

ENGINEERING A FLUORESCENT BARCODING SYSTEM

FOR HIGHLY MULTIPLEXED, SINGLE-CELL ANALYSIS OF

BIOMOLECULAR AND CELLULAR LIBRARIES

by

Stefanie M. Berges

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical
Engineering

Summer 2017

© 2017 Stefanie M. Berges
All Rights Reserved

ENGINEERING A FLUORESCENT BARCODING SYSTEM

FOR HIGHLY MULTIPLEXED, SINGLE-CELL ANALYSIS OF

BIOMOLECULAR AND CELLULAR LIBRARIES

by

Stefanie M. Berges

Approved: __
 Eric M. Furst, Ph.D.
 Chair of the Department of Chemical & Biomolecular Engineering

Approved: __
 Babatunde A. Ogunnaike, Ph.D.
 Dean of the College of Engineering

Approved: __
 Ann L. Ardis, Ph.D.
 Senior Vice Provost for Graduate and Professional Education

 I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
 David W. Colby, Ph.D.
 Professor in charge of dissertation

 I certify that I have read this dissertation and that in my opinion it meets

the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
 Maciek R. Antoniewicz, Ph.D.
 Member of dissertation committee

 I certify that I have read this dissertation and that in my opinion it meets

the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
 Wilfred Chen, Ph.D.
 Member of dissertation committee

 I certify that I have read this dissertation and that in my opinion it meets

the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
 Edward R. Lyman, Ph.D.
 Member of dissertation committee

 iv

I would like to express my thanks and gratitude to many people who have

supported me during graduate school. First and foremost, I would like to thank my

family, specifically my parents Lou and Cindy, my in-laws who are like another set of

parents to me Gary and Debbie, and my fiancé Greg. I would not have been able to

make it to this point without their love and support. Also, I would like to thank all of

my friends at the University of Delaware, especially those in my incoming class,

whose kindness and comradery helped make my graduate school experience more

colorful and well-rounded.

I would also like to thank my advisor Dr. David Colby for his mentorship and

scientific guidance throughput my five years of scientific development at UD. In

addition, I want to thank my departmental committee members, Dr. Wilfred Chen and

Dr. Maciek Antoniewicz, for their helpful advice, scientific dialogue, and constructive

feedback. In addition, I would like to thank Dr. Bramie Lenhoff for providing me

mentorship, advice, and guidance. Also, I would like to thank my lab members, Ming

Dong, Kyle Doolan, Kyle McHugh, Olga Morozova, and Elisa Ovadia for their

scientific help and feedback, emotional support, and friendship. For their help in

supporting my research project, I would like to thank all of my undergraduate

researchers, especially Quentin Dubroff and Seth Ritter.

I would also like to thank the Chemical Engineering Department staff for their

help and support with departmental activities. In particular, I would like to thank

Kathie Young for her advice and vast knowledge of administrative policies, help with

ACKNOWLEDGMENTS

 v

paperwork, and her involvement in departmental recruitment. Karen Black in the

Fisher biostockroom was very helpful and made ordering and restocking the lab much

easier. I would also like to thank George Whitmeyer for his help with setup and lab

safety, as well as organizing the Colburn holiday band, which I enjoyed participating

in annually.

I would like to again reiterate my greatest thanks to the many people who have

supported me throughput my time in graduate school. Sharing scientific successes and

pitfalls with them has been invaluable, and I would not have made it to this point

without them. I dedicate this work to my family, friends, and scientific mentors who

have guided and supported me during my scientific journey.

 vi

LIST OF TABLES .. x	
LIST OF FIGURES ... xii	
ABSTRACT ... xxiv

Chapter	

1 INTRODUCTION .. 1	

1.1	 Motivation and Goals ... 1	
1.2	 Design and Application of Previous Fluorescent Cell Barcoding

Systems .. 5	
1.3	 Single-Cell Analysis and Protein Expression Noise 8	

2 MATERIALS AND METHODS .. 12	

2.1	 Yeast Barcode Expression Plasmid Construction 12	
2.2	 Creation of Tandem Repeating Epitope Tag Plasmids for Multiple

Unique Intensity Barcodes ... 13	
2.3	 Development of Multiple Color Fluorescent Barcodes by Subcloning

Epitope Tag Repeat Combinations. ... 14	
2.4	 Fluorophore Antibody Conjugation and Multicolor Flow Cytometry

Panel Development .. 15	
2.5	 Barcode Immunofluorescence and Flow Cytometry Analysis 15	
2.6	 Expansion of Barcode Library by Random Homologous

Recombination of Epitope Tags and Fluorescence Activated Cell
Sorting (FACS) .. 17	

2.7	 Construction of Libraries Containing Thousands of Unique Barcodes ... 18	
2.8	 Construction and Analysis of Barcode Pacbio SMRT Library 19	
2.9	 Detection and Quantification of Low-Abundance, Endogenous Repeat

Fusion Proteins in Cells ... 20	
2.10	 Expression and Purification of Recombinant Mouse Prion Protein 20	
2.11	 Creation and Assessment of Barcoded ICSM18 2.6.1 scFv 21	
2.12	 Construction of Barcoded Yeast GFP Fusion Strains 22	
2.13	 Identification of Unique Barcoded Yeast GFP Fusion Strains and

Environmental Perturbations ... 22	
2.14	 Conversion of Arbitrary Fluorescence to Protein Abundance 23	

TABLE OF CONTENTS

 vii

3 DEVELOPMENT OF ONE-COLOR EPITOPE TAG REPEAT
BARCODES AND THEIR USE FOR DETECTION OF ENDOGENOUS,
LOW-ABUNDANCE PROTEINS IN SINGLE-CELLS 24	

3.1	 Introduction .. 24	

3.1.1	 Fluorophores and Protein Detection Methods 24	
3.1.2	 Yeast Surface Display .. 26	
3.1.3	 Methods for High-Throughput Cell Biology 27	
3.1.4	 Instability of Tandem Repeating DNA .. 28	

3.2	 Design Considerations for an Improved Fluorescent Cell Barcoding
System .. 29	

3.3	 Exponential Expansion of Epitope Tag DNA Sequences and
Instability of Long Epitope Tag Repeats in E. coli 31	

3.4	 Analysis of Epitope Tag Repeat Lengths and Barcode Plasmids by
SMRT Sequencing ... 36	

3.5	 Cellular Expression of Single-Color, Multiple-Intensity Fluorescent
Barcodes ... 38	

3.6	 Application of Long Epitope Tag Repeat Fusions for Improved Flow
Cytometric Analysis of Endogenous, Low-Abundance Proteins in
Single-Cells .. 42	

3.7	 Discussion .. 45	

4 ENGINEERING A SIX-COLOR, HIGH-THROUGHPUT CELLULAR
FLUORESCENT BARCODING SYSTEM ... 48	

4.1	 Introduction .. 48	

4.1.1	 Fluorescent Cell Barcoding Systems with Multiple Intensities ... 48	
4.1.2	 Multicolor Flow Cytometry ... 49	

4.2	 Construction of Barcodes with Multiple Unique Fluorescent
Intensities ... 50	

4.3	 Barcodes with distinct fluorescent intensities are fluorophore-
dependent ... 53	

4.4	 Creation of a Fluorescent Barcode Plasmid Library 54	
4.5	 Assessment of Barcode Library Diversity by Immunofluorescence and

Flow Cytometry ... 56	
4.6	 Correction of Barcode Library Abundance Bias by FACS 63	
4.7	 Optimization of Promoter and Barcode Expression Conditions 65	
4.8	 Discussion .. 69	

 viii

5 GENERATION OF THOUSANDS CELLULAR FLUORESCENT
BARCODES USING ELEVEN-COLORS .. 72	

5.1	 Introduction .. 72	

5.1.1	 Molecular cloning techniques .. 72	
5.1.2	 Fluorescence Activated Cell Sorting (FACS) 73	

5.2	 Expansion of Barcode Library Using Additional Epitope Tags 74	
5.3	 Enrichment of Unique Barcode Combinations by FACS 75	
5.4	 Generation of Unique 11-Epitope Tag Barcode Plasmids and Analysis

of Barcode Plasmid Instability ... 78	
5.5	 Flow Cytometry Analysis of 12-Color Barcode Libraries 83	
5.6	 Optimization of a 13-Color Flow Cytometry Panel and Error Analysis . 86	
5.7	 Discussion .. 89	

6 DEVELOPMENT OF SOFTWARE FOR RAPID BARCODE
IDENTIFICATION AND ABUDANCE QUANTIFICATION 93	

6.1	 Introduction .. 93	
6.2	 Overview of Computational Barcode Identification Method 94	
6.3	 Establishment of Filtering Criteria and Analysis of Software Accuracy100	
6.4	 Discussion .. 104	

7 APPLICATION OF FLUORESCENT BARCODING FOR
MULTIPLEXED ANALYSIS OF BIOMOLECULAR AND CELLULAR
LIBRARIES .. 107	

7.1	 Introduction .. 107	
7.2	 Prion Diseases and Potential Antibody Therapeutics 108	

7.2.1	 Protein-Protein Interactions ... 109	
7.2.2	 Single-Cell analysis of the S. cerevisiae Proteome in

Fluctuating Environments .. 110	

7.3	 Application of Fluorescent Barcoding for the Study of Recombinant
Prion Protein-Antibody Interactions .. 113	

7.4	 Assignment of Unique Barcodes to Yeast GFP Fusion Clones and
Investigation of Factors Affecting Barcode Expression 121	

7.5	 Improvement of GFP Signal to Background Ratio in Fixed Yeast Cells127	
7.6	 Dynamic Behavior of S. cerevisiae Protein Expression in Response to

Environmental Perturbations ... 130	
7.7	 Discussion .. 140	

 ix

8 CONCLUSIONS AND FUTURE WORK ... 145	

8.1	 Conclusions .. 145	
8.2	 Future Work ... 149	

REFERENCES ... 155

Appendix	

A ADDITIONAL CONTRIBUTORS .. 169	
B SOFTWARE FOR ANALYSIS OF SMRT SEQUENCING DATA 170	
C BARCODE SMRT LIBRARY DATA ... 182	
D SINGLE-CELL DETECTION AND QUANTIFICATION OF

ENDOGENOUS LOW ABUNDANCE REPEAT PROTEINS IN YEAST
USING FLOW CYTOMETRY .. 187	

E ASSESSMENT OF RELATIVE ABUNDANCE OF BARCODES IN 7-
COLOR LIBRARIES ... 192	

F ASSESSMENT OF BARCODES IN 12-COLOR LIBRARIES 197	
G BARCODE IDENTIFICATION AND QUANTIFICATION SOFTWARE

PYTHON SCRIPT .. 200	
H SOFTWARE ESTIMATION OF BARCODE IDENTITIES AND

ABUNDANCES IN 11-EPITOPE TAG LIBRARIES 241	
I BARCODED YEAST GFP FUSION PROTEINS STUDIED AND

PERTURBATION CONDITIONS USED ... 265	
J PYTHON SCRIPT USED TO ANALYZE GFP FLUORESCENCE

DISTRIBUTIONS .. 267	

 x

Table 1.1: Drawbacks of existing fluorescent barcoding systems 3	

Table 3.1: Epitope tags and amino acid sequences used in this work. 26	

Table 4.1: Fluorophore panel and flow cytometer configuration used for barcode
library analysis. .. 57	

Table 4.2: Abundance of barcodes in library before and after normalization by
FACS. .. 65	

Table 5.1: T7, V5, AcV5, AU5, and E2 barcode combinations recovered. 78	

Table 5.2: Analysis of barcode expression in 18 libraries with combinations of up
to 11 epitope tags. .. 84	

Table 5.3: Quantification of new barcodes with combinations of up to 11 epitope
tags. .. 85	

Table 5.4: Barcodes with the highest abundance present in the AU5 library. 86	

Table 5.5: 13-color panel used to analyze barcodes and additional variables of
interest. ... 87	

Table 5.6: False positive and cells captured analysis for 12-color panel. 89	

Table 6.1: Barcode identities and abundances found by software for control sample
containing 10 barcodes. Note that false barcodes are highlighted in
red. ... 101	

Table 6.2: Analysis of barcode identification software accuracy and error
assessment. ... 103	

Table 6.3: Summary of barcode identification software accuracy and estimation of
total barcodes ... 104	

Table 7.1: Frequency of barcode observations during one-by-one assignment to
yeast GFP clones. ... 123	

LIST OF TABLES

 xi

Table 7.2: Summary of yeast GFP barcode transformation and screening results. 124	

Table 7.3: Barcode expression probability comparison between yeast GFP clones
transformed with 5-tag plasmids and 11-tag libraries. 124	

Table 7.4: Mixture of four barcoded yeast GFP clones with known stress responses.130	

Table 7.5: Mixture of seven barcoded yeast GFP clones with either known stress
responses or unknown function. .. 130	

Table C.1: Individually constructed barcodes .. 182	

Table C.2: Abundance of SMRT reads with nonstandard repeat lengths 184	

Table C.3: Unique barcodes found in SMRT sample ... 185	

Table E.1: Relative abundance of barcodes in 7-color library before FACS sorting . 192	

Table E.2: Relative abundance of barcodes in sorted 7-color libraries 194	

Table F.1: Antibody concentrations and epitope tag fluorophore pairs used for flow
cytometry analysis. .. 199	

Table H.1: Software estimation of barcode identities and abundances in 11-color
library ... 241	

Table I.1: Barcoded yeast GFP fusion clones used in this study 265	

Table I.2: Stress perturbations, responses, effective concentrations, and positive
control proteins. ... 266	

 xii

Figure 3.1: Fluorescent barcoding design. Fluorescent barcodes are composed of
epitope tags connected by flexible linkers that produce spectrally
distinct colors when expressed in cells and immunolabeled with
fluorophore conjugated a-epitope tag antibodies. Barcodes are fused
to the yeast surface protein alpha-agglutinin and are genetically
encoded on a plasmid. .. 29	

Figure 3.2: Fluorescent barcoding workflow. Plasmids encoding distinct
fluorescent barcodes are transformed into cells of interest. Then,
barcoded cells are pulled into a single tube, immunolabeled, and
analyzed by flow cytometry. Finally, the flow cytometry data is
analyzed to determine the fluorescent barcode associated with each
cell. ... 30	

Figure 3.3: Exponential tandem expansion of epitope tag repeats. The left panel
shows a general method for the exponential expansion of repeat
sequences by destructive ligation of AsiSI and PacI restriction enzyme
sites. The use of two restriction enzyme sites which are destroyed
upon ligation, in conjunction with a third enzyme whose site is
preserved, is key to iterative duplication of tandem sequences. The
process was repeated to iteratively double the number of epitope tags
up to sixteen repeats. The right panel shows an example of a DNA gel
with plasmids digested to excise the repeat regions of differing
lengths. ... 32	

Figure 3.4: Instability of long epitope tag repeat plasmids. Repeat plasmids were
subcloned using the expansion method and transformed into E. coli.
Single colonies were picked and plasmids were purified, restriction
digested to excise the repeat region, and run on an agarose gel. The
left panel shows an unexpected AU1 plasmid of ~6 repeats in length.
The right panel shows DNA repeat regions after attempted subcloning
of 4, 16, 32, and 64 GLU repeats. Notably, all 64 repeat plasmids and
two out of three of the 32 repeat plasmids have the incorrect size,
whereas all of the 16 and 4 repeat plasmids are the correct size. 33	

LIST OF FIGURES

 xiii

Figure 3.5: Long epitope tag repeats are unstable. Mixtures containing either 1, 4,
or 16 repeat plasmids were transformed, expressed, and
immunolabeled in yeast cells. Cells expressing 1 and 4 repeats create
populations with more homogenous fluorescence and exhibit an
expected increase in repeat length. Cells expressing 16 repeat proteins
have more heterogeneous fluorescence and no increase in fluorescent
signal was observed. .. 34	

