
SPARSE SIGNAL PROCESSING FOR MACHINE LEARNING AND

COMPUTER VISION

by

Yin Zhou

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and
Computer Engineering

Fall 2014

c⃝ 2014 Yin Zhou
All Rights Reserved



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3685167

Published by ProQuest LLC (2015).  Copyright in the Dissertation held by the Author.

UMI Number:  3685167



SPARSE SIGNAL PROCESSING FOR MACHINE LEARNING AND

COMPUTER VISION

by

Yin Zhou

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Babatunde Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
James G. Richards, Ph.D.
Vice Provost for Graduate and Professional Education



I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Kenneth E. Barner, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Charles G. Boncelet, Jr., Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Ryan Zurakowski, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Jingyi Yu, Ph.D.
Member of dissertation committee



I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Bahram Parvin, Ph.D.
Member of dissertation committee



ACKNOWLEDGEMENTS

First, I would like to express greatest gratitude to my advisor Prof. Kenneth E.

Barner, for his patient guidance and persistent support throughout my Ph.D. study.

During the past five years, I have been deeply inspired by his passion to explore new

domains, his courage in overcoming difficulties, his wisdom in solving challenging prob-

lems, his concentration and rigorousness to details, his dedication and commitment to

his work, and his respectful personality. I highly appreciate the trust and freedom he

has given to me, allowing me to choose and pursue my own research project. More

importantly, I want to thank him for consistently supporting me with his profound

knowledge and generous encouragement along my Ph.D. journey. In addition, his en-

thusiasm about novel technology will always propel me towards exploring unknowns.

In all, it is definitely a privilege to work with him and the invaluable experience as his

student will benefit me for my whole life.

I also would like to extend my gratitude to my dissertation committee members:

Prof. Charles G. Boncelet, Jr., Prof. Ryan Zurakowski, Prof. Jingyi Yu, and Prof.

Bahram Parvin. It is a great honor for me to have them serve as the witness of my

progress along the academic career path. It was a great pleasure to collaborate with

Prof. Yu on several projects, during which I was deeply impressed by his commitment

to efficiency and insights to research. I was fortunate to work with Prof. Parvin as

summer intern at Lawrence Berkeley National Laboratory. I admire his passion to

tackle cross-domain problems and his promptness in realizing new ideas. Moreover, I

am also thankful to Prof. Boncelet and Prof. Zurakowski for giving me many insightful

comments on my dissertation.

I am very grateful to all the previous and current group members, including

Prof. Kai Liu, Dr. Rafael Carrillo, Dr. Jinglun Gao, Dr. Rui Hu, Luisa Polania, Xin

v



Guo, Sherin Mathews. I want to thank them for their selfless encouragement and help.

During my Ph.D. study, I am very lucky to meet many good friends, including Dr. Hao

Feng, Dr. Yao Xiao, Dr. Qi Wang, Bo Lu, Lu Li, Bin Zhu, Bohan Zhang, Guangyi

Liu, Li Li, Xiaolong Wang, Dr. Jinwei Ye, Yu Ji, Shuhan Chen. I also would like to

express gratitude to my colleagues and friends met during my internship, including Dr.

Hang Chang, Gerald Fontenay, Kenneth Li and Christopher Phillippi.

Last but not least, I would like to give my deepest thanks to my parents for

their unconditional support and love throughout my life. Without their support, this

thesis would not have been possible. I want to give special thanks to my fiancée Dr.

Wenqiong Tang. Meeting her on our first flight to UD is the luckiest coincidence in

my life and without her companionship, my five-year Ph.D. study would not be so

beautiful.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Sparse Signal Representation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Locality-Constrained Sparse Coding . . . . . . . . . . . . . . . 4
1.3.2 Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Unsupervised Feature Learning . . . . . . . . . . . . . . . . . 7

1.4 Overview of Proposed Approaches . . . . . . . . . . . . . . . . . . . . 9
1.5 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Related Publications to The Described Contributions . . . . . . . . . 11
1.7 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 LOCALITY-CONSTRAINED DICTIONARY LEARNING . . . . 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 LCDL Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Locality Constrained Dictionary Learning (LCDL) . . . . . . . 16
2.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3.1 Solving for Local Reconstruction Codes . . . . . . . 20
2.2.3.2 Dictionary Optimization . . . . . . . . . . . . . . . . 21

2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 DISCRIMINATIVE DICTIONARY LEARNING FOR
CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 3D Shape Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 The DL-SLLR Algorithm . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3.1 Supervised Locally Linear Representation . . . . . . 31
3.1.3.2 Updating the Dictionary and the Mapping . . . . . . 32
3.1.3.3 Classification Strategy . . . . . . . . . . . . . . . . . 34

3.1.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Image/Video and Data Classification . . . . . . . . . . . . . . . . . . 38

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 The DL-SLC Algorithm . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3.1 Supervised Local Coding . . . . . . . . . . . . . . . . 42
3.2.3.2 Locality-Preserving Dictionary Update . . . . . . . . 44
3.2.3.3 Classification Strategy . . . . . . . . . . . . . . . . . 47

3.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 2013 IEEE GRSS Data Fusion Contest on Hyperspectral Image
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 Data Fusion and Classification Algorithm . . . . . . . . . . . . 57
3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 AUTOMATIC FEATURE LEARNING FOR BIOMEDICAL
IMAGE ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



4.3 The PSDSPM Algorithm for Tissue Classification . . . . . . . . . . . 67

4.3.1 Unsupervised Feature Learning . . . . . . . . . . . . . . . . . 67
4.3.2 Spatial Pyramid Matching (SPM) . . . . . . . . . . . . . . . . 69

4.4 The Multispectral CSC Algorithm for Tissue Classification . . . . . . 70

4.4.1 Convolutional Sparse Coding . . . . . . . . . . . . . . . . . . 70
4.4.2 Multispectral Feature Extraction . . . . . . . . . . . . . . . . 71

4.5 The SCCR Algorithm for Nuclei Segmentation . . . . . . . . . . . . . 73

4.5.1 Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.2 Decision Function . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Experiments on Tissue Classification . . . . . . . . . . . . . . . . . . 76

4.6.1 The Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6.2 Evaluating the PSDnSPM Algorithm . . . . . . . . . . . . . . 78

4.6.2.1 Experimental Configurations . . . . . . . . . . . . . 78
4.6.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.3 Evaluating the MCSCSPM algorithm . . . . . . . . . . . . . . 82

4.6.3.1 Experimental Configurations . . . . . . . . . . . . . 82
4.6.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Experiments on Nuclei Segmentation . . . . . . . . . . . . . . . . . . 86
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 KERNEL SPARSE CODING FOR GESTURE RECOGNITION 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Related Work and Problem Formulation . . . . . . . . . . . . . . . . 92

5.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ix



5.2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Feature Extraction for MTS Data . . . . . . . . . . . . . . . . 93

5.3.1.1 SVD Properties of MTS Data . . . . . . . . . . . . . 93
5.3.1.2 Simple features for sparse representation . . . . . . . 94
5.3.1.3 Robust features for sparse representation . . . . . . . 95

5.3.2 Kernelizing Sparse Representation for Classification . . . . . . 98
5.3.3 Algorithm Training Procedure . . . . . . . . . . . . . . . . . . 101
5.3.4 Classification Rule . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Experiments on Classifying Real-World MTS Data . . . . . . . . . . 103
5.5 Experiments on Classifying Univariate Time Series Data . . . . . . . 114
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Future Directions and Open Questions . . . . . . . . . . . . . . . . . 120

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Appendix

COPYRIGHT PERMISSIONS . . . . . . . . . . . . . . . . . . . . . . 134

x



LIST OF TABLES

2.1 The overall time (seconds) includes dictionary learning and training
data embedding. Note the time measurement may vary based on
different implementations. . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Comparison of computational complexity for all the methods,
including the dictionary learning step and the training data encoding
step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Recognition results on SLI 3D Face Dataset. . . . . . . . . . . . . . 36

3.2 Recognition results on SHREC’11 Contest Dataset. . . . . . . . . . 37

3.3 Recognition results over the Extended YaleB Database. Note for
D-KSVD and KSVD, recognition rates are cited from [1]. . . . . . . 51

3.4 Comparison of running time (ms) for classifying a test image. . . . 51

3.5 Error rates over the CMU PIE Database for various methods with
different sizes training set. . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Recognition results over the Weizmann Action Database. . . . . . . 54

3.7 Basic information about Iris, Satellite, Segmentation, Letter and
Vehicle datasets from UCI Machine Learning Archive. . . . . . . . . 55

3.8 Classification accuracy over the UCI Machine Learning data sets.
The 3rd column contains the results obtained by keeping only two
dimensions of information, i.e., pedal length and pedal width. . . . 55

4.1 Performance of different methods on the GBM dataset. . . . . . . 81

4.2 Performance of different methods on the KIRC dataset. . . . . . . 81

4.3 Performance of different methods on the GBM dataset. . . . . . . 84

xi



4.4 Performance of different methods on the KIRC dataset. . . . . . . 84

4.5 Comparison of Segmentation Results. . . . . . . . . . . . . . . . . . 88

5.1 Comparison among different kernel functions over the Georgia-Tech
HG database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Binary Classification comparison among various methods over the
Auslan database. Recognition rates with ∗ are cited from [2]. . . . 108

5.3 Binary classification result over the Auslan database for various
selection of attributes. . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Multi-class Classification comparison among various methods over the
Auslan database. Recognition rates with ∗ are cited from [3].
Proposed 1 is based on 10-fold cross-validation; For proposed 2, the
data pool is divided into 2 folds, i.e., one fold for training and the
other fold for test, according to [3]. . . . . . . . . . . . . . . . . . . 110

5.5 Recognition rate on the HAuslan database. The dimension of random
subspace is fixed at 40 for all the classification tasks. . . . . . . . . 111

5.6 Recognition performance on the HAuslan database. . . . . . . . . . 112

5.7 Comparison among different kernel functions over the HAuslan
database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.8 Comparison of recognition rate among various methods over the
HAuslan database. Note that recognition rates with ∗ are cited from
references. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.9 Classification results on UCR Time-Series Repository. Note that
DTW⋆ [4] means 1NN-Best Warping Window DTW and TSBF∗ [5]
represents Time Series based on a Bag-of-Features representation
with the optimal parameter setting z = 0.25. Results for compared
methods are cited from references. . . . . . . . . . . . . . . . . . . 117

xii



LIST OF FIGURES

2.1 Overview of the proposed method. Given training data in
high-dimensional observation space, a representational and
locality-preserving dictionary is learned. Then, the low-dimensional
embedding of the atoms is computed via some NLDR algorithm.
Finally, using the geometric relationships among training data and
the atoms in observation space, the low-dimensional embedding of
training data is reconstructed as linear combinations of the
low-dimensional embedding of the atoms. . . . . . . . . . . . . . . 14

2.2 Illustration of the learning objective. . . . . . . . . . . . . . . . . . 15

2.3 Illustration of LCDL algorithm. . . . . . . . . . . . . . . . . . . . . 18

2.4 Low-dimensional embedding reconstruction comparison on Swiss roll
(1st row), Punctured sphere (2nd row) and Gaussian (3rd row).
Ground truth means the low-dimensional embedding obtained
directly from all training samples. The nearest neighbor parameter k
of NLDR algorithms is set to 6. The RMSE values are (c) 0.0299, (d)
0.7409, (e) 0.0666, (f) 0.0535, (i) 0.0705, (j) 0.8664, (k) 0.1060, (l)
0.1743, (o) 0.0104, (p) 0.2943, (q) 0.0419, (r) 0.1012. . . . . . . . . 22

2.5 Classification results over two face databases. The parameter k of
LLE is set to 60 for both Extended YaleB and CMU PIE. . . . . . 24

3.1 The proposed classification strategy. Given a query shape S, extract
shape descriptors on it and then perform classification per descriptor.
Finally the label of S is determined by majority voting over
descriptor decisions. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Majority voting results after normalization on SHREC’11 Contest
Dataset. The two objects are bird (a) and hand (b). The bird is
associated to label 4 while the hand is associated to label 15. Since
the number of extracted descriptors varies across different objects, we
normalize the voting results for better visualization. . . . . . . . . 35

xiii



3.3 30 classes from SHREC’11 Contest Dataset. Image cited from
SHREC’11 Contest website. . . . . . . . . . . . . . . . . . . . . . . 37

3.4 3D Nonrigid shapes from object class horse. . . . . . . . . . . . . . 37

3.5 Comparison of performance for all methods on the robustness against
partial occlusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 (a) Classification performance with respect to s. (b) Objective
function value versus iterations; (c) Classification error rate versus
iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Recognition results over the AR Face Database. . . . . . . . . . . . 53

3.8 Example MHIs of 10 natural actions. . . . . . . . . . . . . . . . . 54

3.9 Illustration of the hyperspectral and LiDAR imaging over University
of Houston. Image courtesy to IEEE GRSS Committee. . . . . . . 56

3.10 Contest legend. Image courtesy to IEEE GRSS Committee. . . . . 57

3.11 The proposed data fusion pipeline. Image courtesy to IEEE GRSS
Committee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.12 Classification result. The label of each pixel is represented with
different color. Image courtesy to IEEE GRSS Committee. . . . . 59

4.1 Computed basis functions from the Glioblastoma Multiforme (GBM)
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 27× 27 multispectral filters learned from the GBM dataset. It can be
seen that, learned from the nuclear channel, the filters (top figure)
capture nuclear regions of distinct shapes; learned from the collagen
channel, the filters (bottom figure) characterize the structural
connectivity within various tissue sections. . . . . . . . . . . . . . . 63

4.3 Computational workflow of our approach (PSDnSPM). . . . . . . . 67

4.4 The proposed multispectral feature extraction framework. CoD
means color decomposition; Abs means absolute value rectification;
LCN means local contrast normalization; MP means max-pooling.
The figure is best viewed in color at 150% zoom-in. . . . . . . . . 72

xiv



4.5 21×21 filters learned from the TCGA segmentation benchmark
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 GBM Examples. First column: Tumor; Second column: Transition to
necrosis; Third column: Necrosis. . . . . . . . . . . . . . . . . . . . 77

4.7 KIRC Examples. First column: Tumor; Second column: Normal;
Third column: Stromal. . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Comparison of PSD with linear and nonlinear regressors in terms of
reconstruction. (a) Original image; (b) Reconstruction by PSD with
linear regressor (SNR=14.9429); (c) Reconstruction by PSD with
nonlinear regressor (SNR=19.3436). . . . . . . . . . . . . . . . . . . 85

4.9 GBM Examples. First row: original images. Second row: predictions
by SCCR. Third row: final segmentation results. . . . . . . . . . . . 87

5.1 Training samples and dictionary atoms of SRC. . . . . . . . . . . . 99

5.2 Recognition rates for the Georgia-Tech HG database. (a) 15-class
problem recognition rate versus selected features (markers) under
various random projections. The horizontal axis represents the
number of randomly chosen features, ranging from 2 to 22. The
curves in different colors represent recognition rates over 5 different
random subspaces. (b) 15-class problem recognition rate versus
different dimensions of the random subspace; 22 features (markers)
are employed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Recognition rate for various methods over the Georgia-Tech HG
database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Recognition rate on the Georgia-Tech HG database. (a) PCA feature
(b) LDA feature (c) CovSVDK feature (proposed method). All three
feature extraction methods are fed to four classifiers, i.e., SVM, KNN,
LS, the proposed Kernelized SRC. . . . . . . . . . . . . . . . . . . . 106

5.5 3D trajectories for 8 signs. (a) Eat, (b) Exit, (c) Forget, (d) Give (e)
Hello, (f) Know, (g) Love (h) No. . . . . . . . . . . . . . . . . . . 107

xv



5.6 Illustrations of manifolds in multi-class classification tasks. Top row:
the 3-label task; bottom row: the 4-label task. (a) 2D manifold with
the kernel trick, (b) 2D manifold without the kernel trick, (c) 3D
manifold with the kernel trick, (d) 3D manifold without the kernel
trick. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7 Recognition rate for the HAuslan Database. . . . . . . . . . . . . . 111

5.8 Recognition rate over the HAuslan database. (a) PCA feature (b)
LDA feature (c) CovSVDK feature (proposed method). All three
feature extraction methods are fed to four classifiers, i.e., SVM, KNN,
LS, the proposed Kernelized SRC. . . . . . . . . . . . . . . . . . . 112

5.9 ROC curves for outlier detection over the Georgia-Tech HG and the
HAuslan databases. (a) the Georgia-Tech HG database, (b) the
HAuslan database. CovSVD means feature extraction following
Definition. 1 and Definition. 2. . . . . . . . . . . . . . . . . . . . . . 113

5.10 Accuracy scatter plot between Kernelized SRC and 1NN-Best
Warping Window DTW [6]. Each dot represents a dataset. Dots
above the diagonal mean that Kernelized SRC is better than
1NN-Best Warping Window DTW and vice versa. The farther away a
dot is from the diagonal, the greater the accuracy improvement
achieved [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.11 Comparison between Kernelized SRC and SRC. (a) accuracy scatter
plot; (b) expected accuracy gain versus actual accuracy gain. Note
that regions marked as TP/TN represent we correctly predict
Kernelized SRC is better/worse than SRC; region FN means that we
predict Kernelized SRC is worse than SRC but the fact is the
opposite; region FP means that we predict Kernelized SRC is better
than SRC but the fact is the opposite. Practically, only FP is the
truly bad case [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xvi



ABSTRACT

Signal sparse representation solves inverse problems to find succinct expressions

of data samples as a linear combination of a few atoms in the dictionary or codebook.

This model has proven effective in image restoration, denoising, inpainting, compres-

sion, pattern classification and automatic unsupervised feature learning.

Many classical sparse coding algorithms have exorbitant computational com-

plexity in solving the sparse solution, which hinders their applicability in real-world

large-scale machine learning and computer vision problems. In this dissertation, we

will first present a family of locality-constrained dictionary learning algorithms, which

can be seen as a special case of sparse coding. Compared to classical sparse coding,

locality-constrained coding has closed-form solution and is much more computation-

ally efficient. In addition, the locality-preserving property enables the newly proposed

algorithms to better exploit the geometric structures of data manifold. Experimental

results demonstrate that our algorithms are capable of achieving superior classifica-

tion performance with substantially higher efficiency, compared to sparse-coding based

dictionary algorithms.

Sparse coding is an effective building block of learning visual features. A good

feature representation is critical for machine learning algorithms to achieve satisfactory

results. In recent years, unsupervised feature learning has received increasing research

interest in various computer vision and pattern recognition problems. Unlike human-

engineered feature extractors that typically require domain knowledge and a large

amount of labeled data, unsupervised learning algorithms are generic and designed to

automatically discover the intrinsic patterns from the abundant unlabeled data that

are usually readily available (from Internet) and require no laborious human labeling.

In this dissertation, we will explore the capability of feature learning algorithms in

xvii



automated biomedical image analysis. Specifically, we will present two unsupervised

feature learning models for histopathology image classification. We will also intro-

duce a novel convolutional regression model for nuclei segmentation. Experiments on

biomedical image classification and segmentation benchmarks demonstrate that the

proposed feature learning systems can achieve very competitive results compared to

dedicated systems incorporating biological prior knowledge.

Finally, we propose a sparse coding based framework for classifying complicated

human gestures represented as multi-variate time series (MTS). Specifically, we will

present a novel feature extraction strategy, which can overcome the problem of incon-

sistent lengths among MTS data and is robust to the large variability within human

gestures. Moreover, we will introduce a generic approach to kernelize sparse repre-

sentation, which leads to enhanced classification performance. Extensive experiments

verify the effectiveness of the proposed framework.
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Chapter 1

INTRODUCTION

1.1 Sparse Signal Representation

A sparse signal is a signal that can be succinctly expressed as a linear combina-

tion of a few signal templates (called atoms or bases) from an over-complete dictionary

or codebook. Sparse representation of the signal aims to solve the following linear

system requiring that there are only a few nonzeros in the coefficient vector,

argmin
x
∥x∥0 s.t. Φx = y (1.1)

where Φ ∈ Rm×K (m ≪ K) is an over-complete dictionary whose columns are bases

with unit ℓ2 norm; x is the sparse representation coefficient vector of signal y over

dictionary Φ; the ∥ · ∥0 is a pseudo-norm defined as the the number of nonzero entries

in a vector. In practice, when the signal y is contaminated with noise, Eq. (1.1) is

alternatively formulated by allowing some reconstruction error ϵ > 0, as

argmin
x
∥x∥0 s.t. ∥Φx− y∥2 < ϵ (1.2)

However, finding the sparest solution to the above ℓ0 problem is combinatorially NP-

hard [9, 10].

In recent years, the development in compressed sensing and sparse representa-

tion [9–11] revealed that if the exact solution x is sufficiently sparse, the solution to the

ℓ0-minimization problem can be equivalently obtained by solving the ℓ1-minimization

problem as

argmin
x
∥x∥1 s.t. ∥Φα− y∥2 < ϵ (1.3)
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In literature, there are many efficient solvers to Eq. (1.3) or its equivalent formulations,

such as Basis Pursuit (BP) [12], Matching Pursuit (MP) [13], Orthogonal Match-

ing Pursuit [14], Homotopy [15], Coordinate Descent algorihtm [16], Fast Iterative

Shrinkage-Thresholding algorithm (FISTA) [17], Feature Signa algorithm [18].

1.2 Motivation

A pattern recognition system generally consists of two critical components, i.e.,

the feature extractor and the classifier. Feature extraction is an operation that trans-

forms the original data samples into some proper representations by exploiting the

underlying data statistics, such that the characterization of samples from different

classes is more discriminative for the next-step classification. A classifier is a function

that maps input data to a class label. Many sophisticated classifiers require a large

amount of training data to accurately establish the relationship between data input

and class labels.

Nonlinear dimensionality reduction (NLDR) is an important feature extraction

technique that discovers the most succinct and intrinsic forms of representation of the

original high-dimensional data, allowing more effective learning and prediction. Unfor-

tunately, many existing NLDR algorithms are of quadratic or even cubic complexity

in the number of data, which diminishes the applicability of these algorithms to real-

world large-scale tasks [19]. It is therefore very much needed to find a method which

can compress the tremendous dataset into a small number of meaningful landmark

points and preserve the geometric structure of the original data manifold. With such a

technique, existing NLDR algorithms will be able to process large-scale datasets with

substantially reduced computational cost.

Image-based classification of tissue histology plays an important role in predict-

ing clinical outcomes. However this task is very challenging due to the presence of

large technical variations (e.g., fixation, staining) and biological heterogeneities (e.g.,

cell type, cell state). Currently, many state-of-the-art recognition systems in computer
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vision rely on human-engineered features. These techniques typically require domain-

specific knowledge and the laborious human-engineering process, which greatly hinders

their applicabilities to classifying massive amount of tumor types. Moreover, these

manually crafted features can only characterize low-level image statistics [20], which

does not satisfy the need of phenotypic concept learning. Finally, to achieve good per-

formance, a system usually needs a large amount of training data, which in practice,

are expensive to obtain, as labeling one image takes multiple rounds of discussion and

analysis by several doctors. Due to the reasons above, existing human-engineered fea-

ture extractors cannot yield satisfactory performance in tissue image classification. It

is therefore desirable to develop algorithms that can make use of abundant unlabeled

biomedical images and automatically learn intrinsic high-level features.

Sparse coding was originally developed to explain the visual processing mecha-

nism of brain [21] and has recently been proven to be an effective model for learning

visual features [22–27] in the unsupervised manner. The primary strength of this tech-

nique lies in succinct representation, which essentially allows to abstract and capture

the dominant information within the data. However, given that solving sparse co-

efficients requires time-consuming optimization, directly applying this model usually

results in exorbitant computational cost when processing large-scale image classifica-

tion problems, which therefore greatly hinders its practical usability. To this end,

we are motivated to seek efficient methods to generate succinct and informative data

representations.

Another problem considered in this dissertation is robust recognition of gestures

captured as multivariate time series (MTS). Classifying MTS data is a challenging

task in many areas, e.g., pattern recognition [28] and computer vision [29], due to the

presence of inconsistent lengths among MTS data and the large inter-class variations.

For conventional feature extraction methods, e.g., PCA and LDA, downsampling and

interpolation are usually applied on each MTS in order to normalize the data length.

However, downsampling may cause a loss of salient information [28], while interpolation

may induce distortion to the original data [30]. Therefore, it is desirable to develop
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an effective feature extractor for MTS data. Partially due to its robustness to noise

and missing data, sparse coding has been successfully applied to many image and

audio classification problems. However, little efforts have been made to MTS data

classification using this model. It is thus also desirable to exploit the capability of

sparse coding for robust MTS data classification.

1.3 Related Work

1.3.1 Locality-Constrained Sparse Coding

Recent studies [31,32] indicate that by imposing locality constraint, we can ex-

ploit local geometry on the nonlinear data manifold and achieve enhanced performance

compared to traditional sparse coding.

Specifically, Zhang et al. proposed Local Coordinate Coding (LCC) [31] based

on ℓ1-minimization by penalizing nonlocal dictionary atoms from being coded with

large linear combination coefficients, as following

min
γ,C

∑
x

∥x− γ(x)∥2 + µ
∑
v∈C

|γv(x)|∥v − x∥2 + λ∥v∥2 (1.4)

where γ(x) =
∑

v∈C γv(x)v; x is a data point in Rm; (γ,C) is a coordinate coding

where C is a set of anchor points v in Rm and γ is a map of x ∈ Rm to its codes

[γv(x)]v∈C ∈ R|C| such that
∑

v γv(x) = 1. Note that γv(x) ∈ R is the coefficient of

an anchor point v for reconstructing x and that the requirement
∑

v γv(x) = 1 allows

the coding to be shift-invariant.

The work of LCC indicates that if a coordinate coding is sufficient localized a

nonlinear function can be approximated by a linear function with respect to the cod-

ing [31] and that local coding is more effective than traditional sparse coding in terms

of capturing the nonlinearity of a function. Nevertheless, the optimization procedure

of LCC is computationally expensive.

Wang et al. further proposed Locality-constrained Linear Coding (LLC) [32] by

introducing a weighting strategy to the coefficient, called locality adaptor. The LLC
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is formulated as

min
C,B

N∑
i=1

∥xi −Bci∥2 + λ∥di ⊙ ci∥2 (1.5)

s.t. 1Tci = 1,∀i

∥bj∥2 ≤ 1,∀j

where xi is a data point in Rm; B ∈ Rm×K is the codebook; the sum-to-one constraint

enables the coding to be shift-invariant; ⊙ represents the element-wise multiplication

and di ∈ mathbfRm is the locality adaptor that allows different freedom for each

codeword bj proportional to its similarity to the input signal xi. Specifically,

dj = exp(
dist(xi,B)

σ
) (1.6)

where dist(xi,B) = [dist(xi,b1), . . . , dist(xi,bK)]
T , and dist(xi,bj) is the Euclidean

distance between xi and bj and σ is used for adjusting the weight decay speed for the

locality adaptor [32]. Since the coding is essentially the least-square problem yielding

a few significant coefficients, the authors used thresholding to generate the final sparse

code.

