isotherms for the single sorbate-specific 
parameter log-normal Langmuir (ss-LNL) model for graphite, 
charcoal, and Darco GAC. The sorbate symbols are the same 
for Figures 1 and 3. Solid lines represent the fit to the LNL 
isotherm model. Estimated LNL parameters are presented in 
Appendix A (Tables A-1a,b). 
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Figure 2-3 illustrates the single sorbate-specific parameter (ss-LNL) isotherm 

fits for three data sets (charcoal, graphite, and Darco GAC). The ss-LNL model 

provides excellent fits to the experimental sorption data. The model is able to fit both 

the non-saturating behavior observed in the graphite data set as well as the curvature 

apparent in the charcoal and GAC data sets. Fits for the F400 data set are comparable, 

and are available in Appendix A as Figure A-1. For the four data sets, root mean 

square errors (Eq. (2-15)) are calculated to evaluate the overall goodness of fit of the 

model and are presented in Table 2-3. 

Table 2-3.   Summary of �������� standard errors, individual, and combined RMS 
errors (Eq. (2-15)) for the ss-LNL model fits for graphite, charcoal, 
Darco GAC, and F400 GAC. Units of ��� are �	
��� 

Sorbent Parameters Total RMSE1 RMSE Range2 Range of 
SE(log(
�L)) 

Graphite 15 0.0530 0.00912 - 0.0937 0.384 � 0.404 
Charcoal 13 0.0515 0.0293 � 0.0699 0.121 � 0.132 

Darco GAC 16 0.121 0.0336 � 0.214 0.423 � 0.477 
F400 GAC 46 0.113 0.0258 � 0.441 0.112 � 0.416 

1���������   = �������� !"#$%�����&'())*+  
2RMS Errors for each sorbate isotherm, i: 

����, - ./ 0123456789: ; 12305�<=>>?, @,  

 

 

The RMS errors (Eq. (2-15)) range from RMSE = 0.053 (graphite) and 0.051 

(charcoal) to RMSE = 0.121 (Darco GAC) and 0.113 (F400 GAC), suggesting that the 

fits for the GACs are slightly worse. Since these are logarithmic RMS errors, they 

measure the ratio of ABCDE to AFGH. For RMSE = 0.05 and 0.10 the error in the ratio is 

IJKLMNO, which are 0.89-1.12 and 0.79-1.26, or approximately a 10-25% error 
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respectively. Although the RMS errors for the GACs are larger, they are still quite 

small. The range of individual sorbate RMS errors is presented in Table 2-3. 

2.4 Discussion 

2.4.1 Normalized LNL Isotherm 

A useful feature of the single sorbate-specific LNL model is that isotherms for 

multiple sorbates can be presented in a single graph of q(c) versus ���� (Figure 2-4A). 

The result is a single normalized isotherm for all sorbed chemicals whose saturation 

limit is ���� and standard deviation is 	
. This is useful for both data comparison and 

to illustrate the behavior of the isotherm.  

Figure 2-4A illustrates the effect of varying 	
 on the resulting normalized 

isotherm. For small values of 	
�	
 � 
 � ��
�, the isotherm approaches the 

Langmuir isotherm since the distribution of �L is very narrow. As 	
 increases, the 

isotherm slope decreases over the range of ����. Larger values of 	
�	
 � ��
� 

represent sorbents with broader distributions of site energies. For the same ����, a 

larger 	
 results in the same number of total sites, but a larger distribution of site 

binding constants each with a smaller sorption capacity. Therefore for the isotherm 

with the larger 	
 the individual sites with the largest binding constants saturate at 

lower concentrations, raising the sorbed concentration over an isotherm with a smaller 

	
� The result is a shallower slope for the normalized isotherm. Large values of 	
 

should be found for very heterogeneous sorbents (e.g., GAC), while one might expect 

smaller values of 	
 for more homogeneous sorbents. 
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Note that as the concentration moves significantly far from saturation, the LNL 

isotherm slope becomes a constant, approaching linearity, similar to that of an 

individual Langmuir isotherm. 

The normalized isotherm plots for the data are presented in Figures 2-4B and 

2-4C. The normalized isotherm illustrates the ability of the LNL isotherm to fit a wide 

 

Figure 2-4.   (A) Effect of systematically varying the standard deviation of 
the median binding constant, ��, on the shape of the normalized 
ss-LNL isotherm. (B),(C) Normalized isotherms for graphite, 
charcoal, and Darco GAC (B) and F400 GAC (C). Estimated 
LNL isotherm parameters and associated standard errors can be 
found in Tables A-1a,b and A-2a-d in Appendix A. 
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variety of isotherm shapes as well as sorbents of varying site heterogeneity. The 

robustness of the model is most easily observed in the F400 data set. With 44 

chemicals, the model is capable of obtaining fits comparable to or better than the 

conventional Freundlich isotherm35 with only one parameter per sorbate (see Figures 

A-2a-d in Appendix A). Estimated Freundlich constants and their associated standard 

errors can be found in Tables A-3a-d in the Appendix. 

Additionally, it can be seen that the more heterogeneous, highly-functionalized 

GACs have larger �� values than the more uniform graphite and charcoal. 

Interestingly, the �� for graphite is larger than that of charcoal, whereas one might 

expect the reverse. This might indicate that the differences in energy between edge, 

surface, or corner sites in graphite are larger than the energy differences between the 

sites in charcoal. However, without further quantitative descriptions of the surfaces it 

is difficult to draw firm conclusions. The trend in the fitted ���� values was less 

surprising, as the non-porous graphite had the smallest maximum site density (����= 

15.99 mmol/kg-carbon), while the highly heterogeneous and porous Darco and F400 

activated carbons had the largest (����= 5065 and 10199 mmol/kg-carbon, 

respectively).  

Of the four data sets, F400 GAC has the smallest coefficient of variation (CV) 

for the estimated ���� (approximately 1.18%, compared to 24.6, 8.15%, and 24.8% 

for graphite, charcoal, and Darco GAC, respectively). The coefficients of variation for 

�� and ���� are listed in Tables A-1a,b and A-2a,d in the Appendix. Note in Figure 2-

3 that the individual isotherms on charcoal exhibit curvature as the aqueous 

concentration increases, tending towards saturation. This results in smaller standard 

errors for the predicted ���� compared to graphite and Darco GAC. 
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This non-linearity is not clear, however, for the graphite data set. Nevertheless, 

a ���� can be estimated with a comparable standard error. For graphite, it is the 

differences in the individual isotherm slopes that are used to estimate ���� accurately. 

The open circles (phenanthrene) and open diamonds (naphthalene) in Figure 2-3 

illustrate this point. Because phenanthrene sorbs more strongly over the same aqueous 

concentration range, it has a much larger median binding constant. However, it has a 

shallower slope. By contrast, the slope for naphthalene is larger, but the median 

binding strength is smaller (~ 3 orders of magnitude). When these isotherms are 

superimposed by estimating ��� for each compound, the steeper slope at the lower 

normalized concentration merges with the shallower slope at the higher normalized 

concentration such that they trend towards a saturation limit, as can be seen in Figure 

2-4C. This is the reason that the estimate for ���� has a comparable standard error. It 

is the shape of the composite isotherm (Figure 2-4C) that determines the accuracy with 

which ���� can be estimated. 

Finally, the ranges of the median Langmuir binding constants, �	
�����, were 

similar for the various sorbents (see Tables A-1a,b and A-2a-d in Appendix A). The 

range of binding constants for graphite, charcoal, and Darco GAC were approximately 

4 orders of magnitude, while the range of the binding constants for F400 GAC was 

slightly larger, approximately 6 orders of magnitude. 

2.4.2 Residual Analysis 

An analysis of the residuals for the four data sets using box plots is presented 

in Figures 2-5 and 2-6. With the exception of two chemicals (oxamyl and simazine 

onto F400 GAC) the interquartile ranges (IQR) of the residuals of log(�
���) do not 

exceed 0.3 log-units for the LNL model. Further, the residual median values are 
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centered about zero, indicating a lack of bias in the predicted isotherms, with the 

exception of oxamyl and simazine. However, it was determined that adequate methods 

for determining the adsorption of these chemicals were unavailable at the time of the 

experiments and instead total organic carbon (TOC) analysis was used as a surrogate 

for a more direct measure (Speth, personal communication)35. Consequently, it is 

believed that the lack of agreement to the LNL model for these chemicals is a result of 

experimental error. 

Since the conventional model for non-linear adsorption data is a Freundlich 

isotherm, the LNL isotherm was compared to individual Freundlich isotherms for the 

sorbates in all four sorbent systems. Further, the Freundlich sorption isotherm is the 

basis for the poly-parameter predictive models proposed by Shih & Gschwend34 for 

Darco GAC. Consequently, the underlying ability of the sorption isotherms to 

accurately reproduce the data must be examined. The accuracy of the resulting LNL 

and Shih & Gschwend predictive models is compared in Chapter 3 of this dissertation. 

Table 2-4 summarizes the resulting RMS errors for the two isotherm models.  
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Figure 2-5.   (A), (B), (C) Plots of LNL median binding constants, sorted from 
smallest to largest for (A) graphite, (B) charcoal, and (C) Darco GAC.  
(D), (E), (F) Box plots of the LNL isotherm model residuals 
(��������	
 � �����
���) for (D) graphite, (E) charcoal, and (F) Darco 
GAC. The solid lines represents 1:1 agreement between qpred and qobs 
adsorbed concentrations, dashed lines represent +/- 0.3 log-units 
difference between observed and modeled adsorbed. IQR contains 50% 
of the data, whiskers represent ± 1.5IQR, and points represent outliers (> 
1.5IQR). 
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Figure 2-6.   (A) Plot of LNL median binding constants, sorted from smallest to 
largest for F400 GAC. (B) Box plot of the LNL isotherm model residuals 
(��������	
 � �����
���) for F400 GAC. The solid line represents 1:1 
agreement between qpred and qobs adsorbed concentrations, dashed lines 
represent +/- 0.3 log-units difference between observed and modeled 
adsorbed. IQR contains 50% of the data, whiskers represent ± 1.5IQR, 
and points represent outliers (> 1.5IQR). 
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Table 2-4.   Comparison of Freundlich and LNL isotherm RMS errors (Eq. (2-15)) 
for graphite, charcoal, Darco GAC, and F400 GAC. 

RMSE 

Sorbent N Freundlich LNL 

Graphite 13 0.142 0.053 

Charcoal 11 0.118 0.0515 

Darco GAC 14 0.0941 0.121 

F400 GAC 44 0.0674 0.113 

Combined 82 0.0895 0.0985 

For graphite and charcoal, the LNL model outperforms the traditional 

Freundlich model. This is surprising since the data for graphite (and to a lesser degree, 

charcoal) appears to be mostly log-linear (Figure 2-1). However, by fitting a smaller 

median binding constant for the more log-linear chemicals, the LNL model is able to 

fit non-saturating isotherms. The Darco and F400 GAC data sets, however, show the 

Freundlich model performing better than the LNL model. For Darco GAC this 

difference in RMS error is marginal (corresponding to ~ 7.9% difference in the ratio of 

����� ����	  for the two models). For F400 GAC, some of this can be explained by the 

two outliers in the data set, oxamyl and simazine, discussed previously. Because there 

is a single sorbent-specific value of �
�� and 
�, experimental errors in a single 

chemical can result in significant error in the LNL isotherm. This is not the case for 

the Freundlich isotherm, where each sorbate is modeled independently. When these 

two chemicals are removed, the difference in the RMS errors between the Freundlich 

and LNL models becomes smaller (from 0.0674 and 0.113 to 0.0647 and 0.0878, 

respectively), corresponding to a 6.34% difference in the ratio of ����� ����	  for the 

two models, similar to that of Darco GAC. These differences are small, however, 

compared to the significant reductions in degrees of freedom for the LNL model. Box 
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plots comparing the residuals were also constructed for the Freundlich isotherm model 

(see Figures A-2a-d in Appendix A) for comparison. 

2.5 Implications 

The log-normal Langmuir model is able to model adsorption onto a range of 

sorbents with the sorbate contribution described with a single sorbate-specific 

parameter, ���. This is a significant reduction in degrees of freedom over the 

conventional Freundlich model with no significant increase in RMS error. The single 

parameter is directly related to the sorption strength, which suggests that it can be 

predicted using chemical descriptors, as demonstrated in Chapter 3 of this dissertation. 

The sorbent-specific ���� and �	 approximation was found to be satisfactory for the 

four sorbent systems, indicating that there is a comparable accessibility and relative 

affinity for the various sorbent sites independent of the sorbate, and that only the 

median binding strength, ���, is characteristic of the sorbate. It is expected that for 

neutral organic compounds (e.g., pesticides, PAHs, chlorinated compounds), the LNL 

model can work well in modeling adsorption behavior onto similar carbonaceous 

sorbents (e.g., GAC, graphite, and chars/charcoals). Further, it is expected that the 

model will be applicable to additional sorbents which exhibit non-linear sorption 

behavior (e.g., biochar, carbon nanotubes (CNTs)). However, it should be noted that 

most natural systems contain natural organic matter (NOM) and complex mixtures of 

sorbates. To be applicable for this situation, the LNL model needs to be modified. 

Since the LNL model is constructed from a distribution of individual Langmuir 

isotherms, it can be modified for competitive sorption systems. 
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MODELING NON-LINEAR ADSORPTION WITH A SINGLE CHEMICAL 
PARAMETER: PREDICTING CHEMICAL MEDIAN LANGMUIR BINDING 

CONSTANTS2 

Procedures for accurately predicting linear partition coefficients onto various 

sorbents (e.g., organic carbon, soils, clay) are reliable and well-established. However, 

similar procedures for the prediction of sorption parameters of non-linear isotherm 

models are not. The purpose of this chapter is to present a procedure for predicting 

non-linear isotherm parameters, specifically the median Langmuir binding constant, 

��L, obtained utilizing the single sorbate-specific parameter log-normal Langmuir 

isotherm developed in Chapter 2. A reduced poly-parameter linear free energy 

relationship (pp-LFER) is able to predict median Langmuir binding constants for 

graphite, charcoal and Darco granular activated carbon (GAC) sorption data. For the 

larger F400 GAC data set, a single pp-LFER model was insufficient, as a plateau is 

observed for the median Langmuir binding constants of larger molecular volume 

sorbates. This volumetric cutoff occurs in proximity to the median pore diameter for 

F400 GAC. A log-linear relationship exists between the aqueous solubility of these 

large compounds and their median Langmuir binding constants. Using this 

relationship for the chemicals above the volumetric cutoff and the pp-LFER below the 

cutoff, the median Langmuir binding constants can be predicted with root mean square 

                                                 
2 Appeared in Environmental Science & Technology 2015, 49, 7818-7824 

Chapter 3
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errors for graphite (n = 13), charcoal (n = 11), Darco GAC (n = 14), and F400 GAC (n 

= 44) of 0.129, 0.307, 0.407, and 0.424 respectively. 

3.1 Introduction 

Linear free energy relationships (LFERs) are widely used to predict aqueous 

solubility, solvent-water partitioning, soil-water partitioning, and chemical toxicity to 

aquatic organisms2,5,38-44. Predicting linear partition coefficients (e.g., organic carbon-

water partition coefficients) is generally straightforward and such models are typically 

accurate to within an order of magnitude in predicted sorbed concentrations8. This is 

not the case, however, for parameters in non-linear isotherm models (e.g., Langmuir 

and Freundlich binding constants). Attempts have been made to improve the 

prediction of these non-linear parameters by including sorbate activity terms34.  

However, these attempts do not match the accuracy and simplicity of the predictive 

methods for linear parameters. The problem is complicated by the fact that the non-

linear isotherm models commonly used (e.g., Freundlich, Langmuir, or Polanyi-

Manes) have two or three parameters for each chemical. Therefore, predicting the 

isotherm for a new chemical requires models for each of the sorbate-specific 

parameters (e.g., for the Freundlich constant and the exponent). 

The model presented in Chapter 2 fits the isotherm data with two sorbent-

specific parameters and one sorbate-specific parameter with little to no increase in 

RMS error when compared to the Freundlich isotherm model (2 sorbate-specific 

parameters). Once the sorbent-specific parameters are estimated, the isotherm for a 

new chemical sorbing to the same sorbent requires a model for only the one sorbate-

specific parameter. The purpose of this chapter is to present such a model. 
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3.2 Materials and Data 

Adsorption data was gathered from several different sources34-36 to incorporate 

various carbon and sorbate types. The single sorbate-specific parameter log-normal 

Langmuir isotherm (ss-LNL) was fit to these four data sets. The isotherm is a linear 

superposition of Langmuir isotherms: 

 ���� � ����
	
� � � �
������

� � �
�����������
���

 ���

�
��  (3-1) 

where ���� is the maximum site density (mmol/kg sorbent), 
�� is the median 

Langmuir binding constant for the distribution of sites �� ��!, "# is the standard 

deviation of $, the natural logarithm of 
��, c is the aqueous concentration (mM), and z 

is the variable of integration. The Langmuir binding constants are assumed to be log-

normally distributed, with a median binding constant, 
��, and a standard deviation, 

"# , of $ � %&�
���. It has been found that the isotherm fits are not significantly 

degraded if ���� and "# are assumed to be sorbate-independent. Only 
�� is sorbate-

specific. Table 3-1 presents a summary of the sorbent parameters for four black 

carbons. 

Table 3-1.   Summary of the single sorbate-specific log-normal Langmuir (ss-LNL) 
estimated isotherm parameters and RMS errors for graphite36, charcoal36, 
Darco GAC34, and F400 GAC35. 

Sorbent N Log('()*) +((,-./ 0 12 RMSE 

Graphite 13 1.203 3.481 0.0530 

Charcoal 11 2.991 2.610 0.0515 

Darco GAC 14 3.704 3.969 0.121 

F400 GAC 44 4.008 4.962 0.113 

Abraham pp-LFER parameters for the solutes were obtained using the 

Absolv45 software package. Experimental Abraham solute parameters are available for 
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many neutral organic compounds46. However, experimental solute parameters were 

unavailable for a subset of chemicals in the F400 data set. Further, it is often unclear 

whether reported sorbent-water system parameters (e, s, a, b, v, c in Eq. (3-2) below) 

are obtained using strictly experimental or Absolv-estimated sorbate parameters. The 

sorbent-water system parameters can vary considerably (without significantly 

affecting the RMS error of the pp-LFER model) depending on the original source of 

Abraham sorbate parameters. Consequently, Absolv-estimated sorbate parameters 

were used exclusively in the development of the pp-LFER models to ensure 

consistency. Other physical chemical parameters: aqueous solubility and molecular 

weight were obtained from ChemSpider47 using the chemical CAS numbers. A 

complete table of Absolv-estimated Abraham parameters and aqueous solubilities can 

be found in Tables B-1a-c in the Appendix. 

3.3 Results & Discussion 

3.3.1 Abraham Poly-parameter Linear Free Energy Relationship (pp-LFER)  

An Abraham pp-LFER model for the LNL median Langmuir binding constant 

is expressed: 

��������	
 � �
�	 � �
�	 � �
�	 � �
�	 � �
�	 � �
 (3-2) 

where the upper case letters represent the solute (i), contributions to the binding 

energy; E, molar refractivity, S, polarizability, A, hydrogen bond donating; and B, 

hydrogen bond accepting capacities, and V, the energy required to form a cavity. The 

lower case letters represent the complementary sorbent (c) relative to water; excess 

molar refractivity, polarizability, hydrogen bond accepting and donating, and 

cavitation energy terms, respectively. The �
 term accounts for any non-specific 
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binding interactions not predicted by the Abraham solute parameter product terms 

(����, ����, ����, 	�
�, and ����) and varies with the selected units of 
��. Finally, 

sorbent-water parameters (Eq. (3-2), �� � ��) were estimated using a multiple linear 

regression and the solver add-in for Excel for each of the four data sets. The resulting 

predicted median Langmuir binding constants are presented in Figure 3-1 and 

summarized in Table 3-2. 

 

Figure 3-1.   Plot of Abraham-predicted vs. LNL-estimated median binding 
constants (
��) for (A) graphite, (B) charcoal, (C) Darco GAC, and (D) 
F400 GAC. Solid lines represent 1:1 agreement; dashed lines represent ± 
1 order of magnitude. RMSE for the four sorbent data sets are 0.129, 
0.307, 0.407, and 0.709, respectively. 
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Table 3-2.   Summary of estimated sorbent-water system Abraham parameters for graphite, charcoal, Darco GAC, and F400 GAC. 
�������� ��� ���	�
 ��� ��
�����
 �	� ��� 
������� ������	�
 �� ��� ����
�
 ���� �	
��� ��� �	����	� �����, �V < ����
��
 ��  ���� refers to the data used for the estimates. The standard errors (SE) and coefficient of variation (CV) of the 
parameters for each model are reported. Units of !"# and solubility (S) are $%&'() 

Sorbent Solutes e s a b v c m b N1 RMSE2 
Graphite All 1.184 [-] [-] -2.91 5.543 -5.681 [-] [-] 13 0.129 

SE 0.207 [-] [-] 0.523 0.417 0.281 [-] [-] 

CV (%) 17.5% 18.0% 7.52% 4.95% 

Charcoal All 1.032 [-] [-] -3.607 2.577 -1.519 [-] [-] 11 0.307 

SE 0.714 [-] [-] 1.419 1.084 0.765 [-] [-] 

CV (%) 69.2% 39.3% 42.1% 50.4% 

Darco GAC All 1.669 [-] [-] -6.163 5.122 -4.823 [-] [-] 14 0.407 

SE 0.564 [-] [-] 1.281 1.067 1.006 [-] [-] 

CV (%) 33.8% 20.8% 20.8% 20.9% 

F400 GAC 
(all 
sorbates) 

All 3.387 [-] -3.012 -1.351 1.851 -5.271 [-] [-] 44 0.709 

SE 0.1092 [-] 0.2077 0.1046 0.1108 0.0735 [-] [-] 

CV (%) 3.22% [-] 6.90% 7.75% 5.99% 1.40% 

F400 GAC 
(with cutoff) 

V < 110 -1.503 6.744 -3.138 [-] 4.680 -9.025 [-] [-] 31 0.402 

SE 0.2996 0.4370 0.5389 [-] 0.1922 0.1853 [-] [-] 

CV (%) 19.93% 6.48% 17.17% [-] 4.11% 2.05% 

V > 110 [-] [-] [-] [-] [-] [-] -0.5082 -0.2024 13 0.513 

SE [-] [-] [-] [-] [-] [-] 0.03614 0.05123 
CV (%) 7.11% 25.3% 

0.4243 
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3.3.2 Graphite   

For the graphite data set36, there were no solutes capable of donating hydrogen 

bonds. Consequently, the aA term was omitted from the pp-LFER regression (Eq. (3-

2)). Further, previous studies have shown a cross-correlation between the E and S 

sorbate parameters48. Consequently, the sS term was omitted and the excess molar 

refractivity term (eE) was allowed to absorb these correlation effects.  

With the reduction in the degrees of freedom in the regression, the standard 

errors of the remaining parameters were reduced without significantly affecting the 

RMS error (see Table 3-2 for RMSE equation) of the model (RMSE = 0.129). Figure 

3-1A compares the Abraham-predicted and LNL-estimated median binding constants. 

The fit is remarkably good, partly because 4 parameters are being fit to 13 data points. 

However, the standard errors are not excessively large. Table 3-2 contains a complete 

description of the estimated parameters for the four sorbents and pertinent information 

for the models. Table B-2 in the Appendix contains the estimated parameters, standard 

errors, and RMS errors for the full Abraham regressions for graphite, charcoal, and 

Darco GAC. 

3.3.3 Charcoal  

For the charcoal data set36, reductions similar to the graphite Abraham model 

were observed. The resulting model for the charcoal-water median Langmuir binding 

constants was identical to that for graphite. The result of the regression was an RMS 

error of 0.307 with 4 parameters fit to 11 chemicals. Figure 3-1B compares the 

Abraham-predicted and LNL-estimated median binding constants. There is more 

scatter and the standard errors in the parameters are quite large, within one-half of the 
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parameter estimates, indicating that there is an insufficient number of chemicals to 

produce a good model fit for charcoal. The charcoal data set has the same sorbates 

(with the exception of phenathrene and chlorobenzene) as the graphite data set. While 

some of the increase in standard errors of the estimated parameters can be attributed to 

the decrease in degrees of freedom (11 vs. 13 chemicals), the range of sorbate 

parameter values may also play a significant role. Phenanthrene and chlorobenzene 

have values of E and V that are at the high and low ends of the range of these 

parameters for the charcoal data set. Removing these sorbate parameters significantly 

increases the standard errors of the corresponding sorbent Abraham parameters, since 

the range of the estimators (in this case E and V) are significantly reduced. Therefore, 

the standard error reflects both the amount of data and the range of the sorbate 

parameters. 

3.3.4 Darco GAC  

Constructing the pp-LFER model for the Darco GAC data set34 was more 

difficult, since several of the chemicals exhibit hydrogen-bond donating capability. 

However, there were not enough of these chemicals to accurately fit a GAC-water 

hydrogen bond accepting parameter (�), since only 3 sorbates are capable of donating 

hydrogen bonds.  Consequently, the aA term was omitted in the formulation of the 

GAC-water median binding constant pp-LFER. Figure 3-1C illustrates the fit obtained 

for Darco GAC. There is one chemical that appears to be an outlier. The standard 

errors of the estimated parameters are approximately 20% of the estimated parameter 

values. The result of the regression was an RMS error of 0.407 with 4 parameters 

estimated for 15 chemicals.  
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3.3.5 F400 GAC  

The F400 GAC data set35 was considerably larger than the other data sets and 

consequently all of the Abraham parameters can be estimated. Unlike the other data 

sets, there were a significant number of solutes that exhibit hydrogen bond donating 

capability. The result was an RMS error of 0.709 with 6 parameters estimated for 44 

chemicals.  The RMS error is considerably larger than those for graphite (0.129), 

charcoal (0.307), and Darco GAC (0.407) and suggests that additional factors (e.g., 

sorbent-site accessibility) may be involved in the sorption to F400 GAC. While the 

standard errors on the estimated e, a, b, v, and c parameters are significantly smaller 

than those for the other data sets, the standard error for s is approximately 7 times the 

estimated value. Since there is a strong correlation between the solute E and S 

parameters48 and the estimated value for s is very nearly zero, it was removed from the 

model and the remaining parameters were refit with little change to the RMS error or 

the remaining estimated parameters. A summary of the removal of the polarizability 

term from the F400 analysis can be found in Table B-3 in Appendix B. 

Figure 3-1D shows that a single pp-LFER model (Eq. (3-2)) generally over-

estimates compounds with small binding constants (weakly sorbing) and under-

estimates compounds with large binding constants (strongly sorbing). This suggests 

one of two possibilities: either the solute Abraham parameters for some of these larger 

more structurally complicated pesticide compounds are poorly-characterized, or that 

chemicals with certain properties are interacting with the sorbent differently, and a 

single pp-LFER model applied to the entire suite of solutes is not capable of capturing 

these different interactions.  
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3.3.6 Separation of Chemicals  

Sorption to GAC occurs predominantly within the pore structure. It was 

thought that the larger chemicals may be excluded from binding to certain pore sites49. 

A plot of the LNL-estimated median binding constants, ���, versus the solute 

McGowan volumes for the four data sets is shown in Figure 3-2. For the nonporous 

graphite, no deviation from a linear relationship is evident. However, for the porous 

black carbons there appears to be a plateau value of ��� at a molecular volume of 

approximately 110 ���/molecule. This cutoff is clearly observed in the F400 data set 

(and to a lesser degree in the charcoal data). It is difficult to draw conclusions for the 

Darco GAC data set, however, since few compounds are above the molecular volume 

cutoff.  

One possible explanation for the cutoff is that the larger molecules are unable 

to interact with a certain subset of sorption sites due to their size. Since the cutoff is 

not observed in the non-porous graphite data, it is likely that there are sites in these 

porous sorbents with which these large molecules cannot interact. The McGowan 

volume of a molecule can be related to a representative diameter by assuming a 

representative shape or cross-sectional area. Assuming that the solute molecules are 

spherical, the observed McGowan volume cutoff of 110 ���/molecule yields a cutoff 

diameter, ��		, of approximately 4.8 
� . This value was found to be within the range of 

median pore diameters (~ 4.0 to 6.0 
� )50 for F400 GAC50-52. While most of these 

molecules are not spherical, the magnitude of the representative diameters suggests 

that an inability to access certain sites is a plausible explanation for the observed 

cutoff. 
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Figure 3-2.   Plot of LNL-estimated median binding constants (���) vs. the Absolv-
estimated solute McGowan volumes for (A) graphite, (B) charcoal, (C) 
Darco GAC, and (D) F400 GAC. Dashed lines represent the observed 
volumetric cutoff of ��� �� �/molecule. 

3.3.7 Separation of Large Molecular Volume Sorbates  

The simplest modification to the Abraham model was to employ a separate 

molecular volume sorbent parameter (v) for small and large chemicals respectively. 

 	
�����
�� � ���� � ���� � ���� � ���� � ��
��� � �� (3-3) 

where the subscript j in the volume coefficient ��
� indicates whether the chemical is 

above or below the volumetric cutoff value. While the RMS error was reduced 

slightly, the fit was not significantly improved. There remained approximately 3 
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orders of magnitude spread in the predictions of log(���) for the solutes with 

McGowan volumes above the cutoff value.  

A model with separate Abraham sorbent-water system parameters for 

molecules above and below the McGowan volume cutoff was also explored. While 

this model offered a reduction in the RMSE, it had twice as many degrees of freedom. 

Due to this significant increase in model parameters, the standard errors of the 

estimated sorbent-water system parameters increased significantly. Consequently, this 

model was rejected in favor of one that offered an improved fit without significantly 

increasing the number of parameters or their standard errors. 

Previous work by Chiou et al.53, Endo et al.5, and Razzaque & Grathwohl54 

have shown strong inverse correlations between octanol-water and organic carbon-

water partition coefficients and aqueous solubility. A similar inverse correlation 

between the experimental aqueous solubility, �, and the LNL-estimated binding 

constants, ��� was observed for compounds above the molecular volume cutoff in the 

F400 data set. Figure 3-3 illustrates this relationship.  

Utilizing this relationship for molecules above the volumetric cutoff, the 

binding constant was expressed as a log-linear function of the aqueous solubility55: 

 ��� ����	
�
�
����� � � ������ � � (3-4) 

where m and b are the slope and intercept, and are functions of the sorbent only, � is 

the aqueous solubility (mM). It was observed that there was a single outlier, oxamyl, 

which significantly altered the regression slope and intercept estimates. To determine 

������� �� ��� �� !"# $��%#& '� ��(#%&�& )��! ��� ��*��$$+��,  -��./$ &+$� �(�
calculation was performed56,57 (Appendix B.012 3�� -��./$ &+$� �(�, 45 , for oxamyl 

was determined to be 3.12, well above the standard operating cutoff of 4/n (where n is 
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��� ������ 	
 ���������
 �� ��� �����

�	��� ����� �		��
 ��
����� �
 �	� � ��
� 
	�

statistical outliers, it does consider data points that will have disproportionately larger 

leverage in determining regression parameters, which can skew regression results. 

Consequently, oxamyl was not included in determining the slope and intercept for Eq. 

(3-4). 

 

Figure 3-3.   Plot of LNL-estimated median binding constants (���) vs. experimental 
aqueous solubility (S) for solutes above McGowan cutoff in F400 GAC. 
The dashed line represents the linear 
regression ������� ! "#$%#& ���'() " #$*#*. Oxamyl was not included 
in the regression due to its large Cook distance (see discussion in 
Appendix B.4). 
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Figure 3-4.   Plot of Abraham-predicted vs. LNL-estimated median binding 
constants (���) for F400 GAC. Solid lines represent 1:1 agreement; 
dashed lines represent ± 1 order of magnitude. Open circles represent 
sorbates below the volumetric cutoff (Eq. (3-2)), filled circles represent 
sorbates above the volumetric cutoff (Eq. (3-4)). Combined RMSE for all 
sorbates is 0.424. The RMS error excluding oxamyl is 0.345. 

Figure 3-4 shows the improved model fit for all solutes in the F400 data set, 

utilizing a pp-LFER model below the molecular volume cutoff (Eq. (3-2)) and the 

solubility relationship (Eq. (3-4)) for those above. The bias in the lower and upper 

ranges of binding strengths no longer exists. For the F400 data set the RMSE was 

reduced significantly (from 0.709 to 0.424). The standard errors of the estimated e, s, 

a, v, and c parameters for sorbates below the volumetric cutoff were not significantly 

larger than those of the previous model. However, the standard error of b was 

significantly large. This is likely because the range of solute B parameters below the 

cutoff is very small, leading to large uncertainty in the estimated sorbent-water b 
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parameter. Consequently, the F400 sorbent parameters were refit without the hydrogen 

bond basicity (bB) term. The remaining parameters and the RMS error did not change 

significantly when the bB term was removed (see Table B-4 in the Appendix). 

3.3.8 Residual Analysis  

For the four sorption data sets, predicted sorbed concentrations (������ were 

computed using the predicted ��	
��
�. Logarithmic residual values were then 

calculated for each experimental sorbed concentration (������ Box plots of the residual 

values were constructed for each data set.  

Figure 3-5 shows that with the exception of several sorbates in the F400 set (n 

= 6), that the interquartile ranges (IQR) of the residuals do not exceed 0.3 log-units. 

Further, it can be seen that nearly all of the median residual values are centered about 

0, suggesting a lack of bias in the predicted isotherms. It is worth noting that some of 

the same chemicals that exhibit large residual ranges also exhibit median residual 

values that are not centered at zero. This suggests that this deviation might be an 

experimental artifact, rather than a failure of the model. Two of these chemicals 

(oxamyl and simazine) are the same chemicals discussed in Chapter 2 (section 2.4.2) 

for which accurate analytical methods were unavailable. This is likely the source of 

the bias in the isotherm predictions for these compounds. The RMS errors for the 

predicted isotherms were 0.0820, 0.1809, 0.183, and 0.220 for graphite, charcoal, 

Darco GAC, and F400 GAC, respectively.  
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Figure 3-5.   Box plots of the Abraham-predicted isotherm residuals (��������	
 �
�����
��� for (A) graphite, (B) charcoal, (C) Darco GAC, and (D) F400 
GAC, ordered by increasing median Langmuir binding constant. The 
solid line represents 1:1 agreement between qpred and qobs sorbed 
concentrations, dashed lines represent +/- 0.3 log-units difference 
between predicted and observed adsorbed concentrations. IQR contains 
50% of the data, whiskers represent ± 1.5IQR, and filled points represent 
outliers (> 1.5IQR). 

For Darco GAC, predicted isotherms for the 11 solutes can be compared 

directly to predicted isotherms obtained by Shih & Gschwend34 using Abraham pp-

LFER models for the Freundlich isotherm parameters, �� and �. A comparison of the 

two models is presented in Appendix B.6 together with a box plot of the isotherm 

residuals (Figure B-1). The RMS errors for the two models were similar (0.183 and 
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0.207 for the ss-LNL median binding constant pp-LFER (Eq. (3-2)) and the 

Freundlich pp-LFER models of Shih & Gschwend, respectively). While the RMS 

errors are similar, the number of parameters required to make a new isotherm 

prediction are not. Whereas the pp-LFER for Darco GAC presented in this work has 4 

parameters, the combined pp-LFERs for the Freundlich �� and � have 12 (8 for ��, 4 

for �), which approximately corresponds to 1 parameter per solute. Consequently, the 

prediction of the two Freundlich isotherm parameters requires four times the number 

of parameters to obtain comparable fits to those obtained with the ss-LNL model and 

the median binding constants predicted using Eq. (3-2). 

