Support of Pavement Management Systems

At The Delaware Department of Transportation

Prepared for

Delaware Transportation Institute

And

Delaware Department of Transportation

By

Qingbo Zheng

And

David P. Racca

Center for Applied Demography and Survey Research College of Human Resources, Education and Public Policy University of Delaware Newark, DE 19716

December 1999

The University of Delaware is committed to assuring equal opportunity to all persons and does not discriminate on the basis of race, color, sex, religion, ancestry, national origin, sexual preference, veteran status, age, or handicap in its educational programs, activities, admissions, or employment practices as required by Title IX of the Educational Amendments of 1972, Sections 503 and 504 of the Rehabilitation Act of 1973, Title VI and Title VII of the Civil Rights Act of 1964, the American Disabilities Act, Executive Orders 11246 and 11375 and other applicable statutes. Inquiries concerning Title IX, Section 503 and 504 compliance, Executive Order 11246 and information regarding campus accessibility and Title VI should be referred to the Affirmative Action Director, 305 Hullihen Hall, (302) 831-2835, (302) 831-4552(TDD).

TABLE OF CONTENTS

LIST OF FIGURES LIST OF TABLES	v vi
Introduction	1
Part I Background of PMS	
Introduction of PMS	1
Why Is PMS Important	4
Experiences in Other States	5
FHWA Pavement Policy	6
AASHTO Guidelines	
DelDOT PMS	
Part II Foundations of PMS	11
A Framework of Pavement Management	
Data Collection	
Pavement Condition Indicators	14
Performance Modeling	15
Pavement Performance Prediction Methodologies	
Optimization	19
Preventive Maintenance	
Dart III Summart of DolDOT Dougment Management Systems Enhancements	22
Introduction	
Evaluation of OPC	
Variability	
Errors and Outliers	
Yearly Difference	
Comparison with Automated Measures of Districts	
Pavement Performance Modeling	
Factors Used to Predict Performance	
Age Payamant Types	
Structure Number	
Model Procedure	
Grouping of Highway Sections	
Screening Procedure	
Linear Regression Analysis	
Non-linear Regression Analysis	

Inclusion of Structure Number into Non-linear Analysis	
Improvement on Pavement Management Database	
Summary of Findings	
A Review of Current Practices	
A Review of Data Needed for PMS and Its Availability	
Evaluating the Current OPC and How It Relates to Age	
The Development of Pavement Performance Models	

C eterence	/ ר

Appendix A Correlation of OPC with Distress Types Appendix B OPC Rating Guide Appendix C Correlation of Pavement Family with Surface Type Appendix D Crosstabulation of Structure Number and Pavement Type

List of Figures

Figure 1	PMS Framework	
Figure 2	Pavement Performance Curves	
Figure 3	Maintenance Strategies	
Figure 4	Distribution of OPC	
Figure 5	Scatterplot of OPC and Age	
Figure 6	Percentage of Asphalt Transverse Cracking	
Figure 7	Percentage of Asphalt Fatigue Cracking	
Figure 8	OPC and Roughness	
Figure 9	OPC and Ride Number	
Figure 10	Histogram of Residual	
Figure 11	Linear Model for Rigid Family	
Figure 12	Linear Model for Composite Family	
Figure 13	Linear Model for Flexible Family	
Figure 14	Pavement Conditions Forecasting Model	
Figure 15	Rigid Families in the North District	
Figure 16	Composite Families in the North District	
Figure 17	Flexible Families in the North District	
Figure 18	Composite Families in the South Disctrict	
Figure 19	Flexible Families in the South Disctrict	
Figure 20	Rigid Families in the Pooled Data	
Figure 21	Composite Families in the Pooled Data	
Figure 22	Flexible Families in the Pooled Data	

LISTS OF TABLES

Table 1	Pavement Performance Condition Indicators	15
Table 2	Example Comparison of the Effects of Alternative Maintenance Strategies	
Table 3	OPC Scoring Based on Remaining Life	24
Table 4	Distribution of Estimated Remaining Life	27
Table 5	Statistical Summary of OPC Year Testing	
Table 6	Statistical Results from South District	
Table 7	ARAN Data Desciption	
Table 8	Coefficients of Distress Types	
Table 9	IRI and Roughness Categories	
Table 10	Family Distributions	
Table 11	Sample Outliers	
Table 12	Statistical Parameters of First-order Linear Prediction Models	41
Table 13	Statistical Parameters of Third-order Polynomial Prediction Models	
Table 14	Dummy Variables for Family Classification	47
Table 15	Models Summary of Family Testing	
Table 16	Coefficients of Family Testing	
Table 17	Models Summary of Structure Number Testing	
Table 18	Analysis of Variance of Structure Number Testing	
Table 19	Coefficients of Structure Number Testing	
Table 20	Coefficients Statistics of Flexible Family	50

Introduction

This is the final report of the Delaware Transportation Institute Project "Support of the Development of Pavement Management Systems, Part I" as prepared by the Center for Applied Demography and Survey Research (CADSR) at the University of Delaware. It describes research and analysis sponsored by the Delaware Department of Transportation (DELDOT) through the DELDOT Pavement Management Team.

Over the last few years, DELDOT has initiated substantial efforts to improve decision making in regards to the maintenance of the road network. These efforts include the improvement of historic databases on pavement structure and conditions, analysis of pavement condition rating schemes in use, and the development of multi-year prioritization tools for the development of a multi-year prioritization capability to determine the timing and types of pavement rehabilitation projects that would be most cost effective.

As part of these efforts DELDOT initiated contracts with Applied Pavement Technology, Inc (APTech) and the Delaware Transportation Institute (DTI). The DTI portion of the work conducted by CADSR supported the DELDOT Pavement Management Section and APTech in a multi-phased project to provide enhancements to pavement management systems at DELDOT. CADSR's work was focused in the following areas:

- A review of current practices in pavement management systems.
- A review of the data needed for PMS and its availability to support DELDOT initiatives.
- An evaluation of the current Overall Pavement Condition (OPC) rating used by DELDOT and its relationship to age, type, and other attributes of roads.
- Development of performance models for Sussex and New Castle counties based on the data provided by DELDOT.
- Examination of Sussex County surface distress data provided by automated means.
- Assistance with the development of pavement management databases and tracking systems.

This report describes CADSR's role and findings and is divided into three parts. Part I provides a background of pavement management systems and includes highlights of the research and

literature review component of the project. Part II discusses the foundations of pavement management systems in terms of the data collection, modeling, and optimization that are involved. Part III discusses the specific work and analysis performed by CADSR in this project. A summary of findings by CADSR is provided at the end Part III.

PART I - BACKGROUND OF PAVEMENT MANAGEMENT SYSTEMS

Introduction of PMS

The term "pavement management systems (PMS)" originally came into use in the late 1960s. In 1966, the American Association of State Highway Officials (AASHO), now referred to as the American Association of State Highway and Transportation Officials (AASHTO), through the National Cooperative Highway Research Program, initiated a study to make new breakthroughs in the pavement management field. The intent was to provide a theoretical basis for extending the results of the AASHO Road Test. As a result, researchers at the University of Texas in 1968 began to look at pavement design anew, using a systems approach. Simultaneously, independent efforts were being conducted in Canada to structure the overall pavement design and management problem and several of its subsystems. A third concurrent keystone effort was that of Scrivner and others at the Texas Transportation Institute of Texas A&M University in their work for the Texas Highway Department. The work of these groups provides the overall historic perspective for pavement management systems.

The term *pavement management systems* began to be used by these groups of researchers to describe the entire range of activities involved in construction and maintenance of pavements. The initial operational or "working" systems were developed. One of the largest efforts was Project 123, conducted by the Texas Highway Department, Texas A&M University, and the University of Texas. A series of reports and manuals have resulted from this research, beginning with 123-1 in 1970. The project has produced many of the modern innovations in pavement analysis.

At present there is no universally accepted definition of a pavement management system. Haas and Hudson referred to it as the pavement functions "considered in an integrated, coordinated manner". PMS was defined by the Organization of Economic and Cooperative Development (OECD) Expert Group as "the process of coordinating and controlling a comprehensive set of activities in order to maintain pavements, so as to make the best possible use of resources available, i.e. maximize the benefit for society". (OECD report, 1987). In AASHTO's *Guidelines for Pavement Management Systems*, PMS is "a systematic approach that provides the engineering and economic analysis tools required by decision makers in making cost-effective selections of Maintenance, Rehabilitation, and Reconstruction (MR&R) strategies on a network basis". Corresponding with this definition, pavement management today has become a concept that is mandated in federal legislation and implemented by state highway agencies, cities, counties, and airports throughout the world. It has evolved from a concept with little practical application into an established approach that can be used by engineers to make more informed decisions, resulting in more optimal use of resources.

Pavement management activities and system components are generally focused at two administrative levels termed the "network" and "project" (or individual) levels. Network level analysis is of greater interest to the decision makers and budget directors and is doubtless the most powerful of pavement management approaches, because it involves:

- Identification and ranking of candidate pavements for improvements;
- Network-level budgeting;
- Long range budget forecasts;
- Network-level pavement condition assessments;
- Forecast of future conditions.

The project level, on the other hand, is concerned with more specific technical management decisions for the individual projects. It involves:

- Assessing the causes of deterioration;
- Determining potential solutions;
- Assessing benefits of the alternatives by life-cycle costing;
- Ultimately selecting and designing the desired solutions.

Why is PMS important?

A systematic approach to pavement management is needed to provide factual information on the present state and evolution of pavement conditions, and logical procedures for evaluating repair options, taking into accounts as much as possible all of their economic advantages and disadvantages (Hass and Hudson, 1987). In this way, PMS assists with the technical problems of choosing optimal times, places, and techniques for repairing pavements and simultaneously, providing those in charge of maintaining and improving roads with the data and other technical justifications needed to secure political support for adequate road maintenance budgets and programs. As described in the most recent FHWA "Pavement Policy for Highways". "*The analysis and reporting capabilities of a PMS are directed towards identifying current and future* needs, developing rehabilitation programs, priority programming of projects and funds, and providing feedback on the performance of pavement designs, materials, rehabilitation techniques, and maintenance levels."

This systematic approach has advantages over the common approach of using rules of thumb and intuitive engineering judgment. In times of budget austerity, available resources must be put to their best use, which means that all the practical options should be quantitatively and economically evaluated to identify the best overall solution. A comprehensive pavement management system supported by computerized tools to examine in detail the estimated costs and benefits of various strategies can be very effective in making the best use of resources.

Experiences In Other States

While the initial introduction of PMS at the national level dates from the late 1970s and early 1980s, most DOTs continue to rely on the experience of their maintenance, material, and pavement engineers, rather than their PMS, to determine the performance of their maintenance treatments and strategies. However, experience in the United States, where PMS took root during the recent era of tight road budgets, shows that the benefits of systematic approaches to pavement management have proven themselves in practice (Smith, 1992):

- The Arizona Department of Transportation (ADOT) reports that PMS implementation to optimize pavement rehabilitation expenditures enabled ADOT to save approximately \$300 million over a five-year period. These savings can be used to expedite the construction of other badly needed capital improvements.
- The California Department of Transportation (CALTRANS) reports that its priority program of pavement rehabilitation projects based upon objective criteria established by top management, has led to fewer instances where staff level (technical) decisions are overridden by elected representatives. CALTRANS has been able to show, to the satisfaction of its elected representatives, that the projects being funded are more viable than those that are not, and its PMS has resulted in improved communication between political and technical decision-makers.
- Minnesota has a comprehensive, flexible and operational PMS in place, tailored to its requirements. Among the key reasons for the successful development and

implementation were careful pre-implementation planning; strong support throughout the department including senior management; a sound technical basis for the system in terms of the data base, models, programs, and reporting functions; and a commitment by those responsible for its systematic perspective.

 A number of other state road administrations were able to argue successfully for increases in their vehic le fuel tax rates, because they were able to show effectively and objectively that previous program funding levels were insufficient to keep up with deteriorating pavement.

These agencies employed different methods to improve the way they manage their pavements but they all experienced a similar outcome. Because of the sound technical foundation on which decisions were based, they were able to produce pavements with better performance from available resources and ensure more effective technical input into the political decisionmaking.

FHWA Pavement Policy for Highways

The Federal Highway Administration (FHWA) of the U.S. Department of Transportation has focused attention on the use of pavement management concepts for cost-effective use of highway funds. By co-sponsoring with the American Association of State Highway and Transportation Officials (AASHTO) and the Transportation Research Board (TRB), numerous conferences, workshops, and training activities have been conducted over the past 18 years.

The policy describes the scope and purpose of a PMS as providing the analysis and reporting capabilities to highway administrators and engineers that include the ability to identify current and future needs, develop rehabilitation programs, and prioritize programming of projects and funds. Decisions are made in consideration of historic performance of pavement designs, materials, rehabilitation techniques, and maintenance strategies. The policy advocates the inclusion of full network level performance and trend information, covering all rural and urban arterial routes under a transportation agency's jurisdiction. Certain data may be collected visually for lower-order systems, but some degree of objective measurements should be made for high-level systems. FHWA policy recommends that a state's PMS should address the following key areas:

- Inventory An accounting of the physical features (number of lanes, widths, and pavement type, shoulder information, functional classification, etc) of the roadway network is essential.
- Condition Survey Measurement of the pavement condition (ride or roughness, distress, structural adequacy, and surface friction) from which changes over time can be determined.
- 3. Traffic Data Traffic loading data are key elements that enter into analyses of pavement performance and deterioration rates.
- 4. Database System An effective, automated system for the storage and retrieval of roadway inventory, condition, and traffic data is a critical feature of a PMS. A means of linking data to physical locations is required to permit the incorporation of maintenance management systems data and other data sources (bridges, accidents, railroads crossing, etc.) into the PMS.
- 5. Highway Performance Monitoring System (HPMS) Due to similar data needs, coordination between the PMS and HPMS activities are encouraged.
- 6. Data Analysis Capabilities The ability to effectively manipulate and use the information in the database to produce useful reports for decision makers is probably the most important capability of a PMS. Reports such as traffic analysis, network trends, project programming, project ranking, and project selection strategy are examples of the type of output needed by decision makers. An operational PMS will enhance communication among planning, design, construction, maintenance, materials, and research activities. As data is added over a longer time period, a PMS can be used to develop evaluations of materials and designs in relation to traffic loading and environmental conditions.

The policy required each state highway agency to have an operational PMS within a reasonable time, not to exceed 4 years from the January 1989. The FHWA field offices periodically monitor implementation progress and assess adequacy of each state's PMS with regard to quality of data collected, reports produced, and use in strengthening the pavement program.