The advantages of LLC is that it has closed-form solution and possesses local

smooth sparsity. However, choosing appropriate parameters for the locality adaptor re-

quires tremendous effort. Moreover, the energy constraint on codewords may cause the

learned codebook to diverge from the the data manifold, which precludes its usability

in capturing the nonlinearity and local geometry of the data manifold.

1.3.2 Dictionary Learning

While signal sparse representation seeks succinct linear combinations of atoms

from a given dictionary, dictionary learning aims to adapt the dictionary to better

fit the task-specific model [33]. In other words, given a large set of training signals,

dictionary learning seeks a compact set of bases to best represent each signal in the
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training set under some sparsity constraints. Specifically, given training set Y =

{yi}Ni=1 containing N signals in ∈ Rm, the best dictionary for sparse representation of

Y is obtained by solving

min
D,X
∥Y −DX∥2F s.t. ∀i, ∥xi∥0 ≤ T0 (1.7)

where X is the sparse code matrix for representing Y over the dictionary D and

∥xi∥0 ≤ T0 is the strict sparsity constraint allowing no more than T0 nonzeros in

xi ∈ X.

The problem can also be formulated using ℓ1 penalty as

min
D,x∈X

1

N

N∑
i=1

(
1

2
∥yi −Dxi∥22 + λ∥xi∥1

)
(1.8)

The problem (Eq. (1.7) and Eq. (1.8) is not jointly convex with respect to (w.r.t)D and

X but is convex w.r.t one of them while keep the other fixed. A common approach to

minimize the above objective is alternating between the two variables, minimizing w.r.t

one while keep the other fixed. That is, iteratively solving for sparse representations

based on the dictionary and updating the dictionary given the sparse codes, until the

stopping criterion is met.

Method of Optimal Directions (MOD) [34] is an efficient dictionary learning al-

gorithm. This method uses either Orthogonal Matching Pursuit (OMP) or FOCUSS to

solve for sparse codes first and then performs one-step dictionary update by computing

the derivative of the error function.

K-SVD [33] is one of state-of-the-art dictionary learning algorithms, which has

achieved impressive results in many computer vision problems, e.g., image inpainting,

restoration, denoising and classification. The optimization is an iterative process al-

ternating between solving sparse representations using Orthogonal Matching Pursuit

(OMP) and dictionary update using singular value decomposition (SVD). The K-SVD

algorithm generates dictionary atoms with unit energy and is guaranteed to converge
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to local minimum.

Mairal et al. [35] recently proposed online dictionary learning by setting the

minimization target as the expected approximation error rather than aiming at a per-

fect minimization of empirical cost. This algorithm uses stochastic approximations by

processing one training signal at a time and minimizes a sequentially quadratic local

approximations of the expected approximation error.

To scale to large image classification datasets, many dictionary learning (DL)

algorithms have been developed to learn a compact dictionary while trading-off some

discriminative terms, such as the Fisher discrimination term [36], the classifier predic-

tion error [37], the incoherence promoting term [38], etc. By including label informa-

tion and using KSVD [33], Zhang et al. [1] proposed Discriminative-KSVD (D-KSVD)

for face recognition and Jiang et al. [39] further added a label consistent constraint

into the objective function to enforce the correspondence between labels and atoms.

1.3.3 Unsupervised Feature Learning

Unsupervised feature learning is a large family of methods that are capable of

learning meaningful features from abundant unlabeled data via a sequence of nonlinear

processing and can be combined to build feature hierarchies. Representative algorithms

are Auto-encoders [40], Restricted Boltzmann Machine (RBM) [41], Gaussian Mixture

Model (GMM) [42], Sparse Coding [21], etc. In this dissertation, we mainly focus on

sparse coding as the building block for unsupervised feature learning.

Sparse coding was originally developed to explain the visual processing mecha-

nism of brain [21] and has recently been proven to be an effective model for learning

visual features [22–27] in the unsupervised manner.

One drawback of sparse coding is that it typically require a time-consuming

optimization process. Directly using this model cannot satisfy the need for high-speed

signal/image recognition. Lecun et al. [22] proposed a highly efficient model, called

Predictive Sparse Decomposition (PSD), by incorporating a feed-forward encoder into
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the training objective, such that for any new sample, the encoder can predict an ap-

proximation to the optimal sparse code. Specifically, PSD is formulated as

min
B,Z,G,W

∥Y −BX∥2F + λ∥X∥1 + ∥X−Gσ(WY)∥2F

s.t. ∥bi∥22 = 1, ∀i = 1, . . . , h (1.9)

where B ∈ Rm×h is a set of the basis functions; X = [x1, ...,xN ] ∈ Rh×N is the

sparse feature matrix; W ∈ Rh×m is the auto-encoder; G = diag(g1, . . . , gh) ∈ Rh×h

is a scaling matrix with diag being an operator aligning vector [g1, . . . , gh] along the

diagonal, σ(·) is the element-wise sigmoid function and λ is a regularization constant.

The goal of jointly minimizing Eq. (1.9) with respect to the quadruple ⟨B,Z,G,W⟩

is to enforce the inference of the nonlinear regressor Gσ(WX) to be resemble to the

optimal sparse codes Z that can reconstruct X over B [22]. By stacking this model

into hierarchies, Lecun et al. [24] achieved state-of-the-art result on handwritten digit

recognition.

Another drawback of traditional sparse coding is that the model is not shift-

invariant. The model basically learns edge primitives and therefore results in highly

redundant dictionary [25,43]. In recent years, convolutional sparse coding has received

increasing research interest in computer vision and machine learning communities [25–

27, 43–45], mainly due to its capability of learning shift-invariant filters with complex

patterns. The key concept of convolutional sparse coding is replacing dot product

between the dictionary and code matrix with convolution operator. The dictionary

thus becomes a 2D convolutional filter bank and the code matrix becomes 2D sparse

feature maps. Specifically, convolutional sparse coding solves the following objective,

min
D,zk∈Z

L =

∥∥∥∥∥x−
K∑
k=1

dk ∗ zk

∥∥∥∥∥
2

F

+ α

K∑
k=1

∥zk∥1

s.t. ∥dk∥22 = 1,∀k = 1, . . . , K (1.10)

where the first and the second term represent the reconstruction error and the ℓ1-norm

8



penalty respectively; x is a 2D training image; D = {dk}Kk=1 is the 2D convolutional

filter bank having K filters, where each dk is a 2D convolutional kernel; Z = {Zi}Kk=1

is the set of sparse feature maps for reconstructing x; α is a regularization parameter;

∗ is the 2D discrete convolution operator; and filters are restricted to have unit energy

to avoid trivial solutions. Convolutional sparse coding has achieved state-of-the-art

performances in object recognition [27], pedestrian detection [44], retinal blood vessels

segmentation [46], and image denoising [45], etc.

1.4 Overview of Proposed Approaches

The primary goal of this dissertation is to develop generic algorithms for both

stages (i.e., feature extraction and classification) in computer vision and pattern recog-

nition models. To achieve this objective, we extend and improve existing sparse coding

models.

This dissertation summarizes three projects. The first project develops a novel

framework for nonlinear dimensionality reduction, for the purpose of algorithmically

reducing computational and memory complexity when solving for low-dimensional em-

bedding. We establish a theorem that the approximation to an unobservable intrinsic

manifold by a few latent points residing on the manifold can be cast in a novel dictio-

nary learning problem over the observation space. As a result, the proposed method

achieves improved embedding quality and substantial efficiency gain. In addition, we

explore the effectiveness of locality-preserving property and derive a family of discrim-

inative dictionary learning algorithms for classification tasks and show that they can

achieve very competitive performance compared to traditional sparse coding with much

lower computational cost.

The second project addresses challenging problems in biomedical image analy-

sis. We conduct pioneering work and develop feature learning models for tissue image

classification and nuclei segmentation. Specifically, on tissue image classification, we

will discuss two methods, i.e., Stacked Predictive Sparse Decomposition and Multi-

spectral Convolutional Sparse Coding. On nuclei segmentation, we will present an

9



approach called, sparsity constrained convolutional regression. The proposed models

can achieve very competitive results compared to dedicated systems using biological

prior knowledge.

The third project develops a unified framework based on sparse representa-

tion for classifying complicated human gestures captured as multivariate time series

(MTS). The model consists of a novel feature extractor and a kernel sparse represen-

tation classifier. The proposed feature extractor is invariant to temporal disordering

and overcomes the inconsistent lengths problem among MTS data. In addition, we

propose a new approach to kernelize sparse representation. Through kernelization,

realized dictionary atoms are more separable for sparse coding algorithms and nonlin-

ear relationships among data are conveniently transformed into linear relationships in

the kernel space, which leads to more effective classification. Extensive experiments

show that our method yields superior results compared to many previously reported

algorithms.

1.5 Summary of Contributions

The main contributions of this dissertation are as followings:

• We theoretically demonstrate that the approximation to an unobservable intrinsic

manifold by a few latent landmark points can be cast as a novel dictionary learn-

ing problem in the observation space. The derived locality-constrained dictionary

learning algorithm has analytic solution and can be extended to discriminative

learning tasks.

• We apply locality-constrained discriminative dictionary learning algorithms to

many computer vision and pattern recognition tasks, e.g., face recognition, action

recognition, hyperspectral image classification, etc, demonstrating the promising

performance of the proposed methods.

• By developing unsupervised feature learning systems, we first introduce this

emerging technology into biomedical image analysis. More importantly, in tissue
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image classification and nuclei segmentation, we show that automatically learned

features can achieve very competitive results compared to human-engineered fea-

tures based on biological prior knowledge.

• We propose a generic approach to kernelizing sparse representation, which is

readily applicable to many existing sparse coding algorithms. In addition, for

multivariate time series classification we develop a feature extractor, which cor-

responds to a valid kernel. Combining the two components, we derive a kernel

sparse representation classification algorithm.

1.6 Related Publications to The Described Contributions

The contributions described in this dissertation first appeared in a number of

publications. The following lists some publication highlights that roughly correspond

to different chapters in the dissertation:

• Chapter 2: Y. Zhou and K. E. Barner, “Locality Constrained Dictionary Learning

for Nonlinear Dimensionality Reduction”, IEEE Signal Processing Letters, Vol 20,

No. 4, 2013.

• Chapter 3a: Y. Zhou, K. Liu, K. E. Barner, “Non-Rigid 3D Shape Recognition

via Dictionary Learning”, in Proceedings, IEEE Int. Conf. on Acoustics, Speech,

and Signal Processing (ICASSP), Vancouver, Canada, May 2013.

• Chapter 3b: Y. Zhou, J. Gao, K. E. Barner, “Locality Preserving KSVD for

Nonlinear Manifold Learning”, in Proceedings, IEEE Int. Conf. on Acoustics,

Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013.

• Chapter 4a: Y. Zhou, H. Chang, K. E. Barner, P. Spellman and B. Parvin, “Clas-

sification of Histology Sections Using Multispectral Convolution Sparse Coding”,

to appear in Proceedings, IEEE International Conference on Computer Vision

and Pattern Recognition, 2014.

11



• Chapter 4b: H. Chang, Y. Zhou, P. Spellman and B. Parvin, “Stacked Predictive

Sparse Coding for Classification of Distinct Regions in Tumor Histopathology”,

in Proceedings, IEEE International Conference on Computer Vision, 2013.

• Chapter 4c: Y. Zhou, H. Chang, K. E. Barner and B. Parvin, “Nuclei Segmen-

tation via Sparsity Constrained Convolutional Regression”, submitted to Inter-

national Symposium on Biomedical Imaging, 2015.

• Chapter 5: Y. Zhou and K. Liu and R. E. Carrillo and K. E. Barner and F. Ki-

amilev, “Kernel based Sparse Representation for Gesture Recognition”, Pattern

Recognition, Vol 46, Issue 12, December 2013.

1.7 Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces the

locality-constrained dictionary learning algorithm for nonlinear dimensionality reduc-

tion. Chapter 3 further explores the effectiveness of locality-constrained coding in

a variety of real-world classification problems. Chapter 4 presents feature learning

systems for histopathology image classification and nuclei segmentation. Chapter 5

proposes a unified framework consisting of a feature extraction strategy and kernelized

sparse coding for MTS data classification. Chapter 6 summarizes this dissertation and

points out future directions.
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Chapter 2

LOCALITY-CONSTRAINED DICTIONARY LEARNING

In this chapter, we first propose an efficient locality-constrained dictionary learn-

ing (LCDL) algorithm to address the critical problem of exorbitant computational

complexity for nonlinear dimensionality reduction [47–52].

2.1 Introduction

Many computer vision and pattern recognition problems involve high-dimensional

large-scale datasets that are computationally expensive to process. Nonlinear dimen-

sionality reduction (NLDR) is an important technique that discovers the most succinct

and intrinsic forms of representation of the original high-dimensional data, allowing

more effective learning and prediction. Unfortunately, many existing NLDR algorithms

are of quadratic or even cubic complexity in the number of data, which diminishes the

applicability of these algorithms to real-world large-scale tasks [19]. Efforts have been

made on selecting a subset of training data as landmark points on the manifold to

improve the efficiency of NLDR algorithms. Landmark points are meaningful points

that preserve the local geometric structure of a manifold. In [53], the authors suggest

using a subset of randomly selected data points, which, however, may yield a locally

optimal solution with poor global performance. Alternatively, [19] proposes utilizing

LASSO regression to select landmark points, an approach that has high computational

cost due to the required ℓ1 minimization. The effective learning of landmark points,

thus, remains an open challenge.

Sparse representation–based dictionary learning has been proven to be effective

in image restoration [54], image denoising [33,34] and image classification [1]. However,

algorithms of this type generally do not ensure locality preservation and thus fails
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Figure 2.1: Overview of the proposed method. Given training data in high-dimensional
observation space, a representational and locality-preserving dictionary is learned.
Then, the low-dimensional embedding of the atoms is computed via some NLDR algo-
rithm. Finally, using the geometric relationships among training data and the atoms
in observation space, the low-dimensional embedding of training data is reconstructed
as linear combinations of the low-dimensional embedding of the atoms.

to faithfully depict intrinsic manifold geometry. To address this issue, the approach

in [31] approximates nonlinear functions via local coordinate coding. This method is

based a modification to ℓ1 minimization and, as such, has high computational cost.

More recently proposed is a locality–constrained linear coding (LLC) approach that

favors close samples and suppresses those distant [32]. Moreover, this approach has

the advantage of an analytic solution.

In this work (Fig. 2.1), we show that reconstructing an unobservable intrinsic

manifold via a few latent landmark points can be cast, under mild conditions, as a

locality constrained dictionary learning problem in the observation space. Utilizing

this approach, a novel locality constrained dictionary learning (LCDL) algorithm is

introduced. The LCDL algorithm identifies a compact set of landmark points that

are simultaneously representational and locality–preserving. Via the landmark points,

LCDL naturally embeds training and unseen data onto the intrinsic manifold. Pre-

sented results demonstrate that LCDL can significantly improve the performance of
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Figure 2.2: Illustration of the learning objective.

NLDR algorithms by yielding a more robust low–dimensional embedding at signifi-

cantly reduced computational complexity.

2.2 LCDL Algorithm

2.2.1 Problem Formulation

Given an observation set {yi}Ni=1 in Rm, suppose all yi reside on a smooth sub-

manifoldM⊂ Rm, which is the image of a smooth n-manifold N under an embedding

f : N → Rm, where n≪ m. f is a diffeomorphism of N toM [55].

Let g denote the inverse mapping f−1 and let g(yi) ∈ Rn be the image of yi via g

located on N . Define xi ∈ RK as the local reconstruction code for representing g(yi) as

a linear combination ofK landmarks. Our objective is to learn a codebook of landmark

points on M in the observation space, i.e., D = [d1, . . . ,dK ] ∈ Rm×K , (K ≪ N),

such that g(D)xi approximates g(yi) in terms of ℓ2 distance, for i = 1, . . . , N . Here

g(D) = [g(d1), . . . , g(dK)] ∈ Rn×K is a matrix representing the image of the landmarks

stored in D via the inverse mapping g, located on N . An illustration of the proposed

learning objective is shown in Fig. 2.2, where the green dots represent training data

(yi in the observation space and g(yi) on the intrinsic manifold) and the red dots
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represent the learned landmarks on the high-dimensional (dj) and low-dimensional

manifold (g(dj)). Achieving this goal yields much more effective NLDR by learning

only K ≪ N landmark points, making NLDR algorithms scalable to large dataset

problems.

In practice, however, it is often infeasible to recover g due to the facts that: 1)

the myriad of observed data causes intractable computation complexity and memory

consumption; 2) the intrinsic manifold N is typically unknown. Without knowing g

explicitly, even optimizingD onN becomes impractical. We therefore need to establish

a relationship between the approximation problem among latent variables (i.e., g(yi)

and g(D)) and the approximation problem among observation variables (i.e., yi and

D).

As noted by [47], xi reflects intrinsic geometric properties of each neighborhood

on N and these properties are expected to be equally valid for local patches onM. We

can therefore use the same set of local reconstruction codes to characterize the local

geometric relationships between g(yi) and g(D) on N as to characterize those between

yi and D onM.

2.2.2 Locality Constrained Dictionary Learning (LCDL)

By requiring g(D)xi to approximate g(yi) in terms of ℓ2 distance, for i =

1, . . . , N , we essentially obtain a representational D such that
∑N

i=1 ∥g(yi)− g(D)xi∥22
is minimized. For symmetry, we enforce 1Txi = 1 for all i such that the characteriza-

tion of local geometry by xi is invariant to scaling, rotation and shift of the coordinate

system [47], where 1 is a column vector of all ones.

Lemma 1. Let M, N and g be as above. Let p ∈ Up be an open subset of M with

respect to p, such that ∀q ∈ Up, the line segment pq remains in Up. If |∂gs/∂qt| ≤ c,

1 ≤ s ≤ n, 1 ≤ t ≤ m, at every q ∈ Up, then we have ∀q ∈ Up [55]:

∥g(q)− g(p)∥22 ≤ mnc2 ∥q− p∥22 . (2.1)
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The proof can be derived as a generalization of the mean value theorem and as

such we omit the steps for brevity (see [55] for details). Lemma 1 indicates that as Up
shrinks to be a sufficiently small neighborhood of p,mnc2 ∥q− p∥22 −→ ∥g(q)− g(p)∥

2
2.

We use this observation below.

Theorem 1. Let g(yi), yi, g(D), D and g be as above. Let yi ∈ Uyi
and Dxi ∈ UDxi

be open sets as in Lemma 1, that also satisfy Dxi ∈ Uyi
and {dj|xji ̸= 0,∀j} ⊂ UDxi

∀i. If 1Txi = 1 and ∥xi∥0 = τ (τ ≪ K) for all i, then the following inequality holds:

N∑
i=1

∥g(yi)− g(D)xi∥22 ≤ α

N∑
i=1

∥yi −Dxi∥22 + β

N∑
i=1

K∑
j=1

[
x2ji ∥Dxi − dj∥22

]
(2.2)

where xji is the j-th element in vector xi, τ ∈ Z+, and α = 2c1, β = 2τc2, with

c1 = sup({|∂gs/∂qt| | q ∈ Uyi
,∀i, s, t}) and c2 = sup({|∂gs/∂qt| | q ∈ UDxi

,∀i, s, t}).

Note that i exclusively represents the indexes of yi and its code xi while j only denotes

the j-th element in xi.

Proof. Denote by Y ∈ Rm×N the matrix containing all yi and let X = [x1, . . . ,xN ] ∈

RK×N be the matrix containing N local reconstruction codes. We have

N∑
i=1

∥g(yi)− g(D)xi∥22

= ∥g(Y)− g(D)X∥2F
(a)
= ∥g(Y)− g(DX) + g(DX)− g(D)X∥2F
(b)

≤ 2∥g(Y)− g(DX)∥2F + 2∥g(DX)− g(D)X∥2F
(c)
= 2

N∑
i=1

∥g(yi)− g(Dxi)∥22 + 2
N∑
i=1

∥g(Dxi)− g(D)xi∥22 (2.3)

where in (a) g(DX) ∈ Rn×N is a matrix representing the image of the reconstructed

signals DX via g; (b) is from Cauchy-Schwarz inequality; in (c) g(Dxi) ∈ Rn is the

i-th column in g(DX). Since 1Txi =
∑K

j=1 xji = 1 and ∥xi∥0 = τ for all i, Eq. (2.3)
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Figure 2.3: Illustration of LCDL algorithm.

can be written as:

N∑
i=1

∥g(yi)− g(D)xi∥22

≤ 2
N∑
i=1

∥g(yi)− g(Dxi)∥22 + 2
N∑
i=1

∥∥∥∥∥
K∑
j=1

xji

[
g(Dxi)− g(dj)

]∥∥∥∥∥
2

2

≤ 2
N∑
i=1

∥g(yi)− g(Dxi)∥22 + 2τ
N∑
i=1

K∑
j=1

[
x2ji ∥g(Dxi)− g(dj)∥22

]
(2.4)

Applying Lemma 1 to each ∥g(yi)− g(Dxi)∥22 and to each
[
x2ji ∥g(Dxi)− g(dj)∥22

]
in Eq. (2.4), ∃ c1 = sup ({|∂gs/∂qt| | q ∈ Uyi

,∀i, s, t}) and c2 = sup({|∂gs/∂qt| | q ∈

UDxi
,∀i, s, t}) such that 2∥g(yi)−g(Dxi)∥22 ≤ 2c1 ∥yi −Dxi∥22, ∀i and 2τ [x2ji∥g(Dxi)−

g(dj)∥22] ≤ 2τc2[x
2
ji∥Dxi − dj∥22], ∀i, j. Letting α = 2c1 and β = 2τc2 completes the

result.

Theorem 1 establishes a relationship between the latent variables and the obser-

vation variables by upper-bounding the approximation error on the intrinsic manifold

N (LHS) in terms of the approximation error onM in the observation space (RHS). As

indicated by Lemma 1, when Dxi and all dj ∈ {dj|xji ̸= 0, ∀j} lie within a sufficiently

small neighborhood of yi, the RHS of Eq. (2.2) −→ the LHS of Eq. (2.2).
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On the RHS, the 1-st term is the approximation error (reconstruction error

term in dictionary learning literature) and the 2-nd term is the localization penalty

term. An illustration of Theorem 1 can be found in Fig. 2.3, where for securing good

approximation to each training sample (yi), we want the reconstructed signal Dxi

(blue dot) to be as close as possible to yi (green dot); for preserving locality, we also

want the neighborhood of yi to be as small as possible, i.e., the landmark points (red

dots) contributing to reconstructing yi should be close to the Dxi (blue dot). By

minimizing the RHS of Eq. (2.2) with respect to D and xi for all i, we achieve faithful

approximation (1-st term) and secure compact localization (2-nd term), i.e., all dj ∈

{dj|xji ̸= 0,∀j} −→ Dxi −→ yi, indicating that β
∑N

i=1

∑K
j=1[x

2
ji∥Dxi − dj∥22] ≈

β
∑N

i=1

∑K
j=1[x

2
ji∥yi − dj∥22]. We therefore formulate the practical LCDL optimization

problem as:

min
D,X

N∑
i=1

∥Y −DX∥2F + λ

N∑
i=1

K∑
j=1

[
x2ji ∥yi − dj∥22

]
+ µ ∥X∥2F (2.5)

s.t.

 1Txi = 1 ∀i (∗)

xji = 0 if dj /∈ Ωτ (yi) ∀i, j (∗∗)

where Ωτ (yi) is defined as the τ -neighborhood containing τ nearest neighbors of yi, and

λ, µ are positive regularization constants. µ ∥X∥2F is included for numerical stability of

the least–squares solution. The sum-to-one constraint (∗) follows from the symmetry

requirement, while the locality constraint (∗∗) ensures that yi is reconstructed by

atoms belonging to its τ -neighborhood, allowing xi to characterize the intrinsic local

geometry.

2.2.3 Optimization

An iterative process is employed for LCDL optimization. That is, the local

reconstruction code X is optimized first, followed by D. The iterations are repeated,

with one aspect held fixed while the other is optimized. The repetition is terminated
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once either objective function is below a preset threshold or a maximum number of

iterations is reached.

2.2.3.1 Solving for Local Reconstruction Codes

Fixing D, which is initialized or set from previous iteration, the i-th column

xi ∈ X is obtained by solving:

min
xi

∥yi −Dxi∥22 + λ
K∑
j=1

[
x2ji ∥yi − dj∥22

]
+ µ ∥xi∥22 (2.6)

s.t.

 1Txi = 1

xji = 0 if dj /∈ Ωτ (yi) ∀j

Taking both of the constraints into consideration, and using Lagrange multiplier, we

obtain

L(x̂i, η) = ∥yi − Ωτ x̂i∥22 + λ
∑

dj∈Ωτ

[
x2ji ∥yi − dj∥22

]
+ µ ∥x̂i∥22 + η

(
1Tx̂i − 1

)
(2.7)

where for simplicity we express Ωτ (yi) as Ωτ ∈ Rm×τ and x̂i as a succinct subvector con-

taining only τ nonzero elements for those dj ∈ Ωτ . Denote as G = (Ωτ −yj1
T)T(Ωτ −

yj1
T) the local covariance matrix. Define δ(·) as the operator that preserves only the

diagonal of a square matrix and sets the remaining elements to zero. Thus δ(G) is a

diagonal matrix of size τ -by-τ . For mathematical simplicity, we impose 1Tx̂i = 1 onto

the 1-st term of Eq. (2.7) and get:

L∗(x̂i, η) = x̂T
i (G+ λδ(G) + µI)x̂i + η

(
1Tx̂i − 1

)
, (2.8)

where I is the identity matrix. Setting ∇x̂i
L∗(x̂i, η) and ∇ηL∗(x̂i, η) to zero, we obtain

the solution as

x̂i =
(G+ λδ(G) + µI)−11

1T(G+ λδ(G) + µI)−11
(2.9)
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Although the formulations are different, we can still adopt the strategy in [47] to

compute x̂i efficiently, i.e., first solving the linear system of equations (G + λδ(G) +

µI)x̂i = 1 and then normalizing x̂i to satisfy the sum-to-one constraint. Note that in

contrast with sparse coding algorithms, the proposed coding scheme has an analytic

solution and thus is of substantially lower computational complexity.

2.2.3.2 Dictionary Optimization

Having obtained the optimal X ∈ RK×N , we now consider this term fixed and

present a procedure for individually optimizing each atom of D. Let dj ∈ Rm be the

j-th atom in D and define row vector xj∗ ∈ R1×N as the j-th row of X. With X and

all other atoms fixed, we rewrite Eq. (4.5) and cast the optimization problem as

min
dj

H(dj) =

∥∥∥∥∥Y −∑
k ̸=j

dkxk∗ − djxj∗

∥∥∥∥∥
2

F

+ λ

{
N∑
i=1

[
x2ji ∥yi − dj∥22

]
+

N∑
i=1

K∑
k ̸=j

[
x2ki ∥yi − dk∥22

]}
. (2.10)

Setting E = Y −
∑

k ̸=j dkxk∗ and eliminating irrelevant terms, Eq. (3.6) is simplified

to

min
dj

H(dj) = Tr
{
(E− djxj∗)(E− djxj∗)

T
}
+ λ

N∑
i=1

[
x2ji(yi − dj)

T(yi − dj)
]

(2.11)

Since H(dj) is convex, setting the gradient of H(dj) with respect to dj to zero yields

the optimal solution

dj =
1

(1 + λ)(xj∗xT
j∗)

(
ExT

j∗ + λYα
)

(2.12)

where α = [x2j1, . . . , x
2
jN ]

T ∈ RN is a column vector with terms the squared values of

those in xT
j∗.