3.4 Implications 

It has been shown that the median binding constants, ���, for the log-normal 

Langmuir model can be predicted utilizing modified versions of the Abraham poly-

parameter linear free energy relationships. For the case of F400 GAC, there are sites 

that are inaccessible to compounds with a McGowan volume greater than the observed 

cutoff, � � ��	 
� �
 molecule (���� � ��� 
� �. This corresponds approximately to the 

median pore diameter of F400 GAC (~4-6 
� ). This cutoff, along with poor 

correlations to the other Abraham solute parameters, suggests that these large 

molecules do not interact with the sorbent through specific interactions included in the 

pp-LFER model (Eq. (3-2)). Rather, for these large compounds, their solubility in 

water (Eq. (3-4)) better describes their partitioning between the bulk water phase and 

the GAC matrix.  

It is expected that for neutral organic compounds (e.g., pesticides, PAHs, 

chlorinated compounds) the median Langmuir binding constant, ���, can be predicted 

accurately using the pp-LFER and solubility relationships described previously. 



 

 43 

Further, it is expected that these models can be easily adapted for additional sorbents 

that exhibit similar non-linear sorption behavior (e.g., biochar, carbon nanotubes 

(CNTs)). For sorbents for which the sorbent-specific parameters (���� and ��) are 

known, sorbent-water Abraham system parameters (�� 	 
� ) can be estimated using a 

small number of sorbates (approximately 10), given sufficient range in sorbate 

Abraham parameters (�� 	
�).   

Finally, it has been shown that the resulting predicted isotherms reproduce the 

experimental data very well with little increase in RMS error. The combination of the 

log-normal Langmuir and pp-LFER/solubility models provide predictive capabilities 

over a wide range of solutes and black carbon sorbents utilizing readily available 

physical chemical parameters. 
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PREDICTING SOLVENT-WATER PARTITIONING OF CHARGED 
ORGANIC SPECIES USING QUANTUM-CHEMICALLY ESTIMATED 

ABRAHAM PP-LFER SOLUTE PARAMETERS 

Methods for obtaining accurate predictions of solvent-water partitioning for 

neutral organic chemicals (e.g., ���) are well-established. However, methods that 

provide comparable accuracy are not available for predicting the solvent-water 

partitioning of ionic species. The purpose of this chapter is to present a method for 

predicting solvent-water partitioning of charged species using quantum-chemically 

estimated Abraham (QCAP) solute parameters. For a suite of carboxylic acid anions, 

solvent-water partition coefficients for 4 solvent-water systems: acetonitrile-, acetone-, 

methanol-, and dimethylsulfoxide-water (computed from experimental ionization 

constants in the solvents and water) are predicted with root mean square (RMS) errors 

of 0.475, 0.512, 0.460, and 0.393, respectively (n = 44, 48, 47, and 41). For a larger 

set of substituted quaternary amine cations (n = 217), experimentally determined 

octanol-water partition coefficients were predicted with an RMS error of 1.16.  

Predictions made using QCAPs are shown to provide improved accuracy in 

predicting solvent-water partition coefficients, compared to predictions of solvent-

water partition coefficients, �������	
��
���
��� made using existing Absolv-

estimated Abraham solute descriptors derived from the neutral species.  For 

partitioning of anionic solutes in the 4 organic solvent-water systems the overall 

�������	
��
���
��� RMS errors were 0.740 and 0.462 for the Absolv and QCAP 
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methods, respectively. For cations partitioning into octanol the ��������	
��
���
�� 

overall RMS errors were 0.997 and 1.16, respectively.  

The QCAP method also provides significantly improved accuracy compared to 

directly-calculated ab initio quantum chemical partition coefficients at comparable 

levels of theory (M062X/6-31++G**) for both anions partitioning into the 4 organic 

solvents (RMSE = 0.462 vs. 2.48 for QCAP-predicted vs. direct QC computed, 

respectively) and cations partitioning into octanol (RMSE =1.16 vs. 2.82 for QCAP-

predicted vs. direct QC computed, respectively). 

4.1 Introduction 

Methods for obtaining accurate predictions of solvent-water partition 

coefficients for neutral species (e.g., ���) are well-established1,4,8,53,55,58,59. Several 

approaches exist that can be separated into two groups: (1) direct a priori quantum-

chemical (QC) calculation of the solvent-water partition coefficient60-63 (e.g., using the 

programs COSMO-SAC, COSMO-RS, SMD) and (2) poly-parameter linear free 

energy relationships (pp-LFERs) 3,6,12-14 or fragment-based8 models that rely on 

physical-chemical descriptors and group additive contributions.  

For neutral species, the accuracies of these methods are comparable. Previous 

results for solvent-water QC predictions of octanol-water partition coefficients for a 

set of 103 neutral organic solutes have shown excellent agreement with experimental 

partition coefficients (RMSE = 0.566)15 using the SMD63 solvation model in Gaussian 

0964. Similarly, a larger octanol-water partitioning data set (n = 992) was tested using 

the COSMO-SAC 2007/2010 (conductor screening model � segment activity 

coefficient) model. The resulting accuracies were comparable for both the 2007 and 

2010 models (RMSE = 0.69 and 0.72, respectively)65.  
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Similar results were obtained from fragment/pp-LFER models for octanol-

water partition coefficients. Abraham pp-LFER models for predicting octanol-water 

partition coefficients have been shown to produce similar RMS errors using the same 

data set65 (RMSE = 0.560, n = 992)66. The EPI Suite model, KOWWIN, predicts 

octanol-water partition coefficients for a large validation data set (n = 10,946) with an 

RMS error of 0.4768.  

Similar predictive accuracies, however, have not been observed for either 

group of methods for charged species. Direct quantum-chemical computations of 

solvent-water partition coefficients for both anions and cations15 have been shown to 

result in significantly larger errors. For SMD63 an overall RMS error of 4.35 was 

observed for a set of organic anions and cations (N = 88) in acetonitrile-, methanol-, 

and dimethylsulfoxide-water systems (Table C-1a in the Appendix).  Even within the 

same QC method, errors have been shown to range over several orders of magnitude 

between different solvent-water systems (e.g., acetone-water vs. methanol-water) with 

significant evidence of a solvent-based prediction bias (Table C-1a,b in the Appendix).  

Attempts have been made to extend pp-LFER methods developed for neutral 

species to predict the solvent-water partitioning of charged species. Abraham et al.10,11 

have developed a method to obtain new solute descriptors based on linear regressions 

of the existing experimental solute descriptors for the neutral species. However, these 

relationships are not descriptor-specific (e.g., the polarizability (S) for the ion being a 

function only of the neutral species polarizability). While these regressions to neutral 

solute Abraham parameters offer good agreement to the experimental ionic partition 

coefficients, the equations and the fitted coefficients are chemical-class specific10,11, 

and are not universally applicable to wider ranges of charged solutes.  
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Alternatively, Zissimos et al.67 have shown that for neutral species, Abraham 

solute descriptors can be obtained through individual regressions to the sigma profile 

moments computed from the COSMOTherm60,61 program, with a separate regression 

for each Abraham solute descriptor (E, S, A, B, and V). Cho et al.12 have extended this 

method to include charged species. However, predictions of the Abraham solute 

descriptors for S, A, and two new sorbate descriptors, ��, and �� (charged descriptors 

for cations and anions that describe the ion-specific hydrogen bond donating and 

accepting capabilities, respectively)68 were shown to have significantly larger errors 

than those of the neutral species, despite a large number of fitting parameters (N = 5, 

6, 8, 10, for S, A, ��, and �� respectively)12. In total, 21 (4 structural/bond, and 17 

quantum chemical) descriptors with 50 fitted equation constants are required to predict 

the charged species Abraham solute descriptors (E, S, A, B, V, ��, and ��). Predicted 

solvent-water partition coefficients vary significantly by solvent and range from 

RMSE = 0.46 to 1.0112.  

This chapter will compare several methods for predicting solvent-water 

partition coefficients of charged species: (A) direct quantum chemical computation; 

(B) Abraham pp-LFER predictions using existing Absolv-estimated Abraham solute 

descriptors; and (C) a new approach using quantum-chemically estimated solute 

Abraham descriptors for charged species. 

4.2 Modeling & Experimental Data 

4.2.1 Abraham Poly-parameter Linear Free Energy Relationship (pp-LFER) 

A popular model for predicting partitioning of neutral organic compounds 

between organic phases is the Abraham poly-parameter linear free energy 
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relationship1,2,4,55,68,69 (pp-LFER). The model relies directly on the physical chemical 

properties of the solute and its individual interactions with the solvent phases (e.g., 

dispersion forces, hydrogen bond acidity, and cavitation energy). For neutral organics, 

the Abraham pp-LFER can be expressed as: 

 ��������	 
 ���� 
 ���� 
 ���� 
 ���� 
 ���� 
 �� (4-1) 

where the upper case letters represent the solute (i) contributions to the binding 

energy; E, molar refractivity, S, polarizability, A, hydrogen bond donating; and B, 

hydrogen bond accepting capacities, and V, the energy required to form a cavity. The 

lower case letters represent the complementary solvent (j) constants relative to water; 

excess molar refractivity, polarizability, hydrogen bond accepting and donating, and 

cavitation energy terms, respectively. The �� term accounts for any non-specific 

binding interactions not predicted by the Abraham solute parameter product terms 

(����, ����, ���� , ����, and ����) and varies with the units of ����. 

Previous work by Zhao & Abraham14,68 have attempted to predict the octanol-

water partition coefficients of a set of quaternary amine cations by estimating the 

Abraham solute descriptors for a comparable neutral species. They accomplish this by 

neutralizing the molecule, replacing the charged nitrogen atom, [��� with a neutral 

carbon atom, C. The solute descriptors are then estimated using the method of Platts4 

with the experimentally derived octanol-water solvent-system descriptors70. While a 

clear trend was demonstrated within homologous series and structurally similar 

solutes, the RMS error of the predictions was large, RMSE = 2.66.  

Alternatively, Abraham & Zhao68 propose a modification to the Abraham pp-

LFER in which specific ion descriptors for solutes (�� and ��) are used to describe the 

additional charge-based hydrogen bond acidity/basicity of the ionic species with 
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respect to the neutral solute species. In a recent publication, Abraham & Acree11 

proposed a similar modification to the Abraham pp-LFER and applied it to charged 

organic species. The modified pp-LFER for charged organic solute partitioning is: 

��������	 
 ����

 � ����


 � ����

 � ����


 � ����

 � ��

���
� � ��

���
� � �� (4-2) 

where the asterisks denote the Abraham solute parameters for the charged species, 

which are computed from those of the neutral species.  

The new product terms, ��
���
� and ��

���
�, are included to account for ionic 

solute-solvent charge interactions for positive and negatively charged ionic solutes, 

respectively. Abraham et al. propose that the solute parameters for the charged 

compounds (including the new �� and ��terms) can be obtained directly from the 

Abraham solute parameters for the neutral species11. However, the relevant parameters 

and fitted equation coefficients for relating the neutral and charged Abraham solute 

parameters vary significantly for different types of charged species11. Consequently, 

these relationships are not universally applicable to new organic species. Further, the 

number of fitting parameters is large, relative to the number of data points used to 

obtain the regression parameters. For 78 carboxylate ions and 26 amines, there are 20 

and 13 fitted equation coefficients required, respectively, to obtain the charged solute 

parameters. While the models perform well within their chemical class, they cannot be 

applied universally. Therefore, a method for obtaining the charged Abraham solute 

parameters which is independent of the chemical class and has universal applicability 

is required. 
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4.2.2 Quantum-Chemically Estimated Abraham Solute Parameters (QCAP) 

The method presented in this chapter can be used to generate new Abraham 

solute parameters for charged species independent of their neutral counterparts. The 

standard Abraham pp-LFER equation (Eq. (4-1)) is a linear combination of the paired 

solvent-solute interaction terms together with a constant which carries units and any 

non-specific binding. As discussed previously, the solvent parameters are solute 

independent and available46 for common solvents and the solute parameters are 

independent of the solvent system. Therefore it is possible to estimate the solute 

parameters if the solvent parameters are known and vice versa.  

For example, suppose the 5 unknown Abraham parameters (�� � ��� are 

required for a new solute. Since there are 5 unknowns, at least 5 solvent-water 

partition coefficients are required to estimate the five solute parameters. Using more 

than 5 solvent-water partition coefficients adds redundancy to the estimate. With 5 

unknowns, the more than 5 equations of the form of Eq. (4-1) can be used to estimate 

the 5 unknown Abraham parameters (�� � ��) by minimizing the sum of the squares 

of the residuals using multiple linear regression: 

�� � �
	

�
�
�
���������� � ���� � ���� � ���� � ���� � ���� �  ��! (4-3) 

where n is the number of solvent-water system partition coefficients, 
���������� is the 

experimental solvent-water partition coefficient (L water / kg solvent) for solute (i) in 

the solvent (j)-water system. �� is the error function(L water / kg solvent)2. This 

method is described in detail in Platts et al.4 

Similarly, if it is necessary to estimate the 6 solvent parameters (��  �  �� for a 

new solvent, then " # $ experimental solvent-water partition coefficients can be 

measured for " solutes in the solvent-water system. The experimental partition 
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coefficients and the known Abraham solute parameters can then be used to estimate 

the solvent parameters (�� � ��) using a similar multiple linear regression as discussed 

above.  

Previous work by Liang & Di Toro66 has shown that fitting all 5 Abraham 

solute parameters simultaneously using multiple linear regression results in large 

standard errors and significant cross-correlation of estimated parameters, particularly 

for E and S. To reduce the number of estimated parameters, the McGowan volume (V) 

and the excess molar refractivity (E) were estimated independently using quantum 

chemical methods66. Consequently, only 3 solute parameters, S, A, and B need to be 

estimated for each solute via multiple regression. A full description of the method 

including the R code for the multiple linear regressions is included in Appendix C.2.  

In order to apply this method to estimating Abraham solute parameters, 

solvent-water partition coefficients are required for at least 3 solvent-water systems. 

Liang & Di Toro66 propose to use quantum chemically computed solvent-water 

partition coefficients instead of experimental data. The key idea in their method is to 

use a large number of solvents and to compute the solvent-water partition coefficients 

for all the solvents. Although the individual quantum chemical computations of 

solvent-water partition coefficients have large errors, the use of multiple linear 

regressions reduces the error in the estimated Abraham solute parameters66. 

For neutral solutes, values for solvent-water system parameters (�� � ��� (Eq. 

(4-2)) are well-established71. Consequently, these are used for new solutes for which 

Abraham solute descriptors are to be estimated66. This is not the case, however, for 

ionic solutes. For new ionic solutes, methods for obtaining the McGowan volume (V) 

and the excess molar refractivity (E) developed for neutral species66 can be applied. 
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However, the remaining Abraham solute (S, A, B) as well as the solvent-water system 

parameters (e, s, a, b, v, c) are unknown and must be estimated. The method employed 

is iterative. First, the neutral solvent-water parameters (�� � ��) are used as initial 

guesses with QC computed ����	
��� for a large number of solvent-water systems to 

estimate charged solute Abraham parameters (S, A, and B) using a multiple linear 

regression and minimizing the sum of squares of the errors (Eq. (4-3)). The estimated 

solute Abraham parameters are then used to estimate new charged solvent-water 

descriptors (�� � ��). This process is repeated until the sum of squares of the residuals 

(Eq. (4-3)) is minimized. The result is quantum-chemically estimated solute and 

solvent Abraham parameters for charged species. 

The QC computational accuracy of solvent-water partition coefficients for 

charged compounds is very poor, with  root mean square errors of approximately 2.3 
 

7.1 log-units15 (see Table C-1a in Appendix C). However, much of this error is due to 

systematic solvent-specific biases in the QC computed partition coefficients. In any 

case, it is clear that using the maximum number of solvent-water partition coefficients 

is necessary. The SMD solvation model63 can estimate solvent-water partitioning of 

charged solutes for 49 solvent-water systems for which literature values for neutral 

solvent-water Abraham parameters exist (Table C-2 in the Appendix)71. Therefore it 

was chosen for this application. 

4.2.3 Quantum Chemical Computations 

All quantum chemical computations were performed in Gaussian 0964 using 

the SMD63 solvation model. M062X was chosen as the density functional, as it has 

improved accuracies over other M06 Minnesota functionals in computing main group 

thermochemistry72. Since the solutes of interest are charged, long-range electrostatic 
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interactions were of particular concern. Consequently, the 6-31++G** basis set was 

chosen which includes diffuse functions. This basis set is similar in size (and offers 

comparable performance for main group thermochemistry) to the correlation-

consistent double zeta (aug-cc-pVDZ) Dunning basis set, but with slightly reduced 

computational times73. For the quaternary amine cations, larger errors were observed 

for halogenated species. Consequently, a mixed basis set was constructed for these 

species, with the 6-31++G** basis set for C, N, H, O, and S and a larger basis set 

(aug-cc-pVTZ) for the halogen atoms (Cl, F).  

The 3-D structures for the ions were constructed in ArgusLab74 and were pre-

optimized in the gas phase using a built-in semi-empirical quantum mechanical 

computation (AM1)75 . These structures were then optimized in the gas phase using 

the appropriate basis set (6-31++G** or 6-31++G**/aug-cc-pVTZ) in Gaussian 0964. 

Frequency calculations were performed to ensure the structures were at an energy 

minimum and no imaginary frequencies were present. Finally, single point energy 

calculations were performed for the solutes in 50 solvents (including water), and 49 

solvent-water partition coefficients were calculated for each solute using the SMD-

computed solvation free energies as follows: 
 ��������	
��	�
 � �������	 � ���	�
 (4-4) 

 
�����������	
��	�
� �

��������	
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��������
 

(4-4a) 

where �������	 and ���	�
 are the SMD-computed Gibbs free energies in the solvent 

and water phases, respectively. ��������	
��	�
 is the Gibbs free energy of transfer 

between the solvent and water phases, R is the universal gas constant (kcal/(mol �K)), 
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T is the temperature (�K), and �������	
��
���
��� is the base-10 logarithm of the 

dimensionless (mole-fraction) solvent-water partition coefficient. 

4.2.4 Experimental Data 

The experimental data used to develop the model was obtained from several 

sources11,14 in order to include anions and cations, as well as various organic solvents. 

For the anionic species, direct experimental measurements were not made for the 

partition coefficients, �������	
��
���
���, for the four solvent-water systems 

(acetone-, acetonitrile-, dimethylsulfoxide-, and methanol-water) since the solvents are 

miscible in water. Instead, existing Abraham pp-LFER solvent-water system 

parameters were used, together with the solute descriptors for the neutral species to 

compute partition coefficients for the neutral species. These values were used together 

with experimental values of the pKa in solvent and water as well as experimental 

values for solvent-water partitioning of the proton to compute solvent-water partition 

coefficients for the ionic species11. 

For the quaternary amine cations, octanol-water partition coefficients are 

computed from the octanol-water partition coefficients of halide-salts of the cation 

(e.g., Cat-Cl, Cat-Br) and experimental partition coefficients of the bare halide ions 

(Cl-, Br-)14. 

Figure 4-1 and Table 4-1 present summaries of the experimental solvent-water 

partitioning data used in developing and validating the QCAP Abraham method. 
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Table 4-1.   Summary of anion and cation solvent-water partitioning data. 

Solutes Solvents N Notes Ref 
Carboxylic Acids Acetone 

Acetonitrile 
Methanol 
DMSO 

44 
48 
47 
41 

Aliphatic, aromatic, chlorine-, 
and nitro-substituted 

11 

Quaternary Amines Octanol 217 Aliphatic, aromatic, chlorine-, 
fluorine-, amino-, imidazolium-

, and pyridinium- substituted 
14 

Figure 4-1 illustrates the range of the partition coefficients for the 5 solvent-

water systems. There are significant variations in partition coefficients both within 

each system as well as between the systems. Individual measurements of partition 

coefficients span approximately 4 to 5 orders of magnitude for the anionic compounds 

and approximately 12 orders of magnitude for the cationic compounds. Additionally, 

the solutes vary considerably both in size and structural moieties. A complete table of 

the solutes and their experimental solvent-water partition coefficients can be found in 

Table C-3a-e in Appendix C.  

4.3 Results & Discussion 

Previous work has shown that within solvents, there can be systematic biases 

in QC computed vs. experimental solvent-water partition coefficients for both neutral 

and ionic species15. Solvent-specific linear corrections are used in quantum chemical 

predictions of acid-dissociation constants (pKa) and have been shown to correct for 

solvent-specific biases76-78. 
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Figure 4-1.   Box plot of experimental solvent-water partition coefficients for 
cationic (octanol) and anionic (acetone, acetonitrile, dimethylsulfoxide 
(DMSO), and methanol) species by solvent. The interquartile range 
(IQR) represents 50% of the data, whiskers represent 1.5IQR, and filled 
points represent outliers (> 1.5IQR). Box widths are proportional to the 
square root of the number of data points.The number of solutes within 
each solvent data set is shown below the solvent names. 

A similar linear correction to the QCAP Abraham-predicted solvent-water partition 

coefficients can be expressed: 

 ��������
	
 � �� ��������
 
 �� (4-5) 

where ��������
 is the solvent (j) - water partition coefficient for a solute (i) computed 

using the solute and solvent-water system parameters obtained with the QCAP method 

described previously. The parameters ��  and �� are the solvent-specific slope and 

intercept corrections, and ��������
	
 is the corrected solvent (j) - water partition 

coefficient for the solute (i). A linear correction (Eq. (4-5)) to the QCAP Abraham-

predicted (Eq. (4-1)) ��������
 can be written as follows: 
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��������
	
 � ��
���� � ���� � ���� � ���� � ���� � ��� � �� (4-6) 

where the slope, �� , multiplies the terms of the uncorrected Abraham pp-LFER, and 

the intercept term, ��, is added to the slope-corrected terms. Since the slope and the 

lower case solvent-water system parameters are both solute-independent, the product 

terms (���� �����) can be grouped together into new corrected solvent-water system 

parameters, with the intercept term, �� , being absorbed into the constant term, ����, as 

follows: 
 ��������

	
 � �	��� � �	��� � �	��� � �	��� � �	��� � �	�� (4-7) 

where the � denotes the linearly corrected solvent-water system parameters (e.g., 

�	� � ���� � �	� � ���� � ��). This is the equation that will be used to predict the 

solvent-water partition coefficients for ionic species. It is formally identical to  

Eq. (4-1). 

The QC solvent-water partition coefficients were computed using SMD for the 

set of anions and cations in the 49 solvent-water systems. QCAP solute and solvent-

water system parameters were then obtained via the method discussed above by 

minimizing the sum of squares of the residual errors (Eq. (4-3). This produces the 

QCAP estimates for the solute parameters. The final step is to produce the corrected 

solvent-water system parameters (Eq. (4-7), lower case parameters). These were 

obtained by multiple linear regressions, using the QCAP estimates for the solute 

parameters for the ionic species and the experimental values for the respective solvent-

water partition coefficients.  

The results are compared below to (A) a priori QC calculations (at the same 

level of theory: SMD, M062X/6-311++G**), and (B) predictions made using the 

existing neutral species Absolv Abraham solute parameters (AAPs). Complete tables 
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of Absolv and QCAP solute descriptors and QCAP solvent descriptors can be found in 

Tables C-4a,b and Tables C-5a,b in the Appendix. 

4.3.1 Carboxylate Anions 

For the set of carboxylate anions, the results of the three methods (a priori QC, 

Absolv estimates, and QCAP) for estimating the solvent-water partition coefficients 

are summarized in Figure 4-2. It should be noted that for ionizable species, Absolv 

returns estimates for the neutral species, and will not compute different Abraham 

descriptors for the anions. The RMS errors for the three methods are summarized in 

Table 4-2 below. 

The direct quantum chemical computations (Figure 4-2A) have large 

systematic biases which are different for the different solvent-water systems. 

Additionally, large errors can be seen within single solvent-water systems (~ 4 orders 

of magnitude for acetonitrile-water). While the predictions using Absolv-estimated 

solute descriptors show significant improvement over direct QC predictions (Figure 4-

2B), there is still significant variability in the accuracies between solvsolvent-water 

systems. The errors in prediction for DMSO-water using Absolv solute descriptors are 

actually larger than those computed quantum-chemically. However, there is no 

apparent systematic solvent-based bias for the partition coefficients predicted using 

QCAP descriptors (Figure 4-2C). It is interesting to note that the errors increase at 

lower solvent-water partition coefficients for both the direct QC predictions and 

Absolv-estimated predictions (Figure 4-2A,B). This suggests that the average errors 

increase for increasingly hydrophilic anions for both the direct QC and Absolv-

estimated AP methods. 



 

 59 

The estimated solvent-water system parameters (using QCAP descriptors) and 

their associated standard errors as well as the individual solvent RMS errors are 

summarized in Table 4-3 below. Estimated solvent-water system parameters using 

Absolv-estimated Abraham parameters (and associated standard errors) can be found 

in Tables C-6a-c in the Appendix. 
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Figure 4-2.   (A) Direct QC computed (SMD, M062X/6-31++G**), (B) Absolv-
predicted, (C) QCAP-predicted vs. experimental solvent-water partition 
coefficients for carboxylic acid anions for acetone (ACET), acetonitrile 
(ACN), DMSO, and methanol (MEOH). Solid lines represent 1:1 
agreement, dashed lines represent ± an order of magnitude errors. RMS 
errors are 2.48, 0.740, and 0.462, respectively (N = 180). 
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Table 4-2.   Summary of RMS errors for direct QC computed, Absolv Abraham 
solute parameter (AAP), and quantum-chemically estimated Abraham 
solute parameter (QCAP) methods. 

Species Solvent Method N RMSE 

Anion 
 

Acetone 

QC 44 3.43 

AAP 44 0.636 

QCAP 44 0.475 

Acetonitrile 

QC 48 3.71 

AAP 48 0.59 

QCAP 48 0.512 

DMSO 

QC 47 0.698 

AAP 47 1.11 

QCAP 47 0.460 

Methanol 

QC 41 2.14 

AAP 41 0.389 

QCAP 41 0.393 

Total 

QC 180 2.48 

AAP 180 0.74 

QCAP 180 0.462 

Cation 
 

Octanol 

QC 217 2.82 

AAP 217 0.997 

QCAP 217 1.16 

4.3.2 Cations 

For the set of quaternary amine cations, corrected solvent-water parameters 

(��� ��
�
�) were estimated for the octanol-water system, using the solute QCAPs and 

experimental solvent-water partition coefficients. The QCAP-predicted partition 

coefficients (Eq. (4-7)) were then compared to predictions made using existing 

Absolv-estimated Abraham (AAP) solute descriptors and the direct QC computed 

partition coefficients (SMD, M062X/6-311++G**). It should be noted that for 
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permanently charged species, Absolv returns estimates for the charged species 

directly. The results are summarized in Figure 4-3. 

There are two large groupings of solutes for the direct QC computations that 

show a significant systematic bias. There is also significant scatter among the two 

distinct groupings (as much as 5 orders of magnitude). The RMS errors are similar 

between the direct QC computations for both anions and cations (RMS errors of 2.48 

and 2.82, respectively). However, the RMS error for both the Absolv-predicted and 

QCAP-predicted partition coefficients for the cations are larger (RMSE = 0.997 and 

1.16, respectively) than those for the anions (RMSE= 0.740 and 0.426). This is likely 

due to differences in size and structural complexity of the solutes between the two data 

sets. The anions are generally small (fewer than 10 heavy atoms) and either aliphatic 

or aromatic carboxylic acids with a small set of structural moieties (predominantly 

chlorine and nitrate functional groups). The quaternary amines however have flexible 

aliphatic chains of up to 16 carbons and more structurally diverse functions groups 

(e.g., -SO2-CF3) as well as nitro-substituted aromatic ring structures.  

The RMS error for the QCAP-predicted partition coefficients for the 

quaternary amine cations is significantly smaller than that of the direct a priori QC 

calculations (compare Figure 4-3A and 4-3C) and is nearly identical to that obtained 

using Absolv-estimated solute parameters (Figure 4-3B). The estimated octanol-water 

solvent-water system parameters (using QCAP solute descriptors) as well as the 

individual solvent RMS errors are summarized in Table 4-3. Estimated solvent-water 

system parameters using Absolv-estimated solute parameters (and associated standard 

errors) can be found in Tables C-6a-c in the Appendix. 
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Figure 4-3.   (A) Direct QC-computed (SMD, M062X/6-31++G**), (B) Absolv-
predicted, (C) QCAP-predicted vs. experimental octanol-water partition 
coefficients for quaternary amine cations. (Solid lines represent 1:1 
agreement, dashed lines represent ± an order of magnitude errors. RMS 
errors are 2.82, 0.997, and 1.16, respectively (N = 217). 
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4.3.3 Fitted Abraham Solvent � Water Parameters 

For the carboxylate anion data set, there were significant variations in the 

statistical significance and the magnitude of the standard errors for the Abraham 

solvent-water system parameters. To reduce the standard errors of the estimated 

parameters all 6 solvent-water parameters were initially included in the multiple linear 

regressions (Eq. (4-7)). The parameters with the largest p-values were then selected 

one at a time, removed from the regression equation, and the remaining parameters 

���� ������ 	
�� ��� 
��� ����� �
� �������� linear regression function in R79. It was 

noted that despite the reduction in degrees of freedom, the RMS errors of the reduced 

Abraham pp-LFER predicted solvent-water partition coefficients were not 

significantly different from those of the full Abraham pp-LFER model (Eq. (4-7)). For 

the cations, there were no parameters with p > 0.05. Consequently, the full Abraham 

pp-LFER model was retained. The estimated solvent-water parameters for both data 

sets as well as the coefficients of variation (%) and the associated RMS errors are 

summarized in table 4-3. The regression results which include all Abraham pp-LFER 

parameters for both the AAP and QCAP methods can be found in Tables C-6a-c in 

Appendix C. For the anion and cation solvent-water systems, the coefficients of 

variation (CV) of the estimated parameters are generally small, with a median CV of 

24.0%. However, it is clear that the coefficients of variation for the estimated 

intercepts (c) are large. This is due in part to the fact that the intercepts are all small, 

indicating that the molecular interaction terms (eE, sS, .., vV) describe nearly all of the 

partitioning behavior for the solute species. 
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Table 4-3.   Summary of corrected Abraham solvent-water system parameters (using QCAP solute descriptors), their 
respective coefficients of variation (%), number of experimental data points (N), and root mean square (RMS) 
errors for the carboxylic acid anions (N = 180) and quaternary amine cations (N = 217) experimental 
partitioning data. 

Species Solvent e s a b v c N RMSE 

Anions 

Acetone 
1.04 [-] 1718.1 -2.56 1.98 0.812 44 0.475 

65.38% [-] 17.47% 12.69% 36.58% 178.7% 

Acetonitrile 
2.94 -1.70 -676.4 -1.20 [-] 0.257 48 0.512 

11.05% 16.69% 53.82% 19.44% [-] 559.1% 

DMSO 
2.38 [-] 567.4 -3.41 2.02 .432 47 0.460 

27.00% [-] 51.34% 9.14% 36.44% 318.64% 

Methanol 
2.37 [-] 1202.3 [-] [-] -0.133 41 0.393 

10.31% [-] 16.94% [-] [-] 514.43% 

Cations Octanol 
0.6793 -2.21 -4498.2 0.201 5.39 -4.10 217 1.16 

19.21% 20.89% 12.65% 90.09% 7.97% 32.55% 
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It should also be noted that for the anions, particularly in the acetonitrile- and DMSO-

water systems, the CV of the hydrogen bond accepting term, a, conjugate to the solute 

hydrogen bond donating term (A), is quite large. This is not surprising, since the 

anions are all acids, which exhibit little to no ability to donate a hydrogen bond (A). 

Similarly, the largest CV for the quaternary amine cations is for the hydrogen bond 

donating term,b, conjugate to the solute hydrogen bond accepting term, B. This is also 

expected, since they are positively charged species with a large partial positive charge 

at the nitrogen site (i.e., excellent hydrogen bond donors). For the remaining terms, 

however, the coefficients of variation are similar both between the solvent-water 

systems and for both cations and anions.  This indicates that there is sufficient data to 

estimate all of the parameters used in the regressions. Further, there do not appear to 

be any solvent or species-specific (anion vs. cation) biases in the coefficients of 

variation for the estimated parameters. The accuracies of the estimated Abraham 

parameters appear to be independent of both the solvent-water system and the charge 

of the solutes. 

4.3.4 Residual Analysis 

For each solvent-water system, residuals were computed for each experimental 

solvent-water partition coefficient (��������
	
��


. Box plots of the residuals were 

constructed for each of the solvents. Figure 4-4 shows that there is no significant bias 

by solvent as the median ��������
	
��


 values increase, indicating that the model works 

equally well for both hydrophobic and hydrophilic solvents. Further, it can be seen 

that for acetone, DMSO, acetonitrile, and methanol, approximately 50% of the 

residuals are less than 0.3 log-units (a factor of 2 in linear space) and > 95% of the 
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residuals are less than 1.0 log-unit (an order of magnitude). This indicates excellent 

agreement between the QCAP-predicted and the experimental solvent-water partition 

  

Figure 4-4.   Logarithmic residual box plots ordered by increasing solvent-water 
median residuals. Boxes correspond to the interquartile range (IQR), 
where 25% < IQR < 75%. Whiskers correspond to ± 1.5IQR. Points 
correspond to outliers (> 1.5IQR). Solid line indicates perfect agreement 
between predicted and experimental values (1:1), dashed lines 
correspond to ± 0.3 log-units (a factor of 2), semi-dashed lines 
correspond to ± 1.0 log-units (a factor of 10). Box width is proportional 
to the square root of the number of data points. 

coefficients. While the range is significantly larger for the quaternary amine cation 

residuals, > 50% of the residuals are within 1.0 log-units. While these residuals are 
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larger than those for the anionic solutes, it is a significant improvement over the direct 

quantum chemical computations (see Figures C-1a, b in Appendix C).  

4.4 Implications 

It has been shown that for charged species, Abraham-predicted solvent-water 

partition coefficients obtained using quantum-chemically estimated solute parameters 

(QCAP) offer significant improvement over direct, a priori quantum chemical 

computations for all solvents. Further, it has been shown that using QCAP solute 

parameters for charged species results in comparable predictions for the octanol-water 

partition coefficients of the quaternary amine cations as well as improved predictions 

for the acetone-, acetonitrile-, and methanol-water partition coefficients for the 

carboxylic acid anions. For both the anion and cation data sets, the reduction in RMS 

error and the removal of solvent-based bias in the predictions were significant (from 

RMSE = 2.48 and 2.82 to RMSE=0.462 and 1.16, respectively). For anionic 

partitioning, the biases for the different solvents were eliminated, and the overall RMS 

error was reduced to within a factor of 3 (RMSE = 0.462). This is comparable to the 

RMS errors for neutral species obtained from both COSMO-SAC65 (RMSE = 0.690) 

as well as Absolv66 (RMSE = 0.560). While the RMS error for the octanol-water 

partitioning of the cationic quaternary amines was larger (RMSE = 1.16), this is a 

significant improvement over existing quantum chemical methods (RMSE = 2.82) and 

is comparable to the predictions made using Absolv-estimated solute descriptors 

(RMSE = 0.997). Further, the QCAP solute descriptor method does not rely on 

fragment values or chemical class-specific corrections, and has only 3 estimated 

parameters per solute (S, A, and B), compared to 6 for the alternative Abraham pp-

LFER methods for charged species10-12. Finally, QCAP solute descriptors for the ions 
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are obtained directly from molecular structure and quantum chemical computations 

and do not rely on structural/bond parameters12 or physical chemical descriptors of the 

neutral species11.  