Figure 3.6: Repeat plasmid instability underlies fluorescence heterogeneity. Single
yeast clones were isolated from 16 repeat libraries and analyzed by
flow cytometry. Immunolabeled daughter cells from single clones
produced uniform fluorescent signatures, suggesting clonal variation
caused by repeat plasmid instability is the underlying cause of the
observed fluorescence heterogeneity of the 16 repeat barcodes. 36	

Figure 3.7: Distribution of epitope repeat lengths found using SMRT sequencing.
Epitope repeat lengths had a central tendency towards expected sizes,
namely 1, 2, 4, 8, and 16 repeats. However, a significant number of
reads contained repeats of unexpected sizes, ranging from 3-50
repeats, supporting the hypothesis that epitope tag repeat plasmids are
unstable in E. coli. .. 38	

Figure 3.8: Cellular expression of epitope tag repeats. Epitope tag repeats contain
an N-terminal cmyc tag for expression normalization and a C-terminal
fusion to the alpha-agglutinin yeast surface protein. In general, epitope
tag repeats were well-expressed and their expression did not decrease
with repeat length. .. 39	

Figure 3.9: Multiple epitope tag repeats increase immunofluorescence intensity.
Cells expressing the C-terminal alpha-agglutinin domain fused to a
range of epitope tag repeat lengths were analyzed by flow cytometry
after labeling with unconjugated primary antibodies and Alexa Fluor
647-conjugated secondary antibodies. Immunofluorescence intensity
increased with repeat number up to 101-fold. ... 40	

Figure 3.10: Epitope tag repeats increase immunofluorescence intensity with direct
detection. Cells expressing the C-terminal alpha-aggutinin domain
fused to a range of epitope tag repeat lengths were analyzed by flow
cytometry after labeling with fluorophore-conjugated antibodies.
Immunofluorescence intensity for repeat proteins was improved over
30-fold as compared to a single epitope tag when cells were
immunolabeled with fluorophore-conjugated antibodies. 41	

 xiv

Figure 3.11: Detection of endogenous, low abundance yeast proteins by long
epitope tag repeat fusion. 16FLAG repeat fusions were integrated into
the yeast genome using a plasmid with homology to GFP. Detection
of 16FLAG fusion proteins was reproducible (n = 3 experiments), and
low abundance proteins were not detected with 1FLAG fusions. 43	

Figure 3.12: Single-cell protein expression profiles of low abundance endogenous
proteins. Protein expression profiles for low abundance proteins
expressed at levels as low as 200 molecules per cell were elucidated
by flow cytometric analysis of immunolabeled cells expressing
16FLAG fusion proteins, but not GFP fusions. 44	

Figure 4.1: Construction of barcodes with distinct fluorescence intensities.
Different fluorescent intensities were created by variation of epitope
tag repeat length and normalization of total fluorescence signal to
correct for variation in protein expression. .. 51	

Figure 4.2: Creation of up to four distinct intensities per fluorophore. Cells exhibit
large variations in fluorescence due to differences in protein
expression. This variation can be minimized by normalization of one
fluorescent signal by another for each cell, effectively correcting for
differences in fluorescence due to protein expression. Up to two
distinct barcodes could be distinguished for each fluorophore by total
fluorescence signals. After normalizeation of HA signal by cmyc
signal for each cell, up to four unique fluorescence intensities were
achieved for a single fluorophore. ... 52	

Figure 4.3: Quantification of distinct fluorescence intensities. A barcode with a
particular fluorescence intensity was defined as being distinct if at
least 10% of cells could be captured with less than 1% of cells
belonging to a different barcode. ... 53	

Figure 4.4: The number of distinct fluorescence intensities is fluorophore
dependent. For example, FLAG was found to have four distinct
intensities when antibodies that produce a very bright signal, such as
Alexa Fluor 647, were used for immunolabeling. However, when
dimmer fluorophores were used, such as PE-Cy7, only two unique
fluorescence intensities could be achieved. ... 54	

 xv

Figure 4.5: Barcode library creation by combination of epitope tag DNA sequences.
A library of barcode plasmids was created by combining epitope tag
repeat lengths that when expressed in cells and immunolabeled,
resulted in distinct fluorescent barcodes. Three rounds of subcloning
using restriction digest were used to create a library containing up to
216 distinct barcodes. .. 56	

Figure 4.6: Method used to distinguish barcoded cell populations. Cells were gated
on cmyc positive events to consider only those expressing barcodes.
Then, cells were subdivided by epitope tags that produce binary
fluorescent intensities (HIS, FLAG, GLU), and then by epitope tags
that produce multiple fluorescence intensities (HSV, HA, AU1). 58	

Figure 4.7: Barcode distinguishability for fluorophores with multiple intensities is
affected by the presence or absence of certain epitope tags. Examples
include an increase in signal for the 1HA population due to the
presence of a GLU epitope tag (top), an increase in HA signal
(middle) and a decrease in AU1 signal (bottom) with increasing HSV
length. Identical gates are overlaid to illustrate fluorescence
differences between barcodes. ... 60	

Figure 4.8: Relationship between repeat length and library abundance. The
distribution of repeat lengths in the top 10% of barcodes is
significantly smaller (4 repeats on average) than that of the overall
library (6.5 repeats on average). In the top 10% of barcodes, zero HA,
HSV, or AU1 repeats are highly enriched and four repeats are
underrepresented. Taken together, this suggests that there is a bias
favoring plasmids with shorter repeat lengths, possibly due to a
transformation and/or ligation preference for smaller plasmids. This
could explain the observed over-representation of certain barcodes in
the library. .. 62	

Figure 4.9: Normalization of 190-member barcode library. Flow cytometry analysis
of the barcode library showed an over-representation of certain
barcodes, such that only 13 barcodes comprised 50% of the
abundance. After FACS, the library was normalized such that that 30
barcodes represented 50% of the library. ... 64	

Figure 4.10: Effect of different environmental conditions on barcoded cell growth.
After overnight growth after revival from log phase, stationary phase,
4°C or -80°C stocks, a mixture of cells expressing barcodes with
different lengths did not exhibit any significant growth biases. 66	

 xvi

Figure 4.11: Growth of cells constitutively expressing barcodes over longer time
scales. Over three days of growth, cells expressing shorter barcodes
(less than 5 repeats) outcompeted those with longer barcodes. No
decrease in CMYC signal was observed, suggesting barcodes were not
degraded. .. 67	

Figure 4.12: Optimization of barcode induction conditions. Barcode expression was
monitored over three days of induction in galactose media at 20°C or
30°C (top panel). 21-24 hours of induction at 30°C resulted in the
highest expression levels. Barcode expression levels were higher in
log phase cells (bottom panel). .. 68	

Figure 5.1: Rapid generation of barcode combinations by homologous
recombination. Homologous recombination of DNA fragments
containing glycine-serine linkers with or without an epitope tag were
used to expand the barcode library in a one-pot approach. Seven
fragments and nine crossovers are required, in theory, to create a
plasmid. .. 75	

Figure 5.2: Enrichment of combination barcodes by FACS. The barcode library
generated by homologous recombination contained combinations of
T7, V5, E2, AcV5, and AU5 epitope tags. This subset, which
comprised 10% of the expressing cells, was enriched by FACS. 76	

Figure 5.3: FACS enrichment of combination barcodes in overlap PCR library. The
unsorted library contained only 0.3% of cells that had epitope tags
other than cmyc. After one round of FACS, this subset was enriched
to 25%. In the sorted library, 5.5% of the cells expressing barcodes
contained combinations of two or more epitope tags. These were
isolated using an additional round of FACS. ... 77	

Figure 5.4: Generation of thousands of barcode plasmids. 18 libraries containing up
to 190 barcodes each were created using subcloning. A plasmid
containing a specific combination of T7, V5, AcV5, AU5, and E2
epitope tags was used as the vector fragment. Five libraries containing
different proportions of up to 190 barcodes composed of HA, HSV,
HIS, AU1, GLU, and FLAG epitope tags were combined and used as
insert fragments. ... 79	

 xvii

Figure 5.5: Barcode library contains DNA plasmids with heterogeneous sizes.
Check digest of the HA, HSV, HIS, AU1, GLU, and FLAG libraries
showed only a subset of DNA was composed of full-length barcode
plasmids (top panel). Analytical restriction digest (bottom panel)
showed a subset of DNA contains elements necessary for barcode
expression including secretion signal and cmyc tag, alpha-agglutinin
protein, and GAL promoter. .. 80	

Figure 5.6: Analytical restriction digest of 11-epitope tag barcode plasmid libraries.
18 barcode libraries were checked for full-length DNA by restriction
digest with XbaI and agarose gel electrophoresis. This analysis
showed that 14 out of 18 libraries (all except libraries 1, 5, 10, and 14)
contained a significant amount of full-length plasmids, suggesting that
the libraries contain barcodes with new combinations of up to 11
epitope tags. Mini-plasmids also formed in these libraries, despite our
efforts to eliminate them during subcloning. ... 81	

Figure 5.7: Analytical restriction digest of mini-plasmids. Restriction digest with
EciI and AclI enzymes, which cut the barcode backbone in multiple
locations, suggests miniplasmids are composed of URA, Amp,
CEN/ARS, and E. coli origin genetic elements. 83	

Figure 5.8: Titration of HA-PE to optimize barcode distinguishability for HA and
AU1 epitope tags. HA-PE was titrated from 0.1 nM to 100 nM in
order to maximize the separation of HA+ and HA- events while
minimizing the spillover into PE-Cy5 channel. At 100 nM HA-PE
(red box), it was not possible to capture any 1AU1+ cells. When HA-
PE was used at 10nM (black box), spillover into PE-Cy5 was
lessened, allowing the distinction of AU1+ and AU1- populations. 88	

 xviii

Figure 6.1: Computational approach to barcode identification and abundance
quantification. Flow cytometry data was gated to exclude cells whose
fluorescence could not be assigned to a particular population for any
given color. Then, data was analyzed using a Python script which used
DBSCAN clustering to assign cells to one of two clusters based on the
density of nearest neighbors. This assignment process was repeated
for each epitope tag that produced ‘binary’ intensities when
immunolabeled. Barcodes were partitioned based on their binary
fluorescence intensities, and these groups were analyzed by DBSCAN
for epitopes that when immunolabeled produced up to three distinct
populations. DBSCAN assigned cells in to up to three clusters (one
negative and two positive). For cases in which two clusters were
assigned, KDE was used to remove outlying cells and DBSCAN was
re-run to assess if one or two populations with positive fluorescence
intensities were present. Finally, cells were grouped by an 11-digit
identifier corresponding to their barcode (0 for negative, 1 for low
positive, and 2 for high positive) and the number of cells belonging to
that barcode was quantified and normalized to calculate relative
abundances. Information was exported to Excel for further analysis if
required. ... 96	

Figure 6.2: Assignment of cells to one of two clusters using DBSCAN. DBSCAN
uses a nearest neighbor density based approach to group cells
together. In this case, it was used to identify cells as belonging to one
of two populations for each binary fluorophore. The python script also
calculated statistics for each cluster which were subsequently used to
determine which cluster should be assigned ‘0’ and ‘1’. After all
binary epitope tags were assigned, cells were grouped by their binary
barcode identity. ... 97	

Figure 6.3: Clustering cells for epitopes with multiple fluorescence intensities by
DBSCAN and KDE. Cells were clustered with DBSCAN to determine
negative and positive populations. If two populations were found,
KDE was applied to filter out cells in areas of low relative density.
Lastly, DBSCAN was used again to assign cells to low positive and
high positive clusters. .. 99	

 xix

Figure 6.4: Types of errors encountered during barcode identification and
clustering. DBSCAN clustering was used to identify populations for
each epitope tag present in the sample. This information was compiled
for all tags to determine the number of barcodes present in the
samples. Manual inspection of DBSCAN outputs showed five types of
errors for cluster identification, including merging of two populations,
incorrect labeling of positive clusters, missed clusters, incorrectly
partitioned clusters, and positive clusters incorrectly identified as
negative or vice versa. ... 102	

Figure 7.1: Production and purification of recombinant mouse prion protein.
Recombinant prion protein was produced in a 4 hour biofermentation
using E. coli cells. Inclusion bodies were isolated by
ultracentrifugation and solubilized. SEC was used to purify prion
protein from host cell proteins and fractions were tested for the
presence of prion protein by Western blotting. Purity was assessed
using Coomassie and silver staining. Prion protein was oxidized for
two weeks by exposure to air and oxidized protein was purified from
reduced by RP-HPLC and lyophilized. Finally, oxidized protein was
resuspended in buffer to form an alpha-helical structure and
conjugated to Alexa Fluor 647. .. 115	

Figure 7.2: Titration of PrP with surface-displayed barcoded ICSM18 2.6.1. Yeast
cells displaying ICSM18 2.6.1 as a fusion to AGA2 (pCTCON2) or
alpha-aggutinin with (5-tag and 11-tag) or without (pBC2) barcodes
were titrated with fluorescently labeled recombinant PrPa. Saturation
did not occur as expected in all cases, possibly due to PrPa
aggregation, and PrPa did not bind nonspecifically to non-expressing
yeast cells. Importantly, all cells expressing recombinant proteins on
the surface bound PrPa. ... 116	

Figure 7.3: Effect of barcodes on the affinity of PrP ICSM18 2.6.1 interaction. The
apparent affinity of yeast surface displayed ICSM18 2.6.1 PrP
interaction was not affected when barcoded scFv was expressed at
20°C. This is suggested by the similar or higher median normalized
PrP signal for barcoded ICSM18 2.6.1 as compared to ICSM18 2.6.1
without barcodes (pCTCON2 and pBC2) at multiple PrP
concentrations. ... 118	

 xx

Figure 7.4: Expression of ICSM18 2.6.1 scFv is affected by barcode fusion. Yeast
surface displayed ICSM18 2.6.1 barcode fusions exhibited 4 to 11-
fold lower median expression as compared to ICSM18 2.6.1 alone.
Expression levels were higher at 20°C for barcoded scFv and 30°C for
scFv only. The percentage of expressing cells was higher in all cases
when protein expression was induced at 30°C. 119	

Figure 7.5: Effect of induction time on barcoded ICSM18 2.6.1 expression.
Barcoded scFv expression improved approximately 3-fold after an
addition 24h of induction at 20C, suggesting that longer induction
times may be beneficial for higher expression. 120	

Figure 7.6: Barcoded yeast GFP mixtures exhibit a range of low expression
percentages. Barcoded mixtures of yeast GFP clones exhibited
expression heterogeneity, with an average expression level of ~20%.
Typical barcode expression percentages ranged from 50-70%. The
approximately two-fold lower expression percentage observed is
consistent with the number of transformants expressing barcodes
observed. .. 125	

Figure 7.7: Barcoded yeast GFP clone mixture expression levels are unchanged in
different induction conditions. Four mixtures containing different
barcoded yeast GFP clones were tested for expression levels by
immunolabeling with an antibody against the CMYC tag at two
different temperatures and 64h of expression. Mixtures exhibited a
range of expression percentages that did not vary with the induction
conditions tested. Therefore, the low percentage of expressing cells is
likely not caused by suboptimal induction conditions. 126	

Figure 7.8: Effect of formaldehyde fixation on GFP fluorescence. GFP
fluorescence of a highly expressed yeast GFP fusion clone was
monitored over time during fixation with either 1% or 4%
formaldehyde in PBS pH 7.4. At both conditions tested, formaldehyde
lowered the GFP signal by almost 2-fold after only 10 minutes. As
expected, 1% formaldehyde had less of a detrimental effect than 4% at
longer times. .. 128	

 xxi

Figure 7.9: Permeabilization improves the signal to background ratio for fixed cells
expressing GFP by lowering autofluorescence. Only mild
improvements in GFP signal to background were achieved when
detergents were used (left panel). Alcohols were more successful in
improving the detection sensitivity by lowering autofluorescence.
Alcohol fixation improved the signal to background ratio for GFP to
unfixed cell levels by lowering autofluorescence, effectively
overcoming the decrease in GFP signal due to fixation. 129	