Discussion: In the framework of LCDL, the mapping g can be found by any NLDR al-

gorithm. NLDR algorithms, however, require complexity O(mN2) or O(mN3) in time

(depending on the specific formulation utilized) and O(N2) in space, when operating
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Figure 2.4: Low-dimensional embedding reconstruction comparison on Swiss roll (1st
row), Punctured sphere (2nd row) and Gaussian (3rd row). Ground truth means the
low-dimensional embedding obtained directly from all training samples. The nearest
neighbor parameter k of NLDR algorithms is set to 6. The RMSE values are (c)
0.0299, (d) 0.7409, (e) 0.0666, (f) 0.0535, (i) 0.0705, (j) 0.8664, (k) 0.1060, (l) 0.1743,
(o) 0.0104, (p) 0.2943, (q) 0.0419, (r) 0.1012.

on the full set of data. Utilizing a landmark points approach greatly reduces the NLDR

complexity to O(mK2) or O(mK3) in time, again depending on the formulation uti-

lized, and O(K2) in space, where K ≪ N . The LCDL time complexity, for computing

a single xi, is O(mK) + O(mτ 3), which is dominated by O(mK) as τ 3 ≪ K. Addi-

tionally, the LCDL optimizing, for each dj, has time complexity O(mN). The overall

asymptotic complexity of LCDL is O(mNK) per iteration. Though the convergence

speed is task-dependent, the convergence to a local minimum is guaranteed and in our

experiments 15 iterations are typically sufficient to achieve satisfactory results. When

N is large, the LCDL complexity is negligible compared to that of NLDR. Thus LCDL,

by efficiently establishing a faithful embedding and reconstruction representations, can

significantly reduce the time and space complexity of NLDR algorithms, especially for

large-scale datasets.
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2.3 Experimental Results

Evaluation using Synthetic Manifolds

The proposed LCDL is evaluated by measuring the root mean square error (RMSE) in-

troduced through the reconstruction of an intrinsic manifoldN , i.e., ∥g(Y)−g(D)X∥F/
√
N .

LCDL is compared with three state-of-the-art DL algorithms, K-SVD [33], LCC [31]

and the recently proposed LLC [32]. Note that g(Y) and g(D) are the low-dimensional

embedding of training data and landmark points, respectively, computed via the NLDR

algorithm, where g(Y) is employed as the ground truth. Also, X is computed accord-

ing to Eq. (3.5). For each synthetic dataset, N = 3000 training data are randomly

generated, among which K samples are randomly selected for initialization. We set

K = 500, 200, and 100 for the Swiss roll, Punctured sphere and Gaussian manifold, re-

spectively. The NLDR algorithms are Hessian LLE [49], Laplacian Eigenmap [50], and

LLE [47] for these three manifolds. We restrict training samples to be reconstructed

by 2 atoms, as the intrinsic manifolds are 2D. The visualization and RMSE of the re-

constructed low-dimensional manifolds are illustrated in Fig. 2.4. LCDL outperforms

other competitive methods, yielding the closet approximation to the ground truth in

all cases.

Evaluation using Face Recognition Datasets

Consider next the effectiveness in classification of the reconstructed low-dimensional

manifolds produced by LCDL, with effectiveness determined through comparisons to

the aforenoted methods. Though we only report classification results using LLE, drawn

conclusions can be generalized to other NLDR algorithms.

The Extended YaleB Database [56] contains 2414 face images of 38 subjects.

For each subject, we randomly select half of the images (about 32 per person) for

training and the other half for testing. As in [57], we use a subset of the CMU PIE

Database [58], i.e., C05, C07, C09, C27, and C29, which yields a total 11554 images of

68 subjects. Following [57], a random selection of 130 images per person is employed

to form the training set and the rest of the database is designated for testing. All

images are normalized to 32 × 32 pixels and preprocessed by histogram equalization.
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Figure 2.5: Classification results over two face databases. The parameter k of LLE is
set to 60 for both Extended YaleB and CMU PIE.

The nearest neighbor classifier is employed and the results averaged over 10 repetitions

are reported. The LCDL parameters are set as λ = 0.1, µ = 0.001, and τ = 2.

For all algorithms, a structured dictionary is learned as D = [D1|D2| . . . |DC ],

where Di is the sub-dictionary for class i. As in [1], we fix the number of atoms per

class to be 8, yielding a dictionary of 304 atoms for the Extended YaleB Database

and a dictionary of 544 atoms for the CMU PIE Database. The sparsity factor is

set, through exhaustive search optimization, to 24 and 32 for K-SVD over the two

databases, respectively. All Train is selected as the baseline method, which represents

the results obtained in performing LLE on the entire training set. Random means

employing randomly selected training samples as the dictionary. The recognition rates

versus dimension for all methods are illustrated in Fig. 2.5(a) and Fig. 2.5(d). The pro-

posed LCDL achieves the highest accuracies, 97.5% on the Extended YaleB Database

and 97.4% on the CMU PIE Database. LCDL outperforms All Train since the opti-

mization ameliorates the noise and outlier effects within the training data, which leads
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Table 2.1: The overall time (seconds) includes dictionary learning and training data
embedding. Note the time measurement may vary based on different implementations.

Extended YaleB CMU PIE
Overall Time Speedup Overall Time Speedup

All Train 22.1577 s No 11807.3121 s No
K-SVD [33] 71.2387 s No 2751.2620 s 4.3x
LCC [31] 38.7172 s No 1299.7146 s 9.1x
LLC [32] 11.6593 s 1.9x 69.2321 s 170.5x
LCDL 7.1001 s 3.1x 45.8025 s 257.8x

to more robust dimensionality reduction.

In addition, we evaluate the proposed approach by fixing the dimension and

varying the number of atoms per class from 2 to 10, which yields the ratio ♯ atoms
♯ training samples

between 6.25% to 31.25% and between 1.54% to 7.69% for the Extended YaleB Database

and the CMU PIE Database respectively. As shown in Fig. 2.5(b) and Fig. 2.5(e),

LCDL consistently produces higher accuracy than competing algorithms across a range

of dictionary sizes. This results from the fact that LCDL establishes a dictionary that

is both representational and locality preserving. Moreover, we examine the impact τ

and λ have on LCDL performance. As shown in Fig. 2.5(c) and Fig. 2.5(f), LCDL

maintains higher recognition rate than other methods over a wide range of τ and λ,

indicating that performance is relatively robust to parameter value selections.

Finally, we evaluate the implementation efficiency of LCDL by measuring the

speedup in terms of the overall training time compared to the All Train baseline,

Table 2.1. The results show that LCDL is more efficient than comparison methods

and significantly improves the learning efficiency of LLE by more than 2 orders of

magnitude over the CMU PIE Database.

Discussion: For completeness, we summarize the computational complexity of these

representative algorithms and compare with the proposed LCDL algorithm, as shown

in Table 2.2. We list the computational complexity for both the dictionary learning step

and the training data encoding step. For the purpose of keeping the notation consistent,

τ represents the number of nearest neighbors for LLC and LCDL and denotes the

sparsity level for K-SVD. Note that for iterative dictionary optimization algorithms,
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Table 2.2: Comparison of computational complexity for all the methods, including the
dictionary learning step and the training data encoding step.

Method Dictionary Learning Training Data Encoding

K-SVD [33,59] O(τ 2NKt+ 2mNKt) O(2τmK + 2τ 2m+ 2τ(K +m) + τ 3)
LCC [31] O(mNKt) +O(mNKtmin{m,K}) O(mNKtmin{m,K})
LLC [32] O(mNK3) +O(mNτ 3) O(mNτ 3)
LCDL O(mNKt) +O(mNτ 3t) O(mNτ 3)

i.e., K-SVD, LCC and LCDL, t represents the number of iterations.

2.4 Conclusion

We propose a novel algorithm, LCDL, that learns dictionary atoms as landmark

points which are simultaneously representational and locality preserving. Experiments

demonstrate that LCDL is superior to existing dictionary learning algorithms in terms

of yielding more meaningful atoms for NLDR algorithms with greatly reduced compu-

tational complexity.
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Chapter 3

DISCRIMINATIVE DICTIONARY LEARNING FOR
CLASSIFICATION

3.1 3D Shape Recognition

In this section, we extend the previously introduced LCDL, by incorporating

discriminative functional terms into the training objective. The proposed algorithm

achieves very encouraging recognition results. Our work is the first attempt applying

locality-constrained dictionary learning to 3D shape recognition.

3.1.1 Introduction

Accurately recognizing non-rigid 3D objects in real world has been a challenging

topic in machine/computer-vision-based applications such as robotic control, surveil-

lance, automatic navigation, assistive technology, etc [60]. To achieve this objective,

effective feature extraction strategies and discriminative classification algorithms are

much needed.

In order to extract robust features from 3D surface of non-rigid objects, many

algorithms have been proposed. Typically, they can be categorized into global feature

extraction, e.g., shape histograms [61], shape moments [62], spherical harmonics [63],

etc, and local feature extraction, e.g., heat kernel signatures [64], meshSIFT [65], 3D

SURF [60], etc. Experiments have demonstrated that the local feature based methods

have obvious advantages for dealing with issues of noise and partial occlusion [60, 66].

In this work, we employ meshSIFT [65] algorithm to build 3D shape descriptors.

Once the features of an object are extracted, an effective classification algorithm

is desired to identify the class label of an object. Among those proposed classification

methods so far, we mainly investigate dictionary learning based approaches. Sparse
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Figure 3.1: The proposed classification strategy. Given a query shape S, extract shape
descriptors on it and then perform classification per descriptor. Finally the label of S
is determined by majority voting over descriptor decisions.

coding solves for a compact and representational dictionary such that the large amount

of training data can be expressed linearly by a few atoms in the dictionary. It has

been proven that this model is effective in image restoration [54, 67], image denois-

ing [33,34], image classification [1, 11,38], etc. In particular, Zhang et al. [1] proposed

Discriminative-KSVD (D-KSVD) for face recognition by introducing label information

into an objective function such that a representational dictionary and a linear clas-

sifier can be jointly optimized by using KSVD [33]. However, sparse coding based

algorithms do not exploit the dependency information among local features and may

therefore yield inconsistent representations of similar features [68,69].

Locality-based coding was recently developed [31,32] to address this issue. Par-

ticularly, Yu et al. [31] introduced Locally Coordinate Coding (LCC) to approximately

express nonlinear functions as a linear combination of anchor points. Unfortunately,

their coding strategy is based on a modification of LASSO (Least Absolute Shrinkage

and Selection Operator) and hence suffers from high computation cost. Wang et al. [32]

further proposed Locality-constrained Linear Coding (LLC) as a fast approximation to

28



LCC achieving impressive performance in image classification by using LLC codes as

features and Support Vector Machine (SVM) as classifier. Nevertheless, little effort has

been made to apply the aforementioned sparse or local coding techniques to non-rigid

3D shape recognition.

In this work, we extend the previously introduced LCDL algorithm and pro-

pose a novel algorithm, called dictionary learning based on supervised locally linear

representation (DL-SLLR) for efficient 3D shape recognition. The main contribution

is simultaneously incorporating a locality-preservation error term and the label ap-

proximation error term into the objective function. Unlike sparse coding based al-

gorithms [1, 37–39, 70, 71], the proposed SLLR coding yields a closed-form solution.

Moreover, the dictionary is optimized for both reconstruction and locality preserva-

tion, which therefore allows not only faithful reconstruction but also more consistent

encoding of similar descriptors [68]. The proposed DL-SLLR is also different from

recently proposed locality-based coding algorithms [31, 32, 72] in that 1) The SLLR

coding is supervised such that training descriptors can only be coded by its same-class

neighboring atoms, which thus yields a more discriminative dictionary; 2) A simple yet

effective linear mapping is explicitly formulated into the unified objective function for

classification.

To classify a query shape, we aggregate the predicted results of all descriptors

using majority voting. Such a scheme requires negligible computational complexity and

is invariant to rigid (rotation, scaling, and shift) and non-rigid (e.g., stretch, shrink and

twist) transformations. Experiments over a newly generated SLI 3D Face Dataset and

the SHREC’11 Contest Dataset validate the effectiveness of the proposed framework,

i.e., DL-SLLR in conjunction with majority voting.

3.1.2 The DL-SLLR Algorithm

Consider a C-label 3D shape classification problem. Let Yi ∈ Rm×ni be a set

of m-dimensional ni shape descriptors extracted from 3D objects with label i. Assign
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label i to all descriptors in Yi. Set Y = [Y1,Y2, . . . ,YC ] ∈ Rm×N as the training set

for all classes, where N =
∑C

i=1 ni.

Let D = [D1,D2, . . . ,DC ] ∈ Rm×L be a structured dictionary, where each Di ∈

Rm×K is a class-specific sub-dictionary trained for Yi and L = KC. Denote xj ∈ RL as

the sparse code of yj overD, where yj ∈ Y is the j-th descriptor inY, for j = 1, . . . , N .

We define Ωk(yj) as the same-class neighborhood with respect to yj containing k-

nearest-neighbor atoms from one particular sub-dictionary, which is pertaining to the

same label as yj. Correspondingly, define Λdi
, {yj| ∀j, xij ̸= 0, yj ∈ Y} as a

neighborhood of di, containing all yj that are concurrently selecting di as one of their

neighboring atoms, where xij is the i-th element in vector xj.

The goal at hand is achieving two objectives. The first is establishing a dis-

criminative dictionary structured as D = [D1,D2, . . . , DC ] such that each Di is inde-

pendently trained for Yi and every atom di preserves the locality of its neighborhood

Λdi
. The second objective is realizing a linear mapping W ∈ RC×L that transforms the

sparse code xj of every descriptor yj to its label vector hj = [0, . . . , 1, . . . , 0]T, where

the index of element 1 indicates the label of yj. Thus, the dictionary learning problem

(DL-SLLR) is formalized as:

min
D,W,X

 ∥Y −DX∥2F + α
K∑
i=1

∑
yj∈Λdi

∥yj − di∥22

+β ∥H−WX∥2F + γ ∥X∥2F + µ ∥W∥2F

 (3.1)

s.t. xij = 0 if di /∈ Ωk(yj)

1Txj = 1 ∀i, j

where X = [x1, . . . ,xN ] ∈ RL×N contains the SLLR codes (discussed in the next

section) for descriptors in Y ∈ Rm×N , and xij is the i-th element in column vector

xj ∈ X. Obeying the standard meaning, the first and the third terms represent the

reconstruction and the classification errors respectively. The second term is the su-

pervised locality-preservation error term, which ensures that every atom is close to

those training samples that concurrently choose it as one of their neighboring atoms.

30



It therefore encourages atom consistency in local representations of similar descrip-

tors [68]. Note that γ ∥X∥2F and µ ∥W∥2F are regularization penalty terms, included

for numerical stability, with γ and µ small positive constants. In addition, the first

constraint requires each descriptor to be reconstructed only by its same-class neighbor-

ing atoms, ensuring that every sub-dictionary Di is trained from the Yi independently.

The second constraint allows the coding to be shift-invariant, in which 1 is a column

vector of all ones.

3.1.3 Optimization

The dictionary learning problem can be solved by iteratively repeating the fol-

lowing two steps to reduce the objective function, i.e., first solving for the code matrix

X with the other two variables fixed, and then updating D and W, respectively. The

iterations are terminated if either the objective function value is below some preset

threshold or a maximum number of iterations has been reached.

3.1.3.1 Supervised Locally Linear Representation

Consider first solving for the SLLR code xj ∈ X, for all j = 1, . . . , N , with

D, W fixed. Define ŷj =
[
yT
j ,
√
βhT

j

]T ∈ Rm+C as the j-th augmented training

sample in the augmented training set Ŷ =
[
YT,
√
βHT

]T ∈ R(m+C)×N . Likewise

denote D̂ =
[
DT,
√
βWT

]T ∈ R(m+C)×L as the augmented dictionary. Furthermore,

set Ω̂k(yj) = {d̂i| ∀i, di ∈ Ωk(yj), d̂i ∈ D̂} as the augmented neighborhood with

respect to yj, with d̂i being the i-th column in D̂. Thus, minimizing Eq. (3.13) with

respect to xj, is equivalent to solving the following locally linear representation (LLR)

problem [47,73] under the same-class neighborhood constraint.

min
xj

∥ŷj − D̂xj∥22 + γ ∥xj∥22 (3.2)

s.t. xij = 0 if d̂i /∈ Ω̂k(yj)

1Txj = 1 ∀i
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Taking both of the constraints into consideration simultaneously, and using Lagrange

multiplier, we get

J (x̃j, η) = ∥ŷj − Ω̂kx̃j∥22 + γ ∥x̃j∥22 + η
(
1Tx̃j − 1

)
(3.3)

where for simplicity we express Ω̂k(yj) as Ω̂k ∈ R(m+C)×k, and x̃j is a succinct vector

containing only the nonzero coefficients for those d̂i ∈ Ω̂k(yj). Denote as G = (Ω̂k −

ŷj1
T)T(Ω̂k − ŷj1

T) the local covariance matrix. Then Eq. (3.3) can be written as:

J (x̃j, η) = x̃T
j (G+ γI)x̃j + η

(
1Tx̃j − 1

)
(3.4)

where I is the identity matrix. Setting ∇x̃j
J (x̃j, η) and ∇ηJ (x̃j, η) to zero yields the

desired closed-form solution, as

x̃j =
(G+ γI)−11

1T(G+ γI)−11
(3.5)

As suggested by [47], a more efficient way to compute x̃j is by first solving the linear

system of equations (G+ γI)x̃j = 1 and then normalizing x̃j to satisfy the sum-to-one

constraint. We adopt this for practical implementation.

Note that the proposed SLLR is different from LLR [47,73] in that 1) SLLR cod-

ing is supervised, which yields discriminative local reconstruction coefficients; 2) SLLR

is performed over a compact dictionary and is combined with dictionary optimization,

which in turn helps further reduce the reconstruction error.

3.1.3.2 Updating the Dictionary and the Mapping

Next, consider the update of D and W, with X fixed. We individually optimize

each atom of D. Let di ∈ Rm be the i-th atom in D and define xi∗ ∈ R1×N as the

i-th row of X. With X and the other atoms fixed, we rewrite Eq. (3.13) and cast the
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optimization problem with respect to di as

min
di

H(di) =

∥∥∥∥∥Y −∑
l ̸=i

dlxl∗ − dixi∗

∥∥∥∥∥
2

F

+α

 ∑
yj∈Λdi

∥yj − di∥22 +
∑
l ̸=i

∑
yj∈Λdl

∥yj − dl∥22


(3.6)

Letting E = Y −
∑
l ̸=i

dlxl∗ and rearranging Eq. (3.6), we have

min
di

H(di) = Tr
{
(E− dixi∗)(E− dixi∗)

T
}
+ α

∑
yj∈Λdi

[
(yj − di)

T(yj − di)
]

(3.7)

Note that H(di) is convex. Hence, setting the gradient of H(dj) with respect

to di to zero yields the updated atom dnew
i as

dnew
i =

1

(xi∗xT
i∗ + α|Λdi

|)

ExT
i∗ + α

∑
yj∈Λdi

yj

 (3.8)

where |Λdi
| denotes the cardinality of set Λdi

. Applying Eq. (3.8) to all di, for i =

1, . . . , L, completes the dictionary update in the current iteration.

In order to update W, we solve the multivariate ridge regression [74] problem

as

Wnew = argmin
W
∥H−WX∥2F + µ ∥W∥2F (3.9)

where µ is a small positive constant for numerical stability. The solution is easily

obtained as

Wnew = HXT(XXT + µI)−1 (3.10)

Minimizing the objective function, we will obtain the optimal dictionary D, which is

representational for reconstructing training descriptors and capable of preserving local-

ity of the data manifold, and we will also get the optimal mapping W in approximating

the label matrix.
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3.1.3.3 Classification Strategy

Human can distinguish different classes of objects (see Fig. 3.1) with mutual

similarity in shape, even without using the clue of size, color and texture because

we can make judgements based on seeking and comparing the most distinctive shape

characteristics among those objects, despite the presence of a large portion of mutual

similarity [75]. In other words, it is the most distinctive shape features of an object

that plays the critical role in a successful recognition. We propose to emulate this

process by employing majority voting and apply it to classifying 3D objects based

on the newly proposed dictionary learning algorithm. Simplistically, we may assume

that the votes from nondistinctive shape descriptors are approximately evenly spread

across similar classes. Thus the outcome is the class that wins the most votes from the

distinctive descriptors. Majority voting is an aggregation process (in which we need

no explicit knowledge about which descriptors are distinctive or not) and its result is

determined by the highest accumulated votes on a particular class. Visualizing the

vote distribution of two objects from the SHREC’11 Contest Dataset [76], we can see

in Fig. 3.2 that although a large portion of votes go to incorrect classes, the true class

clearly receives the highest number of votes compared with any incorrect class.

Given a query object S, denote QS = [q1, . . . ,qn] ∈ Rm×n as the set of n

extracted shape descriptors. The local reconstruction code xj for each qj is computed

by solving

min
xj

∥qj −Dxj∥22 + γ ∥xj∥22 (3.11)

s.t. xij = 0 if di /∈ Γt(qj) ∀i

1Txj = 1

where xij is the i-th element in vector xj ∈ RL and Γt(qj) is a neighborhood set con-

sisting of t nearest-neighbor atoms of qj. The solution is given previously as Eq. (3.5).
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Figure 3.2: Majority voting results after normalization on SHREC’11 Contest Dataset.
The two objects are bird (a) and hand (b). The bird is associated to label 4 while the
hand is associated to label 15. Since the number of extracted descriptors varies across
different objects, we normalize the voting results for better visualization.

Next, compute the projection r = Wxj ∈ RC and assign the label lj to descrip-

tor qj according to

lj = argmax
i

(r = [r1, . . . , ri, . . . , rC ]
T) (3.12)

Applying the same procedure to all qj ∈ Q, a label vector is formed as l = [l1, l2, . . . , ln].

Finally, we count the votes for each class label based on l and classify the query shape

S according to the label receiving the most votes.

3.1.4 Experimental Results

The proposed DL-SLLR algorithm is evaluated using majority voting as classi-

fication scheme over two large datasets, the SLI 3D Face Dataset and the SHREC’11

Contest Dataset [76]1. The proposed method is compared with D-KSVD [1] using

majority voting and with a baseline SVM [77] method with Gaussian kernel using

bag-of-words histogram (BoWH + SVM). The shape descriptors are extracted using

meshSIFT [65]. Training parameters for DL-SLLR are k ∈ {2, 3, 4, 5}, α = β = 0.01,

1 Accessible at:http://www.itl.nist.gov/iad/vug/sharp/contest/2011/
NonRigid/data.html
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Table 3.1: Recognition results on SLI 3D Face Dataset.

Method Proposed D-KSVD [1] BoWH + SVM [77] Smeet’s [65]

Accuracy 96.00% 95.78% 90.63% 91.67%

γ = µ = 0.001 over both datasets. The neighborhood size t for classification is set to

10 and 6 for the face and the SHREC’11 datasets respectively.

Evaluation using SLI 3D Face Dataset

First presented are classification results over a newly generated Structured Light Il-

lumination 3D Face Dataset (SLI 3D Face Dataset) [78]. This dataset is collected

using the algorithm and hardware implementation developed in [79, 80]. It contains

576 high-quality dense 3D point clouds (approximately 5000 points per face) for 24

subjects with 4 static facial expressions under 3 different view angles. The population

of 24 volunteers consists of 7 females and 17 males. Data for each individual is col-

lected over two recording sessions in a dark room. During each session, an individual

is required to face the camera at 3 different angles, i.e., ±45◦ (frontal right/left) and

0◦ (up-front), while at each angle performing 4 kinds of static facial expressions, i.e.,

neutral, sad, happy, and anger.

Preprocessing the point clouds for classification, we use the depth information

to segment subjects from the background and then manually crop the face area for each

subject with a 3D bounding box. We employ the same subset of the database as [78] for

evaluation. The total number of meshSIFT descriptors extracted from training faces

is approximately 70,000. For DL-SLLR and D-KSVD, a dictionary of L = 4800 atoms

is trained for classification, i.e., K = 200 atoms per class. The results are reported

based on 4-fold cross-validation over a repetitions. As shown in Table 3.1, the proposed

approach outperforms other competitive methods yielding the highest recognition rate

of 96.00%.

Evaluation using The SHREC’11 Contest Dataset

The SHREC’11 Contest Dataset [76] consists of 600 non-rigid 3D objects from 30 classes

represented as watertight triangle meshes, including alien, horse, lamp, etc., as shown

in Fig. 3.3 and Fig. 3.4. Each class equally has 20 objects. The total number of shape
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Figure 3.3: 30 classes from SHREC’11 Contest Dataset. Image cited from SHREC’11
Contest website.

Figure 3.4: 3D Nonrigid shapes from object class horse.

Table 3.2: Recognition results on SHREC’11 Contest Dataset.

Method Proposed D-KSVD [1] BoWH + SVM [77] Smeet’s [76]

Accuracy 99.67% 96.67% 98.00% 90.00%

descriptors extracted from training objects is approximately 380,000. For DL-SLLR

and D-KSVD, a classification dictionary of L = 6000 atoms is trained, i.e., K = 200

atoms per class. We conduct 10-fold cross-validation over the entire dataset and report

averaged recognition results over 20 repetitions. As shown in Table 3.4, the proposed

DL-SLLR with majority voting achieves the highest recognition rate of 99.67%. Fi-

nally, we study the robustness of aforementioned methods against to partial occlusions.

Fig. 3.5 shows the performance of the methods under the conditions of varying per-

centage of occlusion. Clearly, the proposed approach (DL-SLLR in conjunction with

majority) outperforms other methods.
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Figure 3.5: Comparison of performance for all methods on the robustness against
partial occlusion.

3.2 Image/Video and Data Classification

In this section, we demonstrate the effectiveness of locality-constrained coding in

traditional computer vision and pattern recognition tasks, e.g., face recognition, action

recognition, etc. Our work indicates that by imposing locality constraint, the proposed

algorithm (DL-LPCP) can achieve superior classification performance compared to its

sparse-coding based counterparts, e.g., KSVD [33], D-KSVD [1] and SRC [11].

3.2.1 Introduction

Sparse coding solves inverse problems to find efficient expressions of data points

as a linear combination of a few atoms in the dictionary or codebook. This model

has proven effective in image restoration [54, 81], image denoising [33, 34] and image

classification [1, 11, 38]. In [11], Sparse Representation based Classification (SRC) is

proposed, which employs the totality of training data as the dictionary and achieves

impressive results on face recognition.