It is expected that for additional solvent-water systems as well as additional 

ionizable solutes, the QCAP method can predict solvent-water partition coefficients to 

a similar level of accuracy for both anionic and cationic species. For new solvents, 

solvent-water system parameters can be obtained with existing Abraham charged 

solute parameters. Similarly, for new solutes in existing solvents, Abraham parameters 

can be obtained by computing QC solvent-water partition coefficients in the 49 

solvent-water systems and estimating the charged QCAP solute parameters. 
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PREDICTING NON-LINEAR PARTITIONING OF CHARGED ORGANIC 
SPECIES TO NATURAL ORGANIC MATTER USING QUANTUM-

CHEMICALLY ESTIMATED ABRAHAM PP-LFER SOLUTE 
PARAMETERS 

Procedures for accurately predicting linear partition coefficients for neutral 

chemicals onto various sorbents (e.g., black carbon, natural organic matter, clay) are 

reliable and well-established. In Chapter 2 an accurate method for modeling non-linear 

adsorption of neutral species onto various black carbons with a single, sorbate-

specific, binding parameter is presented. However, similar methods for the prediction 

of non-linear sorption of charged species have not been successful. The purpose of this 

chapter is to present a procedure for predicting non-linear isotherm parameters of 

charged species, specifically the median Langmuir binding constants, ��L, obtained 

utilizing the log-normal Langmuir isotherm discussed in Chapters 2 and 3. An 

Abraham poly-parameter linear free energy relationship (pp-LFER) is able to predict 

median Langmuir binding constants for a set of primary, secondary, tertiary, and 

quaternary amines sorbed onto soil organic carbon using quantum-chemically 

estimated Abraham (QCAP) solute descriptors for the charged species. Predictions 

made using the QCAP solute parameters were then compared to predictions made 

using Absolv-estimated Abraham solute parameters (AAPs). For the set of 60 amine 

cations, QCAP predictions of organic carbon � water partition coefficients had an 

overall RMS error of 0.526, while predictions made using the existing AAPs for the 

neutral species had an overall RMS error of 0.569. Clear biases present for secondary 

Chapter 5
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and quaternary amine species predicted using Absolv-estimated Abraham solute 

descriptors were reduced significantly in the predictions made using the quantum-

chemically estimated solute descriptors.  

5.1 Introduction 

Methods for predicting linear partitioning of neutral solutes between organic 

carbon and water are well-established1,2,5-7,38-42. The most popular method for 

predicting organic carbon � water linear partition coefficients (���) are Abraham poly-

parameter linear free energy relationships (pp-LFERs)1,2,46. These models are 

generally accurate to within an order of magnitude across various organic solvent � 

water systems. For organic carbon � water partition coefficients, pp-LFER predictions 

are accurate to within a factor of 2-3 for three data sets3,6,7 (with N = 1375, 138, and 

470 solutes, and �����	
� RMSE = 0.65, 0.55, and 0.39, respectively).  

This is not the case, however, for ionized species. Attempts have been made to 

predict the organic carbon � water partition coefficients of ionizable species using 

linear solvation energy relationships (LSERs) between the octanol � water and organic 

carbon � water partition coefficients for the ionic species. These methods have 

demonstrated some success (N = 62, RMSE = 0.47 and N = 43, RMSE = 0.49) for a 

set of ionized organic acids and ionized organic bases, respectively80. Attempts have 

also been made to predict the partitioning of cationic amines onto soil organic carbon 

using Abraham solute descriptors for the charged species computed using linear 

relationships of the Abraham solute descriptors for the corresponding neutral 

species11,68. While this method offers accurate predictions for a set of 66 primary 

through tertiary amines (RMSE = 0.42)13, there are a large number of coefficients (N = 

20) required to obtain the charged species Abraham solute parameters from the 
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uncharged Abraham parameters13. Further, the regressions between the charged and 

neutral species Abraham solute parameters are not universal. There are varying 

equations with unique equation coefficients for different classes of chemical 

compounds10,11 (e.g., carboxylate anions, phenolate anions). Consequently, this 

method is not universally applicable for new solutes.  

While both of these methods are reasonably accurate for predicting the linear 

organic carbon � water partition coefficients for ionizable species, previous work has 

shown non-linear sorption behavior for ionizable species, with Freundlich exponents 

ranging from 0.41 to 0.93, indicating highly non-linear sorption isotherms13. 

Consequently, a model is required that can accurately model non-linear adsorption of 

ionized species, and whose parameters can be predicted using physical chemical 

descriptors of either the neutral or ionized species. 

The log-normal Langmuir (LNL) isotherm model, presented in Chapter 2, uses 

a log-normal distribution of Langmuir isotherms with 2 sorbent-specific parameters: 

the overall site density, ����, and standard deviation of binding sites, ��; and a single 

sorbate-specific median Langmuir binding constant, �	
, for each species81. The LNL 

model reproduces non-linear isotherms for neutral species to a high degree of accuracy 

(N = 82, RMSE = 0.0985)81. Further, as shown in Chapter 3, the resulting median 

binding constants, �	
 are predicted (N = 82, RMSE = 0.364)82 with accuracies 

comparable to those for the linear partition coefficients3,6,7.  

The purpose of this chapter is to extend the application of the LNL isotherm 

model to the non-linear partitioning of ionizable species and to predict the resulting 

chemical-specific median Langmuir binding constant, �	
, with accuracies comparable 

to those for linear partition coefficients of neutral sorbates. 



 

 73 

5.2 Modeling & Experimental Data 

Adsorption data for a suite of primary through quaternary amines onto standard 

Pahokee Peat soil were obtained from the previous work of Droge & Goss13. The 

compounds ranged significantly in size and structural moieties (Table 5-1). A 

complete table of the compounds analyzed can be found in Table D-1 in the Appendix. 

Table 5-1.   Summary of experimental sorption data for a set of primary through 
quaternary amines onto standard Pahokee Peat soil13. 

Solute Class N Notes 

Amine 
Cations 

Primary 18 aliphatic, substituted benzyl-aromatic, chloro-substituted 

Secondary 20 pharmaceuticals 

Tertiary 28 pharmaceuticals 

Quaternary 14 benzyl/phenyl-substituted, aliphatic-substituted 

Total 80 

In the original paper, Freundlich isotherms were fit to the experimental data. In 

this work, the log-normal Langmuir isotherm was fit to the same experimental 

sorption data. The isotherm is a linear superposition of Langmuir isotherms with a log-

normal distribution of binding constants, ��: 

 ���� � ��	

��
 � � ��������

� � �������������
���
� ���

�
��  (5-1) 

where ��	
 is the maximum site density (mmol/kg sorbent), ��� is the median 

Langmuir binding constant for the distribution of sites �� ��!, "# is the standard 

deviation of $, the natural logarithm of ���, c is the aqueous concentration (mM), and z 

is the normal random variable of integration (� � %# � $ "#& ).  

5.2.1 Abraham Poly-parameter Linear Free Energy Relationship 

The Abraham pp-LFER for predicting the median Langmuir binding constant, 

���'(, of a solute, i, is82: 
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 ��������	
 � �
�	 � �
�	 � �
�	 � �
�	 � �
�	 � �
 (5-2) 

where the lower case parameters represent the relative sorbent (c) � water; hydrogen 

bond accepting (�
) and donating (�
) capabilities, excess molar refraction (�
), 

polarizability (�
), and cavitation contributions (�
), respectively. The upper case 

parameters represent the complimentary interactions of the solutes (i); hydrogen bond 

donating capacity (�	), accepting capacity (�	), excess molar refractivity (�	), 

polarizability (�	), and McGowan Volume (�	) such that the product terms represent 

the sorbent-sorbate combined contributions for each type of inter-molecular 

interaction energy. The �
 term accounts for any non-specific binding interactions and 

has the units of ����	.  

Absolv-estimated Abraham solute parameters (AAPs) were obtained using the 

Absolv software package45. For the primary through tertiary amines, Absolv estimates 

were not available for the ionized species. Consequently, the Absolv Abraham 

parameters for the neutral species were obtained. For the quaternary amines Absolv 

estimates were available for the charged species directly.  

5.2.2 Quantum-chemically Estimated Abraham Parameters (QCAP) 

A method for obtaining QCAP solute descriptors has been developed by Liang 

& Di Toro66. In the QCAP method, McGowan volumes (V) for the solutes are 

obtained directly from Absolv45. Previous work by Zhao et al.83 has shown excellent 

agreement between the McGowan volumes and van der Waals volumes for both 

neutral and ionic species. For convenience, the estimated McGowan volumes from 

Absolv are utilized.  
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The excess molar refractivity, E, defined as the molar refractivity of the given 

solute (���� , in excess of an n-alkane (����) with the same characteristic volume 

is84,85: 

 � � ��� � ���� (5-3) 

The total molar refraction, ���, can be computed  as a function of the index of 

refaction (	) and the McGowan volume (V), of the solute, as follows70: 

 ��� � 
� �
	� � 
�

	� � ��� � (5-4) 

Additionally, previous work has shown that molar refractivity of the alkane, ����, can 

be estimated from the McGowan volume84: 

 ���� � ������ � ����� (5-5) 

Combining Eqs. (5-3) through (5-5), an expression for the excess molar refractivity is 

obtained: 

 � � 
� �
	� � 
�

	� � ��� � � ������ � ����� (5-6) 

The index of refraction, 	, can be related to the molecular polarizability, �, using the 

Clausius-Mossotti equation86: 
 

�
	� � 
�

	� � ��� �

�
� � � �� �

�
� (5-7) 

Combining Eqs. (5-6) and (5-7), an equation for the excess molar refractivity, E, 

results66 which is a function of the molecular polarizability, �, and the McGowan 

volume, V: 

 � � 
� � �� � � �� �  � ������ � ����� (5-8) 

where �� !" #$%&'()%*" +%,"-',-. The result is an equation for E that can be computed 

using quantum chemical computations only. The molecular polarizability is computed 

using Gaussian 0964 at the M062X/6-311++G** level of theory, which has been 
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shown in previous work to provide accurate computations of molecular 

polarizability66,87. 

���������� 	
��
� ��	����

�	 �� ��� ��-��� �� �� ��� �� ������ 

 ��
��
�������� For neutral solutes, values for solvent-water system parameters (��  !�" 
(Eq. (5-2)) are well-established46. Consequently, these are used for new solutes for 

which Abraham solute descriptors are to be estimated66. This is not the case, however, 

for ionic solutes. For new ionic solutes, both Abraham solute (S, A, B) as well as 

solvent-system parameters (e, s, a, b, v, c) are unknown and must be estimated. This 

can be accomplished by alternating multiple linear regressions, in which the error 

function, defined below, is minimized.  

 #$ %&
'

()*
+,-./0123 4 506( 4 708( 4 �0#( 4 90:( 4 ;0<(

4 !0"= 

(5-9) 

where ,-./0123 is the quantum-chemically computed solvent (j) > water partition 

coefficient (L water / kg solvent) for solute (i). #$ is the error function (L water / kg 

solvent)2 to be minimized. 

In the first step, the solvent-system parameters are held constant. The neutral 

solvent-system descriptors46 are used as initial values. A multiple linear regression is 

performed using QC computed partition coefficients for 49 solvent-water systems and 

the ionic species solute Abraham descriptors (S, A, and B) are estimated. In the second 

step, the estimated solute descriptors (S, A, B) are held constant and the solvent-system 

parameters (e, s, a, b, v, c) are estimated for each solvent using multiple linear 

regressions. This cycle is then repeated until the error function (Eq. (5-9)) is 

minimized. This results in both new quantum-chemically estimated (QCAP) solute 

and solvent-system parameters for the ionic solutes and the 49 solvent-water systems. 
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A computer program for estimating the QCAP solute and solvent parameters is 

presented in Appendix D.2a. 

Quantum chemical calculations were performed in Gaussian 0964 using the 

SMD63 solvation model. M062X was chosen as the density functional, as it has 

demonstrated improved accuracies over similar M06 functionals in computing main 

group thermochemistry72. Since the solutes of interest are cations, long-range 

electrostatic interactions are important. Consequently, the 6-311++G** basis set was 

chosen, that includes diffuse functions. This basis set is similar in size and 

performance to the correlation-consistent double zeta (aug-cc-pVDZ) Dunning basis 

set with a slight improvement in computational efficiency73. 

Three-dimensional structures for the cations were constructed in ArgusLab74 

and were first optimized in the gas phase using a semi-empirical (AM1)75 level of 

theory. The structures were then optimized in the gas phase first at the PM388 level of 

theory with gradients calculated at each iteration, then using M062X/6-311++G** in 

Gaussian 0964. Frequency calculations were performed to ensure the structures were at 

an energy minimum with no imaginary frequencies. Finally, single point energy 

calculations were performed for the 49 solvent-water systems. Partition coefficients 

were calculated for each solute using the SMD-computed solvation free energies as 

follows: 

 ��������	
��	�
 � �������	 � ���	�
 (5-10) 

 �����������	
��	�
� �
��������	
��	�


��������
 (5-10a) 

where �������	 and ���	�
 are the Gibbs free energies in the solvent and water phases, 

respectively. ��������	
��	�
 is the Gibbs free energy of transfer between the two 
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phases, R is the universal gas constant (kcal/mol oK), T is the temperature (oK), and 

��������	
��
���
�� is the base-10 logarithm of the solvent-water partition coefficient.  

Of the 80 amines in the data set, successful optimized structures with no 

imaginary frequencies (NImag = 0) were obtained for 61 of the sorbates. Optimized 

structures (with NImag > 0) for the remaining sorbates were not obtained at the level 

of theory used in this analysis. This is likely due to structural conformers or a starting 

geometry too far from the optimum geometry for some of the more structurally-

complex molecules. 

5.3 Results & Discussion 

5.3.1 Isotherm Model 

Since some species were partially ionized at the experimental pH values, 

sorption isotherms for both the neutral and ionized species are required. For the set of 

amines (n = 80) 67 species are fully ionized, while the remaining species (n = 13) are 

mostly ionized with an average ionized fraction, ��� � ���� for both experimental 

����� � ! "#$ %$&"!'( ��$)*$� ' ) %+$%"* %'( (*%$'! *� "#$!, , -$( .'� �$($)"$- �*%)$
these are known to provide reliable estimates of partitioning to organic carbon for 

neutral chemicals. The log-normal Langmuir model (Eq. (5-1)) was chosen for the 

charged species since the total sorption data exhibits strongly non-linear behavior. 

This results in a combined isotherm equation, which is a superposition of the 

individual charged and neutral species sorption models: 

 /01023456 7 89 :;<=>�? @ � A�BCDEFGHIJK
L M A�BCDEFGHIJK�NOP�

QRS
� �TR

U
VU W 8XYZ5 (5-11) 

where �� and �[ are the fractions of ionized and neutral species, respectively: 
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 �� � �������� � �	  

�
 � �	���� � �	  

(5-12a) 

 

(5-12b) 

and where �� is the acid-dissociation constant, and ���� is the aqueous proton 

concentration (mol/L).  

For neutral species, a reliable pp-LFER model for the linear organic carbon 
 

water partition coefficients (log(����) exists6,7. The ��� for neutral species can be 

computed using the organic carbon 
 water Abraham pp-LFER system parameters 

obtained by Kipka and Di Toro7 and the Absolv-estimated solute descriptors for the 

neutral species: 

 �������� � ������ �  � �! �  ���"# � ��� $% � ���&&' �  �$"( (5-13) 

The organic carbon 
 water partition coefficient (Eq. (5-13)) can be converted 

to an overall partition coefficient by multiplying by the fraction organic carbon present 

in the soil ()��): 

 �* + )����� (5-14) 

Combining Eqs. (5-14) and (5-11), an expression for the total sorption of neutral and 

charged sorbate species is obtained: 

 ,-�-./�0� � �� 1234567 8 9 :�;<=>?@ABCDE F :�;<=>?@ABCDGHIJK
LMN6 OPMQ

RQ
� �
�ST�ST0 

(5-15) 

The remaining parameters in Eq. (5-15): 1UVWX YZ=[X and �\]=[  were estimated 

by minimizing the sum of squares of the residuals using the Excel Solver package with 

Eq. (5-15) as the prediction. The resulting isotherms for a subset of the primary 

through quaternary amines (n = 34) is illustrated in Figure 5-1. A computer program to 
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evaluate Eq. (5-15) is presented in Appendix D.2b. A complete table of estimated 

isotherm parameters is presented in Table D-2 in the Appendix. 

 

Figure 5-1.   Adsorption isotherms for a selection of 34 primary through quaternary 
amine cations. Points represent the experimental adsorption data (see 
Figure D-1 in the Appendix for a legend of solutes). Solid lines represent 
the isotherm model (Eq. (5-15)). Model parameters are presented in 
Table D-2 in the Appendix. 

The isotherm model (Eq. (5-15)) does an excellent job of reproducing the 

experimental sorption data for the primary through quaternary amine species. The 

RMS error for the model-predicted sorbed concentrations, log(q(c)), is 0.272 for the 
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entire set of solutes (N = 80). For species which were fully ionized at the experimental 

pH the RMS error was slightly smaller (RMSE = 0.137, N = 67) indicating that there 

may larger errors in the linear sorption model for the neutral species. It should be 

noted that for partially ionized species there are no estimated parameters for the 

sorption of the neutral fraction, it is a direct prediction. This is likely the cause of the 

larger RMS errors for the partially ionized species.  

As demonstrated for neutral solutes81, when a single sorbent-specific sorption 

capacity, ����, and sorbent-specific distribution of binding sites, ��, are used, 

adsorption isotherms for multiple solutes can be displayed as a single isotherm, when 

the sorbed concentration, �, is plotted against the product of the aqueous 

concentration, �, and the median Langmuir binding constants for the individual 

solutes, �	
, as demonstrated in Figure 2-4B,C. This is a useful tool for more easily 

comparing the individual isotherms as well as illustrating the behavior of the LNL 

isotherm model. Since there is both sorption of the charged and neutral species when a 

sorbate is partially ionized, an analysis of the normalized LNL isotherm is only 

possible for the subset of species where the majority of the sorption occurring is that 

of the charged species. Linear partition coefficients for neutral species can span orders 

of magnitude. Consequently, the  ��  and �
  terms in Eq. (5-15) cannot singularly 

determine if sorption of the neutral species is significant (even at very low values of 

�
). It is necessary to compute the contributions of the neutral and charged species to 

the total sorbed concentration, ���������. A cutoff fraction of total sorption, ���, for the 

charged species of 99.9% was selected, above which the sorption of neutral species 

was considered to be negligible. The resulting normalized LNL isotherm for the 

sorbates above the cutoff is shown in Figure 5-2. 
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Figure 5-2 demonstrates that there is no significant bias in the predicted 

isotherms as the LNL isotherm approaches saturation. This suggests that the LNL 

isotherm works equally well for the non-linear region of adsorption as well as the 

nearly linear region. Further, nearly all of the experimental sorption points for the 

ionized species are predicted to within a factor of 2, indicating a high level of accuracy 

for the LNL model. This illustrates that the LNL isotherm can be used to model 

charged sorption data with accuracies comparable to those for neutral species (RMSE 

= 0.0985, N = 82)81. 

 

   

Figure 5-2.  Normalized isotherms for a selection of 63 primary through quaternary 
amine cations (where ��� � �����). Points represent the experimental 
adsorption data. Solid lines represent the fit to the LNL isotherm model 
(Eq. (5-15)). Dashed lines represent ± 0.3 log-units (factor of 2) error in 
the predicted isotherms. The RMS error for the ��� � ����� subset of 
chemicals is 0.139 (N = 69, with 567 data points). Estimated isotherm 
parameters and associated standard errors can be found in Table D-2 in 
the Appendix. 
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5.3.2 Predicting Median Langmuir Binding Constants for Ionic Species 

The median binding constants, �����, are the only sorbate-specific parameter for 

the LNL isotherm. Consequently they need to be predicted in order to make isotherm 

predictions for the sorption of new charged species. Two methods were tested for 

predicting the LNL-estimated median Langmuir binding constants for the ionized 

species, �����, obtained from fitting Eq. (5-15) to the sorption isotherms. Both were 

based on the Abraham pp-LFER (Eq. 5-2). The solute parameters used were either the 

Absolv-estimated (AAP) solute parameters or the quantum-chemically estimated 

(QCAP) solute parameters. For each method, plots of the logarithmic residuals vs. the 

Tukey mean89 of the observed and predicted median binding constants were 

constructed (Figure 5-3). A complete table of Absolv-estimated solute parameters, 

QCAP solute parameters, and QCAP solvent parameters are presented in Tables D-3 

and D-4 in the Appendix.  

Both models provide accurate predictions of the median Langmuir binding 

constants, with RMS errors of 0.526 and 0.569 for the QCAP and AAP solute 

descriptors, respectively. However, there is a bias with increasing median binding 

constant when the Absolv solute descriptors are used (Figure 5-2A). This bias is not 

observed for the QCAP model (Figure 5-2C). This bias can be quantified by 

computing a Pearson R-squared (R2 ) correlation coefficient between the logarithmic 

residuals of the median binding constants and the Tukey mean values of the predicted 

and LNL-estimated median binding constants (Figures 5-2B, 5-2D). Large R2 values 

indicate a strong correlation between the magnitude of the binding constant and the 

error in the predicted values of the median binding constant which indicates the 

presence of a bias. 
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Figure 5-3.   (A) AAP-predicted vs. LNL-estimated median binding constant, 
(log(�����)). (B) Logarithmic residuals ���	����� 

�� 
 ���	����� ���� vs. 
Tukey mean median binding constant 	���	����� 

�� �  ��������� ���� �
�. (C) QCAP-predicted vs. LNL-estimated median binding constant, 
(log(�����)). (D) Logarithmic residuals ���	����� ��
�� 
 ���	����� ���� 
vs. Tukey mean median binding constant 	���	����� ��
�� �
���	����� ������. 

While the overall Tukey residual R2 for the 60 amines is small for both the 

AAP and QCAP methods (R2 = 0.323 and 0.243, respectively), the individual amine-

type R2 values vary significantly between the two methods. The Tukey residual R2 for 

the primary and tertiary amines are comparable for both the AAP- and QCAP-

predicted median binding constants. However, the AAP-predicted median binding 

constants show significantly increased bias in the residuals for the secondary and 
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quaternary amines (R2 = 0.380 and 0.602 for AAP vs. 0.159 and 0.370 for QCAP), 

respectively. Estimated sorbent-water system parameters and associated standard 

errors for the AAP and QCAP methods can be seen in Eqs. (5-16) and (5-17). A 

complete description of the RMS errors and Tukey R2 correlation coefficients for the 

AAP and QCAP methods can be found in Table 5-2. 
 

��������	 

�� 
 ������������� � ������������� � �������������

� ������������� � ������������ � ������������ 

(5-16) 
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� ������������� � ������������ � ������������ 
(5-17) 

 ! 
 ��" #$�� 
 �����  

Table 5-2.   Summary of RMS errors and Tukey R2 correlation coefficients for 
AAP- and QCAP-predicted median Langmuir binding constants. 

AAP Solute Parameters 
QCAP Solute 
Parameters 

Class N RMSE 
Tukey 

R2 N RMSE 
Tukey 

R2 

Primary 16 0.501 0.61 16 0.340 0.66 

Secondary 10 0.341 0.38 10 0.615 0.16 

Tertiary 23 0.651 0.27 23 0.623 0.24 

Quaternary 11 0.637 0.60 11 0.433 0.37 

Total 60 0.569 0.32 60 0.526 0.24 
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5.3.3 Residual Analysis 

A box plot of the logarithmic residual values is shown in Figure 5-4, ordered by 

increasing predicted LNL median binding constant within each type of amine. For the 

primary and tertiary amines, there is no significant bias in the predicted isotherm 

residuals with increasing median binding strength. The residuals are smaller, in most 

cases, for the primary amines. This is reflected in their respective RMS errors (RMSE 

= 0.340 vs. 0.501, Table 5-2). Figure 5-3 shows that for secondary and quaternary 

amines there are significantly larger R2 correlations between the Tukey mean median 

binding constants and the residuals. For the secondary amines, because the median 

binding constants are very close in magnitude, this bias is not visible in the predicted 

median binding constants (Figure 5-3A,B). However, for both AAP and QCAP-

predicted isotherms, there is a systematic over prediction of sorbed concentrations (q), 

with the AAP model performing slightly better for the 9 secondary amines (Figure 5-

4). This is not the case for quaternary amines, where there is significant inverse 

correlation between the residuals and the median binding constant. This correlation is 

reduced in the QCAP predictions of the isotherms (Figure 5-4B). Overall, predicting 

sorption isotherms using the QCAP-predicted median binding constants results in a 

slightly smaller RMS error (RMSE = 0.457 vs. 0.478) compared to predictions made 

using the AAP-predicted median binding constants. 
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Figure 5-4.   Box plots of the (A) AAP-predicted LNL isotherm residuals ��������� 	 �����
��
�and (B) QCAP-
predicted LNL isotherm residuals ���������� 	 �����
��
�, ordered by increasing predicted LNL median 
binding constant within each type of amine. Vertical lines separate the types of amines. Horizontal black solid 
lines represents 1:1 agreement between predicted and experimental sorbed concentrations, dashed lines 
represent +/- 0.3 log-units difference between predicted and observed adsorbed concentrations and semi-
dashed lines represent+/- 1.0 log-units difference between predicted and observed adsorbed concentrations. 
IQR contains 50% of the data, whiskers represent ± 1.5IQR and filled points represent outliers > 1.5IQR).  
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5.4 Implications 

It has been shown that the LNL isotherm model can accurately reproduce non-

linear adsorption of the primary through quaternary amine ionic species onto natural 

organic matter. The median binding constants, �����, for the ionized species  can be 

predicted with an Abraham pp-LFER model using quantum-chemically estimated 

Abraham solute descriptors. The accuracy of the predictions made using the QCAP 

solute descriptors are an improvement over those made using the existing AAP solute 

descriptors. The significant biases in the AAP-predicted binding constants for the 

secondary and quaternary amines are reduced when the QCAP descriptors are used. 

The predicted isotherms using QCAP-predicted median Langmuir binding constants 

accurately reproduce the experimental data with decreased RMS error compared to the 

isotherms predicted using AAP-predicted median Langmuir binding constants.  

The combination of the LNL and QCAP Abraham models provide prediction 

capabilities for the sorption of charged solutes without chemical-class specific 

regressions. The model is independent of the chemical class of the sorbate and is 

applicable for ionic species. It is expected that for other classes of ionizable organic 

compounds (e.g., drug-like compounds, pesticides, ionic liquids) the median Langmuir 

binding constant, �����, can be predicted using the QCAP pp-LFER method. The LNL 

model can also be utilized for other sorbents that exhibit non-linear sorption behavior 

(e.g. activated carbon, graphite, biochar).  
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CONCLUSIONS & RECOMMENDATIONS 

In this doctoral thesis, a non-linear isotherm model was developed for both 

neutral and ionizable organic species. This model utilizes a single sorbate-specific 

parameter, the median Langmuir binding constant, ��������, which can be predicted 

for both neutral and ionizable species using an Abraham pp-LFER model. 

The non-linear sorption of neutral organic species onto various forms of black 

carbon is accurately modeled using the log-normal Langmuir (LNL) isotherm model 

presented in Chapter 2. The results suggest that for neutral species, the LNL isotherm 

model can accurately reproduce sorption isotherms for various sorbates onto graphite 

and wood char as well as Darco and F400 granular activated carbons. Further, the 

LNL isotherm model accomplishes this with two sorbent-specific parameters: the 

maximum sorption capacity, 	
��, and the standard deviation of the logarithm of the 

Langmuir binding constants, 
�; and a single sorbate-specific isotherm parameter, the 

median Langmuir binding constant, ���. Further, the model can predict the maximum 

sorption capacity, 	
��, even when isotherm curvature is not apparent in the 

individual isotherms, as illustrated by the application to graphite. It accomplishes this 

using the differences in isotherm slopes of the various sorbates to extrapolate to 

saturation.  

Future work should concentrate on understanding the sorbent-specific 

parameters, 	
��, and, in particular, the standard deviation of the logarithm of the 

Langmuir binding constants, 
�. It is only the median Langmuir binding constant, ���, 

Chapter 6
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that is sorbate specific. The remarkable finding is that the same �� can be applied to 

all the sorbates. This should be tested for additional sorbents. It would also be useful 

to have a more mechanistic understanding of the underlying chemical properties that 

result in this behavior.  Examining molecular models of simple sorbents, for example 

graphite, may contribute to a more in-depth understanding. 

In Chapter 3, the median Langmuir binding constants, ������	
, were predicted 

for the four carbon sorbents presented in Chapter 2, using the Abraham pp-LFER 

model and Absolv-estimated Abraham solute descriptors. The results suggested that 

for the porous sorbents, particularly F400 GAC, a volumetric cutoff is present. The 

molecular volume cutoff is consistent with the median pore volume of F400 GAC.  It 

appears that the large molecular volume sorbates do not interact with the sorbent sites 

accessed by the smaller molecules. This conclusion is suggested by observing that for 

these large sorbates, there was weak correlation between the observed median 

Langmuir binding constants and the Absolv-estimated Abraham solute descriptors (E, 

S, A, B, V). Instead, for these sorbates above the molecular volume cutoff, a strong 

inverse correlation to the experimental aqueous solubility, �����
, was observed. 

Further, the molecular volume cutoff was not observed for the graphite data set, the 

only non-porous sorbent. It would be useful to include isotherm data in future work 

which directly compares identical sets of sorbates onto the different sorbents to 

determine if the volumetric cutoff observed varies for different sorbents. Also it would 

be useful to have a more mechanistic understanding of the molecular properties of 

both the sorbates and sorbents that exhibit this behavior. 

In Chapter 4, the QCAP method developed by Liang & Di Toro was extended 

to estimate solute and solvent-water Abraham descriptors for ionizable species. The 
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QCAP solute descriptors were then used to predict solvent-water partition coefficients 

for a set of carboxylate anions and quaternary amine cations in various solvent-water 

systems. For the carboxylate anions in acetone-, acetonitrile-, DMSO-, and methanol-

water systems, the QCAP Abraham solute descriptors offered significant 

improvements over both direct a priori quantum chemical computations and 

predictions made using the existing Absolv Abraham solute descriptors. For octanol-

water partitioning of quaternary amines, the QCAP Abraham predictions were a 

significant improvement over the direct QC computations; however, they were not an 

improvement over predictions made using the existing Absolv-estimated solute 

descriptors. It is difficult to compare the performance of the QCAP method between 

cations and anions, as there is variation both in the solvent-water systems examined, as 

well as significant differences in the size and complexity of the solute molecules in the 

two data sets. It would be useful in future work to directly compare anions and cations 

of similar size and complexity in the same solvent-water systems. This would help to 

determine if the performance of the QCAP method is similar for cations and anions, or 

if the increased RMS error observed for the set of quaternary amine cations is 

representative of increased predictive errors for cations in general.  

In Chapter 5, the LNL isotherm model developed in Chapter 2 was extended to 

model the non-linear partitioning of ionizable organic species onto natural organic 

carbon (Pahokee peat). The model was modified to include a conventional linear 

isotherm for the neutral component present and the LNL model for the ionized 

component. For a set of primary through quaternary amines, QCAP solute descriptors 

were estimated and used to predict median Langmuir binding constants for the non-

linear sorption of the ionic component onto organic carbon. It was demonstrated that 
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using the QCAP Abraham solute descriptors offered slight improvements in predicted 

median Langmuir binding constants compared to the existing Absolv-estimated 

descriptors. Further, it was demonstrated that using the QCAP solute descriptors 

significantly reduced the prediction bias for the secondary and quaternary amine 

sorbates. It would be useful for future work to include more varied sorbates, 

particularly anionic sorbates, as well as additional sorbents to test the applicability and 

range of the LNL sorption and QCAP pp-LFER models.  
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MODELING NON-LINEAR ADSORPTION WITH A SINGLE CHEMICAL 
PARAMETER: A LOG-NORMAL LANGMUIR ISOTHERM 

 

A.1. Log-normal Langmuir Visual Basic Code 

A.2. Log-normal Langmuir Estimated Isotherm Parameters 

a. Graphite/Charcoal 

b. Darco GAC 

A.3. Log-normal Langmuir Estimated Isotherm Parameters � F400 GAC 

a. Sorbate-specific log(���), ��, and ��	
 � Model (1) 

b. Sorbate-specific log(���) and ��	
 � Model (2) 

c. Sorbate-specific log(���) and �� � Model (3) 

d. Sorbate-specific log(���) � Model (4) 

A.4. Discussion of Standard Errors of Estimated Parameters � Model (4) 

A.5. Estimated ss-LNL Isotherms for F400 GAC 

A.6. Comparison of Freundlich and LNL Isotherm Residuals  

A.7. Tables of Estimated Freundlich Isotherm Parameters and Associated Standard 

Errors 
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Function LNLfunc(k, qtot, sigma, conc) 
� � �� ����	
) with units [mM]^-1 
� ��
� �� ��� ������� �
����
� �������� ���� ����� ��
����  
� ����� �� ��� �������� �������
� 
� �� �������
����� 
� �
�� �� ��� ����
�� �
���ntration in mM 
Pi = 3.141592654 
 
Dim weights 
weights = Array(2.22939364553415E-13, 4.39934099227318E-10, 
1.08606937076928E-07, 7.80255647853206E-06, 2.28338636016354E-04, 
3.24377334223786E-03, 2.48105208874636E-02, 0.109017206020023, 
0.286675505362834, 0.46224366960061, 0.46224366960061, 
0.286675505362834, 0.109017206020023, 2.48105208874636E-02, 
3.24377334223786E-03, 2.28338636016354E-04, 7.80255647853206E-06, 
1.08606937076928E-07, 4.39934099227318E-10, 2.22939364553415E-13) 
 
Dim nodes 
nodes = Array(-5.38748089001123, -4.60368244955074, -3.94476404011563, -
3.34785456738322, -2.78880605842813, -2.25497400208928, -
1.73853771211659, -1.23407621539532, -0.737473728545394, -
0.245340708300901, 0.245340708300901, 0.737473728545394, 
1.23407621539532, 1.73853771211659, 2.25497400208928, 2.78880605842813, 
3.34785456738322, 3.94476404011563, 4.60368244955074, 5.38748089001123) 
 
Dim func(0 To 19) 
 
For i = 0 To 19 
func(i) = ((conc * Exp(k + sigma * nodes(i) * (Sqr(2)))) / (1 + conc * Exp(k + 
sigma * nodes(i) * (Sqr(2))))) 
Next i 
 
Dim runsum 
runsum = 0 
 
For i = 0 To 19 
runsum = runsum + func(i) * weights(i) 
Next i 
 

A.1 Log-normal Langmuir Visual Basic Code
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LNLfunc = (qtot / (Sqr(Pi))) * runsum 
End Function 
 
��������������������������������������������������������������������������������������������������

������� 
� Test: using 1,1,1,2-tetrachloroethane onto F400 GAC (log(���) = 2.022) then  k 
� ��	
	���
�� �� 4.66, sigma = 4.962, qtot = 10199.53 mmol/kg, and 
�
���������
� � 
�

	�� ��� ��� ��
���� �
���������
� �
������ ��
��� ��
4457.97 mmol/kg. 
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A.2 Log-normal Langmuir Fitted Isotherm Parameters 

Table A-1a.  Estimated LNL isotherm parameters and associated standard errors for 
graphite and charcoal. Units for ���� and ��� are (mmol/kg carbon) and 
�	
��
, respectively, and �� is dimensionless. Coefficients of variation 
(CV) are expressed as a % of the estimated parameter. 

