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CHAPTER I

INTRODUCTION

The analysis of the mixing which occurs in the tidal
reach of anAestuary<has.been:and continues to be of con-
cern to many scientists and engineers. For example, in
order to predict the behavior of a pollutant after it has
been introdﬁced into an estuary, a characterization of the
mixing to which the pollutant will be subjected is essen-
tial. Also, as first pointed out by O' Connor (1960),[l]
the prediction of the dissolved oxygen distribution in an
estuary involves the mixing process in a fundamental way.
Hence, 1in order to predict the effects of pollution load-

ings on the water quality of an estuary, a theoretical de-

scription of the mixing process is needed.

Another phencmenon which is a result of the mixing
process In an estuary is the intrusion of the salt water
from the mouth of the estuary. The presence of salinity
in the estuary makes it convenient to choose the concentra-
tion of salt as the dependent variable in an analysis of
the mixing process. Since the only signifioant source of
salinity is the ocean water at the'mouth of the estuary,
and since salt is a conservative substance, the only phe-
nomena which must be considered in an analysilis of the sa-
linity distribution are those phenoména associated with

the mixing process.
- 1 -



Depending on the nature of the mixing in the estuary
and the resulting distribution of saline water, estuaries

[2]

are classified into four categories.’ A "vertically well-
mixed" estuary exhibits no measurable difference in salinity
concentration between the surface and the bed of the estuary.
In a "slightly stratified" estuary a small difference in sa-
linity exists over the vertical direction. A "highly strati-
fied" estuary exhibits a large vertical variation in salinity.
And, finally, in.a salt-wedge estuary there is a clear inter-

face between the salt and the fresh water.{3]

The stratification in an estuary is due to the density
difference between fresh and salt water. As a result of this
density difference, density currents are present which aug-
ment the mixing caused by the tidal action and the non-uniform

4]

velocity distribution. Unfortunately, the structurse of the
mixing process due to the density currents must perforce be
a function of the salinity concentration. Hence only & non-

linear theory can account for this component of the mixing.

The degree of stratification can be used as a qualitative
measure of the relative importance of density currents in the
mixing process. If an estuary is highly stratified, then
large density gradients are present and it would be expected
that the effects of density currents in the mixing process
are lmportant. However, if the estuary is only slightly stra-
tified, then the density gradients are small and it would be
expected that other phenomens such as the tidal oscillation

are the predominent cause of the mixing. Even if the density
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currents play a role in the mixing proceés, for a small
variation of salinity concentration, the resulting change
in the structure of the mixing process can be shown to be
small by a linearization argument. Hence the degree of
stratification is an indication of the degree to which a

linear theory can be expsected to apply.

It will be assumed in the forthcoming analysis that
the estuary being considered is slightly stratified. Hence
the assumption that the structure of the mixing process 1s

not a function of the salinity concentration is reasonable.

In the next chapter a review and a critique of the
previous theories of estuarine mixing will be undertaken.
These theories are also restricted to slightly stratified
estuaries since the resulting equations which describe the
salinity distribution are linear in the concentration of
salt. The critigue will be based on the mathematical as-
sumptions that are made and thelr applicability to the

mixing process in an estuary.



CHAPTER II °*
PREVIQUS THECRIES OF ESTUARINE MIXING

This chapter discusses the previous propesals that
have been made for describing the mixing process in a
tidal estuary. The assumptions which heve been made are
examined in terms of the physical situation and their

plausibility is assessed.

TI-A The Convective Diffusépn Equation

Most of the previocus theories of estuarine mixing
have been based on the convective diffusion equation. It
is important to realize the assumptions which are involved
in the derivation of this eguation and in the final simpli-
fied equation which is actually used. Toward this end the
derivation given by Pritchard (1958)[5] for the equation
governing the distribution of salt in an estuary will be

outlined and the assumptions pointed out.

The basic equation of continuity for salt is:

(1) éi + _a (svi) = 0
ot -Sxi
where s 1s the concentration of =salt (masg/unit volume) ,

Vs 1s the component of the veloclty of water in the ith

direction of the right-handed coordinate system Xqs Xps g
and a summation on 1 18 understood. The molecular dif-

~h -



fusivity of salt has been neglected. Following Reynolds,
the velocity and salt concentration are expressed as a
time mean denoted by an overbar plus a fluctuation denoted
by a prime. The length of the time average is short rela-

tive to the period of the tidal cycle.

v. = V., + V.
i 1 Vi

(2)

S = -S- + s

Substituting these expressions in equation (1) and taking

a time mean results in:

(3) B 075 = -2 v
ot - Ox. OxX.
1 1

where t 18 now a time scale longer than the interval of
averaging. At this point a critical assumption must be
made about the nature of the flux term due to the average
of the product of the fluctuations. An analogy to molecu-~
lar diffusion i1s made and it is assumed that:

(L) v.'s' = _x =
T3
X -

1

Substituting equation (4) into equation (3) results in the
three dimensional convective diffusion equation:
(5) .5 & . 2 Ki‘@i}

ot &Xi &xi &Xi'
» It should be realized that equation (4) is not a defi-
nition of K, the turbulent eddy diffusivity. It is &
statement about a physical situation which may or may not

be true. It asserts a relationship between two Quantities
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vi*s’ and BE/SXiv which are both well defined physically

and, at least theoretically, can be measured independently.
Hence this equation is an assumption that such a relatlion-

ship exists., It is an assumption, however, which has been

guestioned by Batchelor and Townsend (1956)[6]:

... the usual argument, valid for molecular

‘diffusion, [is] that the flux of concentration is
proportional to the local concentration gradient.
Tt is essential for this argument that the change
in mean concentration over a mean free path be a
small gquantity, whereas in the case of turbulent
diffusion no such restriction can be assumed."

ITI-B The Redue%ion»of One Spatial Dimension

The solution of the three dimensional form of the con-
vective diffusion equation, with arbitrary velocity distri-
butions and turbulent eddy diffusion coefficients, is un-
known. In fact, as will be seen, even the one dimensional
form of this equation when applied to estuaries 1s still

too difficult to be solved analytically.

TIn order to obtain a one dimensional edquation it is
necessary to assume that Vs S5 and Ki are not functions

of Xy and Kg s i.e., that the estuary is sectionally homo-

geneous. For this case the resulting convective diffusion

equation is:

() Ly E

—E—

— vl = _J; .=_8=_.- JL A Kl _BE .\r
ot 8Xl A axl Bxl

where A is the cross sectional area. It is Iincorrect to
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“presume that this equation relates the average value of s
over a section to the average values of Vy ~and Kl, If
this equation is applied in terms of average values of v,
and s then:

"... no physical meaning can be attached to
the coefficient X... 1t merely becomes that func-

tion which when included in equation (6) allows

that equation to déscribe_properly the distribution

in time and space of the mean salt content."[7]

The two velocity components which are predominent in an
estuary are the fresh water veloclty, QT/A,»and the tidal
velocity, .QT/A,'where Q is a volumetric flow rate (volume/

unit time). Hence equation (6) becomes:

Qf QT(t) _ 1 o
S ECL

Even for a simplified situatlon, for example a harmonic tidal
veloclty, constaht fresh water discharge, simple geometry and
simple variation of K, as & function of Xlwand t, no.ana-
lytical solution is availlable for the appropriate initial and
boundary conditions. The primary analytical difficulty is
the harmonic tidal velocity and the consequent harmonic

variation of Ky which would be expected.

II-C The Tidal - -Velocity

Two different methods have been suggested to cilrcumvent
this difficulty. The first approach to the problem of the

fluctuating tidal velocity is to average over a tidal cycle

[8,9,10,11]1

as well ag over -the cross sectional area. This
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argument is meticulously carried out by Okubo (1964).[12]

He expresses the variables as a mean plus a fluctuation.
Cross sectional averages are denoted by the brackets < >
and fluctuations by a subscript d; temporal averages by

‘an overbar and fluctuations by a prime. The temporal
average 1s taken over a tidal cycle otherwise "for a time
scale small in comparison with one tidal cycle, the averaged
quantiﬁies would vary in time and space in ways too compli-

cated for easy analytic manipulation,"[13]

As 1n the case
of turbulent diffusion the flux terms due to the fluctua-
tilons ebout the cross sectional average ahd the tidal fluc-
tuations are relatéd to the gradient of the mean concentra-

tlor:

Bg f f
(8) f‘Kl g&’ = Vyp 8 o+ < V4 85 >
%1

The "effective tidal mean" velocity is given as the net

veloclity over the cross sectional area, averaged over the

SS‘ v, JA
_ _mé_ci_m_

A

tidal cycle:

(9) 7

This velocity is related to the fresh water velocity since
the harmonic terms in the tidal velocity tend to average

out over a tidal period. Hence the resulting equation is
substantially the one dimensional convective diffusion equa.~
tion for the concentration averaged over a tidal period but
without a tidal velocity term. However, two of the assump-

tions used to arrive at this equation are that the '"tidal
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fluctuations of the cross sectional area, concentration
and density are sufficiently small compared with the respec-

nlzhl o other words. the effects of the

tive mean values...
tidal oscillations and the fluctuations about the cross sec-
tlonal average are assumed to be swall. And secondly the
assumption embodied in the flux law (equation (8)) must also
be true. As a practical matter, however, the fluctuation of
salinity concentration over a tidal cycléjin the tidal portion
of an estuary is usually large relative to”the-mean[15’16]
and therefore cannot be regarded as a smaii fluctuation.
Hence 1f the convective diffusion équation is averaged over

a tidal cycle and the various terms due to the tidal fluc-
tuation are dropped, the equation cannot be expected to apply

to €idal estuaries.

The second approach to the analytical problem of the

tidal velocity is formally to ignore the tidal velocity term

[17,18]

completely in the convective diffusion equation. The

estuary is considered only at a progression of high or low
water slacks when the tidal velocity is zero. Harleman
(196&)[19] glves an explanation of this approach based on the

idea of a longitudinal dispersion coefficient:

"The time scale of equation (7) [is changed]
to one in which the smallest unit of time is the
tidal period.... In the new time scale the advec-
tive term can only account for fresh water flow
rate Qe.... The various assumptions which [have
been made] imply that K can no.ulonger be inter-
preted as the turbulent eddy diffﬁéivity...K is
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more correctly a longitudinal dispersion coef-
ficient which must account for 1. the dispersive
effect of the vertical velocity distribution 2.
the dispersive effect of the unsteady tidal veloec-
ity 3. the longitudinal dispersion due to density

gradients arising from the intrusion of saline

water from the ocean,..“[EO]

It is apparent, therefore, that the view expressed by
Pritchard with regard to the fluctuations about the cross
sectional average is extended by Harleman to include the
effects of the tidal velocity as well as the effects due
to the deviation from one dimensionality. It should also
be noted that tﬁe resulting concenﬁration.profiles are for
high or low water slack time only, and the concentration
profiles obtained for g time other than these slack times

have no physical meaning.

This is certainly a practical solution since the simpli-
fied equation can now be solved for.a variety of geometries
and functional forms of XK. Also, if a steady-state salinity
distribution 1s available; the diépersion coefficient can be
| egslily calculated[gl] and used to predict the salinity dis-
tributions at other fresh water flows. Furthermore the prob-
lem of obtalning enough data in order to compute averages

over a tidal cycle does not arise since only the slack time

distributions are considered.