To scale to large image classification datasets, many dictionary learning (DL)

algorithms have been developed to learn a compact dictionary while trading-off some
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discriminative terms, such as the Fisher discrimination term [36], the classifier predic-

tion error [37], the incoherence promoting term [38], etc. By including label informa-

tion and using KSVD [33], Zhang et al. [1] proposed Discriminative-KSVD (D-KSVD)

for face recognition and Jiang et al. [39] further added a label consistent constraint

into the objective function to enforce the correspondence between labels and atoms.

These DL algorithms encode signals based on a global coordinate system and thus fail

to exploit the locality in feature space, which could degrade the effectiveness of these

methods in modeling data residing on nonlinear manifold [31]. Moreover, these DL

algorithms require memory and computation intensive re-training when new classes

are included, which would diminish their applicability in real-world user-centric recog-

nition systems, for example when upgrading such a system with the inclusion of new

user face data or user-customized gestures.

Some recent works have been proposed to exploit nonlinear structure of feature

space utilizing locality constraints [31, 32]. In particular, Yu et al. [31] theoretically

proved that nonlinear functions can be linearly approximated by a set of anchor points

if certain locality requirements are satisfied. Their work suggests that locality can be

more essential than sparsity in representing data distributed on nonlinear manifold.

However, their coding strategy is based on ℓ1 minimization and hence is of high com-

putational complexity. Wang et al. [32] further proposed Locality-constrained Linear

Coding (LLC) as a fast approximation to LCC and achieved impressive performance in

image classification by using LLC codes as features for SVM. Although these methods

are effective in learning a codebook for local representation, they cannot be directly

employed for classification, as they do not include a discriminative penalty term into

the objective function.

In this work, we present a novel and highly-efficient dictionary learning algo-

rithm (DL-LPCP) by introducing the Locality-Preserving Constraint Pair (LPCP).

DL-LPCP is a unified optimization scheme consisting of Supervised Local Coding

(SLC) and Locality-Preserving Dictionary Update. Under the proposed LPCP, each

labeled data point is encoded by its nearest same-class dictionary atoms based on
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SLC codes, a representational dictionary together with a discriminative scaling ma-

trix. Locality-preservation and linear mapping are jointly obtained through the pro-

posed dictionary optimization approach. Additionally, a new classification strategy is

proposed, exploiting both the representational dictionary and the locality-preserving

dictionary.

Compared to existing methods [1, 31, 32, 36–39], our approach imposes explicit

correspondence between labeled data and atoms via discriminatively exploiting the lo-

cality of feature space, which effectively encourages more consistent encoding of similar

features. Moreover, DL-LPCP possesses the advantage of class-independent training,

and thus is potentially more suitable for real-world applications where timely system

upgrade is of great necessity.

3.2.2 The DL-SLC Algorithm

We consider a C-label classification problem. Let Yi ∈ Rm×ni be a set of m-

dimensional ni features extracted from image or video samples with label i. Collecting

all Yi together, the training set is formed as Y = [Y1|Y2| . . . |YC ] ∈ Rm×N , where

N =
∑C

i=1 ni.

The goal here is the joint achievement of three objectives. The first objective is

establishing a representational dictionary with structured as D = [D1|D2| . . . |DC ] ∈

Rm×L, (L = KC), where atoms have unit ℓ2-norm and each Di ∈ Rm×K is a class-

specific sub-dictionary independently trained for Yi. Second, we seek a discriminative

scaling matrix Λ , diag([λ1, . . . , λL]) ∈ RL×L such that the i-th scaled atom λidi in

DΛ ∈ Rm×L preserves the locality of a neighborhood Γλidi
⊂ Y, which consists of

same-class neighboring training samples with respect to atom λidi. We say that Λ is

discriminative because there is explicit correspondence between its diagonal elements

and the labeled data. And the third objective is realizing a linear mapping W ∈ RC×L

that transforms the reconstruction code xj of every feature yj to its label vector hj.

The dictionary learning problem via imposing locality-preserving constraint pair
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(DL-LPCP) is thus formalized as:

min
D,Λ,W,X

∥Y −DΛX∥2F + α ∥H−WX∥2F (3.13)

s.t. ∀i, j

1Txj = 1, ∥di∥2 = 1

xij = 0 if λidi /∈ Ωyj
(3.13a)

λi = argmin
λi

∑
yj∈Γλidi

|xij| ∥yj − λidi∥22 (3.13b)

where the 1st and 2nd terms denote the reconstruction error and the label vector

approximation error respectively; X = [x1, . . . ,xN ] ∈ RL×N contains sparse codes for

reconstructing Y with xij being the i-th element in column xj; H ∈ RC×N stores the

label information of Y and its j-th column hj, is of the form [0, . . . , 1, . . . , 0]T ∈ RC

indicating the label of yj by the index of element 1; we define Ωyj
as a same-class

neighborhood with respect to yj, which consists of neighboring scaled atoms λidi of yj;

and let Γλidi
= {yj| ∀j, xij ̸= 0,yj ∈ Y} be the neighborhood set with respect to λidi

containing all the yj that are concurrently selecting λidi as one of their contributing

neighbors; the constraint 1Txj = 1 allows coding to be translation-invariance and 1 is

a column vector of all ones. Note that Ωyj
can be determined by either using ϵ-ball or

selecting τ nearest neighbors [47]. In this work, we use the latter method.

We call Eq. (3.13a) and Eq. (3.13b) locality-preserving constraint pair (LPCP),

as Eq. (3.13a) enforces supervised local coding (SLC) - each training sample yj can only

be reconstructed by its same-class neighbors in DΛ, while Eq. (3.13b) correspondingly

requires every scaled atom λidi to be local with respect to those yj that are simultane-

ously choosing it as a contributing neighbor in SLC. Note that the localization errors

in Eq. (3.13b) are weighted by the absolute value of coefficients, which adaptively en-

courages the scaled atom to be more resemble to the training samples that are coded

by larger coefficients. This is because when encoding a signal, neighboring atoms are

more likely to be coded by larger coefficients than are atoms lying far away [31,32].
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In addition, if we use double indices to express the diagonal elements in Λ and

let λij stand for the element λK(i−1)+j corresponding to the j-th atom in Di (1 ≤ j ≤ K

and 1 ≤ i ≤ C), then each scaled sub-dictionary can be represented as DiΛi, where

Λi = diag([λi1, . . . , λ
i
K ]) ∈ RK×K . Since the local coding is supervised, each sub-

dictionary Di is representational for the corresponding Yi and each discriminatively

scaled sub-dictionary DiΛi is capable of preserving locality with respect to the feature

space occupied by Yi. Therefore, the proposed LPCP enables explicit correspondence

between labeled data and the same-class atoms and enhances the coding consistency

of similar features.

3.2.3 Optimization

Eq. (3.13) is essentially a bilevel optimization problem [81], where the lower level

optimization of the scaling matrix Λ for discriminative locality preservation is embed-

ded into the upper level objective function as a constraint. We minimize Eq. (3.13)

by iteratively repeating the following two steps to reduce the objective function, i.e.,

first solving for X with all the other variables fixed and then updating D, Λ, W as

well as X jointly while satisfying Eq. (3.13b). Iterations are terminated when stopping

criterion met.

3.2.3.1 Supervised Local Coding

In this step, we keep D, Λ and W fixed and minimize the objective function

in Eq. (3.13) with respect to xj ∈ X, for j = 1, . . . , N . We solve the constrained

multivariate ridge regression problem [74] as:

min
xj

∥∥∥∥∥∥
 yj

√
αhj

−
 DΛ
√
αW

xj

∥∥∥∥∥∥
2

2

+ β ∥xj∥22

s.t. 1Txj = 1 (3.14)

xij = 0 if λidi /∈ Ωyj
, ∀i
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where β ∥xj∥22 is the regularization term included for numerical stability with β a small

positive constant.

Eq. (3.14) is essentially the locally linear representation problem [47, 73] un-

der the same-class constraint and it can be solved using the approach described in

Chapter 2. Specifically, define ŷj = [yT
j ,
√
αhT

j ]
T ∈ Rm+C as the the j-th column

in the augmented training set Ŷ = [YT,
√
αHT]T ∈ R(m+C)×N and denote D̂ =

[(DΛ)T,
√
αWT]T ∈ R(m+C)×L as the augmented dictionary matrix. Eq. (3.14) is

simplified as

min
xj

∥ŷj − D̂xj∥22 + β ∥xj∥22 s.t. constraints (3.15)

Define Ω̂yj
= {d̂i| ∀i, λidi ∈ Ωyj

, d̂i ∈ D̂} as the augmented neighborhood with

respect to yj, where d̂i is the i-th column in D̂. Let x̃j be the sub-vector containing the

τ nonzero elements corresponding to d̂i ∈ Ω̂yj
. The solution can be efficiently derived

by first solving the linear system of equations (G+βI)x̃j = 1 and then normalizing x̃j

to satisfy the sum-to-one constraint as x̃j = x̃j/1
Tx̃j where G = (Ω̂yj

− ŷj1
T)T(Ω̂yj

−

ŷj1
T) is the local covariance matrix [47] and I is the identity matrix.

Remarks: The proposed objective function (Eq. (3.13)) has an analytic solution in

computing reconstruction coefficients, which is much more efficient than sparse coding

(SC). For instance, for encoding one feature, Orthogonal Matching Pursuit (OMP) [14]

requires O(T0mL) time complexity [14], where T0 denotes the sparsity priori. The time

complexity of SLC is O(τmK) +O(mτ 3), where the first and second terms come from

the τ -nearest-neighbor search and the least square solution respectively. In our case,

τ ≤ 3 and τ 2 ≪ K, yielding that the time complexity is dominated by O(τmK). Given

that L = KC ≫ K and that for satisfactory signal recovery, T0 needs to be sufficiently

large (i.e., T0 > τ), the computational cost of SLC therefore is substantially lower than

OMP.
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3.2.3.2 Locality-Preserving Dictionary Update

Upon obtaining the reconstruction coefficient matrixX, we continue to minimize

Eq. (3.13) by updating D, Λ, W and X jointly.

Let d̂k ∈ R(m+C) be the k-th column in the augmented dictionary D̂ and define

xk∗ ∈ R1×N be the k-th row of the coefficient matrix X. Note that d̂k involves three

variables, i.e., dk, λk and wk. We update d̂k together with the the nonzero coefficients

in xk∗, sequentially for k = 1, . . . , L. Specifically, we solve Eq. (3.13) as follows. First,

isolate the product d̂kxk∗ as Ŷ −
∑

i ̸=k d̂ixi∗ − d̂kxk∗ and let Êk = Ŷ −
∑

i̸=k d̂ixi∗.

Next, revisiting Eq. (3.13), we have Γλkdk
= {yj| ∀j, xkj ̸= 0,yj ∈ Y}, which keeps

track of which yj are concurrently selecting λkdk as a contributing neighbor. In other

words, Γλkdk
preserves the indices information of the nonzero coefficients in xk∗. De-

note [xk∗]Γλkdk
∈ R1×|Γλkdk

| as a subvector of xk∗ and [Êk]Γλkdk
∈ R(m+C)×|Γλkdk

| as a

submatrix of Êk, consisting of the nonzero coefficients in xk∗ and the relevant columns

in Êk respectively, all being associated to Γλkdk
.

Now we convert Eq. (3.13) to the optimization problem with respect to dk, λk,

wk and [xk∗]Γλkdk
as

min
dk,λk,wk,

[xk∗]Γλkdk

∥∥∥∥∥∥[Êk]Γλkdk
−

 λkdk

√
αwk

 [xk∗]Γλkdk

∥∥∥∥∥∥
2

F

s.t. ∥dk∥2 = 1 (3.16)

λk = argmin
λk

∑
yj∈Γλkdk

|xkj| ∥yj − λkdk∥22

Note that we have disregarded constraints xij = 0 if λidi /∈ Ωyj
and 1Txj = 1, ∀i, j.

The former one requires supervised local sparsity, which is already satisfied by imposing

Γλkdk
onto Êk and xk∗. The latter constraint can be easily realized after the updating

step by column-wise normalization on each xj ∈ X. In practice, however, there is no

need to take extra computation for performing normalization, as on classifying query

signals, only D, Λ and W are of our interest. The solution to Eq. (3.16) is given by

44



the following proposition.

Proposition 1 (Locality-Preserving Dictionary Update). Let dk ∈ Rm, λk ∈ R, wk ∈

RC, Γλkdk
, [xk∗]Γλkdk

∈ R1×|Γλkdk
| and [Êk]Γλkdk

∈ R(m+C)×|Γλkdk
| be defined as above.

Let δt = [Im×m 0m×C ] ∈ Rm×(m+C) and δb = [0C×m IC×C ] ∈ RC×(m+C) be operators

keeping the top m and bottom C elements of a column vector respectively, where 0 is

a zero matrix. Then the solution, i.e., dnew
k , λnewk , wnew

k , [xk∗]
new
Γλkdk

that minimizes

Eq. (3.16) is given as

Û∆V̂T = [Êk]Γλkdk

dnew
k =

δtû

∥δtû∥2
(3.17)

λnewk =
∑

yj∈Γλkdk

|xkj|(δtû)Tyj

∥δtû∥2
/

∑
yj∈Γλkdk

|xkj| (3.18)

wnew
k =

λnewk δbû

∥δtû∥2
(3.19)

[xk∗]
new
Γλkdk

=
∆(1, 1)∥δtû∥2v̂T

λnewk

(3.20)

where û ∈ Rm+C and v̂ ∈ R|Γλkdk
| are the first columns of Û and V̂ respectively, and

∆(1, 1) is the largest singular value in ∆.

Proof. Applying singular value decomposition (SVD) to [Êk]Γλkdk
= Û∆V̂T yields

the best rank-1 matrix approximation as ∆(1, 1)ûv̂T [33], where û and v̂ are the first

columns of Û and V̂, and ∆(1, 1) is the largest singular value in ∆. Then, use operator

δt = [Im×m 0m×C ] ∈ Rm×(m+C) to extract the top m elements (δtû ∈ Rm) from û for

dk. In order to satisfy the unit ℓ2-norm constraint, dividing dk by ∥dk∥2 generates

dnew
k = δtû

∥δtû∥2 .

Once dk is updated, λ
new
k can be easily obtained by solving minλk

∑
yj∈Γλkdk

|xkj|∥yj−

λkd
new
k ∥22. Note that Γλkdk

is already determined in the last SLC step and does not

change through dictionary update. Finally, use δb = [0C×m IC×C ] ∈ RC×(m+C) to ex-

tract the bottom C elements (δbû ∈ RC) from û for wk. Without breaking the best
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rank-1 matrix approximation to [Êk]Γλkdk
, simultaneously multiplying wk and dividing

∆(1, 1)v̂T by scalar
λnew
k

∥δtû∥2 yields the desired updates wnew
k and [xk∗]

new
Γλkdk

.

Sequentially applying Proposition 1 to all di for i = 1, . . . , L finishes the locality-

preserving dictionary update in the current step.

Optimizing DL-LPCP iteratively by repeating the above two steps (Supervised

Local Coding and Locality-Preserving Dictionary Update), we can jointly obtain dic-

tionary D together with the discriminative scaling matrix Λ and mapping W. D is

representational with respect to training data Y, because each atom is a unit basis,

optimized by achieving the best rank-1 approximation. The scaled dictionary DΛ is

capable of preserving locality in the feature space, as λk is optimized such that λkdk

best represents the neighborhood Γλkdk
.

Algorithm 1 DL-LPCP Algorithm

Input: Training set Y ∈ Rm×N

Output: Dictionary D ∈ Rm×L, discriminative scaling matrix Λ ∈ RL×L and linear
mapping W ∈ RC×L

1: Class-specific initialization for each scaled sub-dictionary DiΛi via K-Means over
Yi, or randomly picking K samples per Yi.

2: repeat
3: for j = 1 to N do
4: Fixing D, Λ and W, computing SLC code xj for yj according to Eq. (3.14)
5: end for
6: for k = 1 to L do
7: Updating dk, λk, wk and [xk∗]Γλkdk

following Proposition 1
8: end for
9: until Convergence (maximum iterations reached or objective function ≤ threshold)

By assuming that the SLC step can always find the most accurate approxi-

mations to all training samples, the convergence of DL-LPCP to a local minimum is

ensured, as when updating the k-th quadruple
⟨
dk, λk,wk, [xk∗]Γλkdk

⟩
for all k, DL-

LPCP is guaranteed to reduce the objective function value to the extent of best rank-1

matrix approximation [33] to the current residual error matrix. The overall algorithm

for training DL-LPCP is summarized in Algorithm 4.
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Remarks: The proposed DL-LPCP algorithm has a major advantage of class-independent

training, allowing new classes to be easily defined through the inclusion of sub-dictionaries,

which is in contrast to many existing algorithms [1, 37–39, 77] requiring memory and

computation intensive re-training. Our approach is, therefore, suitable for leave-the-

rest-unchanged upgrades in humanity-centric computing systems. This is necessary,

for instance, when user style-preferred training samples (e.g., gestures) better fit a

user’s need or when including user-customized classes (e.g., multiuser face images) are

necessary to adapt the system to more complex usages.

3.2.3.3 Classification Strategy

Upon obtaining D, Λ and W, we propose a new classification strategy, harness-

ing effectively both the representational capability of D and the locality-preserving

characteristic of DΛ. Given a query signal y ∈ Rm, we solve for the coefficient vector

x = [x1, . . . , xi, . . . , xL]
T that minimizes the cost function as

min
x

∥∥∥∥∥ y

∥y∥2
−

L∑
i=1

xidi

∥∥∥∥∥
2

2

+ γ
L∑
i=1

exp

(
∥y − λidi∥2

σ

)
x2i

s.t. 1Tx = 1 (3.21)

where the 1st term requires the coding to find the linear combination of unit atoms

(∥di∥2 = 1) best representing the direction of y, while the 2nd term encourages

the coding to be localized in terms of Euclidean distance by penalizing the coeffi-

cients with large weights for atoms far away; γ balances the relative importance be-

tween the two terms; σ is included for controlling the decay speed of weight function

exp
(

∥y−λidi∥2
σ

)
[32].

Minimizing Eq. (3.21) is essentially a discriminative basis-selection process in

which xi is encoded with large value only if the following two conditions are simul-

taneously satisfied, i.e., di is representational for y and λidi are sufficiently close to

y. Note that the proposed classification coding strategy of Eq. (3.21) is different from

sparse coding (SC) [1,36–39] and local coding (LC) [31,32] in the fact that we compute
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x exploiting not only the representational dictionary D but also the locality-preserving

dictionary DΛ while SC and LC solve for a reconstruction code using a single repre-

sentational dictionary. Eq. (3.21) also has a closed-form solution which can be derived

in a similar way as solving Eq. (3.14).

To enforce sparsity in x, define index set S = {i | ∀i, |xi| > smax(x)}, where

s is the cutting-off ratio and max(x) denotes the largest element in x. Then we set

xi = 0 if i ̸∈ S,∀i and update x by solving a local linear system [DΛ]Sx̃ = y, s.t.

1Tx̃ = 1 [32], where x̃ and [DΛ]S are elements in x and columns in DΛ, corresponding

to S. To this end, ∥x∥0 = |S|.

Finally, we employ W and compute projection l = Wx ∈ RC . The label of y is

determined by i = argmaxi(l = [l1, . . . , li, . . . , lC ]
T).

3.2.4 Experimental Results

In this section, we evaluate DL-LPCP using several benchmark datasets, in-

cluding the Extended Yale B Database [56], the CMU PIE Database [58], the AR Face

Database [82], the Weizmann Action Database [83] and five benchmarks from UCI

Machine Learning Archive. The performance of the proposed method is compared

with SRC [11], KSVD [33], D-KSVD [1], k-Nearest Neighbor (kNN), and multi-class

SVM [77]. Without specific instructions, all results reported are based on our own

implementation.

Parameter selection is a challenging task for most sophisticated models. We

now explain some simple rules for setting parameters in DL-LPCP. We set τ = 2

consistently for experiments over all datasets since a smaller τ can better preserve

locality and reduce computational complexity. We also set α = 1 uniformly for all

datasets to place equal emphasis on both faithful reconstruction and accurate label

approximation. For the Extended Yale B Database and the AR Face Dataset, K is

set in accordance with literature [1] while for other datasets we set K empirically

without searching for the optimum. In classification coding strategy Eq.( 3.21), s is

of dominant importance compared to γ and σ, as it directly manipulates the sparsity
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Figure 3.6: (a) Classification performance with respect to s. (b) Objective function
value versus iterations; (c) Classification error rate versus iterations.

in the resultant coefficient vector. To reduce searching dimensionality, we manually

select γ = 10 and σ = 1 and perform 1D grid search, seeking the optimal s based on

cross-validation [84]. For example, as shown in Fig. 3.6(a), the proposed DL-LPCP

reaches its peak performance on the AR Face Database when 0.01 ≤ s ≤ 0.15.

In addition, initialization strategy is sometimes also an important factor affect-

ing the performance of a method. Unlike many recently proposed algorithms [1, 32,

38, 39] that require deliberately conducted initialization process to prevent underfit-

ting/overfitting, the proposed method handles well with random initialization. For

proof-of-concept, the learning curves of DL-LPCP with random initialization over the

AR Face Database are illustrated in Fig. 3.6(b) and Fig. 3.6(c), from which we can see

that DL-LPCP converges quickly and achieves impressive classification performance

within only a few iterations.
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Evaluation using Extended YaleB Database

We evaluate DL-LPCP over the Extended Yale B Database which contains 2414 frontal

face images of 38 subjects [56], i.e., about 64 image per person. This database is

captured under varying illumination conditions and expressions. The images are nor-

malized to 32 × 32 to form 1024D feature vectors for classification. As in [1, 11], we

randomly select half of the images (about 32 per person) for training and the other

half for testing. In pre-process stage, histogram equalization is performed for DL-LPCP

while ℓ2 normalization is carried out for sparse-coding-based approaches. We evaluate

various methods over two random subspaces (with dimension 300D and 504D) and the

raw feature space (1024D). For fair comparison, we adopt the optimal parameter set-

tings for D-KSVD and KSVD [1], and set K = 8 for all dictionary learning algorithms.

For the proposed DL-LPCP, the parameter s = 0.01. For D-KSVD and KSVD, the

sparsity prior T0 is set to 16. The experiment is repeated 30 times.

The learned dictionary contains 304 atoms (8 atoms per subject). From Ta-

ble 3.3, we see that DL-LPCP achieves the best classification performance in all three

scenarios. More specifically, as the feature dimension increasing, DL-LPCP yields

98.9%, 99.1% and 99.6% recognition rates, compared to the second best SRC achiev-

ing 96.7% and 98.2% on 300D and 504D random feature space respectively. Note that

to keep consistent experimental setup as [11], we end up evaluating SRC at 504D and

for fair comparison, recognition rates of D-KSVD and KSVD are cited from [1]. We

also test the performance of SRC with 8 images per person and the corresponding

recognition rate is obviously lower than dictionary learning algorithms. This fact con-

firms that the learnt dictionary atoms are of much better discriminative ability than

image prototypes.

In addition, using 504D feature vectors, we compare the average running time of

DL-LPCP with SRC and D-KSVD for classifying one image. Table 3.4 indicates that

our method is approximately 12.9 times faster than D-KSVD and 155.9 times faster

than SRC.

Evaluation using CMU PIE Database
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The CMU PIE database contains 41368 face images of 68 subjects, and for each person

there are 13 different poses, 43 different illumination conditions and 4 different expres-

sions. As in [57], we use a subset of the database, i.e., C05, C07, C09, C27, and C29,

in which images are nearly frontal poses and are taken under varying conditions of illu-

mination and expression. The subset yields a total number of 11554 images with about

170 images per subject. Following [57], a random selection of p = (30, 50, 70, 90, 130)

images per person are employed to form the training set, and the rest of the database

are for testing. Classification is performed by using 32 × 32 cropped images. In pre-

process stage, histogram equalization is performed for DL-LPCP while ℓ2 normalization

is carried out for sparse-coding-based approaches. We set the number of atoms per class

to K = 20 for all dictionary learning methods. The parameter s is set to 0.1 for DL-

LPCP. To achieve satisfactory results, sparsity prior T0 is set to 40 for D-KSVD and

KSVD. The experiment is repeated 20 times.

Following [57], we evaluate all methods using recognition error rates. The results

are presented in Table 5. Note that the error rates of S-LDA (7-th row) are cited

directly from [57] as the state-of-the-art results. The proposed DL-LPCP significantly

outperforms the competing approaches in all cases p = 30, 50, 70, 90, 130.

Evaluation using AR Face Database

Table 3.3: Recognition results over the Extended YaleB Database. Note for D-KSVD
and KSVD, recognition rates are cited from [1].

Dimension 300D 504D 1024D

SRC 96.7% 98.2% N/A
SRC⋆ (8) 79.0% 80.2% 84.5%

D-KSVD [1] N/A 95.6% N/A
KSVD [1] N/A 93.2% N/A
SVM 92.3% 95.6% 97.4%
kNN 77.8% 88.1% 88.6%

DL-LPCP 98.9% 99.1% 99.6%

Table 3.4: Comparison of running time (ms) for classifying a test image.

DL-LPCP D-KSVD [1] SRC

Running time 6.52ms 84.00ms 1016.61ms
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Table 3.5: Error rates over the CMU PIE Database for various methods with different
sizes training set.

Training samples 30 50 70 90 130

SRC 5.8% 4.2% 3.2% 3.0% 2.3%
D-KSVD 7.9% 6.1% 4.5% 4.3% 3.5%
KSVD 6.7% 5.9% 4.6% 4.5% 4.1%
SVM 9.2% 5.3% 3.9% 3.2% 2.4%
kNN 17.5% 15.0% 10.8% 8.5% 7.6%

S-LDA [57] 3.6% 2.5% 2.1% 1.8% 1.6%

DL-LPCP 2.4% 1.7% 1.2% 1.0% 0.9%

The AR Face Database consists of over 4, 000 color images of 126 persons. Each in-

dividual has 26 face images taken during two separate sessions. As in [11], we also

choose a subset consisting of 50 male individuals and 50 female individuals. For each

person, 14 images with only variations in illumination conditions and expressions are

collected, with 7 images from session 1 and the other 7 images from session 2. This

yields a total number of 1400 images. Each face image of size 165-by-120 pixels, is

projected onto a 540D random feature space via a randomly generated matrix. As pre-

vious two databases, image pre-processing techniques are applied to various methods.

We employ different number of training samples per class as n = 7, 8, 9, 10, 11 and train

correspondingly K = 5, 6, 7, 8, 9 atoms per class for all dictionary learning algorithms.

For DL-LPCP, the parameter s = 0.05. For D-KSVD and KSVD, T0 is set to 10 [1].

Experiment is repeated 20 times for each case.