 Graphite Charcoal 

Chemical log(���) SE log(���) SE 

Phenanthrene 4.078 0.0221 - - 

2,4,6-Trinitrotoluene 2.544 0.0179 1.555 0.0162 

Naphthalene 1.247 0.0177 1.993 0.0134 

1,2,4-Trichlorobenzene 1.313 0.0177 2.227 0.0188 

2,4-Dinitrotoluene 1.241 0.0171 1.801 0.0120 

1,2,4-Trimethylbenzene 0.883 0.0167 1.495 0.0223 

p-Nitrotoluene 0.651 0.0155 1.710 0.0168 

1,2-Dichlorobenzene 0.439 0.0170 1.566 0.0184 

Xylene 0.404 0.0146 1.285 0.0146 

Chlorobenzene -0.431 0.0140 - - 

Toluene -0.701 0.0141 0.747 0.0130 

Benzonitrile -0.886 0.0172 0.977 0.0148 

Benzene -1.390 0.0157 -0.137 0.0140 

       

�� SE(��) CV (%)  �� SE(��) CV (%) 

3.481 0.292 8.39%  2.6098 0.107 4.10% 

qmax SE(qmax) CV (%)  qmax SE(qmax) CV (%) 

15.99 3.932 24.6%  978.4 79.75 8.15% 
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Table A-1b. Estimated LNL isotherm parameters and associated standard errors for 
Darco GAC. Units for ���� and ��� are (mmol/kg carbon) and �	
��
, 
respectively, and �� is dimensionless. Coefficients of variation (CV) are 
expressed as a % of the estimated parameter. 

Chemical log(���) SE 

Hexane 0.1402 0.0437 

Heptane 0.261 0.0300 

Benzene -0.705 0.0624 

Toluene -0.0599 0.0419 

Nitrobenzene -0.333 0.0571 

Trichloroethene -0.726 0.0322 

1,1,2-Tetrachloroethane -1.360 0.0545 

Methyl tert-butyl Ether -2.491 0.0330 

Diethyl Ether -2.382 0.0256 

Diisopropyl Ether -1.556 0.0610 

2-Heptanone 0.136 0.0746 

3-Hexanone -1.695 0.0448 

1-Heptanol -0.984 0.0711 

1-Hexanol -1.618 0.0485 

 

�� SE(��) CV (%) 

3.969 0.294 7.41% 

qmax SE(qmax) CV (%) 

5064. 1255. 24.8% 
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Table A-2a.  Estimated LNL isotherm parameters and associated standard errors for 
F400 GAC � Model (1). Units for ���� and ��� are (mmol/kg carbon) 
and �	
��
, respectively, and �� is dimensionless. 

Chemical log(���) SE �� SE ��������� SE 

1,1,1,2-tetrachloroethane -1.645 2.242 4.376 1.029 4.068 0.717 

1,1,1-trichloroethane -2.951 1.374 5.112 0.721 3.775 0.376 

1,1-Dichloroethane -4.885 1.302 4.777 0.402 4.904 0.580 

1,1-Dichloroethene -4.113 1.366 5.658 0.701 4.249 0.341 

1,1-Dichloropropene -1.916 4.038 6.126 4.360 3.568 0.349 

1,2,3-trichloropropane -2.122 2.149 4.433 0.974 4.362 0.682 

1,2-dibromoethane -3.552 0.809 6.349 0.366 3.658 0.230 

1,2-dichlorobenzene 0.142 2.781 4.517 1.935 4.007 0.647 

1,2-Dichloroethane -2.953 3.124 5.071 2.018 3.443 0.634 

1,2-Dichloropropane -4.008 2.042 5.438 1.101 4.247 0.389 

1,3,5-trichlorobenzene 0.973 1.643 4.682 1.271 4.039 0.346 

1,3-dichlorobenzene -0.216 6.415 3.586 3.256 4.440 2.268 

1,3-Dichloropropane -3.734 0.876 5.654 0.454 4.283 0.205 

2,4,5 Trichlorophenoxyacetic Acid -0.216 3.386 7.712 6.336 3.489 0.143 

Alachlor 0.001 1.102 7.002 0.998 3.858 0.158 

Aldicarb -0.526 1.206 5.253 0.691 3.685 0.295 

Atrazine 0.644 1.001 5.620 1.040 3.676 0.171 

Benzene -2.758 1.875 5.091 0.846 4.372 0.525 

Bromobenzene 0.027 2.203 4.583 1.640 3.940 0.481 

Bromodichloromethane -2.506 3.799 4.330 1.599 4.067 1.326 

Bromoform -2.980 1.514 4.825 0.671 4.524 0.469 

Carbofuran -0.068 2.548 5.516 2.244 3.688 0.379 

Carbon tetrachloride -2.355 1.759 4.625 0.712 3.878 0.615 

Chlorobenzene -0.911 2.218 5.343 1.915 3.887 0.350 

Chloroform -5.082 0.989 5.375 1.073 4.541 1.051 

cis 1,2-dichloroethylene -2.301 1.080 4.581 0.493 3.663 0.354 

Cyanazine 0.011 1.466 7.994 2.280 3.616 0.110 

Dibromochloromethane -1.753 4.326 4.335 1.730 3.893 1.578 

Dibromochloropropane -1.030 1.118 5.216 0.608 3.885 0.284 

Dibromomethane -5.034 1.567 4.832 0.556 4.923 0.579 

A.3 Log-normal Langmuir Estimated Isotherm Parameters � F400 GAC. 
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Ethyl Benzene -0.135 6.354 4.235 4.595 4.021 1.503 

Hexachlorocyclopentadiene 0.097 3.589 4.380 1.841 4.464 1.067 

Isophorone -1.046 1.275 6.662 1.157 3.492 0.179 

Methylene Chloride -5.765 2.431 4.628 0.867 4.934 0.904 

Metolachlor -0.011 1.258 8.865 2.245 3.502 0.066 

Metribuzin -0.266 2.247 7.303 3.934 3.606 0.129 

Oxamyl -0.043 1.691 2.473 0.946 4.767 0.744 

Simazine 0.675 0.833 8.320 0.811 3.180 0.128 

Styrene 0.370 7.492 3.851 5.201 4.146 1.983 

Tert-butyl methyl ether -2.573 6.463 4.939 4.253 3.438 1.225 

Tetrachloroethene -1.114 1.566 4.599 0.804 4.088 0.444 

Toluene 0.294 2.567 4.520 1.750 3.558 0.604 

Trans 1,2 Dichloroethene -2.571 2.136 5.432 1.430 3.606 0.369 

Trichloroethene -0.597 2.067 4.382 1.101 3.605 0.590 
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Table A-2b. Estimated LNL isotherm parameters and associated standard errors for 
F400 GAC � Model (2). Units for ���� and ��� are (mmol/kg carbon) 
and �	
��
, respectively, and �� is dimensionless. 

Chemical log(���) SE ��������� SE 
1,1,1,2-tetrachloroethane -4.070 0.387 4.958 0.197 

1,1,1-trichloroethane -3.064 0.574 3.787 0.279 
1,1-Dichloroethane -6.033 0.357 5.285 0.184 
1,1-Dichloroethene -3.213 0.809 4.050 0.429 

1,1-Dichloropropene 0.172 1.378 3.091 0.421 
1,2,3-trichloropropane -3.735 0.445 4.803 0.227 

1,2-dibromoethane -0.563 0.368 2.839 0.148 
1,2-dichlorobenzene -0.613 0.359 4.133 0.124 
1,2-Dichloroethane -3.100 0.634 3.454 0.319 

1,2-Dichloropropane -2.260 0.371 3.448 0.174 
1,3,5-trichlorobenzene 0.502 0.452 4.106 0.138 
1,3-dichlorobenzene -5.065 0.447 6.414 0.263 
1,3-Dichloropropane -2.919 0.350 4.120 0.147 

2,4,5 Trichlorophenoxy Acetic Acid 1.746 0.647 3.264 0.140 
Alachlor 2.270 0.467 3.510 0.116 
Aldicarb -0.435 0.469 3.666 0.186 
Atrazine 0.944 0.461 3.645 0.133 
Benzene -2.943 0.496 4.408 0.239 

Bromobenzene -0.718 0.412 4.082 0.139 
Bromodichloromethane -4.408 0.696 4.605 0.425 

Bromoform -3.615 0.470 4.621 0.268 
Carbofuran -1.187 0.445 4.262 0.202 

Carbon tetrachloride -3.028 0.790 3.913 0.407 
Chlorobenzene -0.776 0.382 3.873 0.134 

Chloroform -2.985 1.371 3.451 0.740 
cis 1,2-dichloroethylene -4.232 0.306 4.381 0.141 

Cyanazine 2.748 0.680 3.265 0.099 
Dibromochloromethane -4.544 0.961 5.014 0.619 
Dibromochloropropane -1.008 0.391 3.883 0.176 

Dibromomethane -5.965 0.431 5.205 0.249 
Ethyl Benzene -1.424 0.967 4.284 0.393 

Hexachlorocyclopentadiene -2.229 1.286 5.264 0.679 
Isophorone 1.410 0.515 3.028 0.144 

Methylene Chloride -6.980 0.782 5.176 0.548 
Metolachlor 3.741 0.723 3.060 0.080 
Metribuzin 1.864 0.448 3.313 0.080 

Oxamyl -7.891 0.562 8.263 0.362 
Simazine 4.129 0.400 2.732 0.087 
Styrene -5.120 1.206 6.550 0.779 

Tert-butyl methyl ether -1.822 1.852 3.018 0.785 
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Tetrachloroethene -2.321 0.334 4.410 0.149 
Toluene -0.312 0.459 3.612 0.175 

Trans 1,2 Dichloroethene -2.224 0.357 3.548 0.152 
Trichloroethene -2.269 0.347 4.076 0.154 

  �� SE(���  
5.197 0.108 
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Table A-2c.   Estimated LNL isotherm parameters and associated standard errors for 
F400 GAC � Model (3). Units for ���� and ��� are (mmol/kg carbon) 
and �	
��
, respectively, and �� is dimensionless. 

Chemical log(���) SE �� SE 

1,1,1,2-tetrachloroethane -1.442 0.259 4.282 0.249 

1,1,1-trichloroethane -3.549 0.481 5.265 0.419 

1,1-Dichloroethane -2.632 0.287 4.001 0.247 

1,1-Dichloroethene -3.309 0.629 5.360 0.558 

1,1-Dichloropropene -2.785 0.644 5.766 0.707 

1,2,3-trichloropropane -1.003 0.216 3.905 0.211 

1,2-dibromoethane -4.800 0.412 6.811 0.319 

1,2-dichlorobenzene 0.037 0.286 4.704 0.441 

1,2-Dichloroethane -4.174 0.696 5.236 0.588 

1,2-Dichloropropane -2.893 0.322 4.864 0.263 

1,3,5-trichlorobenzene 1.131 0.272 4.582 0.509 

1,3-dichlorobenzene 1.035 0.226 2.864 0.296 

1,3-Dichloropropane -2.597 0.259 5.109 0.247 

2,4,5 Trichlorophenoxyacetic Acid -5.331 12.538 11.525 16.528 

Alachlor -0.804 0.460 7.512 0.654 

Aldicarb -1.980 0.454 6.048 0.456 

Atrazine -0.850 0.457 6.207 0.648 

Benzene -1.467 0.350 4.503 0.351 

Bromobenzene -0.227 0.277 4.738 0.437 

Bromodichloromethane -2.326 0.486 4.257 0.427 

Bromoform -1.393 0.327 4.155 0.285 

Carbofuran -0.350 0.483 4.880 0.563 

Carbon tetrachloride -2.676 0.359 4.726 0.321 

Chlorobenzene -2.275 1.413 6.797 1.888 

Chloroform -3.035 0.613 4.416 0.505 

cis 1,2-dichloroethylene -3.209 0.269 4.883 0.228 

Cyanazine -2.954 1.226 9.894 2.713 

Dibromochloromethane -2.034 0.605 4.434 0.519 

Dibromochloropropane -1.417 0.408 5.367 0.383 

Dibromomethane -2.597 0.274 3.937 0.229 

Ethyl Benzene 0.109 0.486 3.908 0.787 

Hexachlorocyclopentadiene 1.744 0.319 3.332 0.535 

Isophorone -3.499 0.545 7.573 0.607 

Methylene Chloride -3.489 0.335 3.834 0.255 

Metolachlor -3.857 1.415 10.486 1.860 
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Metribuzin -2.320 0.404 7.765 0.588 

Oxamyl 1.665 0.087 1.212 0.182 

Simazine -3.826 0.526 9.889 0.546 

Styrene 0.866 0.404 3.531 0.674 

Tert-butyl methyl ether -4.480 1.314 5.730 1.217 

Tetrachloroethene -0.829 0.234 4.464 0.245 

Toluene -1.233 0.437 5.167 0.479 

Trans 1,2 Dichloroethene -4.265 0.998 6.261 0.936 

Trichloroethene -1.985 0.396 5.056 0.396 

  ��������	 SE(��������))  

4.002 0.025 
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Table A-2d. Estimated LNL isotherm parameters and associated standard errors for 
F400 GAC � Model (4). Units for ���� and ��� are (mmol/kg carbon) 
and �	
��
, respectively, and �� is dimensionless. 

Chemical log(���) SE  

1,1,1,2-tetrachloroethane -2.022 0.2333  

1,1,1-trichloroethane -3.098 0.2205  

1,1-Dichloroethane -3.641 0.3515  

1,1-Dichloroethene -2.757 0.1622  

1,1-Dichloropropene -1.968 0.1861  

1,2,3-trichloropropane -1.933 0.2321  

1,2-dibromoethane -2.443 0.2883  

1,2-dichlorobenzene -0.034 0.1691  

1,2-Dichloroethane -3.744 0.2035  

1,2-Dichloropropane -2.900 0.3793  

1,3,5-trichlorobenzene 1.058 0.1418  

1,3-dichlorobenzene -0.481 0.2012  

1,3-Dichloropropane -2.344 0.2390  

2,4,5 Trichlorophenoxy Acetic Acid -0.495 0.1684  

Alachlor 0.964 0.1278  

Aldicarb -0.848 0.2009  

Atrazine 0.085 0.1723  

Benzene -1.811 0.1931  

Bromobenzene -0.253 0.1536  

Bromodichloromethane -3.021 0.2060  

Bromoform -2.208 0.2763  

Carbofuran -0.307 0.1651  

Carbon tetrachloride -2.827 0.2811  

Chlorobenzene -0.841 0.1896  

Chloroform -3.590 0.2699  

cis 1,2-dichloroethylene -3.190 0.4160  

Cyanazine -0.272 0.1561  

Dibromochloromethane -2.540 0.1842  

Dibromochloropropane -0.890 0.2592  

Dibromomethane -3.718 0.3387  

Ethyl Benzene -0.440 0.1121  

Hexachlorocyclopentadiene 0.896 0.1169  

Isophorone -1.020 0.1789  

Methylene Chloride -4.890 0.3528  

Metolachlor -0.281 0.1669  
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Metribuzin -0.546 0.2046  

Oxamyl -0.296 0.1569  

Simazine 0.612 0.1531  

Styrene 0.112 0.1179  

Tert-butyl methyl ether -3.543 0.2359  

Tetrachloroethene -1.177 0.3058  

Toluene -0.947 0.1904  

Trans 1,2 Dichloroethene -2.772 0.2649  

Trichloroethene -1.791 0.2497  

  

 qmax SE(qmax) CV(%) 

10199. 120.4 1.18% 

 �� SE(��) CV(%) 

4.962 0.009807 0.198% 
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Initially the range of standard errors for the predicted log(���� were found to be 

nearly identical within each data set, which was not realistic. It was determined that 

this was due to the large inter-correlation between �� and the individual chemical 

log(����  values. The standard errors were recalculated by re-fitting the log(���� 

parameters while holding �� and qmax constant.  

The graphite standard errors were approximately 0.3 log-units larger than those 

for charcoal. This is likely because powdered graphite is more homogeneous and lacks 

the broad site distribution of other sorbents. In the model, the only parameter which is 

chemical-specific is the log(����� Consequently if the isotherm slopes are very close, it 

is more difficult for the model to accurately predict these binding constants when they 

occur over significantly different concentration ranges. 

The range of standard errors for the predicted binding constants to Darco GAC 

are similar to that of graphite. However, this is more likely due to variation in the 

sorption data, as the overall RMSE for the Darco data set was larger. It can be seen 

that there is more variability in the Darco GAC adsorption data (Figure 2-1C) than in 

the graphite data (Figure 2-1A). 

Finally, the RMS error for the larger F400 GAC data set (0.113) was similar to 

that of the Darco GAC set (0.121). However, the range of RMS errors for the 

individual isotherm fits  was slightly larger (0.0258 � 0.441). This was due primarily 

to several outlier pesticides (oxamyl and simazine) that had uncharacteristically large 

residual errors, which is discussed below. When these chemicals were excluded, the 

range of individual predicted isotherm RMS errors was comparable to those for 

graphite and charcoal (RMSE = 0.0258 � 0.156). Further, the range of standard errors 

A.4 Discussion of Standard Errors of Estimated Parameters 	 Model (4) 
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for the predicted log(���� values fell between those of the graphite and charcoal and the 

Darco GAC sets. 
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Figure A-1.   Adsorption isotherms for the single sorbate-specific parameter LNL 
(ss-LNL) isotherm model. Points represent experimental adsorption data, 
solid lines represent the ss-LNL model. Estimated LNL parameters are 
presented in Table A-2-d.  

A.5 Estimated ss-LNL Isotherms for F400 GAC 
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 Since the conventional Freundlich non-linear isotherm is common in 

adsorption isotherm modeling, the residuals of the single-chemical parameter LNL 

isotherm (Model (4)) were compared to those obtained from a traditional 2-parameter 

Freundlich model. The results for the four data sets are summarized in the box plots 

below. 

A.6 Comparison of Freundlich and LNL Isotherm Residuals 
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Figure A-2a. Box plots comparing the residuals (log�������� 	 
����
��������) for 
the Freundlich (top) and LNL (bottom) models on Graphite. Dashed lines 
represent ± 0.30 log-units (factor of two) differences. Solid line 
represents 1:1 agreement between the model and observed sorbed 
concentrations. 



 

 123 

 

Figure A-2b. Box plots comparing the residuals (log�������� 	 
����
��������) for 
the Freundlich (top) and LNL (bottom) models on Charcoal. Dashed lines 
represent ± 0.30 log-units (factor of two) differences. Solid line 
represents 1:1 agreement between the model and observed sorbed 
concentrations. 
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Figure A-2c. Box plots comparing the residuals (log�������� 	 
����
��������) for 
the Freundlich (top) and LNL (bottom) models on Darco GAC. Dashed 
lines represent ± 0.30 log-units (factor of two) differences. Solid line 
represents 1:1 agreement between the model and observed sorbed 
concentrations. 
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Figure A-2d. Box plots comparing the residuals (log�������� 	 
����
��������) for the Freundlich (top) and LNL (bottom) 
models on F400 GAC. Dashed lines represent ± 0.30 log-units (factor of two) differences. Solid line represents 
1:1 agreement between the model and observed sorbed concentrations.  
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Table A-3a.  Estimated Freundlich parameters and standard errors for graphite. Units 

of Freundlich Kf are �
����
��

��
����
�

�	
�. v is dimensionless. 

Chemical log(Kf) SE v SE 

Phenanthrene 2.2889 0.0738 0.3299 0.0138 

TNT 1.8101 0.0566 0.3441 0.0139 

Naphthalene 1.8519 0.0728 0.4926 0.0166 

1-2-4-Trichlorobenzene 2.2610 0.1665 0.5756 0.0404 

2-4-Dinitrotoluene 2.0195 0.0431 0.5412 0.0133 

1-2-4-Trimethylbenzene 1.9243 0.0454 0.5619 0.0143 

m-Nitrotoluene 1.9948 0.0345 0.6228 0.0113 

1-2-Dichlorobenzene 1.6632 0.0589 0.5461 0.0172 

Xylene 1.3205 0.0905 0.4389 0.0314 

Chlorobenzene 1.1311 0.0339 0.5249 0.0140 

Toluene 1.0840 0.0484 0.5632 0.0208 

Benzonitrile 1.0170 0.0364 0.6094 0.0239 

Benzene 0.7043 0.0359 0.6062 0.0352 
 

  

A.7 Tables of Estimated Freundlich Isotherm Parameters and Associated 
Standard Errors 



 

 127 

Table A-3b. Estimated Freundlich parameters and standard errors for charcoal. Units 

of Freundlich Kf are �
����
��

��
����
�

�	
�. v is dimensionless. 

Chemical log(Kf) SE v SE 

TNT 3.6935 0.3371 0.5548 0.0836 

Naphthalene 4.0848 0.2885 0.5951 0.0630 

1-2-4-Trichlorobenzene 4.1859 0.1291 0.5575 0.0338 

2-4-Dinitrotoluene 4.3447 0.1652 0.6819 0.0356 

1-2-4-Trimethylbenzene 3.1103 0.0387 0.3399 0.0161 

m-Nitrotoluene 3.3902 0.1446 0.4480 0.0452 

1-2-Dichlorobenzene 3.3245 0.0991 0.4342 0.0355 

Xylene 3.2750 0.1042 0.4658 0.0339 

Toluene 3.0493 0.0605 0.4815 0.0229 

Benzonitrile 3.1671 0.0985 0.4866 0.0334 

Benzene 2.8506 0.0543 0.5906 0.0253 
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Table A-3c.   Estimated Freundlich parameters and standard errors for Darco GAC. 

Units of Freundlich Kf are �
����
��

��
����
�

�	
�. v is dimensionless. 

Chemical log(Kf) SE v SE 

Hexane 3.8447 0.0620 0.4854 0.0291 

Heptane 4.0339 0.0850 0.5051 0.0253 

Benzene 3.1592 0.0399 0.2832 0.0225 

Toluene 3.3863 0.0399 0.2859 0.0245 

Nitrobenzene 3.1732 0.0141 0.1864 0.0093 

Tetrachloroethane 3.4011 0.0477 0.4458 0.0195 

1-1-2-Trichloroethane 3.1749 0.0844 0.4433 0.0524 

Methyl-tert-butylEther 2.9745 0.1151 0.6635 0.0393 

DiethylEther 2.7675 0.0520 0.5761 0.0280 

DiisopropylEther 3.0575 0.0657 0.4268 0.1151 

2-Heptanone 3.3323 0.0451 0.2257 0.0229 

3-Hexanone 2.8278 0.0508 0.1275 0.0630 

1-Heptanol 3.1507 0.0243 0.2505 0.0595 

1-Hexanol 3.0088 0.0363 0.3959 0.0460 
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Table A-3d. Estimated Freundlich parameters and standard errors for F400 GAC. 

Units of Freundlich Kf are �
����
��

��
����
�

�	
�. v is dimensionless. 

Chemical log(Kf) SE v SE 

1-1-1-2-Tetrachloroethane 3.9569 0.1354 0.6036 0.0377 

1-1-1-Trichloroethane 3.1243 0.1253 0.5314 0.0393 

1-1-Dichloroethane 3.3385 0.0660 0.7053 0.0219 

1-1-Dichloroethene 3.2541 0.0621 0.5151 0.0182 

1-1-Dichloropropene 3.2698 0.1254 0.3743 0.0438 

1-2-3-Trichloropropane 4.0329 0.1045 0.6129 0.0293 

1-2-Dibromoethane 3.1563 0.1002 0.4706 0.0231 

1-2-Dichlorobenzene 4.0713 0.0972 0.3781 0.0308 

1-2-Dichloroethane 2.7783 0.1030 0.5329 0.0371 

1-2-Dichloropropane 3.4580 0.1322 0.5969 0.0351 

1-3-5-Trichlorobenzene 4.2477 0.0959 0.3237 0.0271 

1-3-Dichlorobenzene 4.8575 0.2000 0.6296 0.0508 

1-3-Dichloropropane 3.4114 0.0593 0.4971 0.0191 

2-4-5 Trichlorophenoxy Acetic Acid 3.3613 0.0393 0.2098 0.0126 

Alachlor 3.8762 0.0585 0.2569 0.0134 

Aldicarb 3.7607 0.1222 0.4021 0.0288 

Atrazine 3.8046 0.1240 0.2907 0.0354 

Benzene 3.8157 0.0394 0.5334 0.0109 

Bromobenzene 3.9298 0.0526 0.3637 0.0188 

Bromodichloromethane 3.5843 0.0290 0.6553 0.0084 

Bromoform 4.1586 0.1865 0.6650 0.0436 

Carbofuran 4.0518 0.2878 0.4083 0.0669 

Carbon tetrachloride 3.4786 0.1301 0.5935 0.0387 

Chlorobenzene 3.6679 0.0696 0.3475 0.0233 

Chloroform 3.2857 0.1799 0.6690 0.0544 

Cis 1-2-dichloroethylene 3.2469 0.0620 0.5871 0.0193 

Cyanazine 3.3050 0.0665 0.1257 0.0256 

Dibromochloromethane 3.8308 0.0506 0.6360 0.0125 

Dibromochloropropane 4.1560 0.1592 0.5006 0.0329 

Dibromomethane 3.2885 0.0730 0.7004 0.0230 

Ethyl Benzene 4.0285 0.0163 0.4153 0.0056 

Hexachlorocyclopentadiene 4.9363 0.2333 0.5039 0.0566 

Isophorone 3.2434 0.2036 0.2714 0.0546 

Methylene Chloride 2.8162 0.1212 0.8012 0.0402 

Metolachlor 3.2211 0.0455 0.1251 0.0155 
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Metribuzin 3.3850 0.0351 0.1929 0.0135 

Oxamyl 5.1485 0.1218 0.7931 0.0420 

Simazine 3.3975 0.1835 0.2274 0.0339 

Styrene 4.4720 0.0940 0.4793 0.0277 

Tert-butyl-methyl Ether 2.7616 0.2497 0.4788 0.0971 

Tetrachloroethene 4.0814 0.0713 0.5160 0.0188 

Toluene 3.8545 0.1950 0.4266 0.0503 

Trans 1-2 Dichloroethene 3.0589 0.0876 0.4521 0.0276 

Trichloroethene 3.6518 0.0597 0.4826 0.0169 
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MODELING NON-LINEAR ADSORPTION WITH A SINGLE CHEMICAL 
PARAMETER: PREDICTING CHEMICAL MEDIAN LANGMUIR BINDING 

CONSTANTS 

B.1. Abraham Solute Parameters, Aqueous Solubility, and Predicted vs. LNL-

Estimated �������� 

B.2. Estimated Abraham Sorbent-water Parameters (with Polarizability) for Graphite, 

Charcoal, Darco GAC, and F400 GAC 

B.3. Comparison of Abraham Sorbent-water Parameters (with and without 

Polarizability, sS, Term) for F400 GAC 

B.4. 	
��
�
���� �� 	����� ����
��� ��� ��
��� �� ���
������ �� �������� Regression. 

B.5. Comparison of Abraham Sorbent-water Parameters (with and without Hydrogen-

bond Basicity, bB, Term) for F400 GAC sorbates with V < 110. 

B.6. Comparison of LNL pp-LFER vs. Shih & Gschwend pp-LFER Predicted 

Isotherm Residuals. 

Appendix B
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Table B-1a.   Table of Abraham solute parameters, aqueous solubility (S), and predicted vs. LNL_estimated �������� for 
F400 GAC. Units of ��� and S are �	
���. 

Chemical E S A B V Solubility 
������� 
������� 
       LNL-estimated Predicted 

Methylene Chloride 0.22 0.38 0.09 0 0.49 -5.015 -4.762 
1,1-Dichloroethene 0.35 0.46 0 0.1 0.59 -2.876 -3.676 

Cis 1,2-dichloroethylene 0.4 0.56 0 0.09 0.59 -3.310 -3.077 
Trans 1,2 Dichloroethene 0.4 0.56 0 0.09 0.59 -2.891 -3.077 

Dibromomethane 0.58 0.55 0.09 0 0.60 -3.838 -3.664 
Chloroform 0.34 0.48 0.12 0 0.62 -3.713 -3.789 

1,1-Dichloroethane 0.22 0.37 0.09 0.02 0.64 -3.763 -4.170 
1,2-Dichloroethane 0.38 0.48 0 0.1 0.64 -3.864 -3.385 

Bromodichloromethane 0.52 0.57 0.12 0.01 0.67 -3.142 -3.206 
Trichloroethene 0.5 0.64 0 0.11 0.71 -1.907 -2.114 

Benzene 0.56 0.69 0 0.12 0.72 -1.926 -1.858 
Dibromochloromethane 0.7 0.65 0.12 0.01 0.72 -2.662 -2.690 

1,1-Dichloropropene 0.38 0.5 0 0.11 0.73 -2.085 -2.792 
Carbon tetrachloride 0.42 0.55 0 0 0.74 -2.946 -2.491 
1,2-dibromoethane 0.74 0.64 0 0.1 0.74 -2.564 -2.354 

1,1,1-trichloroethane 0.31 0.44 0 0.01 0.76 -3.218 -2.981 
Bromoform 0.88 0.73 0.12 0.01 0.77 -2.328 -2.175 

1,2-Dichloropropane 0.38 0.47 0 0.13 0.78 -3.021 -2.793 
1,3-Dichloropropane 0.25 0.46 0 0.03 0.78 -2.462 -2.669 

B.1 Abraham Solute Parameters, Aqueous Solubility, and Predicted vs. LNL-Estimated �������� 
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Tetrachloroethene 0.6 0.73 0 0.12 0.84 -1.293 -1.085 
Chlorobenzene 0.7 0.77 0 0.11 0.84 -0.960 -0.957 

Toluene 0.58 0.63 0 0.12 0.86 -1.063 -1.634 
Tert butyl methyl ether 0.02 0.27 0 0.29 0.87 -3.661 -3.148 

1,1,1,2-tetrachloroethane 0.62 0.61 0 0.12 0.88 -2.138 -1.723 
Bromobenzene 0.89 0.85 0 0.11 0.89 -0.373 -0.457 

1,2,3-trichloropropane 0.57 0.62 0 0.17 0.90 -2.052 -1.492 
Styrene 0.7 0.7 0 0.17 0.96 -0.014 -0.883 

1,2-dichlorobenzene 0.83 0.85 0 0.1 0.96 -0.132 -0.041 
1,3-dichlorobenzene 0.83 0.84 0 0.05 0.96 -0.599 -0.110 

Ethyl Benzene 0.58 0.64 0 0.12 1.00 -0.561 -0.908 
Dibromochloropropane 0.67 0.61 0 0.02 1.00 -1.008 -1.224 
1,3,5-trichlorobenzene 0.97 0.91 0 0.02 1.08 0.0331 0.931 0.550 

Isophorone 0.54 0.76 0 0.45 1.24 86.8307 -1.137 -1.188 
Hexachlorocyclopentadiene 1.12 0.96 0 0.2 1.35 0.0066 0.769 0.906 

Simazine 1.25 1.25 0.36 0.86 1.48 0.0307 0.488 0.566 
Aldicarb 0.78 0.91 0.21 0.87 1.49 31.6935 -0.964 -0.965 

2,4,5 Trichlorophenoxy Acetic Acid 1.16 1.51 0.57 0.5 1.50 1.0881 -0.615 -0.221 
Oxamyl 1.1 1.79 0.21 1.46 1.60 1277.02 -0.407 -1.781 
Atrazine 1.26 1.24 0.36 0.89 1.62 0.161 -0.042 0.201 

Metribuzin 1.46 1.21 0.21 1.53 1.62 4.900 -0.665 -0.553 
Carbofuran 1.1 1.41 0.21 0.87 1.69 1.446 -0.435 -0.284 
Cyanazine 1.41 1.74 0.36 1.07 1.77 0.706 -0.396 -0.126 
Alachlor 1.11 1.63 0 0.94 2.14 0.890 0.838 -0.177 

Metolachlor 1.12 1.62 0 0.98 2.28 1.868 -0.401 -0.340 

 
� � �� � � ���	
��
����� � ��� ������ � �� ������ � �� ���� � � �� ������ � !� �"� 

� # �� � � ���	
�
����� � ��� ��� $ ������ � �� "�" 
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Table B-1b.  Table of Abraham solute parameters, aqueous solubility (S), and 
predicted vs. LNL_estimated �������� for graphite and charcoal. Units of 
��� and S are �	
���. 

Graphite Charcoal 

Chemical E B V 
������� 
������� 
������� 
������� 
    Estimated Predicted Estimated Predicted 

Phenanthrene 1.99 0.23 1.454 4.078 4.067   

2,4,6-Trinitrotoluene 1.39 0.41 1.380 2.544 2.420 1.555 1.993 

Naphthalene 1.27 0.17 1.085 1.247 1.344 1.993 1.976 

1,2,4-Trichlorobenzene 0.96 0.03 1.084 1.313 1.374 2.227 2.156 

2,4-Dinitrotoluene 1.12 0.31 1.206 1.241 1.425 1.801 1.626 

1,2,4-Trimethylbenzene 0.63 0.12 1.139 0.883 1.029 1.495 1.634 

p-Nitrotoluene 0.85 0.21 1.032 0.651 0.431 1.710 1.259 

1,2-Dichlorobenzene 0.83 0.1 0.961 0.439 0.338 1.566 1.454 

Xylene 0.61 0.12 0.998 0.404 0.224 1.285 1.250 

Chlorobenzene 0.70 0.11 0.839 -0.431 -0.524   

Toluene 0.58 0.12 0.857 -0.701 -0.592 0.747 0.856 

Benzonitrile 0.73 0.26 0.871 -0.886 -0.746 0.977 0.542 

Benzene 0.56 0.12 0.716 -1.390 -1.397 -0.137 0.473 

 
������������ !"#$ % &' &()�*� + ,' -&.�/� 0 1' 1)2�3� + 1' 4(& 
��������5 ��56�7$ % &' .2,�*� + 2' 4.8�/� 0 ,' 188�3� + &' 1&- 
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Table B-1c.  Table of Abraham solute parameters, aqueous solubility (S), and 
predicted vs. LNL_estimated �������� for Darco GAC. Units of ��� and S 
are �	
���. 

Chemical E B V 
������� 
������� 
    Estimated Predicted 

Hexane 0 0.04 0.954 0.140 -0.183 

Heptane 0 0.05 1.095 0.261 0.477 

Benzene 0.56 0.12 0.716 -0.705 -0.958 

Toluene 0.58 0.12 0.857 -0.060 -0.203 

Nitrobenzene 0.83 0.21 0.891 -0.333 -0.170 

Tetrachloroethylene 0.5 0.11 0.715 -0.726 -1.006 

1,1,2-Trichloroethane 0.5 0.11 0.758 -1.360 -0.786 

Methyl t-butyl Ether 0.02 0.29 0.872 -2.491 -2.111 

Diethyl Ether 0.04 0.25 0.731 -2.382 -2.553 

Diisopropyl Ether 0.06 0.31 1.013 -1.556 -1.446 

2-Heptanone 0.21 0.35 1.111 0.136 -0.941 

3-Hexanone 0.21 0.35 0.970 -1.695 -1.663 

1-Heptanol 0.2 0.32 1.154 -0.984 -0.553 

1-Hexanol 0.2 0.32 1.013 -1.618 -1.274 

 
����������� !"#$ % &' (()�*� + (' &(,�-� . /' &00�1� + 2' 323 

 
 



 

 

136 

 

Table B-2.   Summary of estimated Abraham sorbent-water pp-LFER coefficients for graphite, charcoal, Darco GAC, and 
F400 GAC including solvent hydrogen bond acidity (a) and polarizability (s) terms. Separate RMS errors are 
indicated for the separate equations in the revised F400 model. ��� �������� 	
���
 	� � ����
 ��� 	� � ����
refer to the data used to make the estimates of the parameters. The standard errors of the parameters for each 
model are given in parentheses below their respective parameters. Units correspond to  ��� and S with units 
������. 