AASHTO Guidelines for Pavement Management Systems

AASHTO guidelines describe the various components of a PMS that are required for its development and implementation, and how the PMS products and reports can be used as strategic planning and programming tools. The guidelines suggest seven conditions necessary for the development, implementation, and operation of a PMS.

- Strong commitment from top management and coordination throughout the department.
- A steering committee that exclusively deals with organizational and political problems.
- PMS Staff including one person who will be the lead PMS engineer with full time responsibility for managing, coordinating, and operating the PMS.
- System selection or development including good data, good analysis, and effective communications.
- Demonstration of PMS on a limited scale.
- Full-scale implementation The pavement management team established earlier is very important to successful implementation.
- Periodical review and feedback.

DelDOT PMS

DelDOT Division of Highways is responsible for the maintenance of 4,765 miles of public roads in Delaware. Of this mileage, 221 miles are multilane highways. Most of the necessary funds for construction, reconstruction, rehabilitation, and maintenance of these roads are allocated from the Delaware Transportation Trust Fund. This statewide roadway network represents a tremendous investment. The preservation and management of these facilities is vital to the economy of the state, and is a key responsibility of the Department. Increases in traffic, both in numbers of vehicles and in wheel loads, along with rising costs and reduced resources, results in significant challenges to administrative and engineering personnel.

A systematic approach to the management of the pavements is needed to provide engineering and economic analysis tools required by decision makers in making cost-effective selections of Maintenance, Rehabilitation, and Reconstruction (MR&R) strategies on a network basis.

DelDOT has recognized this need since 1980s and has made significant progress toward PMS development. In 1980, prior to the Federal guidelines, DelDOT management supported the concept of PMS and appointed a PMS Steering Committee. Recommendations from this committee led to improvements in data collection, the formation of a Pavement Management Unit within the Office of Planning and Programming (now Division of Planning), and the designation of a full-time Pavement Management Engineer. The Office of Planning and Programming, and the Pavement Management Unit were instrumental in the development of a priority process for selecting projects to be included in annual highway programs. However, the process did not include some of the important features of a PMS such as forecasting, graphic reporting, budgeting, and optimizing capabilities, and had some less desirable features:

- There was an inability to forecast pavement conditions and needs.
- The process was very labor intensive. Information for decision-making was located in different data files and the analysis required both manual and computer efforts.
- The process was based largely on more subjective evaluations of road condition, and rules of thumb. Rating and prioritization of projects was still a "worst first" approach with practically no consideration for preventive maintenance.

In 1991, in response to the requirements of Congress's Intermodal Surface Transportation Act, DelDOT contracted with the consulting firm PCS/Law, to conduct state-of-the-art engineering and economic analysis and to provide cost-effective management tools for the entire network of paved roads and streets under DelDOT's jurisdiction. The initial project concentrated on determining the specific DelDOT needs, desires, and objectives as they pertain to the PMS and the preparation of a work plan responding to these objectives. As the work plan advanced, DelDOT accepted PCS/Law's proposal to develop DelDOT PMS into multi-modal transportation facilities. This project lasted several years but was discontinued in 1996. Several issues were identified that needed to be addressed:

- Limited availability of fiscal resources and technical know-how to support PMS once implemented.
- The absence of an agency-wide data base system and a complete historical pavement database.

- Inadequate identification of the needs and anticipated costs and benefits derived from the project.
- Political disruption of the PMS's consistency and uniformity

In order to consistently maintain and rehabilitate the pavement network, DelDOT contracted with Applied Pavement Technology, Inc (APTech) and the Delaware Transportation Institute (DTI) to evaluate the information available for the development of PMS components and enhance the existing capabilities.

The first phase of the study conducted by APTech was completed in December 1997. The study (APTech report) concentrated on the following areas of interest:

- Data management including the identification of the types of the data required to support the pavement management efforts, procedures for obtaining the information, and processes to ensure the consistency and quality of the data used.
- Pavement performance models including enhancements to the existing condition rating methods, the development of agency-specific pavement performance prediction models, and the establishment of preventive maintenance and rehabilitation treatments, triggers, costs, and impacts.
- Implementation/training including the integration of the tools into the operational processes that exist within DelDOT.

The findings from the first phase of the study will be further investigated in Phase II, during which APTech will work with DelDOT Pavement Management to further develop performance models and to implement pavement management computerized tools.

PART II - FOUNDATIONS OF PMS

A Framework of Pavement Management

Perhaps the most relevant research toward defining the components of a pavement management system was conducted by OECD (Organization of Economic and Cooperative Development) Expert Group's study, which laid the foundation for cooperative research across countries. The scope and objectives of PMS developed by OECD has been generally accepted by a number of countries in North America and Europe. Students of PMS from different countries all agree that the pavement maintenance procedure consists of four steps or processes as shown in figure 1.

- 1. Data collection
- 2. Models/analysis

Steps

- 3. Criteria /optimization
- 4. Consequences/implementation

Figure 1 PMS Framework

Elements

- Structural conditions of pavements

- Functional conditions of pavements
- Traffic condition (flow and axle load)
- Costs and benefits (user, social)
- Performance predictions of pavements
- Distress predictions of pavements
- Costs and benefits of traffic operation
- Costs and benefits of pavement operation
- Min. functional conditions of pavements
- Min. structural conditions of pavements
- Min. overall costs or max. net benefits
- Consequence
- Necessary funding level
- Schedule of maintenance works

Data Collection

The objective of data collection is to keep track of the actual condition of roadways and record the condition in an objective and precise manner. Performance modeling depends on a database reflecting structural and functional conditions. When conducting the data collection procedure, the following elements are considered as important factors:

Variability

Variability of pavement surface distress measurements have always been an area of significant concern. When conducting evaluations of distress data manually (with raters observing the pavements in question, interpreting what they see and recording on paper) the data is subject to all of the human errors associated with such a process. To minimize the impact of such human errors on the important performance data, sophisticated equipment has been developed to eliminate as much of the human interpretation as possible.

The variability associated with distress data is dependent on such issues as season of collection, lighting, surface moisture, human experience and training as well as distress type, severity, and amount. To adequately quantify the precision and bias, a detailed experiment to evaluate the errors inherent in the different distress data collection methodologies is required. Examples of such experiments can be found in SHRP's *Distress Identification Manual for the Long-Term Pavement Performance Project* and *Guidelines for Pavement Management Systems* by AASHTO.

Measurement Errors

With any study, variables must be measured in order for analyse to be conducted and conclusions drawn. Measurement is always accomplished with a specified device or procedure, which will be referred to as an instrument (Carmines and Zeller, 1979). No matter what instrument is used, there is always some degree of error associated with it. Error comes from several sources including: the limits of precision of an instrument, idiosyncratic tendencies of the person conducting the rating, bias in the design of an instrument, and simple errors in the way a person uses the instrument. There are two types of errors, random error and bias. Random error occurs when errors are nonsystematic and are as frequently in one direction as any other, and thus values vary uniformly around the real or true score of the variable. Bias occurs when the errors tend to be in one direction more than another.

Random error causes data collected in a study to be less than precise. However, if one makes certain assumptions about the error component of measurement, one can use statistical procedures to circumvent this problem. Bias is far more problematic than random error. Since bias tends to be in one direction, there is no simple process to average out its effects. There may be instances in which it is possible to estimate the magnitude and direction of bias and to adjust for it.

Reliability

Reliability is a crucial characteristic of measurement and refers to the consistency of a measuring device or rater. In other words, questions can be asked like: (1) does the instrument always come up with the same score or number when the true value is the same? (2) Does the rater always have the same degree of visual accuracy of rating the object?

Validity

Validity of an instrument or procedure means that it measures what it is designed to measure. Validity is, in reality, complicated because raters are not always precise in their meanings of concepts and rarely have standards for comparison. A valid measure of pavement status would consist of a composite of structural and functional factors. But the question is how should they be combined? The definition of a pavement condition index is usually elusive. Generally an index is taken as part of a theoretical framework and establishes that certain hypothesized relationships exist between the examined indicator and other variables. As one finds that hypothesized relationships are supported, evidence for validity accumulates. Many agencies use the International Rating Index (IRI) mainly because IRI has been tested by AASHTO and has been accepted as a valid measurement. When none of the hypotheses are being upheld, either the instrument is invalid or the theories are wrong. Through the collection of evidence over time, a case is built for the validity of the measures, which are dependent upon theoretical models and hypotheses.

Frequency

The frequency at which a highway agency collects pavement condition data, depends primarily upon how often they need current data, budget restrictions, and the availability of

trained personnel (Wang, 1998). Some pavement management systems require annual evaluation of pavement condition while others conduct pavement condition assessments once every two years. Nationally, it is common practice to inspect the Interstate pavements at least annually and other state maintained routes every other year.

However, the fact that the agency may collect pavement condition data every one, two, or three years does not necessarily mean that it inspects all of their pavements or inspects the entire length of a single pavement. Indeed, such a policy would often prove to be too time-consuming and too costly. A practical approach is to sample intervals along a pavement based on a statistical design aimed at achieving a prescribed level of confidence in the reported data as well as specifying which pavements should be inspected. For example, the following criteria to select pavements for inspection could be used:

- 1. Control sections which are tested every year to ensure consistency in the data;
- 2. Pavements with an index which exceeds a prescribed level on any of their failure mode listings for the previous year;
- 3. Sections requested for testing by the district personnel, because of specific distress conditions;
- 4. Pavements that have not been tested for a period of 3 years.

Pavement Condition Indicator

Whatever strategy is adopted for pavement management, it becomes important to assess the pavement's structural and functional qualities in a scientific, well-defined way. There are generally two philosophies of achieving that goal. One way is to combine attributes in a specific manner to determine a single pavement condition index universal to each section. By doing so, it is important to note that the index be objective and reflective of the real-world pavement status since the ultimate effectiveness of the decision is based upon the validity of this single index. Equally important, data should be updated on a periodical basis in order to be reflected in the index. The other philosophy is to use more than one condition indicator in decision trees, to prioritize and coordinate between difference indices and condition states, or to tabulate a pavement condition matrix. In this case there are usually several indices related to the extent of various types of surface distress.

While some agencies use multiple indexes to establish priorities between several pavements in need of repair, aggregation of pavement condition data into a single rating number is widely used to support project and network level decisions in pavement management. To characterize each pavement condition attribute and its time-decay relationship with traffic, age, climate, and other variables, various models have been developed. Table 1 introduces a number of condition indicators being adopted by several state agencies.

DOT	Index	Index Range	Models
Alaska	SCI	N/A	SCI=1.38(Rutting)2 + 0.01 (Alligator Craking +Full Width Patching)
Arizona	"Rate"	0-5	Rate=Cracking+0.2(Roughness)+2(Rutting)+0.0015(Average Maintenance Cost for last 3 years)
Canadian	DI	0-180	 (1)DI=5(2(Severity of Raveling)+(Extent of Raveling)+Σ(2(Severity of Distress)+(Extent of Distress) (they are measured on a scale of 0 to 4) (2)DI=127+5.64Age-18.6(Percentage of Asphalt Cement Content in the Surface Course)-5.88log₁₀^{Average Annual Daily Traffic} (this is a prediction model)
Indiana	PSI	0-5	PSI=4.7-0.065(Age)-0.000006(Average Annual Daily Traffic)- 0.46(Pavement Types-1 for Concrete 0 for Bituminous)
Pennsylvania	SDI	0-100	SDI=0.1(Excess Asphalt) +0.13(Raveling)+0.2 (Block Cracking)+0.25(Transverse/Longitudinal Cracking)+0.05 Edge Deterioration) +0.12 (Widening Dropoff)+0.15(Rutting)

Table 1 Pavement Performance Condition Indicators

Notes: DI --- Distress Index

PSI --- Present Serviceability Index

SCI --- Surface Condition Index

SDI --- Surface Distress Index

Performance Modeling

Performance modeling refers to the activity that patterns and predicts the deterioration of pavement conditions with accumulating use, based on comprehensive evaluation of the structural and functional characteristics of the pavement in service, deterministically and/or empirically. A

typical performance curve, relating the pavement condition rating to the age of the pavement, is shown as an example in figure 2.

Being able to predict the condition of pavements is the most essential activity to the management of pavements at the network and the project levels, both technically and economically. In fact, the models play a crucial role in several aspects of the PMS, including financial planning and budgeting as well as pavement design and life cycle economic analysis.

First, models are used to predict when maintenance should be required for individual road sections and how to prioritize competing maintenance alternatives. Second, by virtue of its prediction capability, the model enables the agency to estimate long-range funding requirements for pavement preservation and to analyze the consequences of different budgets on the condition of the pavement network. Third, because the models attempt to relate the influence of predicting variables to pavement distresses or to a combined performance index, they can be used for design as well as the life-cycle economic evaluation.

Pavements are complex physical structures responding in a complex way to the influences of numerous environmental and load-related variables and their interactions. A prediction model, therefore, should consider the evolution of various distresses and how they may be affected by both routine and planned maintenance. Such an approach is so highly complex

that a compromise procedure combining a strong empirical base and a mechanistic approach is adopted to achieve a reliable model. The empirical base includes time-series pavement condition data compiled on pavements exposed to different environmental and loading conditions. With regard to mechanistic principles, interactions between traffic loading and pavement strength parameters, between loading and pavement deflections, and so on, are observed and included when significant. These considerations dictate the model form and provide guidance in the selection of the independent variables for inclusion in the prediction model.

Pavement Performance Prediction Methodologies

Performance is the "ability of a pavement to fulfill its purpose over time" (AASHTO Guidelines). A performance prediction method is "a mathematical description of the expected values that a pavement attribute will take during a specified analysis period" (AASHTO guidelines). Prediction models provide parameters to pavement management optimization so that they can base the selection of future MR&R programs on the forecasted conditions.

Several methods of studying performance have been used by state agencies in the past decade:

- <u>Performance curves</u>: A performance curve defines variations of pavement attributes over time. State agencies create performance curves for their particular conditions. A bituminous pavement with high traffic and low subgrade strength may have a different performance curve than a concrete pavement with low traffic and medium subgrade strength. A performance curve normally relates expected relationships between serviceability and age. These relationships are commonly estimated using regression, include structural capacity versus age, skid resistance versus age, and a measure of distress versus age.
- <u>Nondestructive testing (NDT)</u>: O'Brien, Kohn and Shahin studied Prediction of pavement performance using NDT results. The NDT model was originally used by several states. Several variables were included in this model: pavement type, condition rating, NDT information, pavement construction, traffic information, and pavement layer thickness. The independent variables were pavement construction history, a weighted traffic variable, and NDT deflection parameters. The pavement construction history was reflected in three pavement layer age variables: time since

last overlay, time from construction to first overlay, and total pavement age. The NDT parameters were a normalized deflection factor given by the slope of the deflection basin and a measure of the deflection basin area. The traffic variable included in the prediction model is the natural logarithm of current traffic count weighted by traffic type. The relevant significance of each variable group was 60 percent for the age variables, 30 percent for the NDT variables, and 10 percent for the traffic variable.