Fig. 3.7 shows that our method maintains a high recognition rate and outper-

forms other approaches consistently in all different settings. More specifically, DL-

LPCP achieves accuracies between 96.1% and 98.7%, which correspond to the case

n = 7 (K = 5) and the case n = 11 (K = 9) respectively, compared to SRC yielding

94.6% and 98.3% in such two cases. Note that in face recognition, our classification

strategy is related to the collaborative representation method [85] and therefore to

ensure faithful reconstruction, parameter s for face datasets is set relatively smaller

so as to include more representational bases, compared to the one for human-action

recognition dataset (see next section).
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Figure 3.7: Recognition results over the AR Face Database.

Evaluation using Weizmann Action Database

The Weizmann Action Database [86] contains 90 videos of 9 different individuals. Each

person performed 10 natural actions, i.e., bend, jumping jack (jack), jump forward

(jump), jump in place (pjump), run, gallop sideways (side), skip, walk, wave one

hand (wave1) and wave both hands (wave2). As this database is captured by a fixed

camera under static background, a simple background subtraction and normalized

cross-correlation based registration strategy could align human figures very well.

Obeying the same evaluation protocol as in [83], we perform leave-one-person-

out experiments to compare various methods. We utilize Motion History Image (MHI) [87]

to transform each aligned training sequence into two silhouette images by averaging

the odd-numbered and even-numbered frames respectively, which thus yields a total

number of 160 training images. The test set is generated by computing one MHI for

each query sequence. Example MHIs of actions are illustrated in Fig.3.8. Finally, all

the samples are mapped onto a subspace with dimension m = 38 by PCA for classifica-

tion. We set K = 10 for all dictionary learning algorithms. For DL-LPCP, s = 0.3. For

D-KSVD and KSVD, T0 = 12. As listed in Table 3.6, DL-LPCP achieves the highest

recognition rate 100.0% among all the competing algorithms. The basic reason for the
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(a) bend (b) jack (c) jump (d) pjump (e) run (f) side (g) skip (h) walk (i) wave1 (j) wave2

Figure 3.8: Example MHIs of 10 natural actions.

Table 3.6: Recognition results over the Weizmann Action Database.

Methods DL-LPCP SRC D-KSVD KSVD SVM kNN

Accuracy 100.0% 94.5% 93.3% 87.8% 96.7% 93.3%

good performance of DL-LPCP over these datasets is two-fold: 1) the novel locality-

preserving constraint pair encourages same-class features to share similar atoms by

ensuring training samples to be locally best represented by same-class atoms; 2) the

new classification strategy poses a rigorous bases selection criterion allowing only atoms

that are simultaneously representational and local with respect to the query sample to

be selected.

Evaluation using UCI Machine Learning Datasets

Finally, we evaluate DL-LPCP using five datasets from UCI Machine Learning Archive,

namely, Iris, Satellite, Segmentation, Letter and Vehicle datasets. Their basic informa-

tion are listed in Table 3.7. In the previously reported literature, various combinations

of feature extraction, dimensionality reduction and classifier have been applied over the

selected datasets. For fair comparison, we directly employ raw data samples for classi-

fication without performing any preprocess or feature extraction. Note that the dictio-

nary learning algorithms, KSVD and D-KSVD, have the same settings as the proposed

method for the parameters α and K, while SRC uses all the available training samples

for recognition. The classification results are based on 10-fold cross-validation with 30

repetitions, and, as shown in Table 3.8, DL-LPCP leads in performance throughout

the five UCI datasets.

Remark: We compare the methods by only extracting information of pedal length and

pedal width. Such 2D features are sufficiently informative for kNN and SVM, and are

54



Table 3.7: Basic information about Iris, Satellite, Segmentation, Letter and Vehicle
datasets from UCI Machine Learning Archive.

Dataset Total samples Dimensions Classes

Iris 150 4 3

Satellite 6435 36 6

Segmentation 2310 19 7

Letter 20000 16 26

Vehicle 946 18 4

Table 3.8: Classification accuracy over the UCI Machine Learning data sets. The 3rd
column contains the results obtained by keeping only two dimensions of information,
i.e., pedal length and pedal width.

Iris Iris (l vs. w) Satellite Letter Segmentation Vehicle

SRC 94.2% 77.3% 70.8% 95.6% 93.6% 72.1%
D-KSVD 83.1% 57.3% 74.2% 92.7% 91.8% 64.8%
KSVD 95.7% 78.2% 73.0% 90.0% 87.8% 73.3%
SVM 96.0% 93.1% 88.7% 92.9% 94.8% 70.8%
kNN 95.1% 95.3% 88.6% 94.9% 92.4% 72.0%

DL-LPCP 97.8% 97.1% 90.7% 95.8% 96.9% 82.6%

usually employed for visualization2. We find that sparse-coding based classification

schemes suffer a significant drop in accuracy (3rd column in Table 3.8). This is due to

the fact that three classes of data are approximately distributed along the same radius

direction and so are the learned dictionary atoms. Without proper constraints, sparse

coding algorithms i.e., SRC, KSVD, D-KSVD, would lose their discrimination ability

over such type of data. Our observation coincides with [88].

3.3 2013 IEEE GRSS Data Fusion Contest on Hyperspectral Image Clas-

sification

In this section, we present some exciting outcomes from the participation in

2013 IEEE GRSS Data Fusion Contest on Hyperspectral Image Classification. Under

the guidance of Prof. Arce and Prof. Barner, I performed actively as team leader and

developed a highly efficient algorithm for data fusion and classification, based on the

2 For details, see http://en.wikipedia.org/wiki/Iris-flower-data-set
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Figure 3.9: Illustration of the hyperspectral and LiDAR imaging over University of
Houston. Image courtesy to IEEE GRSS Committee.

previously introduced LCDL algorithm. Our team members are Ana Remirez, Luisa

Polania and Sherin Mathews.

3.3.1 Introduction

The Data Fusion Contest is annually organized by the Data Fusion Technical

Committee of the Geoscience and Remote Sensing Society (GRSS). The 2013 Contest

aims at exploring the synergetic use of hyperspectral and LiDAR data. The hyper-

spectral image cube contains 144 spectral bands from 380 to 1050 nm. A co-registered

LiDAR is also provided, which is derived using Digital Surface Model (DSM) to char-

acterize elevation information. Both datasets have the same spatial resolution (2.5

m) [89]. As shown in Fig. 3.9 the data is captured during the summer of 2012 over the

University of Houston (UH) and the neighboring urban area. The data pre-processing

is conducted by student volunteers at UHs Hyperspectral Image Analysis group, and

NCALM staff. A ground truth is created by the contest organizing committee via

photo-interpretation [89].

In the classification challenge, participants were asked to categorize each image

pixel into one of the 14 classes of interest, including distinct types of vegetation, soil,

water, but also less common objects, such as commercial buildings, highways, railway,

and vehicles (see Fig. 3.10 for the 14 classes information). Among a total number of

349× 1905 = 664845 pixels, only 2832 labeled pixels were available for training and all
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Figure 3.10: Contest legend. Image courtesy to IEEE GRSS Committee.
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Figure 3.11: The proposed data fusion pipeline. Image courtesy to IEEE GRSS Com-
mittee.

the remaining 662013 pixels were for testing. The validation samples that the Contest

organizers used to evaluate the submissions were not disclosed.

3.3.2 Data Fusion and Classification Algorithm

As shown in Fig. 3.11, the hyperspectral data cube is first compressed into 6

components via Kernel Principle Component Analysis (KPCA) and then a series of

morphological operations are performed on each component and the LiDAR data,

yielding 7 Morphological Profiles (MP). Next, the Extended Morphological Profile

(EMP) is obtained by concatenating all the MPs [90], which finishes the data fusion

step. The final discriminative features are obtained by projecting the EMP into some

low-dimensional feature space via Linear Discriminant Analysis (LDA).
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Given that observable objects from the outer space are approximately homo-

geneously textured in the Hyperspectral image cube and consistently characterized

in terms of elevation by LiDAR image. Nearby pixels are more likely to be associ-

ated to the same class label as the center target pixel. In other words, exploiting the

local neighborhood of each pixel may potentially produce more discriminative informa-

tion for classification. Therefore, we propose a novel discriminative dictionary learning

algorithm by extending our previous work the Locality-Constrained Dictionary Learn-

ing. Specifically, we suppose the feature of every pixel resides on some latent intrinsic

nonlinear manifold, which typically is of much lower dimensionality than the actually

captured data in observation space. We have shown in theory that the approximation

to an unobservable intrinsic manifold by a few latent landmark points residing on the

manifold can be cast in a dictionary learning problem over the observation space. By

incorporating the classification error penalty term to form a unified object function, the

dictionary and the classifier are jointly learned using the training features provided.

The algorithm converges quickly, typically within 15 iterations. The testing data is

classified by first computing the locally linear reconstruction code over the dictionary

and then the code is mapped to a label vector via the classifier.

Classification of high-resolution satellite image is a challenging task in remote

sensing, since the image cube usually contains ∼ 106 pixels, each with tens to hundreds

of feature dimensions. Despite their great success, training traditional classification

algorithms, e.g., nonlinear SVM, is of quadratic complexity in the number of training

samples, which requires exorbitant computational complexity and memory usage. In

contrast, training our newly proposed algorithm has only linear complexity with respect

to the number of samples, which allows orders of magnitude speedup when dealing with

large-scale dataset. In our pilot study, classifying 662013 pixels takes no more than 3

minutes with MATLAB implementation.

58



Figure 3.12: Classification result. The label of each pixel is represented with different
color. Image courtesy to IEEE GRSS Committee.

3.3.3 Results

This year’s contest received more than 900 registrations from different academic

institutions and corporations across 69 countries. Among the 50+ teams which are

mostly composed of researchers specialized in satellite imaging or remote sensing, our

UD SPC team was able to achieve the global 9th place. It is also worthy to point out

that our team is the only US team within top 10. The resulting classification label

map is shown in Fig. 3.12. The encouraging result confirms the effectiveness of locality-

constrained dictionary learning as a useful machine learning algorithm in hyperspectral

imaging classification.

After comparing the performances between ours and other better ranked teams,

the major drawback of our approach lies in the fact that we did not include an ap-

propriate preprocessing technique to recover shadow-covered areas. From this fact, we

also understand that in order to achieve the best performance in real-world problems,

task-specific domain knowledge sometimes is equally important if not more as a sophis-

ticated machine learning algorithm. Therefore, integration an automatic shadow/fog

detection and removing algorithm as processing operation will be and is our on-going

work.

3.4 Conclusion

In this chapter, we apply the concept of locality-constrained coding and dictio-

nary learning to various computer vision and pattern recognition tasks, including 3D
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shape recognition, face recognition, action recognition, data classification, hyperspec-

tral image classification, etc. Specifically, we present three discriminative dictionary

learning algorithms by imposing properly designed locality constraints. Experimental

results demonstrate that compared to existing sparse-coding based dictionary learn-

ing algorithms, our approaches possess three merits: yielding more meaning dictio-

nary atoms with locality-preserving property; highly efficient in training and testing;

achieving very competitive performance. We believe that our algorithms hold promise

in learning discriminative dictionaries for real-world classification problems.
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Chapter 4

AUTOMATIC FEATURE LEARNING FOR BIOMEDICAL IMAGE
ANALYSIS

4.1 Introduction

Histology sections contain significant information about the tissue architecture.

Automated analysis of tissue histology sections can potentially help predict the clinical

outcomes. Hematoxylin and eosin (H&E) are two commonly used histological stains,

which respectively label DNA (e.g., nuclei) and protein contents, with various color

shades. Abberation in the histology architecture is often seen as an indicator of disease

progression. The abberation indices enable the prediction of clinical outcomes e.g.,

survival, response to therapy. Therefore an effective quantization of these indices is

very much desired. However, as an essential ground on which outcome-based analysis

is established, large cohorts usually contain large technical variations and biological

heterogeneities, which greatly undermines the performance of existing techniques [91,

92].

To solve such problems, several researchers [91, 93–95] have proposed to design

and fine tune the human engineered features. These approaches are usually task-

specific, which limits their cross-domain applicability. Not until recently has the po-

tential of unsupervised feature learning been exploited in tissue classification [92, 96].

Inspired by previous efforts in unsupervised feature learning, we first present a model

called stacked predictive sparse decomposition (PSDnSPM), which is based on tradi-

tional sparse coding. Then, we analyze its drawbacks and further introduce a more

advanced model called, multispectral convolutional sparse coding (MCSCSPM).

The building block of the first model, i.e., PSDnSPM, is the predictive sparse

decomposition (PSD) [22], which incorporates a nonlinear predictor into the traditional
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Figure 4.1: Computed basis functions from the Glioblastoma Multiforme (GBM)
dataset.

sparse coding objective, for the purpose of efficiently predicting the sparse coefficient

vector and avoiding the time consuming optimization process. Stacking multiple layers

of PSD, the model (PSDnSPM) can capture higher-level sparse tissue morphometric

features. The work of PSDnSPM is a pioneering work in applying deep learning to

tissue image classification with encouraging results achieved. For example, the dictio-

nary trained over GBM dataset is shown in Figure 4.1. Yet, the underlying feature

learning module of PSDnSPM is sparse coding, which suffers two major drawbacks,

i.e., 1) yielding only Gabor-like low-level feature detectors (filters), and 2) having high

redundance in the feature representation.

For the reasons listed above, we further propose a multispectral unsupervised

feature learning model for tissue classification (MCSCSPM), based on convolutional
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Figure 4.2: 27 × 27 multispectral filters learned from the GBM dataset. It can be
seen that, learned from the nuclear channel, the filters (top figure) capture nuclear
regions of distinct shapes; learned from the collagen channel, the filters (bottom figure)
characterize the structural connectivity within various tissue sections.

sparse coding (CSC) [25] and spatial pyramid matching (SPM) [97]. The multispectral

features are learned in an unsupervised manner through CSC, followed by the sum-

marization through SPM at various scales and locations. Eventually, the image-level

tissue representation is fed into linear SVM for efficient classification [98]. Compared

with sparse coding, CSC possesses two merits 1) invariance to translation; and 2) pro-

ducing more complex filters, which contribute to more succinct feature representations.

Meanwhile, the proposed approach also benefits from 1) the biomedical intuitions that

different color spectrums typically characterize distinct structures; and 2) the utiliza-

tion of context, provided by SPM, which is important in diagnosis. In short, our work

(MCSCSPM) is the first attempt using convolutional sparse coding for tissue clas-

sification and achieves superior performance compared to patch-based sparse feature
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learning algorithms, e.g., PSDSPM [92]. Moreover, MCSCSPM is capable of generating

very competitive results compared to systems built upon biological prior knowledge,

e.g., SMLSPM [91]. Finally, our study further indicates that learning features over

multiple spectrums can potentially generate biological-component-specific filters. For

example, the filters learned from the nuclear channel and collagen channel respectively

capture various nuclear regions and the structural connectivity within tissue sections

(Figure 4.2).

Tumor histopathology reflects the interaction of underlying molecular defects

and environmental factors. The quantification of morphological features and organi-

zation, from cell-by-cell analysis of histology sections, can potentially provide a new

approach for characterizing and identifying molecular markers of heterogeneity. Large-

scale quantitative characterization of tumor morphology from standard hematoxylin

and eosin (H&E) stained tissue sections can offer alternative views, as opposed to

genome-wide array data, for subtyping and survival analysis. A particular endpoint is

that the computed morphometric indices can be tested against outcome. Simultane-

ously, derived representations (e.g., meta-features), from cell-by-cell analysis, can also

be leveraged to probe for heterogeneity and its underlying molecular basis. Tumor

heterogeneity can reveal tumor plasticity (e.g., adaptation to environmental factors),

potential peripheral molecular drivers, and drug resistivity.

Nuclei segmentation allows accurate delineation of cellular properties and pro-

vides insights on characterizing tumor histopathology. Most existing methods are based

on human-designed features and their effectiveness can be largely affected by the afore-

mentioned variabilities among data samples. In this dissertation, we propose a novel

approach, called sparsity constrained convolutional regression (SCCR), for accurate

nuclei segmentation, in the hope of overcoming the difficulties suffered by traditional

methods [99–104]. Given raw image patches and the corresponding binary masks,

SCCR jointly learns a convolutional filter bank and a linear mapping with sparsity

constraint. The filter bank is a set of specialized feature detectors and is employed
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to extract pixel-wise feature vectors. The convolutional regression prediction is com-

puted as the inner product between the feature vector and the linear mapping. By

feeding the prediction score into a simple decision function, the pixel label can be de-

termined. Comapred to traditional CNN-based models [27,105,106] for image labeling,

our method seeks to accurately classify each pixel into nuclear region or background.

4.2 Related Work

In literature, there are several excellent reviews for the analysis of H&E stained

sections [107, 108]. Generally speaking, efforts in histology section analysis can be

divided into four different directions: 1) Some researchers [101, 109–111] advocated

nuclear segmentation and organization for tumor grading and/or the prediction of tu-

mor recurrence; 2) Some groups [93,94,112] focused on patch level analysis (e.g., small

regions), using color and texture features, for tumor representation; 3) Some other stud-

ies [113,114] had been conducted on block-level analysis to distinguish different states

of tissue development using cell-graph representation; 4) There was also a research

branch [103] suggesting detection and representation of the auto-immune response as

a prognostic tool for cancer.

Automated biomedical image analysis is a challenging task due to the presence of

significant technical variations and biological heterogeneities in the data [91,95], which

typically results in techniques that are tumor type specific. In tissue classification,

recent studies have focused on either fine tuning human engineered features [93–95], or

applying automatic feature learning [92,96], for robust representation.

In nuclei segmentation, researchers have made a significant amount of effort

by introducing techniques from image processing, computer vision and machine learn-

ing. Some representative approaches are fuzzy clustering [99], adaptive thresholding

followed by morphological filtering [100], hybrid color and texture analysis followed

by learning and unsupervised clustering [101], color separation followed by optimum

thresholding and learning [102], level set method combining gradient information [103],

graph cut method based on seed detection [104]. Color decomposition is a common
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preprocessing technique to accentuate the nuclear dye. Thresholding and clustering

are based on the assumption that all nuclear regions in the image have consistent chro-

matin content, which in practice, however, does not hold, due to the following reasons:

1) different cell type and cell state may cause significant variations in chromatin con-

tent; 2) the overlapping and clumping of cells may cause distortion to the underlying

chromatin content. In addition, aforementioned methods are usually applied to a small

dataset collected from a single laboratory and therefore their capability of overcoming

technical variations is limited.

In the context of computer vision research on image categorization, the tradi-

tional bag of features (BoF) model has been widely studied and improved through

different variations [97,115–118], among which SPM [97] has clearly become the major

component of the state-of-art systems [119] for its effectiveness in practice.

The evolution of patch-based histology analysis has been SIFT-like feature ex-

traction followed by a evaluation of several kernel-based classification policies [112];

independent subspace analysis that utilizes unsupervised learning without the con-

straint of being able to reconstruct the original signal [120]; a single layer predictive

sparse coding with SVM classifier [121]; and more recently, coupling of either prior

knowledge [91] or predictive sparse coding [92] with with spatial pyramid matching.

Nevertheless, sparse coding based models, suffer two major drawbacks, i.e., 1) yielding

only Gabor-like low-level feature detectors (filters), and 2) having high redundance in

the feature representation.

In recent years, convolutional sparse coding has received increasing research in-

terest in computer vision and machine learning communities [25–27,43–45], mainly due

to its capability of learning shift-invariant filters with complex patterns. Kavukcuoglu et

al. [25] proposed to improve the feature extraction efficiency by jointly learning a feed-

forward encoder with the convolutional filter bank, and applied the algorithm to Con-

volutional Networks (ConvNets) achieving impressive results on object recognition.

Zeiler et al. [26] developed an approach, called Deconvolutional Networks, learning

top-bottom feature hierarchies to reconstruct the original image. [27] further extended
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Figure 4.3: Computational workflow of our approach (PSDnSPM).

the work [26] by incorporating a set of latent switch variables and max-pooling, which

allows unified training of multiple layers. Bristow et al. [43] came up with an effi-

cient method for convolutional sparse coding in Fourier domain, using the Alternating

Direction Method of Multipliers approach. In addition to object recognition, convo-

lutional sparse coding has also achieved state-of-the-art performances in pedestrian

detection [44], retinal blood vessels segmentation [46], and image denoising [45], etc.

4.3 The PSDSPM Algorithm for Tissue Classification

In this work (PSDnSPM), we employ predictive sparse decomposition (PSD) [22]

as a building block for the purpose of constructing hierarchical learning framework,

which can capture higher-level sparse tissue morphometric features [122]. Unlike many

unsupervised feature learning algorithms [123–126], the feed-forward feature inference

of PSD is very efficient, as it involves only element-wise nonlinearity and matrix multi-

plication. For classification, the predicted sparse features are used in a similar fashion

as SIFT features in the traditional framework of SPM, as shown in Figure 4.4.

4.3.1 Unsupervised Feature Learning

Given X = [x1, ...,xN ] ∈ Rm×N as a set of vectorized image patches, we formu-

late the PSD optimization problem as:

min
B,Z,G,W

∥X−BZ∥2F + λ∥Z∥1 + ∥Z−Gσ(WX)∥2F

s.t. ∥bi∥22 = 1,∀i = 1, . . . , h (4.1)
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where B = [b1, ...,bh] ∈ Rm×h is a set of the basis functions; Z = [z1, ..., zN ] ∈ Rh×N is

the sparse feature matrix; W ∈ Rh×m is the auto-encoder; G = diag(g1, . . . , gh) ∈ Rh×h

is a scaling matrix with diag being an operator aligning vector, [g1, . . . , gh], along the

diagonal; σ(·) is the element-wise sigmoid function; and λ is a regularization constant.

Joint minimization of Eq. (4.1) with respect to the quadruple ⟨B,Z,G,W⟩, enforces

the inference of the nonlinear regressor Gσ(WX) to be similar to the optimal sparse

codes, Z, which can reconstruct X over B [22].

As shown below, optimization of Eq. (4.1) is iterative, where the algorithm ter-

minates when either the objective function is below a preset threshold or the maximum

number of iterations has been reached.

1. Randomly initialize B, W, and G.

2. Fixing B, W and G, minimize Eq. (4.1) with respect to Z, where Z can be

either solved as a ℓ1-minimization problem [123] or equivalently solved by greedy

algorithms, e.g., Orthogonal Matching Pursuit (OMP) [127].

3. Fixing B, W and Z, solve for G, which is a simple least-square problem with

analytic solution.

4. Fixing Z and G, update B and W, respectively, using the stochastic gradient

descent algorithm.

5. Repeat [2]-[4] until stopping condition is satisfied.

In large-scale feature learning problems, involving ∼ 105 image patches, it is computa-

tionally intensive to evaluate the sum-gradient over the entire training set. However,

both stochastic gradient descent algorithm and GPU parallel computing can provide

a significant increase in speed. The former approximates the true gradient of the

objective function by the gradient evaluated over mini-batches, and the latter further

accelerates the process (up to 5X) with our Matlab implementation based on an Nvidia

GTX 580 graphics card. Figure 4.1 illustrates 1024 basis functions computed from the
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GBM dataset, which capture both color and texture information from the data and is

generally difficult to realize using hand-engineered features.

4.3.2 Spatial Pyramid Matching (SPM)

Having computed the sparse features, Z ∈ Rh×N (e.g., predictions by the non-

linear regressor Gσ(WX)), we then construct a code book and proceed with SPM

pooling.

The codebook, D = [d1, ...,dK ] ∈ Rh×K , consisting of K sparse tissue morpho-

metric types, is constructed by solving the following optimization problem:

min
D,C

N∑
i=1

∥zi −Dci∥2 (4.2)

s.t. card(ci) = 1, ∥ci∥1 = 1, ci ≽ 0,∀i

where C = [c1, ..., cN ] ∈ RK×N is the code matrix assigning each zi to its closest sparse

tissue morphometric type in D, card(ci) is a cardinality constraint enforcing only one

nonzero element in ci, and ci ≽ 0 is a non-negative constraint on all vector elements.

Eq. (4.2) is optimized by alternating between the two variables, i.e., minimizing one

while keeping the other fixed. After training, D is fixed and the query signal set, Z, is

encoded by solving Eq. (4.2) with respect to C only.

The next step is to construct a spatial histogram for SPM [97]. By repeatedly

subdividing an image, histograms of different sparse tissue morphometric types over

the resulting subregions are computed. The spatial histogram, H, is then formed by

concatenating the appropriately weighted histograms of sparse tissue morphometric

types at all resolutions, i.e.,

H0 = H0
0

Hl = (H1
l , ..., H

4l

l ), 1 ≤ l ≤ L (4.3)

H = (
1

2L
H0,

1

2L
H1, ...,

1

2L−l+1
Hl, ...,

1

2
HL)
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where (·) denotes the vector concatenation operator, l ∈ {0, ..., L} is the resolution

level of the image pyramid, and Hl represents the concatenation of histograms for all

image subregions at pyramid level l. Instead of using kernel SVM, we employ the

homogeneous kernel map [128] and linear SVM [98] for improved efficiency.

4.4 The Multispectral CSC Algorithm for Tissue Classification

In this work, we adopt convolutional sparse coding (CSC) [25] as the funda-

mental module for learning filter banks, based on which the proposed multispectral

unsupervised feature learning system (MCSCSPM) is constructed. As noted by sev-

eral researchers [25, 43], sparse coding typically assumes that training image patches

are independent from each other, and thus neglects the spatial correlation among

them. In practice, however, this assumption typically leads to filters that are sim-

ply translated versions of each other, and, as a result, generates highly redundant

feature representation. While, CSC generates more compact features due to its in-

trinsic shift-invariant property. Moreover, CSC is capable of generating more complex

filters capturing higher-older image statistics, compared to sparse coding that basically

learns edge primitives [25].

In the proposed multispectral feature learning framework, CSC is applied to

each separate spectral channel, yielding target-specific filter banks. For instance, some

biologically meaningful filters are learned from the nuclear channel and the collagen

channel respectively, as illustrated in Figure 4.2. Features extracted from multiple

spectrums are summarized by SPM [97] at various scales and locations, and ultimate

tissue representations are fed into linear SVM [98] for classification.

4.4.1 Convolutional Sparse Coding

LetX = {xi}Ni=1 be a training set containingN 2D images with dimensionm×n.

Let D = {dk}Kk=1 be the 2D convolutional filter bank having K filters, where each dk

is an h× h convolutional kernel. Define Z = {Zi}Ni=1 be the set of sparse feature maps

such that subset Zi = {zik}Kk=1 consists of K feature maps for reconstructing image xi,
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where zik has dimension (m+h−1)× (n+h−1). Convolutional sparse coding aims to

decompose each training image xi as the sum of a series of sparse feature maps zik ∈ Zi

convolved with kernels dk from the filter bank D, by solving the following objective

function:

min
D,Z

L =
N∑
i=1


∥∥∥∥∥xi −

K∑
k=1

dk ∗ zik

∥∥∥∥∥
2

F

+ α
K∑
k=1

∥∥zik∥∥1


s.t. ∥dk∥22 = 1,∀k = 1, . . . , K (4.4)

where the first and the second term represent the reconstruction error and the ℓ1-norm

penalty respectively; α is a regularization parameter; ∗ is the 2D discrete convolution

operator; and filters are restricted to have unit energy to avoid trivial solutions. Note

that here ∥z∥1 represents the entry-wise matrix norm, i.e., ∥z∥1 =
∑

i,j |zij|, where zij
is the entry at location (i, j) of a feature map z ∈ Z. The construction of D is realized

by balancing the reconstruction error and the ℓ1-norm penalty.