Figure 7.10: Single-cell dynamic protein expression response to environmental
perturbations. GRX2, a thiol oxidoreductase, exhibited a bimodal
expression profile in all conditions tested. Cells in the high expressing
GRX2 population were larger than those in the low expressing
population. SSA4, a heat shock protein, was upregulated in heat stress
and a contraction in protein expression deviation was observed. SSA4
also had decreased expression after 30 minutes of heat shock.
Interestingly, SOD1 is known to increase expression during oxidative
stress, but remained unchanged in this case. ... 132	

Figure 7.11: Dynamic, single-cell response of endogenous yeast GFP fusion
proteins with unknown function to environmental perturbations. The
five proteins with unknown function (RRT14, YNR014W, YGL108C,
MCY1, and YCR016W) remained unchanged in response to the stress
conditions tested, with the exception of the 30 minute heat shock
condition for YGL108C. During this condition, YGL108C had a
bimodal expression profile with 11.3% of yeast cells exhibiting high
expression levels. ... 134	

Figure 7.12: Barcodes enable multiplexed analysis of 32 single-cell protein
expression distributions in 12 environmental conditions. Barcoded
yeast GFP clones were pooled in a single sample and exposed to stress
for two hours. After immunolabeling and barcode deconvolution, their
GFP protein expression profiles were elucidated. Note that the clones
that could not be deconvolved are indicated by an underscore. The
lognormal fits are indicated by the dashed red line. 138	

 xxii

Figure 7.13: Protein abundance and variation changes in response to environmental
stress. Fold change was calculated as the ratio of the protein
abundance or CV after stress versus before stress. Proteins that were
upregulated or had wider variation after stress are shown in green and
those that were downregulated or had narrower distributions are
shown in red. Fold changes greater than 1.4 times the average
abundance or CV of the non-stress condition replicates were
considered significant. ... 140	

Figure D.1: 16FLAG fusions enable detection of low abundance endogenous
proteins by confocal fluorescence microscopy. Fluorescent confocal
images of yeast cells taken with a 63x oil lens. Protein expression and
localization is shown in pink and the nucleus is shown in green. 187	

Figure D.2: Expression of GFP with or without FLAG fusion. GFP signal was
measured by flow cytometry for surface-displayed alpha-agglutinin
GFP fusion proteins also expressing 0, 1, or 16 FLAG repeats. GFP
signal did not decrease significantly when FLAG fusions were added,
suggesting FLAG fusions do not alter protein expression levels. 188	

Figure D.3: Detection of a highly expressed endogenous yeast protein by FLAG or
GFP fusion. The THD3 protein was detected in yeast using flow
cytometry by fusion to either 16FLAG or a GFP, showing a low rate
of false negatives and false positives with either detection method. 189	

Figure D.4: Conversion of GFP and 16FLAG signals from arbitrary fluorescence
units to protein abundance. (a) recGFP purity was estimated to be
90% by Coomassie stain. (b) Western blot of TDH3-GFP whole cell
lysate and a standard curve of purified recGFP. (c) Quantification of
(b) estimates the abundance of TDH3-GFP as 2.7 million molecules
per cell. A relationship between median arbitrary GFP fluorescence
and GFP protein abundance was determined by linear regression (GFP
molecules per cell*106 = 8.81*Median GFP fluorescence – 6,741. (d)
A relationship between molecules per cell and median 16FLAG signal
was determined by immunolabeling cells expressing a GFP and
16FLAG AG⍺1 fusion protein. The relationship between molecules
per cell and 16FLAG signal was related by linear regression to be
1.41*16FLAG signal – 199.63. ... 190	

Figure D.5: Quantification of protein abundance. Protein abundance was quantified
by relating protein expression detected by flow cytometry and
Western blotting. Our results agree somewhat with previous reports
(R2 = 0.24). .. 191	

 xxiii

Figure F.1: Flow cytometry analysis of 11-epitope tag barcode libraries. Flow
cytometry analysis shows 14 out of 18 libraries had a significant, 25-
50%, of cells expressing barcodes, and that all cells expressing
barcodes contained the expected combination of T7, V5, AcV5, AU5,
and E2 epitope tags. Moreover, 13 out of 14 libraries contained 85-
90% new barcode combinations of up to 11 epitope tags. 197	

Figure F.2: CMYC AF647 titration. Control barcodes containing AcV5, AU5, and
CMYC barcodes were titrated with CMYC antibody and labeled with
either 100nM AcV5 APC-CY7 or 100nM AU5 AF700 and 35 nM a-
chicken AF647 antibody. It was found that 1-10 nM CMYC antibody
was optimal for capturing the highest amount of barcodes with the
lowest percentage of false positives. .. 198	

 xxiv

A primary goal of biologists is to characterize the dynamic and complex

behaviors of biological systems. Large, robust data sets that examine many biological

molecules in a variety of conditions are desirable to gain a more multifaceted view of

the cell. In addition, single-cell analysis technologies are used to characterize cellular

heterogeneity and reduce biological noise that exists within isogenic populations.

Noise in gene and protein expression arises from the stochasticity of underlying

biochemical reactions, and can confer phenotypic variation which may be

advantageous in certain circumstances. However, established technologies for high-

throughput, single-cell proteomic analysis have limited throughput.

Multiplexing methods, such as fluorescent barcoding, can dramatically

decrease the number of samples and in turn enable collection of more robust data sets

including many replicates, conditions, and proteins. Fluorescent barcoding is a

powerful tool for identification of different cells within a heterogeneous mixture using

a unique fluorescent identifier or ‘barcode’. Fluorescent barcoding can potentially

reduce the number of samples thousands of fold, thereby facilitating massively-

parallel single-cell analysis of biomolecular and cellular libraries. Current fluorescent

cell barcoding systems are composed of small numbers of barcodes (~10-100), and in

some cases are single-use and have toxicity issues.

The work described here presents the creation of the largest fluorescent

barcoding system to date consisting of over 980 unique, genetically-encoded barcodes.

ABSTRACT

 xxv

We made a library of plasmids encoding protein scaffolds that are composed of

different lengths and combinations of epitope tags connected by flexible linkers. Cells

expressing protein barcodes were identified by their distinct fluorescence upon

immunolabeling. Multiplexing capability was greatly expanded by the discovery that

barcodes with four distinct fluorescence intensities can be created by expression of

different epitope tag repeat lengths. The effect of barcode expression on cellular

growth, and the influence of different promoters and growth conditions on barcode

expression was examined. A software package was developed to rapidly analyze

barcode flow cytometry data, decreasing analysis time ~10-fold.

The multiplexing power of the fluorescent barcoding system was demonstrated

in two applications. Barcode fusion did not hinder binding of an a-prion antibody for

recombinant prion protein, suggesting barcodes can be used for multiplexed analysis

of biomolecular libraries including high-throughput, quantitative protein-protein

interaction studies. Barcodes were also used to simultaneously measure the dynamic

response of endogenous yeast proteins in single-cells to environmental perturbations.

Changes in protein abundance and variability as well as expression distributions were

observed, suggesting cells may employ a bet-hedging mechanism to more quickly

adapt to fluctuating environments. In addition, long epitope tag repeats facilitated

immunodetection of endogenous, low abundance proteins in yeast by increasing the

detection limit ~40-fold, potentially enabling analysis of > 1,600 low abundance

proteins by flow cytometry.

 1

INTRODUCTION

1.1 Motivation and Goals

A major goal in the field of biology is to understand the complex and dynamic

interactions and behaviors of biological systems, which can include molecules, cells,

tissues, and organisms. Another area of interest in systems biology is to use large-scale

data sets to derive computational predictive models for biological systems. For

example, transcriptomics, proteomics, and interactomics data sets were synthesized to

create a perturbed metabolic network model of galactose utilization in yeast [1].

Omics data is arguably the primary driving force behind systems biology [2]. Omics is

the large-scale study of biological molecules that contribute to cellular function, and

includes genomics, epigenomics, transcriptomics, proteomics, metabolomics,

interactomics, and lipidomics [3]. Such studies aim to characterize the quantitative and

dynamic behavior of biological molecules with spatiotemporal resolution and to

elucidate cellular pathways and networks.

In order to fully describe a cellular system, large and robust data sets that

examine many biological molecules under a variety of conditions and with many

replicates are desirable. In addition, systems biology and omics studies can benefit

from single-cell analysis technologies because they permit characterization of cellular

heterogeneity and reduction of biological noise. Phenotypic heterogeneity exists

within isogenic non-isogenic populations, and arises from the inherent stochasticity of

gene and protein expression [4]. Stochastic processes create noise, or variation, and

Chapter 1

 2

has been observed in a variety of cellular systems [5], [6]. Gene and protein

expression noise is thought to provide an advantage in certain circumstances, and

underlies adaptive advantages such as bacterial persistence [7], [8] and bet-hedging

[9]–[11]. In order to fully understand cellular behavior, single-cell analysis is desirable

as it reduces noise and can reveal heterogeneity that is not captured by average

measurements [12].

Established methods for high-throughput, single-cell proteomic analysis such

as imaging, flow cytometry, microfluidics [13], and mass cytometry [14] often require

cumbersome robotics systems and multi-well plates to analyze thousands of samples

that are needed for systems-wide studies. As a result, single-cell proteomics has not

been as widely implemented as single-cell genomics or transcriptomics [14]–[16].

Technologies to increase the throughput of single-cell proteomics methods can

enhance systems biology studies by decreasing the number of samples required, and in

turn enabling more replicates, conditions, and proteins to be studied.

Cellular fluorescent barcoding is a powerful tool that can be used to identify

different types of cells within a heterogeneous mixture using a unique fluorescent

identifier or ‘barcode’. Thus, fluorescent barcoding enables multiplexed analysis of

biomolecular and cellular libraries, potentially resulting in hundreds to thousands fold

reduction in the number of samples needed for a study. Current fluorescent cell

barcoding systems suffer from a number of drawbacks (Table 1.1). Some barcoding

systems are single-use, meaning that barcodes are not genetically encoded and cells

have to be barcoded individually before each experiment [17]–[23]. Other fluorescent

cell barcoding systems have reported toxicity [24]–[26], and some methods rely on

microscopy, which is lower throughput than flow cytometry [25], [27]. Existing

 3

fluorescent cell barcoding systems have a limited number of spectrally distinct

barcodes, on the order of 10 [19]–[21], [24], [26]–[28] to 100 [17], [18], [23], [25].

Table 1.1: Drawbacks of existing fluorescent barcoding systems

The primary goal of this work is to engineer an improved fluorescent

barcoding system for massively-parallel analysis of biomolecular and cellular

libraries, potentially enabling multiplexed experimentation and analysis of thousands

of different biological molecules in a single sample. In the first part of this work we

discuss our design for a genetically-encoded fluorescent barcoding system.

Fluorescent barcodes are produced upon immunolabeling of cell-expressed,

engineered protein scaffolds, which are composed of different epitope tags connected

by flexible linkers. Out of this work, a general method for exponential expansion of

tandem DNA sequences was developed. Also, a tangential application using long

tandem repeating epitope tags for improved flow cytometric immunodetection of

endogenous low abundance proteins in single-cells is described. In addition, the

instability of plasmids containing tandem nucleotide repeat regions in E. coli is

explored using multiple methods including deep sequencing.

In the second part of this work, we discuss the development of a multi-color

fluorescent barcoding system for high-throughput, single-cell analysis of biomolecular

1. Krutzik, P.O. and Nolan, G.P. (2006) Nature Methods
2. Mali, P. et. al. (2013) Nature Methods
3. Mohome, M. et. al. (2017) Molecular Therapy
4. Chen, R. et. al. (2015) ACS Synthetic Biology
5. Mattheakis, L.C. et. al. (2004) Analytical Biochemistry

Barcoding Method Max # Barcodes Single Use Toxicity Analysis Method
Zinc Finger oligonucleotide barcoding2 6 Microscopy
Fluorescent protein barcoding3 41 X Flow Cytometry
Organelle and fluorescent protein barcoding4 64 X Microscopy
Dye barcoding1,5 96 X Flow Cytometry
Epitope tag barcoding (this work) >980 Flow Cytometry

 4

and cellular libraries. Specifically, we present an approach to create up to four distinct

intensities using a single fluorophore, greatly enhancing the number of possible

barcodes over previously established binary schemes. A 190-member barcode library

was created by subcloning six-different types of epitope tags differing in repeat

number, and the barcode library was characterized and normalized FACS. In addition,

the effects of constitutive and inducible promoters on barcode expression and relative

cell growth rates are explored.

In the third part of this work, we discuss the expansion of the fluorescent

barcoding system to over 1,100 members by incorporation of 5 addition epitope tags.

Specifically, 18 plasmids encoding combinations of 5 different epitope tags were

created using homologous recombination and overlap PCR. Barcode expression was

validated by flow cytometry and clones were isolated by FACS. Then, the barcode

system was expanded to create 11-epitope tag combinations by subcloning the 18 5-

eptiope tag plasmids with the 190-plasmid library containing combinations of 6

additional epitope tags. We estimated that the barcode libraries contain a total of

~1,100-1,500 unique barcodes using a software package that was developed for rapid

identification and quantification of barcoded populations from flow cytometry data.

In the last part of this work, we illustrate the utility of fluorescent barcoding for

multiplexed single-cell analysis of biomolecular and cellular libraries. In one

application, we find that barcode expression does not affect the apparent binding

affinity of an a-prion antibody for recombinant prion protein, suggesting fluorescent

barcodes can be used for multiplexed analysis of biomolecular libraries including

protein-protein interaction studies. In a second application, we simultaneously

examine the dynamic, single-cell expression profiles of endogenous yeast GFP fusion

 5

proteins in different environments using fluorescent barcodes. This study uncovered

interesting responses to fluctuating environments, including bimodal expression

profiles and changes in protein expression abundance and variation, which may

suggest that cells employ bet-hedging in order to adapt more easily to sudden

environmental fluctuations. Overall, we have engineered an improved fluorescent

barcoding system with greater than 10-fold more barcodes than existing systems, and

demonstrate its use for multiplexed single-cell analysis of bimolecular and cellular

libraries.

1.2 Design and Application of Previous Fluorescent Cell Barcoding Systems

Cellular fluorescent barcoding is an emerging technology that is used to

multiplex samples for single cell-based assays or identify cells in mixed populations.

An advantage of cellular barcoding is that it enables high-throughput single-cell

analysis, is compatible with standard methods such as flow cytometry and microscopy,

and does not require specialized robotics or microarray technologies. Fluorescent cell

barcoding has demonstrated utility for many applications including cell signaling

studies and drug screens, protein-protein interaction screens, and cancer and stem cell

tracking in vitro and in vivo.

The first example of cellular fluorescent barcoding was first published in 2004,

and used binary combinations of 5 different colors of fluorescent quantum dots to

create 10 distinct barcodes that were introduced into cells via peptide-mediated

delivery [19]. This method is advantageous because it can be used with microscopy or

flow cytometry, but is not genetically encoded so cell samples have to be barcoded in

multi-well plates and then mixed together for analysis. Also, three barcodes were used

in a cellular assay to identify CHO cell lines expressing different GPCRs and to

 6

measure changes in the cells’ agonist-induced calcium levels [19]. Recently, another

fluorescent nanoparticle based barcoding system used three colors and up to six

intensity levels to create 20 nanoparticle barcodes [22]. These nanoparticles were

loaded into cells via endocytosis and used for microscopy based tracking.