It is not clear, however, that the arguﬁent'which justi-~
fies the use of the eddy diffusion coefficient can be used to

justify the concept of the longitudinal dispersion coefficient.
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The concept of eddy diffusion as employed in the derlvation
of - the convective diffusion equation in three dimensions -
states that the flux due to the fluctuations is proportional
to the gradient of the average concentration. This diffu-
sion law is conventionally employed in the analysis of heat
diffusion (Fourier's Iaw) end molecular diffusion (Fick's
Taw). 1In béth these phenomena the temporal and spatial
scales of the underlying fluctudtions are assumed to be small
relative to the gross phenomena being considered,[22] The
question is whether or not the same equation for flux i1s valid
when the temporel and spatial scale$ of the fluctuations are
on the same ordér of magnitude as the gross phenomena of
interest. This 1s the situation when the dispersive effect
‘of the tidal oscillation is included in the longitudinal dis-~
persion coefficient. The time scale of the fluctuation is

one tidal period and the spatial scale is one tidal excursion

length.

During one tidal cycle the net flux at a point Xy is re-

lated to the concentrations within one tidal excursion length,

0
and a new concentration distribution results at the next slack

L, of x.. Within this region the concentrations interact

time. There seems to be no a priori reason to suppose that
the net flux at x4 during the tidal cycle is related to the
gradient of the concentration at x, only since water with con-

centrations s(x) over a length x, — Lgx <x, +L can be

0
If during .one tidal cycle

0

expected to mix with water at Xy

the mixing is supposed to take place over a tidal excursion

length then a more general mixing law which relates concentra-
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tions at a distance must be used to describe the phenomena.
During an analysis of pollution in the Thames Estuary 23]
this point of view was adopted. It was also demonstrated
how the convective diffusion equation résults from the more
general law as a first approximation. The degree of approx-
imation depends on the length of the tidal excursion, that
is, the scale of the fluctuation. More precisely 1t depends
on how closely the flux term due to the fluctuations is ap-
proximated by the gradient of the mean concentration. Since
the tidal excursion length in an estuary is usually of the
same order of magnitude as the length over which the distri-

L2k ] the convective diffusion

butions of interest extend,
equation, when interpreted in terms of a longitudinal dis-
persion coefficlent and slack distributions, is not an ade-

quate representation of the tidal mixing In estuaries.

IlfD‘ Other Theories of Estuarine Mixing
25]

Ketchum (l951)[ has proposed a model for the tidal
mixing in an estuary which is based on the physical charac-
teristics of the estuary. He divided the estuary into seg-
ments whose lengths are the average excursion of a particle
of water on the flooding tide. He then proposed a mechanism
of mixing during each tidal cycle: At high tide the water
wlthin each segment mixes completely; then there is an ex-
change between adjacent segments during the ebb tide. The
exchange coeffiggents are given by the ratio of the inter-

tidal volume to the high tide volume.
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This theory is quite ambitious in that it attempts to
predict the mixing phenomena to be expected from the physi-
cal characteristics of the estuary alone. The theory has
been used to compute the equilibrium salinity profiles in
the Delaware and Thames Estuaries but these calculated dis-
tributions do not agree with the observed distributions.[26]
Howevepr, this theory was the first attempt to describe the
nature of the mixing process in a tidal estuary and as such
wvag & significant improvement over the previous tidal prism

theories,

The evident complexity of the mixing process in an es-
tuary led Preddy (l95h)[27] to propose a less ambitious
theory but one with more chance of success than Ketchum's
~ atbtempt. His idea was to specify the form of the one cycle
distribution function. Specifically he assumed that for a

unit amount of water at x,, after one tidal cycle a propor-
tion PE(XO) of the water would be spread uniformly a dis-
‘tance L 1In the seaward direction, and a proportion P, (x,)
would be spread uniformly in the lendward direction a dis-
tance 1L, and 1 —-PQ(XO) -P1(XO) would remian at x,.
He then applied two continuity laws:

"(1) During any period the net amount of salt

carried upstream past any point is equal to the

amount present above this point at the end of

the period, minus the amount present at the

beginning....

"(i1) The volume of water carried upstream past

simllayp Gonditio_n."[ZS]
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These conditions when expressed mathematically resulted in two

-integral equations in Pl(x) and PE(X):

L
(1) SLS(X)A(X)PE(X) LX gx + S‘ S(X)A(X)PI(X) X gx
0 L o L
(10) , = @ s(o) + 8
. 5y
10§ a0zt I ax + { aeor 0 BEax - o
0 L o L

where & i1s the net accumulation of salt above x = 0 and
Q is the fresh water flow. Equation (i) was then averaged
over all the tidal cycles for which there is data. The in-
tegral equations were solved by approximating Pl(x) and
PZ(X) by linear expressions in x and solving the resulting
simultaneous linear equations by relaxation. Greater accuracy
was achieved by using quadratic functions as approximations
to P, and P,. The distance I 1is spscified & priori. It
should be of the same order of magnitude as the average tidal
excursion distance. However:

"If the values of L taken lead to calculated

values of P+ Py which are greater than unity...

it follows that the mixing in this section is

substantial over a greater distance than the as-

sumed value of I,. Hence 1L should bte Iincreased

in this section and the values of Pl and P, are

. 2
exceedingly small... 1t is better to decrease L

and recelculate P, and P2°n[29]

Once Pl(x) and Pz(x) are known, they describe the

mixing phenomena completely. Preddy used this formulation to
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predict the change in the salinity distributions in the
Thames FEstuary under varying fresh water flows. The re-
sults compared very well with the measurements taken.

This formulation was also used in an extensive analy-

sis of the pollution distribution in the Thames. 3’

For
this analysis, however, the estuary was segmented and the
mixing parameters were averaged over each segment. It will
be seen in the following chapter that Preddy's theory is
more naturally expressable in a discrete spatial domain.
Perhaps the unwisldy nature of equations (i) and (ii) and
the resulting relaxation formulas explain in part, at least,
the fact that this theory has not found favor among workers
interested 1n the gnalysis of the mixing process 1in an es-
tuary. However, thils type of approach has been recognized

as a fruitful area for further investigation.[3l]

There are some objections which can be raised immediately
with regard to the a priori nature of the structure of the
theory. The form of the one cycle distributicn function was
chosen because of 1ts simplicity. Preddy claims that:

"...it is not possible to calculate the exact shape of the
{distribution] curves from the consideration of the salinity

balance during a long time..." [32]

Perhaps not, but it will.
be shown subéequently that a much better estimate can be

made on the basls of the salinity proflles availlable. Also
the status of the length 1L 1is in doubt. It too is specified

a priori gnd this is another assumption which adds to the un-

certainty about the correctness of the procedure.
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Nevertheless the approach taken by Preddy with some
important medifications and a change in mathematical
setting forms the basgsls of the theory of estuarine mixing
to be presented in the following chapters. In the light
of ‘the objections which have been ralsed to theories based
on simplified versions of the convective diffusion equa-
tiong, it is appropriate to adopt instead the point of
view expressed by Preddy as the foundation for a theory

of estuarine mixing.



CHAPTER ITT
MARKOV CHAIN REPRESENTATION OF MIXING IN ESTUARIES

In this chapter the theory of Markov chains will be
applied to the analysis of the mixing process in an estu-
ary. The conservation laws which any mixing process myst
satisfy in order to be physically meaningful will be deriv-
ed, These conservation laws can be readily interpreted in

termeg of the properties of a Markov chain.

;II~A‘ Preliminapies

The theory of Markov chains has proved to be a useful
tool for the theoretical and computetiohel analysis of dif-

‘fusion_phenomena.[33]

In particular the analysis of random
' walks, for which the particle is constrained to move only
- to adjacent states during a unit time Interval, has been

[34) g

used to model the convective diffusion equation,
“usual procedure 1s to assume a priorl the structure of the
transition probabillity matrix and then, starting with an

Initiael distribution, compute the succeeding distributions.

It 1s interesting to note that the random walk 1s the
discrete analog of the diffusion equation. More general
Markov chains, which allow transitlon to any state during
the unit time interval, are capable of describing more gen-
eral mixing processes. Thls increase in generallty 1s one.

reason that a Markov chalin discription is chosen for the
‘ .
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present analysis of the mixing process 1in an estuary.

A second reason for choosing a Markov chain is that
there is an interval of time, the tidal pericd =, which
usually separates the data. It is necessary, therefore,
to relate conditions at succeeding slack water times.
For the sake of clarity 1t i3 assumed that the slack
water time at which the data is available is the high
water slack. With discrete time intervals between the
distributions the natural mathematiéal setting is within

the framework of the theory of Markov chains.

Unfortunately a Markov chaln relates the concentration
only at discrete states so that the estuary must be seg-
mented into discrete volumes. Hence the theory will at-
tempt to relate the concentration of salt between discrete
volumes of the estuary at successive high water slacks.

In order to specify a definite concentration in each seg-
ment, it is assumed that the concentration of salt is es-
sentially uniform within esach segment. This assumption

can be made more or less physicaelly consistent with the

facts by choosing the appropriate size segments. For the
sake of simplicity a one dimensional segmentation of the
estuary will be made. It will be clear subsequently that
the theory is not limited to a one dimensional gnalysis. .
The segments are numbered sequentially in the downstream

direction and the volumes at high water slack are v v

1’ Te?

ches W

N for the N segments.

The mixing process will be thought of as belng the re-

sult of two phenocmena: tThe fresh water flow; and the mixing
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associated with the tidal oscillation. The mixing due to
~the tidal oscillation will be represented by the following

mixing parameters: Let i< be the ratio of the volume

L J |
of water which is transperted during one tidal cycle to
segment 1 from segment J, to the total volume of segment

J- Then it is true that
(11) 0 <p;. <1 i=1,...,N; J=1,..., N

It will be assumed that these parameters do not vary from
tidal cjele to tidal cyecle. Iet P Dbe the mixing matrix

with elements The mixing matrix fepresents the tidal

pij' |
mixing in the estuary and its numerical evalpation is the

object of this apalysis.

III—B"The Conservatiop Iaws

In order for the mixing process to be physicglly mean-
ingful éertain conservation laws must be satisfied; These
laws impose certain restrictions on the mixing matrix P.
-The laws are conservation of water, conservation of the

estuary.geometry, and conservation of salt.

Conservation of water states that during a tidal cycle
all the water from segment Jj must go to either another

segment or remain in J. Hence 1t must be true that:

\J
(12) ZZ pkj =1 J=1,..., N
k=1

In terms of the theory of Markov chains, a matrix which
satisfies eqguations (11) end (12) is a transition probability

matrix.
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The conservation of the geometry of the estuary requires
that there be no net accumulation of water upstream from any
- segment boundary over one tidal ceycle. This is condition
(i1) as given by Preddy. If this condition is not fulfilled
then it is possible that during the tidal cycle there is a
net migration of water across a segment boundary. This mi-
gration of water would change the water level in the estuary.
But it is a physical fact that the water level in an estuary

is constant at successive high water slack times,

The following theorem gives a more suggestive formula-

tion of this conservation law.