- Regression Analysis: Regression Analysis is the approach that is most commonly used. A General Linear Model or polynomial model procedure is often used to develop a linear regression equation. In most regression analyses, the fit of the model is described by an R-square (R²) value. The R² value is based on sample correlation coefficients that indicate the strength of the developed relationship between the dependent variable and independent variables when compared to the observed data. R² may then be interpreted as the proportion of total variability in the dependent variable that can be explained by the independent variables. The R² can range from zero to one with the higher number indicating a better fit of the model to the actual data.
- . Empirical-Mechanistic Model: This model is based on the assumption that a prediction model should consider the evolution of various distresses and how they may be affected by both routine and planned maintenance. However, this approach is so complex that a compromise procedure combining a strong empirical base and a mechanistic approach is adopted to achieve a reliable model. The empirical base includes time-series pavement condition data compiled on pavements exposed to different environmental and loading conditions. With regard to mechanistic principles, interactions between loading and pavement deflections, and so on, are carefully observed and included when significant. The dependent variable is usually condition data (e.g. PCR, stands for Pavement Condition Rating). The selection of independent variables is based on experience suggesting that the prediction of pavement condition depends on: (1) period during which the pavement has been in service, age of the pavement; (2) traffic volume and weight, which are expressed in terms of years equivalent single-axle loads (ESALs); (3) thickness of last overlay in inches; (4) strength and condition of pavement structure represented by modified structural number.

<u>Markov chain</u>: The Markov chain is a probabilistic model that accounts for the uncertainties present with respect to both the existing pavement condition and future pavement deterioration. The underlying concept of this method is that a pavement section may be in one of several states or conditions and that unless maintenance or rehabilitation is undertaken, the condition of the pavement will worsen over time. The amount of pavement deterioration in a given period, such as a year, is a random variable depending only on the most recent state of the pavement and the amount and type of traffic loading that the pavement accrues during that period of time.

Optimization

When evaluating pavement conditions to decide on appropriate actions, it is necessary to define a set of intervention levels in accordance with the various types of data collected. Intervention levels could be defined based on a particular rating of pavement conditions to indicate the need for rehabilitation or preventive maintenance. Many different solutions are possible when the need for maintenance work arises, and each solution generates its own performance curve (according to the different criteria). Not only are many solutions possible, but also a tremendous number of different combinations are possible, when the timing, sequence or type of action are changed over an extended period (OECD, 1987). Figure 3 illustrates an example with two different maintenance strategies.

In the first case the maintenance work was made at a certain warning level, while in the second case the work was not carried out until the intervention level was reached. The cost of the maintenance work at time t2 may be greater than if the work had taken place at t1, or in other words, the actual cost of strategy two is higher than the first strategy. Potentially if the period of deferral lengthens, it causes much larger and non-economic expenditures when the remedial maintenance work is ultimately carried out.

By analyzing costs and benefits of all possible strategies for each road section within a set time frame, called the consideration period, the consequences of providing satisfactory pavement service can be estimated. Computer programs are available to assist with the complexity that arises when addressing thousands of roads at various stages in their life cycle.

Preventive Maintenance

Often pavement management is focused more on roads that are in need of major rehabilitation. As with many types of infrastructure it has been shown that there are cost advantages to addressing small problems before they become large ones. A preventive pavement maintenance strategy is an organized, systematic process for applying a series of preventive maintenance treatments over the life of the pavement to minimize life-cycle costs. Cost-effective preventive maintenance strategies are applied to pavements to minimize or prevent common pavement problems from occurring. To implement this strategy, a survey is made annually of the condition of each section of the pavement. Based on the results of that survey, the decision is made to perform the preventive maintenance activities or, if the pavement condition doesn't warrant it, to postpone the treatment for a year. Multi-year prioritization pavement management programs that consider preventive maintenance can be very complex and place even greater demands on data quality and the ability to accurately access and predict pavement condition. Except for the simplest of circumstances, computer programs are necessary to examine all of the many options to optimize pavement condition at given levels of expenditure.

One of the earliest studies on preventive maintenance strategies, conducted by the Utah Department of Transportation in 1977, indicated that every \$1 invested in a preventive maintenance treatment early in the life of a pavement, avoided the expenditure of approximately \$3 later on in the cost of a major rehabilitation (Byrd 1979). In Kansas a strategy was implemented to treat the pavements in need of preventive maintenance before funding the reconstruction of poorer pavements (Byrd 1979). After the first 4 years, expenditures for both surface repairs and resurfacing of aggregate and asphalt pavements decreased progressively.

The Wisconsin Transportation Information Center at the University of Wisconsin-Madison conducted several simulations of pavement management strategies. One of the studies was conducted for a small city with a 68-mile roadway network and demonstrates the benefits of a preventive maintenance strategy. The pavement condition rating is on a scale of 1 to 10, with 10 equal to new pavement and 1 equal to failed pavement. The network initially had \$2.4 million of work backlogged and an average condition rating of 5.88. The simulation demonstrated that the most beneficial strategy, which also results in the highest pavement condition rating, is to perform preventive maintenance on those pavements when and where preventive maintenance treatments are appropriate, and then to resurface and reconstruct those pavements where the condition has deteriorated below the point where preventive maintenance is effective (Geoffroy 1996). The least beneficial strategy is to allow a pavement to deteriorate until it needs to be resurfaced or reconstructed.

The table on the next page summarizes the results of applying alternative pavement strategies to a 1,000-mile network. The pavement is rated in five condition levels: Very Good, Good, Fair, Mediocre, and Poor. The analysis compares the number of lane miles in each condition level after 5 years with a do-nothing strategy, a worst-first strategy funded at \$8.0 million annually, and two preventive maintenance strategies, one funded at \$8.0 million annually and one at \$6.4 million annually. This example demonstrates the cost-effectiveness of preventive maintenance. The network condition after 5 years is approximately the same for the worst-first strategy funded at \$8 million annually and the preventive maintenance strategy funded at \$6.4 million annually and the preventive maintenance strategy funded at \$6.4 million annually and the preventive maintenance strategy funded at \$6.4 million annually and the preventive maintenance strategy funded at \$6.4 million annually and the preventive maintenance strategy funded at \$6.4 million annually for an annual savings of \$1.6 million or 20 percent.

Pavement	Year 0	Do-Nothing	Worst-First	Preventive	Preventive
Condition			\$8 Million	Maintenance	Maintenance
			Annually	Annual	Annual
				Funding at \$8	Funding at
				Million	\$6.4 Million
Very Good	200	66	334	352	294
Good	280	48	124	146	132
Fair	370	100	140	175	170
Mediocre	100	68	80	101	100
Poor	50	711	321	225	303

Table 2 Example Comparison of the Effect of Alternative Strategies for maintaining a road network

PART III SUPPORT OF DELDOT PAVEMENT MANAGEMENT SYSTEMS ENHANCEMENTS

Introduction

In addition to conducting research into current practices in pavement management as previously described in this report, the Center for Applied Demography and Survey Research's (CADSR) assisted the DelDOT Pavement Management Team and Applied Pavement Technologies Inc. in addressing the following questions.

- What is the state of current pavement management systems at DELDOT?
- How is the Overall Pavement Condition (OPC) index derived and will it support road surface performance modeling?
- What are the appropriate factors that should be considered for derivation of an OPC and for performance modeling, and what is the current availability and accuracy of data for Delaware?
- What are appropriate performance models? How can pavement management systems be implemented?

This part of the report describes the work done by CADSR to find answers to these questions and is divided into three sections, one that discusses the study and evaluation of OPC, a second describes the development of pavement performance models, and a third summarizing the findings of CADSR's analysis. A number of data tables and figures were selected from the analysis to illustrate findings.

Section One: Evaluation of OPC

The primary focus of analysis in support of pavement management system enhancements was to evaluate the current Overall Pavement Condition (OPC) rating currently in use by DELDOT, and to examine how OPC related to age and other factors that could be used in performance models. As the dependent variable in all performance models, OPC, and surface distress and condition ratings in general, are the most important data component of pavement management systems. In order to specify the current condition of roads and to model future conditions, it is necessary to have a very reliable measure of pavement condition.

Determination of OPC

DelDOT uses Overall Pavement Condition (OPC) to reflect the general conditions of Delaware roadway networks and to determine rehabilitation decisions. OPC is a composite and subjective index. It combines the human estimation of the attributes of fatigue cracking, environmental cracking, surface defects, and patching into one indicator. The extent of these distresses (low, medium, high) is recorded in the field for each road. OPC is obtained via windshield survey conducted by each District. To rate a certain road, District raters drive over each pavement section in their District and assign a value between 0 and 5 to represent the overall condition of the pavement section. A "5" represents a new road or newly rehabilitated pavement, and a "0" represents the absolute worst pavement condition. OPC has been used, in its current format, for two years.

While in general OPC is a subjective combination of distresses, DelDOT's policy for rating road sections that are less than 6 years old relies on a table related to estimated life (see Table 3). Pavements that need some type of rehabilitation in the year of inspection (remaining life of 0) are assigned an OPC of 2.5. Pavements that have a remaining life of more than 1 year are assigned higher values and those that should have received some type of rehabilitation prior to the inspection are rated lower than a 2.5.

Pavement Type	0 year	1 year	2 years	3 years	4 years	5 years
Asphalt Concrete	2.5	2.6	2.7	2.9	3.0	3.1
Composite	2.5	2.7	2.9	3.1	3.3	3.6
Concrete	2.5	2.6	2.7	2.8	2.9	3.0
Surface Treated	2.5	2.9	3.3	3.7	4.1	4.5

Table 3 OPC Scoring Based on Remaining Life

The District personnel have been trained in the determination of the OPC rating and are comfortable with the ratings scheme because of its simplicity. There is some confidence with the rating scheme from a value of 3 and below. However at the upper end of the scale (greater than 3 and less than 5) there is less understanding of remaining life and the DELDOT Pavement Management team found that assigning an OPC was more difficult.

OPC then is directly related directly to an estimate of remaining life and a fixed deterioration curve for each of the three pavement families, Asphalt, Composite, and Concrete, where estimated life is 5 years or less. Where the estimated life is greater than 5 years, OPC is a subjective measure based on a review of surface distresses, and is not generated by a composite index calculated on the basis of the distress information collected.

Variability

To view the distribution of OPC, a bar chart of the frequency of OPC was plotted (figure 4). The minimum value of OPC is 0 and the maximum is 6. Periodically, DelDOT has used an OPC rating of 6.0 to indicate a pavement section that is receiving rehabilitation that should not be considered in the development of the next paving list.

Figure 4 Distribution of OPC

The graph shows that the variability of OPC is very low with the majority of points clustering around 3, 3.5, 4, and 4.5. This implies that for a subjective rating, the rater might have difficulties in differentiating the road conditions simply from human observations. Very few values fall below 2.5 because pavements with remaining life of 0 were rated 2.5.

Errors and Outliers

By running a scatter-plot of OPC and age (see figure 5), a number of suspected errors in the data sets were identified.

- There are numerous data points for low age with low OPC and, high age with high OPC, forming a square shape in the scatter-plot shown in figure 5.
- The age ranges from 0 to 25 for OPC values of 5 and 4.5. Similarly, for age values of 0, OPC ranges from 1.5 to 5, between which almost any values are possible.
- Older roads might have higher OPC due to, for example, minimal traffic volume or insignificant weather degradation. However, the inclusion of erroneous data from the windshield survey might also, if not primarily, contribute to the older-age-higher-OPC scenario.

Figure 5 Scatter-plot of OPC and Age (flexible family)

4) Among roads that have OPC equal to 5, thirty-one percent have estimated remaining life of 0 or 1 year as shown in Table 4:

Table 4 Distribution of Estimated Remaining Life for

				Valid	Cumulative
		Frequency	Percent	Percent	Percent
Valid	0	7	11.9	12.1	12.1
	1	11	18.6	19.0	31.0
	5	7	11.9	12.1	43.1
	6	33	55.9	56.9	100.0
	Total	58	98.3	100.0	
Missing	System	1	1.7		
Total		59	100.0		

ESTLIFE

OPC equal to 5.

Yearly Difference

The three OPC surveys in 1998, 1997, and 1996 in the South District were determined differently as the process was refined. The OPC 1998 was believed to be more reliable because of its better quality control. Statistical differences among the three-year measures were examined. Two dummy variables, d_1 and d_2 , were created to represent three groups of comparison as listed below. OPC98 is base group when both d_1 and d_2 are equal to zero.

The equation for a third-order polynomial regression model is as follows¹:

$$OPC = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 d_1 + a_5 d_1 x + a_6 d_1 x^2 + a_7 d_1 x^3 + a_8 d_2 + a_9 d_2 x + a_{10} d_2 x^2 + a_{11} d_2 x^3$$

The coefficients in Table 5 indicate that all the t statistics are significant (significant level less that 0.05 when a confident level of 95% was selected). That means the base group (OPC98), d_1 group (OPC97), and d_2 group (OPC96) all contribute to the pooled model. In other words, the OPC measures for the three years are statistically different.

				Standardi		
				zed		
		Unstand	lardized	Coefficie		
		Coeffi	cients	nts		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.043	.033		121.980	.000
	AGE	147	.013	-1.059	-11.248	.000
	AGE2	7.36E-03	.001	1.153	5.591	.000
	AGE3	-1.2E-04	.000	474	-3.404	.001
	D1	332	.042	218	-7.884	.000
	D1AGE	7.00E-02	.017	.386	4.081	.000
	D1AGE2	-6.1E-03	.002	563	-3.489	.000
	D1AGE3	1.29E-04	.000	.269	2.756	.006
	D2	290	.039	191	-7.340	.000
	D2AGE	7.06E-02	.016	.404	4.352	.000
	D2AGE2	-6.4E-03	.002	710	-3.870	.000
	D2AGE3	1.47E-04	.000	.419	3.348	.001

Table 5 Statistical Summary for OPC Year Testing

Coefficients^a

a. Dependent Variable: ALLOPC

Table 6 S	Statistical	results	from	South	District
-----------	-------------	---------	------	-------	----------

OPC Year	\mathbf{R}^2
1998	0.387
1997	0.336
1996	0.329

Comparing the statistical results in Table 6 for the three years of OPC, the 1998 survey has the best fitness model with the highest R^2 value. 1997 is the next and lastly, 1996 survey. This confirmed the suspicion that the reliability of OPC affects the fitness of the model.