In 2006, a fluorescent-dye based barcoding method was developed which used

different combinations and concentrations of three different fluorescent dyes to create

96 barcodes with up to four florescence intensities [18]. This method is advantageous

because it permits multiplexing up to ~100-fold, but it is not genetically-encoded so

cells have to be stained in multi-well plates before analysis, and it is not compatible

with live cells. The dye-based fluorescent barcoding system was used to screen small

molecule phosphatase and kinase inhibitors in a single cell-based assay. In addition,

dye barcoding was applied to study the heterogeneous signaling response of different

types of mouse primary cells to varying cytokine concentrations.

A related mass cytometry barcoding method used binary combinations of

seven lanthanide metals to barcode 96 cells by surface-linked chemical conjugation

[17]. Advantages of this method include the ability to measure ~40 parameters in a

single-cell and the ability to create ~100 barcodes. However, mass barcodes are not

genetically encoded so cells have to be barcoded individually before mixing and

analysis. Mass barcoding also requires a mass cytometer, which are not commonly

available. Mass barcodes were used to multiplex the analysis of peripheral blood

mononuclear cells (PBMCs) to twelve different cytokine stimuli during eight different

time points, as well as the response of PBMCs from eight different donors to 12

stimuli. In addition, the signaling response of PBMCs to kinase inhibitors was

characterized using an eight-point dilution and 12 different stimulus conditions, as

 7

well as 14 phospho-antibodies to characterize signaling pathway response and 10

antibodies specific for cell surface markers to identify different cell types.

Recently, fluorescent protein based barcoding systems have been developed by

multiple groups independently. One group used three different fluorescence proteins to

create 12 barcodes, and applied four barcodes in a cell based assay to determine the

activity of cells expressing HIV-1 protease variants via an eGFP reporter [28].

Another study used combinations of up to three fluorescent proteins and six colors to

create 41 fluorescent protein barcodes [26]. They tracked proliferation rates of 21

barcoded clones derived from a mouse glioblastoma cell line in vitro and in a mouse

model. A third group created 26 total barcodes using three fluorescence proteins

expressed under two different translational control elements to create off, low, and

high intensities for a fluorescent protein [24]. However, a 10 to 20-fold decrease in

cell viability was observed when combinations of two or more fluorescent proteins

were transduced. Six fluorescent barcodes were applied to track clonal growth in vitro

in response to different microRNAs, as well as the in vivo growth of mouse

hematopoetic stem cells and human cord blood cells. Overall, fluorescent protein

based barcoding systems are advantageous because they can be easily used in multiple

cell types, and are compatible with flow cytometry and microscopy, but have limited

applications due to their relatively small library sizes and in some cases reported

toxicity issues when multiple fluorescent proteins are expressed in the same cell.

Another fluorescent protein based barcoding system used color and protein

localization to identify cells [25]. 64 barcodes were created using four different

fluorescent proteins and four localizations. The fluorescent barcoding system was

applied in a fluorescent yeast two hybrid assay to screen for protein-protein

 8

interactions between eight coiled-coil leucine zipper proteins. Specifically, bait

proteins were tagged with a peroxisome targeting sequence and the prey proteins were

fused to RFP. Absence of an interaction was indicated by diffuse red fluorescence,

while presence of an interaction was indicated by red puncta, and 10-20 cells were

used to calculate an interaction score. A success of this barcoding system was the

ability to create more than 50 barcodes and demonstration of fluorescent barcoding for

multiplex protein-protein interaction screens. Disadvantages include the use of lower-

throughput microscopy resulting in low cell counts and false positive interactions, as

well as toxicity issues when pairs of fluorescent proteins were targeted to certain

organelles within cells and when certain combinations of coiled-coil proteins were

expressed.

A unique approach to fluorescent cell barcoding is the use of cell surface

displayed zinc finger domains that hybridize to different fluorescently labeled

oligonucleotides [27]. Specifically, six cells were barcoded by expression of a unique

zinc finger domain and sequential labeling with two different fluorescently labeled

oligonucleotides. Advantages of this method include that is it genetically-encoded and

can be used for multiplexed experimentation and analysis, whereas drawbacks include

the dependence on microscopy and adherent cell types, as well as limited library sizes.

The zinc finger barcodes were used for in applications for cellular immunopurification

and increased transduction efficiency using oligonucleotide tagged lentivirus.

1.3 Single-Cell Analysis and Protein Expression Noise

Genetically identical cells can exhibit phenotypic heterogeneity, which is due

to noise in gene and protein expression [5], [29]. Noise originates from stochastic

biochemical processes involving small numbers of molecules, including random birth

 9

and death of mRNA and protein molecules and promoter on/off transitions due to

stochastic transcription factor binding [4], [30]–[32]. For example, a study examining

single-cell transcription events in E. coli using a microfluidics platform found that

protein expression occurs in stochastic bursts, and that the variation in burst size and

frequency contributed to deviations in gene expression [33]. This phenomenon has

been observed by others [34], and was quantified using a Gamma distribution model

to describe gene and protein expression heterogeneity [35].

Other sources of noise include cell-cycle differences and unequal partitioning

of cellular components during cell division [4], [36]. For example, 900 yeast

promoters were assessed in different environmental conditions using single-cell

reporter protein measurements. Gene expression noise was found to be higher in more

nutrient poor conditions, and varied significantly due to cell-cycle differences [36]. In

addition, gene and protein expression noise was observed to vary significantly with

chromosomal location due to differences in chromatin conformations and histone

modifications [37], [38]. For example, a study examining GFP expression levels at

500 different genomic locations found that chromosomal position affects protein

expression levels in yeast up to 15-fold and noise up to 20-fold.

Additionally, pathway specific feedback loops have been studied as an

additional source of noise. Studies have used both natural and synthetic gene

regulatory networks to understand phenotypic heterogeneity. For example, the E. coli

lac operon exhibited bistable state behavior at intermediate induction conditions

leading to two phenotypic states [39]. A study examining the mulitstability of the

galactose signaling network in S. cerevisiae found that positive and negative feedback

loops contributed to multiple stable states and cellular memory [40]. Moreover,

 10

different pathway or gene-specific factors may influence gene and protein expression

noise. Studies have found that essential genes, including those involved in proteasome

and protein synthesis [32], [41], exhibit lower noise than others [42], while stress

related genes tended to be noisier on average.

Cellular heterogeneity and gene expression noise can confer adaptive

advantages when cells encounter an environmental change, and phenotypic

heterogeneity has been observed in both isogenic and genetically diverse cells

including E. coli, yeast, and mammalian cancer cells. In E. coli, two coexisting cell

states, namely expression of low and high amounts of membrane lactose permeases,

were observed at induction intermediate concentrations using the lac operon [43]. It

was found that infrequent disassociation of the lac repressor protein was responsible

for bursts of protein expression resulting in the lactose metabolizing phenotype.

Studies in yeast have found that cellular heterogeneity in protein expression

can confer adaptive advantages to fluctuating or adverse environments [44]. A subset

of yeast proteins exhibited bimodal expression patterns under nitrogen starvation,

oxidative or reducing environments. Upon further investigation, it was found that the

high expressing phenotype conferred a growth advantage over short starvation time

scales while the low expressing phenotype was more advantageous over long times

[10]. In another study, yeast cells were engineered to have either slow or fast

transitions from two phenotypic states as a result of stochastic gene expression [11].

Under fast environmental fluctuations, frequent switchers had a growth advantage

while the converse was true when environmental changes occurred infrequently.

Taken together, these results suggest microbial cells can exhibit multiple phenotypic

 11

states characterized by noise in gene and protein expression, which can confer a

fitness advantage in certain circumstances.

Cellular heterogeneity among cancer cell populations has been shown to confer

drug resistance. For example, a subpopulation of cancer cells were observed to be

drug-tolerant, exhibiting more than 100-fold reduced drug sensitivity [45]. It was

found that this cell subset had a modified chromatin state with higher expression of the

histone demethylase KDMA5A, suggesting epigenetic mechanisms may underlie drug

resistance in this case. In another study, the proteome dynamics of a lung carcinoma

cell line in response to an anti-cancer drug was examined [46]. The protein expression

profiles of 1,200 endogenous fluorescent protein fusion clones were quantified, and it

was found that a subset of proteins exhibited bimodal expression profiles that

conferred improved drug resistance. Overall, cellular heterogeneity has been observed

in many cell types and has many potential underlying sources including gene and

protein expression noise. Single-cell analysis methods are necessary to fully capture

and understand cellular heterogeneity.

 12

MATERIALS AND METHODS

2.1 Yeast Barcode Expression Plasmid Construction

The yeast expression vector pBC1 was derived from two plasmids: p416-25Q-

GPD was purchased from Addgene and pUC57-SS-cmyc-AGalpha1 was synthesized

by Life Technologies. pBC1 was constructed from the p416-25Q-GPD vector and

pUC57-SS-cmyc-AGalpha1 was created by restriction digest with XbaI and XhoI

restriction enzymes and ligation of p416 backbone and SS-cmyc-AGalpha1 insert.

pBC1 contains the C-terminal domain of the alpha-agglutinin mating protein

(AGalpha1) downstream, a secretion signal (SS), a cmyc tag, and a constitutive GPD

promoter upstream of the repeat region.

The pBC1-GAL plasmid was created by changing the GPD promoter for the

inducible GAL promoter. The GAL inducible promoter was obtained from the

pCTCON2 plasmid. The pBC2 plasmid was adapted with additional G4S3 linkers and

an AfeI cloning site for subcloning of protein fusions of interest to barcodes using a

commercially synthesized oligonucleotide. GFP epitope tag integration plasmids were

created by restriction digestion of the pRSII40X plasmid series (Addgene) with SacI

and KpnI. A synthesized oligonucleotide containing N-terminal and C-terminal

regions of GFP homology, a restriction enzyme site for linearization, and a multiple

cloning site for the epitope repeats was subcloned into the pRSII plasmid backbone.

Chapter 2

 13

Lastly, epitope tag repeats were subcloned from the pBC1 plasmids to the pRSII

plasmids.

2.2 Creation of Tandem Repeating Epitope Tag Plasmids for Multiple Unique
Intensity Barcodes

Epitope tag oligonucleotides were synthesized by Integrated DNA

Technologies. Oligonucleotides contain a single copy of HA, HIS, FLAG, GLU-GLU,

AU1, or HSV epitope tag followed by (G4S)3 and (G4S)1 linkers, as well as a PacI site

upstream of the epitope tag, and an AsiSI site and a 3’ unique restriction site flanking

the (G4S)1 linker, such as XmaI for HIS. Each single epitope tag was subcloned into

the pBC1 constitutive yeast expression vector, and epitope tag repeat number was

expanded exponentially from 1 to 2, 4, 8, 16, and in some cases 32 and 64 repeats by

iterative restriction digestion and ligation. To increase the number of repeats, pBC1

containing n epitope tag repeats was digested with PacI and 3' unique site restriction

enzymes to create insert and separately digested with AsiSI and 3' unique site

restriction enzymes to create an acceptor vector. PacI and AsiSI have compatible two-

base pair overhangs that cannot be digested by either enzyme after ligation. The

resulting construct contained 2n epitope tag repeats, with each repeat separated by an

undigestible 5’AsiSI/3’PacI site. The 3’ unique restriction enzyme sites used to

expand the number of repeats were BamHI, ClaI, XmaI, EcoRI, HindIII, and SalI for

HA, HSV, HIS, AU1, Glu-Glu, and FLAG, respectively.

Epitope tag repeats were checked for the correct size by restriction digest.

Plasmids were transformed into high-efficiency chemically competent NEB5α E. coli

or NEB Stable E. coli (New England Biolabs), and colonies were selected on LB agar

plates containing 100 µg/mL ampicillin. Sanger sequencing failed to provide an

 14

accurate nucleotide sequence of greater than four repeats due to sequence redundancy.

Ultimately, Pacbio SMRT next generation sequencing was used to determine the

distribution of epitope tag repeat lengths.

2.3 Development of Multiple Color Fluorescent Barcodes by Subcloning
Epitope Tag Repeat Combinations.

Each of the six epitope tags used initially are flanked on either side by a unique

pair of restriction enzyme sites, allowing the creation of barcode plasmids with

combinations of epitope tags with varying repeat lengths. For example, to construct a

barcode plasmid containing 4HA and 1HSV, an acceptor vector containing pBC1-

1HSV an an insert plasmid containing pBC1-4HA were digested with SpeI and

BamHI restriction enzyme sites. After purification of the insert and vector DNA

fragments, DNA was ligated in a 3:1 molar insert to vector ratio either overnight at

16°C or at room temperature for 1 hour, and transformed into NEB Stable or NEB 10ß

cells using chemical transformation or electroporation. Single E coli colonies were

picked from a selective agar plate grown overnight at 37°C and screened by restriction

digest for the correct insert sizes.

Barcode plasmids were also confirmed by protein expression and cellular

immunolabeling. Specifically, plasmids were transformed into the yeast strain

BY4741 (MATa his3∆0 leu2∆0 met15∆0 ura3∆0) [47] by the standard lithium-acetate

method [48] or by electroporation [49], and selected for on URA dropout agar plates

for 3-4 days. Single colonies were grown at 30°C in selective SD glucose media to

early or mid log phase, and if required transferred to SG galactose media to induce

barcode expression for an additional 24 hours, immunolabeled, and analyzed by flow

cytometry.

 15

2.4 Fluorophore Antibody Conjugation and Multicolor Flow Cytometry Panel
Development

Epitope tag antibodies were purchased from commercial sources (Abcam,

Sigma Aldrich, Life Technologies, BioRad, BioLegend, Jackson Immunoresearch,

EMD Millipore). Antibodies for HA, V5, E2, and AcV5 were purchased from Abcam.

Secondary Alexa Fluor conjugate antibodies, quantum dot conjugate antibodies, and

HIS antibody was purchased from Life Technologies. FLAG was purchased from

Sigma Aldrich. AU5, AU1, and GLU antibodies were purchased from Biolegend.

HSV and T7 antibodies were purchased from Millipore. Fluorophores were covalently

conjugated to antibody lysine residues using either succinimidyl ester chemistry [50]

for small molecule Alexa Fluor 488, 647, and 700 or Marina Blue dyes (Life

Technologies), or Lightning-Link antibody conjugation kits (Innova Biosciences) for

protein fluorophores including APC-Cy7, PE-TexasRed, PE-Cy5, PE-Cy5.5, PE-Cy7,

and PerCP. For Alexa Fluor dyes, antibody conjugates were dialyzed overnight against

PBS pH 7.4 and molar ratios of fluorophore to antibody were between 3:1 and 10:1 as

calculated from spectrophotometry measurements. For lightning-link technology,

molar ratios of fluorophore to antibody were estimated to be between 1:1 and 2:1 by

spectrophotometry. In addition, in some experiments different antibody species were

used to enhance the signal from some of the dimmer fluorophores. Specifically, rat a-

FLAG and a-rat PerCP conjugate, human a-V5 with biotin a-human and streptavidin

QDot 525 conjugate, chicken a-cmyc and a-chicken AF488 or AF647 conjugate, and

rabbit a-HIS and a-rabbit QDot705 conjugate.

2.5 Barcode Immunofluorescence and Flow Cytometry Analysis

A known number of yeast cells expressing barcodes were incubated in PBS pH

7.4 + 0.1% BSA containing at least a 10-fold stoichiometric excess of a-epitope tag

 16

antibodies for 1 hour at room temperature with mixing after 30 minutes. The number

of proteins per cell was estimated by us and others [51] to be 50,000-100,000 copies

per cell. Cells were washed twice with PBS+BSA and if necessary incubated with

fluorophore-conjugated secondary antibodies for 30 minutes on ice. Samples were

washed twice in PBS+BSA and analyzed using either an Accuri C6 flow cytometer or

a FACSAriaII cell sorter.

Antibodies were titrated to determine the binding affinity, and in most cases a

saturating condition was used for immunolabeling (typically 10-100nM). For 13-color

flow cytometry, however, compensation and spillover prohibited saturating conditions

to be used for all fluorophores. It was experimentally determined that 1-5 nM cmyc

with 35 nM a-chicken AF647 and 10 nM HA-PE gave the best compromise between

brightness and spillover.