Theorem: There is no net accurmulation of water upstream

from any segment boundary if and only irf
(13) Pv = v

Proof: Let ¢ be the boundary between segment k - 1 and
- segment k. In order to evaluate the net transfer across o
during one tidal cycle, consider a segment 1 upstresm of
¢ and a segment # downstream of ¢. Then the volume of

water going into 1 from & is Hence the total

PipVu-
volume of water going into 1 from segments downstream of

¢ is:
N
=K

By the same argument the total volume of water leaving seg-

ment 1 and going downstream beyond ¢ is:

, N
Y=K
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Hence the net transfer upstream into 1 across ¢ from

all segments downstream of ¢ is:
(26) | }:mlw D)

And finally the net transfer upstream across ¢ during

one tidal cycle is:
' k

1

I\
(27) Z By, = Puy¥y) = O

”L\/i

which must be zero by hypothesis. Interchanging the order
of* summation and using equatiom (12) in the first term

gives:

N
(18) E: Vﬁ(l'“ E: plu)'* E; }; PuiVy = O
However the segond term in this equation can be rewritten
ast

N X k-1
oo Lo b - L L

H=k

by interchanging the order of summation and adding and sub-

tracting Zk -1 1 PV But the second term on the right-hand

hRAT
side of equatlon (19) is the same as the third term in egqua-~-

tion (18). Hence equation (18) becomes:

(20) EZ ;Z PiwVp = O

I=k u=1

or

S P

1=k foss |
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If this equation is true for a boundary at k it must also

be true for a boundary at k + 1. Hence:

N - N
(22) EZ L Vi~ Ez PipVu J = 0
i=k+1 w=1

and subtracting equation (22) from equation (21) gives:

N
(23) E: S
=1

oince this equation is true for an arbitrary k, it is true
for all k =1,..., N. In which case, equation (23) can be

expressed in matrix form:

b

where P 1s the mixing matrix and v 1is a column vector

wilth elements Vi - Hence the theorem is proved.

In order to interpret this result it is necessary to
realize that multiplication by the mixing matrix P 1s the
operation which converts the volume distribution at time
nt to that which is expected at time (n + 1)7t. This fol-
lows directly from the definition of P. Hence equation (24)
states that if v 1s the observed volume distribution of
water in the estuary at high water slack, then the mixing
caused by a tidal oscillation must produce the‘same volume
distribution at the next high water slack. This is exactly
the intuitive meaning of conservation of the geometry of

an estuary.
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In terms of the theory of Markov chains, this conser-
vation law gpecifies the equilibrium distribution of the
chain P. That an equilibrium distribution exists is guar-
anteed if éertaim structural conditions are fulfilled.[35]
However a sufficient analytical condition on pij is that
pij >0 Tfor all 1 and j.[36] A less stringent sufficient
condition, called the case of Hostinsky, guarantees the
existence of an equilibrium distribution if the elements of
the main diagonal and the two adjacent off diagonals are

1371

greater than zero. It will be seen that these conditiéns

"suffice for the present analysis.

The law of conservation of salt will be derived from
the following observation. If the fresh water flow rate ¢
is constant over many tidal cycles, then the salinity distri-
bution in the estuary will reach an equilibrium distributipn.
Under this condition there can be no net accumylation of

salt above any segment boundary.

In order to express the law of conservation of salt
mathematically, the mixing process which affects the salt
must be considered. The water in each segment contains a
certaln amount of salt and this water is mixed with the
_water in the other segments by the tidal action. However,
the water in each segment is also affected by the fresh water
flow. Hence, strictly speaking, the mixing parameters pij
are functions of the fresh water flow. However this depend-

ence is unknown and it has been assumed that P is only a

result of tidal action. In order to incorporate the effect



-2l

of fresh water flow, another matrix will be used whose ele~
ments are functions of the flow rate. It will be aséumed
that the only effect of the fresh water flow is to translate
the water downstream. Let qj be the volumetric flow rate
entering segment j. Then during a tidsal pericd T the
fresh water volume entering segment J 1s d.7. Assuming

J
that:

(25) q.7T < V,
. . .th .
the proportion of water left in the ] segment is 1 - qu/vj

and a proportion qj'r/vj moves tc segment j + 1. Hence

let:
q.,T
(26) t, . = L — 9 j <N
J2 v,
J
and '
4.7
2 - . = _d

For all other elements in column j:
(28) t.,., =0

For Jj = N, the last segment, let:

(26a) B,y = 1
and
(28&) tiN:O izl;---)N—l

Define T(g), the translation matrix, to be the matrix of

elements tij‘ It 1s a function of the vector g with com-

ponents 4y the fresh water flow rates,
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The definition of T(g) is easily extended for the case

when equation (25) is not satisfied.

The edge condition which has been assumed at segment N,
is that no fresh water leaveé segment N by translation.
Although this condition is not physically justifiable 1t 18

made in order That:

(29) E: tkj = 1 j=21,..., N

k=1
This equation is also satisfied by Dy Hence there is no
transfer of water, and hence, salt, either out of or into
the finite length of the estuary being analyzed by either
the tidal mixing or the fresh water flow. This is a simpli-
fication of the actual boundary condition which should be
applied at segment N. As a practical matter, it will be
shown in Appendix I that if segment N 1is at a point far
enough downstream so that the salinity concentration is at
the ocean value, then this simplification 1s of no moment.
The inclusion of a reallstic boundary condition would com-
plicate the analysis considerably since the matrices would

no longer be transition probability matrices.

The composite effect of tidal mixing and fresh water

flow will be given by the mixing process:

(30)

g
3

(q)

That is, the water is translated first by T(g) and then
mixed by tidal action. These processes occur simultaneously

and, as remarked earlier, P should be given as a function
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of g, that is P = P(q). It is hypothesized therefore that

the dependence of P on d is given by:

(31) P() = PT(Q)

The expression for the law of conservation of salt at
steady state follows from an argument which is identical to
that of the preceding theorem. The result is that for an
equilibrium salinity distribution, s8v, at a fresh water

flow g, it must be true that

(32) PI(g) sv = sv

where gv 1s the vector with components (si*vi) and 85
is the concentration of salt in segment 1. Since :gg(g)
is the transition probability matrix which affects the sa-
linity distribution, this theorem states that the distribu-
tion gv dis the equilibrium distribution of the Markov
chain EE(Q)' Furthermore, for any given salinity distri*‘
bution sv(nt) at high water slack time nt, and for a

fresh water flow rate g

9, during the subsequent tidal cy-

cle, the resulting salinity distribution gy[(n+l)f} is
given by

(33) PT(g.) sv(nt) = svi(n+l)r]

n
Hence the three conservation laws require that the fol-

lowing three equations be satisfied:
N

(34) ) P = 1 J=1,..., W
k=1

(35) Pv = v
(36a) PI(q) sv = sgv
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or

(36D) 'Ezﬂgn) sv(int) = svl(n+tl)T]

Fauation (36a) applies if the available salinity distribu-
tion is an equilibrium distribution whereas equation (36b)
applies for any two successive distributions. ZEquation (36b)
can be averaged over all the available salinity data in or-
der to give more statistically reliable: coefficients in

the equation.

Together equations (34), (35) and (36) specify 3N linear
constraints which the N by N matrix P must satisfy.
However for N > 3, N° > 3N. Therefore there are more un-
known pij’s than there are linear equations (34), (35) and
(36) . Hence there are an infinite number of possible so-
lutions P which satisfy the conservation laws. The prob-

lem which must be solved 1s which of these matrices is most

appropriate.

In this context, Preddy’s solution of this problem in-
volved limiting the number of unknowns to 3N by specifying
a priori the structure of the matrix P. He assumes that

the jth column of P is given in terms of two unknowns aj

and B.:
J
for i > j, li—jl<Lj
Pij = 9%
for j > i, |i—j|<Lj
Pij = B
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. . = 1 — O, — .
Pij 3~ Py

and for |1 - j| > Lj

where Lj is also specified a priori. Lj is the distance
over which the one cycle distribution extends upstream and
downstream from segment j. Equation (34) has been satis-

fied by the definition of Dy Equations (35) and (36)

i

are then used to solve for the aj’s and Bj’s.

The difficulty with this solution is the arbitrary na-

ture of the assumptions used to make the problem solvable.

In the next chapter a more rational approach will be
presented which bases the choice of P from the infinity
of possibilities on the maximum entropy principle of in-

'formation theory and statistical mechanics.



CHAPTER IV
THE MAXTIMUM ENTROPY ESTIMATE OF THE MIXING MATRIX

In thisAchapter the maximum entropy estimate of the
mixing matrix will be discussed. The use of the maximum en-

tropy estimate of a discrete probability distribution has been

[38]

Justified by Jaynes in terms of a subjective interpreta-

tion of the concept of probability. He has applied these

[39]

ideas to problems in statistical estimation theory and to

[4o]

conceptual problems 1n statistical mechanics.’ The appli-
catlion of the maximum entropy estimate to Markov chains Iin
general and to mixing processes has not previously been at-

tempted.

IV-A Statistical Mechanics and the Maximum Entropy Estimate

In order to arrive at a more acceptable theory of
tidel mixing in estuaries, the choice of the mixing matrix Za
must be based on some rational estimation procedure. The es-
timation problem may be stated in geometrical terms. There

are N2 unknowrn pij to be determined. A particular value of

these N° unknowns can be thought of as a point in N dimen-
slonal Euclidean space. This point is within a unit hyper-

cube since each Pi is bounded between ¢ and 1. However, the

J
conservation laws specify 3N independent linear constraints.

Hence the admissible pij’s are restricted to a NZ— 3N dimen-

sional linear menifold of the N2 dimensional space. Within
-29-
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this manifold there is no a priori reason to prefer one point
over another. Hence a reasonable procedure is to take the
average value of all the F’s in the linear manifold giving

equal weight to each point. The resulting average P sat-

—

isfies the requirements of the conservation laws and it does
not have any property that is not shared by the majority of

all the possible processes.

Another reasonable way to estimate P is to find

the most probable P in the linear manifold.

Both thesé calculations can be carried out for a
simplified situation and the results of the analysis of the
simplified situation will point to a technique which can be
generalized to include situations where the probabilities are

specified by a Markov chain.

Consider the following situation: at high water
slack M particles of dye are introduced into g particular
segment k of the estuary. This segment is thought of as
fixed. At the next high water slack only the first moment
about the midpoint of segment k of the resulting distribu-
tion is measured. The problem is to find the most probable
distribution consistent with this data.. For the sake of sim-
plicity, only the tidal action will be considered. As before,
let Piye be the proportion of water and hence dye that is
transfered to segment 1 from segment k. Iet my be the
number of dye particles that are transfered segment 1 from

segment k. Hence Py is given Dby:
m,

(36) Py =
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The law of conservation of water and therefore of dye re-

duires that:

N
(37) E: m, = M

The available data is the first moment of the one cycle dis-
tribution function about the midpoint of segment k and is

denoted by ¢7k, that is:

N

ik my
(38) My = 1;1

b .

i=1 E

The other conservation laws (equations (35) and (36)) are
also neglected for the sake of simplicity.