Comparison with automated measures of Districts

In the 1998, automated surface distress data was obtained through Roadware's Automated Road Analyzer (ARAN). Three data sets for roads in Sussex County, Delaware were examined with the primary goal being to examine the level of correlation between DelDOT's OPC and objective, automated measures. Another objective was to investigate the possibility of employing automated means in the future for the determination of overall pavement condition index. The data included measures for surface distress on asphalt pavements, surface distress on concrete

¹ The reason for using third-order polynomial model is explained in Part IV of this report.

pavements, and a third data set for ride and roughness across all roads in the sample (see Table 7).

Flexible Pavements	Concrete Pavements	Joint Ride
Percentage of Transverse	Transverse Cracks at each	Average roughness IRI
Cracking at each severity level	severity (% slabs)	(inches/mile, left and right
(% area)	Longitudinal Cracks at each	wheel path)
Percentage of Fatigue	severity (% slabs)	Ride Number
Cracking at each severity level	Joint Spalling at each severity	
(% area)	(% joints)	
	"D" Cracking at each severity	
	(% joints)	

Table 7 ARAN Data Description

Surface distress and ride information provided in the automated data sets at every tenth or hundredth of a mile, were aggregated and averaged over the large road segments addressed in PMS databases. As a result, values of OPC, pavement family, pavement age, and pavement structure from pavement history file could be related to automated distress data. Since there was not enough data for concrete pavements, only asphalt pavements were analyzed.

For asphalt pavements, the extent of cracking is recorded as area percentages of three levels of cracks, low, medium and/or high. In other words, the total value of three levels of cracks for one road segment should not be greater than or less than 100%. Those values which are not equal to 100 as well as OPC values greater than 5 were considered as errors and thus were also removed from the data sets.

Using two-tailed Pearson correlation, all the distress types showed statistically significant correlation with OPC at 99% confidence level (see Appendix B). Scatter-plots of OPC with transverse cracking and fatigue cracking were also generated and shown in figure 6 and 7.

Percentage of asphalt fatigue cracking

After outliers were investigated and removed from the data sets, the distress types were then included in a linear multiple regressions as independent variables to show how much they relate to OPC. Since cracks at different levels highly correlate with the overall measure of this crack, only the overall measurements were considered in the model. Table 8 shows that the coefficients of average roughness, percentage of fatigue cracking, and percentage of transverse cracking are all negative, demonstrating an inverted linear relationship with OPC. In other words, the higher the OPC, the lower the distress measurements, as would be expected. All the independent variables are statistically significant.
Table 8 Coefficients of Distress Types

		Unstandardized Coefficients		Standardi zed Coefficie nts		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.360	.076		57.515	.000
	percentage of fatigue cracking	-4.2E-03	.002	140	-2.400	.017
	average roughness	-3.1E-03	.001	220	-4.102	.000
	percentage of transverse	-1.7E-02	.003	396	-6.749	.000

Coefficients ^a

a. Dependent Variable: OPC98

The correlation of roughness to OPC was also examined. Roughness is determined by response or profile measure. It can be expressed in several forms. The International Roughness Index (IRI) is a measure of roughness expressed in inches/miles that can be determined from either method of measurement and has been recognized by the FHWA. The IRI value has a minimum value of 0 inches/miles and has no maximum value because it is expressed as a measure unit. It is defined, according to the International Road Roughness Experiment held in Brazil in 1982, as the average rectified slope of a standard quarter-car simulation traveling 80 kilometers per hour. FHWA has selected the IRI as the most suitable pavement roughness statistic for incorporating pavement roughness into the Highway Performance Monitoring System (HPMS) database. Roughness condition ranges have been suggested by the FHWA to classify the IRI measure into appropriate condition categories, as shown in the Table 9.

IRI Range (inches/mile)	Roughness Category
0 – 190	Smooth
190 - 320	Medium
> 320	Rough

Table 9 IRI and Roughness Category

Using a least-square fitness curve to represent the most likely trend of the data points as shown in figure 8, the relationship between the OPC and roughness figure was revealed as linearly inverse correlation. There is some indication that as roughness values go beyond 200, an OPC value of 2.5 can be could be seen as a trigger value to take rehabilitation action.

 $R^2 = .27$

Another roughness index is the computed Ride Number (RN). The RN is a ride/roughness statistic with values from 0 to 5 where 5 indicates a very smooth pavement. The RN uses the form:

RN =
$$f(PI)$$

PI = $\{RMS(P_r)\}^2 + [RMS(P_1)]^2\}^{0.5}$
Where RMS = room mean square of vertical acceleration

- P_r = measured displacement amplitude of right wheel path for pavement wavelengths 1.6 ft to 8 ft.
- P_1 = measured displacement amplitude of left wheel path for pavement wavelength 1.6 ft to 8 ft.

As the higher ride number represents a smoother road, the correlation between ride number and OPC is expected to be a positive linear relationship. DelDOT's OPC with the ARAN ride data are plotted in figure 7. A correlation exists but the plot also reveals many variations within the data points and the curve only explains 20% of the variances.

Figure 9 OPC and Ride Number

Analysis described concerning comparison between DelDOT's OPC and automated distress measures were limited to examining whether there were correlations with particular distresses and roughness measures. Another approach would be to determine a method of combining the distress measurements into an overall condition index. In Baladi's study, he introduces the methods of creating an overall Pavement Quality Index (PQI) or Pavement Condition Index (PCI) on the basis of individual distress indices. After obtaining Categorized Evaluation Indices (CEI) such as surface distress index, drainage index, structural index, etc, a relative weight factor can be assigned to each index category. The PQI or PCI can then be calculated by summing the products of each CEI and the appropriate weight factor. A threshold value of the PCI/PQI can be established below which a pavement section is rendered unacceptable and in need of repair. Because of the difficulty in establishing the proper weights for each distress, an overall index was not formulated for the DelDOT data.

Section Two: Pavement Performance Modeling

Factors Used to Predict Performance

Independent variables used for predicting pavement performance are derived from one or more of the following factors:

- 1) Period during which the pavement has been in service
- 2) Traffic volume and weight, expressed in terms of yearly equivalent single-axle loads
- 3) Thickness of last overlay, in inches
- 4) Surface deflection
- 5) Construction quality
- 6) Climate factors such as temperature and precipitation
- 7) Pavement Material Type
- 8) Drainage

The DelDOT pavement management database is composed of pavement data attributes covering pavement identification, functional classification, surface type, layer material properties, and traffic records. Data for two counties, New Castle and Sussex, representing the North District and the South District, respectively, were available for this study. In the databases, each pavement attribute or set of related attributes is associated with a variable length segment of pavement by specifying beginning and ending mile-points. Through discussion with APTech and a review of the local conditions in Delaware, DelDOT decided to take into consideration the following factors to predict OPC: age, pavement type, and structure number.

Age

Age is significant because; it is a common factor in the estimation of both cumulative traffic loads and environmental loads over the life-cycle period; age can be determined for any pavement and would be expected to be a good predictor; and age can be a surrogate for the cumulative effect of many detrimental factors, such as thermal effects, subgrade movements, freeze-thaw effects and bitumen aging. To closely reflect the roads service time on a life-cycle basis, the age of a road was defined as the number of years since the road was last improved. In modeling the relationship of age with OPC, the age of the road segment at the time that the OPC

rating was taken was used.

Pavement Type

Pavement material type is also critical to pavement performance. The preliminary investigation of the data from the South District resulted in the groupings of 23 different pavement families based on surface type. Among these 23 families, only five families contained enough data to conduct regression analysis using pavement type. Therefore, the data was then regrouped into more general families --- rigid, composite, flexible, surface treatment, unimproved, and unconventional. Surface treatments were excluded from the modeling because their rehabilitation needs are determined on a cyclic basis, rather than on conditions. Unimproved and unconventional types --- including graded and drained, soil, grave, stone, bricked, and other combinations were not considered in the study. The distribution of the data for each family is shown in Table 10. The groupings of the many surface types that exist for Delaware roads into the above families are listed in detail in Appendix D.

Table 10 Family Distributions

		Fraguanay	Boroont	Valid	Cumulative
		Frequency	Percent	Percent	Percent
Valid	rigid	1194	12.5	12.5	12.5
	composite	3418	35.7	35.7	48.1
	flexible	3175	33.1	33.1	81.3
	surface treatment	1615	16.9	16.9	98.1
	unimproved	131	1.4	1.4	99.5
	unconventional	36	.4	.4	99.9
	unknown	14	.1	.1	100.0
	Total	9583	100.0	100.0	

family classfication

Structure Number

For flexible pavements, the structure number is expressed by the thickness of each of the pavement layers through the use of layer coefficients as given by:

 $SN = a_1D_1 + a_2D_2 + a_3D_3$ Where: SN = structural number representing the structural capacity of the pavement; D_1 , D_2 , $D_3 =$ layer thickness; a_1 , a_2 , $a_3 =$ layer coefficients

The layer coefficients are empirical parameters relating the layer thickness to the structural number and expressing the relative ability of a material to function as a structural component of the pavement. Theoretical layer coefficients for any material can be developed using multi-layer elastic analysis and comparing strain and stress levels within the pavement layer structure. Materials that are not assigned AASHTO coefficients are assigned a structural number based on coefficients (recommended by Materials and Research) multiplied by the thickness of the pavement layers.

According to AASHTO road tests, the road structure, as indicated by the structure number, influences the deterioration of flexible pavements with and without overlay. Composite and overlaid pavement equations include asphalt surface thicknesses as well. Structure number is believed to be an indicator of mechanistic parameters of how a pavement performance is effected by stress, strain, and deflection. Theoretically, a pavement with better materials has a higher structural number than a pavement with less resilient materials. Similarly, if two pavements are made with the same materials, a thicker pavement would have a higher structural number than a thinner pavement. Structure number is also used when designing pavements to meet expected loads and usage.

Model Procedure

Groupings of Highway Sections

Many factors may influence pavement performance and each has a distinctive effect over time. Ideally, a pavement model could be constructed to reflect the unique characteristics of each road. However, developing performance models for each road section requires extensive historical databases and therefore in practice proves to be very difficult. Instead, a method of categorizing pavements based on similar characteristics is often chosen to account for the wide variety of factors on a network-level basis, assuming that pavements with the same grouping will perform similarly throughout their lives. Early in the research, data for roads were studied in 23 groupings corresponding to various pavement types. Further detail was introduced by looking at different functional classifications of roads within pavement types. Because of sparse data in many of the groups, and because of the great variation in the data for OPC and age (see ApTech Phase I report), a more general grouping was selected. Pavement sections with similar characteristics were finally grouped into three families, rigid, composite, and flexible, and the development of performance models was focused on each of these groups.

Screening Procedure

Errors were identified as those pieces of data in which a mistake was suspected when gathering, coding, or entering the data. Inaccurate data can be found where basic system rules are broken. One example is where OPC values are greater than 5 when the OPC scale is from 0 to 5. The data was sorted by group, time since pavement was built or last rehabilitated, and OPC. For each family type, scatter-plots were run to display the data distribution between OPC and age. Obvious problems such as OPC greater than 5 or less than 0, or remaining life less than or equal to 1 and OPC greater than 4, were eliminated from the database. However, to ensure appropriate model building, further examination of the data for any unusual observations was performed.

Unusual data values can have substantial impact on model development. To identify these extreme cases, the deviations from predicted values of OPC were subjected to residual analysis. Residuals are calculated as the difference between the observed value and the value predicted by a linear regression model. If the observations are normally distributed about the regression equation with constant variance, then the residuals should be approximately normally distributed. To check this, histograms of residuals were plotted (figure 10 shows an example). A normal plot of residuals should approximate a bell shape about 0. The standard deviation of the residuals is used as a measure of spread to observe the relative magnitude of any particular residual. If an observation has a residual that is several standard deviations below or above 0, it is an outlier and should be checked. The probability that a deviation in either direction will exceed three standard deviations is close to zero. Therefore, any deviation larger than three standard deviations was assumed to be out of the expected values and the case was listed as an outlier (see Table 11 for an example).

Figure 10 Histogram of Residual

Regression Standardized Residual

 Table 11 Sample Outliers

				i
	Std.		Predicted	
Case Number	Residual	OPC96	Value	Residual
148	-3.391	1.50	3.3685	-1.8685
1048	-4.844	1.00	3.6690	-2.6690
1163	-3.066	2.10	3.7893	-1.6893
3974	-3.247	2.00	3.7893	-1.7893
6503	3.834	5.00	2.8876	2.1124
6504	3.943	5.00	2.8275	2.1725
6505	3.943	5.00	2.8275	2.1725
6506	3.943	5.00	2.8275	2.1725
6507	3.943	5.00	2.8275	2.1725
6508	3.943	5.00	2.8275	2.1725
7796	-3.247	2.00	3.7893	-1.7893
7797	-3.247	2.00	3.7893	-1.7893
7798	-3.247	2.00	3.7893	-1.7893

Casewise Diagnostics^a

a. Dependent Variable: OPC96

Linear Regression Analysis

After errors and outliers were eliminated from the data file, the first method used in developing prediction curves was a linear regression analysis. This method used age as a single independent variable (suggested by DELDOT and ApTech as a first approach) in making the

prediction. The data plots in figure 11, 12 and 13 show the data points and the linear model. Linear models for rigid, composite, and flexible models explain only about 17%, 27%, and 19%, respectively, of the variance. For any given age there is a wide range of OPC values. The data plots of the flexible family and the composite family distribute in a visible square shape that contains unexpected relationships of low age with low OPC and high age with high OPC. The slope of the regression lines indicates a slower decrease in OPC with age than would be expected. The flatter slope is expected with data that has such variability. Also the intercepts at Age = 0 indicate an OPC less than 4.0 which does not correspond to the definition of OPC where OPC = 5 for a new road. Therefore, the linear models for the three families were not satisfactory.