Note that the objective of Eq. (4.4) is not jointly convex with respect to (w.r.t.)

D and Z but is convex w.r.t. one of the variables with the other keeping fixed [35].

Thus, we solve Eq. (4.4) by alternatively optimize the two variables, i.e., iteratively

performing the two steps that first compute Z and then update D. We use the Iterative

Shrinkage Thresholding Algorithm (ISTA) to solve for the sparse feature maps Z. On

updating the convolutional dictionary D, we use the stochastic gradient descent for ef-

ficient estimation of the gradient by considering one training sample at a time [25]. The

optimization procedure is sketched in Algorithm 4. Alternative methods for updating

the dictionary can be found in [26,27,43].

4.4.2 Multispectral Feature Extraction

In the field of biomedical imaging, different spectrums usually capture distinct

targets of interest. Specifically, in our case, color decomposition [129] produces two sep-

arate spectrums (channels) which characterize the nuclear chromatin and the collagen,
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Algorithm 2 CSC Algorithm

Input: Training set X = {xi}Ni=1, K, α

Output: Convolutional filter bank D = {dk}Kk=1

1: Initialize: D ∼ N (0, 1), Z← 0
2: repeat
3: for i = 1 to N do
4: Normalize each kernel in D to unit energy
5: Fixing D, compute sparse feature maps Zi by solving

Zi ← arg min
zik∈Zi

∥xi −
K∑
k=1

dk ∗ zik∥2F + α
K∑
k=1

∥zik∥1
6: Fixing Z, update D as

D← D− µ∇DL(D,Z)
7: end for
8: until Convergence (maximum iterations reached or objective function ≤ threshold)

Abs LCN MP Conv Input CoD 

Figure 4.4: The proposed multispectral feature extraction framework. CoD means
color decomposition; Abs means absolute value rectification; LCN means local contrast
normalization; MP means max-pooling. The figure is best viewed in color at 150%
zoom-in.

respectively (as shown in Figure 4.4). Therefore, in the filter learning phase, we pro-

pose to apply convolutional sparse coding to each spectrum, separately, for the purpose

of learning biological-component-specific feature detectors. Without loss of generality,

we assume that the number of filters for each spectrum (channel) is K and there are

S spectrums (channels) after decomposition. Define 2D feature map ys
k = ds

k ∗ x̂s, for

1 ≤ k ≤ K and 1 ≤ s ≤ S, where x̂s is the s-th spectrum component of input image x
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and ds
k ∈ Ds is the k-th convolutional kernel in filter bank Ds learned over spectrum

with index s.

Upon finishing filter bank learning, we extract multispectral tissue features us-

ing the proposed framework illustrated in Figure 4.4, where an input image is first

decomposed and divided into several spectral channels and then each decomposed

component is convolved with the channel-specific filter bank followed by three cas-

caded layers, namely, element-wise absolute value rectification (Abs), local contrast

normalization (LCN) and max-pooling (MP) [24]. Note that for specificity, the model

in Figure 4.4 shows only two spectrums, but it is straightforward to generalize to mul-

tiple spectrums for different biomedical applications. The Abs layer computes absolute

value elementwisely in each feature map, ys
k, to avoid the cancellation effect in sequen-

tial operations. The LCN layer aims to enhance the stronger feature responses and

suppress weaker ones across feature maps, {ys
k}Kk=1, in each spectrum, by performing

local subtractive and divisive operations1. The MP layer partitions each feature map

into non-overlapping windows and extracts the maximum response from each of the

pooling window. The MP operation allows local invariance to translation [24]. Finally,

the multispectral tissue features are formed by aggregating feature responses from all

spectrums.

We further denote the multispectral tissue features of image, x, as a 3D array,

U ∈ Ra×b×KS, where the first two dimensions indicate the horizontal and vertical

locations of a feature vector in the image plane and the third dimension represents the

length of feature vectors. The multispectral tissue features are then fed into the SPM

framework for classification as detailed in Section 4.3.

4.5 The SCCR Algorithm for Nuclei Segmentation

4.5.1 Training Algorithm

We consider the nuclei segmentation as a binary classification problem at pixel

level. Let X = {xi}Ni=1 be a training set containing N 2D images with dimension

1 Limited by space, we refer readers to [24,44] for detailed discussions on local contrast normalization.
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m × n. Let Y = {yi}Ni=1 be the set of N binary masks, where yi is an m × n binary

matrix corresponding to image xi, and each pixel yij,k ∈ {0, 1} in yi indicates the label

of the pixel xij,k in image xi. Here, we use yij,k = 1 to denote the nuclear region and

use yij,k = 0 to represent the background. Let D = {dk}Kk=1 be the 2D convolutional

filter bank consisting of K filters, where each dk is an h× h convolutional kernel. Let

w = [w1, . . . , wK ]
T ∈ RK be the vector containing K linear combination coefficients,

where the kth coefficient wk is related to the kth filter dk ∈ D. Our goal therefore is

simultaneously achieving two objectives. The first is to learn a set of nuclei feature

detectors D that can capture intrinsic cellular morphometric patterns. The second

objective is to realize a sparse representationw which maps the feature vector extracted

at each pixel to its label. The optimization problem is formulated as

min
D,w

L =
N∑
i=1

∥∥∥∥∥yi −
K∑
k=1

wkσ
(
dk ∗ xi

)∥∥∥∥∥
2

F

+ α

K∑
k=1

∥dk∥2F + β ∥w∥1 (4.5)

where the first term represents the segmentation error, the second term is a regulariza-

tion term for penalizing the model complexity and the third term is ℓ1 regularization

term included for enforcing the linear representation vector w to be sparse; α, β are

positive regularization constants; σ denotes the sigmoid function; ∗ is the 2D convolu-

tion operator. The sparsity constraint enables feature selection [130] and thus allows

the filters to capture diversified nuclear patterns.

We solve Eq. (4.5) by alternatively optimizing the two variables, i.e., itera-

tively performing the two steps, that is, first compute w and then update D. For

the purpose of handling large-scale dataset, we follow the mini-batch based training

protocol [131], i.e., in each iteration, computing the gradient based on a small subset

of the dataset. Specifically, we use the conjugate gradient method [132] to solve for

the sparse representation vector w. On updating the convolutional filter bank D, we

use the Limited memory BFGS (L-BFGS) for efficient estimation of the gradient. The

optimization procedure is sketched in Algorithm 4. Alternative methods for updating

the dictionary can be found in [25–27, 43]. Note that the objective of Eq. (4.5) is
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Figure 4.5: 21×21 filters learned from the TCGA segmentation benchmark dataset.

convex with respect to w but it is not convex with respect to D due to the nonlinear

sigmoid function, and therefore the optimization can only guarantee the convergence to

a local minima. However, in practice, achieving local minima is sufficient to generate

satisfactory performance. Figure 4.5 illustrates some of the filters learned from the

TCGA segmentation benchmark dataset.
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Algorithm 3 Training Algorithm

Input: Training image set X, training binary mask set Y, filter bank size K, mini-
batch size T , regularization constants α and β

Output: Convolutional filter bank D, coefficient vector w
1: Initialize: D ∼ N (0, 1), w← 0
2: repeat
3: Generate a random index set Ω ⊂ {1, 2, . . . , N} containing |Ω| = T indices
4: Fixing D, compute w by solving

w← argmin
w

∑
i∈Ω

∥∥∥∥yi −
K∑
k=1

wkσ (dk ∗ xi)

∥∥∥∥2

F

+ β ∥w∥1
5: Fixing w, update D over the same training subset as

D← D− µ∇DL(D,w)
6: until Convergence (maximum iterations reached or objective function ≤ threshold)

4.5.2 Decision Function

Now, we suppose the training of the proposed SCCR is completed. Given a test

image x of dimension p × q, the segmentation process consists of three steps. First,

compute the convolutional regression prediction as

z =
K∑
k=1

wkσ (dk ∗ x) (4.6)

Second, feed the prediction z into sigmoid function to squash the value of every

pixel within the range of (0, 1). Finally, the label of pixel at location (i, j) for all

i = 1, . . . , p and j = 1, . . . , q is predicted according to the following decision rule

Label(xi,j) =

 1 if σ(zij) ≥ 0.5

0 otherwise
(4.7)

where xi,j and zi,j represent the pixel at location (i, j) in x and z respectively.

4.6 Experiments on Tissue Classification

In this section, we discuss the performance of PSDnSPM and MCSCSPM in tis-

sue histopathology classification respectively, by presenting detailed experiment setup

and evaluation results. The two distinct tumor datasets, for evaluation, are curated
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Figure 4.6: GBM Examples. First column: Tumor; Second column: Transition to
necrosis; Third column: Necrosis.

from The Cancer Genome Atlas (TCGA), namely (i) Glioblastoma Multiforme (GBM)

and (ii) Kidney Renal Clear Cell Carcinoma (KIRC), which are publicly available from

the NIH (National Institute of Health) repository.

4.6.1 The Datasets

1. GBM Dataset. The GBM dataset contains 3 classes: Tumor, Necrosis, and Tran-

sition to Necrosis, which were curated from whole slide images (WSI) scanned

with a 20X objective (0.502 micron/pixel). Examples can be found in Figure 4.6.

The number of images per category are 628, 428 and 324, respectively. Most

images are 1000 × 1000 pixels. In this experiment, we train on 40, 80 and 160

images per category and tested on the rest, with three different dictionary sizes:

256, 512 and 1024. Detailed comparisons are shown in Table 4.3.

2. KIRC Dataset. The KIRC dataset contains 3 classes: Tumor, Normal, and
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Figure 4.7: KIRC Examples. First column: Tumor; Second column: Normal; Third
column: Stromal.

Stromal, which were curated from whole slide images (WSI) scanned with a

40X objective (0.252 micron/pixel). Examples can be found in Figure 4.7. The

number of images per category are 568, 796 and 784, respectively. Most images

are 1000 × 1000 pixels. In this experiment, we train on 70, 140 and 280 images

per category and tested on the rest, with three different dictionary sizes: 256,

512 and 1024. Detailed comparisons are shown in Table 4.4.

4.6.2 Evaluating the PSDnSPM Algorithm

4.6.2.1 Experimental Configurations

We evaluate the proposed PSDnSPM using the following different setups:

1. PSDnSPMNR: The nonlinear kernel SPM that uses spatial-pyramid histograms

of sparse tissue morphometric types. In this implementation,

(a) n = 1, 2;
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(b) The nonlinear regressor (Z = Gσ(WX)) was trained for the inference of Z;

(c) The image patch size is fixed to be 20×20 and the number of basis functions

in the top layer was fixed to be 1024. We adopted the SPAMS optimization

toolbox [133] for efficient implementation of OMP to compute the sparse

code, Z, with sparsity prior set to 30;

(d) Standard K-means clustering was used for the construction of the dictionary;

(e) The level of pyramid was fixed to be 3; and

(f) The homogeneous kernel map was applied, followed by the linear SVM for

classification.

2. PSD1SPMLR [92]: The nonlinear kernel SPM that uses spatial-pyramid his-

tograms of sparse tissue morphometric types. In this implementation,

(a) The linear regressor (Z = WX) was trained for the inference of Z;

(b) For consistency, the image patch size and the number of basis functions was

fixed at 20 × 20 and 1024, respectively. The sparsity constraint was set at

0.3 for best performance following cross validation.

(c) Standard K-means clustering was used for the construction of the dictionary;

(d) The level of pyramid was fixed to be 3;

(e) The homogeneous kernel map was applied, followed by linear SVM for clas-

sification.

3. ScSPM [134]: The linear SPM that utilizes linear kernel on spatial-pyramid pool-

ing of SIFT sparse codes. In this implementation,

(a) The dense SIFT features was extracted on 16 × 16 patches sampled from

each image on a grid with stepsize 8 pixels;

(b) The sparse constraint parameter λ was fixed to be 0.15, which was deter-

mined empirically to achieve the best performance;
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(c) The level of pyramid was fixed to be 3;

(d) Linear SVM was used for classification.

4. KSPM [97]: The nonlinear kernel SPM that uses spatial-pyramid histograms of

SIFT features; In the implementation,

(a) The dense SIFT features was extracted on 16 × 16 patches sampled from

each image on a grid with stepsize 8 pixels;

(b) Standard K-means clustering was used for the construction of the dictionary;

(c) The level of pyramid was fixed to be 3;

(d) The homogeneous kernel map was applied, followed by linear SVM for clas-

sification.

5. CTSPM: The nonlinear kernel SPM that uses spatial-pyramid histograms of color

and texture features; In this implementation,

(a) Color features were extracted from the RGB color space;

(b) Texture features were extracted via steerable filters [135] with 4 directions

(θ ∈ {0, π
4
, π
2
, 3π

4
}) and 5 scales (σ ∈ {1, 2, 3, 4, 5}) from the grayscale image;

(c) The feature vector was constructed by concatenating texture and mean color

on 20× 20 patches, empirically, to achieve the best performance;

(d) Standard K-means clustering was used for the construction of the dictionary;

(e) The level of pyramid was fixed to be 3;

(f) The homogeneous kernel map was applied, followed by linear SVM for clas-

sification.

All experimental processes were repeated 10 times with randomly selected training and

testing images. The final results were reported as the mean and standard deviation

of the classification rates on the two distinct datasets, i.e., GBM and KIRC datasets,

which include vastly different tumor types.. The results are summarized as below.
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Method DictionarySize=256 DictionarySize=512 DictionarySize=1024

160 training PSD2SPMNR 91.85 ± 1.03 91.86 ± 0.78 92.07 ± 0.65
PSD1SPMNR 91.85 ± 0.69 91.89 ± 0.99 91.74 ± 0.85
PSD1SPMLR [92] 91.02 ± 1.89 91.41 ± 0.95 91.20 ± 1.29
ScSPM [134] 79.58 ± 0.61 81.29 ± 0.86 82.36 ± 1.10
KSPM [97] 85.00 ± 0.79 86.47 ± 0.55 86.81 ± 0.45
CTSPM 78.61 ± 1.33 78.71 ± 1.18 78.69 ± 0.81

80 training PSD2SPMNR 90.51 ± 1.06 90.88 ± 0.66 90.51 ± 1.06
PSD1SPMNR 90.74 ± 0.95 90.42 ± 0.94 89.70 ± 1.20
PSD1SPMLR [92] 88.63 ± 0.91 88.91 ± 1.18 88.64 ± 1.08
ScSPM [134] 77.65 ± 1.43 78.31 ± 1.13 81.00 ± 0.98
KSPM [97] 83.81 ± 1.22 84.32 ± 0.67 84.49 ± 0.34
CTSPM 75.93 ± 1.18 76.06 ± 1.52 76.19 ± 1.33

40 training PSD2SPMNR 87.90 ± 0.91 88.21 ± 0.90 87.71 ± 0.81
PSD1SPMNR 87.72 ± 1.21 86.99 ± 1.76 86.33 ± 1.32
PSD1SPMLR [92] 84.06 ± 1.16 83.72 ± 1.46 83.40 ± 1.14
ScSPM [134] 73.60 ± 1.68 75.58 ± 1.29 76.24 ± 3.05
KSPM [97] 80.54 ± 1.21 80.56 ± 1.24 80.46 ± 0.56
CTSPM 73.10 ± 1.51 72.90 ± 1.09 72.65 ± 1.41

Table 4.1: Performance of different methods on the GBM dataset.

Method DictionarySize=256 DictionarySize=512 DictionarySize=1024

280 training PSD2SPMNR 99.03 ± 0.20 98.89 ± 0.19 98.92 ± 0.21
PSD1SPMNR 98.98 ± 0.35 98.81 ± 0.45 98.69 ± 0.41
PSD1SPMLR [92] 97.19 ± 0.49 97.27 ± 0.44 97.08 ± 0.45
ScSPM [134] 94.52 ± 0.44 96.37 ± 0.45 96.81 ± 0.50
KSPM [97] 93.55 ± 0.31 93.76 ± 0.27 93.90 ± 0.19
CTSPM 87.45 ± 0.59 87.95 ± 0.49 88.53 ± 0.49

140 training PSD2SPMNR 98.26 ± 0.34 98.07 ± 0.46 97.85 ± 0.56
PSD1SPMNR 98.17 ± 0.72 98.05 ± 0.71 97.99 ± 0.82
PSD1SPMLR [92] 96.80 ± 0.75 96.52 ± 0.76 96.55 ± 0.84
ScSPM [134] 93.46 ± 0.55 95.68 ± 0.36 96.76 ± 0.63
KSPM [97] 92.50 ± 1.12 93.06 ± 0.82 93.26 ± 0.68
CTSPM 86.55 ± 0.99 86.40 ± 0.54 86.49 ± 0.58

70 training PSD2SPMNR 96.67 ± 0.53 96.20 ± 0.54 95.57 ± 0.66
PSD1SPMNR 96.42 ± 0.68 96.41 ± 0.59 96.03 ± 0.69
PSD1SPMLR [92] 95.12 ± 0.54 95.13 ± 0.51 95.09 ± 0.40
ScSPM [134] 91.93 ± 1.00 93.67 ± 0.72 94.86 ± 0.86
KSPM [97] 90.78 ± 0.98 91.34 ± 1.13 91.59 ± 0.97
CTSPM 84.76 ± 1.32 84.29 ± 1.53 83.71 ± 1.42

Table 4.2: Performance of different methods on the KIRC dataset.

4.6.2.2 Discussion

Above experiments indicate that,

1. Features from unsupervised feature learning are more tolerant to the batch effect

than human engineered features for tissue classification. Tables 4.1 and 4.2 show

that PSDnSPM consistently outperforms KSPM, ScSPM and CTSPM on the two

distinct datasets that suffer from technical variations as a result of both sample
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preparation and biological heterogeneity, where the latter is due to the variation

in tumor phenotype across patients.

2. PSD with nonlinear regressor outperforms PSD with linear regressor in terms of

both reconstruction and classification, as shown in Figure 4.8 as well as Tables 4.1

and 4.2.

3. Stacking multiple layers of PSD enables learning higher level features, which

further improves the classification performance.

4.6.3 Evaluating the MCSCSPM algorithm

4.6.3.1 Experimental Configurations

We have evaluated the proposed method (MCSCSPM) in three different varia-

tions:

1. MCSCSPM-HE: Convolutional filter banks are learned from / applied onto de-

composed spectrum (channel) separately. Here, we have two spectrums (chan-

nels) after color decomposition, which correspond to nuclear chromatin (stained

with hematoxylin) and collagen (stained with eosin), respectively.

2. MCSCSPM-RGB: Convolutional filter banks are learned from / applied onto R,

G, and B channels separately.

3. MCSSPM-Gray: Convolutional filter banks are learned from / applied onto the

grayscale image.

and compared its performance with other four classification methods on the GBM and

KIRC datasets. Implementation details of all approaches involved are listed as follows:

1. MCSCSPM: the nonlinear kernel SPM that uses spatial-pyramid histograms of

multispectral tissue types and homogeneous kernel map. In the multispectral

case, an input tissue image was decomposed into two spectrums (i.e., S = 2)

corresponding to the nuclear chromatin and the collagen respectively, based on
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the optical density matrix established in [129]. In the RGB and grayscale case,

each color channel was treated as one spectrum. For each spectrum, images were

preprocessed with a 13 × 13 Gaussian filter. During training, we set K to 150

and 300 per spectrum for the GBM and KIRC datasets, respectively. The filter

dimension was 27× 27 for both datasets. The sparsity regularization parameter

α was set to 0.1 for best performance. During multispectral feature extraction,

we used the same 13 × 13 Gaussian filter for local contrast normalization and

empirically set the max-pooling stepsize to be 27.

2. PSDSPM [92]: the nonlinear kernel SPM that uses spatial-pyramid histograms of

sparse tissue morphometric types and homogeneous kernel map. The image patch

size was set to 20× 20, the number of basis function was empirically set to 1024

and the sparsity regularization parameter was set to 0.3 for best performance.

3. ScSPM [134]: the linear SPM that uses linear kernel on spatial-pyramid pool-

ing of SIFT sparse codes. The dense SIFT features was extracted on 16 × 16

patches sampled from each image on a grid with stepsize 8 pixels. The sparsity

regularization parameter λ was set to 0.15, to achieve the best performance;

4. KSPM [97]: the nonlinear kernel SPM that uses spatial-pyramid histograms of

SIFT features and homogeneous kernel map. The dense SIFT features was ex-

tracted on 16 × 16 patches sampled from each image on a grid with stepsize 8

pixels;

5. SMLSPM [91]: the linear SPM that uses linear kernel on spatial-pyramid pooling

of cellular morphometric sparse codes.

On the implementation of SPM for MCSCSPM, PSDSPM, KSPM and SMLSPM, we

use the standard K-means clustering for constructing the dictionary and set the level

of pyramid to be 3. Following the conventional evaluation procedure, we repeat all

experiments 10 times with random splits of training and test set to obtain reliable

results. The final results are reported as the mean and standard deviation of the
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Method DictionarySize=256 DictionarySize=512 DictionarySize=1024
160 training MCSCSPM-HE 92.71 ± 0.91 93.01 ± 1.10 92.65 ± 0.75

MCSCSPM-RGB 92.58 ± 0.94 92.50 ± 0.86 92.47 ± 0.73
MCSCSPM-Gray 86.33 ± 1.12 86.74 ± 0.91 86.69 ± 0.81
PSDSPM [92] 91.02 ± 1.89 91.41 ± 0.95 91.20 ± 1.29
SMLSPM [91] 92.35 ± 0.83 92.57 ± 0.91 92.91 ± 0.84
ScSPM [134] 79.58 ± 0.61 81.29 ± 0.86 82.36 ± 1.10
KSPM [97] 85.00 ± 0.79 86.47 ± 0.55 86.81 ± 0.45

80 training MCSCSPM-HE 91.41 ± 1.07 91.19 ± 0.91 91.13 ± 0.93
MCSCSPM-RGB 90.88 ± 1.06 91.28 ± 0.82 90.85 ± 0.67
MCSCSPM-Gray 84.67 ± 1.63 84.53 ± 1.58 84.56 ± 1.62
PSDSPM [92] 88.63 ± 0.91 88.91 ± 1.18 88.64 ± 1.08
SMLSPM [91] 90.82 ± 1.28 90.29 ± 0.68 91.08 ± 0.69
ScSPM [134] 77.65 ± 1.43 78.31 ± 1.13 81.00 ± 0.98
KSPM [97] 83.81 ± 1.22 84.32 ± 0.67 84.49 ± 0.34

40 training MCSCSPM-HE 89.16 ± 1.04 89.21 ± 0.75 88.84 ± 0.83
MCSCSPM-RGB 89.24 ± 1.03 89.46 ± 1.14 89.53 ± 1.20
MCSCSPM-Gray 81.37 ± 1.55 81.31 ± 1.19 80.80 ± 1.71
PSDSPM [92] 84.06 ± 1.16 83.72 ± 1.46 83.40 ± 1.14
SMLSPM [91] 88.05 ± 1.38 87.88 ± 1.04 88.54 ± 1.42
ScSPM [134] 73.60 ± 1.68 75.58 ± 1.29 76.24 ± 3.05
KSPM [97] 80.54 ± 1.21 80.56 ± 1.24 80.46 ± 0.56

Table 4.3: Performance of different methods on the GBM dataset.

Method DictionarySize=256 DictionarySize=512 DictionarySize=1024
280 training MCSCSPM-HE 97.39 ± 0.36 97.51 ± 0.41 97.48 ± 0.40

MCSCSPM-RGB 97.11 ± 0.44 97.49 ± 0.46 97.44 ± 0.43
MCSCSPM-Gray 88.76 ± 0.59 90.50 ± 0.70 91.28 ± 0.72
PSDSPM [92] 97.19 ± 0.49 97.27 ± 0.44 97.08 ± 0.45
SMLSPM 98.15 ± 0.46 98.50 ± 0.42 98.21 ± 0.44
ScSPM [134] 94.52 ± 0.44 96.37 ± 0.45 96.81 ± 0.50
KSPM [97] 93.55 ± 0.31 93.76 ± 0.27 93.90 ± 0.19

140 training MCSCSPM-HE 96.73 ± 0.84 96.89 ± 0.48 96.84 ± 0.67
MCSCSPM-RGB 96.14 ± 1.17 96.46 ± 1.06 96.64 ± 0.76
MCSCSPM-Gray 86.79 ± 0.98 88.26 ± 0.59 88.50 ± 0.80
PSDSPM [92] 96.80 ± 0.75 96.52 ± 0.76 96.55 ± 0.84
SMLSPM 97.40 ± 0.50 97.98 ± 0.35 97.35 ± 0.48
ScSPM [134] 93.46 ± 0.55 95.68 ± 0.36 96.76 ± 0.63
KSPM [97] 92.50 ± 1.12 93.06 ± 0.82 93.26 ± 0.68

70 training MCSCSPM-HE 95.32 ± 0.67 95.62 ± 0.29 95.40 ± 0.44
MCSCSPM-RGB 94.45 ± 0.84 94.64 ± 0.72 94.45 ± 0.77
MCSCSPM-Gray 84.04 ± 1.10 85.13 ± 0.79 84.66 ± 1.14
PSDSPM [92] 95.12 ± 0.54 95.13 ± 0.51 95.09 ± 0.40
SMLSPM 96.20 ± 0.85 96.37 ± 0.85 96.19 ± 0.62
ScSPM [134] 91.93 ± 1.00 93.67 ± 0.72 94.86 ± 0.86
KSPM [97] 90.78 ± 0.98 91.34 ± 1.13 91.59 ± 0.97

Table 4.4: Performance of different methods on the KIRC dataset.

classification rates on the two distinct datasets, i.e., GBM and KIRC datasets, which

include vastly different tumor types.

84



(a) (b) (c)

Figure 4.8: Comparison of PSD with linear and nonlinear regressors in terms of re-
construction. (a) Original image; (b) Reconstruction by PSD with linear regressor
(SNR=14.9429); (c) Reconstruction by PSD with nonlinear regressor (SNR=19.3436).

4.6.3.2 Discussion

1. Multispectral (HE) v.s. RGB v.s. Gray. For GBM dataset, K was fixed to be

150 per spectrum (channel), which led to a total number of 300, 450 and 150

filters for MCSCSPM-HE, MCSCSPM-RGB and MCSCSPM-Gray, respectively.

For the KIRC dataset, K was fixed to be 300 per spectrum (channel), which led

to a total number of 600, 900 and 300 filters for MCSCSPM-HE, MCSCSPM-

RGB and MCSCSPM-Gray, respectively. Table 4.3 and Table 4.4 show that,

even with smaller number of filters, MCSCSPM-HE outperforms MCSCSPM-

RGB in most cases. This is due to the fact that, after color decomposition, the

resulting two spectrums are biological-component-specific, such that specialized

filters can be obtained from each spectrum characterizing nuclear architecture

and tissue structural connectivities, respectively, as demonstrated in Figure 4.2.