Following Jaynes,[ul]

the method of Bultzmann will
be applied to find the most probable distribution {m;}. Con-
sider all the possible arrangements of the M particles of
dye in the N sggments. That is, particle number 1 can go
to any segment 1 through N, particle number 2 can go to any
segment 1 through N, and so on up to particle M. There

are NM

such possible arrangements of M particles in the
N states. Fach of these NM arrangements cowresponds to a
final distribution of particles, My, Mgy eee, M- However,

many different arrangements of the M particles can result
in the same final distribution since the particles are in-

distinguishable. For example, the distribution m, = M/2,

1
My = M/2, Mys Mys.eee, My = 0 can occur if particles 1
through M/2 go to segment 1, and particles M/2 + 1 through

M o to segment 2; or vice verse; or if odd numbered
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particles go to segment 1 and even numbered particles go to
segment 2, and so on. In fact, if W{mi} is the number of
ways M particles can be distributed in N segments, with
my particles in segment 1, 1 = 1,..., N, then by a combi-

natorial argument:

(39) Wim,} =

There 1s no a priori reason for favoring any one of
the NM possible arrangements of particles except that the
resulting distribution must satisfy equations (37) and (38).
Within this subset of arrangements, then, each possible ar-
rangement has an equal probabllity of occurring. The mbst
probable distribution {mi) is that which is realized Dby the
greatest number of possible arrangements. This 1s true be-
cause theprobability ofva. paPthﬂlal’ldlstrmbll@ltﬁn}msthbhsum
i oflthe probabilities of all the arrangements which result in
this distribution. Hence, in order to find the most probable
distribution W{mi} must be maximized subject to two con-
straints specified by equations (37) and (38). Maximizing
1/M log W 1is equivalent to maximizing W since the logarithm
is a monotonic function. The logarithm is chosen in order
that Sterling’s approximation for the factorial can be em-
ployed. Using Sterling’s spproximation and equation {(37)

yields:
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M .

=3 log W{mi} Zlog M -1 - L Z (ml log m, - mi)
M L
, ]

N
~ L1 1
(%0) ‘ =}% E; nﬁ_log M- = E; m; log my

. .
m. - m,

= . . Z _,_.J;]_og _}_
i=1 M M

as M= w. 8o the most probable distribution is found by

maximizing
N

(41) - }: p; log py
1=1

‘subject to the constraints:

N
() Y p o= 2
1i=1
N
(43) Y -kl =7,
i=1

where the my have been replaced by Py according to equation
(36), and the subscript k has been dropped since k is

fixed in this illustration.

The constraints can be inéorporated into the theory
of maxima and minima using the lLagrange multipliers X and

k. Hence finding the unconstrained maximum of':

N N N :
(44) =) pylogpy—n) By —w) |i-klp
1=1

1=1 ' i=1

by taking the partial derivative with respect to ps gives:
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()-P5) pj_ _ e—K'—H’i-k{

'

when A= x ~ 1, The lLagrange multipliers are evaluated

using the constraint equations (k2) and (43).

' N 1 .
(46) Z 6—7\. —H'l-—l{l = 1
i=1
N

, A —p ik
D T N R L
i=1
The resulting pi’s are the most probable mixing parameters

which account for the first moment which was observed.

It 1s interesting to note that the most probable
distribution can be found by maximizing the function
—-Z?:l p; log p; subject to the appropriate constraints.
This function is known as the entropy of the distribution
{pi}. Therefore, within the context of this illustration,
the constrained maximum entropy estimate is the most probable

distribution consistent with the available data.

Ancther technique which is used in statistical
mechanics and which leads to the same results as the method

of Boltzmann is the Darwin-Fowler method.[ug]

Instead of
finding the most probable distribution as M — «, the Darwin-
Fowler methodlcan be used to compute the average distribution
over all the possible distributions. For a particular dis-
tribution fmi}, W{m,} is the number of ways it can occur.

Hence the average value of mj, denoted by < mj >, is given

by:
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' m, Wlm.)
{mi} J +

(48) < m s > =

{ét} W{m, }

1
where the primed summation indicates that the sum is taken
over only those distributions {mi} which satisfy the con-
straints, equations (42) and (43). The results of the cal-
culation show that the average over all possible distribu-
tidns is the same as the most probable distribution, equa-
tion (45), as M = . The variance of m, can also be
calculated. The result, in terms of pj is that:

_

2 2 ‘ 1
(Lo9) < Pj > = < pj >7 = E{ [ 1o+ O( i )] .

Hence the variance of pj also goes to zero as M — «». That
the variance of 1°F is small for the large M dindicates that
the probabllity of the observed results having been produced
by a distribution other than {pj} is very small.

 Hence, for this illustration, s second interpreta-
tion of the maximum entropy estimate is given by the Darwin-
Powler method: the maximum entropy estimate of the distri-
bution {pi} is the average of all the distributions consistent

with the constraints.

Therefore for this simple case, when only a simple
discrete probability distribution {pi} is considered, the
average distribution over the manifold and the most probable
distribution in the manifold can be calculated. The resulting

distribution is the maximum entropy estimate consistent with
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the oonstfaﬁnts.’ In order to generalize this result to
Markov chains, the meaning of the entropy of a probabllity
distribution must be understood. This is considered in the

next section.

IV-B Information Theory and the Maximum Entropy Estimate

Another point of view may be adopted as to which
P to choose from the infinity of possibilities. The most
desirable P would be the one which is "maximally non-

wlW31 1) Gther

committal with regard to missing Information.
words the P wilth the most random character possible, with-
in the limitations of what information is available, is the
most acceptable cholice. What is needed, therefore, i1s a
measure of the "amount of uncertainty' or the randomness

represented by a mixing process.

Suppose a mixing process tends to smooth out irregu-
larities and does not favor any particular segment too strong-
1y over any other segment. Then it tends to randomize what-
ever initial distribution it mixes. In the extreme case;
if after one tidal cycle the water from any segment is dis-
tributed uniformly over all the segments, then this process
has no preference for any segments. Hence it behaves in an
entirely random fashion.and the measure of 1ts randomness

should be the highest possible.

On the other hand, suppose a mixling process leaves
everything unchanged. The distribution is the same after
the tidal cycle as before. Thén this process does not ran-

domize the initial distribution at all. In fact, this process
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behaves 1n a deterministic way. There is no randomness
assoclated with the process since the outcome is certain:
all the water will end up in the same segments from which
it started. In fact, any mixing process which Jjust trans-
fers the entire contents of.a.state into another state is
a deterministic process. Therefore the measure of the

randomness of such processes should be zero.

The problem of the appropriate measure for the
amount of uncertainty represented by a discrete probability

[hl] The

distribution {pi] was solved by Shannon (1948).
result is the entropy H of the probability distribution

where;

N
(50) H = ~—§2 p; log p;
=

In the case of a Markov chain, the entropy can be defined in
the following way:EuS] for a particle initially in segment ],
the probability distribution that is expected after one tidal

cycle is {p..}. Hence the entropy of this distribution is:
1J

I,
1] H. = — . . s
(51) H, ZJ P;; 1og py;
i=1

However, the probability of a particle being in segment j

to begin with is the equilibrium probability of the j™ seg-
ment. This supposes that the chain is in equilibrium, i.e.,
that the mixing process has been operating for a long time.

Fortunately, one of the conservation laws, equation (24),

specifies that the equilibrium distribution of the Markov
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chain must be proportional to the volume distribution V.
Therefore the entropy of the entire process can be defined
as the average of Hj taken over the g@gment J  from which
the particle starts, weighted by the probability that a
particle is there to begin with. That is the entropy H

of the Markov chain P is defined as:

N : N
), vy ) gt
2 = - . - . .
(52) H Vs Z p; ;5 log Dy
N
o= . VQZ v .
(53) vy 5/ .
k=1
where v.' is the normalized volume.

J

Since the entropy of a Markov chain is a meagure of
the randomness of the mixing process it descrilbes, a reason-
able cholce for the mixing process in an estuary is the pro-
cess which has the maximum entropy among all those that sat-
1sfy the conservation laws. The maximum entropy estimate
tends to favor the most random mixing possible consistent
with the available data. None of the mixing parameters are
set to zero g priori. 1In fact the maximum entropy estimate
tends to choose the broadest one cycle distribution functions

consistent with the data.

As an illustration of the type of processes which a
maximum entropy estimate produces, consider the maximum en-
tropy mixing process which satisfies only the law of conser-

vation of water, equation (12):
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(54) E: pij = 1, J=1,.,., N.

The maximum entropy estimate constrained by this requirement

is found by introducing the Lagrange multipliers kj and

maximizing
N N N N
) — _— . R ALY D s
(55) Z Y3 Z Pij 108 Py z j z PiJ
j=1 i=1 j= i=1
with respect to pij° The result is:
N
- _d -1
- V1
(56) Py = © J

Evaluating the xj using equation (54), the resulting maxi-

mun entropy mixing process is:

(57) pij =

This process distributes the water from segment Jj uniformly
over all the segments in one tidal cycle. It is the process
which was suggested previously as the most random process
possible. However this process violates the law of conserva-
tion of estuary geometry since the equilibrium distribution

of this chain is a uniform volume distribution and the estuary

may not be ofvsuch a form.

As a second illustration of a maximum entropy process,
consider the maximum entropy process which satisfies both con-
servation of water and the conservation of the estuary geome-

try, equations (12) and (23):
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N
(58) z pij = 1 J =2 > N
i=1
(59) Pyy Vy = Vs i =1,..., N
j:l
Introducing the lagrange multipliers xj and by and
maximizing:
N N N N
60 ﬁiiv.z R .._ZAH§:..
(60) 3 P;4 1og Py ] Py 4
N N
-—Z "1 Z Pij V3
i=1 j=1

(61)

where xj' = xj/vj+ 1. Evaluating the xj‘ end u,; using

the constraining equations (58) and (59) yields:

(62) A

It is interesting to note that the pij’s which result are
not functions of j. Hence no matter what segment J 1is
considered after one tidal cycle the water in segment J 1s
distributed in proportion to the volume of the estuary.

This mixing process tends to favor those segments with larger
volumes, but only to the extent required to maintain the geo-

metry of the water in the estuary.
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Now consider the composite process Ezﬁg).' For any
initial distribution of salt mass sv, the resulting mass of
salt in segment 1 after one tidal cycle 1s found by multi-
plying sv by .Eg(g). Using Pj 3 as given by equation (62),

th

and denoting the k= cwmponent of 8v by (sv)k, the mass

of salt in segment 1 1is found to be:

N
gi v, N k;l (SV)K
i _ k=
(63) ), —E— ) e =vy £
J=L 5 Vz k=1 5 v)@
£=1 £=1

since by equation (29):

(65) Z b = 1

j=

The concentration of salt in segment i 1is found by dividing
the mass of salt in segment 1, equation (63), by the volume
of segment 1i. Hence, the concentration of salt in segment

i after one tidal cycle 1is:

N
)y (Sv)k
(65) k=1 _ total salt mass in the estuary

N total volume of water in the estuary

zzl Vs

That is, the concentration of salt in any segment 1, 1 = 1,.
N, of the estuary is uniform. So the maximum entropy process
predicts a uniform concentration of salt in the estuary re-

gardless of fresh water flow or initial distribution.