Figure 12 Linear Model for Composite Family

R2 = .27

Non-linear Regression Analysis

One of the assumptions of pavement performance modeling is that a section of pavement deteriorates with time at different rates during the life of the pavement; therefore, an appropriate model would be a curvilinear relationship between OPC and age. In Nunez and Shahin's study in 1986, a third-order polynomial regression model was successfully developed to predict the pavement condition when a single condition indicator was used. The study concluded that pavement condition forecasting could be accomplished by customizing the prediction for each individual road section depending on its condition in relation to the prediction model curve for the pavement family. A typical performance curve is shown in Figure 14. In this model, to predict the future pavement condition, the model curve for the pavement family. The PCI can then be determined at the desired future AGE by reading from the adjusted curve. A similar model was used in the DelDOT project with PCI/LAW.

Pavement performance models already developed from other sources revealed that the equations developed as a result of this model take the form of the constrained least-square equation:

OPC = $p_0 + p_1 * x + p_2 * x * x + p_3 * x * x * x$ where x is the age, p_0 , p_1 , p_2 , and p_3 are the coefficients

Figure 14 Pavement Condition Forecasting Model

Two approaches were used to model non-linearity. In the first of these, a cubic function, a curvilinear function having two bends was used to find the best-fit curve. The second approach used a mathematical transformation of the age variable into square and cubic terms such that each of these three variables is linearly related to the dependent variables. The second approach is helpful in finding the intercept and coefficients.

Type of Pavement	Regression Coefficient	\mathbb{R}^2
Rigid	P0 = 3.615 P1 = 0.0345	0.17
Composite	P0 = 3.813 P1 = 0.0633	0.27
Flexible	P0 = 3.722 P1 = 0.0564	0.18

Table12 Statistical Parameters of First-order Linear Prediction Models (South and North districts)

Type of Pavement	Regression Coefficients	\mathbf{R}^2
Rigid	P0 = 4.077	0.30
	P1 = -0.290	
	P2 = 0.029	
	P3 = -0.0009	
Composite	P0 = 4.053	0.35
	P1 = -0.224	
	P2 = 0.0018	
	P3 = -0.0005	
Flexible	P0 = 4.013	0.23
	P1 = -0.211	
	P2 = 0.018	
	P3 = -0.0006	

Table13 Statistical Parameters of Third-order Polynomial Prediction Models (South and North)

Non-linear models were plotted as shown in figures 15 through 22, to reflect the relationship between OPC and age for the three families in the North Districts, South Districts and the pooled data combining the North and the South. Comparing third-order polynomial models with first-order linear models as shown in Table 12 and Table 13, the prediction models of third-order polynomial fit better than linear models in terms of intercepts, slope and R^2 values. For all three families, nonlinear models explain significantly more variance than do linear models. Nonlinear models also show a varying rate of deterioration along the life of the pavements with a negative slope as the start, a positive slope next, and larger negative slope in the end. However, the nonlinear models still have difficulties in reflecting the expected degradation of the road surface, compared with theoretical models. The intercepts for the three families were all around an OPC of 4. At age = 0, when a road is new or newly rehabilitated, an OPC of at least 4.5 is expected. Also the slopes prove to be very flat with OPC values fluctuating around 2 to 4.

It is obvious in looking at the figures that these models perform poorly in modeling the performance of the roads. There are features in the data that limit the types of models that can be generated and the degree to which the physical realities will be reflected. Most notably are portions of the curve at about the 10-year range that would indicate improving road condition with age as the slope of the curve becomes positive. One explanation of the problem might be that by the time most roads reach this age they have reached a condition that warrants rehabilitation. The data points that are left are those roads that for some reason are in better condition at higher age, therefore distorting any models generated from the data. There is a general problem at higher age values of a lack of data, and a lack of representative data. There is also a problem of a

low number of high values for OPC (4.5 to 5) for low age, forcing a low intercept.

Another factor affecting the fitness of the model is the scale of OPC. The use of the 0-to-5 scale, in addition to the fact that the evaluation of OPC is subjective, restricts the raters' ability to provide a comprehensive and accurate reflection of the real road condition. The range of OPC as reflected in the data is really from 2.0 to 5.0. With such a small range, high variability, and obvious problems with the data particularly for the high age portions, the ability to formulate realistic models is impossible.

Figure 17 Flexible Families in the North District

Figure 20 Rigid Families in pooled data

Figure 21 Composite families in pooled data

Figure 22 Flexible families in pooled data

Inclusion of Structure Number

Structure number was included in the linear models of OPC and age. Roads were viewed in the three families; Rigid, Composite, and Flexible. Linear models for the three pavement types addressed were determined to be:

Rigid

OPC = 2.124 + .159 * S - .015 * A

Composite

OPC = 3.99 - .04 * S - .075 * A

Flexible

OPC = 3.77 + .094 * S - .066 * A

Where S =structure number, A =age

Differences were evident between the three pavement families. With rigid pavements the age variable is weak with structure strong. For composite pavements structure is weak and the age effect much stronger. Composite and flexible pavements are similar for aging but very different with respect to structure. While the models showed significant effects of both age and structure number, this method was believed to be inappropriate because: (1) The equations reflect that thicker pavements are in better condition than thin pavements, even at an age of zero. This contradicts with the principle that the highest rating (in this case a 5) reflects the condition of a pavement in its initial construction state. (2) Since the structural number does not change over time unless rehabilitation is applied, the model is only reflecting the deterioration of the OPC due to age, while restricting the highest possible OPC for a pavement at age zero based on its structure number.

In order to test the effects of structure number, the model was then revised to take the structure number out of the equation and instead, use it to further divide the pavement family. Pavements were grouped by surface type, and these families were further divided into categories based on structure numbers with at least two categories defined to represent strong/weak or thick/thin pavements. Data from the North District did not include structure number, so only the South District data was examined in this manner.

A cross tabulation of structure number with pavement type (See Appendix D) indicates

the correlation of structure number with the three surface type families. Because the road sections clustered around several structural numbers, each of which has a number of observations less than 50, the production of any reasonable model classified by different groups of structure numbers was not possible. It was recognizable, however, that a structure number of 6.4 is a dividing line between the composite family and flexible family. Anything below 6.4 in the composite family was treated as outliers and thus was not included in the modeling.

In order to test the hypothesis that family categorization by structure number contributes to different models and thereby should be individually treated based on family, two dummy variables were created in a third-order polynomial regression model shown below:

	S_1	S_2
Flexible (sn=0~6.4)	1	0
Composite	0	1
(sn=6.4~10.2)		
Composite	0	0
(sn=10.2~20.6)		

Table 14 Dummy Variables for Family Classification

In the model, the base group for comparison was the one where $S_1 = 0$ and $S_2 = 0$, that is, structure number falls in the category 10.6 ~ 20.6. S_1 group represents flexible, and S_2 group represents composite with structure numbers from 6.4 to 10.2.

The data tested was from the South District with OPC98 as the dependent variable. OPC98 was believed to be the most reliable reflector of the road conditions in the three indices. The following is the statistics summary.

Table 15 Model Summary of Family Testing

Model Summary

			A diviste d. D.	Std. Error
Model	R	R Square	Square	Estimate
1	.527 ^a	.278	.275	.5900013
a.				

Predictors: (Constant), S2XC, S1XC, S2, OPC98AGE, S1, S2X, S1X, AGE98S, AGE98C, S1XS, S2XS

Table 16 Coefficients of Family Testing

		Unstand	ardized	Standardi zed Coefficie		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	4.415	.110		40.206	.000
	OPC98AGE	226	.053	-1.614	-4.241	.000
	AGE98S	1.46E-02	.007	2.167	2.100	.036
	AGE98C	-4.4E-04	.000	-1.549	-1.778	.076
	S1	376	.124	271	-3.021	.003
	S2	3.85E-02	.121	.027	.318	.750
	S1X	.153	.057	1.101	2.689	.007
	S1XS	-1.4E-02	.007	-1.602	-2.012	.044
	S1XC	4.61E-04	.000	1.029	1.822	.069
	S2X	-1.2E-02	.056	087	221	.825
	S2XS	-5.5E-04	.007	066	077	.938
	S2XC	1.75E-04	.000	.492	.694	.488

Coefficients ^a

a. Dependent Variable: OPC_98

The final equation from the above model was:

 $Y = 4.415 - 0.226x + 0.014x_2 - 0.004x_3 - 0.376S_1 + 0.153S_1x - 0.014S_1x_2 + 0.0005S_1x_3 + 0.038S_2 - 0.012S_2x - 0.0005S_2x_2 + 0.0002S_2x_3$ Where Y represents OPC, x is age.

Note that in the Table 17, all the t statistics of coefficients in the S_2 group (composite family with structure numbers from 6.4 to 10.2) are not significant and those of S_1 group (flexible family) are significant. It signifies that the inclusion of flexible family into a composite-based model **does** make a difference.

The next step was to test if division of structure number within one family makes a difference. In order to do that, a dummy variable, c was created. When c = 0, it represents thin pavements whose structure numbers are from 6.4 to 10.2; when c = 1, it represents thick pavements whose structure numbers are from 10.2 to 14. Remember structure numbers greater than 6.4 are considered as composite family.

The modeled equation with dependent variable OPC98 is:

 $OPC98 = 4.436 - 0.230^{*}age + 0.014^{*}age^{2} - 0.0003^{*}age^{3} + 0.079^{*}c + 0.024^{*}c^{*}age - 0.009^{*}c^{*}age^{2} + 0.0003^{*}c^{*}age^{3}$

Major statistics summary was also generated:

Table 17 Model Summary of	f Structure Num	ber Testing
---------------------------	-----------------	-------------

Model Summary^b

1					Std. Error
				Adjusted R	of the
	Model	R	R Square	Square	Estimate
	1	.664 ^a	.441	.438	.5004864

a. Predictors: (Constant), CXC, OPC98AGE, C, AGE98C, CX, AGE98S, CXS

b. Dependent Variable: OPC_98

Table 18 Analysis of Variance of Structure Number Testing

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	280.714	7	40.102	160.096	.000 ^a
	Residual	356.443	1423	.250		
	Total	637.157	1430			

a. Predictors: (Constant), CXC, OPC98AGE, C, AGE98C, CX, AGE98S, CXS

b. Dependent Variable: OPC_98

			Coefficients	a		
		Unstand Coeffi	lardized cients	Standardi zed Coefficie nts		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.436	.054		81.901	.000
	OPC98AGE	230	.023	-1.691	-9.896	.000
	AGE98S	1.43E-02	.003	1.908	5.324	.000
	AGE98C	-3.2E-04	.000	747	-3.534	.000
	С	7.89E-02	.088	.055	.900	.368
	СХ	2.38E-02	.043	.133	.550	.583
	CXS	-9.1E-03	.006	666	-1.587	.113
1	CYC	3 12E-04	000	350	1 /06	135

Table 19 Coefficients of Structure Number Testing

a. Dependent Variable: OPC_98

Note that the t statistics of variables c, cx, cxs and cxc are not significant. This means that our breakdown of structure number into thin pavements and thick pavements does not make a statistical difference. An identical investigation into flexible family, as shown below, discovers that by dividing the family into two separate groups, 0.5~1.5 and 1.5~6, the t statistics of those independent variables relating to the dummy variable B, which is composed of the classification of the two groups, are also not significant (the significant levels are larger than .05).

Table 20 Coefficients Statistics of Flexible Family

			Coefficients	а		
		Unstand Coeffi	lardized cients	Standardi zed Coefficie nts		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.211	.102		41.209	.000
	OPC98AGE	172	.048	-1.072	-3.595	.000
	AGE98S	1.23E-02	.006	1.380	2.009	.045
	AGE98C	-3.9E-04	.000	733	-1.756	.079
	В	.199	.186	.137	1.072	.284
	BX	-5.8E-02	.081	345	719	.472
	BXS	9.33E-03	.010	.701	.925	.355
	BXC	-4.0E-04	.000	451	-1.114	.266

a. Dependent Variable: OPC_98

Within one district, the families divided by surface types seem to show statistical difference between each other, whereas the effects of further division by structure number within

individual families are minimized. Therefore, the deterioration pattern seems to be affected by contributions of different material types. The results of this analysis indicated that grouping roads by ranges of structure number (generally thick and thin pavements) offered no statistical significant improvement in models.

Improvements on Pavement Management Databases

The availability of a reliable pavement management database is the foundation of any pavement management system and any attempts at performance modeling. Throughout the project, the DELDOT Pavement Management Team worked to put together pavement history data on age and structure of roads through a detailed and often difficult review of hard copy project files in DELDOT archives. For the first time, a pavement history database was developed for all roads maintained by DELDOT for all counties. The data includes original construction information, materials, dates and details of follow-on rehabilitation. A number of corrections and refinements to the data were made during the course of the project. The DELDOT Pavement Management Team has been active in department wide efforts to better coordinate and improves data collection efforts.

Previous pavement management initiatives at DelDOT in the early 1990's suffered for a lack of data. Also, while previous computer software was well grounded in current theory, DELDOT personnel had difficulty in updating and working with road databases. Since then a number of personal computer based tools for managing data have become available such as Microsoft Access and Microsoft Excel. DELDOT Pavement Management personnel feel comfortable working with such tools and are enthusiastic about having more capabilities of constructing and analyzing their data. With some assistance from CADSR, they initiated the creation of a Microsoft Access application to capture information from their rehabilitation projects.

Part III, Section Three, Summary of Findings

The work done by the Center for Applied Demography and Survey (CADSR), through the Delaware Transportation Institute, in support of DELDOT's 1997 Pavement Management System (PMS) Enhancements was focused on the following tasks.

- A review of current practices in pavement management systems.
- A review of data needed for PMS and availability of data at DELDOT.
- Evaluating the current OPC and how it relates to road degradation through the life of the roads.
- Assistance in examining how the current OPC could be used in the construction of road performance models.

What follows is a summary of findings related to these tasks.

A review of current practices

A number of the State initiatives have demonstrated the success and importance to pavement management of providing information on the current and future state of pavement conditions, and systematic procedures for evaluating rehabilitation options while taking into account as much as possible the relative economic advantages and disadvantages. PMS assists with the technical problems of choosing optimal times, places, and techniques for repairing pavements and simultaneously, providing those in charge of maintaining and improving roads with the data and other technical justifications needed to secure political support for adequate road maintenance. These agencies employed different methods to improve the way they manage their pavements, but they all experienced a similar outcome. Because of their pavement conditions surveys and data analysis schemes, they were able to produce better-maintained pavements from available resources and ensure more effective technical input into the political decision-making process.

Perhaps the most relevant research toward defining the components of a pavement management system was conducted by OECD (Organization of Economic and Cooperative Development) Expert Group that suggests that the pavement maintenance procedure consists of four steps.