Although the stain information (biological component information) leaks across

channels for H&E stained tissue sections in its original RGB presentation, target-

specific property can still be preserved to some extent (e.g., most of the nuclear

information resides in blue (B) channel); and this explains why MCSCSPM-RGB

still has reasonable performance. However, when such a property is completely

lost in grayscale, MCSCSPM-Gray sees a dramatic performance drop.
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2. Convolutional v.s. patch-based sparse modeling. As listed in Table 4.3 and Ta-

ble 4.4, the proposed approach, MCSCSPM-HE/MCSCSPM-RGB outperforms

patch-based sparse feature learning models, e.g., PSDSPM [92], with fewer filters

than PSDSPM. These facts indicate that, in tissue classification, convolutional

sparse coding is more effective than traditional sparse coding in terms of using

more succinct representations and producing better results, which has already

been confirmed in other applications [25].

3. Unsupervised feature learning v.s. hand-engineered features. As shown in Ta-

ble 4.3 and Table 4.4, the proposed approach significantly outperforms systems

that are built on hand-engineered features for general image classification pur-

pose (e.g., KSPM, ScSPM). Even compared to the recently proposed system,

SMLSPM [91], which is built upon features with biological prior knowledge, the

proposed approach, MCSCSPM, robustly achieves very competitive performance

over the two different tumor types, where MCSCSPM-HE performs better on

the GBM dataset, while worse on the KIRC dataset. This confirms that the

proposed approach, MCSCSPM, is a useful tool for analyzing large cohorts with

substantial technical variations and biological heterogeneities.

4.7 Experiments on Nuclei Segmentation

In this section, we present evaluation results of the proposed SCCR for nuclei

segmentation. The Cancer Genome Atlas (TCGA) is a publicly accessible repository

providing a rich amount of whole mount tumor sections that are collected from dif-

ferent laboratories. Among the images, there exist significant technical and biological

variations. The proposed SCCR is evaluated over 21 1000-by-1000 Glioblastoma Mul-

tiforme (GBM) image samples (20X), which are manually selected to capture technical

variations and are annotated as binary masks. For preprocessing all images, we used

color decomposition [129] to accentuate the nuclear dye. The color decomposition gen-

erates two channels of the original image, i.e., the nuclear channel and the collagen

channel. For our segmentation task, we only keep the images from nuclear channel.
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Figure 4.9: GBM Examples. First row: original images. Second row: predictions by
SCCR. Third row: final segmentation results.

We randomly cropped 1400 image patches and the corresponding binary masks

as training set. The image patches and the binary masks are of size 64-by-64. For

training, we empirically set K = 1500, T = 200, α = 10−4, β = 0.1. We evaluate

the proposed SCCR using all the 21 1000-by-1000 images and compare it with several

methods reported in the literature [95, 136, 137]. The results are summarized in Ta-

ble 4.5. Our method outperforms traditional nuclei segmentation algorithms [95, 136]
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Table 4.5: Comparison of Segmentation Results.

Method Precision Recall F-Score

Proposed 0.77 0.81 0.790

Chang et al. [137] 0.79 0.78 0.785

Chang et al. [136] 0.78 0.65 0.709

Sonal et al. [95] 0.69 0.75 0.719

and is very competitive with one of the state-of-the-art algorithm [137]. Note that un-

like the algorithm in [137] which is built upon human’s biological prior knowledge, the

proposed SCCR is a generic feature learning model and may be applicable to segmen-

tation tasks of other tumor types. Figure 4.9 illustrates some examples for the original

images, the corresponding SCCR predictions and the final segmentation results.

4.8 Conclusion

In this chapter, we demonstrate the promising performance of automatic fea-

ture learning in biomedical image analysis. We first present two unsupervised feature

learning frameworks for classification of distinct regions of tumor histopathology, i.e.,

a multi-layer PSD framework (PSDnSPM) and a more advanced model (MCSCSPM).

Both approaches outperform traditional human-engineered feature extraction methods

that are typically based on pixel- or patch-level features. Our analysis indicates that

the proposed approaches are (i) extensible to different tumor types; (ii) robust in the

presence of large amounts of technical variations and biological heterogeneities; (iii)

scalable with varying training sample sizes; and (iv) competitive with state-of-the-art

dedicated systems based on biological domain knowledge.

Then we present a novel method, called sparsity constrained convolutional re-

gression (SCCR), for nuclei segmentation. In contrast to traditional CNN-based models

for image labeling, our algorithm aims to accurately classify each pixel into nuclear re-

gion or background. Compared to human-engineered nuclei segmentation frameworks,

our method does not rely on biological prior knowledge and could be potentially appli-

cable to segmentation tasks of other tumor types. The proposed SCCR outperforms
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several traditional nuclei segmentation algorithms and achieves very competitive per-

formance compared to one of the state-of-the-art approaches based on biological prior

knowledge.
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Chapter 5

KERNEL SPARSE CODING FOR GESTURE RECOGNITION

5.1 Introduction

Sparse representation has achieved state-of-the-art results in many fields, such

as image compression and denoising [33], face recognition [1, 11], video-based action

classification [138], etc. The success of this technique is partially due to its robustness

to noise and missing data. For example, sparse representation-based classification

(SRC) [11] yields impressive results in face recognition by encoding a query face image

over the entire set of training template images and identifying the label of the query

sample by evaluating which class yields the minimum reconstruction error. However,

little effort has been made to apply this technique to classifying multi-variate time

series (MTS) data.

Classifying multivariate time series (MTS) is a challenging task in many areas,

e.g., pattern recognition [28] and computer vision [29]. An MTS is an m × n matrix,

where m is the number of observations on an individual event captured by sensors

such as video cameras, position trackers and cybergloves, while n denotes the number

of independent attributes [139], also known as variables [28,30] or features [2,140]. For

each MTS, m is typically varying due to different motion durations for each instance,

while the number of attributes, n, is the same for all the series since they are recorded

by the same set of devices. For conventional feature extraction methods, e.g., PCA

and LDA, downsampling and interpolation are usually applied on each MTS in order

to normalize the data length. However, downsampling may cause a loss of salient

information [28], while interpolation may induce distortion to the original data [30].

Gesture MTS data possess both spatial and temporal information. While spa-

tial information depicts the entire static pattern, temporal information contains the
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dynamic dependencies between adjacent recordings. Algorithms that exploit chronolog-

ical order within time series, e.g., Dynamic Time Warping (DTW) [4,141] and Longest

Common Subsequence (LCSS) [7], assume that similar signals must be recorded in the

same order. However, motion order and direction may vary significantly among users

presenting the same gesture. Consequently, such algorithms need to store all possible

permutations of each gesture in memory and conduct pair-wise matching during recog-

nition, resulting in excessive computation and storage requirements [142]. For example,

a 2-stroke letter “t” requires 2!×22 = 8 permutations to represent all possibilities, while

an l-stroke gesture takes l!× 2l permutations.

Notably, real-world gestures and movements, such as human gait and sign lan-

guage, are performed according to a strict “grammar”. This observation indicates that

effectively distinguishing complicated spatial patterns is the key to successful recogni-

tion, rather than exploiting temporal order [28,30,139]. Motivated by this observation

and reasoning, we consider feature extraction for MTS data ignoring the temporal

ordering. More specifically, we generalize the capability of SRC to classifying MTS

data.

The performance of SRC relies on the quality of the dictionary. We propose a

novel feature extraction technique, called Covariance Matrix Singular Value Decompo-

sition for Kernelization (CovSVDK), which possesses three notable merits: CovSVDK

is 1) invariant to inconsistent lengths and temporal disorder across MTS data; 2) robust

to the large variability within human gestures; 3) efficient to compute. In particular,

the robustness of the feature extraction strategy is attributed to the fact that CovSVDK

essentially enforces ℓ1 minimization algorithms to favor training samples that are con-

sistently close to the query sample in every sub-feature space. Moreover, we propose a

new approach to kernelize sparse representation. With this method, dictionary atoms

are more separable for sparse coding algorithms and nonlinear relationships among

data can be conveniently transformed into linear relations in kernel space, which leads

to more effective classification. Finally, we evaluate the proposed framework over

extensive datasets. For the Georgia-Tech HG database, a 100% recognition rate is
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stably achieved; over the High-quality Australian Sign Language (HAuslan) database,

the recognition accuracy is greater than 91.2%; for the univariate UCR Time-Series

Repository, the proposed classifier outperforms competing methods by achieving the

lowest error rate on 10 out of 20 datasets.

5.2 Related Work and Problem Formulation

5.2.1 Related Work

Many algorithms have been proposed to measure the similarity among multi-

dimensional time series, e.g., Hidden Markov models (HMMs) [143], DTW [4, 141],

LCSS [7], and Mixture of Bayes Network Classifier [2], among others. Principal compo-

nents (PCs) based methods are, perhaps, the most widely known similarity measure for

multi-attribute time series, with the approach first defined by Krzanowski [144] in 1979.

Many subsequent PC efforts focused on computing the similarity value using different

weighting strategies to aggregate the inner products between PC pairs [28, 30,139].

For instance, Li et al. proposed a similarity measure for motion streams using

only the largest singular value and the corresponding singular vector [139]. In [29],

the authors further proposed k Weighted Angular Similarity (kWAS) by considering

the k largest singular value/vector pairs. Yang and Shahabi [28] proposed a similarity

measure, called Extended Frobenius norm (Eros), which included all the singular values

by employing a heuristic aggregating function to compute universal weights for all MTS

data. The similarity measure is a weighted sum of inner products between each pair

of singular vectors. In practice, however, variance is highly concentrated in the several

largest eigenvalues and the small values are typically considered as redundancy or noise.

Hence, Eros is vulnerable to noise. Yang and Shahabi further further extended their

approach by using Eros for Kernel PCA, termed KEros [30].

Recently, some researchers reported the limitation of SRC [11] in classifying non-

linear data. Zhang et al. [88] proposed the kernel sparse representation-based classifier

(KSRC) by introducing the kernel trick. However, their approach relies on kernel-based

dimensionality reduction techniques and thus does not offer a direct generalization to
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sparse representation in kernel space. Gao et al. [145] proposed kernel sparse repre-

sentation (KSR). However, the KSR objective function cannot be solved by standard

sparse coding algorithms as it requires solving a quadratic programming (QP) problem,

which is of higher computational complexity than ℓ1 minimization.

5.2.2 Problem Formulation

In a k-label MTS data classification problem, we define the training set as

T =
∪k

i=1 Ti, where Ti =
∪ni

j=1 ti,j is a subset for the i-th class with ni samples, and

define the query sample as x. Also, denote N =
∑k

i ni as the total number of training

samples.

There is significant current interest in using SRC [11] to classify audio, image

and video signals. It is therefore desirable to explore its capability in the field of MTS

data classification. To achieve this goal, several important issues must be addressed: 1)

An effective feature extraction method is needed to process large-scale MTS datasets.

The method should be efficient in computation and memory consumption, and invari-

ant to inconsistent lengths and temporal disorder across MTS samples. 2) A general

formulation of sparse representation suitable for various pattern recognition tasks is

also desired. SRC assumes that training atoms reside on a linear manifold and are dis-

tinguishable by ℓ1 minimization algorithms. While this premise holds for face images,

it does not necessarily hold for other types of data.

5.3 Proposed method

This section details methods for effectively extracting MTS data features and

present a novel approach to kernelizing sparse representation for classification.

5.3.1 Feature Extraction for MTS Data

5.3.1.1 SVD Properties of MTS Data

For an m×n MTS t with m observations and n attributes, m is typically much

larger than n and varies across different samples. In order to avoid performing SVD
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on m-varying t, we treat each attribute (columns in the t) as a random variable and

compute the covariance matrix of t as

Σt = E[tT t]− ET [t]E[t], (5.1)

where E[·] denotes the mathematical expectation and Σt is of fixed dimension n × n

(here n ≥ 2). By calculating the Σt of t, we discard the ordering information and thus

overcome the problem of temporal disorder across MTS samples, since each entry in

Σt is an inner product between two columns in t that is invariant to the row-switching

of t.

Applying SVD to the covariance matrix yields Σt = UΛUT , where U =

[u1, . . . ,un] is a singular vector matrix with orthonormal columns and Λ = diag(ρ)

with ρ = [λ1, . . . , λn]
T being a vector with singular values descendingly sorted. diag is

the operator that transforms ρ into a diagonal matrix by putting entries of ρ along

the main diagonal in the matrix. Similarly, the covariance matrix Σp of MTS p

can be expressed as Σp = VΩVT , where V = [v1, . . . ,vn] and Ω = diag(η) with

η = [ω1, . . . , ωn]
T . Since Σ is positive semi-definite, its SVD is equivalent to eigenvalue

decomposition.

If two MTS t and p are similar to each other, ∥Σt − Σp∥F should be close to

zero. In other words, the singular vector ui of Σt should resemble vi of Σp in direction

and the singular value λi of Σt should also be close to ωi of Σp.

5.3.1.2 Simple features for sparse representation

For simplicity, we indicate the i-th training sample as ti. Applying SVD to the

covariance matrix, we get Σti = UiΛiU
T
i , where Ui = [u1

i , . . . ,u
n
i ] and Λi = diag(ρi)

with ρi = [λ1i , . . . , λ
n
i ]

T . Note that uj
i ∈ Rn and λji stand for the j-th singular vector

(principle component) and the j-th singular value of ti respectively. We denote Bj =

[uj
1,u

j
2, . . . ,u

j
N ] ∈ Rn×N as the dictionary containing the j-th singular vectors extracted

from all ti with ∥uj
i∥2 = 1, for i = 1, . . . , N .
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Given a query sample x and corresponding Σx = VΩVT , denote the j-th singu-

lar vector of x as vj and let η = [ω1, . . . , ωn]
T be the vector containing all the singular

values in Ω sorted in the descending order. A simple strategy for classifying x is to

treat a particular vj as the feature of x and employ SRC [11] to identify the feature

by solving

αj = argmin
αj
∥αj∥1 subject to Bjαj = vj, (5.2)

Obtaining αj ∈ RN , x can be classified by evaluating the class-wise reconstruction

error based on Bj.

The above strategy using one singular vector (e.g., the top one) may work prop-

erly with well-separated data. However, real-world gesture recordings are always vul-

nerable to noise or large variability among individuals. Therefore it is desirable to

take into account several most important singular vectors to improve the robustness of

the algorithm. In addition, the discriminative information within the singular values

should also be exploited.

5.3.1.3 Robust features for sparse representation

Consider a robust feature vector constructed by unifying the top s singular

values and the associated singular vectors (s ≤ n). Suppose that we have obtained

αj by solving Eq. (5.2), for all j = 1, . . . , s. Without violating the equality in the

constraint of Eq. (5.2), we can equivalently rewrite Bjαj = vj as

B̂jα̂j = [
λj1
∥ρ1∥2

uj
1,

λj2
∥ρ2∥2

uj
2, . . . ,

λjN
∥ρN∥2

uj
N ]α̂

j =
ωj

∥η∥2
vj (5.3)
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where α̂j = ∆αj with ∆ = diag([ω
j∥ρ1∥2
λj
1∥η∥2

, . . . , ω
j∥ρN∥2
λj
N∥η∥2

]). Applying the same procedure

to each pair of Bj and vj for all j = 1, . . . , s, we get

B̂1α̂1 =
ω1

∥η∥2
v1

B̂2α̂2 =
ω2

∥η∥2
v2

. . . = . . . (5.4)

B̂sα̂s =
ωs

∥η∥2
vs

Ideally, if x is sufficiently similar to ti, v
j should resemble uj

i , so should ωj

and λji for all j = 1, . . . , s. Therefore, in reconstructing each vj, the uj
i of ti should

be coded with large coefficient. In other words, if each uj
i of ti contributes most in

representing vj of x, ti should be similar to x. Then, the class to which ti belongs

should yield the minimum error in reconstructing x, which indicates that x is of the

same label as ti.

Motivated by this intuition, we enforce each vj of x to be represented via a

universal sparse code α over the corresponding B̂j. By substituting α̂j with α for all

j = 1, . . . , s, Eq. (5.4) can thus be simplified as

[B̂1T , B̂2T , . . . , B̂sT ]Tα = [
ω1

∥η∥2
v1T ,

ω2

∥η∥2
v2T , . . . ,

ωs

∥η∥2
vsT ]T , (5.5)

where [B̂1T , B̂2T , . . . , B̂sT ]T is a vertical concatenation of all the sub-matrices B̂j and

the right hand side is a super-vector by concatenating all vj. Thus the classification

scheme based on unifying the top s pairs of singular values/vectors can be formulated

as

α = argmin
α
∥α∥1 subject to Eq. (5.5), (5.6)

where columns in [B̂1T , B̂2T , . . . , B̂sT ]T are normalized to unit ℓ2-norm.
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Definition 1 (CovSVDK). Given an MTS t, its covariance matrix is decomposed

as Σt = UΛUT by SVD, where U = [u1, . . . ,un] is a singular vector matrix with

orthonormal columns and Λ = diag(ρ) with ρ = [λ1, . . . , λn]
T is a diagonal matrix

with singular values descendingly sorted on the main diagonal. The CovSVDK feature

for t is defined as

ϕ(t) =

[
λ1
∥ ρ ∥2

uT
1 ,

λ2
∥ ρ ∥2

uT
2 , . . . ,

λs
∥ ρ ∥2

uT
s

]T
∈ Rsn, (5.7)

where s subjects to

s = argmin

{∑s
i=1 λi∑n
i=1 λi

≥ c

}
(5.8)

for a pre-selected energy threshold, c.

In practice, it is common to empirically set a universal s for all MTS data such

that most energy is preserved within the top s singular values. The name CovSVDK

stands for Covariance Matrix SVD for Kernelization.

Definition 2. Given s, define Φ as a collection of features extracted from the training

set T according to Definition 1, and write Φ as

Φ = [ϕ(t1,1), . . . , ϕ(ti,1), . . . , ϕ(ti,ni
), . . . , ϕ(tk,nk

)] ∈ Rsn×N . (5.9)

Furthermore, define y = ϕ(x) as the feature of the query sample x.

Discussion: If we define r = max(mn,N) and denote d as the reduced dimen-

sion, PCA is of computational complexity O(r2d) while CovSVDK is of complexity

O(n2dN). For the cases where m or N is large, O(r2d)≫ O(n2dN). Thus, CovSVDK

is substantially more efficient than PCA over large-scale datasets or for MTS data with

long durations. More importantly, the memory usage by PCA is proportional to N2

or m2n2 while the memory consumption by CovSVDK is proportional to n2. Hence,

CovSVDK is also more memory efficient than PCA.
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Revisiting Eq. (5.5), we can substitute y for
[

ω1

∥η∥2v
1, ω2

∥η∥2v
2, . . . , ωs

∥η∥2v
s
]T
∈ Rsn

and replace [B̂1T , B̂2T , . . . , B̂sT ]T ∈ Rsn×N with Φ. Finally, the classification scheme

based on CovSVDK features can be derived from Eq. (5.6) as

α = argmin
α
∥α∥1 subject to Φα = y, (5.10)

where α is the universal sparse code for representing the ωi

∥η∥2v
i over B̂iT for all i =

1, . . . , s.

5.3.2 Kernelizing Sparse Representation for Classification

The discrimination capability of SRC relies on the quality of the dictionary.

In other words, the atoms associated to different classes must be distinguishable or

separable from the perspective of ℓ1 minimization algorithms. In some real-world ap-

plications, however, computing the sparse representation over a dictionary of original

training features can yield undesirable classification results. One such example is the

Iris dataset (from UCI machine learning archive). As is commonly used for analyzing

the performance of various classifiers, two features for each sample, regarding pedal

length and pedal width, are extracted and formed into a 2D feature vector, as shown

in Fig. 5.1(a). The three classes (points in red, green and blue) are distributed closely

along the same radius direction. Obviously, the extracted 2D feature vectors are suf-

ficiently discriminative for traditional classifiers, e.g., k-Nearest-Neighbors (kNN) and

Support Vector Machines (SVMs). On the other hand, SRC normalizes training sam-

ples with unit ℓ2-norm and employs the normalized training samples as dictionary

atoms1. As shown in Fig. 5.1(b), the atoms are located on the unit circle with severe

overlapping in the middle of the point scatter. The atoms within the overlapping region

1 Normalization is typically performed to avoid trivial solution and is reasonable in face recognition,
since images of a subject under different intensity levels are still considered to be same-class. In other
words, the magnitudes of feature vectors are not considered as discriminative information in face
recognition.
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Figure 5.1: Training samples and dictionary atoms of SRC.

are inseparable and consequently cause ℓ1 minimization algorithms the confusion in se-

lecting the true atoms. Thus, SRC neglects the magnitude information and suffers the

drawback of losing its discrimination capability in classifying data that are distributed

along the same radius direction [88,146].

We propose the kernelized sparse representation to overcome this shortcoming

of SRC. This is desirable since by kernelizing sparse representation, the classification

strategy of SRC can be applied to general pattern recognition tasks including MTS

gesture recognition, time series classification, etc.

Kernel trick is a widely applied technique in machine learning that can adapt

linear algorithms to nonlinear cases, by mapping training features ϕ(·) from the original

space X into some kernel space F , in which the new kernel features ψ(·) are more

separable for a certain type of classifiers and the nonlinear relationships among ϕ(·) ∈ X

can be transformed into linear ones among ψ(·) ∈ F .

Let Ψ = [ψ(t1,1), . . . , ψ(ti,1), . . . , ψ(ti,ni
), . . . , ψ(tk,nk

)] be the collection of train-

ing kernel features in F . Given a test sample x, we want to solve the sparse repre-

sentation α of ψ(x) over Ψ. However, this is typically infeasible, as 1) usually the

mapping ψ is implicit, meaning that direct evaluation of the fitness term ψ(x) = Ψα

is impossible [88]; 2) F may be of infinite dimension, causing that the computational

complexity is intractable; 3) even though we know the mapping explicitly, ΨTΨ may

not be invertible, resulting that the left inverse does not exist and thus no explicit
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solution to ψ(x) = Ψα is available. To overcome these difficulties, we introduce a

relaxation to the fitness constraint term as

∥∥∥∥∥∥
ψ(x)

0

−
Ψ

γI

α
∥∥∥∥∥∥
2

≤ ε (5.11)

where 0 ∈ RN is a zero vector, I ∈ RN×N is the identity matrix, ε is an arbitrarily

small positive constant representing the error tolerance, γ is a small positive constant.

Satisfying Eq. (5.11) is equivalent to minimizing the ridge regression problem L(α) =

∥ψ(x) − Ψα∥22 + γαTα. Setting the gradient of L(α) with respect to α equal to zero,

the solution space of α is obtained as

ΨTψ(x) = (ΨTΨ+ γI)α (5.12)

where ΨTψ(x) is an N × 1 vector and ΨTΨ is an N ×N positive semi-definite matrix.

Regularized by γ, (ΨTΨ + γI) is invertible, yielding that α is the global minimizer to

L(α). In other words, enabling Eq. (5.12) is equivalent to satisfying Eq. (5.11). Thus,

we can employ Eq. (5.12) as the fitness constraint in sparse coding2.

To improve the efficiency in ℓ1 minimization and to ensure the solution to be

sparse, a random matrix P ∈ Rd×N obeying Gaussian or Bernoulli distribution (we use

Gaussian here) is often employed to project vector ΨTψ(x) and columns in (ΨTΨ+γI)

into some d-dimensional random subspace, where d≪ N .

Define the K = ΨTΨ as a Gram matrix, with elements Ki,j = k
(
ϕ(ti), ϕ(tj)

)
,

where k(·, ·) is a valid kernel function. By denoting ỹ = ΨTψ(x) = k(·,x) ∈ RN and

substituting K for ΨTΨ in the new fitness constraint Eq. (5.12), the kernelized sparse

representation under random projection P is formulated as:

α = argmin
α
∥α∥1 subject to P(K+ γI)α = Pỹ. (5.13)

2 Note that the proposed relaxation to fitness constraint (Eq. (5.11) and Eq. (5.12)) is a general
strategy and is applicable to kernelizing other sparse coding algorithms, such as Orthogonal Matching
Pursuit (OMP), but in this work we only focus on ℓ1 minimization algorithms.
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From Eq. (5.13), we can see that the linear relationship between kernel features ψ(x)

and columns in Ψ has been depicted entirely in terms of the linear combination between

the kernel function values in vector ỹ and the corresponding ones in matrix K. For

the purpose of effectively classifying MTS gestures and time series data, we further

propose two kernel functions based on the CovSVDK features.

Proposition 2 (Kernel Function). Let t and p be two samples and let ϕ(t) and ϕ(p)

be their extracted feature vectors. The proposed kernel function is defined as

k
(
ϕ(t), ϕ(p)

)
= exp

{
kL

(
ϕ(t), ϕ(p)

)}
= ψ(t)Tψ(p) (5.14)

where ψ(t) ∈ F and ψ(p) ∈ F are kernel features for t and p, via some implicit non-

linear mapping ψ. In particular, for MTS data, ϕ(t) and ϕ(p) are extracted according

to Definition 1 and the kernel function kL(·, ·) can be written as

kL
(
ϕ(t), ϕ(p)

)
= ϕ(t)Tϕ(p) =

s∑
i=1

(
λiωi

∥ρ∥2∥η∥2

)
uT
i vi. (5.15)

Note that kernel features ψ(·) ∈ F are of infinite dimension. By working directly

on the kernel function however, we can implicitly exploit the kernel space of high,

or even infinite dimension, without the need of knowing mapping ψ. By using the

proposed kernel function k(·, ·), the atoms embedded in a 2D random subspace for the

Iris dataset are separable for ℓ1 minimization algorithms, as shown in Fig. 5.1(c).

By incorporating the classification rule of SRC into Eq. (5.13), we obtain the

newly proposed classifier, called Kernelized SRC, which shall be discussed in the fol-

lowing two sections.

5.3.3 Algorithm Training Procedure

Building a discriminative dictionary is critical to the effectiveness of sparse rep-

resentation based classifiers. Given a training set T, we now describe how to construct

such a dictionary via kernel trick based on specific feature extraction methods. To
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Algorithm 4 Kernelized SRC: Training

Input: Training set T
1: Preprocess each training sample with median filter (optional)
2: for i = 1 to k do
3: for j = 1 to ni do
4: Feature extraction for each ti,j → ϕ(ti,j)

(for MTS data, ϕ(ti,j) is extracted according to Definition 1)
5: end for
6: end for
7: Compute K according to Proposition 2
8: Construct dictionary as K+ γI
9: Secure sparsity in the solution vector by employing P for dimensionality reduction

(optional)
10: return P and P(K+ γI)

elaborate, we first use median filter to preprocess each sample (in the noisy case).

Then we loop through all training samples to compute the features. For MTS data,

the CovSVDK feature is extracted individually from each training sample. For the

case of univariate time series data, we simply employ each raw time series as a feature

vector, since CovSVDK is effective only when n ≥ 2. Next, we construct a dictionary

as the regularized kernel matrix K + γI. Finally, we may employ a random matrix P

to improve the efficiency in classification. The whole training process is summarized

in Alg. 4.