This is a perfectly plausible result since any other

distribution tends to favor some segment over the other seg-

L ey
RIS AV
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ments and there is no information in the two conservation laws
which would lead one to believe that a more specific, l.e.,

less uncertain, mixing process is actually the case.

The situation of practical interest i1s, of course,
the maximum entropy estimate constralned by the three conser-
vation laws in which the information contained in the actually
observed salinity distributions is incorporated into the max-
imum entropy estimate. This situation will be considered in

the next section.

IV-C The Maximum Entropy Estimation Equations and Their

Solution.
The three conservation laws, equations (34), (35) and
(36), represent the information which will be'inworporated into
the maximum entropy estimate. For the sake of definiteness
the equilibrium version of the law of conservation of salt,
equation (36a), will be used. It will be more convenient to

consider these equations in component fdrm:

N
(66) ) by =1 =1, W
i=1
N
(67) E: pij Vj = V. i=21,..., N
J=1
N N _
(68) E: Py E: tjk(sv)k = (sv)i, li=21,..., N
j=1 k=1

Define the vector y with components Tj as:



(69) Tj = E; tjk(sv)k
k=1

Then y 1s the result of translating the salinity vector sv

by T(d). Hence equation (68) becomes:

(70) E: pij Yj = (SV)i i=21,..., N .

j= |
The maximum entropy estimate of P subject to the 3N linear
constrainﬁs, equations (66), (67) and (70) is found by maxi-
mizing the following expression with respect to %

(71)
N

N N N N N

_ . . =) A, - CY p. v,
E; V3 E: Pyj 108 Dy Ez j Ez Pij Ez "1/ P17y
J:

i=1 j=1 i=1 i=1 j=1

N N
“Z Y1 Z Pig 73
=1 j:l

The xj’s, ui’s and vi’s are the Lagrange Multipliers for

the constraining equations (66), (67) and (70) reSpectlvely

Hence the maximum entropy estimate of le is:
V. N ‘r
2 i 1 L YJ
where _ ii _1
V—?
(73) xj' = e I
—M.
' . - 4
(74) w'o= e
(75) v, = 1./v.
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The Lagrange multipliers are determined from the constraint

equations (66), (67) and (70).

I _ -viY.f

(76) 2 ST J = 1 j=1,..., N
i=1
N oyl

(77) Ez xj“ivj e T = v i=1, , N
j=1
N “v.yv.'

(78) Ez xj“ivj e +J = (sv)i i=21,..., N
J= |

where the prime has been dropped from %j' and uj' for con-

venience. These equations are a set of simultaneous trans-
cendental equations in the 3N unknowns xj, My and vi for
‘which no general solution is known. Hence a numerical tech-

nique must be devised in order to proceed to a solution.

Fortunately these equations are not as strongly
coupled as they appear to be. Equation (77) can be solved

for by directly.

(79) b, = =

N V.Y ;
5 itk
2 MV ©

Substituting this expression into equation (78) yields:

il vy VLT
(80) }: > _ v, e Ld 2 (sv)
N —ViYk

j= LNV, e
le—1 k'k



5.

‘However the denominator of each factor is not a funetion of
the index Jj so it may be factored out, giving:

N . —vin ’ N —viYk'
(81) E: XjVin e = (sv)i EZ }kvk e
J=1 ‘ k=1
or collecting like terms:
-V.Y7

N
(82) }: xj[vivj - (sv):.L Vj]e Jd =, i=11,..., N.
j=1

The second set of N equations is obtained by substituting

-equation (79) into equation (76).

N ‘ V. v.r.'
(83) EZ Xj S— t — e U j=11,..., N.
i=1 g AV e—vivk
g=1 X K

Uhfortun@tely the denominator of each term in the sumstion
is a function of the summation index i so no further sim-
plification is possible. Therefore the problem has been re-
duced to solving 2N simultaneous bLranscendental equations,
equations (82) and (83), which is still a very difficult

numerical problem.

However, the set of N equations, equation (82),
has an important property: although each equation involves
all the Aj’s since the summation is on Jj, esach equation
involves only one Vs If the xj’s were known, then each Vi
could be computed by a simple mumerical technique. This ob-
servation leads to the following algorithm for solving the

3N simultaneous equations. For an assumed set of values for
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the xj’s, first solve for each vi,

equation (82). This most easily is accomplished using the

Newton root~-finding algorithm.[u6] Second, compute the ui’s

using equation (79); and third, compube the xj’s implied by

one at a time, using

'these value of Ve and My using equation (76), i.e.,

(84) My = — L

With these values of xj start the process again.

This iteration technidue has been tried with several
gets of data and the convergence is surprisingly rapid. For
'example, the average computation time needed on an IBM 7094
: Computer tb achieve six place accuracy for an eleven segment

problem (N = 11) was less than one minute.

It is interesting to note that the numerical solu-
tion of these 3N simultaneous transcendental equations on a
computer is not much more difficult than solving the 3N simul-
taneous linear equations which result from Preddy’s approach.
Also the problem of satisfying the constraint Dy > 0 does

not arise in a maximum entropy estimate,[MYJ

[29]

whereas 1t can
be a problem in Preddy's method. Therefore the maximum
entropy estimate of the mixing matrix is a more satisfactory
solution to the problem of estimating P from both theoreti-

cal and computational points of view.

In the next chapter a set of salinity intrusion
data from the Delaware River Model is analyzed. The most
interesting aspect of this analysis is the resulting maximum

entropy mixing process.



CHAPTER V

NUMERICAL RESULTS OF A MAXIMUM ENTROPY ESTIMATE

In this chapter the maximum entropy estimate of the
mixing process in the Delaware River Model 1s calculated.
The resulting mixing process is used to calculate equilibrium
salinity distributions. These theoretical predictions are

compared with the observed data.

V-A The Dats Requirements

The maximum entropy estimate of the mixing process in
an estuary can be calculated using various types of salinity
or dye dispersion data. So long as enough data is available
to éstablish,reliable coefficients for equations (34%), (35)
and (36), the maximum entropy estimate can be successfully
ealculated. In this respect the data requirements of the
theory of maximum entropy mixing are much more lenient than
the requirements of the theories of salinity intrusion based
on the convective diffusion edquation. The theories based on
the convective diffusion edquation require an equilibrium dis-
tributlion in order to cglculate the longitudinal dispersion
coefficient,{MS] whereas the maximum entropy estimate can ac-
commodate distributions oolleéted during a perilod of varying
fresh water flow. This is an important practical advantage
since field data is usually collected during a period when

b7
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the hydrograph of the estuary is varying and the salinity
distributions which are observed are not the equilibrium

distributions.[ug]

The maximum entropy mixing theory, as well as the
theories which are based on the convective diffusion equa-
tions, can be used to analyze a limited region of the estuary
if the available salinity data is limited to this region.

The mixing matrix for this region can be determined; however,
it is only possible to predict the salinity distribution in
this region up to a normalization constant. If, however, a
spatial distribution of salinity is available which extends
from the upstream limit of the region of interest to a point
downstream where the ocean value of salinity is maintained,
then the arbitrary constant is accounted for by using the
ocean value of salinity as a boundary condition. This is

the preferable procedure since the value of the salinity con-

centration in each segment can be calculated.

V-B The Delaware River Model Data

For the first trial of the maximum entropy mixing theory,
a set of salinity intrusion data which was obtained from a hy-
draulic model of an estuary is used. Since this data is ob-
tained under controlled conditiong, a wmore critical evaluation
of the maximum entropy hypothesis is possible. The results are
not obscured by the difficulties which are often encountered
in the use of field data. For example, if the specific conduc-
tance 1s used as g measuré of the salinity of the estuary

water, a relationship between specific conductance and salinity
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must be used to obtain the salinity distributions. However,
industrial pollutants can contribute dissolved solids which
affect the specific conductance and their presence must be
taken into account by specifying their origin and rate of
entry into the estuary. This complicates the analysis since
it has been assumed in the preceding formulations that the
only siginficant source of salinity or, in this cass, dis-
solved solids, is the ocean water at the mouth of the estu-
ary. In the case of the data from a hydraulic model of an

estuary, this condition can be satisfied exactly.

The data chosen for this analysis was collected during
salinity tests of the Delaware River Model at the Waterways

[50] S8ix tests were conducted at sustained

Experiment Station.
fresh water discharges of 5000, 7000, 9000, 10,600, 13,000
and 16,475 cubic feet per second {c¢fs). The equilibrium
salinity distributions at the high water slack time were re-
corded at surface, mld-depth and bottom. The data reported

represented the averaged results of not less than two identical

tests.

For each value of the fresh water discharge, the spa-
tigl distribution was obtained along the center-line of the
channel. The seaward limit of the sampling was channel sta-
tion 350, the Ship John Shoal Light. The channel stations are
1000 feet apart starting from channel station 0 at Allegheny
Avenue, Philadelphia and increasing downstream. Unfortunately
in the downstream protion of the estuary the salinity was re-

corded only at chammel stations 350, 275 and 250. Hence if
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this region is included in the analysis, the missing data

"must be accounted for by interpolation since the salinity

variation is considerable in this region. This is a worth-

- while procedure to follow if channel station 350 can be

used as the ocean end of the estuary. However, the value
of salinity at channel station 350 does not remain a con-
stant throughout the six tests but decreases from a high

of about 12,000 parts per million of chloride (ppm) at

g = 5000 c¢fs to a low of about 11,000 ppm at g = 16,475 cfs.

Hence the data does not extend far enough seaward to permit
the use of a fixed value of salinity as a boundary condition
at the furthest downstream segment. In view of the fact
that most of the data between channel stations 250 and 350
would have to be Interpolated using only the data available

at three stations, the downstream 1imit of the analysis is

- chosen to be channel station 250.

At the upstream end of the estuary, the data for the
six tests is complets only to to channel station 150 although
bottom sampling was continued further upstream. For a one-
dimensional analysis, the average salinity over the vertical
direction is usually taken as the value of the salinity at a
particular station. Hence the upstream 1limit of the analy-
sis 1s chosen to be channel station 150. The salinity dats
presented in Figures 4 through 9 for surface, mid-depth, and
bottom samples indicate that the Delaware River Model is

only slightly stratified.

The only other data required is the cross sectional

area of the estuary. This data was obtained from the U.S.
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Army Corps of Engineers survey of the Delaware River Estu-

aryq[Sl]

The estuary is divided into eleven segments each of -
which is 10,000 feet in length. The centers of the segments
are at the channel stations 150 to 250 inclusive. The vol-
ume of esach segment 1s computed from a graphical integration
of the cross sectional area data. An eighth order polynomial
is fit by & least mean sduare technique and the integral of
this polynomial is used to determine the volume of the seg -~
ments. This technique serves to smooth the data as well as
providing the integral in a straightforward way. A plot of
the cross sectional area and the fitted polynomial is given
7'1n,Figure L. The calculated volumes are listed in Table 1.
The volumes of these segments are large enough so that the
condition on the elements of the translation matrix, 7(q),
~given by equation (25) is satisfied for q = 16,475 cfs.

The values of tj,j and tj+le

16,475 cfs are listed in Table 2. The tidal period is 12
[52]

for g = 5000 c¢fs and q =
hours and 25 minutes, and this is the time interval be-

tween successive high water slack samples.