52

- Data collection
- Models/analysis
- Criteria /optimization
- Consequences/implementation

AASHTO guidelines suggest seven conditions necessary for the development, implementation, and operation of a PMS.

- Strong commitment from top management and coordination throughout the department.
- A steering committee that exclusively deals with organizational and political problems.
- PMS Staff including one person should be the lead PMS engineer with full time responsibility for managing, coordinating, and operating the PMS.
- System selection or development including good data, good analysis, and effective communications.
- Demonstration of PMS on a limited scale.
- Full-scale implementation The pavement management team established earlier is very important to successful implementation.
- Periodical review and feedback.

In regards to the development of pavement performance models, promising work by Nunez and Shahin in 1986 provides an example and demonstration of the application of a thirdorder polynomial regression model to predict the pavement condition. The suggested model relates well to what is known about the pattern of degradation of roadways, and the study suggested methods of adapting a network level model to the prediction of a particular road's performance.

A review of data needed for PMS and its availability

The literature suggests the following types of data to be used as predictors for pavement management systems:

- Pavement condition measures
- Surface distress measures
- Period during which the pavement has been in service (age, time since last rehabilitation)

- Traffic volume and weight, expressed in terms of yearly equivalent single-axle loads
- Thickness of last overlay, in inches
- Surface deflection
- Construction quality
- Climate factors such as temperature and precipitation
- Pavement Material Type(s) and thickness of layers
- Drainage

DELDOT is in the process of constructing a pavement history database for all State maintained roads in Delaware. The data includes the pavement age or last date of rehabilitation, OPC measures, and the material type(s) and thickness(s) that make up each road. DELDOT Pavement Management Team made considerable efforts over the last year to compile this information from hard copy as-built records and contracts in DELDOT archives. They have initiated procedures and built computer-based tools to maintain the data. Accurate and current data are crucial to any type of multi-year prioritization of pavement projects and these efforts have yielded considerable progress over past efforts. Efforts should also be made to include traffic volume and traffic weight (ESALs) in the database. As the database is continually refined and maintained, its value will increase in its ability to support a better understanding of the current and future condition of roads. Eventually given improved pavement condition data a history of individual road performance over several years will be available. At this point, overall pavement condition ratings are only available for 1996, 1997, and 1998.

It is recommended that the data go through continual review and quality control with particular emphasis on understanding why many roads have low OPC values with low age, and why there numerous roads that have high OPC values with high age (greater than 10 to 15 years).

Evaluating the current OPC and how it relates to age

The following points summarize the evaluation of the OPC rating used at DelDOT and its relationship to age.

- OPC is a subjective measure for the upper end of the five-point scale and for this portion of the scale is based on examining the extent of four surface distresses.
- Roads that are within 5 years of needed rehabilitation are assigned OPC values by referencing

a fixed table for each pavement type. OPC then is constrained to a fixed relationship with age and directly related with a subjective estimate of remaining life.

- OPC results from two very different subjective rating methods.
- OPC values generally are assigned to half points of the scale, i.e. 2.5, 3.0, 3.5, 4.0, 4.5, indicating that OPC is not a true continuous variable and takes on a limited set of values owing to the raters difficulty in quantifying in more detail the overall condition of roads.
- Plots of OPC versus age show trends of decreasing OPC with increasing age but there does not appear to be a systematic relationship that would be indicated by what is known about the degradation of pavements. In an examination of OPC as it relates to the time a road was last rehabilitated (age), there exists great variability in the values of OPC at a given age. Values of OPC less that three are common even after a few years since rehabilitation. OPC values of 5 are found even after 10 years of pavement life. These "low age low OPC" and "high age high OPC" data points would seem to signal problems with the data, and at a minimum suggest the need for a closer look at the data to find an explanation.
- Statistical analysis indicates a significant difference in the OPC measures for 1996, 1997, and 1998. The 1998 survey has the best fit with 3rd order polynomial models using age as the independent variable. This would support the DelDOT Pavement Management Team's statement that each year OPC ratings were more reliable and were subject to more quality control.
- OPC is correlated with measures taken by automated means for individual surface distress
 measurements that included transverse cracking, fatigue cracking, the International
 Roughness Index (IRI) and Ride Number. As OPC is an overall condition index, it would be
 necessary to develop methods to combine individual automated surface distress
 measurements into an overall surface distress index for the purpose of further examining the
 validity of the OPC rating. Many of the difficulties in modeling the performance of roads in
 Delaware are attributable to the lack of an objective measure of pavement condition. CADSR
 concurs with APTech Inc.'s recommendation that DELDOT determine whether distress
 information obtained by automated means would be sufficient to develop a new OPC rating
 that would be objective and more comprehensive.

The development of pavement performance models

Data within the DelDOT Pavement History databases was used to develop performance models. DelDOT OPC rating for the years 1996, 1997, and 1998 provided data for the dependent

variable, and age, pavement type, structure number were the factors investigated as independent variables. The analysis can be summarized as follows.

- As the DelDOT Pavement Management team is focused on the network level, and because of the lack of historical data on pavement condition, it is appropriate to develop models for groupings of roads rather than addressing roads individually. The initial attempt at dividing roads into 23 families by pavement type was not effective in that there was minimal data for all but 6 of these families and because of the great variation of OPC for any given age. When roads were grouped into the three families; Flexible, Rigid, and Composite, the modeling was simplified. Statistical analysis indicated that pavement performance models of these three families were significantly different from each other.
- The high variation of OPC for a given age, the limited scale of OPC, the low values of OPC with low age, data gaps, and questionable data at age greater than about 10 years, all contribute to unsatisfactory, inapplicable performance models.
- 3rd order polynomial models are indicated as the most likely form for performance models rather than linear or other forms. Even with polynomial models that would best correspond to the expected pattern of degradation of roadways, the deficiency in the available data and the problems with the subjective measure of OPC result in models that can not be used to support multi-year prioritization of projects or preventive maintenance forecasting.
- Analysis indicated that grouping roads by ranges of structure number offered no statistically significant improvement over grouping by Composite, Flexible, and Rigid types.

BIBLIOGRAPHY

AASHTO, Guidelines for Pavement Management Systems. Washington, D.C., 1990

- Amekudzi, Adjo A. and Attoh-okine, N.O. "Institutional Issues in Implementation of Pavement Management Systems by Local Agencies" TRB1524 pg. 10, 1994
- Applied Pavement Technology, Inc., *Delaware Department of Transportation (DelDOT)* Pavement Management Systems Enhancements, Phase I report. 1997
- Baladi, Gilbert and Snyder, Mark, Highway Pavements Training Course (Memo), Department of Civil Engineering, Michigan State University, 1998
- Byrd, L.G., NCHRP Synthesis of Highway Practice 58: Consequences of Defferred Maintenance, Transportation Research Board, National Research Coucil, Washington, DC, 1979
- Carmines, Edward G. and Zeller, Richard A., *Reliability and Validity Assessment*, Sage Publications, Beverly Hills, California, 1979
- Federal Aid Highway Program Manual, Transmittal 428, Vol 6, Ch. 2, Sec. 4, SubSec. 1. FHWA, U.S. Department of Transportation, March 1989
- Geoffroy, Donald N., NCHRP Synthesis of Highway Practice 223: Cost-Effective Preventive Pavement Maintenance. Transportation Research Board, National Academy Press, Washington, D.C. 1996
- George, K. P. and Rajagopal, A. S. and Lim, L. K., "Models for Predicting Pavement Deterioration", TRB research Records No.1215, Papers for 68th annual meeting of the Transportation Research Board, 1989
- Hass, R. and Hudson, W. R., *Pavement Management Systems*. McGraw-Hill, Inc., New York, N.Y., 1978
- Irrgang, Federico C. and Maze, T.H., "Status of Pavement Management Systems and Data Analysis Models at Sate Highway Agencies". TRB Research Record No. 1397. National Academy Press, Washington D.C. 1993
- Johnson, K. D. and Cation, K.A., Performance Prediction Development Using Three Indexes for North Dakota Pavement Management Systems. In *Transportation Research Record* 1344, TRB, National Research Council, Washington, D.C., 1992, pp.22-30
- Kohn, O'Brien and Shahin, "Prediction of Pavement Performance by Using Nondestructive Test Results". Transportation Research Record 943, TRB, National Research Council, Washington, D.C., 1983, pp. 13-17

- Martin, James, *The Data-Base Environment*, Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 1983
- Nunez, Maria Margarita and Shahin, Mohanmed Y., "Pavement Condition Data Analysis and Modeling", TRB research Records No.1070, National Transportation Council, Washington D.C. 1986
- OECD Expert Group, "Pavement Management Systems", OECD Road Transportation Research, Systems DE Gestion, Paris, France, 1987
- PCS/LAW Engineering Report Pavement Management Systems for the State of Delaware, 1990
- Smith, Harry A. and Stephands, Peter J. etc. "Development of Delaware Department of Transportation Pavement Management Systems" TRB 1397 pg 54
- Smith, R. E. Addressing institutional Barriers to Implementing a PMS, *Pavement Management Implementation* (F.B. Holt and W. L. Gramling, eds), ASTM, Philadelphia, Pa., 1992
- Smith, R. E. and Freeman, Thomas J., "Contracting For Pavement Distress Data Collection", 77th Annual Meeting, TRB, Washington D.C. 1998
- Strategic Highway Research Program, *Distress Identification Manual for the Long-Term Pavement Performance Project*, National Research Council, Washington D.C. 1993
- Ullidtz, Per, *Pavement Analysis*. Elsevier Science Publishers B.V., Amsterdam, Netherlands., 1987
- Wang, Kelvin C.P., "Automated Systems for Pavement Surface Distress Survey: A Historical Perspective on Design and Implementation", 77th Annual Meeting, TRB, Washington D.C. 1998
- Zimmerman, Kathryn A. Cation P.E. "Applying PMS Lessons to New Infrastructure Tools", Infrastructure---Planning and Management ed. Jonathan Lgifford, Donald R. Uzarski and Sue McNeil American Society of Civil Engineering 1993

Appendix A

Correlation of OPC with Distress Types (Asphalt Pavements)