Sorbent Subset e s a b v c m b N1 RMSE2 

Graphite ALL 1.162 0.095 0.000 -3.272 5.523 -5.677 [-] [-] 13 0.127 

(0.240) (0.251) (0.000) (1.120) (0.471) (0.316) [-] [-] 
Charcoal ALL 1.111 -0.100 0.000 -3.294 2.587 -1.547 [-] [-] 11 0.307 

(1.097) (0.884) (0.000) (3.248) (1.284) (0.938) [-] [-] 
Darco 
GAC 

ALL 0.839 0.896 -1.775 -6.445 5.405 -5.173 [-] [-] 14 0.338 

(1.825) (1.612) (1.531) (1.868) (1.220) (1.094) [-] [-] 
F400 
GAC 

ALL 3.377 0.025 -3.019 -1.354 1.841 -5.271 [-] [-] 44 0.709 

(.1338) (0.1751) (0.2160) (0.1075) (0.1345) (0.0746) [-] [-] 
F400 
GAC 

V < 110 -1.499 6.743 -3.114 .038 4.674 -9.025 [-] [-] 31 0.402 

(.3065) (.4433) (0.6008) (.3902) (0.2055) (0.1879) [-] [-] 

V > 110 [-] [-] [-] [-] [-] [-] -0.508 0.202 13 0.513 

[-] [-] [-] [-] [-] [-] (0.0361) (0.0512) 

Combined 0.4243 

B.2 Estimated Abraham Sorbent-water Parameters (with Polarizability) for Graphite, Charcoal, Darco GAC, and 
F400 GAC 
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1 The number of sorbates utilized in the model regressions. 

2 ���� � ���	
��
�������������	
��
������������������  

3The overall RMS error for the full F400 GAC data set, including both the sorbates above (Eq. (3-4)) and below (Eq. (3-2)) 

the volumetric cutoffs
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Table B-3.   Comparison of reduced Abraham pp-LFER model for F400 GAC, with (top) and without (bottom) the 
polarizability (sS) interaction term. Units correspond to  ��� with units �����	. 

Sorbent Subset e s a b v c m b N1 RMSE2 

F400 GAC 

All 3.377 0.025 -3.019 -1.354 1.841 -5.271 [-] [-] 44 0.709 

SE 0.1338 0.1751 0.2160 0.1075 0.1345 0.0746 [-] [-] 

CV (%) 3.96% 707.0% 7.15% 7.94% 7.31% 1.42% [-] [-] 

All 3.387 [-] -3.012 -1.351 1.851 -5.271 [-] [-] 44 0.709 

SE 0.1092 [-] 0.2077 0.1046 0.1108 0.0735 [-] [-] 

CV (%) 3.22% [-] 6.90% 7.75% 5.99% 1.40% [-] [-] 

 

B.3 Comparison of Abraham Sorbent-water Parameters (with and without Polarizability, sS, Term) for F400 GAC 
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To determine whether or not including oxamyl in fitting regression coefficients 

for the relationship between the log median binding constant, �������� and the 

	
�	�
�	���� ���	��� �����
�
��� ������� ��	 ��� !� "
����#	� $% , was computed. The 

��� !� distance is defined as: 
 

$% &
' �()* + ()*,-�

./
*01

2345
 

(B-1) 

where ()* 
� ��	 ��	"
#�	" �����
���
# �	"
�� �
�"
�� #������� �6 #�	�
#�� 789

:�	� #�	�
#�� 7
9 
� ��� 	
#��"	" 6��� ��	 �	��	��
��� ()*,- is the predicted logarithmic 

�	"
�� �
�"
�� #������� �6 #�	�
#�� 789 :�	� #�	�
#�� 7
9 
� 	
#��"	" 6��� ��	

regression, p is the number of parameters in the model, and MSE is the mean square 

error (Eq. (2-15), squared) of the regression, finally, $%  
� ��� !� "
�tance. A standard 

��	���
�� ��
"	�
�	 
� ���� 
6 ��	 ��� !� "
����#	 
� ��	��	� ���� ;<�� ��	� ��	 "��� ��
��

7
9 ��� �
��
6
#��� �	=	���	 �=	� ��	 �	��	��
�� ��" ��� � 	: ��	 �	����
�� 	��
���	"

�����	�	��> ?�� �
���� ��	 #�����	" ��� !� "
����#	 :�� @>AB, significantly larger 

than 4/p (p=2 for Eq.  (3-4)). Consequently, oxamyl was not included in estimating the 

slope and intercept parameters for Eq. (3-4).

B.4 CDEFGEDHIJK JL CJJMNO PIOHDKFQ LJR STDUVE IK WJEGXIEIHV YOZ [\]��̂_� 
Regression. 
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Table B-4.   Comparison of reduced Abraham pp-LFER model for F400 GAC (V < 110), with (top) and without (bottom) 
the hydrogen bond basicity (bB) interaction term. Units correspond to  ��� with units �����	. 

Sorbent Subset e s a b v c N RMSE 

F400 GAC  

V < 110 -1.499 6.743 -3.114 0.038 4.674 -9.025 31 0.402 
SE 0.3065 0.4433 0.6008 0.3902 0.2055 0.1879 

CV (%) 20.45% 6.57% 19.29% 1017.87% 4.40% 2.08% 

V < 110 -1.503 6.744 -3.138 [-] 4.680 -9.025 31 0.402 
SE 0.2996 0.4370 0.5389 [-] 0.1922 0.1853 

CV (%) 19.93% 6.48% 17.17% [-] 4.11% 2.05% 

 

 

 

 

B.5 Comparison of Abraham Sorbent-water Parameters (with and without Hydrogen-bond Basicity, bB, Term) for 
F400 GAC sorbates with V < 110. 
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Using the pp-LFER models presented in Shih & Gschwend34, Freundlich 

isotherm parameters, �� and �, were calculated. The pp-LFER for the Freundlich 

constant, ��, is as follows: 
 ������	 
 ��
�� � ���
� � ����� � ��
�� � ������

� ����� � ����� � �������������� (B-2) 

where the units of �� are ((mg/kg)/(mg/L)v) and the units of ���� , the aqueous 

solubility, is (mol/L). The pp-LFER for the Freundlich exponent, v, is as follows: 
 � 
 ������ � ����� � ����� � ��
� (B-3) 

The predicted Freundlich parameters (Eqs. (B-2) and (B-3)) were then used to 

compute predicted isotherm sorbed concentrations, � !"#$�!, for the Darco GAC data 

set using the Freundlich isotherm model: 
 � !"#% �! 
 ���&'� (B-4) 

By comparison, predicted isotherm sorbed concentrations were computed 

using the ss-LNL isotherm (Eq. (2-1)) with the Abraham pp-LFER (Eq. (3-2)) 

predicted median binding constants and the fitted sorbent-specific parameters (Table 

3-1) for Darco GAC. The Darco GAC data set was selected as it was the data set used 

to calibrate the pp-LFERs (Eq. (B-2) and (B-3)). RMS errors were computed for both 

the LNL and Shih & Gschwend pp-LFER residual analysis, the results of which are 

summarized in Figure B6, below. 

B.6 Comparison of LNL pp-LFER vs. Shih & Gschwend pp-LFER Predicted 
Isotherm Residuals. 
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Figure B-1.   Box plots comparing the residuals (log������ � �	
���
��� for the Shih 
& Gschwend Freundlich pp-LFER (left) and LNL pp-LFER (Eq. (3-2)) 
(right) models on Darco GAC. Dashed lines represent ± 0.30 log-units 
(factor of two) differences between predicted and observed sorbed 
concentrations. Solid line represents 1:1 agreement between the predicted 
and observed sorbed concentrations.  
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PREDICTING SOLVENT-WATER PARTITIONING OF CHARGED 
ORGANIC SPECIES USING QUANTUM CHEMICALLY-DERIVED 

ABRAHAM PP-LFER SOLUTE PARAMETERS 

C.1. Direct Quantum Chemically Computed Solvent-water Partition Coefficients for 

Ions in Acetonitrile-, DMSO-, and Methanol-water Systems 

C.2. Calculation of Excess Molar Refraction from McGowan Volume and QC-

Computed Polarizability 

C.3. Experimental Neutral Solvent-water System Parameters  

C.4. Experimental Solvent-water Partition Coefficients 

C.5. Absolv-Estimated (AAP) & Quantum-chemically Estimated (QCAP) Solute 

Parameters 

C.6. QCAP Estimated Solvent Parameters 

C.7. Complete AAP & QCAP Abraham pp-LFERs 

C.8. Residual Plots of A Priori Quantum Chemically Computed and AAP-predicted 

Partition Coefficients 

 

 

 

 

 

Appendix C 
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Table C-1a.  Summary of RMS errors for solvent-water partitioning of anion, cation, 
and combined ionic data sets presented by Marenich et al15. QC 
computations were all performed at the M062X/MG3S level of theory.  

Solvent Subset RMSE N 

Acetonitrile 
All 4.263 30 

Anions 7.158 10 

Cations 2.002 20 

Methanol 
All 2.347 29 

Anions 2.721 12 

Cations 2.042 17 

DMSO 

All 7.134 29 

Anions 7.499 25 

Cations 4.188 4 

All Anions 6.206 47 

All Cations 2.232 41 

All All 4.355 88 
 
  

C.1 Direct Quantum Chemically  Computed Solvent-water Partition 
Coefficients of Ions in Acetonitrile-, DMSO-, and Methanol-water Systems. 
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Table C-1b. Experimental vs. QC computed solvent-water partition coefficients for 
anions and cations obtained from Marenich et al15. QC computations 
were all performed at the M062X/MG3S level of theory.  

SoluteName Charge Solvent 

Expt 
��������	
��


���
�
� 

QC Computed 
��������	
��


���
�
� Residuals 

aceticacid -1 acetonitrile 13.78 8.52 -5.26 

benzoicacid -1 acetonitrile 11.58 5.24 -6.34 

phenol -1 acetonitrile 12.31 3.27 -9.05 

3-nitrophenol -1 acetonitrile 11.14 2.17 -8.97 

4-nitrophenol -1 acetonitrile 9.38 1.91 -7.47 

hydrochloricacid -1 acetonitrile 8.87 -0.44 -9.31 

hydrobromicacid -1 acetonitrile 6.60 -0.54 -7.14 

chloroaceticacid -1 acetonitrile 11.07 6.19 -4.87 

dichloroaceticacid -1 acetonitrile 8.13 4.43 -3.70 

methylamine 1 acetonitrile -2.78 -0.95 1.83 

n-propylamine 1 acetonitrile -3.08 -1.82 1.26 

tert-butylamine 1 acetonitrile -2.64 -2.15 0.49 

diethylamine 1 acetonitrile -3.00 -2.82 0.19 

trimethylamine 1 acetonitrile -3.66 -2.80 0.86 

triethylamine 1 acetonitrile -3.81 -3.65 0.16 

tri-n-propylamine 1 acetonitrile -5.13 -4.91 0.22 

aniline 1 acetonitrile -3.22 -2.86 0.36 

4-methylaniline 1 acetonitrile -3.37 -3.33 0.04 

pyrrolidine 1 acetonitrile -3.66 -2.21 1.45 

piperidine 1 acetonitrile -3.66 -2.58 1.09 

pyridine 1 acetonitrile -4.10 -2.56 1.55 

ammonia 1 acetonitrile -3.00 -0.23 2.77 

hydrazine 1 acetonitrile -2.27 -0.07 2.20 

methanol 1 acetonitrile 0.66 6.17 5.51 

diethylether 1 acetonitrile 0.37 0.36 -0.01 

acetone 1 acetonitrile -0.29 0.97 1.27 

acetophenone 1 acetonitrile -3.44 -1.21 2.24 

morpholine 1 acetonitrile -3.30 -1.19 2.11 

benzamide 1 acetonitrile -1.83 -0.41 1.42 

dimethylsulfoxide 1 acetonitrile -4.25 -0.21 4.04 

acetonitrile -1 dimethylsulfoxide 8.57 -0.64 -9.21 

cyanamide -1 dimethylsulfoxide 9.31 -2.53 -11.84 

aniline -1 dimethylsulfoxide 7.33 -0.03 -7.36 

diphenylamine -1 dimethylsulfoxide 5.06 -1.50 -6.56 
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hydrogencyanide -1 dimethylsulfoxide 11.87 -1.25 -13.13 

aceticacid -1 dimethylsulfoxide 13.48 9.23 -4.25 

benzoicacid -1 dimethylsulfoxide 11.43 6.49 -4.94 

methanol -1 dimethylsulfoxide 20.08 12.48 -7.60 

ethanol -1 dimethylsulfoxide 19.13 11.84 -7.29 

isopropanol -1 dimethylsulfoxide 19.27 11.51 -7.76 

t-butanol -1 dimethylsulfoxide 19.20 11.43 -7.77 

phenol -1 dimethylsulfoxide 12.97 4.43 -8.54 

acetone -1 dimethylsulfoxide 11.58 5.79 -5.79 

3-pentanone -1 dimethylsulfoxide 10.77 5.67 -5.11 

water -1 dimethylsulfoxide 20.30 17.85 -2.46 

4-nitrophenol -1 dimethylsulfoxide 9.09 2.92 -6.17 

nitromethane -1 dimethylsulfoxide 11.14 7.95 -3.19 

4-nitroaniline -1 dimethylsulfoxide 7.33 2.01 -5.32 

acetamide -1 dimethylsulfoxide 16.27 6.25 -10.02 

thiophenol -1 dimethylsulfoxide 7.04 -1.78 -8.81 

dimethylsulfoxide -1 dimethylsulfoxide 9.01 4.63 -4.39 

hydrochloricacid -1 dimethylsulfoxide 8.65 -0.54 -9.19 

hydrobromicacid -1 dimethylsulfoxide 7.69 -0.59 -8.28 

dichloroaceticacid -1 dimethylsulfoxide 9.60 4.66 -4.95 
2,2,2-

trifluoroethanol -1 
dimethylsulfoxide 

15.68 8.80 -6.88 

methylamine 1 dimethylsulfoxide -4.40 -0.76 3.63 

aniline 1 dimethylsulfoxide -5.42 -1.92 3.50 

pyridine 1 dimethylsulfoxide -4.47 -1.72 2.75 

ammonia 1 dimethylsulfoxide -6.38 -0.28 6.09 

aceticacid -1 methanol 3.44 1.02 -2.42 

propanoicacid -1 methanol 3.08 0.45 -2.63 

acrylicacid -1 methanol 3.81 0.80 -3.01 

benzoicacid -1 methanol 2.71 -0.27 -2.98 

phenol -1 methanol 1.91 -0.67 -2.58 

3-nitrophenol -1 methanol 2.20 -0.21 -2.41 

4-nitrophenol -1 methanol 2.71 -0.28 -2.99 

hydrochloricacid -1 methanol 2.20 -0.44 -2.64 

hydrobromicacid -1 methanol 1.83 -0.57 -2.40 

chloroaceticacid -1 methanol 3.66 0.33 -3.33 

dichloroaceticacid -1 methanol 2.20 -0.26 -2.46 

2-chlorophenol -1 methanol 1.39 -1.23 -2.62 

methylamine 1 methanol 1.54 -0.80 -2.34 

trimethylamine 1 methanol 1.17 -2.17 -3.34 
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triethylamine 1 methanol 1.17 -3.25 -4.42 

aniline 1 methanol -1.25 -2.03 -0.79 

2-methylaniline 1 methanol -1.32 -2.38 -1.06 

3-methylaniline 1 methanol -1.25 -2.53 -1.28 

4-methylaniline 1 methanol -1.39 -2.52 -1.13 

N-methylaniline 1 methanol -0.66 -2.60 -1.94 
1-

aminonaphthalene 1 
methanol 

-1.61 -2.80 -1.18 

piperidine 1 methanol 0.95 -2.43 -3.38 

pyridine 1 methanol 0.22 -1.51 -1.73 

quinoline 1 methanol -1.10 -2.37 -1.27 

ammonia 1 methanol -0.29 -0.23 0.06 

4-methoxyaniline 1 methanol -0.66 -2.05 -1.39 

4-nitroaniline 1 methanol 0.44 -1.18 -1.62 

3-chloroaniline 1 methanol -0.95 -2.46 -1.51 

4-chloroaniline 1 methanol -1.03 -2.46 -1.44 
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In the QCAP method, McGowan volumes for the ionized species (V) were 

obtained directly from Absolv45. The excess molar refractivity, E, defined as the molar 

refractivity of the given solute (���� , in excess of an alkane (����) of the same 

characteristic volume is84,85: 
 � � ��� � ���� (C-1) 

The total molar refraction, ��� , can be computed  as a function of the index of 

refaction (	) and the McGowan volume (V), of the solute, as follows70: 
 ��� � 
� �
	� � 
�


	� � ��� � 
(C-2) 

Additionally, previous work has shown that molar refractivity of the alkane, 

����, can be estimated from the McGowan volume84: 
 ���� � ������ � ����� (C-3) 

Combining Eqs. (C-1) � (C-3), an expression for the excess molar refractivity 

is obtained: 
 � � 
� �
	� � 
�


	� � ���� � ������ � ����� 
(C-4) 

Finally, the index of refraction, 	, can be related to the molecular 

������ �!���"#$ %$ &'�(' (�) !* �!"��)*+ ,�� -.�)"./-chemical computation, by the 

Clausius-Mossotti equation86: 
 �
	� � 
�


	� � ��� �
0
� 1 2 3� 2 4� 

(C-5) 

C.2 Calculation of Excess Molar Refraction from McGowan Volume and QC-
Computed Polarizability 
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Combining Eqs. (C-4) and (C-5), an equation for the excess molar refractivity, 

E, results which is a function of the molecular polarizability and the McGowan 

volume: 
 

� � �� �
�

�
� � 	
 � � � 
���
� � ���
� 

(C-6) 

where 	
 �� ���������� ���� �� ! "#$ %�&$�'&�� (�&���)�*�&� + �� ��%(' $� '����

Gaussian 0964 at the M062X/6-311++G** level of theory, which has been shown in 

previous work to provide accurate computations of molecular polarizability87. 

#define RMSE 
RMSE=function(bx){ 
ss=cumsum(bx^2) 
sl=length(bx) 
RMSE=(ss[sl]/sl)^0.5 
} 
 
#read solvents and solutes files 
rawsolv   <-  read.csv(file="Solvents.csv") 
dat  <-  data.frame(rawsolv) 
#dat 
solv <- cbind(dat$c,dat$e,dat$s,dat$a,dat$b,dat$v) 
#solv 
solv1 <- cbind(dat$e,dat$s,dat$a,dat$b,dat$v) 
#solv1 
solv2 <- cbind(dat$s,dat$a,dat$b) 
#solv2 
rawsolu   <-  read.csv(file="Solutes.csv") 
dat1  <-  data.frame(rawsolu) 
#dat1 
solu<-cbind(dat1$E_Gaussian,dat1$S,dat1$A,dat1$B,dat1$V_McGowan) 
#solu 
solu1<-cbind(1,dat1$E_Gaussian,dat1$S,dat1$A,dat1$B,dat1$V_McGowan) 
#solu1 
solu2<-cbind(dat1$S,dat1$A,dat1$B) 
#solu2 
 
#logKij 
logKij<-solv%*%t(solu1) 
logKij 
 
#logK_Absolv 

C.2.1 R Code , QCAP Solute / Solvent Parameter Optimization 
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SMD = read.csv(file="Mixed_Basis_Eout.csv") 
solvents = unique(SMD$Solvent) 
solutes = unique(SMD$Solute) 
logp = matrix(nrow=length(solvents), ncol=length(solutes)) 
 
for (i in 1:length(dat$Solvent)){ 
  logp[i,] = t(SMD[SMD$Solvent==dat$SOL[[i]],6]) 
} 
 
#Initiate 
b=logp-logKij 
RMSEb=NULL 
 
#loop 
ybold=RMSE(b) 
for(i in 1:200){ 
xu<-solve(t(solv2)%*%solv2,t(solv2)%*%b ) 
 
solu2=solu2+t(xu) 
solu1<-cbind(1, dat1$E_Gaussian, solu2[,1:3],dat1$V_McGowan) 
logKnew<-solv%*%t(solu1) 
b=logp-logKnew 
 
 
xv<-solve(t(solu1)%*%solu1,t(solu1)%*%t(b)) 
 
solv=solv+t(xv) 
solv2<-solv[,3:5] 
solv3<-cbind(solv[,3:5]) 
logKnew<-solv%*%t(solu1) 
b=logp-logKnew 
 
 
ybnew=RMSE(b) 
print(c(ybold,ybnew),digits=22) 
if(abs(ybold-ybnew)<10^-30)break() 
ybold=ybnew 
RMSEb=c(RMSEb,ybnew) 
} 
#Output QC-optimized solute and solvent parameters 
write.table(solu1,file='Optimized_Solute_Parameters.csv',sep=',',row.names=TRUE,col.names=N
A) 

write.table(solv,file='Optimized_Solvent_Parameters.csv',sep=',',row.names=TRUE,col.names=N

A) 
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Table C-2.   Literature values for solvent-water Abraham pp-LFER system parameters. Parameters are for the Abraham 
equation of the form ��������	
��
���
�� � �� � �� � �� � �� � �� � �, where ����	
��
���
� has units of 
(L water / kg solvent). All system parameters come from the UFZ LSER database71, the REF column indicates 
the original experimental source of the data. 

SYSTEM E S A B V C REF 

Ethyleneglycol 0.58 -0.51 0.72 -2.62 2.73 -0.27 Abraham, M. H., Acree, W. E. (2010) New J. Chem. 34, 
2298-2305. 

Benzonitrile 0.03 0.06 -1.61 -4.56 4.03 0.10 Abraham, M. H., Acree, W. E., Jr. (2011) Thermochimica 
Acta 526(1-2), 22-28. 

Acetone 0.31 -0.12 -0.61 -4.75 3.94 0.31 Abraham, M. H.; Acree, W. E.; Leo, A. J.; Hoekman, D. 
New J. Chem. 2009, 33 (3), 568-573. 

Diethylether 0.36 -0.82 -0.59 -4.96 4.35 0.35 Grubbs, L. M.; Saifullah, M.; De La Rosa, N. E.; Ye, S. L.; 
Achi, S. S.; Acree, W. E.; Abraham, M. H. Fluid Phase 
Equilibria 2010, 298 (1), 48-53. 

N-methylpyrrolidin-2-
one 

0.53 0.23 0.84 -4.79 3.67 0.15 Abraham, M. H.; Acree, W. E.; Cometto-Muniz, J. E. New 
J. Chem. 2009, 33(10), 2034-2043. 

N,N-
Dimethylformamide 

-0.06 0.34 0.36 -4.87 4.49 -0.31 Abraham, M. H.; Acree, W. E.; Cometto-Muniz, J. E. New 
J. Chem. 2009, 33(10), 2034-2043. 

Propylene carbonate 0.17 0.50 -1.28 -4.41 3.42 0.00 Abraham, M. H., Acree, W. E. (2010) New J. Chem. 34, 
2298-2305. 

tetrahydrofuran 0.36 -0.38 -0.24 -4.93 4.45 0.22 Saifullah, M.; Ye, S.; Grubbs, L. M.; La Rosa, N. E.; 
Acree, W. E., Jr.; Abraham, M. H. J. Solution Chem. 2011, 
40 (12), 2082-2094. 

1,4-dioxane 0.35 -0.03 -0.58 -4.81 4.11 0.12 Saifullah, M.; Ye, S.; Grubbs, L. M.; La Rosa, N. E.; 
Acree, W. E., Jr.; Abraham, M. H. J. Solution Chem. 2011, 
40 (12), 2082-2094. 

C.3 Experimental Neutral Solvent-water System Parameters 
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2-butanol 0.25 -0.98 0.16 -3.88 4.11 0.13 Sprunger, L. M.; Achi, S. S.; Pointer, R.; Acree, W. E.; 
Abraham, M. H. Fluid Phase Equilibria 2010, 288 (1-2), 
121-127. 

2-propanol 0.34 -1.05 0.41 -3.83 4.03 0.10 Sprunger, L. M.; Achi, S. S.; Pointer, R.; Acree, W. E.; 
Abraham, M. H. Fluid Phase Equilibria 2010, 288 (1-2), 
121-127. 

n-hexane 0.56 -1.71 -3.58 -4.94 4.46 0.33 Stephens, T. W.; Quay, A. N.; Chou, V.; Loera, M.; Shen, 
C.; Wilson, A.; Acree, W. E.; Abraham, M. H. Global J. 
Phys. Chem. 2012, 3, 1-12. 

bromobenzene 0.44 -0.42 -3.17 -4.56 4.45 -0.02 Abraham, M. H.; Acree, W. E.; Leo, A. J.; Hoekman, D. 
New J. Chem. 2009, 33 (8), 1685-1692. 

chlorobenzene 0.38 -0.52 -3.18 -4.70 4.61 0.07 Abraham, M. H.; Acree, W. E.; Leo, A. J.; Hoekman, D. 
New J. Chem. 2009, 33 (8), 1685-1692. 

iodobenzene 0.30 -0.31 -3.21 -4.65 4.59 -0.19 Abraham, M. H.; Acree, W. E.; Leo, A. J.; Hoekman, D. 
New J. Chem. 2009, 33 (8), 1685-1692. 

2-Methyl-1-propanol 0.35 -1.13 0.02 -3.57 3.97 0.19 Sprunger, L. M.; Achi, S. S.; Pointer, R.; Acree, W. E.; 
Abraham, M. H. Fluid Phase Equilibria 2010, 288 (1-2), 
121-127. 

Butanone 0.26 -0.08 -767 -4.86 4.18 0.25 Abraham, M. H.; Acree, W. E.; Leo, A. J.; Hoekman, D. 
New J. Chem. 2009, 33 (3), 568-573. 

Dibutylether 0.39 -0.99 -1.41 -5.36 4.52 0.18 Grubbs, L. M.; Saifullah, M.; De La Rosa, N. E.; Ye, S. L.; 
Achi, S. S.; Acree, W. E.; Abraham, M. H. Fluid Phase 
Equilibria 2010, 298 (1), 48-53. 

Ethylacetate 0.37 -0.45 -0.70 -4.90 4.15 0.33 Sprunger, L. M.; Proctor, A.; Acree Jr, W. E.; Abraham, 
M. H.; Benjelloun-Dakhama, N. Fluid Phase Equilib. 2008, 
270 (1�2), 30-44. 

Methylacetate 0.22 -0.15 -1.04 -4.53 3.97 0.35 Sprunger, L. M.; Proctor, A.; Acree Jr, W. E.; Abraham, 
M. H.; Benjelloun-Dakhama, N. Fluid Phase Equilib. 2008, 
270 (1�2), 30-44. 

Methyltbutylether 0.31 -0.82 -0.62 -5.10 4.43 0.34 Grubbs, L. M.; Saifullah, M.; De La Rosa, N. E.; Ye, S. L.; 
Achi, S. S.; Acree, W. E.; Abraham, M. H. Fluid Phase 
Equilibria 2010, 298 (1), 48-53. 

N-methylformamide 0.41 -0.29 0.54 -4.09 3.47 0.11 Abraham, M. H.; Acree, W. E.; Cometto-Muniz, J. E. New 
J. Chem. 2009, 33(10), 2034-2043. 

p-xylene 0.48 -0.81 -2.94 -4.87 4.53 0.17 Stephens, T. W.; De La Rosa, N. E.; Saifullah, M.; Ye, S.; 
Chou, V.; Quay, A. N.; Acree Jr, W. E.; Abraham, M. H. 
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Fluid Phase Equilib. 2011, 309 (1), 30-35. 

n-decane 0.72 -1.74 -3.45 -4.97 4.48 0.19 Stephens, T. W.; Quay, A. N.; Chou, V.; Loera, M.; Shen, 
C.; Wilson, A.; Acree, W. E.; Abraham, M. H. Global J. 
Phys. Chem. 2012, 3, 1-12. 

n-heptane 0.63 -1.76 -3.57 -4.95 4.49 0.30 Stephens, T. W.; Quay, A. N.; Chou, V.; Loera, M.; Shen, 
C.; Wilson, A.; Acree, W. E.; Abraham, M. H. Global J. 
Phys. Chem. 2012, 3, 1-12. 

n-octane 0.74 -1.84 -3.69 -4.91 4.50 0.23 Stephens, T. W.; Quay, A. N.; Chou, V.; Loera, M.; Shen, 
C.; Wilson, A.; Acree, W. E.; Abraham, M. H. Global J. 
Phys. Chem. 2012, 3, 1-12. 

ethylbenzene 0.47 -0.72 -3.00 -4.84 4.51 0.09 Stephens, T. W.; Loera, M.; Quay, A. N.; Chou, V.; Shen, 
C.; Wilson, A.; Acree, W. E.; Abraham, M. H. Open 
Thermodyn. J. 2011, 5, 104-121. 

toluene 0.43 -0.64 -3.00 -4.75 4.52 0.13 Stephens, T. W.; Loera, M.; Quay, A. N.; Chou, V.; Shen, 
C.; Wilson, A.; Acree, W. E.; Abraham, M. H. Open 
Thermodyn. J. 2011, 5, 104-121. 

2-Methyl-2-propanol 0.17 -0.95 0.33 -4.09 4.11 0.21 Sprunger, L. M.; Achi, S. S.; Pointer, R.; Acree, W. E.; 
Abraham, M. H. Fluid Phase Equilibria 2010, 288 (1-2), 
121-127. 

3-Methyl-1-butanol 0.36 -1.27 0.09 -3.77 4.27 0.07 Sprunger, L. M.; Achi, S. S.; Pointer, R.; Acree, W. E.; 
Abraham, M. H. Fluid Phase Equilibria 2010, 288 (1-2), 
121-127. 

Acetonitrile 0.08 0.33 -1.57 -4.39 3.36 0.41 Abraham, M. H., Acree, W. E. (2010) New J. Chem. 34, 
2298-2305. 

Butylacetate 0.36 -0.50 -0.87 -4.97 4.28 0.25 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Cyclohexanone 0.23 0.06 -0.98 -4.84 4.32 0.04 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Decanol 0.75 -1.46 0.06 -4.05 4.29 -0.06 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Dubutylformamide 0.30 -0.44 0.36 -4.90 3.95 0.33 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
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1500-1627 

Diethylacetamide 0.03 0.09 1.34 -5.08 4.09 0.21 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Dimethylacetamide 0.08 0.21 0.92 -5.00 4.56 -0.27 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Dimethylsulfoxide 0.33 0.79 1.26 -4.54 3.36 -0.19 Abraham, M. H., Acree, W. E. (2010) New J. Chem. 34, 
2298-2305. 

Ethanol 0.47 -1.04 0.33 -3.60 3.86 0.22 Abraham, M. H., Acree, W. E. (2010) New J. Chem. 34, 
2298-2305. 

Formamide 0.07 0.31 0.59 -3.15 2.43 -0.17 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Heptanol 0.49 -1.26 0.04 -4.16 4.42 -0.03 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Isobutanol 0.31 -1.07 0.18 -3.77 4.04 0.16 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Methanol 0.33 -0.71 0.24 -3.32 3.55 0.28 Abraham, M. H., Acree, W. E. (2010) New J. Chem. 34, 
2298-2305. 

N-Ethylacetamide 0.13 -0.44 1.18 -4.73 3.86 0.28 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

N-Ethylformamide 0.03 -0.17 0.94 -4.59 3.73 0.22 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

N-Formylmorpholine 0.70 -0.06 0.01 -4.09 3.41 -0.03 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Nitromethane -0.09 0.79 -1.46 -4.36 3.46 0.02 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 
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N-Methylacetamide 0.21 -0.17 1.31 -4.59 3.83 0.09 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

N-Methylpyrrolidinone 0.53 0.28 0.84 -4.79 3.67 0.15 Abraham, M. H.; Acree, W. E. New J. Chem. 2010, 34  
2298-2305. 

N-Methyl-2-piperidone 0.33 0.26 1.56 -5.04 3.98 0.06 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Octanol 0.49 -1.04 -0.02 -4.24 4.22 -0.03 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Pentanol 0.52 -1.29 0.21 -3.91 4.21 0.08 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Propanone 0.31 -0.12 -0.61 -4.75 3.94 0.31 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Isopropanol 0.32 -1.02 0.53 -3.87 4.02 0.10 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

s-Butanol 0.38 -0.96 0.13 -3.61 3.83 0.19 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

t-Butanol 0.14 -0.92 0.32 -4.03 4.11 0.20 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Tributylphosphate 0.57 -0.84 -1.07 -4.33 3.92 0.33 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Trifluoroethanol -0.09 -0.59 -1.28 -1.27 3.09 0.40 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

butanol 0.44 -1.18 0.10 -3.92 4.12 0.15 Abraham, M. H., Acree, W. E. (2010) New J. Chem. 34, 
2298-2305. 

hexanol 0.49 -1.16 0.05 -3.97 4.13 0.12 Abraham, M. H., Acree, W. E. (2010) New J. Chem. 34, 
2298-2305. 
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propanol 0.41 -1.03 0.25 -3.77 3.99 0.14 Abraham, M. H., Acree, W. E. (2010) New J. Chem. 34, 
2298-2305. 

2-Pentanol 0.46 -1.33 0.21 -3.75 4.20 0.12 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

n-dodecane 0.67 -1.64 -3.55 -5.01 4.46 0.11 Stephens, T. W.; Quay, A. N.; Chou, V.; Loera, M.; Shen, 
C.; Wilson, A.; Acree, W. E.; Abraham, M. H. Global J. 
Phys. Chem. 2012, 3, 1-12. 

n-hexadecane 0.67 -1.62 -3.59 -4.87 4.43 0.09 Stephens, T. W.; Quay, A. N.; Chou, V.; Loera, M.; Shen, 
C.; Wilson, A.; Acree, W. E.; Abraham, M. H. Global J. 
Phys. Chem. 2012, 3, 1-12. 

N-Methylpyrrolidinone 0.53 0.28 0.84 -4.79 3.67 0.15 Abraham, M. H., Acree, W. E. (2010) New J. Chem. 34, 
2298-2305. 

n-undecane 0.60 -1.66 -3.42 -5.12 4.62 0.06 Stephens, T. W.; Quay, A. N.; Chou, V.; Loera, M.; Shen, 
C.; Wilson, A.; Acree, W. E.; Abraham, M. H. Global J. 
Phys. Chem. 2012, 3, 1-12. 

Propanone 0.31 -0.12 -0.61 -4.75 3.94 0.31 Abraham, M. H., Acree, W. E. (2010) New J. Chem. 34, 
2298-2305. 

benzene 0.46 -0.59 -3.10 -4.63 4.49 0.14 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

butane -0.01 -1.58 -3.19 -4.57 4.56 0.30 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Carbondisulfide 0.69 -0.94 -3.60 -5.82 4.92 0.05 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Cyclohexane 0.78 -1.68 -3.74 -4.93 4.58 0.16 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Dichloromethane 0.10 -0.19 -3.06 -4.09 4.32 0.32 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Fluorobenzene 0.15 -0.37 -3.03 -4.60 4.54 0.14 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 
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Isooctane 0.56 -1.74 -3.68 -4.86 4.42 0.32 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Isopropylmyristate 0.93 -1.15 -1.68 -4.09 4.25 -0.61 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Methylcyclohexane 0.78 -1.98 -3.52 -4.29 4.53 0.25 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Nitrobenzene 0.54 0.04 -2.33 -4.61 4.31 -0.20 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Oleylalcohol 0.15 -0.84 -0.44 -4.04 4.13 -0.10 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Pentane 0.39 -1.57 -3.54 -5.22 4.51 0.37 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Tetrachloromethane 0.52 -1.16 -3.56 -4.59 4.62 0.20 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Toluene 0.53 -0.72 -3.01 -4.82 4.55 0.14 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Trichloromethane 0.11 -0.40 -3.11 -3.51 4.40 0.19 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Triolein 0.98 -2.08 -2.01 -3.45 4.07 0.39 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

Chlorobutane 0.27 -0.57 -2.92 -4.88 4.46 0.22 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 

1,2-Dichloroethane 0.29 -0.13 -2.80 -4.29 4.18 0.18 Abraham, M. H.; Smith, R. E.; Luchtefeld, R.; Boorem, A. 
J.; Luo, R. S.; Acree, W. E. J. Pharma. Sci. 2010, 99 (3), 
1500-1627 
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Table C-3a.  Table of experimental acetone-water partition coefficients 
(log(���������	���
)) for carboxylate anions in acetone. ���������	���
 
has units (L water / kg acetone).  