5.3.4 Classification Rule

In this section, we discuss how to classify a query sample using the proposed

Kernelized SRC. Having x as a test sample, we first preprocess it with the same

technique as in training and extract its feature as y = ϕ(x). Then based on the

kernel function defined in Proposition 2, we have ỹ = k(·,x) = [k(ϕ(t1), ϕ(x)), . . . ,

k(ϕ(tN), ϕ(x))]
T ∈ RN . Next, random projection can be performed to reduce dimen-

sionality. Then, we find the sparse representation α of ỹ over P(K+γI) by solving the

optimization problem Eq. (5.13), which is called Basis Pursuit Denoising (BPD) [9].
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Algorithm 5 Kernelized SRC: Classification

Input: Test sample x, random matrix P and dictionary P(K+ γI)
1: Preprocess test sample with median filter (optional)
2: Feature extraction for x→ y = ϕ(x) according to Definition 1
3: Based on the kernel function defined in Proposition 2, compute

ỹ = k(·,x) = [k(ϕ(t1), ϕ(x)), . . . , k(ϕ(tN), ϕ(x))]
T

4: Random subspace embedding via P (optional)
5: Find the sparse coefficient vector α by solving Eq.(5.13)
6: i = argmini∈{1,...,k} ∥Pỹ −P(K+ γI)δi(α)∥2
7: return i

Notice that the sparse coefficients, α, can be computed by other fast iterative algo-

rithms, such as Orthogonal Matching Pursuit [14] or Compressive Sampling Matching

Pursuit [147]. Experimental results reported in the following sections are based on the

the ℓ1 Magic implementation of BPD [148]. Finally, we identify x as class i based on

the decision rule as:

i = arg min
i∈{1,...,k}

∥Pỹ −P(K+ γI)δi(α)∥2, (5.16)

where δi(α) = [0, . . . , αi,1, . . . , αi,ni
, . . . , 0]. To cope with unbalanced classes, an al-

ternative decision rule i = argmini∈{1,...,k}
∥Pỹ−P(K+γI)δi(α)∥2

∥δi(α)∥1 can be employed. The

classification procedure is summarized in Alg. 5.

5.4 Experiments on Classifying Real-World MTS Data

In this section, we conduct experiments to demonstrate the promising perfor-

mance of the proposed framework, i.e., CovSVDK + Kernelized SRC, over three on-

line public-access databases, i.e., the Georgian-Tech Human Gait (Georgia-Tech HG)

database1, Australian Sign Language (Auslan) database2 and High-quality Australian

Sign Language (HAuslan) database2. The Georgia-Tech HG database was obtained

via 12 video cameras; the Auslan was generated by Powergloves; and the HAuslan was

generated by two 5DT gloves and two position trackers. To verify the effectiveness of

the proposed CovSVDK feature, we use the linear kernel kL(·, ·) for all experiments in

this section. Feature vector ϕ(·) for each MTS is extracted according to Definition 1.
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For each particular database, the parameter s is manually selected and is consistent

for all MTS data within the database. As in [11], atoms in P(K+ γI) are normalized

to unit ℓ2-norm prior to ℓ1 minimization. γ is set to 0.001.

We evaluate and compare the proposed CovSVDK, with Principle Component

Analysis (PCA) and Linear Discriminant Analysis (LDA). For PCA and LDA, all

MTS data are interpolated or downsampled to the average length, in each database.

We compare the proposed classifier Kernelized SRC with two popular classifiers, i.e.,

K-Nearest-Neighbor (KNN) with k = 3, Support Vector Machines (SVM) and with the

coding strategy by computing the least square solution to Eq. (5.12), termed LS. For

Kernelized SRC and LS, the decision rule is Eq. (5.16). For KNN and SVM, columns in

Φ are employed as training data and ϕ(x) is used as the test sample. The SVM toolbox

can be found at [77]. As shown in the following, our method consistently achieves high

performance over these databases.

Georgia-Tech HG database

The Georgia-Tech HG database, used for human identification from a distance, is a

collection of human gaits from 15 subjects. Samples of subjects were captured by

cameras at 4 different controlled speeds [2]. Every subject was required to walk 9

times at every controlled speed and finally, 36 samples were obtained for every subject.

A sample is a time series of gaits with varying length. By means of 22 markers on the

subject, a gait is defined by 66 attributes (variables), i.e., the 3-D coordinates of those

markers [149, 150]. The evaluation uses all the 540 samples in the database. Among

the 36 samples per subject, 30 samples are randomly collected into the training set

while the remaining 6 samples are used for testing.

By transforming the kernel matrix into a low dimensional random subspace, we

can reduce the computation cost of ℓ1 minimization. In order to evaluate the effective-

ness of random projection, we randomly select parts of the overall 22 markers and set

1 Published by the Computational Perception Laboratory at Gatech at
http://www.cc.gatech.edu/cpl/projects/hid/

2 Published by UCI KDD at http://kdd.ics.uci.edu/summary.data.date.html
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Figure 5.2: Recognition rates for the Georgia-Tech HG database. (a) 15-class problem
recognition rate versus selected features (markers) under various random projections.
The horizontal axis represents the number of randomly chosen features, ranging from 2
to 22. The curves in different colors represent recognition rates over 5 different random
subspaces. (b) 15-class problem recognition rate versus different dimensions of the
random subspace; 22 features (markers) are employed.

the parameter s = 5 uniformly, such that 5 singular value/vector pairs are extracted

by CovSVDK for each MTS. Figure 5.2(a) indicates that the proposed approach can

achieve 100% recognition rate when a random subspace is of only 20 dimensions and

only 11 markers are utilized. Hence, in the following experiments over this database,

kernel matrices are projected onto a random subspace with dimension 20 to improve

computation efficiency.

Remark: It is worthy to point out that, for ℓ1 minimizers, the dimensionality re-

duction induced by random projection is not a requisite. The purpose of embedding the

dictionary atoms into some low-dimensional subspace is two-fold: 1) speed-up ℓ1 mini-

mization; 2) enforce the dictionary to be overcomplete such that the solution tends to

be sparse. The first concern is desired from a practical efficiency perspective while the

second concern is preferred by the decision rule (Eq.(5.16)) so as to secure satisfactory

recognition rate. We can see from Figure 5.2(b) that the recognition rate increases as

the dimension of the random subspace becomes higher. For completeness, we also eval-

uate the proposed approach over the Georgia-Tech HG database without performing
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Figure 5.3: Recognition rate for various methods over the Georgia-Tech HG database.
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Figure 5.4: Recognition rate on the Georgia-Tech HG database. (a) PCA feature (b)
LDA feature (c) CovSVDK feature (proposed method). All three feature extraction
methods are fed to four classifiers, i.e., SVM, KNN, LS, the proposed Kernelized SRC.

dimensionality reduction. Figure 5.2(a) illustrates that the accuracy obtained without

dimensionality reduction is similar to those with dimensionality reduction.

To evaluate the proposed framework in a more challenging scenario, we down-

sample the raw gesture data into 1/5 of its original length and utilize only part of the

overall 66 attributes. As shown in Figure 5.3, our method robustly achieves 98.9%

recognition, leading SVM by approximately 10% in accuracy.

As shown in Figure 5.4, at 9, 4, and 1 dimension(s) of the feature subspace

respectively, PCA, LDA and CovSVDK achieve 100% recognition rate. Therefore,

compared with PCA and LDA, the proposed CovSVDK is more effective in preserving

discriminative information for classification. Finally, Table 5.1 shows that in classi-

fying MTS data, the proposed linear kernel function kL(·, ·) significantly outperforms
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Table 5.1: Comparison among different kernel functions over the Georgia-Tech HG
database.

Database Proposed kL Exponential Poly.(d = 3) Gaussian

Gait 100% 92.2% 85.6% 80.4%
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Figure 5.5: 3D trajectories for 8 signs. (a) Eat, (b) Exit, (c) Forget, (d) Give (e) Hello,
(f) Know, (g) Love (h) No.

three other popular kernel functions, i.e., exponential, polynomial and Gaussian kernel

functions.

Australian Sign Language (Auslan) database

Contributed by 5 individual signers, the Auslan database contains 95 one-hand signs.

70 samples were collected for each sign and a sample is comprised of varying-length time

series for a single hand gesture. There are 15 attributes or features for each gesture,

i.e., the x, y and z coordinates of the palm, the angles (roll, pitch and yaw) of the palm,

the bend values of the 5 fingers and 4 additional setting values. Over this database, we

conduct comparative study by evaluating the proposed approach (CovSVDK + Ker-

nelized SRC) against several state-of-the-art algorithms, i.e., discriminative mixture

learning (MixCML [2]), Dynamic Time Warping (DTW) [141], Fourier Descriptors [3]

and SRC [11]. Recognition rates are cited from literature for the first three methods.

Results for SRC are reported based on our own implementation.

In the first experiment over the Auslan database, we consider a binary classifi-

cation task. With the same experiment setup as [2], we form a subset by using 10 signs
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Table 5.2: Binary Classification comparison among various methods over the Auslan
database. Recognition rates with ∗ are cited from [2].

Method Training Set Test Set Recognition Rate

Proposed 36 4 96.3%
MixCML [2] 39 1 95.5%∗
DTW [141] 39 1 88%∗

Table 5.3: Binary classification result over the Auslan database for various selection of
attributes.

Method Selected Attributes Recognition Rate

Proposed 1th − 4th, 7th − 10th 96.3%
1th − 6th 94.5%
1th − 4th 96.3%
7th − 10th 70.0%
1th − 3th 96.3%

and choose, from the 15 attributes, 8 attributes, namely the x, y and z coordinates

of the palm, the roll angle of the palm, the bend values of the fingers of thumb, fore,

index and ring.

For each of the 10 signs, i.e., “eat”, “exit”, “forget”, “give”, “hello”, “know”,

“love”, “no”, “sorry” and “yes”, we select approximately 4 samples from each signer.

Conducting 10-fold cross-validation yields a training set of 36 samples (18 per sign)

and a test set of 4 samples. The proposed framework is compared with MixCML [2]

and DTW [141], and the results are listed in Table 5.2. For completeness, the proposed

method is further examined by performing binary classification over various selection

of attributes. The results are summarized in Table 5.3. Consistent with the argument

made by Kim and Pavlovic [2], our observation also reveals that the 7th−10th attributes

are less discriminative than others as they only provide the finger flexion information.

In literature, we notice that this database has been widely applied to evaluate

spatial trajectory recognition algorithms. In the second experiment, for fair compar-

ison, we only keep 3 attributes, i.e., x, y and z coordinates. Figure 5.5 gives some

examples for 8 signs. Using the same CovSVDK features, we first compare two clas-

sifiers i.e., Kernelized SRC and SRC based on 10-fold cross-validation. Then keeping
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Figure 5.6: Illustrations of manifolds in multi-class classification tasks. Top row: the
3-label task; bottom row: the 4-label task. (a) 2D manifold with the kernel trick, (b)
2D manifold without the kernel trick, (c) 3D manifold with the kernel trick, (d) 3D
manifold without the kernel trick.

the experiment setup consistent as in [3], the proposed approach (CovSVDK + Ker-

nelized SRC) is compared with DTW [141] and Fourier Descriptor [3] based on 2-fold

cross-validation. Classification results for aforementioned methods are summarized in

Table 5.4, which indicates that the proposed algorithm is competitive among these

advanced trajectory recognition algorithms.

The effectiveness of Kernelized SRC is illustrated in Figure 5.6, in which, for

better visualization, 15 samples per sign are utilized for training while the remaining

5 samples are for testing. The 2/3D manifolds are obtained by projecting the dictio-

naries (with and without the kernel trick) into random subspace. Clearly, with kernel
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Table 5.4: Multi-class Classification comparison among various methods over the Aus-
lan database. Recognition rates with ∗ are cited from [3]. Proposed 1 is based on
10-fold cross-validation; For proposed 2, the data pool is divided into 2 folds, i.e., one
fold for training and the other fold for test, according to [3].

Method Train set : Test set Classes
2 3 4 8

Proposed 1 0.9 : 0.1 96.3% 93.3% 90.6% 80.0%
SRC [11] 0.9 : 0.1 78.5% 73.3% 70.9% 63.0%
Proposed 2 0.5 : 0.5 96.0% 92.7% 88.0% 75.4%
DTW [141] 0.5 : 0.5 89.8%∗ N/A 83.8%∗ 75.9%∗

Fourier Descriptor [3] 0.5 : 0.5 82.1%∗ N/A 63.7%∗ 52.3%∗

trick, samples from different classes are more separable than those without the kernel

trick, which reveals that the proposed classifier is more robust than SRC [11] when

dealing with cluttered data. High-quality Australian Sign Language (HAuslan)

database

The HAuslan database consists of 95 two-hand signs. Compared with the Auslan

database, the number of samples per sign is reduced to 27 and the number of at-

tributes is increased to 22, (11 attributes for each hand). The 11 attributes for one

hand are the same as those in Auslan database excluding the 4 setting values.

First, to illustrate the capability of our method in classifying large-scale databases,

all 95 sign classes are used. Since the HAuslan database contains much more classes

but fewer samples per class than previous two databases, 24 randomly selected samples

are assigned to training set for each sign, while the remaining 3 samples are collected

into the test set. Note that the kernel matrix contributed by all training samples is of

size 2280 × 2280, to which performing ℓ1 minimization is computationally expensive.

For efficient classification, we employ random projection to reduce the row dimension

of the kernel matrix to 40, which is just 1.8% of its original size. In addition, consid-

ering that the subtle differences among some signs, we set c = 99.9% so as to involve

sufficient gesture details to enable effective classification. To improve robustness and

remove outlier atoms from the dictionary, we apply a refinement process to the dictio-

nary by only preserving the atoms with large reconstruction coefficients, based on the
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Figure 5.7: Recognition rate for the HAuslan Database.

Table 5.5: Recognition rate on the HAuslan database. The dimension of random
subspace is fixed at 40 for all the classification tasks.

Classes:samples 20:540 25:675 40:1080 95:2565
Recognition rate 98.2% 97.6% 94.3% 91.2%

solution to Eq. (5.13). Then, the newly formed sub-dictionary is fed to the classifier.

The recognition rates of the proposed framework (CovSVDK + Kernelized SRC) are

presented in Table 5.5 and in Figure 5.7.

Next, we compare CovSVDK + Kernelized SRC with various combinations of

feature extraction strategies and classifiers. For CovSVDK, we set the parameter

smax = 6 and for PCA, we set the energy preservation ratio cmax = 99.9%, which

results in a maximal 30 features. The maximal number of linear features for LDA

is 21. Figure 5.8 shows that although Kernelized SRC using PCA and LDA features

yields inferior performance to SVM3, when working jointly with CovSVDK, Kernelized

SRC outperforms other combinations of features and classifiers. This result confirms

the effectiveness of the proposed framework. The highest recognition rates and the

corresponding dimensions of feature space for various methods are summarized in Ta-

ble 5.6. As shown in Table 5.7, in classifying MTS data, the proposed kernel function

kL(·, ·) again significantly outperforms three other widely used kernel functions, i.e.,

3 This is due to the fact that Kernelized SRC uses the simplest linear kernel while SVM employs the
more advanced RBF kernel.
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Figure 5.8: Recognition rate over the HAuslan database. (a) PCA feature (b) LDA
feature (c) CovSVDK feature (proposed method). All three feature extraction methods
are fed to four classifiers, i.e., SVM, KNN, LS, the proposed Kernelized SRC.

Table 5.6: Recognition performance on the HAuslan database.

Methods Proposed PCA+SVM LDA+SVM LDA+KNN

Features 6 28 18 18
Accuracy 91.2% 83.4% 90.0% 90.4%

Table 5.7: Comparison among different kernel functions over the HAuslan database.

Database Proposed kL Exponential Poly. (d = 3) Gaussian

HAuslan 91.2% 76% 75.8% 78.9%

Table 5.8: Comparison of recognition rate among various methods over the HAuslan
database. Note that recognition rates with ∗ are cited from references.

Method Proposed Li [139] 2dSVD [151] SegSVD [152]

Accuracy 97.6% 89.0%∗ 95.0%∗ 93.9%∗

exponential, polynomial and Gaussian kernel functions.

Finally, a comparison among state-of-the-art methods in the 25-label classifi-

cation problem is given in Table 5.8, which further validates the superiority of the

proposed method.

Evaluating the Robustness

In this section, we evaluate the robustness of the proposed framework by employing the

Sparsity Concentration Index (SCI) [11] to detect outliers. The SCI is defined as [11]

SCI(α) =
k ·maxi ∥δi(α)∥1/∥α∥1 − 1

k − 1
, (5.17)
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CovSVDK + Kernelized SRC AUC = 0.991.
CovSVDK + SRC AUC = 0.972.
LDA + SRC AUC = 0.821.
LDA + LS AUC = 0.624.
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LDA + SRC AUC = 0.781.
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(b)

Figure 5.9: ROC curves for outlier detection over the Georgia-Tech HG and the HAus-
lan databases. (a) the Georgia-Tech HG database, (b) the HAuslan database. CovSVD
means feature extraction following Definition. 1 and Definition. 2.

where α is the solution to Eq. (5.13) and δi(α) is the characteristic function defined in

Eq. (5.16). If a test sample can be entirely expressed by the training samples from only

a single class, then SCI(α) = 1; while, in the other extreme, if the coefficients in α

spread evenly over the classes, then SCI(α) = 0. The intuition lies in the fact that, for

a test sample belonging to a certain class in the training set, the large sparse coefficients

should be mostly concentrated on the same-class training samples and therefore yield

an SCI that approaches 1. On the other hand, if the test sample is an irrelevant outlier,

then its sparse coefficients should spread almost evenly across the whole training set

and yield an SCI close to 0. Thus, the outlier detection criterion [11] is established, by

setting a threshold τ ∈ (0, 1), where a test sample is rejected as outlier if SCI(α) < τ .

We verify the robustness of the proposed method over the Georgia-Tech HG

and the HAuslan databases. As recommended in [11], we incorporate approximately

half of all the classes into the training set but keep the test set containing samples

from all the classes. Thus almost half of the test set are considered as irrelevant

outliers with respect to the dictionary. For the two databases, the number of classes

employed in the training set are 8 and 48 respectively. We test the performance of

the proposed algorithm (CovSVDK + Kernelized SRC) by ranging τ from 0 to 1 with
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0.01 step size. The resultingt Receiver Operator Characteristic (ROC) curves, (Figure

5.9), indicate that: 1) the proposed CovSVDK outperforms classical LDA in outlier

detection; 2) Kernelized SRC demonstrates improved robustness compared to SRC;

and 3) the Area Under Curve (AUC) of the proposed framework exceeds the AUC of

other listed approaches.

5.5 Experiments on Classifying Univariate Time Series Data

In this section, we evaluate the proposed classifier Kernelized SRC with non-

linear kernel function k(·, ·) over 20 datasets (data1) from UCR Time-Series Repos-

itory [6]. Raw time series are directly treated as feature vectors ϕ(·) without using

CovSVDK, which is effective only when n ≥ 24. The regularization parameter γ

is set to 0.001. All columns in P(K + γI) are normalized to unit ℓ2-norm prior to

sparse coding. The dictionary employed is the kernel matrix with compression rates

{ d
N

= 0.10, 0.25, 0.50, none} induced by random projection, where none means no di-

mensionality reduction. The best result from the four cases is reported.

We compare Kernelized SRC with state-of-the-art time series classifiers, i.e.,

1NN-Best Warping Window DTW [4], Time Series based on a Bag-of-Features repre-

sentation (TSBF) [5], as well as 7 classic classifiers5. The error rates of all methods

are listed in Table 5.9, from which we can see that Kernelized SRC leads other algo-

rithms by yielding the lowest error rate in 7 out of the 20 datasets. In particular, we

visualize the accuracy scatter plot between Kernelized SRC and 1NN-Best Warping

Window DTW [4], which is considered one of the best time series classifiers. As shown

in Figure 5.10, the proposed classifier slightly outperforms 1NN-Best Warping Window

DTW in 11 out of 20 datasets.

4 To avoid the similarity values out of range, a normalizing ϕ(·) to unit ℓ2-norm or dividing the matrix
entries by N is needed. We choose the former strategy in this work.

5 The information regarding classic machine learning algorithms is summarized in
http://www.cs.ucr.edu/~eamonn/time_series_data/WekaOnTimeSeries.xls
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Figure 5.10: Accuracy scatter plot between Kernelized SRC and 1NN-Best Warping
Window DTW [6]. Each dot represents a dataset. Dots above the diagonal mean
that Kernelized SRC is better than 1NN-Best Warping Window DTW and vice versa.
The farther away a dot is from the diagonal, the greater the accuracy improvement
achieved [7].

In addition, to fully justify the effectiveness of the proposed kernelization strat-

egy, we test SRC over the 20 datasets and compare it with Kernelized SRC by visualiz-

ing the accuracy scatter plot. Figure 5.11(a) shows that using kernel trick significantly

improves the classification performance, as Kernelized SRC outperforms SRC in 19 out

of 20 datasets. Moreover, a classifier is useful only if we can predict ahead of time on

which datasets it will generate higher accuracy. We therefore perform further experi-

ments to verify the reliability of Kernelized SRC by evaluating the expected accuracy

gain versus the actual accuracy gain [8]. To acquire the expected accuracy gain, we

conduct leave-one-out cross-validation within the training set for both algorithms. The

gain is calculated as [8] g = Accuracy Kernelized SRC
Accuracy SRC

. As depicted in Figure 5.11(b), 19 out

of the 20 dots are in region TP with the remaining 1 in region TN, which indicates

that the performance of Kernelized SRC is completely predictable over the 20 datasets.

From the same figure, we also observe that a remarkable 20% or even higher perfor-

mance increase compared to SRC is achieved via kernelization over a majority of the

datasets. The impressive results validate that the proposed Kernelized SRC is very

effective for time series classification.
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Figure 5.11: Comparison between Kernelized SRC and SRC. (a) accuracy scatter plot;
(b) expected accuracy gain versus actual accuracy gain. Note that regions marked
as TP/TN represent we correctly predict Kernelized SRC is better/worse than SRC;
region FN means that we predict Kernelized SRC is worse than SRC but the fact is
the opposite; region FP means that we predict Kernelized SRC is better than SRC but
the fact is the opposite. Practically, only FP is the truly bad case [8].

5.6 Conclusion

In this chapter, we propose a novel sparse representation based framework for

classifying complicated human gestures captured as multi-variate time series (MTS).

First, we propose a feature extraction strategy, called CovSVDK, which is invariant

to inconsistent lengths and temporal disorder across MTS data, robust to variabil-

ity within human gestures, and efficient to compute. In addition, we propose a new

approach to kernelize sparse representation by introducing a relaxation to the fitness

constraint. This technique is generic and can be applied to kernelizing other sparse

coding algorithms. Using this technique, we derive an algorithm called Kernelized

SRC, which can be applied to classifying MTS data and univariate time series. Ex-

tensive experiments, including 3 MTS datasets from UCI Machine Learning Archive

and 20 benchmarks from UCR Time Series Repository, confirm the effectiveness of the

proposed framework.
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Chapter 6

SUMMARY

6.1 Conclusions

In this dissertation, we have explored the capability of sparse signal modeling in

addressing various challenging tasks in machine learning and computer vision, which

are summarized in the following.

Locality-Constrained Dictionary Learning We show that reconstructing an un-

observable intrinsic manifold via a few latent landmark points can be cast, under

mild conditions, as a locality constrained dictionary learning problem in the observa-

tion space. Utilizing this approach, a novel locality constrained dictionary learning

(LCDL) algorithm is introduced. The LCDL algorithm identifies a compact set of

landmark points that are simultaneously representational and locality–preserving. Via

the landmark points, LCDL naturally embeds training and unseen data onto the in-

trinsic manifold. We have applied this algorithm to face recognition and demonstrate

that LCDL can significantly improve the performance of NLDR algorithms by yield-

ing a more robust low–dimensional embedding at significantly reduced computational

complexity.

Discriminative Dictionary Learning LCDL is a new generic dictionary learning

algorithm with analytic solution, having the advantages of low computational com-

plexity and capable of capturing nonlinearity of data manifold. We extend LCDL by

incorporating classification error into the optimization objective and apply the derived

formulation to discriminative learning tasks, such as face recognition, action recogni-

tion, hyperspectral image classification, etc. We show with extensive experiments that
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by imposing locality constraint, our discriminative dictionary learning algorithm can

achieve very impressive performance in recognition with substantially less time cost,

compared to traditional sparse coding based approaches.

Automatic Feature Learning We develop two models, i.e., stacked predictive sparse

decomposition and multispectral convolutional sparse coding for tissue image classifi-

cation, which is a challenging problem in computer vision and has significant clinical

outcomes. The models extract features in a feed-forward manner and is highly efficient,

which is particular useful for processing large quantities of high-resolution biomedical

images. In addition, we propose a novel framework, called sparsity constrained convo-

lutional regression, for nuclei segmentation. Compared to many existing approaches,

our method does not rely on biological prior knowledge and could be potentially appli-

cable to segmentation tasks of other tumor types. Our study indicates that automatic

feature learning can achieve very competitive classification and segmentation perfor-

mance compared to dedicated systems based on biological prior knowledge. This work

is a pioneering exploration in applying automatic feature learning to biomedical image

analysis and achieves very promising results.

Kernel Sparse Representation We propose a generic approach to kernelizing sparse

representation, such that realized dictionary atoms are more separable for sparse cod-

ing algorithms and nonlinear relationships among data are conveniently transformed

into linear relationships in the kernel space. In addition, we develop a feature extrac-

tor for human gestures captured as multivariate time series. The feature extractor

maps raw data into a feature space corresponding to a valid kernel. Combining the

two components, we derive a unified kernel sparse representation classifier. Exten-

sive experiments demonstrate that the proposed approach yields superior performance

compared to many existing sophisticated time series classification algorithms, e.g., best

warping window DTW.
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6.2 Future Directions and Open Questions

• LCDL solves local least-square problems and may be affected by outliers. Fu-

ture research will consider incorporating a sparse outlier term to improve ro-

bustness and testing over additional datasets. One open question is how to find

low-dimensional embedding without using existing dimensionality reduction al-

gorithms by formulating a unified dictionary learning algorithm and seeking the

landmark points jointly in the observation space and the low-dimensional space,

when a limited number of high-dimensional observations along with their low-

dimensional embeddings are available.

• Regarding the presented automatic feature learning models, future work includes

further examining the performance by enlarging the training scale and stacking

the model into hierarchies with the aim to learn phenotypic concepts. In tissue

classification, one open question is that can we design an automatic mechanism

for learning the color decomposition matrix and incorporate it into the existing

models? Moreover, seeking a mathematically sound principle for the construction

of hierarchical feature learning models remains an open problem in the deep

learning research community.

• On kernel sparse representation for gesture recognition, the future work will be

incorporating a multi-layer structure into the classification framework and using

multi-kernel learning technique to model more complicated temporal variations.

Since kernel engineering is an ad-hoc process and is task specific, an open question

is how to formulate a mathematical measure guiding our efforts towards designing

the optimal kernel.
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