OPC98 Pearson Correlation Sig. (2-tailed) 1.00 average roughness Pearson Correlation Sig. (2-tailed) 22 average roughness Pearson Correlation Sig. (2-tailed) .00 percentage of transverse cracking at nedium level Pearson Correlation .22 percentage of transverse cracking at medium level Pearson Correlation .21 percentage of transverse cracking at medium level Pearson Correlation .22 percentage of transverse cracking at medium level Pearson Correlation .23 percentage of transverse cracking at high level Pearson Correlation .33 percentage of transverse cracking at cracking low Pearson Correlation Sig. (2-tailed) .00 percentage of fatigue cracking low Pearson Correlation Sig. (2-tailed) .01 percentage of fatigue cracking low Pearson Correlation Sig. (2-tailed) .01 N .22 .02 .02 percentage of fatigue cracking medium Pearson Correlation N .02 percentage of fatigue cracking medium Pearson Correlation N .02 percentage of fatigue cracking high Pearson Correlation N .1			OPC9
Sig. (2-tailed) 22 average roughness Pearson Correlation .3 Sig. (2-tailed) .00 N .22 percentage of Pearson Correlation .21 percentage of Pearson Correlation .22 percentage of Pearson Correlation .21 percentage of Pearson Correlation .22 percentage of Pearson Correlation .21 medium level N .22 percentage of Pearson Correlation .21 medium level N .22 percentage of Pearson Correlation .21 nedium level N .22 percentage of Pearson Correlation .33 transverse cracking at Sig. (2-tailed) .00 high level N .22 percentage of fatigue Pearson Correlation .55 gs. (2-tailed) .01 .02 percentage of fatigue Pearson Correlation .01 n .22 .22 .23 percentage of fatigue Pearson Correlation	OPC98	Pearson Correlation	1.00
N 22 average roughness Pearson Correlation Sig. (2-tailed) 3. Sig. (2-tailed) percentage of ransverse cracking at low level Pearson Correlation N .22 percentage of ransverse cracking at medium level Pearson Correlation N .22 percentage of ransverse cracking at medium level Pearson Correlation N .22 percentage of ransverse cracking at high level Pearson Correlation N .22 percentage of ransverse cracking at high level Pearson Correlation N .21 percentage of ransverse cracking at high level Pearson Correlation N .21 percentage of transverse cracking at cracking low Sig. (2-tailed) N .00 percentage of fatigue cracking low Pearson Correlation N .21 percentage of fatigue cracking medium Pearson Correlation N .22 percentage of fatigue cracking medium Pearson Correlation N .21 percentage of fa		Sig. (2-tailed)	
average roughness Pearson Correlation 3. Sig. (2-tailed) .00 percentage of Pearson Correlation .22 percentage of Pearson Correlation .21 percentage of Pearson Correlation .22 percentage of Pearson Correlation .23 percentage of Pearson Correlation .24 medium level N .22 percentage of Pearson Correlation .33 percentage of Pearson Correlation .34 nigh level N .24 percentage of fatigue Pearson Correlation .40 percentage of fatigue Pearson Correlation .31 percentage of fatigue Pearson Correlation .32 percentage of fatigue Pearson Correlation .41 cracking medium Sig. (2-tailed) .00 N .22 .32 percentage of fatigue Pear		N	254
Sig. (2-tailed) .00 percentage of Pearson Correlation .21 ransverse cracking at Sig. (2-tailed) .00 low level N .22 percentage of Pearson Correlation .21 percentage of Pearson Correlation .22 medium level N .22 percentage of Pearson Correlation .22 medium level N .22 percentage of Pearson Correlation .22 percentage of Pearson Correlation .23 percentage of Pearson Correlation .33 ransverse cracking at Sig. (2-tailed) .00 high level N .22 percentage of Pearson Correlation 5 transverse cracking Sig. (2-tailed) .00 N .22 .01 .02 percentage of fatigue Pearson Correlation 5 cracking low Sig. (2-tailed) .00 N .22 .02 .02 percentage of fatigue Pearson Correlation 1	average roughness	Pearson Correlation	343
percentage of ransverse cracking at low level Pearson Correlation Sig. (2-tailed) .01 percentage of ransverse cracking at medium level Pearson Correlation N .22 percentage of ransverse cracking at medium level Pearson Correlation N .22 percentage of ransverse cracking at high level Pearson Correlation N .22 percentage of ransverse cracking at high level Pearson Correlation N .22 percentage of transverse cracking N Pearson Correlation N .33 percentage of transverse cracking N Pearson Correlation N .33 percentage of transverse cracking low Pearson Correlation N .41 percentage of fatigue cracking medium Pearson Correlation N .41 percentage of fatigue cracking medium Pearson Correlation N .41 percentage of fatigue cracking high Pearson Correlation N .41 N .22 .22 percentage of fatigue cracking medium Pearson Correlation N .42 N .22 .41 N .22 .41 N .22 .41 N .22 .41 N .22 .41 <td></td> <td>Sig. (2-tailed)</td> <td>.000</td>		Sig. (2-tailed)	.000
percentage of ransverse cracking at low level Pearson Correlation .21 percentage of ransverse cracking at medium level Pearson Correlation .21 percentage of ransverse cracking at medium level Pearson Correlation .21 percentage of ransverse cracking at high level Pearson Correlation .22 percentage of ransverse cracking at high level Pearson Correlation .23 percentage of transverse cracking Pearson Correlation .33 percentage of transverse cracking Pearson Correlation .55 percentage of transverse cracking Pearson Correlation .00 N .21 percentage of transverse cracking Pearson Correlation .01 N .21 .22 percentage of fatigue cracking low Pearson Correlation .01 N .22 .21 percentage of fatigue cracking medium Pearson Correlation .01 N .22 .22 percentage of fatigue cracking high Pearson Correlation .11 N .22 .21 percentage of fatigue cracking high Pearson Correlation .41 N		N	254
transverse cracking at low level Sig. (2-tailed) .00 percentage of transverse cracking at medium level Pearson Correlation .22 percentage of medium level Pearson Correlation .00 percentage of transverse cracking at medium level Sig. (2-tailed) .00 percentage of transverse cracking at medium level Pearson Correlation 33 percentage of transverse cracking at medium level N .22 percentage of transverse cracking at medium level N .23 percentage of transverse cracking at medium level N .24 percentage of transverse cracking at medium level N .24 percentage of fatigue cracking low Pearson Correlation medium .00 percentage of fatigue cracking low Pearson Correlation medium .00 percentage of fatigue cracking medium Pearson Correlation medium .00 N .22 .01 .33 percentage of fatigue cracking medium Pearson Correlation medium .00 N .22 .01 .33 percentage of fatigue cracking medium Sig. (2-tailed) .01 N .22 .24 .02	percentage of	Pearson Correlation	.251
low level N 24 percentage of Pearson Correlation .21 iransverse cracking at Sig. (2-tailed) .00 medium level N .22 percentage of Pearson Correlation .23 percentage of Pearson Correlation .33 percentage of Pearson Correlation .33 percentage of Pearson Correlation .55 percentage of Pearson Correlation .55 percentage of transverse cracking Sig. (2-tailed) .00 percentage of fatigue Pearson Correlation .50 percentage of fatigue Pearson Correlation .00 percentage of fatigue Pearson Correlation .00 n .22 .22 .23 percentage of fatigue Pearson Correlation .00 n .23 .24 .24 percentage of fatigue Pearson Correlation .00 cracking medium Sig. (2-tailed) .00 N .24 .00 percentage of fatigue Pearson Correlation .41	transverse cracking at	Sig. (2-tailed)	.000
percentage of ransverse cracking at medium level Pearson Correlation Sig. (2-tailed) .21 percentage of ransverse cracking at high level Pearson Correlation Sig. (2-tailed) .00 percentage of transverse cracking Pearson Correlation Sig. (2-tailed) .00 percentage of transverse cracking Pearson Correlation Sig. (2-tailed) .00 percentage of transverse cracking Pearson Correlation Sig. (2-tailed) .00 percentage of fatigue cracking low Pearson Correlation Sig. (2-tailed) .00 percentage of fatigue cracking medium Pearson Correlation Sig. (2-tailed) .00 percentage of fatigue cracking medium Pearson Correlation Sig. (2-tailed) .01 percentage of fatigue cracking high Pearson Correlation Sig. (2-tailed) .01 percentage of fatigue cracking high Pearson Correlation Sig. (2-tailed) .01 N .21 .02 percentage of fatigue cracking high Pearson Correlation Sig. (2-tailed) .01 N .22 .02 Percentage of fatigue cracking high Pearson Correlation Sig. (2-tailed) .01 N .22 .02	low level	Ν	254
transverse cracking at medium level N 22 medium level N 22 percentage of Pearson Correlation3 transverse cracking at Sig. (2-tailed) .00 high leve N 22 percentage of Pearson Correlation percentage of Pearson Correlation percentage of fatigue Pearson Correlation N percentage of fatigue percentage of fatigue percentage of fatigue percentage of fatigue N percentage of fatigue percentage of fatigue N Pearson Correlation N Pearson Correlation N Pearson Pearson Pearson Pearson Pearson Pearson Pearson Pearson Pearson Pearson Pearson Pearson Pearson	percentage of	Pearson Correlation	.235
medium level N 24 percentage of Pearson Correlation 3 transverse cracking at Sig. (2-tailed) .00 high level N .24 percentage of Pearson Correlation .01 percentage of Pearson Correlation .01 percentage of Pearson Correlation .01 percentage of fatigue Pearson Correlation .11 cracking medium Sig. (2-tailed) .01 N .22 .02 percentage of fatigue Pearson Correlation .11 cracking medium Sig. (2-tailed) .01 N .22 .02 .02 percentage of fatigue Pearson Correlation .12 percentage of fatigue Pearson Correlation .24	transverse cracking at	Sig. (2-tailed)	.000
percentage of transverse cracking at high level Pearson Correlation Sig. (2-tailed) 3 percentage of transverse cracking Pearson Correlation Sig. (2-tailed) .00 percentage of transverse cracking Pearson Correlation Sig. (2-tailed) .00 percentage of fatigue cracking low Pearson Correlation Sig. (2-tailed) .00 percentage of fatigue cracking medium Pearson Correlation Sig. (2-tailed) .00 percentage of fatigue cracking medium Pearson Correlation Sig. (2-tailed) .01 percentage of fatigue cracking high Pearson Correlation Sig. (2-tailed) .01 percentage of fatigue cracking high Pearson Correlation Sig. (2-tailed) .01	medium level	Ν	254
transverse cracking at Sig. (2-tailed) .00 high level N 22 percentage of Pearson Correlation55 transverse cracking Sig. (2-tailed) .00 N 22 percentage of fatigue Pearson Correlation .00 cracking low Sig. (2-tailed) .01 percentage of fatigue Pearson Correlation .11 cracking medium Sig. (2-tailed) .01 percentage of fatigue Pearson Correlation .11 cracking medium Sig. (2-tailed) .01 N 22 percentage of fatigue Pearson Correlation .11 cracking medium Sig. (2-tailed) .01 N 22 Percentage of fatigue Pearson Correlation .11 N 22 Percentage of fatigue Pearson Correlation .11 N 22 N	percentage of	Pearson Correlation	319
high level N 24 percentage of transverse cracking Pearson Correlation Sig. (2-tailed) 5 percentage of fatigue cracking low Pearson Correlation Sig. (2-tailed) .00 percentage of fatigue cracking medium Pearson Correlation Sig. (2-tailed) 00 percentage of fatigue cracking medium Pearson Correlation Sig. (2-tailed) 00 percentage of fatigue cracking medium Pearson Correlation N 11 percentage of fatigue cracking medium Pearson Correlation N 12 percentage of fatigue cracking high Pearson Correlation N 44 N .22 .00 N .23 .00 N .24 .00	transverse cracking at	Sig. (2-tailed)	.000
percentage of transverse crackingPearson Correlation Sig. (2-tailed)5 .00 .01percentage of fatigue cracking lowPearson Correlation Sig. (2-tailed)00 .02percentage of fatigue cracking mediumPearson Correlation N01 .02percentage of fatigue cracking mediumPearson Correlation N11 .01 .02percentage of fatigue cracking mediumPearson Correlation N11 .01 .01 .02percentage of fatigue cracking mediumPearson Correlation N12 .01 .01 .01 .02percentage of fatigue cracking highPearson Correlation .01 .01 .01 .01 .01 .0244 .01 .	high level	N	254
transverse crackingSig. (2-tailed).00N21percentage of fatigue cracking lowPearson Correlation Sig. (2-tailed)00percentage of fatigue cracking mediumPearson Correlation Sig. (2-tailed)11percentage of fatigue cracking mediumPearson Correlation N11percentage of fatigue cracking highPearson Correlation N11percentage of fatigue cracking highPearson Correlation N41percentage of fatigue cracking highPearson Correlation Sig. (2-tailed).00N.01.01N.02.01N.02.01N.02.01N.02.01N.02.01N.02.01N.01N.02N.02N.01N.02N.02N.02N.03N.01N.02N.02N.03N.03	percentage of	Pearson Correlation	510
Percentage of fatigue cracking lowPearson Correlation Sig. (2-tailed)00 .01 .02percentage of fatigue cracking mediumPearson Correlation Sig. (2-tailed)11 .01 .01percentage of fatigue cracking mediumPearson Correlation N11 .01 .01 .02percentage of fatigue cracking highPearson Correlation .01 N41 .01 .01 .02percentage of fatigue cracking highPearson Correlation .01 .01 N41 .01<	transverse cracking	Sig. (2-tailed)	.000
percentage of fatigue cracking low Pearson Correlation Sig. (2-tailed) 00 percentage of fatigue cracking medium Pearson Correlation .31 percentage of fatigue cracking medium Pearson Correlation 11 percentage of fatigue cracking medium Pearson Correlation .00 N 24 percentage of fatigue cracking high Pearson Correlation .01 N 24 .01 N .02 .01 N .02 .01 N .02 .01 N .01 .01 N .02 .01		Ν	254
cracking lowSig. (2-tailed).33N24percentage of fatigue cracking mediumPearson Correlation Sig. (2-tailed)11percentage of fatigue cracking highPearson Correlation N.00 24percentage of fatigue cracking highPearson Correlation Sig. (2-tailed).00 0.01 0.01N24.00 0.01N.00 0.01.00 0.01N.00 0.01.00 0.01	percentage of fatigue	Pearson Correlation	061
percentage of fatigue cracking medium Pearson Correlation Sig. (2-tailed) 1 percentage of fatigue cracking high Pearson Correlation Sig. (2-tailed) .00 percentage of fatigue cracking high Pearson Correlation Sig. (2-tailed) .00 N .00 .00	cracking low	Sig. (2-tailed)	.332
percentage of fatigue cracking medium Pearson Correlation Sig. (2-tailed) 1 percentage of fatigue cracking high Pearson Correlation Sig. (2-tailed) .0 percentage of fatigue cracking high Pearson Correlation Sig. (2-tailed) .00 N .00 .00		Ν	254
cracking medium Sig. (2-tailed) .0° N 2° percentage of fatigue Pearson Correlation cracking high Sig. (2-tailed) N 2°	percentage of fatigue	Pearson Correlation	112
N 2 percentage of fatigue cracking high Pearson Correlation Sig. (2-tailed) 40 N .00 N .00	cracking medium	Sig. (2-tailed)	.073
percentage of fatigue Pearson Correlation44 cracking high Sig. (2-tailed) .00 N 22		Ν	254
cracking high Sig. (2-tailed) .00	percentage of fatigue	Pearson Correlation	401
N 29	cracking high	Sig. (2-tailed)	.000
		Ν	254
percentage of fatigue Pearson Correlation30	percentage of fatigue	Pearson Correlation	361
cracking Sig. (2-tailed) .00	cracking	Sig. (2-tailed)	.000
N 2:		Ν	254

Appendix B

OPC Rating Guides

	(Ba	used on Re	maining Li	fe)		
Pavement Type	0 yrs	l yr	2 yrs	3 yrs	4 yrs	5 yrs
Asphalt Concrete	2.5	2.6	2.7	2.9	3.0	3.1
Composite	2.5	2.7	2.9	3.1	3.3	3.6
Concrete	2.5	2.6	2.7	2.8	2.9	3.0
Surface Treated	2.5	2.9	3.3	3.7	4.1	4.5

OPC SCORE

., •

Source: Deleaware Department of Transportation

"Cheat Sheet for Concrete Pavements"

Source: Delaware Department of Transportation

Fatigue Crac	king:						
Low:	Sin Litt	gle Crack with tle or no spalli	1 few or no cor ng; no pumpin	necting cracks		M	H
Medium:	Inte maj	erconnected cr y have slight s	acks forming a palling; no pur	a pattern; mping		F	
High:	Inte mo poti	erconnected cra derate to seven holes, and/or d	acks forming a e spalling; pos lepressions	complete patte sible pumping,		U U	留
Environ. Cra	cking	:	<u> </u>			<u> </u>	
Low:	Sing spal	gle Cracks < 1/ ling ; Sealed c	4 inch wide w racks in good	ith little or no shape	L I	$\frac{M}{k}$	<u> </u>
Medium:	Crac mod crac	cks between 1/ lerate spalling; ks; Sealed crac	4 and 3/4 inch Adjacent low cks in bad shap	es wide: severity randor xe	m		et t
High:	Crac Adja	cks greater 3/4 acent medium	l inches wide: to high severit	severe spalling y random crack	; ;;; ≤ ₄ "	⊥" ™ 3" 4 ™ 4	> 3"
Surface Defec	ts:				·		
Low:	Agg but of f	gregate and bin has not progre ine aggregate.	nder has begun essed significat	to wear away ntly. Some loss	<u>L</u>	M	<u> </u>
Medium:	Agg rou; coa	gregate and bin gh and pitted. rse agg.	nder worn awa Loss of fine ag	y and surface is g. and some			
High:	Sur	face texture is rse aggregate;	very rough and looks like cond	d pitted; loss of crete scaling.	•		127
Patches:							
Low:	At	most, low sev	erity distress o	f any type.		N	<u> </u>
Medium:	At	most, medium	a severity distr	ess of any type.		R	
High:	Ha	s high severity	distress of an	y type.		L KI	
						-	
Remaing Life		0 yrs	1 yr	2 vrs	3 vrs	4 vrs	5 vrs

Source: Delaware Department of Transportation

,

...