 
Solute Expt log��
��������
���) 

26DibromobenzoicAcid -9.02 

26DichlorobenzoicAcid -8.98 

26DiethoxybenzoicAcid -10.3 

26DifluorobenzoicAcid -9.86 

26DimethoxybenzoicAcid -11.23 

26DimethylbenzoicAcid -9.1 

26DinitrobenzoicAcid -8.99 

26DipropoxybenzoicAcid -9.28 

2CyanobenzoicAcid -9.23 

2NitrobenzoicAcid -9.47 

34DichlorobenzoicAcid -7.01 

34DimethoxybenzoicAcid -9.91 

34DinitrobenzoicAcid -7.57 

35DinitrobenzoicAcid -7.32 

3Bromo4methoxybenzoicAcid -8.12 

3Bromo4methylbenzoicAcid -8.04 

3BromobenzoicAcid -7.43 

3Chloro4nitrobenzoicAcid -7.41 

3ChlorobenzoicAcid -7.77 

3CyanobenzoicAcid -8.9 

3FluorobenzoicAcid -9.02 

3Methoxy4chlorobenzoicAcid -8.17 

3Methoxy4methylbenzoicAcid -9.1 

3Methoxy4nitrobenzoicAcid -8.45 

3MethoxybenzoicAcid -9.57 

3Methyl4chlorobenzoicAcid -7.36 

3Methyl4methoxybenzoicAcid -9.41 

3Methyl4nitrobenzoicAcid -7.96 

C.4 Experimental Solvent-water Partition Coefficients 
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3MethylbenzoicAcid -9.17 

3Nitro4chlorobenzoicAcid -7.28 

3Nitro4methoxybenzoicAcid -8.62 

3Nitro4methylbenzoicAcid -8.08 

3TrifluoromethylbenzoicAcid -7.49 

4BromobenzoicAcid -7.67 

4ChlorobenzoicAcid -7.97 

4CyanobenzoicAcid -8.76 

4FluorobenzoicAcid -9.44 

4HydroxybenzoicAcid -10.65 

4MethoxybenzoicAcid -9.67 

4MethylbenzoicAcid -9.14 

4NitrobenzoicAcid -8.62 

AceticAcid -11.34 

IsobutanoicAcid -10.72 

PropanoicAcid -11.07 
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Table C-3b. Table of experimental acetonitrile-water partition coefficients 
(log(���������	�
������	)) for carboxylate anions in acetonitrile. 
���������	�
������	 has units (L water / kg acetonitrile).  

Solute 
Expt 
log
�������������������) 

23DibromopropanoicAcid -5.32 

26DibromobenzoicAcid -6.86 

26DichlorobenzoicAcid -6.75 

26DiethoxybenzoicAcid -7.74 

26DifluorobenzoicAcid -7.61 

26DimethoxybenzoicAcid -8.65 

26DimethylbenzoicAcid -7.21 

26DinitrobenzoicAcid -6.64 

26DipropoxybenzoicAcid -6.89 

2CyanobenzoicAcid -7 

2NitrobenzoicAcid -7.44 

34DichlorobenzoicAcid -5.38 

34DimethoxybenzoicAcid -7.44 

34DimethylbenzoicAcid -6.84 

34DinitrobenzoicAcid -5.29 

35DimethylbenzoicAcid -6.9 

35DinitrobenzoicAcid -5.18 

3Bromo4methoxybenzoicAcid -6.13 

3Bromo4methylbenzoicAcid -6.13 

3Chloro4nitrobenzoicAcid -5.4 

3ChlorobenzoicAcid -6.09 

3CyanobenzoicAcid -6.86 

3FluorobenzoicAcid -7.08 

3Methoxy4chlorobenzoicAcid -6.27 

3Methoxy4methylbenzoicAcid -7.02 

3Methoxy4nitrobenzoicAcid -6.46 

3MethoxybenzoicAcid -7.37 

3Methyl4chlorobenzoicAcid -5.59 

3Methyl4methoxybenzoicAcid -7.13 

3Methyl4nitrobenzoicAcid -6.09 

3MethylbenzoicAcid -6.93 

3Nitro4chlorobenzoicAcid -5.34 

3Nitro4methoxybenzoicAcid -6.45 

3Nitro4methylbenzoicAcid -6.16 
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3TrifluoromethylbenzoicAcid -5.64 

4BromobenzoicAcid -5.75 

4ChlorobenzoicAcid -6.09 

4CyanobenzoicAcid -6.55 

4FluorobenzoicAcid -7.42 

4HydroxybenzoicAcid -8.34 

4MethoxybenzoicAcid -7.43 

4MethylbenzoicAcid -7.1 

4NitrobenzoicAcid -6.59 

AceticAcid -10.4 

ButanoicAcid -9.84 

CyanoaceticAcid -8.41 

IsobutanoicAcid -9.27 

PropanoicAcid -9.52 
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Table C-3c.   Table of experimental DMSO-water partition coefficients 
(log(��������	
�)) for carboxylate anions in dimethylsulfoxide 
(DMSO). ��������	
� has units (L water / kg DMSO)  

Solute Expt log�
����������) 

23DibromopropanoicAcid -4.04 

26DibromobenzoicAcid -5.09 

26DichlorobenzoicAcid -5.17 

26DiethoxybenzoicAcid -6.76 

26DifluorobenzoicAcid -6.5 

26DimethoxybenzoicAcid -7.69 

26DimethylbenzoicAcid -6.56 

26DinitrobenzoicAcid -4.07 

26DipropoxybenzoicAcid -5.95 

2NitrobenzoicAcid -6.3 

34DichlorobenzoicAcid -4.37 

34DimethoxybenzoicAcid -6.87 

34DinitrobenzoicAcid -3.75 

35DinitrobenzoicAcid -3.57 

3Bromo4methylbenzoicAcid -5.01 

3BromobenzoicAcid -4.64 

3Chloro4nitrobenzoicAcid -4.07 

3ChlorobenzoicAcid -5.18 

3CyanobenzoicAcid -5.76 

3Methoxy4chlorobenzoicAcid -5.49 

3Methoxy4methylbenzoicAcid -6.42 

3Methoxy4nitrobenzoicAcid -5.5 

3Methyl4chlorobenzoicAcid -4.84 

3Methyl4methoxybenzoicAcid -6.63 

3Methyl4nitrobenzoicAcid -5.15 

3MethylbenzoicAcid -6.5 

3Nitro4chlorobenzoicAcid -3.9 

3Nitro4methoxybenzoicAcid -5.41 

3Nitro4methylbenzoicAcid -5.04 

3NitrobenzoicAcid -5.29 

4BromobenzoicAcid -5.04 

4ChlorobenzoicAcid -5.03 

4CyanobenzoicAcid -5.33 

4HydroxybenzoicAcid -7.39 

4MethylbenzoicAcid -6.63 



 

 163 

4NitrobenzoicAcid -5.58 

AceticAcid -9.9 

ButanoicAcid -9.51 

CyanoaceticAcid -7.95 

IsobutanoicAcid -9.42 

PropanoicAcid -9.53 
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Table C-3d. Table of experimental methanol-water partition coefficients 
(log(��������	
�����)) for carboxylate anions in methanol. 
��������	
����� has units (L water / kg methanol).  

Solute Expt log
���������������) 

23DibromopropanoicAcid -1.57 

26DiethoxybenzoicAcid -1.13 

26DifluorobenzoicAcid -1.44 

26DimethoxybenzoicAcid -1.71 

26DimethylbenzoicAcid -0.53 

26DinitrobenzoicAcid -1.81 

26DipropoxybenzoicAcid -0.26 

2CyanobenzoicAcid -1.32 

2NitrobenzoicAcid -1.69 

34DichlorobenzoicAcid 0.34 

34DimethoxybenzoicAcid -1.49 

34DimethylbenzoicAcid -0.4 

34DinitrobenzoicAcid -0.8 

35DimethylbenzoicAcid -0.6 

35DinitrobenzoicAcid -0.87 

3Bromo4methoxybenzoicAcid -0.43 

3Bromo4methylbenzoicAcid -0.42 

3BromobenzoicAcid -0.09 

3Chloro4nitrobenzoicAcid -0.55 

3ChlorobenzoicAcid -0.48 

3CyanobenzoicAcid -1.22 

3FluorobenzoicAcid -0.87 

3Methoxy4chlorobenzoicAcid -0.5 

3Methoxy4methylbenzoicAcid -0.82 

3Methoxy4nitrobenzoicAcid -1.96 

3MethoxybenzoicAcid -1.11 

3Methyl4chlorobenzoicAcid 0.06 

3Methyl4methoxybenzoicAcid -0.9 

3Methyl4nitrobenzoicAcid -0.55 

3MethylbenzoicAcid -0.87 

3Nitro4chlorobenzoicAcid -0.28 

3Nitro4methoxybenzoicAcid -1.07 

3Nitro4methylbenzoicAcid -0.56 

3TrifluoromethylbenzoicAcid 0.08 

4BromobenzoicAcid -0.14 



 

 165 

4ChlorobenzoicAcid -0.36 

4CyanobenzoicAcid -1.08 

4FluorobenzoicAcid -1.11 

4HydroxybenzoicAcid -1.72 

4MethoxybenzoicAcid -1.31 

4MethylbenzoicAcid -1.02 

4NitrobenzoicAcid -0.87 

AceticAcid -2.88 

CyanoaceticAcid -3.08 

IsobutanoicAcid -1.98 

PentanoicAcid -1.64 

PropanoicAcid -2.28 
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Table C-3e.   Table of experimental octanol-water partition coefficients 
(log(���������	��
�)) for quaternary amine cations in octanol. 
���������	��
� has units (L water / kg octanol). Solute and Group 
Identification Numbers refer to the original classifications in the primary 
reference (Abraham & Zhao, 2008)14. SMILES strings are for the 
charged (cationic) species. 

Solute SMILES Group log�
��������
�����

) 

1 C[N+](C)(C)C 1 -1.71 

2 C[N+](C)(C)CC 1 -2.67 

3 C[N+](C)(C)CCCC 1 0.35 

4 C[N+](C)(C)CCCCC 1 -1.11 

5 C[N+](C)(C)CCCCCC 1 -0.35 

6 C[N+](C)(C)CCCCCCCC 1 1.19 

7 C[N+](C)(C)CCCCCCCCCC 1 3.01 

8 C[N+](C)(C)CCCCCCCCCCCCCCCC 1 6.05 

9 C[N+](C)(C)CCCl 1 -3.09 

10 C[N+](C)(C)CC1CCCC1 1 -0.21 

12 C[N+](C)(C)C(C)(C)C 1 -0.83 

13 C[N+](C)(C)C(C)CC 1 0.11 

14 C[N+](C)(C)CC1CC(C)CC1 1 0.33 

15 C[N+](C)(C)CC1C=C(C)CC1 1 -0.37 

17 C[N+](C)(C)CCOC(=O)C 1 -4.45 

18 C[N+](C)(C)CCOC(=O)C=C 1 -3.47 

19 C[N+](C)(C)CCOC(=O)C=N#N 1 -3.25 

20 C[N+](C)(C)CCOC(=O)CBr 1 -1.83 

22 C[N+](C)(C)CCOC(=O)CF 1 -3.03 

24 C[N+](C)(C)CCOC(=O)OC 1 -3.37 

25 C[N+](C)(C)CC1CCCO1 1 -1.27 

26 C[N+](C)(C)CC1CCOC1 1 -1.97 

27 C[N+](C)(C)CC1CC(C)OC1 1 -0.97 

28 C[N+](C)(C)CC1CCC(C)O1 1 -0.27 

29 C[N+](C)(C)CC1COC(C)O1 1 -1.33 

30 C[N+](C)(C)CC1COCO1 1 -2.73 

31 C[N+](C)(C)CC1CSCO1 1 -2.07 

33 C[N+](C)(C)CCOC 1 -1.91 

34 C[N+](C)(C)CCOC(C)C 1 -0.11 

35 C[N+](C)(C)CCOCC 1 -1.11 

36 C[N+](C)(C)CCOCCC 1 -0.61 

39 C[N+](C)(C)Cc1cccc(CCC)c1 1 1.73 
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40 C[N+](C)(C)Cc1cccc(C(C)C)c1 1 1.53 

46 C[N+](C)(C)Cc1cccc(C(=O)OCC)c1 1 -0.17 

48 C[N+](C)(C)Cc1cccc(C(=O)OC)c1 1 -1.17 

50 C[N+](C)(C)Cc1cccc(OCC)c1 1 0.13 

51 C[N+](C)(C)Cc1cccc(OC)c1 1 -0.01 

56 C[N+](C)(C)Cc1cccc(C#N)c1 1 -2.31 

64 C[N+](C)(C)Cc1cccc(C)n1 1 -2.01 

68 C[N+](C)(C)Cc1ccc(C)o1 1 -0.37 

70 C[N+](C)(C)Cc1ccoc1 1 -1.47 

71 C[N+](C)(C)Cc1cc(C)oc1 1 -0.67 

72 C[N+](C)(C)Cc1ccc(CCl)o1 1 -0.67 

81 C[N+](CC)(CC)CC 1 -0.93 

82 C[N+](CCC)(CCC)CCC 1 1.37 

83 C[N+](CCCC)(CCCC)CCCC 1 3.85 

84 CC[N+](CC)(CC)CC 1 -2.31 

85 CC[N+](CCC)(CCC)CCC 1 -1.05 

116 CCCCCCCCCCCC[N+](C)(C)Cc1ccc(Cl)cc1 1 10.11 

121 CCCC[n+]1ccccc1 1 -1.59 

124 CCCCCCCCCC[n+]1ccccc1 1 2.35 

136 CCCCCC[n+]1cc(C)cc(C)c1 1 0.95 

138 CCCCCCCCCC[n+]1cc(C)cc(C)c1 1 4.85 

139 CCCCCCCCCCCC[n+]1cc(C)cc(C)c1 1 7.15 

140 CCCCCCCCCCCCCC[n+]1cc(C)cc(C)c1 1 9.13 

146 CCCCCCCCCCCC[n+]1ccc(C)c(C)c1 1 6.83 

165 c1ccccc1C[n+]2ccccc2 1 -1.45 

203 Cn1cc[n+](COCC(C)(C)N(=O)=O)c1 1 -1.47 

204 Cn1cc[n+](COCC(C)(C)N(=O)=O)c1C 1 -0.67 

205 Cn1cc[n+](COC(C)C(C)(C)N(=O)=O)c1C 1 -2.29 

212 Cc1n(C)cc[n+]1CCCN(C)S(=O)(=O)C(F)(F)F 3 -1.57 

213 Cc1n(C)cc[n+]1CCN(C)S(=O)(=O)C(F)(F)F 3 -1.51 

215 CCc1n(C)cc[n+]1CCN(C)S(=O)(=O)C(F)(F)F 3 -0.83 

220 Cn1cc[n+](CCC#N)c1C=NO 4 -2.09 

221 Cn1cc[n+](CCCC#N)c1C=NO 4 -1.49 

222 Cn1cc[n+](CCCCC#N)c1C=NO 4 -1.09 

223 Cn1cc[n+](COCC)c1C=NO 4 -0.89 

224 Cn1cc[n+](COCCCC)c1C=NO 4 1.73 

225 Cn1cc[n+](COCCCCCC)c1C=NO 4 4.29 

226 Cn1cc[n+](COCCCCCCCC)c1C=NO 4 6.27 

228 Cn1cc[n+](COC(C)C#C)c1C=NO 4 0.23 
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229 Cn1cc[n+](COC(CC)C#C)c1C=NO 4 1.53 

230 Cn1cc[n+](COC(CCC)C#C)c1C=NO 4 2.31 

232 Cn1cc[n+](COC2CCCC2)c1C=NO 4 1.59 

233 Cn1cc[n+](COC2CCCCC2)c1C=NO 4 2.11 

237 Cn1cc[n+](CCOCC#C)c1C=NO 4 -0.99 

238 Cn1cc[n+](CCCOCC#C)c1C=NO 4 -0.03 

240 Cn1cc[n+](COCCCc2ccccc2)c1C=NO 4 3.61 

242 Cn1cc[n+](CCCC(C)(C)N(=O)=O)c1C=NO 4 0.15 

244 CCn1cc[n+](CCCC(C)(C)N(=O)=O)c1C=NO 4 0.91 

245 Cn1cc[n+](CCF)c1C=NO 4 -0.65 

246 Cn1cc[n+](CCCl)c1C=NO 4 -1.51 

247 Cn1cc[n+](CCCCCCCl)c1C=NO 4 2.33 

248 Cn1cc[n+](CCCCC#C)c1C=NO 4 0.47 

249 Cn1cc[n+](CCCBr)c1C=NO 4 1.95 

250 Cn1cc[n+](CCBr)c1C=NO 4 -0.37 

252 CCCn1cc[n+](CCN(C)C)c1C=NO 4 -0.95 

253 CCn1cc[n+](CCN(C)C)c1C=NO 4 -0.91 

254 Cn1cc[n+](CC(C)N(C)C)c1C=NO 4 -1.11 

255 Cn1cc[n+](CC(C)N(CC)CC)c1C=NO 4 0.09 

256 Cn1cc[n+](CC(N(C)C)C(C)C)c1C=NO 4 1.17 

257 Cn1cc[n+](CC(N(C)C)CC)c1C=NO 4 -0.63 

258 Cn1cc[n+](CCCN(C)C)c1C=NO 4 -1.77 

259 Cn1cc[n+](CCN(C(C)C)C(C)C)c1C=NO 4 0.93 

261 Cn1cc[n+](CCN2CCOCC2)c1C=NO 4 -1.31 

262 Cn1cc[n+](CCN2CCCCC2)c1C=NO 4 -0.13 

263 Cn1cc[n+](CCN2CCCC2)c1C=NO 4 -0.95 

264 Cn1cc[n+](CC2CCCN2C)c1C=NO 4 -1.43 

271 Cn1cc[n+](COCCF)c1C=NO 4 -1.17 

272 Cn1cc[n+](COCCCCl)c1C=NO 4 0.65 

273 Cn1cc[n+](COCCCCCl)c1C=NO 4 1.57 

274 Cn1cc[n+](COCCCC#C)c1C=NO 4 0.31 

275 Cn1cc[n+](COCCCBr)c1C=NO 4 0.99 

276 Cn1cc[n+](COCCC=CCC)c1C=NO 4 2.99 

277 Cn1cc[n+](COCCC=C)c1C=NO 4 0.83 

278 Cn1cc[n+](COCCC(C)OC)c1C=NO 4 0.07 

280 Cn1cc[n+](COCCC(C)=C)c1C=NO 4 1.69 

281 Cn1cc[n+](COCCC#CC)c1C=NO 4 0.53 

283 Cn1cc[n+](COCCBr)c1C=NO 4 -0.09 

284 Cn1cc[n+](COCC=CCCC)c1C=NO 4 3.11 
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285 Cn1cc[n+](COCC=CCC)c1C=NO 4 1.91 

286 Cn1cc[n+](COCC=CC)c1C=NO 4 1.43 

287 Cn1cc[n+](COCC=CC(C)(C)C)c1C=NO 4 3.57 

288 Cn1cc[n+](COCC=C)c1C=NO 4 -0.49 

289 Cn1cc[n+](COCC=C(C)C)c1C=NO 4 1.71 

290 Cn1cc[n+](COCC(C)CBr)c1C=NO 4 2.05 

291 Cn1cc[n+](COCC(C)=C)c1C=NO 4 0.85 

292 Cn1cc[n+](COCC(C)(C)CCl)c1C=NO 4 2.51 

293 Cn1cc[n+](COCC(C)(C)CBr)c1C=NO 4 2.89 

294 Cn1cc[n+](COCC(C)(C)C)c1C=NO 4 2.69 

295 Cn1cc[n+](COCC(C)(C)C#C)c1C=NO 4 2.01 

296 Cn1cc[n+](COC)c1C=NO 4 -1.49 

297 Cn1cc[n+](COC(CCCl)CC)c1C=NO 4 2.27 

298 Cn1cc[n+](COC(CCC)CC#C)c1C=NO 4 2.17 

299 Cn1cc[n+](COC(CC)CCC)c1C=NO 4 2.79 

300 Cn1cc[n+](COC(C=C)CCC)c1C=NO 4 2.77 

301 Cn1cc[n+](COC(C)CCCCl)c1C=NO 4 2.05 

302 Cn1cc[n+](COC(C)CCC)c1C=NO 4 2.27 

303 Cn1cc[n+](COC(C)CC(C)(C)C)c1C=NO 4 3.95 

304 Cn1cc[n+](COC(C)CC#C)c1C=NO 4 0.31 

305 Cn1cc[n+](COC(C)C=C)c1C=NO 4 0.71 

306 Cn1cc[n+](COC(C)C)c1C=NO 4 0.17 

308 Cn1cc[n+](COC(C)C(C)C#C)c1C=NO 4 1.41 

309 Cn1cc[n+](COC(C)C(C)(C)C)c1C=NO 4 3.15 

311 Cn1cc[n+](COC(C)(C)C=C)c1C=NO 4 1.43 

312 Cn1cc[n+](COC(C)(C)C(C)(C)C)c1C=NO 4 4.01 

313 Cn1cc[n+](COC(C)(C)C#CC)c1C=NO 4 1.79 

314 Cn1cc[n+](COC(C)(C)C#C)c1C=NO 4 1.27 

315 Cn1cc[n+](COC(C(C)=C)CC(C)=C)c1C=NO 4 3.27 

316 Cn1cc[n+](COC(C(C)(C)C)CC)c1C=NO 4 3.79 

317 Cn1cc[n+](COC(=O)C=CC)c1C=NO 4 0.99 

318 Cn1cc[n+](COC(=O)C(C)CC)c1C=NO 4 2.09 

319 CCn1cc[n+](COCCCCl)c1C=NO 4 1.39 

320 CCn1cc[n+](COCC(C)CBr)c1C=NO 4 2.63 

321 CCn1cc[n+](COCC(C)(C)CBr)c1C=NO 4 3.37 

322 CCCn1cc[n+](COCC(C)(C)CBr)c1C=NO 4 4.29 

323 CCCn1cc[n+](COCC(C)(C)C)c1C=NO 4 3.95 

325 CCCCCCn1cc[n+](COCCCCCC)c1C=NO 4 8.55 

326 CCCCCCn1cc[n+](COCC(C)(C)C)c1C=NO 4 7.01 
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327 CCCCCCn1cc[n+](COC)c1C=NO 4 3.35 

328 CCCCCCn1cc[n+](COC(C)C(C)(C)C)c1C=NO 4 7.37 

329 CC=Cn1cc[n+](COCCCC#C)c1C=NO 4 1.77 

330 CC=Cn1cc[n+](COCC(C)(C)C)c1C=NO 4 3.95 

331 CC=Cn1cc[n+](COC)c1C=NO 4 -0.13 

332 CC=Cn1cc[n+](COC(CC)C#C)c1C=NO 4 2.63 

335 C#CCCCCn1cc[n+](COC)c1C=NO 4 1.09 

336 Cn1cc[n+](COCCCN(=O)=O)c1C=NO 4 -0.79 

337 Cn1cc[n+](COC(CC)C(C)N(=O)=O)c1C=NO 4 4.29 

338 Cn1cc[n+](COC(CC)C(C)(C)N(=O)=O)c1C=NO 4 1.59 

339 Cn1cc[n+](COC(C)CCCN(=O)(=O))c1C=NO 4 0.29 

340 Cn1cc[n+](COC(C)C(CC)N(=O)=O)c1C=NO 4 1.09 

341 Cn1cc[n+](COC(C)C(C)(C)N(=O)=O)c1C=NO 4 1.01 

342 CCn1cc[n+](COCC(C)(C)N(=O)=O)c1C=NO 4 0.97 

344 CCn1cc[n+](COC(C)C(C)(C)N(=O)=O)c1C=NO 4 1.43 

345 CCCn1cc[n+](COC(CC)C(C)(C)N(=O)=O)c1C=NO 4 3.25 

349 Cn1cc[n+](COC(C)C2CCCCC2)c1C=NO 4 4.95 

352 Cn1cc[n+](COC2CCC=CC2)c1C=NO 4 1.67 

353 Cn1cc[n+](COC2CCCCC2C#C)c1C=NO 4 2.37 

355 Cn1cc[n+](COCC2CCCC2)c1C=NO 4 2.87 

356 Cn1cc[n+](COCC2CCCCC2)c1C=NO 4 4.27 

375 Cn1cc[n+](COCc2ccc(F)cc2)c1C=NO 4 2.27 

379 Cn1cc[n+](CCOCCF)c1C=NO 4 -0.73 

380 Cn1cc[n+](CCOCCCl)c1C=NO 4 -0.13 

383 Cn1cc[n+](CCOCCBr)c1C=NO 4 0.11 

384 Cn1cc[n+](CCOC)c1C=NO 4 -1.45 

386 CC(C)(C)COCn1cc[n+](C)c1C=NO 4 2.69 

387 CC(OCn1cc[n+](C)c1C=NO)C(C)(C)C 4 3.15 

388 CC(C)OCn1cc[n+](C)c1C=NO 4 0.17 

389 CCCCOCn1cc[n+](C)c1C=NO 4 1.73 

390 CCCCCCCCOCn1cc[n+](C)c1C=NO 4 6.27 

393 Cn1cc[n+](CC(=O)C)c1C=NO 4 -0.89 

394 CCCn1cc[n+](CC(=O)C)c1C=NO 4 0.07 

396 c1ccccc1Cn2cc[n+](CC(=O)C)c2C=NO 4 1.99 

397 Cn1cc[n+](COC(=O)C(C)(C)C)c1C=NO 4 1.79 

398 Cn1cc[n+](COC(=O)CCC)c1C=NO 4 1.45 

400 Cn1cc[n+](CSCCC#C)c1C=NO 4 0.63 

408 Cn1cc[n+](CCS(=O)(=O)C)c1C=NO 5 -2.49 

409 Cn1cc[n+](CCCS(=O)(=O)C)c1C=NO 5 -0.89 
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410 Cn1cc[n+](CCCCS(=O)(=O)C)c1C=NO 5 -2.29 

413 CCn1cc[n+](CCN(C)S(=O)(=O)C)c1C=NO 5 -0.71 

414 Cn1cc[n+](CCCN(C)S(=O)(=O)C)c1C=NO 5 -0.75 

415 Cn1cc[n+](CCCN(CC)S(=O)(=O)C)c1C=NO 5 -0.87 

416 Cn1cc[n+](CCN(C)S(=O)(=O)C)c1C=NO 5 -2.11 

417 Cn1cc[n+](CCN(CC)S(=O)(=O)C)c1C=NO 5 -0.93 

450 Cn1cc[n+](COC(C)(C)CS(=O)(=O)C)c1C=NO 5 -1.29 

451 CCn1cc[n+](COC(C)(C)CS(=O)(=O)C)c1C=NO 5 -1.29 

452 CCCn1cc[n+](COC(C)(C)CS(=O)(=O)C)c1C=NO 5 -0.49 

453 Cn1cc[n+](COCCS(=O)(=O)C)c1C=NO 5 -2.09 

454 Cn1cc[n+](COCCCS(=O)(=O)C)c1C=NO 5 -0.49 

455 Cn1cc[n+](COCCCCS(=O)(=O)C)c1C=NO 5 -1.71 

456 CCCn1cc[n+](COCCS(=O)(=O)C)c1C=NO 5 -1.49 

457 CCn1cc[n+](COC(C)C(C)S(=O)(=O)C)c1C=NO 5 -0.85 

458 CCn1cc[n+](COCCS(=O)(=O)C)c1C=NO 5 -1.49 

459 CCn1cc[n+](COCCS(=O)(=O)CC)c1C=NO 5 -0.83 

460 Cn1cc[n+](CCOCCS(=O)(=O)C)c1C=NO 5 -1.63 

462 Cn1cc[n+](COC(C)CS(=O)(=O)C)c1C=NO 5 -0.81 

463 Cn1cc[n+](COC(C)CS(=O)(=O)CC)c1C=NO 5 -0.89 

464 Cn1cc[n+](COCCS(=O)(=O)CC)c1C=NO 5 -0.89 

470 CCC[n+]1cccc(c1)C(=O)N 6 1.65 

471 CCCC[n+]1cccc(c1)C(=O)N 6 1.73 

473 CCCCCCC[n+]1cccc(c1)C(=O)N 6 3.17 

475 CCCCCCCCC[n+]1cccc(c1)C(=O)N 6 5.43 

481 Cn1cc[n+](c1C=NO)CCCN(C)S(=O)(=O)C(F)(F)F 7 1.77 

484 Cn1cc[n+](c1C=NO)CCN(C)S(=O)(=O)C(F)(F)F 7 1.51 

487 Cn1cc[n+](c1C=NO)CCNS(=O)(=O)C(F)(F)F 7 2.11 

541 CC[N+](C)(CC)CCSC(=NO)C(=O)c1ccc(OC)cc1 9 1.31 

542 CC[N+](C)(CC)CCSC(=NO)C(=O)c1ccc(F)cc1 9 2.17 
 



 

 

172 

 

Table C-4a.  Absolv-estimated and quantum-chemically estimated solute descriptors for carboxylate anions. AAP 
parameters are for the Abraham equation of the form ��������	
��
���
�� � �� � �� � �� � �� � �� � �, 
where ����	
��
���
� has units of (L water / kg solvent). QCAP parameters are for the Abraham equation of 
the form ��������	
��
���
�� � �� � �� � �� � �� � �� � �, where ����	
��
���
� has units of (L water / kg 
solvent). 

Absolv Abraham Solute Parameters 
(AAPs) 

Quantum Chemical Abraham Solute 
Parameters (QCAPs) 

Solute E S A B V E S A B V 

23DibromopropanoicAcid 0.92 1.07 0.79 0.46 0.96 1.12 5.22 -0.00289 2.61 0.96 

26DibromobenzoicAcid 1.39 1.39 0.57 0.38 1.28 1.86 6.20 -0.00343 2.91 1.28 

26DichlorobenzoicAcid 1.02 1.22 0.57 0.38 1.18 1.56 6.34 -0.00357 2.80 1.18 

26DiethoxybenzoicAcid 0.85 1.26 0.57 0.82 1.61 1.57 5.84 -0.00353 3.41 1.61 

26DifluorobenzoicAcid 0.56 1.00 0.57 0.39 0.97 1.18 6.34 -0.00370 2.66 0.97 

26DimethoxybenzoicAcid 0.86 1.26 0.57 0.81 1.33 1.47 6.82 -0.00410 3.58 1.33 

26DimethylbenzoicAcid 0.80 0.96 0.57 0.44 1.21 1.43 5.98 -0.00336 3.10 1.21 

26DinitrobenzoicAcid 1.29 2.22 0.57 0.64 1.28 1.45 6.61 -0.00441 2.54 1.28 

26DipropoxybenzoicAcid 0.85 1.27 0.57 0.83 1.89 1.67 5.74 -0.00353 3.42 1.89 

2CyanobenzoicAcid 0.92 1.56 0.57 0.59 1.09 1.41 6.30 -0.00372 2.78 1.09 

2NitrobenzoicAcid 1.02 1.65 0.57 0.54 1.11 1.33 6.23 -0.00382 2.71 1.11 

34DichlorobenzoicAcid 1.02 1.24 0.73 0.43 1.18 1.49 5.41 -0.00297 2.68 1.18 

34DimethoxybenzoicAcid 0.89 1.68 0.57 0.90 1.33 1.38 6.11 -0.00369 3.41 1.33 

C.5 Absolv-estimated (AAP) and Quantum-chemically Derived (QCAP) Abraham Solute Parameters
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34DimethylbenzoicAcid 0.80 0.96 0.57 0.44 1.21 1.41 6.35 -0.00296 1.79 1.21 

34DinitrobenzoicAcid 1.29 2.22 0.73 0.64 1.28 1.54 5.47 -0.00364 2.38 1.28 

35DimethylbenzoicAcid 0.80 0.96 0.57 0.44 1.21 1.43 6.30 -0.00293 1.78 1.21 

35DinitrobenzoicAcid 1.29 2.22 0.68 0.64 1.28 1.52 5.32 -0.00357 2.49 1.28 

3Bromo4methoxybenzoicAcid 1.12 1.34 0.64 0.64 1.31 1.60 5.86 -0.00338 3.06 1.31 

3Bromo4methylbenzoicAcid 1.10 1.18 0.64 0.44 1.25 1.62 5.83 -0.00324 2.92 1.25 

3BromobenzoicAcid 1.08 1.24 0.64 0.44 1.11 1.54 5.69 -0.00312 2.81 1.11 

3Chloro4nitrobenzoicAcid 1.17 1.73 0.73 0.54 1.23 1.57 5.34 -0.00322 2.58 1.23 

3ChlorobenzoicAcid 0.90 1.16 0.64 0.44 1.05 1.38 5.70 -0.00316 2.77 1.05 

3CyanobenzoicAcid 0.92 1.56 0.64 0.59 1.09 1.44 5.77 -0.00333 2.75 1.09 

3FluorobenzoicAcid 0.67 1.04 0.64 0.45 0.95 1.17 5.74 -0.00324 2.78 0.95 

3Methoxy4chlorobenzoicAcid 0.94 1.25 0.66 0.64 1.25 1.46 5.90 -0.00342 3.02 1.25 

3Methoxy4methylbenzoicAcid 0.84 1.11 0.57 0.66 1.27 1.42 6.23 -0.00364 3.23 1.27 

3Methoxy4nitrobenzoicAcid 1.08 1.74 0.66 0.75 1.31 1.55 5.75 -0.00356 3.00 1.31 

3MethoxybenzoicAcid 0.81 1.17 0.57 0.66 1.13 1.32 6.15 -0.00360 3.14 1.13 

3Methyl4chlorobenzoicAcid 0.92 1.10 0.66 0.44 1.20 1.45 5.76 -0.00321 2.89 1.20 

3Methyl4methoxybenzoicAcid 0.84 1.11 0.57 0.66 1.27 1.39 6.20 -0.00363 3.31 1.27 

3Methyl4nitrobenzoicAcid 1.04 1.59 0.66 0.54 1.25 1.54 5.54 -0.00334 2.80 1.25 

3MethylbenzoicAcid 0.77 1.02 0.57 0.44 1.07 1.35 6.13 -0.00345 2.99 1.07 

3Nitro4chlorobenzoicAcid 1.17 1.73 0.73 0.54 1.23 1.52 5.47 -0.00331 2.62 1.23 

3Nitro4methoxybenzoicAcid 1.08 1.74 0.64 0.75 1.31 1.48 5.85 -0.00366 3.02 1.31 

3Nitro4methylbenzoicAcid 1.04 1.59 0.64 0.54 1.25 1.49 5.78 -0.00351 2.87 1.25 

3NitrobenzoicAcid 1.02 1.65 0.64 0.54 1.11 1.40 5.61 -0.00340 2.73 1.11 

3TrifluoromethylbenzoicAcid 0.41 0.85 0.64 0.33 1.13 1.14 5.52 -0.00320 2.76 1.13 

4BromobenzoicAcid 1.08 1.24 0.66 0.44 1.11 1.53 5.63 -0.00307 2.83 1.11 

4ChlorobenzoicAcid 0.90 1.16 0.66 0.44 1.05 1.38 5.64 -0.00311 2.80 1.05 

4CyanobenzoicAcid 0.92 1.56 0.66 0.59 1.09 1.48 5.68 -0.00325 2.73 1.09 
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4FluorobenzoicAcid 0.67 1.04 0.66 0.45 0.95 1.15 5.70 -0.00321 2.83 0.95 

4HydroxybenzoicAcid 0.98 1.29 1.00 0.72 0.99 1.25 6.27 -0.00355 3.44 0.99 

4MethoxybenzoicAcid 0.81 1.17 0.57 0.66 1.13 1.32 6.12 -0.00357 3.22 1.13 

4MethylbenzoicAcid 0.77 1.02 0.57 0.44 1.07 1.36 6.16 -0.00346 3.01 1.07 

4NitrobenzoicAcid 1.02 1.65 0.66 0.54 1.11 1.46 5.43 -0.00326 2.68 1.11 

AceticAcid 0.17 0.61 0.57 0.36 0.46 0.67 5.85 -0.00311 3.21 0.46 

ButanoicAcid 0.17 0.62 0.57 0.36 0.75 0.76 5.71 -0.00309 3.25 0.75 

CyanoaceticAcid 0.36 1.17 0.79 0.53 0.62 0.67 5.85 -0.00346 2.64 0.62 

IsobutanoicAcid 0.18 0.61 0.57 0.39 0.75 0.75 5.57 -0.00302 3.25 0.75 

PentanoicAcid 0.17 0.63 0.57 0.37 0.89 0.81 5.72 -0.00314 3.27 0.89 

PropanoicAcid 0.17 0.62 0.57 0.36 0.61 0.70 5.70 -0.00305 3.26 0.61 
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Table C-4b. Absolv-estimated and quantum-chemically estimated solute descriptors for quaternary amine cations. AAP 
parameters are for the Abraham equation of the form ��������	
��
���
�� � �� � �� � �� � �� � �� � �, 
where ����	
��
���
� has units of (L water / kg solvent). QCAP parameters are for the Abraham equation of 
the form ��������	
��
���
�� � �� � �� � �� � �� � �� � �, where ����	
��
���
� has units of (L water / kg 
solvent). 