Flowjo software was used to calculate compensation matrices and analyze

data. To calculate compensation, cell samples labeled with a single fluorophore or

fluorophore conjugated beads were used. For some experiments, fluorescence minus

one controls were used to determine negative and positive populations. Yeast clones

expressing single barcodes labeled with cmyc and one additional epitope tag were

used to distinguish positive populations, quantify the percent of barcodes captured and

estimate the error between barcodes.

To manually analyze a flow cytometry data set of barcode mixtures, first a gate

was drawn on the cell population in order to exclude debris and minimize forward and

side scatter differences between cells. Then, a conservative gate was drawn on the

cmyc channel for normalization of protein expression. Barcoded subpopulations were

visualized on 2-D scatter plots by the fluorescence intensity of one epitope tag versus

 17

the normalization fluorescence, and gates were drawn around the subpopulations as to

minimize overlap between them and remove any cells with ambiguous barcodes.

2.6 Expansion of Barcode Library by Random Homologous Recombination of
Epitope Tags and Fluorescence Activated Cell Sorting (FACS)

In order to generate additional barcodes, we developed a strategy to create new

epitope tag combinations in one reaction using random recombination of the flexible

glycine-serine homologous linkers that surround epitope tags. Specifically, nine

additional epitope tags, namely S tag, AcV5, AU5, StrepTagII, V5, E2, T7, VSVG,

and E tag, flanked by (G4S)3 linkers and two sets of restriction enzymes, were

synthesized by Genewiz. Three approaches were used to create DNA plasmids

encoding epitope tag combinations: homologous recombination with full restriction

digest, partial restriction digest, or overlap PCR. For the restriction digest and

homologous recombination approach, inserts containing epitope tags surrounded by

linkers were generated by digesting the synthesized plasmid with a log 10 titration of

NheI or SphI restriction enzymes. The insert and vector were purified and transformed

into yeast. A third strategy used fully digested epitope-linker DNAs as primers in an

overlap PCR reaction to create new epitope tag combinations.

The three yeast barcode libraries were analyzed for barcode combinations

using flow cytometry, and each unique combination was enriched and isolated by

FACS. After sorting, yeast clones expressing barcodes were selected on agar plates

and tested for barcode expression using flow cytometry. After barcoded yeast clones

were confirmed, plasmids were rescued by zymoprep and transformation into NEB

Stable E. coli. Barcode plasmids were also confirmed for the correct epitope tag

combination by Sanger sequencing.

 18

2.7 Construction of Libraries Containing Thousands of Unique Barcodes

To construct a large and diverse barcode plasmid library, epitope tags with

repeat lengths that generate unique fluorescent signatures when expressed and

immunolabeled in yeast were combined in three sequential reactions to generate up to

216 barcodes. In the first round, plasmids containing 1 and 4 HA were subcloned as

mentioned above in a one pot reaction with 1 and 4 HSV to create 8 unique barcodes.

4HIS and 1 and 4 AU1, and 4 GLU-GLU and 1FLAG were combined in the same

manner to create 5 and 3 unique barcodes respectively. Then, the HA-HSV and HIS-

AU1 libraries were crossed using subcloning to make 54 unique barcodes. Finally, the

HA-HSV-HIS-AU1 library was crossed with the GLU-FLAG library to make up to

216 unique barcode combinations using 6 epitope tags.

To further expand the number of barcodes, we constructed 18 barcode libraries

using a unique plasmid from the second round of barcode creation, which contain

combinations of AcV5, AU5, V5, E2, and T7 epitope tags, as the acceptor vector and

the library of 216 barcodes as the insert. Specifically, DNA was digested with SpeI

and XhoI restriction enzyme sites to linearize the vector and excise DNA encoding the

barcode and AGAlpha1 protein. Additionally, the inserts were digested with a cocktail

of restriction enzymes, including NdeI, BstNI, AclI, EciI, and DraI, to digest the mini-

plasmids. Mini-plasmids are non-full-length plasmids composed of backbone DNA

fragments with partially or fully deleted barcode regions that arose from plasmid

instability in E. coli due to repeating DNA regions.

DNA inserts and vectors were gel purified, ligated overnight at 16°C, purified,

transformed into NEB 10ß cells, and plated at three different dilutions to determine the

library size. After overnight growth on agar plates, E coli colonies were miniprepped

to obtain plasmid DNA. Barcode library DNA was transformed into yeast using the

 19

high efficiency lithium acetate method, and yeast libraries were grown up in selective

media and dilutions were plated on selective agar to determine library size. Yeast

libraries were grown in glucose liquid media to log phase and induced in galactose

media for 24 hours at 30°C prior to immunolabeling and flow cytometry.

2.8 Construction and Analysis of Barcode Pacbio SMRT Library

Barcodes contain tandem GC-rich DNA sequences, prohibiting Sanger

sequencing for constructs containing more than 4 repeats. Therefore, we used Pacbio

SMRT sequencing to determine the distribution of epitope tag repeat lengths and

barcode combinations in the library. Approximately 100 plasmids containing different

repeat lengths and combinations of HA, HSV, HIS, GLU-GLU, AU1, and HSV

epitope tags were prepared for Pacbio sequencing by restriction digest with XbaI and

XhoI to excise the DNA fragment encoding the barcode ORF. BluePippin was used to

remove most of the backbone fragments from the sample, and the remaining DNA

inserts were adapted for SMRT sequencing. After sequencing, raw data was filtered

using a circular consensus sequence (CCS) cutoff of 3 and a quality score of 0.9. The

‘reads of insert’ protocol from SMRT analysis portal was used to generate CCS reads.

We created a method to analyze the distribution of repeat lengths in the Pacbio

library. Specifically, we used the LALIGN algorithm [52] implemented by W.R.

Pearson at UVA, which finds internal, non-intersecting duplications in nucleotide

sequences. The default gap open penalty of -12 and gap extension penalty of -4 were

used to compute expectation values. An expectation threshold value of 1e-4 was used

to filter out incorrect alignments. Additionally, Python scripts were written to further

process the LALIGN data. These scripts determined the epitope tag repeat lengths and

 20

their frequency, the frequency of particular barcode combinations, and the barcode

combination for each Pacbio sequence read.

2.9 Detection and Quantification of Low-Abundance, Endogenous Repeat
Fusion Proteins in Cells

GFP epitope tag repeat plasmids were constructed as described above.

Plasmids were linearized with XhoI, purified, and transformed into yeast GFP fusion

strains using the lithium acetate ssDNA method. Single clones were isolated after 3-4

days of growth on selective URA dropout plates, and FLAG integration and GFP

knockout was confirmed by immunolabeling and flow cytometry. Specifically, cells

were fixed for two hours in 4% formaldehyde. After two washes, cell walls were

digested by addition of 50 µg/mL zymolyase in PBS for 1 hour at 30°C. Spheroplasts

were permeabilized by incubation with 0.25% Triton-X in PBS for 30 minutes with

rotation at room temperature. Cells were washed 3 times in PBS and incubated with

100 µg/mL RNase A for 15 minutes at 37°C. Then, cells were incubated with 10nM

a-FLAG in at least 10-fold stoichiometric excess for 2 hours at room temperature,

washed three times with PBS supplemented with 4% BSA and incubated with 35 nM

Alexa Fluor 647 conjugated a-mouse antibody for 1 hour at room temperature and

SYTOX Green nucleic acid stain or propidium iodide for 10 minutes. After three

washes with PBS and 4% BSA, cells were analyzed on an Accuri C6 flow cytometer.

Cells were also analyzed using a Zeiss LSM 800 confocal microscope equipped with a

63x oil lens.

2.10 Expression and Purification of Recombinant Mouse Prion Protein

The NEB T7 E. coli strain containing the pET11a-MoPrP 23-230 plasmid was

grown overnight in a 250 mL starter culture from a single colony. The starter culture

 21

was inoculated into a 30L New Brunswick Scientific BioFlo 4500 bioreactor

containing 20L of TB media. After cells reached an OD600 of 1, IPTG was used to

induce protein expression for 4 hours. The protein was purified as previously

described by isolation and homogenization of inclusion bodies, size exclusion

chromatography, oxidation for two weeks at 4°C, reverse phase HPLC, and

lyophilization [53]. Recombinant prion protein purity was confirmed by SDS-Page,

Coomassie and silver stain. For fluorescent labeling, a stoichiometric excess of Alexa

Fluor 647 NHS ester was incubated in 0.1M sodium bicarbonate buffer, pH 8 with

lyophilized prion protein. Labeled, precipitated PrP was recovered by centrifugation

and solubilized in refolding buffer consisting of 4M Urea, 0.25 mM oxidized

glutathione (GSSG), and 0.1M Tris (pH 8) for 90 min to create the alpha helical form

of the prion protein [54]. For labeling experiments, prion protein in refolding buffer

was rapidly diluted into PBS pH 7.4 at 100 nM or lower to avoid precipitation.

2.11 Creation and Assessment of Barcoded ICSM18 2.6.1 scFv

A plasmid containing pCTCON2-ICSM18 2.6.1 was previously constructed by

Kyle Doolan. The ICSM18 2.6.1 sequence was isolated by PCR using primers to

amplify the gene and change the restriction enzyme sites used for subcloning. The

DNA fragment was cloned into the pBC2 plasmid and two libraries containing a

mixture of barcode plasmids. Cells were grown up in SD media and induced in SG

media for 24-48 hours at 20°C or 30°C. For immunolabeling, Alexa Fluor 647 labeled

alpha helical prion protein was titrated with cells displaying ICSM18 2.6.1 or

barcoded ICSM18 2.6.1 in PBS pH 7.4. Cells were immunolabeled with cmyc and a-

chicken Alexa Fluor 488 to normalize for differences in protein expression level, and

barcode antibodies if needed, as described above.

 22

2.12 Construction of Barcoded Yeast GFP Fusion Strains

Yeast clones from the yeast GFP fusion collection [55] were unfrozen from -

80°C stocks and grown overnight in 96-well plates with shaking at 800 rpm using an

orbital microplate shaker (Benchmark Scientific) at 30°C. Cells were replicated onto

SD-HIS plates using a prong replicator and grown overnight. 100ng each of either a

single barcode plasmid or barcode plasmid libraries were transformed into each strain

as previously described [48]. After 3-4 days of selection on SD-His-Ura plates, single

clones were picked to select yeast clones expressing a single barcode. Single strains

were preserved in 96-well plates.

2.13 Identification of Unique Barcoded Yeast GFP Fusion Strains and
Environmental Perturbations

Yeast GFP fusion strains expressing a unique and known combination of T7,

V5, AU5, AcV5, and E2 epitope tags were pooled in mixtures to screen for an

unknown combination of HA, HSV, HIS, AU1, GLU-GLU, and FLAG epitope tags.

For identification of unique barcodes, mixtures of barcoded yeast GFP fusion strains

were grown up in SD to log phase and induced in SG media. In some cases, cells were

fixed in 1-4% formaldehyde for 10 minutes and permeabilized in 100% methanol to

lessen cellular autofluorescence. Cells expressing barcodes were immunolabled as

described above and analyzed on a FACSAriaII cell sorter.

For perturbation experiments, after induction of barcode expression cells were

exposed to an environmental change (e.g. ethanol, oxidative stress, heat shock) at a

range of concentrations and fixed at various time points, usually less than two hours.

For immunostaining, cells were permeabilized, immunolabeled, and analyzed as

described previously.

 23

2.14 Conversion of Arbitrary Fluorescence to Protein Abundance

Recombinant eGFP (recGFP) produced in E. coli and purified by ion exchange

chromatography was a gift from Dr. Wilfred Chen at the University of Delaware.

recGFP was assessed by Coomassie stain as 90% pure by ImageJ. recGFP

concentration was estimated to be 0.67 ± 0.08 mg/mL by BCA assay (Thermo

Scientific Pierce). Quantitative Western blotting was used to determine the abundance

of GFP in the TDH3-GFP yeast strain. Briefly, 40, 50, 60, 70, 80, 90, and 100 ng of

recGFP and lysate from a known number TDH3-GFP cells were loaded onto an SDS-

PAGE gel and transferred onto nitrocellulose membrane. a-GFP antibody (Life

Technologies) and a-mouse HRP conjugated antibody (Life Technologies) were used

to detect chemiluminescence. GFP intensities were quantified using ImageJ

(Schneider et al., 2012), and a standard curve of chemiluminescence versus amount of

recGFP was plotted. The abundance of GFP in the TDH3-GFP fusion strain was

calculated from the standard curve as 2.7 million molecules per cell.

A relationship between arbitrary GFP fluorescence and GFP protein abundance

was determined by linear regression after analyzing the TDH3-GFP fusion strain by

flow cytometry. To correlate FLAG signal with protein abundance, eGFP with 16

FLAG was expressed as a fusion to AGalpha1, and cells were immunolabeled with a-

FLAG and Alexa Fluor 647 conjugated a-mouse antibodies and analyzed by flow

cytometry.

 24

DEVELOPMENT OF ONE-COLOR EPITOPE TAG REPEAT BARCODES
AND THEIR USE FOR DETECTION OF ENDOGENOUS, LOW-

ABUNDANCE PROTEINS IN SINGLE-CELLS

3.1 Introduction

In this chapter, fluorescent cellular barcode design considerations are

discussed, including the desire for a high degree of barcode diversity, the need for

high-throughput measurement capability, and the advantages of a genetically-encoded

barcoding system that can be reused for multiple experiments. A new method for

iterative exponential expansion of tandem repeating DNA sequences, and its use for

the creation of single-color barcodes composed of repeating epitope tags is presented.

Furthermore, evidence supporting instability of tandem epitope tags in E. coli is

presented, including DNA gel electrophoresis analysis, protein expression analysis by

flow cytometry, and next-generation sequencing analysis of tandem repeating barcode

DNA. Also, we show that the flow cytometric detection and quantification of

endogenous low-abundance proteins in single-cells is enabled by the use of protein

fusions to long epitope tag repeats.

3.1.1 Fluorophores and Protein Detection Methods

Fluorophores are molecules that produce fluorescence, or in other words emit

light at a longer wavelength after absorbing light. Fluorophores are used widely to

detect proteins, nucleic acids, organelles, and even cells. The three major types of

fluorophores are: small organic dyes, fluorescent proteins, and quantum dots [56]. The

Chapter 3

 25

two most widely used methods for protein detection using a fluorescent reporter are

immunolabeling with fluorophore-conjugated antibodies or genetic fusions with

fluorescent proteins. Proteins are typically studied in cells and tissues using

fluorescence microscopy or flow cytometry [56].

Fluorescent protein fusions are advantageous because they enable direct

detection via genetic fusion to a protein of interest, and can be used to visualize

proteins in living cells. Disadvantages of fluorescence proteins include the limited

number of spectrally distinct proteins [57] and the potential impact on protein function

due to their relatively large size. Moreover, fluorescent barcoding systems that are

fluorescent protein based have been unable to achieve large numbers (>100) of

barcodes due to these limitations [24]–[26].

Immunolabeling has distinct advantages over fluorescence protein fusions.

Immunolabeling is compatible with a wide range (>40) of fluorophores, and therefore

can be used to detect a greater variety of proteins in a single cell [58], and it is less

likely to impact protein function as it is an indirect detection method. However,

immunolabeling is often limited to surface proteins or requires cell fixation and

permeabilization for intracellular proteins. Immunolabeling also requires high affinity,

high specificity antibodies [56]. Previous barcoding systems based on immunolabeling

have been successful in achieving ~100 barcodes [17].

Epitope tags are short sequences of amino acids, typically 6-15 residues in

length, that can be genetically fused to proteins for detection or purification [59].

Epitope tags protein fusions are created by genetic fusion to the beginning or end of a

DNA sequence encoding the protein of interest. Once the tagged protein is expressed,

it can be detected by immunostaining with a specific a-epitope tag antibody.