	"Ch	eat Shee	t for Co	nposite H	Pavemen	ts"	
Fatigue Crack	ing:				· · · · · · · · · · · · · · · · · · ·		
Low:	Sing Littl	le Crack with e or no spallin	few or no conr g, no pumping	ecting cracks;	L	<u>M</u>	Н
Medium:	Inte: may	rconnected cra have slight sp	cks forming a particular contract of the second s	pattern; ping	\ \ \	R X	
High:	Inte: mod poth	rconnected cra lerate to severe soles, and/or de	cks forming a spalling; poss pressions	complete patter ible pumping,		Y	戡
Jt. Reflection (Crac	king:					
Low:	Sing spall	le Cracks < 1/4 ing ; Sealed cr	inch wide wi acks in good s	th little or no hape	<u> </u>	M	<u> </u>
Medium:	Crac mode cracl	ks between 1/4 erate spalling; ks; Sealed crac	and 3/4 inche Adjacent low s ks in bad shap	s wide: æverity randon e	n · {	\$	
High:	Crac Àdja	ks greater 3/4 cent medium t	inches wide: s o high severity	evere spalling; random crack	s; ≤ <u>1</u> "	・ 【** で 柔*	` ≻ <u>₹</u> "
Surface Defect	s:						
Low:	Agg but of fi	rregate and bin has not progre ine aggregate.	der has begun ssed significan	to wear away tly. Some loss	<u>L</u>	M	H
Medium:	Agg roug coar	pregate and bin gh and pitted. I rse agg.	der worn away Loss of fine ag	y and surface is g. and some			
High:	Sur	face texture is rse aggregate; 2	very rough and looks like conc	l pitted; loss of rete scaling.	· , ·	•	·•,**•(
Patches:							
Low:	At	most, low seve	erity distress o	f any type.	<u> </u>	M	H
Medium:	At	most, medium	severity distre	ess of any type.	5	XX.	
High:	Ha	s high severity	distress of an	y type.		_	
Remaing Life		0 yrs	1 yr	2 yrs	3 yrs	4 yrs	5 yrs
OPC SCORE		2.5	2.7	2.9	3.1	3.3	3.5

ì

A.e. *

Source: Delaware Department of Transportation

	icking:					
Low:	Single Crack wi Little or no spal	th few or no co ling; no pumpin	nnecting crack	s;	M	F
Medium:	Interconnected of may have slight	racks forming ; spalling; no pu	a pattern; mping		A	Ś
High:	Interconnected of moderate to seve potholes, and/or	racks forming a are spalling; pos depressions	a complete patt ssible pumping		55	X
Environmen	tal Cracking:					
Low:	Single Cracks < spalling ; Sealed	1/4 inch wide w cracks in good	vith little or no shape	<u> </u>	M	+
Medium:	Cracks between 1 moderate spalling cracks; Sealed cra	1/4 and 3/4 inch g; Adjacent low acks in bad sha	nes wide: severity rando pe	m	ł	
High:	Cracks greater 3. Adjacent medium	/4 inches wide: to high severi	severe spalling ty random crac	5, ks;	4"" 3 "	> 3
Surface Defe	ets.					
Surface Defe	cts: Aggregate and b	inder has begu	1 to wear away	[M	
Surface Defe Low: Medium:	ects: Aggregate and b but has not progr of fine aggregate Aggregate and b	inder has begun ressed significa inder worn awa	n to wear away ntly. Some loss and surface i	s L	M	
Surface Defe Low: Medium:	Aggregate and b but has not prog of fine aggregate Aggregate and b rough and pitted coarse agg.	inder has begun ressed significa inder worn awa . Loss of fine aş	a to wear away ntly. Some loss y and surface i zg. and some	s <u>L</u>	Σ	
Surface Defe Low: Medium: High:	Aggregate and b but has not progiof fine aggregate Aggregate and b rough and pitted coarse agg. Surface texture in coarse aggregate	inder has begun ressed significa inder worn awa Loss of fine ag s very rough an ; looks like con	a to wear away ntly. Some loss y and surface i gg. and some d pitted; loss o crete scaling.	s <u>L</u>	Y	
Surface Defe Low: Medium: High: Patches:	Aggregate and b but has not progio of fine aggregate Aggregate and b rough and pitted coarse agg. Surface texture is coarse aggregate	inder has begun ressed significa inder worn awa Loss of fine ay s very rough an ; looks like con	n to wear away ntly. Some loss y and surface i gg. and some d pitted; loss o crete scaling.	s <u>L</u> f	X	- · · · · · · · · · · · · · · · · · · ·
Surface Defe Low: Medium: High: Patches: Low:	Aggregate and b but has not prog of fine aggregate Aggregate and b rough and pitted coarse agg. Surface texture is coarse aggregate At most, low se	inder has begun ressed significa inder worn awa Loss of fine ag s very rough an ; looks like con verity distress c	a to wear away ntly. Some loss y and surface i gg. and some d pitted; loss o crete scaling. f any type.	s L s	Σ Σ	T
Surface Defe Low: Medium: High: Patches: Low: Medium:	Aggregate and b but has not prog of fine aggregate Aggregate and b rough and pitted coarse agg. Surface texture is coarse aggregate At most, low see At most, medium	inder has begun ressed significa inder worn awa Loss of fine ag s very rough an ; looks like con verity distress o m severity distr	a to wear away ntly. Some loss y and surface i gg. and some d pitted; loss o crete scaling. of any type. ess of any type	f L	<u>کم</u> اع	
Surface Defe Low: Medium: High: Patches: Low: Medium: High:	ects: Aggregate and b but has not prog of fine aggregate Aggregate and b rough and pitted coarse agg. Surface texture is coarse aggregate At most, low se At most, nedius Has high severit	inder has begun ressed significa inder worn awa Loss of fine ag s very rough an ; looks like con verity distress of m severity distr	a to wear away ntly. Some loss y and surface i gg. and some d pitted; loss o crete scaling. of any type. ess of any type y type.	s L s	کی اع	
Surface Defe Low: Medium: High: Patches: Low: Medium: High: Remaing Life	ects: Aggregate and b but has not prog of fine aggregate Aggregate and b rough and pitted coarse agg. Surface texture is coarse aggregate At most, low se At most, nedius Has high severit	inder has begun ressed significa inder worn awa Loss of fine ag s very rough an ; looks like con verity distress of m severity distr	a to wear away ntly. Some loss y and surface i gg. and some d pitted; loss o crete scaling. of any type. ess of any type y type.			

"Cheat Sheet for Surface Treated Roads"

<u>.</u>, ·

Source: Delaware Department of Transportation
May 1996

LOCAL SCREEN

			Dela	ware D	eportme	ent of Transpo	rtation		1.11	. 8 +
Eile Dis	trict S	earch	⊻lew	Help				v		ъ.
Overall Pav	ement Co	ndition ()ata for	North D	istrict					
Road	Name: 60	V. BACI	DN HEA	LTH CEI	NTER RD			Date Te	sted: 06-06	-1996
From	CANAL F	ID			Thru:	BRIDGE ACC	ESS RD			
Road	No Area	Cy	Dir	FC	Width	Construction Type				
0024	10	1	5	7	16	7131				
						3110-Surface	Treatment			±
Surfar Ride (ce Condition Condition:	1 3								
Remedy	2" HM	OVER	AY; 52	PATCH	ING		±			
Standard Comment	s ASR	present					*	E stimal Before	ed Life Rehab:	2 ±
Memo	POLK	TOWN	RD				2	Date L	ast improve	¢0596
	Uven	akiin tu	mmer o	1993						
	L				San	e <u>A</u> s Previous	<u>N</u> ext	Prev	Update	7

STEP 1. Change Construction Type, if necessary, by using the list box.

STEP 2. Click on Same As Previous button. NOTE: If the current road segment and the previous road segment use the same Data Entry screen (i.e., if they are both local segments), entries from the previous data screen are copied to the current screen. If not, you receive the message Local and Nonlocal Segments Cannot Share Values.

OR

Enter a numerical rating for the Surface Condition.

- STEP 3. Enter a numerical rating for the Ride Condition.
- STEP 4. Enter the Estimated Life Before Rehab in years (i.e., 0 to >5).
- STEP 5. Select a Remedy using the list box.
- STEP 6. Select up to three Standard Comments using the list boxes, if desired.
- STEP 7. Enter text in the Memo field if desired.
- STEP 8. Press UPDATE to save entries. Data Entry screen for next road segment appears.

Delaware Department of Transportation

3

Source: Delaware Department of Transportation

Road Rating User's Manual

May 1996

NONLOCAL SCREEN

-	65 N. H. K			Dela	ware [Departm	ent of Trainspo	rtation	·	11.	•	• =
E	e <u>D</u> istri	ct Sc	arch	Yiew	Help							
Öve	rall Pavem	ent Con	dition	Data for P	lorth D	istrict						
	Road Na	me: BID	DLES	CREEK R	D				Date Te	sted: 06-0	6-1996	
	From					Thru	RD 2A					
	RoadNo	Area	Сy	Dir	FC	Width	Construction Typ	æ				
	002	10	1	5	5	44	7101					
							3163-Surface	Treatmnt	On Hot N	lix On Su	rf T 🛨	
	Fatigue C	racking		Envi	on Cra	cking	Surface	Defects		Pat	ching	
ſ	None E	xtent		(None	Ext	ent	○ None	Extent	Ē	None	Extent	
æ	Low	ſι		(Low		ωĽ	C Low	сι	ſ	Low	C I	
C	Medium	СМ		🦳 Medi	um	СM	Medium	@ M	ſ	Medium	I	4
ſ	High	СН		(High		сн	(i High	СН	r	High	C I	•
	Remedy:	Fw/s	T 2 CO	URSES				±				
	Standard	PCC o	rackin	g at mid-t	lab			±	OPC S	Score:	3	
	Comments:	PCC o	orner	breaks				±	Estima	sted Life Rebabi	1	- III
		Drain	aae oo	or				±	D ate D	art Impro	red as or	<u>– – – – – – – – – – – – – – – – – – – </u>
									Date		0010336	u
	Memo:									4		
		—								1		
		L				Sa	me As Previous	Next	Prev	Unda	te	
								1 1000	1 2.00		<u> </u>	

STEP 1. Change Construction Type, if necessary, by using the list box.

STEP 2. Click on Same As Previous button. NOTE: If the current and previous road segments use the same Data Entry screen (i.e., if they are of the same pavement type), entries from the previous data screen are copied to the current screen. If not, you receive the message Pavement Types Different, Same As Previous Canceled.

OR

Rate the road conditions presented in dialog boxes using the radio buttons. You can tell which dialog box is active by the underscore of the name of the dialog box. Use the arrow keys to move between buttons; the <TAB> key to move between boxes. NOTE: If you use a rating other than NONE, you must select an Extent rating as well.

- STEP 3. Enter the OPC Score.
- STEP 4. Enter the Estimated Life Before Rehab in years (i.e., 0 to >5).
- STEP 5. Select a Remedy using the list box.
- STEP 6. Select up to three Standard Comments using the list boxes, if desired.
- STEP 7. Enter text in the Memo field, if desired.
- STEP 8. Press UPDATE to save entries. If the screen is complete, the Data Entry screen for next road segment appears. If not, you receive an error message, e.g., OPC Score Missing or Not All Ratings Have Been Chosen.

Delaware Department of Transportation

4

Source: Delaware Department of Transportation

Appendix C

Correlation of Pavement Family with Surface Type

Correlation of Family with Surface Type

		family classfication							
		rigid	composite	flexible	surface treatment	unimproved	unconve ntional		
surface type	graded and drained/unimproved					3			
	soil surface graded and drained/unimproved					128			
	surface treatment				1555				
	mix on surface /unconventional						22		
	surface treatment on hot mix on soil cement bas/unconvention						10		
	surface treatment on soil cement				46				
	low type bituminous/ surface treatment				9				
	hot mix on soil surface/flexible			226					
	hot mix on waterbound base of stone/flexible			719					
	hot mix on surface treatment/flexible			1662					
	hot mix on low type bituminous or sand asphalt/flexible			392					
	hot mix on soil cement base/flexible			42					
	hot mix on concrete/composite		3418						
	hot mix on brick unknown	1194		122					
	surface treatment on concrete/unconventional						4		
	how mix on surface treatment/flexible			10					
	concrete alongside surface treatment/surface treatment				5				
	concrete alongside hot mix/flexible			2					
Total		110/	3/18	3175	1615	131	36		

surface type * family classfication Crosstabulation

APPENDIX D

Crosstabulation of Structure Number and Pavement Type

Crosstabulation of Structure Number and Pavement Type

STRUCTUR * 1= rigid, 2= composite, 3= flexible Crosstabulation Count

		1 = rigid, 2 =			Total
		composite,			
		3= flexible			
		1	2	3	
STRUCT	.00000	1		30	31
UR					
	.32000			3	3
	.40000			1	1
	.60000			16	16
	.66000			2	2
	.80000		10	256	266
	.90000			10	10
	1.00000			12	12
	1.06000			1	1
	1.20000		18	566	584
	1.26000			7	7
	1.30000			3	3
	1.40000			5	5
	1.46000		9	15	24
	1.48000			4	4
	1.60000			95	95
	1.80000			1	1
	1.86000			12	12
	1.90000			3	3
	2.00000		5	32	37
	2.02000			1	1
	2.04000			13	13
	2.10000			9	9
	2.26000			9	9
	2.40000		1	36	37
	2.44000			5	5
	2.48000			14	14
	2.56000			7	7
	2.62000			8	8
	2.66000			18	18
	2.80000			21	21
	2.84000			4	4
	3.04000			1	1
	3.06000			6	6
	3.20000			6	6
	3.24000			4	4
	3.52000			35	35
	3.60000			1	1

3.68000		8		8
3.76000			10	10
3.92000			13	13
4.00000			13	13
4.08000			9	9
4.24000			32	32
4.32000			4	4
4.44000			12	12
4.56000			1	1
4.64000			10	10
4.88000			7	7
5.12000			14	14
5.20000		1		1
5.64000			2	2
5.68000			29	29
5.76000			1	1
6.40000			8	8
6.80000		1		1
7.00000		7		7
7.20000		17		17
7.60000		4		4
7.80000	15	48		63
8.00000	8	26		34
8.20000		114		114
8.22000		8		8
8.40000		64		64
8.60000		22		22
8.80000		55		55
9.00000	27	127		154
9.20000		145		145
9.40000		216		216
9.42000		1		1
9.60000		37		37
9.80000	36	40		76
10.00000		55		55
10.20000		154		154
10.22000		5		.5
10.40000		36		36
10.52000		5		.5
10.60000		85		85
10.80000		19		19
11.00000		6		6
11.12000	15			15
11.20000	10	8		8
11.40000		69		69
11.60000		47		47
11.80000		1		. , 1
12.00000		8		8
12.20000		4		4
		-		-

	12.90000		1		1
	13.20000		10		10
	13.80000		25		25
	17.60000		3		3
	20.60000		6		6
Total		102	1531	1437	3070