The equilibrium concentration of salinity in each seg-
ment 1is necessary 1f the distribution is to be used in the
maximum entropy estimate. The missing values are obtained
by a least mean square polynomial interpolation of the exist-

'1ng data. The interpolated data is listed in Table 3.

This completes the preliminary data analysis of the

cross sectional area data and the salinity distributions.
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TABLE 1

VOLUMES OF THE SEGMENTS

Segment Center Channel Volume
Number Station (cubic ft, x 109)
- . (1000 ft.)
2 160 1.548
3 170 1.575
4 180 1.612
5 190 1.680
6 200 1.765
7 210 1.877
8 220 2.006
9 230 2.130
10 240 2.260
11 250 2.414
TABLE 2

THE ELEMENTS OF THE TRANSLATION MATRIX T(9

Segment g = 5000 cfs = 16,475 cfs
Nymber ] EE ey Y b1,
1 --.8511 .1489 .5093 4907
2 8554 .1446 5234 4766
3 .8581 .1419 .5321 4678
4 .8613 .1387 5429 4571
5 .8669 1331 5615 4385
6 8734 .1266 .5826 4174
7 .8809 1191 .6076 3924
8 .8885 1115 .6328 3672
9 8951 11049 6542 3458
e 10 9011 0989 6741 * 3259
T e 1 1.0000 — 1.0000 —_
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TABLE 3

INTERPOLATED SALINITY DATA
DELAWARE RIVER MODEL — HIGH WATER SLACK

Channel Salinity (ppm — chlorine)

Station

(1000 t.) q = 5000 cfs q = 7000 cfs q = 9000 cfs q=10,600 cfs q=13,000cfs q= 16,475
250 5730 5700 5180 5050 4500 4760
240 5200 5120 4770 4400 3800 3950
230 4760 4600 4300 3850 3300 3200
220 : 4400 4100 3820 3250 2810 2600
210 4000 3630 3300 2750 2330 2100
200 3580 3150 2800 2250 1830 1630
190 3100 2650 2300 1800 - 1360 1170
180 2650 2200 1830 1360 970 750
170 2250 1800 1400 1000 650 410

- 160 1910 1460 . 1080 700 380 180

150 1650 1220 830 480 230 80
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In the next section the maximum entropy estimate of the
mixing process which is based on this data is analyzed
and the theoretical predictions of the equilibrium salini-

ty distributions are compared to the data.

V-G The Meximum Entropy Estimate of the Mixling Process

The Delaware River Model data consists of six equi-
1ibrium salinity distributions which occur at six different
fresh water flows. In order to test the maximum entropy
mixing theory, the estimate is based on only one of these
six distributions. Then the remaining five salinity dis-
“tributions are compared to the theoretical predictions
baged on the estimated mixing process. In this way the
data can be used as a test of the ability of the maximum
entropy mixing theory to predict equilibrium salinity dis-

tributions at different fresh water flows.’

if.all the data is used in the waximum entropy esti-
mate, then there is no independent data which can be used

as a check on the theory.

Two separate calculations of this type are presented.
The first estimate of the mixing process is based on the
equilibrium distribution at ¢ = 5000 cfs. The maximum en-
tropy estimate of the mixing matrix is presented in Table 4,
The one cycle distribution functions, which are the columns
of the mixing matrix, are plotted in Figure 2. The one cycle
distribution from the segment J 1s the meximum entropy

estimate of the proportion of the water from -segment
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Pi1

0.5913
0.2939
0.0939
0.0182
0.0025
0.0002
0.0000
0.0000
0.0000
0.0000

0.0000

P37

0.0000

. 0.0000
10.0017

0.0192
0.0910
0.2110
0.2681
0.2161
0.1275
0.0536
0.0117

Pi2

0.2707
0.3437
0.2494
0.1040
0.0273
0.0043
0.0006
0.0000
0.0000
0.0000
0.0000

Pi8

0.0000
0.0000
0.0001
0.0031
0.0261
6.1019
0.2040
0.2593
0.2240
0.1361
0.0454
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TABLE 4

THE MIXING MATRIX P = (p;;) ESTIMATED

FROM THE DATA AT q = 5000 cfs

Pi3

0.1036
0.2478
0.3131
0.2189
0.0904
0.0219
0.0039
0.0004
0.0000
0.0000

0.6000

Pig

0.0000
0.06000
0.0000
0.0005
0.0061
0.0385
0.1163
0.2231
0.2723
0.23006
0.1126

Piq

0.0185
0.0955
0.2366
0.3099
0.2207
0.0889
0.0248
0.0044
0.0007
0.0000

0.0000

Pi 10

0.0000
0.0000
0.0000
0.0000
0.0008
0.0089
0.0439
0.1370
0.2516
0.3156
0.2421

Pi5

0.0013
0.0162
0.0864
0.2312
0.3068
0.2197
0.1005
0.0291
0.0074
0.0013
0.0001

Pi 11

0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0016
0.0168
0.0835
0.2722
0.6258

Pig

0.0001
0.0012
0.0145
0.0836
0.2167
0.2878
0.2256
0.1121
0.0440
0.0125
0.0018



~57

0.6 0.6
it - P2 | Pig T
0.4 0.4 041
091 0.2 0.2
0.0 Ll 1t S R S S| (1 |
1 3 5 7 1 3 5 7
Segment i segment i ‘Segment i
0.4 - 0.4r 0.4
Pig | Pis | Py |-
0.2} 0.2} ‘} 0.2}
0.0 [ A NN N S B O R ‘i__]m
13 5 1 3 o5 T 9
Segment i Segment i
0.41
Pin L
0.2}
0.0
1
Segment i
0.4 0.4
Pi1o| i
0.2 B
O,,O ; ! ] .-o—l_:— ! ] i ! } 1 L i r—.-j_n‘ | L
5 7 9 11 5 7 9 11
Fig. 2 segment i segment i

One cycle distributions of the maximum entropy estimate (est. at g = 5000 cfs)



~58_

which is transferred to ail the other segments during one
tidal cycle. For example, Dyq» the proportion of water
which reamins in segment 1 after one tidal cycle is 0.5913;
and D3> the proportion of water which is transferred to

segment 3 from segment 1 is 0.0939.

The estimates of these distributions have two im-
portant properties in common. Flrst, more water remains
in the segment from which 1t originated then is transferred
to any other segment. And second, the transfer of water
to any of the segments more than four segments away, 1.€.,
40,000 feet, from the origin of the water is negligibly
small. The first property agrees with the intuitive notion
that the tidal action is basically oscillatory. Disregard-
ing the effect of the fresh water flow, the water which
flows out on the ebb tide flows back on the flood tide to
approximately where it began. However, it 1s known that
dispersion also takes place and not all the water returns
to exactly the point from which it originated. The question
that naturally arises 1s how far from the point that it

originated can the water be reasonably expected to disperse.

The basic mechanism of dispersion in open channel
flow involves the nonuniform velocity distribution as well

FTon
as the turbulent eddy diffusion. >32°%)

Hence, it is con-
ceivable that some water travels seaward during the ebb tide
and remains there in a region of low velocity during the
flood tide. And similarly, some water remaing in a regilon

of low velocity during the ebb tide and then may be pushed
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back from its origin during the flood tide. The maximum
downstream distance that water can travel in this way can
be computed approximately by integrating the tidal veloci-
ty over the time of the ebb tide. The upstream distance
is similarly computed by integrating the tidal velocity
over the time of the flood tide. This calculation assumes
that the velocity profiles are the same over the distances
involved.

The tidal velocity data for channel station 315 is
plotted in Figure 3,[55] An eighth order polynomial is fit
to the data and the lengths are calculated by integrating
the positive and negative portions of this interpolating
polynomial. The results are that the maximum downstream
tidal excursion length is approximately 39,000 feet and
the maximum upstream tidal excursion length is approximately
k5,000 feet. Some prototype data is available which gives
these lengths at the Burlington-Bristol Bridge, channel
station -81, as 42,200 feet downstream and 32,000 feet up-
stream as an average of the four days data reported. Also
for the Delaware Memorial Bridge, channel station 180, the
downstream length is 49,200 feet and the upstream length is

62,600 feet for one day of datas[56]

These values indicate that if any dispersion is pre-
dicted to take place upstream or downstream over distances
of greater than approximately 40,000 to 50,000 feet, then
the predictions are not in accord with the maximum distances

which are physically possible.
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The maximum entropy estimates of the one cycle dis-
tributions of the water are all contained within four seg-
ments, or 40,000 feet of the origin of the water. Hence
the estimated mixing process is physically realistic from

this point of view.

It is interesting to note that the value of maximum
length over which dispersion can occur is assumed & priori
in Preddy's theory of estuarine mixing. Although as argued
above this length is related to the maximum tidal excursion
distance, its actual value is unknown and Preddy is forced
to assume its value in order to proceed with his calcula-
tion. However, the maximum entropy estimate.of the mixing
processipredicts the maximum length over which disgersion
can occur. And, as remarked above, the predicted length
is within the bounds set by the maximum tidal excursion

lengths.

The equilibrium salinity distributions for fresh
water flow rates of 5000, 7000, 9000, 10,600, 13,000 and
16,475 cfs which are predicted by the maximum entropy esti-
mate and the corresponding Delaware River Model data are
plotted in Figures 4 through 9. The arbitrary normalizatlon
constant is determined by using the following procedure.
For each squilibrium salinlty distribution, the values of
the salinity in each segment are determined from the Inter-
polating polynomial and their sum 1s obtalned. Then the
theoretical prediction 1s normelized so that the sum of the
values of the predicted salinlty agrees with the sum of the

interpolated sallinity data. Hence the salinity data at



-62.-

6000 [~ &
<>
— <>  Theor
gory o
* Data <SS §
B (Surface)
4000 (Middepth) <
Salinity (Bottom) < "
, <
(ppm)
(chloride) e <>
<>
2000 | <>
<> §
0! [ | | s i ! I l | | |
150 170 190 210 230 250

Channel Station (1000 {t.)

Fig. 4 Comparigdi of theory (est. at g = 5000 cfs) and data g = 5000 cfs

6000 [~ <
- <> Theory
& Data . <
(Surface) <
4000 I~ (Middepth)
- (Bottom) <
Sdlinity 3
| <
{ppm)
(chloride) <
2000 : 1 O
L d @
-
1) SSVR SO R NN SN N N S SN NS N R R
150 170 190 210 . 230 250

Fig. 5 Comparison of theory (est. at q = 5000 cfs) and data q = 7000 cfs

Channel Station (1000 ft.)



6od€.§ré -63 - S

" <> Theory <> :
| e Data ' <>
4000k (Surface) H s
A (Middepth) P
Salinity (Bottom)
’ 3
<
gppm) o
chlorlde} P 1S
- & )
2000 e
BRI I
¥ 3 0@
Ty é : <5
0Ll 1 ! l | I § | I |

150 170 190 = 210 230 2506
- Channel Station (1000 ft.)