 Absolv Abraham Solute Parameters (AAPs)  
Quantum Chemical Abraham Solute Parameters 

(QCAPs) 

Solute E S A B V E S A B V 

1 -0.2083 0.0955 0 0.0596 0.7935 0.184556 -6.49476 0.004011 0.624775 0.7935 

2 -0.2101 0.0999 0 0.0627 0.9344 0.201055 -6.18583 0.003864 0.818594 0.9344 

3 -0.2136 0.1086 0 0.0689 1.2162 0.298326 -5.9187 0.003749 1.28615 1.2162 

4 -0.2154 0.113 0 0.072 1.3571 0.356677 -5.8177 0.003712 1.523929 1.3571 

5 -0.2172 0.1174 0 0.0751 1.498 0.412785 -5.72488 0.003677 1.76162 1.498 

6 -0.2207 0.1261 0 0.0813 1.7798 0.52874 -5.54673 0.003613 2.236354 1.7798 

7 -0.2243 0.1348 0 0.0875 2.0616 0.645067 -5.37382 0.003552 2.710224 2.0616 

8 -0.2349 0.1611 0 0.1061 2.907 0.996293 -4.86299 0.003374 4.131715 2.907 

9 -0.0888 0.2419 0.0007 0.0622 1.0568 0.320766 -6.98709 0.004342 0.858737 1.0568 

10 0.0036 0.1885 0 0.0791 1.3894 0.678862 -5.8962 0.003834 1.640474 1.3894 

12 -0.2291 0.042 0 0.1033 1.2162 0.21948 -5.71487 0.00369 1.181486 1.2162 

13 -0.2039 0.0928 0 0.0965 1.2162 0.248253 -5.76366 0.003695 1.225195 1.2162 

14 0.0116 0.1771 0 0.1098 1.5303 0.823532 -5.48756 0.003617 1.892155 1.5303 

15 0.1366 0.2347 0 0.1615 1.4873 0.905325 -5.70799 0.003817 1.787527 1.4873 

17 -0.1496 0.5042 0 0.3964 1.2906 0.275958 -6.8866 0.004665 0.995877 1.2906 

18 -0.0274 0.5658 0 0.4504 1.3885 0.472526 -6.68618 0.004631 1.17666 1.3885 

19 0.0339 0.597 0 0.4162 1.4042 0.645543 -6.74033 0.005111 0.572549 1.4042 

20 0.1546 0.728 0.0007 0.3961 1.4656 0.475769 -7.29136 0.004951 1.230336 1.4656 

22 -0.2497 0.5013 0.0007 0.3625 1.3082 0.258251 -7.60917 0.005069 0.917893 1.3082 
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24 -0.1727 0.575 0 0.5458 1.3493 0.258442 -6.98221 0.004863 0.999859 1.3493 

25 0.0449 0.3386 0 0.2884 1.3072 0.472957 -6.67077 0.004436 1.24331 1.3072 

26 0.0449 0.3386 0 0.2884 1.3072 0.586181 -4.99689 0.00336 1.491826 1.3072 

27 0.0528 0.3271 0 0.3191 1.4481 0.870606 -5.58858 0.003785 1.63235 1.4481 

28 0.0528 0.3271 0 0.3191 1.4481 0.51225 -5.90048 0.003886 1.334503 1.4481 

29 0.094 0.4772 0 0.5283 1.3659 0.444605 -6.50776 0.004363 0.907533 1.3659 

30 0.0861 0.4887 0 0.4976 1.225 1.243841 -5.04426 0.003626 1.38664 1.225 

31 0.3905 0.4859 0 0.4118 1.3298 0.682111 -5.91098 0.00391 1.234502 1.3298 

33 -0.1724 0.2587 0 0.2781 1.134 0.251233 -6.31412 0.004079 0.806675 1.134 

34 -0.1663 0.2516 0 0.312 1.4158 0.346635 -6.01791 0.003898 1.291879 1.4158 

35 -0.1742 0.2631 0 0.2812 1.2749 0.314068 -6.15265 0.003959 1.078343 1.2749 

36 -0.176 0.2674 0 0.2843 1.4158 0.362329 -6.05446 0.003916 1.321986 1.4158 

39 0.3852 0.5117 0 0.1557 1.824 1.241347 -5.43446 0.003879 2.27478 1.824 

40 0.3949 0.4959 0 0.1833 1.824 1.221169 -5.44086 0.003891 2.242893 1.824 

46 0.4492 0.9072 0 0.4832 1.8984 1.323982 -5.74396 0.004363 2.182082 1.8984 

48 0.451 0.9029 0 0.4801 1.7575 1.281326 -5.85284 0.004456 1.942782 1.7575 

50 0.4264 0.6618 0 0.365 1.7418 1.225269 -5.71508 0.004154 2.017509 1.7418 

51 0.4282 0.6574 0 0.3619 1.6009 1.12843 -5.88444 0.004264 1.759683 1.6009 

56 0.537 1.043 0 0.2936 1.556 1.262686 -6.88153 0.004856 1.635489 1.556 

64 0.4323 0.633 0 0.4334 1.5011 1.030661 -5.98217 0.004268 1.438393 1.5011 

68 0.171 0.3806 0 0.1847 1.3621 0.751318 -5.72701 0.003921 1.526858 1.3621 

70 0.1467 0.4382 0 0.184 1.2212 2.653273 -5.26667 0.003958 1.336688 1.2212 

71 0.171 0.3806 0 0.1847 1.3621 0.877995 -5.81002 0.00408 1.620897 1.3621 

72 0.2923 0.5226 0.0007 0.1842 1.4845 0.84263 -6.17124 0.004172 1.63206 1.4845 

81 -0.2136 0.1086 0 0.0689 1.2162 0.234054 -5.60783 0.003599 1.208228 1.2162 

82 -0.219 0.1217 0 0.0782 1.6389 0.390048 -5.16852 0.003413 1.892367 1.6389 

83 -0.2243 0.1348 0 0.0875 2.0616 0.55389 -4.83764 0.003282 2.597638 2.0616 
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84 -0.2154 0.113 0 0.072 1.3571 0.249432 -5.34265 0.003483 1.394988 1.3571 

85 -0.2207 0.1261 0 0.0813 1.7798 0.4058 -4.91604 0.003309 2.071849 1.7798 

116 0.4922 0.6886 0 0.18 3.0736 2.253855 -4.44794 0.003493 4.434574 3.0736 

121 0.3879 0.5926 0 0.1202 1.2604 2.454071 -4.93623 0.003785 1.048036 1.2604 

124 0.3772 0.6188 0 0.1388 2.1058 3.213351 -4.31975 0.003597 2.497943 2.1058 

136 0.433 0.4862 0 0.1278 1.824 1.128871 -4.58685 0.003265 2.419792 1.824 

138 0.426 0.5037 0 0.1402 2.3876 1.386563 -4.23215 0.003142 3.362684 2.3876 

139 0.4224 0.5124 0 0.1464 2.6694 1.508869 -4.06681 0.003086 3.832051 2.6694 

140 0.4189 0.5212 0 0.1526 2.9512 1.632671 -3.90541 0.003039 4.298865 2.9512 

146 0.4224 0.5124 0 0.1464 2.6694 2.369819 -3.97948 0.00321 3.597726 2.6694 

165 0.9659 1.0445 0 0.2002 1.4455 15.18341 -3.21226 0.005011 1.542758 1.4455 

203 0.5884 1.2282 0 0.7162 1.6361 0.750355 -6.70119 0.004889 1.905282 1.6361 

204 0.6127 1.1707 0 0.7169 1.777 0.883441 -6.51196 0.004968 1.3213 1.777 

205 0.6207 1.1592 0 0.7476 1.9179 0.834546 -6.50681 0.004984 1.378539 1.9179 

212 0.4903 1.2514 0 0.9668 1.9776 1.523063 -6.64422 0.005448 1.36427 1.9776 

213 0.4921 1.2471 0 0.9637 1.8367 1.698259 -7.17284 0.005825 1.080282 1.8367 

215 0.4903 1.2514 0 0.9668 1.9776 1.835082 -5.81677 0.004902 1.532367 1.9776 

220 0.9491 1.2876 0.3133 0.8335 1.3916 1.130759 -7.12002 0.004928 0.318739 1.3916 

221 0.9473 1.2919 0.3133 0.8366 1.5325 1.179768 -6.90556 0.004794 0.605941 1.5325 

222 0.9456 1.2963 0.3133 0.8397 1.6734 1.288191 -6.71805 0.00472 0.865671 1.6734 

223 0.8058 0.8939 0.3126 0.8739 1.4365 1.169141 -5.16655 0.00367 0.555876 1.4365 

224 0.8022 0.9026 0.3126 0.8801 1.7183 1.287711 -4.96643 0.003596 1.043543 1.7183 

225 0.7987 0.9114 0.3126 0.8863 2.0001 1.402918 -4.79349 0.003544 1.508746 2.0001 

226 0.7951 0.9201 0.3126 0.8925 2.2819 1.52074 -4.62272 0.003483 1.980247 2.2819 

228 1.0646 1.0604 0.3978 0.9641 1.6323 1.312289 -5.4838 0.004049 0.771221 1.6323 

229 1.0628 1.0648 0.3978 0.9672 1.7732 1.183054 -5.20106 0.003821 0.921361 1.7732 

230 1.061 1.0692 0.3978 0.9703 1.9141 1.255604 -5.07506 0.003761 1.183277 1.9141 
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232 1.0213 0.9781 0.3126 0.8872 1.7506 1.654364 -5.3825 0.003963 1.145833 1.7506 

233 1.0195 0.9825 0.3126 0.8903 1.8915 12.6136 -2.87341 0.004168 1.723605 1.8915 

237 1.0549 1.0763 0.3978 0.9365 1.6323 1.330972 -5.89084 0.004291 0.73557 1.6323 

238 1.0531 1.0806 0.3978 0.9396 1.7732 1.380355 -5.85646 0.004302 0.908883 1.7732 

240 1.3767 1.3633 0.3126 0.9663 2.1852 2.783342 -5.26247 0.004207 1.830115 2.1852 

242 0.9657 1.2235 0.3126 0.9201 1.9747 1.295112 -6.29054 0.004762 1.219855 1.9747 

244 0.964 1.2279 0.3126 0.9232 2.1156 1.407272 -6.15364 0.00467 1.53988 2.1156 

245 0.6679 0.7321 0.3133 0.6246 1.2545 1.046326 -6.214 0.004169 0.301937 1.2545 

246 0.8893 0.877 0.3133 0.658 1.3593 1.20878 -6.08804 0.004116 0.485038 1.3593 

247 0.8822 0.8945 0.3133 0.6704 1.9229 1.454888 -5.56565 0.003898 1.466639 1.9229 

248 1.0136 0.9262 0.3978 0.7273 1.7145 1.404223 -5.70316 0.004121 1.095709 1.7145 

249 1.0705 0.9633 0.3133 0.6613 1.5528 1.390951 -5.91295 0.004088 0.777966 1.5528 

250 1.0723 0.9589 0.3133 0.6582 1.4119 1.332227 -5.94423 0.004081 0.540242 1.4119 

252 0.9295 0.9305 0.3126 1.1632 1.9003 1.432946 -5.09432 0.003891 1.110886 1.9003 

253 0.9313 0.9262 0.3126 1.1601 1.7594 1.362638 -5.18925 0.003894 0.807652 1.7594 

254 0.941 0.9103 0.3126 1.1877 1.7594 1.334238 -5.14484 0.0039 0.653741 1.7594 

255 0.9374 0.9191 0.3126 1.1939 2.0412 1.455424 -4.95849 0.003802 1.242484 2.0412 

256 0.9471 0.9032 0.3126 1.2215 2.0412 1.398999 -4.6651 0.003559 1.583364 2.0412 

257 0.9392 0.9147 0.3126 1.1908 1.9003 1.359706 -4.86018 0.003648 1.33582 1.9003 

258 0.9313 0.9262 0.3126 1.1601 1.7594 1.349185 -5.22205 0.003942 0.732181 1.7594 

259 0.9454 0.9076 0.3126 1.2246 2.1821 1.38822 -4.86418 0.003753 1.572036 2.1821 

261 1.18 1.172 0.3126 1.3519 1.8504 8.615069 -5.12845 0.005238 0.137449 1.8504 

262 1.1388 1.0219 0.3126 1.1427 1.9326 6.666358 -4.52012 0.004408 1.045819 1.9326 

263 1.1406 1.0175 0.3126 1.1396 1.7917 1.660535 -5.23926 0.004049 1.007936 1.7917 

264 1.1503 1.0017 0.3126 1.1672 1.7917 2.001327 -4.90194 0.003771 1.460681 1.7917 

271 0.7056 0.891 0.3133 0.8401 1.4541 1.145081 -5.82782 0.004034 0.497285 1.4541 

272 0.9252 1.0402 0.3133 0.8765 1.6998 1.34795 -5.67321 0.003989 0.910166 1.6998 
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273 0.9235 1.0446 0.3133 0.8796 1.8407 1.407422 -5.54669 0.003931 1.138461 1.8407 

274 1.0531 1.0806 0.3978 0.9396 1.7732 1.425196 -5.52384 0.004079 1.024628 1.7732 

275 1.1082 1.1221 0.3133 0.8767 1.7524 1.46056 -5.55565 0.003963 0.970279 1.7524 

276 0.9545 1.0101 0.3126 0.9496 1.9571 1.576635 -4.89358 0.003665 1.454787 1.9571 

277 0.9261 0.9599 0.3126 0.931 1.6753 1.403134 -5.16751 0.003794 0.94325 1.6753 

278 0.8496 1.0456 0.3126 1.1232 1.9179 1.313225 -5.10909 0.00381 0.92355 1.9179 

280 0.9032 0.9074 0.3126 0.9501 1.8162 1.441307 -5.10586 0.003816 1.11026 1.8162 

281 0.9475 1.0371 0.3126 0.9514 1.7732 1.51002 -5.23352 0.003901 1.117576 1.7732 

283 1.11 1.1177 0.3133 0.8736 1.6115 1.416409 -5.58413 0.003969 0.737684 1.6115 

284 0.9545 1.0101 0.3126 0.9496 1.9571 1.61475 -4.83272 0.003644 1.455513 1.9571 

285 0.9563 1.0057 0.3126 0.9465 1.8162 1.545562 -4.92647 0.00369 1.197426 1.8162 

286 0.9581 1.0013 0.3126 0.9434 1.6753 1.47899 -5.03381 0.003726 0.959573 1.6753 

287 0.9373 0.9478 0.3126 0.9871 2.098 1.648438 -4.77875 0.003682 1.617738 2.098 

288 0.9279 0.9555 0.3126 0.9279 1.5344 1.350762 -5.26909 0.003847 0.671904 1.5344 

289 0.9351 0.9488 0.3126 0.9625 1.8162 1.541078 -4.90597 0.003693 1.153083 1.8162 

290 1.1161 1.1106 0.3133 0.9075 1.8933 1.493501 -5.44106 0.003952 1.148798 1.8933 

291 0.905 0.9031 0.3126 0.947 1.6753 1.397529 -5.11016 0.003757 0.919892 1.6753 

292 0.9062 0.9823 0.3133 0.9172 1.9816 1.402995 -5.45539 0.003947 1.259942 1.9816 

293 1.0892 1.0642 0.3133 0.9174 2.0342 1.526815 -5.35211 0.003925 1.323687 2.0342 

294 0.785 0.8404 0.3126 0.9177 1.8592 1.304583 -4.88526 0.00359 1.180654 1.8592 

295 1.0358 1.0184 0.3978 0.9771 1.9141 1.457763 -5.2897 0.003975 1.208093 1.9141 

296 0.8075 0.8895 0.3126 0.8708 1.2956 1.108922 -5.34429 0.003796 0.274052 1.2956 

297 0.9314 1.0331 0.3133 0.9103 1.9816 1.413832 -5.44964 0.003919 1.334341 1.9816 

298 1.0593 1.0735 0.3978 0.9734 2.055 1.342355 -5.38791 0.004046 1.365549 2.055 

299 0.8084 0.8955 0.3126 0.9139 2.0001 1.243732 -4.91812 0.003619 1.421281 2.0001 

300 0.9323 0.9528 0.3126 0.9649 1.9571 1.458179 -4.74863 0.003581 1.401972 1.9571 

301 0.9314 1.0331 0.3133 0.9103 1.9816 1.449704 -5.42689 0.003908 1.345396 1.9816 
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302 0.8101 0.8912 0.3126 0.9108 1.8592 1.321025 -4.84956 0.003571 1.238022 1.8592 

303 0.7911 0.8333 0.3126 0.9515 2.141 1.374949 -4.68418 0.003572 1.622458 2.141 

304 1.0628 1.0648 0.3978 0.9672 1.7732 1.391565 -5.38906 0.004018 1.01773 1.7732 

305 0.9359 0.9441 0.3126 0.9587 1.6753 1.39454 -5.0656 0.00375 0.939573 1.6753 

306 0.8137 0.8824 0.3126 0.9046 1.5774 1.142667 -5.07644 0.00365 0.766354 1.5774 

308 1.0707 1.0533 0.3978 0.9979 1.9141 1.452532 -5.28701 0.004009 1.211013 1.9141 

309 0.7929 0.8289 0.3126 0.9484 2.0001 1.324072 -4.76908 0.003589 1.340157 2.0001 

311 0.9089 0.8977 0.3126 0.9686 1.8162 1.392355 -4.95679 0.003716 1.09858 1.8162 

312 0.7659 0.7825 0.3126 0.9583 2.141 1.318898 -4.62549 0.003551 1.555234 2.141 

313 0.9303 0.9749 0.3126 0.9889 1.9141 1.513815 -4.97521 0.003779 1.33517 1.9141 

314 1.0376 1.014 0.3978 0.974 1.7732 1.365782 -5.30845 0.003977 0.999779 1.7732 

315 1.0103 0.9052 0.3126 1.0539 2.1959 1.581191 -4.78238 0.003766 1.668231 2.1959 

316 0.7911 0.8333 0.3126 0.9515 2.141 1.235194 -4.88402 0.003666 1.498434 2.141 

317 0.9827 1.2424 0.3126 1.0585 1.691 1.50179 -5.42199 0.00419 0.859868 1.691 

318 0.8348 1.1323 0.3126 1.026 1.8749 1.260121 -5.46036 0.004124 1.082182 1.8749 

319 0.9235 1.0446 0.3133 0.8796 1.8407 1.456747 -5.52265 0.003884 1.209116 1.8407 

320 1.1144 1.115 0.3133 0.9106 2.0342 1.627334 -5.31286 0.003861 1.459657 2.0342 

321 1.0874 1.0686 0.3133 0.9205 2.1751 1.653549 -5.1981 0.003827 1.653003 2.1751 

322 1.0856 1.073 0.3133 0.9236 2.316 1.710779 -5.09295 0.003774 1.900379 2.316 

323 0.7814 0.8491 0.3126 0.9239 2.141 1.484063 -4.63448 0.003441 1.764803 2.141 

325 0.7898 0.9332 0.3126 0.9018 2.7046 1.826953 -4.26443 0.003294 2.81416 2.7046 

326 0.7761 0.8622 0.3126 0.9331 2.5637 1.715166 -4.34555 0.003326 2.464671 2.5637 

327 0.7987 0.9114 0.3126 0.8863 2.0001 1.507173 -4.81754 0.003548 1.561301 2.0001 

328 0.784 0.8508 0.3126 0.9639 2.7046 1.622926 -4.44632 0.003458 2.525216 2.7046 

329 1.2054 1.1881 0.3978 1.0091 2.012 2.42971 -5.08982 0.003971 1.759007 2.012 

330 0.9373 0.9478 0.3126 0.9871 2.098 2.311713 -4.47097 0.003478 1.928037 2.098 

331 0.9599 0.9969 0.3126 0.9403 1.5344 2.125019 -4.91228 0.003688 1.00384 1.5344 
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332 1.2151 1.1722 0.3978 1.0367 2.012 2.202141 -4.80501 0.003752 1.662444 2.012 

335 1.0513 1.085 0.3978 0.9427 1.9141 1.582945 -5.54038 0.004152 1.23599 1.9141 

336 1.0242 1.4359 0.3133 1.0918 1.7516 1.282714 -6.42643 0.004875 0.709873 1.7516 

337 1.0401 1.4129 0.3133 1.1532 2.0334 1.295533 -6.05417 0.004657 1.183319 2.0334 

338 1.0131 1.3665 0.3126 1.1632 2.1743 1.30979 -5.82096 0.004541 1.419778 2.1743 

339 1.0304 1.4288 0.3133 1.1256 2.0334 1.379237 -6.11715 0.004752 1.153689 2.0334 

340 1.0401 1.4129 0.3133 1.1532 2.0334 1.316459 -6.07788 0.004676 1.180508 2.0334 

341 1.0149 1.3621 0.3126 1.1601 2.0334 1.264892 -5.95502 0.004564 1.239035 2.0334 

342 1.0052 1.378 0.3126 1.1325 2.0334 1.380732 -5.99234 0.004579 1.320033 2.0334 

344 1.0131 1.3665 0.3126 1.1632 2.1743 1.397231 -5.83772 0.004505 1.522904 2.1743 

345 1.0096 1.3753 0.3126 1.1694 2.4561 1.488149 -5.58742 0.004402 1.93875 2.4561 

349 1.0257 0.9754 0.3126 0.9241 2.1733 7.92669 -2.83726 0.003457 2.125354 2.1733 

352 1.1754 1.0812 0.3126 0.9536 1.8485 1.37188 -5.00926 0.0037 1.187565 1.8485 

353 1.2783 1.1491 0.3978 0.9805 2.0873 1.8312 -5.27732 0.004239 1.576982 2.0873 

355 1.0195 0.9825 0.3126 0.8903 1.8915 1.698889 -5.11642 0.00379 1.408561 1.8915 

356 1.0177 0.9869 0.3126 0.8934 2.0324 8.186711 -3.0734 0.00353 1.89307 2.0324 

375 1.2975 1.3234 0.3126 0.9632 1.921 2.240505 -5.28483 0.004119 1.366775 1.921 

379 0.7038 0.8953 0.3133 0.8432 1.595 1.172791 -5.92335 0.004116 0.702339 1.595 

380 0.9252 1.0402 0.3133 0.8765 1.6998 1.318803 -5.81068 0.004067 0.881706 1.6998 

383 1.1082 1.1221 0.3133 0.8767 1.7524 1.435524 -5.68647 0.004043 0.93991 1.7524 

384 0.8058 0.8939 0.3126 0.8739 1.4365 1.144104 -5.48828 0.003893 0.448352 1.4365 

386 0.785 0.8404 0.3126 0.9177 1.8592 1.452559 -5.56649 0.003966 1.068587 1.8592 

387 0.7929 0.8289 0.3126 0.9484 2.0001 1.467937 -5.48147 0.003967 1.210132 2.0001 

388 0.8137 0.8824 0.3126 0.9046 1.5774 1.335484 -5.77359 0.004042 0.609374 1.5774 

389 0.8022 0.9026 0.3126 0.8801 1.7183 1.413266 -5.71987 0.004034 0.835121 1.7183 

390 0.7951 0.9201 0.3126 0.8925 2.2819 1.664232 -5.36828 0.003906 1.841848 2.2819 

393 0.9785 1.2314 0.3126 0.9654 1.3935 1.045038 -5.69228 0.004119 0.356569 1.3935 
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394 0.975 1.2401 0.3126 0.9716 1.6753 1.236848 -5.46467 0.004007 0.909349 1.6753 

396 1.5512 1.6964 0.3126 1.0546 2.0013 2.994743 -5.98135 0.004809 1.433298 2.0013 

397 0.8096 1.0815 0.3126 1.0328 1.8749 1.236579 -5.46069 0.004116 1.059364 1.8749 

398 0.8268 1.1437 0.3126 0.9952 1.734 1.04931 -5.29358 0.003946 0.744721 1.734 

400 1.3593 1.0735 0.3978 0.8507 1.7371 1.870092 -5.54579 0.004113 1.163763 1.7371 

408 0.8661 1.6513 0.3126 1.1975 1.6587 1.302543 -6.71663 0.005106 0.146486 1.6587 

409 0.8644 1.6557 0.3126 1.2006 1.7996 1.34931 -6.569 0.005051 0.314891 1.7996 

410 0.8626 1.6601 0.3126 1.2037 1.9405 1.458855 -6.66205 0.005104 0.525192 1.9405 

413 1.2469 1.6252 0.3126 1.4944 2.0403 1.139227 -5.70692 0.004732 1.137208 2.0403 

414 1.2469 1.6252 0.3126 1.4944 2.0403 1.191542 -4.92667 0.004068 0.664357 2.0403 

415 1.2451 1.6296 0.3126 1.4975 2.1812 1.417299 -5.8373 0.004715 0.943273 2.1812 

416 1.2487 1.6208 0.3126 1.4913 1.8994 1.022209 -5.66214 0.004556 0.546973 1.8994 

417 1.2469 1.6252 0.3126 1.4944 2.0403 1.417616 -5.4896 0.004496 0.843951 2.0403 

450 0.8848 1.7523 0.3126 1.4536 2.1401 1.106209 -5.17296 0.004394 1.002621 2.1401 

451 0.883 1.7566 0.3126 1.4567 2.281 1.557294 -6.08001 0.004864 0.97562 2.281 

452 0.8812 1.761 0.3126 1.4598 2.4219 1.434411 -5.61728 0.004529 1.139602 2.4219 

453 0.9038 1.8101 0.3126 1.413 1.8583 1.430072 -6.53898 0.005096 0.286583 1.8583 

454 0.902 1.8145 0.3126 1.4161 1.9992 1.463013 -6.40869 0.005019 0.454557 1.9992 

455 0.9003 1.8189 0.3126 1.4192 2.1401 1.532947 -6.32061 0.004992 0.661615 2.1401 

456 0.9003 1.8189 0.3126 1.4192 2.1401 1.588999 -6.28515 0.004972 0.818537 2.1401 

457 0.9179 1.7916 0.3126 1.4775 2.281 1.455654 -5.95806 0.00472 0.905077 2.281 

458 0.902 1.8145 0.3126 1.4161 1.9992 1.517196 -6.42183 0.005018 0.614951 1.9992 

459 0.9003 1.8189 0.3126 1.4192 2.1401 1.579283 -6.1629 0.004838 0.835766 2.1401 

460 0.902 1.8145 0.3126 1.4161 1.9992 1.433492 -6.57704 0.005122 0.474282 1.9992 

462 0.9118 1.7987 0.3126 1.4437 1.9992 1.405093 -5.20399 0.00429 0.739843 1.9992 

463 0.91 1.803 0.3126 1.4468 2.1401 1.460454 -4.93301 0.004093 1.017009 2.1401 

464 0.902 1.8145 0.3126 1.4161 1.9992 1.466376 -6.27672 0.00491 0.474784 1.9992 
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470 0.8301 1.4431 0.4867 0.6626 1.3759 1.255935 -6.19054 0.00454 0.955789 1.3759 

471 0.8283 1.4475 0.4867 0.6657 1.5168 1.325123 -6.07924 0.004492 1.204833 1.5168 

473 0.823 1.4606 0.4867 0.675 1.9395 1.524091 -5.79609 0.004398 1.90468 1.9395 

475 0.8194 1.4694 0.4867 0.6812 2.2213 1.657981 -5.60961 0.004318 2.388682 2.2213 

481 0.8845 1.4544 0.3126 1.3792 2.0931 1.256502 -6.15785 0.004915 1.146397 2.0931 

484 0.8863 1.45 0.3126 1.3761 1.9522 1.290823 -5.83948 0.004693 0.933882 1.9522 

487 0.8696 1.4386 0.6777 1.3213 1.8113 1.191368 -6.58724 0.005107 0.52496 1.8113 

541 1.3484 1.4689 0.3126 1.2361 2.6001 2.852686 -5.01208 0.004404 2.596906 2.6001 

542 1.2018 1.3409 0.3126 1.0262 2.4181 2.399542 -5.65737 0.004579 2.474822 2.4181 
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Table C-5a.  Quantum-chemically estimated Abraham pp-LFER solvent parameters for 
carboxylate anions. Parameters are for the Abraham equation of the form 
��������	
��
���
�� � �� � �� � �� � �� � �� � �, where ����	
��
���
� has 
units of (L water / kg solvent).  

Solvent c e s a b v 

1-Butanol -0.32044 -2.17634 2.624035 3936.017 -2.4174 5.848432 

1-Decanol -0.04756 -1.58809 1.858492 3793.296 -2.65493 5.054496 

1-Heptanol -0.14345 -1.9145 2.303832 3886.482 -2.51556 5.495225 

1-Hexanol -0.1759 -1.98897 2.390087 3899.59 -2.48916 5.615172 

1-Pentanol -0.25729 -2.0988 2.535157 3924.65 -2.44464 5.757557 

1-Propanol -0.37914 -2.27243 2.719263 3944.1 -2.38895 6.01365 

2-butanol -0.18589 -1.98634 2.282172 3353.801 -2.68917 5.687153 

2-Methyl-1-propanol -0.26963 -2.18668 2.601927 3925.266 -2.42536 5.971466 

2-Methyl-2-propanol -0.00761 -1.82237 1.957743 3041.366 -2.8653 5.56581 

2-propanol -0.27272 -2.09668 2.396394 3362.691 -2.65719 5.851656 

Acetone -0.16295 -0.14102 0.452425 -112.951 -4.54624 4.415176 

Acetonitrile -0.89742 -0.24593 0.896735 268.2544 -4.3808 4.332818 

benzene 0.647501 1.966997 -3.32413 -1954.7 -5.64639 3.856019 

Benzonitrile -0.09946 0.510923 0.276115 -446.538 -4.81535 3.99372 

bromobenzene 1.12777 1.229664 -1.20804 -992.744 -5.18902 3.808773 

Butanone 0.250861 0.131948 0.092935 -578.114 -4.78545 4.261356 

ButylEthanoate 1.330472 0.730527 -1.35219 -1097.4 -5.08638 3.673036 

Carbondisulfide 0.926093 2.089769 -2.87846 -1667.62 -5.56254 3.385737 

chlorobenzene 1.06549 1.140638 -1.11953 -982.114 -5.17853 3.932716 

Cyclohexane -0.10573 2.205864 -3.72687 -2196.4 -5.79045 3.502487 

Cyclohexanone 0.31523 0.311475 0.004256 -547.742 -4.77909 3.656055 

Dibutylether 1.29667 1.202219 -2.45456 -1557.34 -5.32472 3.413708 

Dichloromethane -0.16005 0.195904 0.225912 358.4059 -4.47331 4.590186 

Diethylether 1.460332 0.76748 -1.68037 -1268.13 -5.17309 4.034315 

DiMethylSulfoxide -0.221 -0.07943 0.479649 -360.456 -4.57249 3.249277 

Ethanol -0.45776 -2.3781 2.809941 3946.431 -2.36153 6.149062 

Ethylbenzene 0.784377 1.873502 -3.10119 -1842.12 -5.58647 3.61028 

EthylEthanoate 1.197113 0.568034 -1.04432 -991.51 -5.02405 3.833404 

Fluorobenzene 1.166944 1.020402 -1.20967 -1051.84 -5.18819 4.202454 

Formamide -5.60132 -2.81724 5.171808 7865.366 -0.89417 4.868627 

Heptane -0.33214 2.212819 -3.92243 -2322.5 -5.84138 3.754099 

C.6 Quantum-chemically Estimated Solvent Parameters 
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iodobenzene 1.261387 1.447731 -1.51897 -1076.4 -5.24202 3.559617 

Methanol -0.86446 -2.81857 3.433221 4979.78 -1.86987 6.579922 

Methylcyclohexane -0.06967 2.183776 -3.71488 -2194.38 -5.78815 3.579812 

MethylEthanoate 1.040372 0.485389 -0.83948 -917.636 -4.98218 3.811248 

n-Decane -0.17895 2.201715 -3.78455 -2235.49 -5.80512 3.557708 

n-dodecane -0.14058 2.209999 -3.74527 -2207.63 -5.79474 3.480358 

n-hexadecane -0.0842 2.213901 -3.68429 -2167.19 -5.77867 3.368941 

n-hexane -0.40133 2.211126 -3.98044 -2361.35 -5.85673 3.844322 

Nitrobenzene -0.29823 0.568191 0.393057 -397.454 -4.81199 3.975403 

Nitromethane -0.95028 -0.06522 0.838688 191.912 -4.43806 3.884816 

n-Octane -0.26721 2.208727 -3.86629 -2286.79 -5.82661 3.675821 

n-Octanol -0.09431 -1.81723 2.170483 3860.088 -2.557 5.370939 

n-Pentane -0.51768 2.21588 -4.07133 -2420.52 -5.88079 3.968854 

n-undecane -0.14136 2.245676 -3.77122 -2213.09 -5.8023 3.546668 

p-Xylene 0.597722 1.969208 -3.32226 -1948.35 -5.6365 3.636256 

tetrahydrofuran 0.998286 0.506729 -0.72717 -847.027 -4.94909 3.740029 

Toluene 0.746269 1.902983 -3.1805 -1884.72 -5.6104 3.742993 

Tributylphosphate 1.654517 -0.13791 -0.60057 -727.298 -4.66801 4.084365 
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Table C-5b. Quantum-chemically estimated Abraham pp-LFER solvent parameters for 
quaternary amine cations. Parameters are for the Abraham equation of the form 
��������	
��
���
�� � �� � �� � �� � �� � �� � �, where ����	
��
���
� has 
units of (L water / kg solvent).  