 26

Additionally, epitope tags are advantageous because they have a minimal impact on

protein function and structure due to their small size [60], and there are dozens of

commercially available epitope tags and corresponding antibodies. The epitope tags

and their amino acid sequences used in this work are listed in Table 3.1.

Table 3.1: Epitope tags and amino acid sequences used in this work.

3.1.2 Yeast Surface Display

Yeast surface display is a powerful method that is used to engineer proteins

with desirable properties. For example, yeast surface display has been used to engineer

a fibronectin domain with picomolar binding affinity [61], as well as proteins with

enhanced thermal stability and soluble secretion efficiency [62]. To perform yeast

surface display, a protein of interest is typically genetically fused to one of two yeast

cell mating proteins, namely the C-terminal portion of the a-agglutinin protein or the

a-agglutinin (AGA) protein [63]. Notably, the a-agglutinin system requires

Epitope Sequence
c-Myc EQKLIEEDL
HA YPYDVPDYA
HIS HHHHHH
AU1 DTYRYI
Glu-Glu EYMPME
FLAG DYKDDDDK
HSV QPELAPEDPED
T7 MASMTGGQQMG
E2 tag SSTSSDFRDR
V5 GKPIPNPLLGLDST
AU5 TDFYLK
AcV5 SWKDASGWS
E-tag GAPVPYPDPLEPR
VSV-G YTDIEMNRLGK
Strep Tag II WSHPQFEK
S tag KETAAAKFERQHMDS

 27

transformation of a single plasmid encoding the protein of interest fused to alpha-

agglutinin. In contrast, the a-agglutinin display system requires both a plasmid and

genetic integration. Using this method, the protein to be displayed is genetically fused

to the AGA2 protein and expressed from a plasmid, and the yeast strain for protein

expression is genetically modified by chromosomal integration of a gene encoding the

AGA1 protein [64].

3.1.3 Methods for High-Throughput Cell Biology

The two major tools used for high-throughput cell biology are flow cytometry

and fluorescence microscopy. Flow cytometry is a powerful tool for high-throughput,

single-cell analysis and has led to many novel discoveries in cell biology. Flow

cytometry is routinely used in immunology to identify cell subtypes and rare cell

phenotypes, such as in the identification of rare HIV specific T cells [65]. In flow

cytometry, a sample of cells containing fluorophores, that have been introduced by

genetic fusions, staining, immunolabeling, are introduced into a rapid (>10,000 events

per second) laminar flow stream. As the cells travel in the flow stream, they are

focused into single file by hydrodynamic focusing. Then, single cells are interrogated

at the flow cell by a series of lasers, causing the fluorophores in the cell to be excited

and subsequently emit fluorescence which is captured by photodetector arrays

equipped with spectral filters [66]. Flow cytometry is particularly powerful because it

can measure multiple biomolecules simultaneously in a single cell (nucleic acids,

proteins, ions, lipids), with each entity to be detected assigned a different, spectrally

distinct fluorophore. Currently, state of the art flow cytometers can measure up to 20

parameters in a single cell [58].

 28

Automated fluorescence microscopy is another tool that is frequently used for

high-throughput cell biology. For example, it has been used for many studies

examining yeast proteomics in response to environmental fluctuations [10], [67], [68].

These systems can be used to quantify fluorescence by automated imaging of cells

cultured in multi-well plates and image processing using software to quantify pixel

intensity [69]. Fluorescent barcoding systems that are fluorescence microscopy based

are often lower throughput and measure fewer cells per barcode than flow cytometry,

and can therefore have more inherent noise [25], [27].

3.1.4 Instability of Tandem Repeating DNA

Tandem DNA repeat sequences are present in bacterial and eukaryotic

genomes and on circular plasmids. Changes in the length of repetitive DNA sequences

are known to underlie a number of human genetic conditions including Huntington’s

disease, spinocellular ataxia, and mynotonic dystrophy [70]. In addition, deletion or

changes to plasmid DNA harboring repeat regions have detrimental consequences

including reduced plasmid yield and quality, and can hamper molecular cloning [71].

Repetitive nucleotide sequences are known to undergo expansion or deletion events

via a variety of mechanisms including RecA mediated homologous recombination

[72] and recA independent mechanisms such as replication slippage caused by the

formation of secondary structure [73], sister chromosome exchange, and single-strand

annealing [74]. The frequency of recombination in plasmids has been shown to be

affected by the length of the repeat and spacing between repeats [75]. For unstable

plasmid propagation, some have found that the genetic background of the E. coli strain

can minimize the frequency of recombination events [71].

 29

3.2 Design Considerations for an Improved Fluorescent Cell Barcoding System

To create distinct fluorescent barcodes, we created thousands of DNA plasmids

encoding protein barcodes, which can be used to identify different cells in a

heterogeneous mixture. Barcodes are composed of epitope tags, differing in both the

type of tag and number of repeats, connected by flexible glycine-serine linkers

(Figure 3.1). For convenience, we fused barcodes to the yeast surface alpha-agglutinin

mating protein, although barcodes could also be fused to a different protein or

expressed intracellularly. Different types of epitope tags are used to create barcodes

with more fluorophores or ‘colors’, whereas different repeat numbers of an epitope tag

are used to create spectrally distinct intensities of a particular color.

Figure 3.1: Fluorescent barcoding design. Fluorescent barcodes are composed of
epitope tags connected by flexible linkers that produce spectrally distinct
colors when expressed in cells and immunolabeled with fluorophore
conjugated a-epitope tag antibodies. Barcodes are fused to the yeast
surface protein alpha-agglutinin and are genetically encoded on a
plasmid.

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y
Y

Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y
Y

Y
Y

Y
Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

 30

To use the barcoding system, first barcode plasmids are transformed into cells

of interest. Then, the barcoded cells are pooled into a single tube, immunolabeled with

fluorophore conjugated antibodies, and analyzed by flow cytometry (Figure 3.2).

After analysis, different types of cells present in the heterogeneous sample are

deconvolved by their fluorescent barcode’s unique combination of colors and

fluorescent intensities. Barcodes can be used to distinguish members of biomolecular

and cellular libraries in a heterogeneous mixture. For example, barcodes can be used

to identify different types of cells, cells expressing different fluorescent fusion

proteins, cells with different genetic knockouts, and cells expressing different protein

mutants. Additional variables that have a fluorescent readout can be multiplexed with

fluorescent barcodes, including intracellular fluorescent protein fusions, protein-

protein interaction assays, nucleic acid or lipid stains, cell-cycle analysis, ion indicator

dyes, and live/dead cell staining.

Figure 3.2: Fluorescent barcoding workflow. Plasmids encoding distinct fluorescent
barcodes are transformed into cells of interest. Then, barcoded cells are
pulled into a single tube, immunolabeled, and analyzed by flow
cytometry. Finally, the flow cytometry data is analyzed to determine the
fluorescent barcode associated with each cell.

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

Y
Y

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y

Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

Y
Y

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y

Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

Y
Y

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y

Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y
Y

Y
Y

Y
Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

Y
Y

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y

Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y! Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

Y
Y

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y

Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y
Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

Y
Y

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y

Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

Y
Y

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y

Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

Y
Y

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y

Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y
Y

Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

Y

Y

Y Y

Y
Y

Y

Y

Y Y
YY Y

YY

YY
Y YY

Y

Y

Y

YY

Y
Y

Y

Y

Y
Y Y

Y
YY

Y

Y

Y

Y

Y
Y

Y

Y

Y
YY

Y
Y Y

Y

Y

Y

Y
Y

Y

Y

Y

Y
YY

Y
Y Y

Y

Y
Y

Y
Y

Y

Y

Y

Y
Y Y

Y
YY

Y

Y
Y

Y
Y

Y

Y

!
epitope tag!
anti-epitope tag antibodies!
glycine-serine linker!
plasmid encoding barcode!
α-agglutinin!

!
Y Y!
Y Y!

B!

C!
Fluorescence (afu)!N

o
rm

a
liz

e
d

 C
o

u
n

t!

Normalized
Fluorescence!

N
o

rm
a

liz
e

d
 C

o
u

n
t!

FLAG!

AU1!

AU1!

FLAG!

HA!

HA!

His6!

His6!

Glu-Glu!

Glu-Glu!

HSV!

HSV!

Barcode fluorescence

C
ou

nt

B!

C!
Fluorescence (afu)!N

o
rm

a
liz

e
d

 C
o

u
n

t!

Normalized
Fluorescence!

N
o

rm
a

liz
e

d
 C

o
u

n
t!

FLAG!

AU1!

AU1!

FLAG!

HA!

HA!

His6!

His6!

Glu-Glu!

Glu-Glu!

HSV!

HSV!

Barcode transformation
Pool barcoded cells

Flow cytometry Barcode analysis

 31

3.3 Exponential Expansion of Epitope Tag DNA Sequences and Instability of
Long Epitope Tag Repeats in E. coli

We (Appendix A, C) developed a method to construct tandem epitope tag

repeats in order to create barcodes with distinct fluorescent intensities. This method

uses iterative restriction digest and destructive ligation, and is generally applicable to

any DNA sequence of interest. For example, a plasmid encoding a single HIS tag

followed by (G4S)3 was digested with PacI and XmaI restriction enzymes to generate

the HIS-(G4S)3 insert to be duplicated, and the same plasmid was separately digested

with AsiSI and XmaI to generate an acceptor vector, which retained the sequence

encoding HIS-(G4S)3. Ligation of the gel purified products resulted in duplication of

sequence encoding the HIS-(G4S)3 as well as destruction of the AsiSI and PacI sites

which had been cut prior to ligation, while one copy of each of these sites was retained

on the new vector. The length of the insert was doubled upon each repetition of the

process to generate plasmids encoding (HIS-(G4S)3)4, (HIS-(G4S)3)8,, and (HIS-

(G4S)3)16.

The same process was applied to generate analogous series of plasmids

encoding tandem repeats of the HA, FLAG, AU1, GLU, and HSV epitope tags.

Restriction enzyme digest was used to excise the repeat regions and DNA was run on

an agarose gel to check for the correct size (Figure 3.3). Also, Sanger sequencing was

used to confirm the repeat lengths of the barcode plasmids. However, plasmids with

more than four repeats failed to sequence due to their repetitive structure and high GC

content.

 32

Figure 3.3: Exponential tandem expansion of epitope tag repeats. The left panel shows
a general method for the exponential expansion of repeat sequences by
destructive ligation of AsiSI and PacI restriction enzyme sites. The use of
two restriction enzyme sites which are destroyed upon ligation, in
conjunction with a third enzyme whose site is preserved, is key to
iterative duplication of tandem sequences. The process was repeated to
iteratively double the number of epitope tags up to sixteen repeats. The
right panel shows an example of a DNA gel with plasmids digested to
excise the repeat regions of differing lengths.

Occasionally, barcode plasmids recovered from E. coli colonies contained

unexpected repeat lengths. For example, we observed a plasmid that appeared to

contain ~6 repeats by restriction digest after attempted subcloning of a 16 repeat

plasmid (Figure 3.4). Similarly, plasmids recovered after attempted subcloning of 32

Vector Digest! Insert Digest!
AsiSI! XmaI! XmaI!PacI!

Plasmid with two HIS tags!

 AsiSI 5’!
 3’ PacI!

(sites destroyed) !

PacI! AsiSI!XmaI!

Ligate!

Repeat to double number of HIS tags iteratively!

Plasmid with single HIS tag !

AsiSI!XmaI!PacI!

AsiSI 5’! XmaI! 3’ PacI! XmaI!

(G4S)3! G4S!HIS!

Continuation of DNA!
Restriction digest site!

Aliquot!

1 2 4 8 16
repeats

0.3
0.5

1
1.5

Kbp

0.1

 33

and 64 repeat GLU constructs contained repeat lengths smaller than the starting

plasmid. After encountering these difficulties, we hypothesized that plasmids with 16

or more repeats were unstable in E. coli. To test this hypothesis, we subcloned 1, 4,

and 16 repeats of HA, HSV, HIS, AU1, GLU, and FLAG epitope tags that had been

previously confirmed to be the correct size into the pBC1-GAL backbone vector.

DNA plasmids were purified from E. coli in a library format and transformed into

yeast cells.

Figure 3.4: Instability of long epitope tag repeat plasmids. Repeat plasmids were
subcloned using the expansion method and transformed into E. coli.
Single colonies were picked and plasmids were purified, restriction
digested to excise the repeat region, and run on an agarose gel. The left
panel shows an unexpected AU1 plasmid of ~6 repeats in length. The
right panel shows DNA repeat regions after attempted subcloning of 4,
16, 32, and 64 GLU repeats. Notably, all 64 repeat plasmids and two out
of three of the 32 repeat plasmids have the incorrect size, whereas all of
the 16 and 4 repeat plasmids are the correct size.

After barcode expression and immunolabeling, we observed that cells

expressing 1 and 4 repeat barcodes formed single populations with an expected

kbp

0.5 -

1.5 -
1 -

AU1 plasmids
1 2 4 8 16?

kbp
5 -

1.5 -

0.5 -

c2 c3 c2 c3 c2 c2 c3

 34

increase in fluorescence with repeat length (Figure 3.5), suggesting that 1 and 4 repeat

plasmids are stable in E. coli. However, immunolabeling of cells expressing the 16

repeat plasmids produced a heterogeneous mixture of fluorescence intensities, with no

observed increase in fluorescence. This suggests that 16 repeat plasmids are unstable

in E. coli.

Figure 3.5: Long epitope tag repeats are unstable. Mixtures containing either 1, 4, or
16 repeat plasmids were transformed, expressed, and immunolabeled in
yeast cells. Cells expressing 1 and 4 repeats create populations with more
homogenous fluorescence and exhibit an expected increase in repeat
length. Cells expressing 16 repeat proteins have more heterogeneous
fluorescence and no increase in fluorescent signal was observed.

1 AU1 mixture 4 AU1 mixture 16 AU1 mixture

AU
1

si
gn

a
(a

fu
)

AU
1

si
gn

al

AU
1

si
gn

al

CMYC signal (afu)

H
A

si
gn

al

CMYC signal (afu)

H
A

si
gn

al
 (a

fu
)

H
A

si
gn

al

1 HA mixture 4 HA mixture 16 HA mixture
107

105

103

101

107105103101

105103101

AU
1

si
gn

al
105

103

104

 35

Additionally, we isolated yeast clones expressing 16 repeat barcodes from the

library and analyzed the immunolabeled cells by flow cytometry. We found that

daughter cells from each clone had a uniform but subtly different fluorescent

signature, suggesting that the observed fluorescence heterogeneity was caused by

clonal due to repeat instability (Figure 3.6). Importantly, yeast cells expressing 16

repeat barcodes derived from plasmids that were checked for the correct length on an

agarose gel produced a uniform population with increased fluorescent signal (See

Section 3.4). This observation suggests that long repeat plasmids are not unstable in

yeast.

 36

Figure 3.6: Repeat plasmid instability underlies fluorescence heterogeneity. Single
yeast clones were isolated from 16 repeat libraries and analyzed by flow
cytometry. Immunolabeled daughter cells from single clones produced
uniform fluorescent signatures, suggesting clonal variation caused by
repeat plasmid instability is the underlying cause of the observed
fluorescence heterogeneity of the 16 repeat barcodes.

3.4 Analysis of Epitope Tag Repeat Lengths and Barcode Plasmids by SMRT
Sequencing

To further investigate epitope tag repeat instability, we used SMRT sequencing

(Pacific Biosciences) to investigate the lengths of epitope tag repeats in plasmids.

SMRT sequencing is a type of next generation sequencing exhibiting long read lengths

and uniform coverage (limited GC or AT bias). First, repeat plasmids were restriction

digested to isolate the open reading frame and size exclusion was used to remove

AU
1

si
gn

al
 (a

fu
)

CMYC signal (afu)

16 AU1 mixtureAU1 clone 1 AU1 clone 2

105103101

H
SV

 s
ig

na
l (

af
u)

CMYC signal (afu)

HSV clone 1 HSV clone 2 16 HSV mixture

105103101

105

103

101

105

103

104

 37

backbone DNA fragments. After sequencing, raw data was filtered and circular

consensus reads were determined using Pacbio SMRT analysis portal.