Flg 6 Comparigon of theory (est. at: q = 5000 cfs) and data q = 2600 cfs

50060 p=~
<>
= <> Theory :
ata <
@urfama
- 4000~ (Mlddnpth) <>
Salinity (Bottom) %
) <
ppm - |
gchloride) ' <
” 8
2000 f~ LS
™ :0
_ o 1S
<
L ]
@ <
O Lo . | L bl AU N | | | j
150 170 190 210 230 250

Channel Station (1000 ft,)
Fig. 7 Comparison of theory (est. at- q = 5000 cfs) and data q = 10,600 cfs



-6

6000
— <> Theory <>
e Data _ *
= (Surface) <,
4000 (Mi.t(%depth)
S4linity (Bottom) . <
§ppm) RS
chloride) : b
2000 |- et %
e
_. Pt
L
ol ®*P
150 170 190 210 230 250

Channel Station (1000 ft.)
Fig. 8 Comparison of theory (est. at- q = 5000 cfs) and data q = 13,000 cfs

6000 —
1O
- <> Theory .
° (Data
Surface) <> e
4000~ (Middepth)
dalinity (Bottom)
| i <>
(Bhioraa ~ ;
oride) <o °
2000 iy te
Lo
B : VO
'S
o1 ge® P Ly
150 170 190 210 230 250

Channel Station (1000 ft.)
Fig. ® Comparigon of theory (est. at q = 5000 cfs) and data q = 16,475 cfs



=65

each fresh water flow rate is used to obtain the normalize-
tion constant for the theoretical prediction. To this ex-
tent, therefore, the prediction at each fresh water flow
rate 1s dependent on the actual data. This is the unfor-
tunate consequence of not having salinity distribution

which extend far enough downstream.

The resultipg theoretical predictions agree rather
well with the observed data, although there are some dis-
crepancies at the higher fresh water flows. This can be
attributed to the fact that the data at g = 5000 cfs which
is used in the estimate is mostly interpolated data. This
can be seen in Figure 4. The theoretical values shown are,
of course, the values of the interpolating polynomial used
in the estimate. The estimate based cn the lowest fresh
water rate available 1s computed in the hope that the non-
linear effects of the density current mixing would be notice-

able. o7

That is, that the deviations between the theory
and the data would increase at higher fresh water flow rates.
This would indicate that the mixing matrix is a function of
the salinity concentration. However the deviatlons between

the theory and the data do not indicate any slzeable dis-

crepency which could be attributed tc this phenomena.

The second calculation of the maximum entropy esti-
mate of the mixing procesgs is based on the equilibrium dis-
tribution at 9 = 13,000 cfs. The estimated mixing matrix
is presented in Table 5 and the one cycle distribution func-

tions are plotted in Figure 10. The theoretical predictions
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Pi1

0.6096
0.2834
0.0792
0.0213
0.0053
0.0011
0.0001
0.0000
0.0000
0.0000
0.0000

Pi7

0.0000
0.0000
0.0013
0.0228
0.1024
0.2070
0.2414
0.1941
0.1266
0.0758
0.0286

Pi2

0.3080
0.3746
0.2939

0.0793

0.0255
0.0067
0.0015
0.0003
0.0000
0.0000
0.0000

P;g

0.0000
0.0000
0.0001
0.0035
0.0316
0.1104
0.2010
0.23206
0.2996
0.1479
0.0723
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TABLE 5

THE MIXING MATRIX P - (p;;) ESTIMATED
- 4

FROM THE DATA AT q -

Pi3

0.0661

0.2653

0 3304
0 2050
0.0912
0.0308
0.0084
0.0020
0.0005
0.0002
0.0000

0.0000
0.60060
0 0000
0.0004
0 0075
0.0452
0.1283
0 2137
0 2436
0.2210
0.1403

Pi4

0.0035
0 0695
0 2629
0 3052
0.2094
0.0989
0.0352
0.0107
0.6033
0.0012
0.0002

Pi,10

(.0000
.0000
0.0000
0 0600
0.0014
0 0151
0 0675
0.1630
0.2469
0 2768
0 2293

13,000 cfs

P35

0.0001
0.0067
0 0984
0.2448
0.2845
0.2021
0.1004
0.0401
0.0153
0.0062
0.0014

Pi 11

0.0000
0.0000
0 0000
0 0000
0.6000
0 0002

' 0.0034

0.0293
0.1186
0.2759
0.5726

Pip

0.0000
0.0002
0.0163
0 1024
0 2257
0.2632
0.1959
0.1080
0.0537
0.0261
6.0075
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of the equilibrium salinity distributions and the corresponding
data are plotted in Figures 11 through 16. The agreement between
the predictions and the data is remarkably good. Even at the low
fresh water flows, @ = 5000 cfs and g = 7000 cfs, the theoretical
predictions are close to the data. It is interesting to observe
the change in the shape of the theoretical prediction of the dis-
tribution at the lower fresh water flow rates. This behavior
would not be observed in a theory based on the convective diffu-

sion equation.

V-D Conclusions

The results of the preceding calculations clearly in-
dicate that the maximum entropy estimate of the mixing process
in an estuary is a sound theoretical and practical solution to
the problem of describing the mixing process in an estuary.

The predicted salinity profiles agree quite closely with the ob-
served data. Furthermore, the resulting maximum entropy mixing
process 1s a physically reasonable process. The one cycle dis-~
tribution functions are justifiable in terms of some fundamental
physical observations on how the tidal oscillations accomplish
the observed dispersion. As a practical matter, the preceding
calculations indicate that a linear theory of mixing in slight-
ly stratified estuaries is acceptable if the range of prediction
is not extended too far from the conditions under which the es-
timate of the mixing process is made. For situations within
this range, the theoretical predictions of the equilibrium con-
centrations of salt are in close agreement with the observed

data.
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FProm a theoretical point of view, it is quite sur-
prising that the results of the maximum entropy hypothesis,
which at first glance appears to be a rather unspecific
requirement, are physically meaningful. The resulting one
cycle distribution functions are intultively very satisfy-
ing. Also, since these one cycle distribution functions are
unsteady state phenomena, and they were obtained uéing
steady-state information, the results are still more sur-
prising.

Much more work needs to be done using the maximum
entropy estimate before its properties are better understood.
In particular, the estimated one cycle distribution func-
tions should be checked against dye dispersion data to see
i1f, indeed, they are physically the case. Two and three
dimensional analyses should be tried, since the equations
and techniques which have been presented are directly ap-
plicable. Also, the maximum entropy estimate should be cal-
culated using uﬁstéady state data. This 1s the situation
in an actual estuary and the results would be very interest-

ing.



CHAPTER VI

RECAPTTULATION

The analysis of the mixing process in an estuary is
a necessary prerequisite for predicting the behavior of
pollutants and dissolved oxygen in an estuary. The salinity
which intrudes from the ocean end of the estuary as a re-
sult of the mixing is a convenient indicator of the nature
of the mixing process. Only slightly stratified estuaries
are considered since the change in the structure of the
mixing process due to the changing salinity concentrations
and the resulting change in density currents is small for

this class of estuary.

The majority of the theories of estuarine mixing
which have been proposed are based on the one-dimensional
form of the convective diffusion equation. However, no so-
lution is known for the appropriate boundary conditions
which includes the harmonic tidal velocity in the convec-
tive terms of the equation. Two simplifications have been
proposed to circumvent this problem. Either the average
of the equation over a tidal cycle is taken or the tidal
velocity terms in dropped entirely and its effects are ab-
sorbed into a longitudinal dispersion coefficient. The
former simplification is justified if the fluctuations of
salinity concentration, in particular, are small over a

13
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tidal cycle. However, this is usually not the -case in a
tidal estuary. The latter simplification violates the as-
sumptions under which the dispersive flux can be related

to the gradient of the mean concentration. Such a relation-
ship exists if the temporal and spatial scales of the fluc-
tuations are small relative to the scale of the gross phe-
nomena of interest. In an estuary, however, the tidal

cycle and the tidal excursion length are usually of the

same order of magnitude as the temporal and spatial scales
of the gross phenomena of interest, for example, the decay

time and spatial spread of a pollution cloud.

The theory of estuarine mixing devised by Preddy
avoids these difficulties by adopting a more general law of
-mixing which relates concentrations at a distance at suc-
cessive slack water times. He assumes the form of the one
cycle distribution: an amount of water spreads uniformly
a distance L downstream and an amount of water spreads
uniformly the same distance upstream; the remainder stays
where it originated. The proportions of water which spread
upstream and downstream are chosen such that three conser-
vation laws are satisfied. 1) All the water is accounted
for; 2) there is no net accumulation of salt upstream from
any boundary; 3) there is no net accumulation of water up-
stream from any boundary. These thrse equations are suffili-
cient to determine the unknown proportions of water which.
disperse upstream and downstream. The distance L is
chosen a priori as is the shape of the one cycle distribu-

tion function. These assumptions case some doubt as to the
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validity of the theory. However, the basic ideas used by
Preddy form the foundation for the theory of maximum en-

tropy mixing in estuaries.

The natural mathematical setting for a dispersion -
vtheorytwith discrete time intervals, e.g., a tidal cycle,
between the available data is the theory of Markov chains.
The estuary is:segmented .and each segment is a state of
the chain. The concentration of salt is assumed to be uni-

form within each segment.

The mixing that occurs during one tidal cycle is
represented by the product of two transition probability
matrices, Eﬂg}, the translation matrix which accounts for
the effect of the fresh water flow J; and EL the mixing
matrix which accounts for all the other phenomena which are
responsible for the mixing during a tidal cycle. The trans-
lation matrix E!g) is specified by assuming that the pri-
mary effect of the fresh water flow is to translate the
water in each segment downstream. The mixing matrix P
must satisfy the three conservation laws: conservation of
water, conservation of estuary geometry and conservation
of salt. These laws are expressible as equations in terms

of £.= (pij)'

N
: EZ Py =4 J= e I
k=
ii. Pv =V ;

iiia. P T(gq)sv = sV,
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where i‘ 1s the column vector of volumes and sv 1s the
column vector whose elements are the mass of salt in each
segment at the equilibrium distribution for the fresh water
flow q. ZEquation iiia. is a special case of the more gen-
eral law whilch can accommodate successive unsteady. state
salinity distributions sv(n) and gz(n+l) at tidal cycle

n and n + 1.

iiib. P T(g. )sv(n) = sv(n+l) ,

et

where ¢

9 is the fresh water flow rate during the time in-

terval between the nth and the n+lth tidal cycle. The
possibility of using unsteady-state data is an important
practical advantage since most field data is collected

during a period of varying fresh water flow.

The matrix P has N® unknovn parameters Pyje
Baguations 1, 1i, and iiia or ilib specify 3N linear con-

straints on the p For N >» 3 there are more unknown

ij°
Py j than equations and the question is which P shall be
chosen.

The choice of P 1is based on the maximum entropy
principle of statistical mechanics and information-theory,

The P which is chosen among all matrices which satisfy

o

the conservation laws is the 2: with the maximum entropy.