Solvents c e s a b v 

1-Butanol 0.086394 -0.2516 1.57019 2537.21 -2.33653 0.061158 

1-Decanol -0.54912 0.005477 0.87728 2300.591 -2.89266 1.487473 

1-Heptanol -0.20416 -0.14101 1.292654 2459.574 -2.56946 0.643944 

1-Hexanol -0.13148 -0.17106 1.369663 2482.79 -2.50765 0.460951 

1-Pentanol 0.007828 -0.22178 1.499145 2524.569 -2.40068 0.204663 

1-Propanol 0.170124 -0.286 1.648011 2550.036 -2.26964 -0.1516 

2-butanol 0.314065 -0.199 1.442411 2294.183 -2.46411 0.157443 

2-Methyl-1-propanol 0.055304 -0.24793 1.556461 2532.929 -2.35715 -0.03236 

2-Methyl-2-propanol 0.232765 -0.11346 1.2173 2092.251 -2.65805 0.45242 

2-propanol 0.399875 -0.2382 1.53062 2303.919 -2.38726 -0.06158 

Acetone 0.239496 0.120831 0.357818 -122.015 -4.39689 3.343337 

Acetonitrile -0.09991 -0.03907 0.717218 381.6149 -4.04031 2.937232 

Benzene 0.476013 0.898975 -2.64718 -1101.17 -5.67287 6.224204 

Benzonitrile 0.273089 0.083948 0.433227 -154.706 -4.70817 3.815221 

bromobenzene -0.8916 0.463818 -0.75664 -327.582 -5.21239 4.80049 

Butanone 0.333222 0.216264 0.095644 -586.571 -4.77604 3.972227 

ButylEthanoate -0.22375 0.619371 -1.12848 -926.561 -5.20764 5.347741 

Carbondisulfide 0.070398 0.781524 -2.1175 -688.464 -5.56461 6.096593 

chlorobenzene -1.02279 0.447557 -0.71894 -355.614 -5.20684 4.71857 

Cyclohexane 0.481943 0.984845 -3.12831 -1335.23 -5.77731 7.054959 

Cyclohexanone 0.549612 0.254114 0.063548 -538.218 -4.75707 4.425213 

Dibutylether 0.268865 0.848345 -2.07754 -1253.35 -5.46001 6.285707 

Dichloromethane -1.34518 0.125556 0.243112 785.1812 -4.22351 2.812261 

Diethylether -0.34654 0.682415 -1.42528 -1048.5 -5.32387 5.305723 

DiMethylSulfoxide 1.726988 0.174007 0.356415 -722.886 -4.51685 4.601029 

Ethanol 0.233298 -0.31491 1.706034 2538.565 -2.20808 -0.30473 

Ethylbenzene 0.234709 0.873261 -2.47882 -1065.94 -5.63035 6.336789 

EthylEthanoate -0.28425 0.550279 -0.88819 -877.121 -5.13394 5.057452 

Fluorobenzene -1.05117 0.481841 -0.84649 -488.718 -5.24761 4.636869 

Formamide -0.09859 -0.57443 2.574091 3947.219 -2.05678 1.508407 

Heptane 0.697035 1.021513 -3.33423 -1459.92 -5.81915 7.026069 

iodobenzene -0.63843 0.525804 -0.95851 -325.595 -5.26289 5.079513 

Methanol 0.073012 -0.38393 1.88728 2815.634 -2.03348 -0.47659 

Methylcyclohexane 0.455576 0.980981 -3.11552 -1331.92 -5.77894 6.979229 

MethylEthanoate -0.28674 0.504704 -0.73536 -849.471 -5.07816 4.987058 

n-Decane 0.532625 0.998187 -3.19715 -1383.65 -5.79094 7.077838 

n-dodecane 0.498988 0.990597 -3.15339 -1353.51 -5.78056 7.101234 
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n-hexadecane 0.438172 0.980132 -3.09114 -1315.89 -5.76597 7.140974 

n-hexane 0.762119 1.032203 -3.39601 -1498.61 -5.83194 7.005409 

Nitrobenzene 0.284937 0.026315 0.566229 -46.1707 -4.6724 3.721904 

Nitromethane -0.01634 -0.01497 0.664663 268.8075 -4.15242 3.477575 

n-Octane 0.629704 1.0118 -3.27759 -1427.69 -5.80771 7.044288 

n-Octanol -0.31963 -0.096 1.170156 2415.089 -2.66726 0.883851 

n-Pentane 0.874585 1.048574 -3.49068 -1555.02 -5.85022 6.982626 

n-undecane 0.575902 0.985959 -3.14681 -1319.45 -5.77985 7.006029 

p-Xylene 0.520526 0.912563 -2.6726 -1141.37 -5.66346 6.44986 

tetrahydrofuran -0.09418 0.468548 -0.59229 -755.406 -5.02295 4.876178 

Toluene 0.295402 0.880183 -2.53649 -1074.19 -5.64914 6.257485 

Tributylphosphate 1.986488 0.537025 -0.47493 -1084.83 -4.80597 4.23261 
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Table C-6a.   Full AAP Abraham pp-LFER including all solvent parameters for 
carboxylate anions estimated with experimental solvent-water partition coefficients. 
Parameters are for the Abraham equation of the form ��������	
��
���
�� � �� �

�� � �� � �� � �� � �, where ����	
��
���
� has units of (L water / kg solvent). 

Solvent Parameter Value SE CV (%) 

Acetone 

c -13.36 1.132 8.48% 

e 0.33 0.870 261.00% 

s 1.19 0.551 46.21% 

a 4.07 1.529 37.56% 

b -6.59 1.137 17.25% 

v 3.19 0.841 26.39% 

Acetonitrile 

c -12.73 1.020 8.01% 

e 0.89 0.762 85.51% 

s 1.00 0.489 49.02% 

a 4.45 1.300 29.24% 

b -5.31 1.028 19.36% 

v 3.37 0.763 22.65% 

DMSO 

c -0.54 2.333 434.98% 

e 7.48 1.926 25.74% 

s -0.52 1.130 218.97% 

a -10.10 3.041 30.09% 

b -0.08 2.745 3633.36% 

v -4.21 1.994 47.41% 

Methanol 

c -0.79 0.707 89.26% 

e 2.06 0.521 25.27% 

s -0.93 0.328 35.13% 

a -1.45 0.895 61.73% 

b -3.48 0.686 19.70% 

v 1.82 0.500 27.43% 
     

C.7 Complete AAP & QCAP Abraham pp-LFERs 
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Table C-6b. Full QCAP Abraham pp-LFER including all solvent parameters for carboxylate 
anions estimated with experimental solvent-water partition coefficients. Parameters 
are for the Abraham equation of the form ��������	
��
���
�� � �� � �� � �� �

�� � �� � �, where ����	
��
���
� has units of (L water / kg solvent). 

Solvent Parameter Value SE CV (%) 

Acetonitrile 

c 1.01 1.504 148% 

e 1.32 0.838 63% 

s -0.32 0.549 171% 

a 1382.89 648.695 47% 

b -2.35 0.487 21% 

v 1.57 1.018 65% 

Acetone 

c 0.24 1.468 607% 

e 2.98 0.631 21% 

s -1.70 0.289 17% 

a -682.84 377.611 55% 

b -1.20 0.245 21% 

v -0.05 0.710 1298% 

DMSO 

c 0.56 1.424 253% 

e 2.59 0.812 31% 

s -0.24 0.542 228% 

a 319.73 637.693 199% 

b -3.24 0.486 15% 

v 1.70 1.031 61% 

Methanol 

c 0.07 1.175 1776% 

e 1.89 0.509 27% 

s 0.03 0.226 892% 

a 1280.85 286.283 22% 

b -0.05 0.188 390% 

v 0.63 0.552 88% 
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Table C-6c.   Full AAP Abraham pp-LFER including all solvent parameters for quaternary 
amine cations estimated with experimental octanol-water partition coefficients. 
Parameters are for the Abraham equation of the form ��������	
���
	���� � �� �

�� � �� � �� � �� � �, where ����	
���
	��� has units of (L water / kg octanol). 

Solvent Parameter Value SE CV(%) 

Octanol 

c -7.6711 0.3641 4.75% 
e 0.7746 0.3719 48.01% 
s -2.0915 0.3509 16.78% 
a 9.6952 0.9294 9.59% 
b -3.8985 0.4285 10.99% 
v 5.9321 0.2174 3.66% 

 
 
 
 
 
  



 

191 
 

 

 

 

Figure C-1a. Logarithmic residual box plots for a priori QC computed solvent-water partition 
coefficients. Boxes correspond to the inetquartile range (IQR), where 25% < IQR < 
75%. Whiskers correspond to ± 1.5IQR. Points correspond to values > 1.5IQR. 
Solid line indicates perfect agreement between predicted and experimental values 
(1:1), dashed lines correspond to ± 0.3 log-units (a factor of 2), semi-dashed lines 
correspond to ± 1.0 log-units (a factor of 10).  

C.8 Residual Plots of A Priori QC Computed and AAP �predicted Partition Coefficients 
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Figure C-1b. Logarithmic residual box plots for AAP-predicted solvent-water partition 
coefficients. Boxes correspond to the inetquartile range (IQR), where 25% < IQR < 
75%. Whiskers correspond to ± 1.5IQR. Points correspond to values > 1.5IQR. 
Solid line indicates perfect agreement between predicted and experimental values 
(1:1), dashed lines correspond to ± 0.3 log-units (a factor of 2), semi-dashed lines 
correspond to ± 1.0 log-units (a factor of 10). 
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PREDICTING PARTITIONING OF CHARGED ORGANIC SPECIES TO NATURAL 
ORGANIC MATTER USING QUANTUM CHEMICALLY-DERIVED ABRAHAM PP-

LFER SOLUTE PARAMETERS 

D.1. Complete List of Solute Names and ID Abbreviations 

D.2. LNL Isotherm Visual Basic Code & Abraham Solute / Solvent Parameter Optimization 

(QCAP) R Code 

D.3. Estimated Log-normal Langmuir (LNL) Isotherm Parameters for Primary through 

Quaternary Amine Cations 

D.4. Legend for Isotherms (Eq. (5-15) for Figure 5-1 

D.5. Absolv (AAP) and Quantum-chemically Estimated (QCAP) Solute Parameters for Primary 

through Quaternary Amine Cations 

D.6. Quantum-chemically Estimated (QCAP)Solvent-water System Parameters for Primary 

through Quaternary Amine Cations 
  

Appendix D 
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Table D-1.   Complete list of solute names and ID abbreviations. 

Solute ID Solute Name 

P01 (±)-1-Aminoindane 

P02 3,4-Dichlorobenzylamine 

P03 4-Chlorobenzylamine 

P04 Benzylamine 

P05 4-Methylbenzylamine 

P06 4-Butylbenzylamine 

P07 4-Octylbenzylamine 

P08 D-Amphetamine sulphate 

P09 2-Phenylethylamine 

P10 3-Phenylpropylamine 

P11 4-Phenylbutylamine 

P12 1-Hexylamine 

P13 1-Heptylamine 

P14 1-Octylamine 

P15 1-Decylamine 

P16 Serotonin.HCl 

P17 Tryptamine.HCl 

P18 1-Naphthylmethylamine 

S01 N-ethyl-M-toluidine 

S02 Prilocaine.HCl 

S03 (±)-Metoprolol (+)-tartrate 

S04 Propranolol.HCl 

S05 R-Atenolol 

S06 Alprenolol.HCl 

S07 N-Benzyl-N-ethanolamine 

S08 N-Benzyl-N-octylamine 

S09 N-Benzyl-N-hexylamine.HCl 

S10 N-Benzyl-N-butylamine 

S11 N-Benzyl-N-ethylamine 

S12 N-Benzyl-N-methylamine 

S13 3-Meth-N-Meth.Benz.amine 

S14 L-Adrenaline.HCl 

S15 Fluoxetine.HCl 

S16 (+)-Methamphetamine.HCl 

S17 N-Methyl-Phenethylamine 

D.1 Complete List of Solute Names and ID Abbreviations 
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S18 Dibenzylamine 

S19 N-Benzylaminoacetaldehydediethylacetal 

S20 N-Benz--alanine-eth.ester 

T01 Quinoline 

T02 Pyridine 

T03 2-Phenylbenzimidazole 

T04 Benzimidazole 

T05 Thiabendazole 

T06 N,N-Diethylaniline 

T07 2-Ethylpyridine 

T08 2-Methylpyridine 

T09 3,4-Dimethylpyridine 

T10 2,6-Dimethylpyridine 

T11 2,4,6-Trimethylpyridine 

T12 Scopolamine.HCl 

T13 Ropivacaine.HCl 

T14 Bupivacaine.HCl 

T15 Lidocaine 

T16 Procaine.HCl 

T17 Atropine 

T18 Imipramine.HCl 

T19 4-Amino-2-methylquinoline 

T20 N-Benzyldimethylamine 

T21 Methylephedrine 

T22 (±)-Verapamil.HCl 

T23 Codeine.HCl 

T24 Clonidine.HCl 

T25 (S)-(-)Nicotine 

T26 3-Dimethylaminopropiophenone.HCl 

T27 S-(-)-1-benzyl-3-acetamidopyrrolidine 

T28 2,2'-(benzylimino)-diethanol 

Q01 Octyltrimethylammonium.Cl 

Q02 Phenyltrimethylammonium.Cl 

Q03 Benzyltributylammonium.Cl 

Q04 Benzyltripropylammonium.Cl 

Q05 Benzyltriethylammonium.Cl 

Q06 Benzyltrimethylammonium.Cl 

Q07 Benzyldimethylhexylamm.Cl 

Q08 Benzydimethyloctylamm.Cl 

Q09 Benzydimethyldecylamm.Cl 

Q10 Benzydimethyldodecylamm.Cl 

Q11 Benzyl(2-hydroxyethyl)dimethylamm.Cl 

Q12 Difenzoquatmethylsulfate 
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Q13 Acetylcholine.Cl 

Q14 Butyrylthiocholine.I 
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D2a. Abraham QCAP solute / solvent optimization code (R)  

#define RMSE 
RMSE=function(bx){ 
ss=cumsum(bx^2) 
sl=length(bx) 
RMSE=(ss[sl]/sl)^0.5 
} 
 
#read solvents and solutes files 
rawsolv   <-  read.csv(file="Solvents.csv") 
dat  <-  data.frame(rawsolv) 
#dat 
solv <- cbind(dat$c,dat$e,dat$s,dat$a,dat$b,dat$v) 
#solv 
solv1 <- cbind(dat$e,dat$s,dat$a,dat$b,dat$v) 
#solv1 
solv2 <- cbind(dat$s,dat$a,dat$b) 
#solv2 
rawsolu   <-  read.csv(file="Solutes.csv") 
dat1  <-  data.frame(rawsolu) 
#dat1 
solu<-cbind(dat1$E_Gaussian,dat1$S,dat1$A,dat1$B,dat1$V_McGowan) 
#solu 
solu1<-cbind(1,dat1$E_Gaussian,dat1$S,dat1$A,dat1$B,dat1$V_McGowan) 
#solu1 
solu2<-cbind(dat1$S,dat1$A,dat1$B) 
#solu2 
 
#logKij 
logKij<-solv%*%t(solu1) 
logKij 
 
#logK_Absolv 
SMD = read.csv(file="Eout.csv") 
solvents = unique(SMD$Solvent) 
solutes = unique(SMD$Solute) 
logp = matrix(nrow=length(solvents), ncol=length(solutes)) 
 
for (i in 1:length(dat$Solvent)){ 
  logp[i,] = t(SMD[SMD$Solvent==dat$SOL[[i]],6]) 
} 
 
#Initiate 
b=logp-logKij 
RMSEb=NULL 
 
#loop 
ybold=RMSE(b) 
for(i in 1:200){ 
xu<-solve(t(solv2)%*%solv2,t(solv2)%*%b ) 

D.2 LNL Isotherm Visual Basic Code & Abraham Solute / Solvent Parameter 
Optimization (QCAP) R Code 
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solu2=solu2+t(xu) 
solu1<-cbind(1, dat1$E_Gaussian, solu2[,1:3],dat1$V_McGowan) 
logKnew<-solv%*%t(solu1) 
b=logp-logKnew 
 
 
xv<-solve(t(solu1)%*%solu1,t(solu1)%*%t(b)) 
 
solv=solv+t(xv) 
solv2<-solv[,3:5] 
solv3<-cbind(solv[,3:5]) 
logKnew<-solv%*%t(solu1) 
b=logp-logKnew 
 
 
ybnew=RMSE(b) 
print(c(ybold,ybnew),digits=22) 
if(abs(ybold-ybnew)<10^-30)break() 
ybold=ybnew 
RMSEb=c(RMSEb,ybnew) 
} 
write.table(solu1,file='Optimized_Solute_Parameters.csv',sep=',',row.names=TRUE,col.names=NA) 
write.table(solv,file='Optimized_Solvent_Parameters.csv',sep=',',row.names=TRUE,col.names=NA) 
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D2b. Log-normal Langmuir isotherm code (Visual Basic)81  
Function LNLfunc(k, qtot, sigma, conc) 
 
Dim weights 
weights = Array(2.22939364553415E-13, 4.39934099227318E-10, 1.08606937076928E-07, 
7.80255647853206E-06, 2.28338636016354E-04, 3.24377334223786E-03, 
2.48105208874636E-02, 0.109017206020023, 0.286675505362834, 0.46224366960061, 
0.46224366960061, 0.286675505362834, 0.109017206020023, 2.48105208874636E-02, 
3.24377334223786E-03, 2.28338636016354E-04, 7.80255647853206E-06, 
1.08606937076928E-07, 4.39934099227318E-10, 2.22939364553415E-13) 
 
Dim nodes 
nodes = Array(-5.38748089001123, -4.60368244955074, -3.94476404011563, -
3.34785456738322, -2.78880605842813, -2.25497400208928, -1.73853771211659, -
1.23407621539532, -0.737473728545394, -0.245340708300901, 0.245340708300901, 
0.737473728545394, 1.23407621539532, 1.73853771211659, 2.25497400208928, 
2.78880605842813, 3.34785456738322, 3.94476404011563, 4.60368244955074, 
5.38748089001123) 
 
Dim func(0 To 19) 
 
For i = 0 To 19 
func(i) = ((conc * Exp(k + sigma * nodes(i) * (Sqr(2)))) / (1 + conc * Exp(k + sigma * nodes(i) * 
(Sqr(2))))) 
Next i 
 
Dim runsum 
runsum = 0 
 
For i = 0 To 19 
runsum = runsum + func(i) * weights(i) 
Next i 
 
LNLfunc = (10^(qtot) / (Sqr(3.141592654))) * runsum 
End Function 
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Table D-2.   Estimated log-normal Langmuir (LNL) isotherm parameters and coefficients of 
variation (CV %) and linear partition coefficients (������� and associated standard 
errors for primary through quaternary amine cations. Units of ������	� are 
(L/mmol). For P15 and S14, coefficients of variation were not calculated as the 
standard errors are orders of magnitude larger than the estimated values. ������� 
values are obtained via the pp-LFER equation for particulate organic carbon7 (Eq. 
(5-13)). 

Solute 
��
������ SE(
��
������) CV (%) 
��
��� 

P01 -1.65 0.76 46.3% 0.89 

P02 -0.56 0.81 144.9% 0.83 

P03 -1.32 0.79 60.1% 0.97 

P04 -1.91 0.80 41.7% 0.68 

P05 -1.55 0.77 50.0% 0.76 

P06 -0.86 0.77 88.7% 0.98 

P07 0.09 0.78 857.9% 1.27 

P08 -1.79 0.79 44.5% 0.81 

P09 -1.82 0.80 43.7% 0.75 

P10 -1.57 0.76 48.5% 0.83 

P11 -1.35 0.76 56.4% 0.89 

P12 -2.00 0.77 38.2% 0.48 

P13 -1.80 0.83 46.3% 0.56 

P14 -1.11 0.86 77.7% 0.63 

P15 4.92 [-] [-] 0.78 

P16 -0.73 0.75 103.0% 0.92 

P17 -0.85 0.77 90.6% 1.05 

P18 -0.64 0.76 119.0% 1.22 

S01 -1.64 0.77 46.8% 1.06 

S02 -2.10 0.77 36.5% 0.88 

S03 -1.86 0.78 41.8% 1.38 

S04 -0.54 0.76 141.1% 1.27 

S05 -1.84 0.75 41.1% 0.66 

S06 -1.33 0.77 57.6% 0.96 

S07 -1.95 0.76 38.9% 0.72 

S08 -0.80 0.79 98.7% 1.33 

S09 -1.53 0.78 51.1% 1.18 

S10 -1.80 0.77 42.9% 1.03 

D.3 Estimated Log-normal Langmuir (LNL) Isotherm Parameters for Primary through 
Quaternary Amine Cations 



 

201 
 

 

S11 -1.94 0.76 39.4% 0.90 

S12 -1.95 0.76 39.1% 0.82 

S13 -1.83 0.77 42.0% 0.92 

S14 -0.78 [-] [-] 0.46 

S15 -0.67 0.76 113.7% 1.38 

S16 -1.80 0.80 44.3% 0.95 

S17 -1.77 0.78 43.8% 0.90 

S18 -1.19 0.76 63.5% 0.91 

S19 -2.00 0.78 39.2% 0.88 

S20 -1.85 0.79 42.5% 0.90 

T01 -0.50 0.78 155.5% 1.23 

T02 -1.89 0.77 40.9% 0.69 

T03 -0.08 0.79 951.2% 1.75 

T04 -2.19 0.78 35.5% 1.06 

T05 -1.01 0.77 75.8% 1.67 

T06 -0.10 0.77 769.0% 1.09 

T07 -1.87 0.80 42.7% 0.86 

T08 -1.97 0.78 39.4% 0.78 

T09 -1.17 0.78 66.5% 0.88 

T10 -2.17 0.78 35.7% 0.88 

T11 -1.88 0.76 40.3% 0.97 

T12 -2.17 0.77 35.6% 1.18 

T13 -1.82 0.76 42.0% 1.26 

T14 -1.88 0.76 40.5% 1.33 

T15 -2.28 0.81 35.4% 0.99 

T16 -0.96 0.78 81.3% 0.85 

T17 -2.06 0.76 36.9% 1.18 

T18 -0.70 0.75 108.0% 1.77 

T19 -0.16 0.76 466.6% 1.23 

T20 -2.16 0.75 35.0% 0.88 

T21 -2.10 0.77 36.8% 0.71 

T22 -1.00 0.76 76.4% 1.68 

T23 -1.78 0.78 43.5% 1.32 

T24 -1.77 0.78 43.8% 1.20 

T25 -1.93 0.79 41.0% 0.85 

T26 -1.42 0.76 53.1% 0.87 

T27 -1.74 0.82 47.1% 0.92 

T28 -1.92 0.80 41.5% 0.69 

Q01 -2.00 0.76 37.8% 

Q02 -2.24 0.77 34.2% 

Q03 -1.83 0.81 44.0% 

Q04 -1.84 0.76 41.2% 

Q05 -2.05 0.80 39.0% 
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Q06 -2.04 0.79 38.7% 

Q07 -1.27 0.76 59.6% 

Q08 -0.79 0.76 96.7% 

Q09 -0.25 0.78 310.9% 

Q10 0.39 0.83 216.3% 

Q11 -1.71 0.77 44.7% 

Q12 -0.93 0.78 84.0% 

Q13 -3.07 0.76 24.6% 

Q14 -2.05 0.76 36.9% 

���� 2.74 0.475 15.1% 

���� 2.65 0.414 17.9% 
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Figure D-1.   Legend of sorbates for adsorption data in Figure 5-1. Point type and color 
correspond to the matching isotherms in Figure 5-1.  
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Table D-3.   Absolv-estimated (AAP) and quantum-chemically estimated (QCAP) solute 
descriptors for quaternary amine cations. AAP parameters are for the Abraham 
equation of the form ��������	
��
���
�� � ��� � ��� � ��� � ��� � ��� � �, 
where ����	
��
���
� has units of (L water / kg solvent). QCAP parameters are for 
the Abraham equation of the form ��������	
��
���
�� � ��� � ��� � ��� � ��� �

��� � �, where ����	
��
���
� has units of (L water / kg solvent). 

 QCAP Estimated Solute Descriptors AAP Estimated Solute Descriptors 

Solutes E S A B V E S A B V 

P01 1.10 8.41 0.00 1.29 1.13 1.02 0.97 0.21 0.68 1.13 

P02 1.57 9.57 -0.01 1.40 1.08 0.93 1.03 0.21 0.66 1.08 

P03 0.75 9.07 -0.01 1.49 1.20 1.05 1.12 0.21 0.65 1.20 

P04 0.88 8.66 0.00 1.30 0.96 0.78 0.95 0.21 0.67 0.96 

P05 1.02 8.55 0.00 1.31 1.10 0.80 0.90 0.21 0.67 1.10 

P07 1.55 8.76 0.00 1.42 2.08 0.79 0.93 0.21 0.69 2.08 

P08 0.94 8.20 0.00 1.33 1.24 0.79 0.95 0.21 0.70 1.24 

P09 0.94 9.07 -0.01 1.38 1.10 0.78 0.96 0.21 0.67 1.10 

P10 1.00 9.16 -0.01 1.39 1.24 0.78 0.96 0.21 0.67 1.24 

P11 1.03 9.01 -0.01 1.39 1.38 0.77 0.97 0.21 0.68 1.38 

P12 0.48 8.51 0.00 1.26 1.05 0.20 0.51 0.21 0.59 1.05 

P13 0.53 8.54 0.00 1.27 1.19 0.20 0.52 0.21 0.59 1.19 

P14 0.56 8.56 0.00 1.28 1.34 0.19 0.52 0.21 0.60 1.34 

P15 0.66 8.61 0.00 1.33 1.62 0.19 0.53 0.21 0.60 1.62 

P16 1.47 9.60 -0.01 1.99 1.39 1.67 1.58 1.02 1.13 1.39 

P17 1.43 9.52 -0.01 1.55 1.33 1.44 1.37 0.52 0.85 1.33 

P18 1.59 8.71 0.00 1.42 1.33 1.50 1.28 0.21 0.73 1.33 

Q02 0.75 6.98 0.00 0.95 1.26 0.37 0.56 0.00 0.15 1.26 

Q05 0.91 6.64 0.00 1.20 1.82 0.36 0.57 0.00 0.16 1.82 

Q06 0.83 7.13 0.00 1.02 1.40 0.36 0.56 0.00 0.15 1.40 

Q07 1.17 6.96 0.00 1.16 2.11 0.36 0.58 0.00 0.16 2.11 

Q08 1.30 7.04 0.00 1.19 2.39 0.35 0.59 0.00 0.17 2.39 

Q09 1.43 7.10 0.00 1.23 2.67 0.35 0.60 0.00 0.18 2.67 

Q10 1.55 7.16 0.00 1.26 2.95 0.34 0.61 0.00 0.18 2.95 

Q11 0.50 7.37 0.00 1.81 1.74 0.56 0.84 0.31 0.43 1.74 

Q12 2.46 6.64 0.00 1.29 2.06 1.72 1.30 0.00 0.28 2.06 

Q13 0.26 7.80 0.00 1.38 1.29 -0.15 0.50 0.00 0.40 1.29 

Q14 0.77 8.63 -0.01 1.46 1.68 0.34 0.76 0.00 0.51 1.68 

D.5 Absolv (AAP) and Quantum-chemically Estimated (QCAP) Solute Parameters for 
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S05 1.32 8.60 -0.01 2.61 2.18 1.48 1.97 0.78 1.83 2.18 

S07 0.97 8.29 0.00 1.71 1.30 0.95 1.04 0.38 0.93 1.30 

S11 0.97 7.91 0.00 1.14 1.24 0.73 0.81 0.13 0.57 1.24 

S12 0.92 8.10 0.00 1.12 1.10 0.73 0.81 0.13 0.57 1.10 

S13 1.02 7.99 0.00 1.12 1.24 0.75 0.75 0.13 0.56 1.24 

S14 1.06 8.26 0.00 2.52 1.42 1.35 1.34 1.15 1.48 1.42 

S16 0.96 8.25 0.00 1.26 1.38 0.74 0.80 0.13 0.60 1.38 

S17 0.96 8.48 0.00 1.19 1.24 0.73 0.81 0.13 0.57 1.24 

S18 0.21 7.77 -0.01 1.65 2.22 1.04 1.56 0.13 1.35 2.22 

S19 1.11 7.60 0.00 1.73 1.92 0.78 1.14 0.16 1.04 1.92 

T01 1.38 7.05 0.00 1.00 1.04 1.32 1.15 0.00 0.44 1.04 

T02 0.61 7.34 0.00 0.93 0.68 0.60 0.82 0.00 0.38 0.68 

T03 2.31 7.40 0.00 1.12 1.51 2.17 1.84 0.35 0.62 1.51 

T04 1.05 7.79 0.00 0.82 0.91 1.34 1.37 0.35 0.52 0.91 

T05 2.27 7.28 0.00 1.48 1.40 2.22 1.94 0.35 0.67 1.40 

T06 0.85 7.09 0.00 1.09 1.38 0.79 0.92 0.00 0.48 1.38 

T07 0.77 6.98 0.00 0.98 0.96 0.62 0.77 0.00 0.38 0.96 

T08 0.71 7.04 0.00 0.97 0.82 0.62 0.76 0.00 0.38 0.82 

T09 0.77 6.93 0.00 0.96 0.96 0.65 0.71 0.00 0.38 0.96 

T10 0.81 6.80 0.00 1.00 0.96 0.65 0.71 0.00 0.38 0.96 

T11 0.91 6.61 0.00 1.00 1.10 0.67 0.65 0.00 0.38 1.10 

T12 1.20 8.33 -0.01 2.53 2.28 1.46 1.63 0.31 1.33 2.28 

T13 1.50 7.62 0.00 1.75 2.37 1.32 1.59 0.26 1.21 2.37 

T15 1.12 7.33 0.00 1.53 2.06 1.10 1.50 0.26 1.19 2.06 

T16 1.54 8.50 -0.01 1.84 1.98 1.11 1.62 0.23 1.30 1.98 

T17 1.38 8.43 -0.01 2.28 2.28 1.46 1.63 0.31 1.33 2.28 

T18 2.09 8.67 0.00 1.43 2.40 1.81 1.59 0.00 0.97 2.40 

T19 1.57 7.01 0.00 1.28 1.29 1.65 1.48 0.23 0.78 1.29 

T20 0.90 7.58 0.00 1.02 1.24 0.75 0.82 0.00 0.62 1.24 

T23 1.78 8.49 -0.01 2.44 2.21 2.16 1.92 0.23 1.58 2.21 

T24 1.46 7.21 0.00 1.15 1.53 1.55 1.19 0.39 0.90 1.53 

T26 1.05 8.06 0.00 1.40 1.54 0.95 1.32 0.00 0.93 1.54 

T27 1.24 8.54 -0.01 1.75 1.81 1.25 1.79 0.27 1.19 1.81 
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Table D-4.   Quantum-chemically estimated Abraham p-LFER solvent parameters for 
quaternary amine cations. Parameters are for the Abraham equation of the form 
��������	
��
���
�� � ��� � ��� � ��� � ��� � ��� � �, where ����	
��
���
� has 
units of (L water / kg solvent).  

Solvent c e s a b v 
1-Butanol -2.21 -0.48 1.63 2511.67 -1.78 3.85 
1-Decanol -1.80 -0.37 1.11 2442.43 -2.48 3.78 
1-Heptanol -2.01 -0.43 1.42 2491.31 -2.08 3.82 
1-Hexanol -2.07 -0.45 1.48 2509.90 -2.00 3.86 
1-Pentanol -2.15 -0.47 1.57 2511.26 -1.86 3.86 
1-Propanol -2.29 -0.50 1.70 2538.15 -1.68 3.91 
2-butanol -2.15 -0.48 1.57 2441.86 -1.90 3.98 
2-Methyl-1-propanol -2.23 -0.48 1.65 2573.18 -1.78 3.98 
2-Methyl-2-propanol -2.05 -0.47 1.46 2440.99 -2.09 4.10 
2-propanol -2.24 -0.50 1.66 2468.11 -1.79 4.02 
Acetone -0.23 0.11 0.41 -43.46 -4.32 4.14 
Acetonitrile -0.09 0.17 0.51 -62.85 -4.24 3.85 
benzene 1.24 1.04 -2.61 -904.44 -5.88 4.96 
Benzonitrile 0.54 0.41 0.04 -819.01 -5.01 4.07 
bromobenzene 1.73 0.74 -0.97 -796.23 -5.73 4.50 
Butanone 0.02 0.19 0.17 -434.27 -4.68 4.19 
ButylEthanoate 0.80 0.37 -0.86 -448.27 -5.12 4.18 
Carbondisulfide 1.81 1.07 -2.41 -1097.26 -6.05 4.60 
chlorobenzene 1.70 0.73 -0.88 -767.36 -5.72 4.54 
Cyclohexane 1.35 1.22 -3.17 -1298.22 -6.09 4.60 
Cyclohexanone 0.15 0.19 -0.03 -616.62 -4.71 3.74 
Dibutylether 0.84 0.55 -1.76 -590.49 -5.30 4.22 
Dichloromethane 0.77 0.43 0.12 315.05 -4.70 4.51 
Diethylether 0.81 0.43 -1.00 -317.57 -5.19 4.57 
DiMethylSulfoxide -0.79 -0.12 0.26 -635.69 -4.10 3.09 
Ethanol -2.37 -0.52 1.77 2553.32 -1.58 3.92 
Ethylbenzene 1.38 0.98 -2.47 -942.53 -5.86 4.68 
EthylEthanoate 0.68 0.33 -0.61 -406.63 -5.05 4.21 
Fluorobenzene 1.54 0.69 -0.83 -605.43 -5.64 4.76 
Formamide -4.16 -0.87 2.38 3077.42 -1.63 2.13 

D.6 Quantum-chemically Estimated (QCAP) Solvent Parameters for Primary through 
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Heptane 1.12 1.25 -3.29 -1250.16 -6.06 4.81 
iodobenzene 1.80 0.78 -1.25 -861.09 -5.79 4.43 
Methanol -2.82 -0.62 1.97 2800.20 -1.25 3.82 
Methylcyclohexane 1.34 1.21 -3.14 -1260.99 -6.08 4.66 
MethylEthanoate 0.63 0.30 -0.48 -443.27 -5.00 4.10 
n-Decane 1.29 1.23 -3.21 -1290.52 -6.08 4.63 
n-dodecane 1.34 1.22 -3.20 -1312.56 -6.09 4.57 
n-hexadecane 1.42 1.21 -3.17 -1342.61 -6.10 4.47 
n-hexane 1.04 1.26 -3.32 -1230.09 -6.05 4.88 
Nitrobenzene 0.63 0.46 0.05 -928.27 -5.07 4.04 
Nitromethane 0.11 0.22 0.34 -350.38 -4.38 3.51 
n-Octane 1.19 1.24 -3.26 -1265.64 -6.07 4.74 
n-Octanol -1.95 -0.42 1.33 2485.11 -2.20 3.82 
n-Pentane 0.92 1.27 -3.37 -1207.28 -6.03 4.99 
n-undecane 1.32 1.24 -3.21 -1296.67 -6.10 4.66 
p-Xylene 1.24 1.02 -2.66 -975.45 -5.86 4.74 
tetrahydrofuran 0.57 0.28 -0.43 -469.26 -4.96 4.05 
Toluene 1.34 1.01 -2.51 -915.19 -5.87 4.82 
Tributylphosphate -1.30 -0.33 0.18 387.02 -3.82 4.29 
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