Along with our collaborator, Dr. Greg Vorsanger at Johns Hopkins University,

we developed a computational method for barcode identity and repeat length analysis

(Appendix A). The method uses the LALIGN algorithm to determine the number of

epitope tag repeats and types of epitope tags present in each SMRT sequence read.

Then, custom Python software was used to compile and synthesize the information

from all reads (Appendix B). CCS consensus sequences were filtered for a quality

score of 0.9 and at least 3 passes, and LALIGN alignments with an expectation value

> 10-4 were rejected.

In general, we found the majority sequence reads contained epitope tag repeats

of the expected lengths, namely 1, 2, 4, 8, and 16, and 32, with the exception of GLU

whose dominant lengths were 1 and 14 repeats (Figure 3.7). Additionally, we found a

significant number of reads with unexpected repeat lengths ranging from 3-50 repeats.

Reads of unexpected repeat lengths ranged from 0.11% for HIS to 0.48% for HSV

(Table C.2). Taken together, this illustrates that epitope tag repeat plasmids are

unstable in E. coli and area capable of forming a range of sizes. Furthermore, we

examined the SMRT data on a barcode basis and found that the number of barcodes

with different repeat lengths differed significantly from expected. We found 717

unique barcode sequences comprised of combinations and repeat lengths of HA-HSV-

HIS-AU1-GLU-FLAG epitope tags (Table C.1), but we expected that there were only

110 unique barcodes in the sample (Table C.3)

 38

Figure 3.7: Distribution of epitope repeat lengths found using SMRT sequencing.
Epitope repeat lengths had a central tendency towards expected sizes,
namely 1, 2, 4, 8, and 16 repeats. However, a significant number of reads
contained repeats of unexpected sizes, ranging from 3-50 repeats,
supporting the hypothesis that epitope tag repeat plasmids are unstable in
E. coli.

3.5 Cellular Expression of Single-Color, Multiple-Intensity Fluorescent
Barcodes

Epitope tag repeat sequences were expressed in cells as genetic fusions to the

C-terminal domain of alpha-agglutinin under the constitutive GPD promoter. The

fusion proteins also contained N-terminal cmyc tags, which, due to the presence of the

GPI anchor at the C-terminus, allowed monitoring of full-length expression of the

epitope tag repeat fusion (Figure 3.8). Cells expressing the fusion proteins were

immunolabeled with an antibody specific for cmyc and analyzed by flow cytometry.

Surprisingly, a general trend was observed in which cmyc signal increased slightly

HA HIS FLAG

GLUGLU AU1 HIS

1 4 8 16 1 4 8 16 1 4 8 16 32

1 14 28 1 4 328 16 1 4 8 16

2000

0

1600

0

2500

0

1200

0

120

0

300

0

Co
un

t
Co

un
t

Co
un

t

Co
un

t

Co
un

t

Repeats

Repeats # Repeats

Repeats # Repeats

Repeats

1000

1250
Co

un
t

800

600 150

60

 39

with number of repeats demonstrating that epitope repeat sequences up to 34 kDa are

well-expressed.

Figure 3.8: Cellular expression of epitope tag repeats. Epitope tag repeats contain an
N-terminal cmyc tag for expression normalization and a C-terminal
fusion to the alpha-agglutinin yeast surface protein. In general, epitope
tag repeats were well-expressed and their expression did not decrease
with repeat length.

Immunolabeling of cells expressing tandem epitope tag repeats of varying

lengths, fused to AGα1, with primary antibodies followed by secondary antibodies

conjugated to Alexa Fluor 647, generally resulted in increases in fluorescent signal

with increasing numbers of epitope tag copies (Figure 3.8). Fusion of the protein to

tandem epitope tag repeats resulted in four to ten-fold increases in fluorescence

intensity for HIS, FLAG, AU1, and HSV epitopes as compared to a single epitope tag.

Large increases in signal, 54-fold and 101-fold, were observed for 16 HA and 16

e!

1
2

2
4

4
8

8
17

16
33

repeats:
kDa:

HA

Background

102
103
104

105

106

c-
M

yc
sig

na
l

(a
fu

)

HIS FLAG

1
2

2
4

4
8

8
16

16
32

AU1

1
2

2
4

4
7

8
14

16
29

1
2

2
4

4
7

8
14

16
29

Glu-Glu

1
2

2
4

4
7

8
14

16
28

HSV

1
2

2
4

4
8

8
17

16
34

102
103
104
105

106

c-
M

yc
sig

na
l

(a
fu

)

repeats:
kDa:

 40

GLUGLU repeats, respectively, under the conditions tested. Such large increases

likely arose from the choice of antibody labelling concentration.

Figure 3.9: Multiple epitope tag repeats increase immunofluorescence intensity. Cells
expressing the C-terminal alpha-agglutinin domain fused to a range of
epitope tag repeat lengths were analyzed by flow cytometry after labeling
with unconjugated primary antibodies and Alexa Fluor 647-conjugated
secondary antibodies. Immunofluorescence intensity increased with
repeat number up to 101-fold.

Antibodies specific for HA and AU1, directly conjugated to PE and PE-Cy7

respectively, were used to immunolabel cells expressing AGα1 fused to several

tandem epitope tag repeats of varying length. Fluorescent signals increased 31-fold for

16

8

4

2

1

0

16

8

4

2

1

0

100 103 106

Intensity (afu)Re
la

tiv
e

co
un

t

0

100

16

8

4

2

1

0

16

8

4

2

1

0

16

8

4

2

1

0

16

8

4

2

1

0

repeats

Fl
uo

re
sc

en
ce

(lo
g 2

in
te

ns
ity

)

HA HIS FLAG Glu-Glu AU1 HSV

repeats # repeats # repeats # repeats # repeats

10
12
14
16
18
20

1 2 4 8 16 4 8 16214 8 1621

HA HIS FLAG Glu-Glu AU1 HSV

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

 41

16 HA repeats and 34-fold for 16 AU1 repeats as compared to a single epitope tag

(Figure 3.9). The use of tandem epitope repeats separated by flexible linkers may

therefore be especially beneficial for immunolabeling with directly conjugated

primary antibodies, as they often produce a lower median fluorescent signal than

fluorophore-conjugated secondary antibodies, which benefit from signal amplification

during secondary labeling.

Figure 3.10: Epitope tag repeats increase immunofluorescence intensity with direct
detection. Cells expressing the C-terminal alpha-aggutinin domain fused
to a range of epitope tag repeat lengths were analyzed by flow cytometry
after labeling with fluorophore-conjugated antibodies.
Immunofluorescence intensity for repeat proteins was improved over 30-
fold as compared to a single epitope tag when cells were immunolabeled
with fluorophore-conjugated antibodies.

HA
AU1

8
4

2
1

0
103106100R

el
at

iv
e

co
un

t

Intensity (afu)

4

1

00

100 Fl
uo

re
sc

en
ce

(lo

g 2
in

te
ns

ity
)

1 2 4 8 16
repeats

16 16

11

7

15

13

9
8

10

12

14
HA AU1

 42

3.6 Application of Long Epitope Tag Repeat Fusions for Improved Flow
Cytometric Analysis of Endogenous, Low-Abundance Proteins in Single-
Cells

Given the large increase in immunofluorescent signal afforded by long epitope

tag repeats, we posited that they would be useful for detection of low abundance

proteins. 1 and 16 FLAG epitope tag repeats were subcloned into an integrating

plasmid containing regions of GFP homology and transformed into seven yeast GFP

fusion clones [55] that have been shown to be undetectable by flow cytometry by us

and others [41]. The resulting clones expressed 1 or 16 FLAG fusion proteins from the

endogenous promoter instead of a GFP fusion. Epitope tag fusion clones were grown

to log phase, immunolabeled, and analyzed by flow cytometry and confocal

microscopy (Figure D.1). The median fluorescence intensity did not vary drastically

from experiment to experiment (Figure 3.10), illustrating that 16FLAG repeats are a

reliable and reproducible method for protein immunodetection by flow cytometry.

 43

Figure 3.11: Detection of endogenous, low abundance yeast proteins by long epitope
tag repeat fusion. 16FLAG repeat fusions were integrated into the yeast
genome using a plasmid with homology to GFP. Detection of 16FLAG
fusion proteins was reproducible (n = 3 experiments), and low abundance
proteins were not detected with 1FLAG fusions.

 Proteins ranging in abundance from approximately 200 to 7,000 molecules per

cell were detected above background, and their single cell expression profiles were

elucidated, using 16 FLAG fusions but not 1FLAG or GFP fusions (Figure 3.11).

Fusion of low abundance proteins to 16 FLAG repeats improved the limit of detection

by 40-fold over previous flow cytometry based methods [41], [76] permitting

detection of proteins expressed as levels as low as 200 molecules per cell. Moreover,

0

1000

2000

3000

4000

1 FLAG Median
16 FLAG Median

mean 1lfag
mean 16flag

0

1000

2000

3000

4000

1 FLAG Median
16 FLAG Median

mean 1lfag
mean 16flag

1 FLAG
16 FLAG

FL
AG

 s
ig

na
l (

af
u)

ORF 16FLAG

Homologous
recombination

ORF GFP

Yeast GFP
fusion clone

 44

addition of FLAG repeats did not affect the apparent protein expression level (Figure

D.2), suggesting the increase in limit of detection is due to the enhanced signal

afforded by brighter fluorophores and polyclonal antibodies. The protein expression

distribution is comparable for FLAG repeats and GFP fusions as shown by detection

of a highly abundant yeast GFP fusion protein (Figure D.3) .

Epitope tag repeats enabled quantification of low abundance proteins.

Quantitative Western blotting was used to correlate GFP fluorescence and protein

abundance (Figure D.4). To relate 16FLAG signal and protein abundance, eGFP and

16FLAG were expressed in cells as a fusion to AGa1, immunolabeled, and measured

by flow cytometry. 16 FLAG signal was correlated to protein abundance by linear

regression, and the relationship was used to quantify the abundance of the epitope tag

fusion proteins. Quantification by 16FLAG repeats loosely correlates with previously

reported protein abundances (R2 = 0.24) (Figure D.5) which is in agreement with

other studies [10], [32], [41].

Figure 3.12: Single-cell protein expression profiles of low abundance endogenous
proteins. Protein expression profiles for low abundance proteins
expressed at levels as low as 200 molecules per cell were elucidated by
flow cytometric analysis of immunolabeled cells expressing 16FLAG
fusion proteins, but not GFP fusions.

GFP

Background
16 FLAG

FMP32 PET18 TFS1 KXD1 CDC8 MRPS18 MED7

105103101

105103101

GFP signal (afu)

FLAG signal (afu)

R
el

at
iv

e
co

un
t

R
el

at
iv

e
co

un
t

 45

3.7 Discussion

To improve the number of spectrally distinct cell barcodes over previous

systems, we used immunolabeling with fluorophore-conjugated antibodies rather than

fluorescence proteins. As aforementioned, immunolabeling permits the use of

fluorescence proteins, quantum dots, and small organic fluorophores, increasing the

number of colors available and therefore the number of possible distinct fluorescent

barcodes. Furthermore, fluorescent cell barcodes are analyzed using flow cytometry

rather than fluorescence microscopy, allowing for greater throughput [14]. Current

flow cytometers are capable of analyzing up to 18 fluorescence parameters

simultaneously at a rate of >10,000 cells per second [58], potentially enabling 218 or

more than 260,000 fluorescence barcodes with only a binary scheme.

Epitope tag repeat barcodes up to 34 kDa, fused to the C-terminal alpha

agglutinin domain in yeast for surface expression, exhibited full-length constitutive

expression at similar or greater levels as a single epitope tag. An apparent increase in

relative expression with repeat number could be due to greater accessibility, through

the cell wall, of the cmyc tag to antibodies in solution since the epitope tag is farther

away from the cell surface. Expression of the GLU epitope tag fusion proteins

appeared weaker than other epitope tags, likely because the GLU DNA sequence used

was not codon optimized for expression in yeast. Overall, the data suggests that

unstructured epitope tag repeat proteins up to 34 kDa are well expressed. These

observations agree with the finding that protein disorder does not strongly correlate

with degradation rates in vivo [77].

Epitope tag repeat fusions enhanced the immunodetction of surface-displayed

proteins by up to 101-fold using flow cytometry. Moreover, 16 FLAG epitope repeat

fusions were shown to enhance the limit of detection of endogenous yeast proteins by

 46

40-fold, enabling more than 1,600 proteins expressed at as low as 200 molecules per

cell to be studied by flow cytometry. The larger than expected increase in fluorescent

signal is due to the higher brightness of Alexa Fluor 647 as compared to GFP, as well

as the enhancement of fluorescence signal by polyclonal antibodies. The proof of

principle experiment shown here could easily be expanded upon to study hundreds or

thousands of yeast proteins with single-cell resolution, potentially uncovering

interesting bimodal protein expression profiles or those with large variation. The long

epitope repeat fusion approach could also be useful for detection of low abundance

proteins in other microbes and mammalian cells.

Overall, these findings demonstrate that immunofluorescence signals can be

substantially increased through fusion of a protein of interest to long, unstructured

polypeptides composed of tandem repeats of epitope tags separated by flexible linkers,

enabling single-cell detection and quantification of endogenous, low abundance

proteins by flow cytometry. Fusing proteins of interest to tandem epitope tag repeat

polypeptides may be useful to overcome hurdles associated with detecting proteins in

several cases, including detection of low abundance antigens, detection by weakly

binding antibodies, use of non-optimal excitation wavelengths or filters for

fluorophores used, and for fluorophores which are dim, the latter two of which are

commonly encountered in multicolor flow cytometry. Long epitope tag repeat fusions

may also improve the efficiency of other antibody-mediated processes, including

immunopurification and Western blotting, due to avidity effects. Additionally, the

DNA repeat sequence expansion method described here may useful for generating

proteins composed of repeating domains for molecular recognition, protein

 47

purification, and biosynthetic polymer synthesis. The method could also be useful in

the construction of vectors encoding CRISPR guide RNAs in tandem.

 48

ENGINEERING A SIX-COLOR, HIGH-THROUGHPUT CELLULAR
FLUORESCENT BARCODING SYSTEM

4.1 Introduction

In this chapter, we develop barcodes with unique fluorescence intensities, and

quantify uniqueness as a function of cells captured and false positives. The

construction of hundreds of genetically-encoded fluorescent barcodes by combination

of epitope tags is discussed, and the diversity of the barcode library is assessed by

flow cytometry. In addition, the effect of barcode length on plasmid transformation

bias and cell growth rate is examined. The effect of fluorophore brightness on the

number of unique fluorescent barcodes and the influence of the presence of certain

epitope tags on barcode brightness is assessed.

4.1.1 Fluorescent Cell Barcoding Systems with Multiple Intensities

Previous fluorescent barcoding systems that have achieved multiple

fluorescence intensities using a single fluorophore have done so by modulating dye

[18] or polymer dot loading [22] amount. These systems are disadvantageous

compared to genetically encoded barcoding schemes because they are single-use.

Previous genetically encoded fluorescent barcoding systems have not been successful

in achieving multiple intensities using a single fluorophore, because of too much

variance in fluorescent signal possibly due to fluorophore brightness or low protein

expression levels [24], [25], [27]. Recently, it was demonstrated that different

Chapter 4

 49

translational control elements can be used to modulate protein expression levels and

create three different intensities [24]. To our knowledge, our approach of fluorescence

normalization and immunodetection is the first instance of a genetically encoded

cellular barcoding system that can overcome these limitations to achieve four distinct

intensities using a single fluorophore.