A mixing process with a high entrépy tends to specify broad
one cycle distribution functions which do not favor any one
segment over any other segment. Thus no preference is given

to any segment which is not warranted by the data incorpor-
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ated into the conservation laws. The entropy, H, of the

Markov chain P is given by the equation:

N 7. N
H = ..z —ifj*_ 1, Pij 102 Py
J=1 5 vl/; 1=1
k=1

This function is maximized subject to the 3N equality con-
straints which express the conservation laws. The resulting
maximum entropy estimate of £= involves 3N unknown lagrange
multipliers. The 3N simultaneous transcendental equations
which must be solved for the lLagrange multipliers admit

no general solution. A numerical procedure is found to

solve these equations.

The maximum entropy estimate is applied to equilibrium
salinity intrusion data collected for the Delaware River
Model. The resulting one cycle distribution functions spe- . .
cify that mixing takes place only within the maximum tidal
excursion distance. Thus the predicted one cycle distribu-
tions are physically reasonable. The estimate is based on
one salinity distribution at a particular fresh water flow
and the resulting mixing process is used to predict the equi-
librium distributions and the other flows for which there
is data. The agreement between the theoretical predictions

and the data is guite close.

It is concluded, therefore, that the maximum entropy
estimate provides a sound theoretical and practical solution
to the problem of the characterization of the mixing procéss

in a slightly stratified estuary.



APPENDIX T

The difficulty with the edge condition imposed on
P and T(q) by equations (12) and (29) is that no water is
allowed to leave the finite region of the estuary under con-
sideration. From the point of view of analyzing the salinity
Intrusion in an estuary, this condition is artificial since
clearly saline water enters and leaves the mouth of the es-
tuary during each tidal cycle. An entrance and an exit con-
dition can be incorporatéd in a Markov chain but the analy-
sis of this type of chain is more complicated. In this ap-
pendix it is shown that the equilibrium distribution of a
chain with a more realistic boundary condition at the ocean
end 1s the same as the corresponding chain which satisfies
equations (12) and (29). This result justifies the use of
the artificial edge condition in the analysis of equilibrium

salinity distributions.

The transform technigue which is employed for this
analysis has been used extensively in the analysis of sampled

(58]

data systems, and 1t has been applied to the analysis of

Markov chains by Sittler (1956),[59]
Consider an N state chain whose transition proba-
bility matrix is R = (rﬁj)" This chain is represented in

Figure 17 as a flow graph. The paths of flow to the states

other than the adjacent states have not been drawn for the

78
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o 32 TN,N-1

11

Fig. 17 Flow Graph of the Original N State Markov Chain

- Fig. 18 Flow Graph of the Modified Markov Chain
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sake of clarity, but they are assumed to exist. Let this

chain satisfy the condition given by equation (12), 1.e.,

(85) 2 Ty = 2 j=1,..., N

Now consider & modified version of this chain as represented
in Figure 18. An additional state, N + 1 has been added and
it 1s assumed that a certain proporiton, &, of the water
which is returned to state N 1in the original chain, actu-
ally goes to state W + 1. The transition probability me-

trix for this chain is:

l"ll I’lg .......... I‘lN 0
I‘gl I’22 .......... I‘EN 0
(86) s :
.......... ~0 0
N1 Tye TN
6] & 2 (04 0

In terms of a mixing process in an estuary, the N + 1 state

n state is assumed to be

is thought of as the ocean. The Nt
far enough seaward so that it is at the ocean value of salin-
ity. Since water can leave states 1 through N and go into
the ocean, a mechanism for Introducing salt water at state N
must also be specified. Otherwise the end result of such a
mixing process 1s that the estuary eventually empties out
into the ocean. Hence, assume that a mass, B, of salt water
enters state N from the ocean at each high water slack. The

constant B will be adjusted so that the equilibrium salinity

in state N 18 at the ocean value. These conditions are
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sufficient to specify the behavior of the modified chain.

For the original chain, an equilibrium distribution
exists under certain conditions (Section III-B) which are
assumed to hold in this case. Since the equilibrium distri-

bution o¢ 1is computed from the equations

(87) Ro = g_ .

which are a set of homogeneous linear equations in 9, the
solution is determined up to.an arbitrary constant. This
constant 1s evaluated by setting the value of the equilibrium
salinity concentration at segment N equal to the ocean
salinity.

The following theorem will now be proved:

Theorem: The equilibrium distributions of the original chain

(Figure 17) and the modified chain (Figure 18) are identical.

Proof: The theorem 1s demonstrated by directly calculating

the equilibrium distribution of the modified chain in terms
of the elements of the original chain. ILet the time at which
the initial condition of each chain is specified be zero.

Let sk(n) be the concentration of salt in the kth segment

of the original chain at the nth

high water slack, and let
s(n) be the vector with components sk(n). The correspond-
ing concentrations in the modified chain are denoted by
sk(m)(n) and §$m)(n), respectively. In the following equa-

tions the superscript (m) will refer to the modified chain.

Define the Z-transform of the sequence {s(n); n = o,

1,...} as:
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o0

(88) s"z) = ) s(ma”

n=0

The Z-Lransform of the sequence {§ﬁn)} is also called the
generating function of the sequence. The distribution
s(n+1) is found from the distribution s(n) using the tran-

sition probability matrix R:

(89) s(n+1) = R s(n)

Therefore s(n+l) is related to the initial condition 5(0)
by the equation:
(90) s(n+1) = R%'s(o0)

Multiplying both sides of this equation by z°'' and summing

from n+l = 0 to o yields:
(91) o = () F AP s
n=0

Define the Z-transform of the seguence {BF} as:

(92) RYz) = ) E "
n=0

As in the case of an ordinary geometric series, this series

can be summed givingz[6O]

R*(z) = (I-zR)™

where I 1is the identity matrix. Therefore, equation (o1)

becomes:
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(9h) s¥(z) = (I - 2zR)™ =(0)

This equation gives the Z-transform of the sequence {s(n)]}
in terms of the initial condition Eﬂo) and the transition
probability matrix R. Hence equation (o4) is the formal

solution for s%(z).

The equilibrium distribution s(«) can be found
from i*(z) using the final value theorem for Z-trans-

forms;[él]

(95) s(w) = lim (1 - 2)s7(2)

- z = 17t .
In order to calculate the equilibrium distributions of the
original and modified chains two matrix inversions must be

performed: (I - zE)“l and (I - zﬁﬁm))‘lu Using Cramer’s

Pule,[62] the inverse of a matrix é is:
A=l L
(96) AT = 2 (ay))

whers A is the determinant of A and A;. is the 15th

J

cofactor of A, i.e., (—-l)l+j times the determinant formed
by striking out the ith row and jth column of the determl-

nant of é. In this case let

A = I -2zR

(97) é(m) _ o1 Z]_Ei(m)

Only one column of each inverse is needed because of the

simple initial conditions and sources which have been adopted.
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For the modified chain an amount £ of salt water is intro-
duced into state N at every high water slack. Hence the
source terms is a sequence (B, B,...} at state N and zero

for all other states.' The Z-transform of this sequence is

(63]

B/1-z. By the convolution theorem for Z-transforms, the

response of the modified chain to this source term 1s gilven
by multiplying Ef(m)(z) by the column vector, (0,0, ...,

B/1-7, O)T where T denotes the transpose. Since the only

non-zero term of this vector is in the Nth row, only the

Nth column of the inverse is required as all the other ele-

ments of the inverse are multiplied by zero. Therefore the
th

k™ component of ‘Ef(m)(z) is given by:
. alm)
(98) el gy - e B

A(m) 1-2

For the original chain R, the equilibrium distri-
bution of the chain is independent of the initial condition
since there are no source terms and egquation (85) as well as
the positivity condition discussed in Section III-B are sat-
isfied. Hence any initial condition is allowable. For sim-
plicity assume that at time zero a quantity y of =salt is
in state N, and all other states are empty. Therefore the

initial condition vector s(0) is given by:

(99) 8(0) = (0, 0,..c, )T

th

and the k component of iﬁ(z) is given by:
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Ay

YAl

*
(lOO) SK(Z’) = T
Because of the similarity of the modified chain and the ori-
ginal chain, it is possible to express s;(m)(z) in terms
f ¥
o) SK(Z)'

Consider the determinant Al T - zEﬁm)I in
equation (98). The elements of the last column of Eﬁm) are
all zeros since no water goes from the (N + l)th state to
any other state (equation (86)). Hence the elements of the
last column of the matrix I - ZE? are all zero except for
element N + 1, N + 1 which is egqual to 1. Therefore the

determinant |I - zR(m)I can be immediately expanded in terms

of the cofactors of the last column[6u] to give:
1-2 rll -Z r12
(m) ~Z Toq 1-z oo
(101) A = 5
- N-1,N
1.z Z(PN,N“Q)

Expanding this determinant once again in the cofactors of

the last column gives:

(m) _
(102) A = A+ 0z Agy

m)

Hence A( can be written in terms of the determinant and

a cofactor of the original chain.

Consider the cofactor A§§) in equation (98).

when calculating this cofactor the N row of é(m) = zrzgﬁm)
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Isaiways deleted for afy K = 1,..., N. For example, for

k = 2, the cofactor is given by:

(103) 1-2 1y, % Pyg e . 0

~2 Tyy ~Z Toq 0

(m) N+2 . . ? ‘

AMT = (1) -Z7 0
0 s . N-1,N

-7 1

Expanding this determinant in the cofactors of the last

column gives:

(10L) Aéﬁ) = Ay

Rewriting equation (98) for s;(m)(z) in terms

of equations (102) and (104%) yields:

A

(105) sr (=) (zy - Nic . B
(A + az ANN) 1-7
s, (2)/7

(106) - . P
(2 + za sp(z)/7) 1-z

where equation (100) has been used to obtain equation (106).

Using the final value theorem (equation (95)):

A

1+ oz s§(2)/#

(107) sém)(m) - li?+
Z_-)-

However, for =z c¢lose to 1,

+

(208) sele) = (a)e(z)]
7, -

again by the final value theorem. Hence:
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(109) 8y ()
S(m)(m) = lim -z Bz'l
k 7z = 1% Lz SN(oo)
1l 4+ ——
v(1-z)
(110) = k() B
| spl=)

Applying the boundary condition at the Nth seg-

ment, that sém)(m) = sN(w) = ocean salinity value, deter-

mines PB. Hence

Sigm)(m) = SK(OO)

which proves the theorem. :
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ABSTRACT

A review and a critique of the theories of estuarine
mixing which have been proposed is presented and it is con-
cluded that the simplifications usually employed in the
mixing theories based on the convective diffusion equation
are not applicable to the mixing process in an estuary.

The theory of tidal mixing which has been proposed by Preddy
is discussed and his approach forms the basis for the theory
of maximum entropy mixing which 1s developed. The analysis
of the mixing process in an estuary is formulated in terms
of the theory of Markov chains. Three conservation laws
which any physically reasonable mixing process must sgtisfy
are formulated and related to the properties of a Markov
chain. The estimate of the appropriate mixing matrix is
based on the maximum entropy principle of statistical mechan-
ics and information theory. A numerical technique is pre-
sented for the solution of the resulting simultaneous trans-
cendental equations. The equilibrium salinity intrusion
data from the Delaware River Model is analyzed and compared
with the theoretical predictions based on the maximum entropy
estimate of the mixing process. The resulting agreement is
noted and it is concluded that the theory of maximum entropy
mixing is a sound theoretical and practical solution to the

problem of characterizing the mixing process in an estuary.
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