4.1.2 Multicolor Flow Cytometry

Multicolor flow cytometry is a powerful tool because it enables tens of

parameters of interest to be measured in single-cells. Current flow cytometers can

measure more than 17 parameters simultaneously [65]. There are a number of

variables that have to be considered when designing a multicolor flow cytometry

panel, such as the lasers and detectors available on the instrument, compatible

fluorophores and their relative brightness, antibody-fluorophore conjugation or

secondary detection, and compensation [78]. The wavelengths of the lasers and

detectors dictate which fluorophores can be used for the experiment. Typically, the

brightest fluorophores are more desirable, as they have high quantum yields and

extinction coefficients, their spectrum overlaps minimally with cellular

autofluorescence, and they are capable of being measured with high sensitivity [78].

Fluorophores brightness will also depend on the flow cytometer being used due to

differences in filter position and bandwidth and laser power.

It is often necessary to directly conjugate fluorophores to antibodies in

multicolor flow cytometry due to the limited number of antibody species and isotypes

available. This can be accomplished by a variety of different chemistries including

linkage to cysteine and lysine groups as well as carbohydrates [50]. Alternatively,

unconjugated antibodies against the target of interest and polyclonal fluorophore-

 50

conjugated antibodies specific for the species and isotype of the unconjugated

antibody ca be used to amplify the fluorescent signal.

In addition, it is desirable to use fluorophores that have non-overlapping

spectral emission because of the added need for compensation [79]. Compensation is

the mathematical correction of flow cytometry data for spectral overlap. Specifically,

it is the subtraction, by use of a constant coefficient, of fluorescence spillover into

more than one detector. Compensation can be detrimental to discrimination of positive

and negative events because subtraction of large spillover often causes negative

population broadening [65].

4.2 Construction of Barcodes with Multiple Unique Fluorescent Intensities

We have developed a collection of genetically-encoded protein barcodes for

multiplexed cell analysis using immunofluorescence and flow cytometry. Our cell

barcoding method can enable massive experimental and analytical sample

parallelization, thereby reducing associated cost and effort (Figure 3.2). The barcode

collection is composed of DNA sequences that when expressed in cells produce

proteins that specifically identify the cells containing each sequence. Each barcode is

composed of epitope tags differing in repeat number and combination connected by

flexible (G4S)3 linkers (Figure 3.1). Barcodes are genetically encoded on a plasmid,

and when expressed are displayed on the yeast cell surface by fusion to the C-terminal

domain of the alpha-agglutinin mating protein. Each barcode contains an N-terminal

cmyc tag for normalization of protein expression. Fluorophore-conjugated antibodies

can specifically bind to epitope tags, producing unique fluorescent signatures that are

measured with single-cell resolution by flow cytometry.

 51

To create the barcode collection, first DNA encoding an epitope tag connected

by a flexible linker was expanded exponentially up to 64 repeats (Figure 3.3),

resulting in 35 plasmids. Then, barcode plasmids encoding different numbers of

epitope tag repeats were constitutively expressed in yeast, immunolabeled, and

analyzed using flow cytometry. We were able to create up to four distinct barcodes

with different fluorescence intensities for a single color, using HA, AU1, and FLAG

epitope tags, three distinct intensities for HSV, and two for HIS and GLU (Figure

4.1).

Figure 4.1: Construction of barcodes with distinct fluorescence intensities. Different
fluorescent intensities were created by variation of epitope tag repeat
length and normalization of total fluorescence signal to correct for
variation in protein expression.

Normalized
Fluorescence

Re
la

tiv
e

Co
un

t

AU1 FLAGHA

HSV HIS GLU

Re
la

tiv
e

Co
un

t

Normalized
Fluorescence

 52

 Distinct fluorescence intensities were achieved by normalization of total

fluorescence signal (Figure 4.2). For each cell, the fluorescent signal from its

immunolabeled epitope tags was normalized by the fluorescent signal from its

immunolabeled cmyc tags. This normalization corrects for the variation in

fluorescence signal resulting from differences in protein expression between cells.

Specifically, up to four distinct intensities could be achieved using a single

fluorophore after immunolabeling cells expressing 0, 1, 4, or 16 epitope tag repeats

and normalizing the epitope signal by the cmyc signal.

Figure 4.2: Creation of up to four distinct intensities per fluorophore. Cells exhibit
large variations in fluorescence due to differences in protein expression.
This variation can be minimized by normalization of one fluorescent
signal by another for each cell, effectively correcting for differences in
fluorescence due to protein expression. Up to two distinct barcodes could
be distinguished for each fluorophore by total fluorescence signals. After
normalizeation of HA signal by cmyc signal for each cell, up to four
unique fluorescence intensities were achieved for a single fluorophore.

A barcode is considered to be unique if its immunofluorescent intensity

minimally overlaps with that of other barcodes. The error associated with incorrectly

cmyc signal (afu)

H
A

si
gn

al
 (a

fu
)

101 103 105 107
100

101

102

103

104

105

106

107

HA signal (afu)

Co
un

t

Normalized HA signal

Co
un

t

 53

identifying cells as belonging to a particular barcoded population was quantified by

manual gating. The percentage of incorrectly identified events as a function of the

percentage of events captured showed that at least 10% of events can be captured with

less than 1% incorrect for AU1, HA, and FLAG barcodes (Figure 4.3). Using this

analysis method, we found that 0, 1, 4, and 16 repeats could produce distinct

intensities for HA, AU1, and FLAG, and 0, 1, and 4 repeats for HSV.

Figure 4.3: Quantification of distinct fluorescence intensities. A barcode with a
particular fluorescence intensity was defined as being distinct if at least
10% of cells could be captured with less than 1% of cells belonging to a
different barcode.

4.3 Barcodes with distinct fluorescent intensities are fluorophore-dependent

The number of fluorescence intensities that can be achieved using a single

fluorophore is dependent on the brightness of the fluorophore used for detection.

Initially, we found that up to four fluorescence intensities could be achieved using HA,

AU1, and FLAG epitope tags immunolabeled with the brightest fluorophores, namely

PE and Alexa Fluor 647. However, when dimmer fluorophores were used, the number

of distinct barcodes decreased due to greater variation associated with dimmer

0 repeats

1 repeat

4 repeats

16 repeats
0 20 40 60 80100

0.0
0.5
1.0
1.5
2.0
2.5

% Events Captured

%
 In

co
rr

ec
t E

ve
nt

s AU1 FLAGHA

 54

fluorescent signals. For example, four distinct intensities were achieved when FLAG

barcodes were labeled with mouse a-FLAG and a-mouse Alexa Fluor 647, but not

with a-FLAG PE-CY7 conjugate (Figure 4.4).

Figure 4.4: The number of distinct fluorescence intensities is fluorophore dependent.
For example, FLAG was found to have four distinct intensities when
antibodies that produce a very bright signal, such as Alexa Fluor 647,
were used for immunolabeling. However, when dimmer fluorophores
were used, such as PE-Cy7, only two unique fluorescence intensities
could be achieved.

4.4 Creation of a Fluorescent Barcode Plasmid Library

In order to expand the fluorescent barcoding system beyond single-color

barcodes, we used restriction digest based subcloning to combine different types of

epitope tags together, resulting in barcodes with multiple fluorescent colors and

intensities. Each epitope tag and linker is flanked by a unique pair of restriction

enzyme sites, which can be used to excise particular epitope tags and combine them

Mouse ⍺-FLAG PE-Cy7
conjugate

Mouse ⍺-FLAG and
⍺-mouse AF647 conjugate

Normalized FLAG signal

R
el

at
iv

e
co

un
t

 55

together. Specifically, we created a barcode plasmid library comprised of up to 216

possible combinations of HA, HSV, HIS, AU1, GLU, and FLAG epitope tags with

three intensities for HA, HSV, and AU1, and two intensities for HIS, GLU, and

FLAG.

Three rounds of subcloning were used to generate the barcode library (Figure

4.5). In the first round, three subcloning steps were used to generate 16 plasmids,

namely combinations of 1 and 4 HA and HSV (8 plasmids), 4HIS and 1 and 4AU1 (5

plasmids), and 4GLU and 1 FLAG (3 plasmids). In the second round, the HA-HSV

library was crossed with the HIS-AU1 library for a total of 54 plasmids, and in the

third round the HA-HSV-HIS-AU1 library was crossed with the GLU-FLAG library

for a maximum possible 216 unique barcodes. We also made a library consisting of

only epitope tag repeat lengths that would produce binary fluorescent barcodes,

comprised of 1HA, 1HSV, 4HIS, 1AU1, 4GLU, and 1FLAG epitope tags.

 56

Figure 4.5: Barcode library creation by combination of epitope tag DNA sequences. A
library of barcode plasmids was created by combining epitope tag repeat
lengths that when expressed in cells and immunolabeled, resulted in
distinct fluorescent barcodes. Three rounds of subcloning using
restriction digest were used to create a library containing up to 216
distinct barcodes.

4.5 Assessment of Barcode Library Diversity by Immunofluorescence and Flow
Cytometry

In order to determine how many unique barcodes that had been created, we

transformed the barcode plasmid library into yeast, induced protein expression by

galactose induction, immunolabeled the cells, and analyzed the barcoded cells by flow

cytometry. For immunolabeling, we used 100nM of each antibody fluorophore

conjugate, and for cmyc 35nM a-chicken Alexa Fluor 488 was used with the

unconjugated a-cmyc antibody. Seven of the thirteen available colors on the

FACSAria were used to analyze the library. Fluorophores were selected by their

brightness and to minimize spillover between channels. Further information about the

Round 1: 16 barcodes

Round 0: 9 barcodes

1HA 1HSV

1HSV4HA

1HA 4HSV

4HA 4HSV

1AU1HIS

HIS 4 AU1

FLAG GLU

1HA 1HSV

4HA 4HSV

1AU1
HIS

4 AU1
FLAG GLU

Round 2: 54 barcodes

Round 3: 216 barcodes FLAG GLUHIS AU1HA HSV

1HA 1HSV

4HA 4HSV

1AU1HIS
4 AU1 FLAG GLU

ect…

 57

epitope-fluorophore pairs and lasers and detectors used to analyze the barcoded library

can be found in Table 4.1.

Table 4.1: Fluorophore panel and flow cytometer configuration used for barcode
library analysis.

To distinguish between barcoded cell subpopulations within a mixture, we

used a gating strategy to segment the cells by epitopes with binary unique fluorescent

intensities and then by epitopes with multiple fluorescent intensities (Figure 4.6).

First, cells were gated on forward and side scatter to exclude debris. Then, cells with

high cmyc signal, which is indicative of protein expression level, were further

examined for barcode fluorescence. Gating on cmyc also excludes those cells that do

not express barcodes, which is characteristic of yeast surface display [64], and is

typically 30-50% of the total cells.

Epitope Flurophore Laser Detector
GLU Marina Blue 355 450/50
cmyc Alexa Fluor 488 488 530/30
HA PE 532 575/25
HSV PE-Cy5.5 532 710/50
FLAG PE-Cy7 532 780/60
AU1 Alexa Fluor 647 633 660/20
HIS APC-Cy7 633 780/60

 58

Figure 4.6: Method used to distinguish barcoded cell populations. Cells were gated on
cmyc positive events to consider only those expressing barcodes. Then,
cells were subdivided by epitope tags that produce binary fluorescent
intensities (HIS, FLAG, GLU), and then by epitope tags that produce
multiple fluorescence intensities (HSV, HA, AU1).

During barcode deconvolution analysis, it is critical to first segment cells by

epitope tags which produce binary intensities after immunolabeling. This is because

the presence or absence of other epitope tags can dramatically affect the fluorescence

of epitopes with multiple intensities, and thus the location of a cell population

expressing a particular barcode. For example, the fluorescence of cells expressing

1HA is increased dramatically when a GLU epitope is present (Figure 4.7). Other

Expressing cells
2 populations

HIS +/-

4 populations
FLAG +/-

8 populations
GLU +/-

24 populations
HSV -/+/++

…ect.

73 populations
HA -/+/++

216 populations
AU1 -/+/++

…ect. …ect.CMYC signal (afu)
105103101

H
SV

 s
ig

na
(a

fu
)

105

103

104

100 H
A

si
gn

a
(a

fu
)

AU
1

si
gn

a
(a

fu
)

CMYC signal (afu) CMYC signal (afu)

C
el

l S
iz

e

CMYC
signal (afu)

H
IS

 s
ig

na
l (

af
u)

CMYC
signal (afu)

G
LU

 s
ig

na
l (

af
u)

CMYC signal (afu)

FL
AG

 s
ig

na
l (

af
u)

CMYC signal (afu)

 59

examples include decreasing AU1 signal with increasing HSV signal, and increasing

HA signal with HSV signal.

 60

Figure 4.7: Barcode distinguishability for fluorophores with multiple intensities is
affected by the presence or absence of certain epitope tags. Examples
include an increase in signal for the 1HA population due to the presence
of a GLU epitope tag (top), an increase in HA signal (middle) and a
decrease in AU1 signal (bottom) with increasing HSV length. Identical
gates are overlaid to illustrate fluorescence differences between barcodes.

H
A

si
gn

al
 (a

fu
)

H
A

si
gn

al
CMYC signal (afu)

CMYC signal (afu)

CMYC signal
H

A
si

gn
al

 (a
fu

)

CMYC signal CMYC signal

AU
1

si
gn

al

AU
1

si
gn

al

0 HSV 1 HSV 4 HSV

0 HSV 1 HSV 4 HSV

GLU+ GLU-

105103101

105

103

104

100AU
1

si
gn

al
 (a

fu
)

H
A

si
gn

al

CMYC signal

H
A

si
gn

al

CMYC signal

105

103

104

100

105

103

104

100

105103101

105103101

CMYC signal (afu)

 61

The relative abundance of barcodes in the library was assessed by flow

cytometry. 190 barcodes out of 216 possible were found to be abundant at greater than

0.01% (Table E.1). However, the distribution of barcodes in the library was biased

such that only 13 barcodes represented 50% of the library. Also, average repeat length

inversely related to barcode abundance, such that ~4 repeats was the average length

for barcodes present at 1-10% abundance and ~7 repeats was the average length for

barcodes present at 0.01-0.1% with an expected repeat length of 6.5 (Figure 4.8).

Moreover, more abundant barcodes (0.1-10%) contained significantly more 0 and 1

HA, HSV, and AU1 repeats fewer 4 repeats, while the converse was true for less

abundant barcodes (0.01-0.1%). Taken together, these results suggest that there is a

transformation bias favoring smaller barcodes, which could be due to transformation

preference favoring smaller plasmids and/or plasmids containing fewer repeat regions.

 62

Figure 4.8: Relationship between repeat length and library abundance. The distribution
of repeat lengths in the top 10% of barcodes is significantly smaller (4
repeats on average) than that of the overall library (6.5 repeats on
average). In the top 10% of barcodes, zero HA, HSV, or AU1 repeats are
highly enriched and four repeats are underrepresented. Taken together,
this suggests that there is a bias favoring plasmids with shorter repeat
lengths, possibly due to a transformation and/or ligation preference for
smaller plasmids. This could explain the observed over-representation of
certain barcodes in the library.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 101112131415N
or

m
al

iz
ed

 A
bu

nd
an

ce
 (%

)

Total # Repeats

All Barcodes
Top 10%

0

10

20

30

40

50

60

0 1 4N
or

m
al

iz
ed

 A
bu

nd
an

ce
 (%

)

HA, HSV, or AU1 Repeats

Top 10% Barcodes

Expected

 63

4.6 Correction of Barcode Library Abundance Bias by FACS

In order to correct the over-representation of particular barcodes, the library

was sorted using FACS as to minimize the overly abundant barcodes and to

simultaneously enrich the barcodes with low abundance. Specifically, the library was

sorted using three logic strategies: 1. HA+ AND AU1+ AND GLU-, 2. HA+ AND

AU1- and GLU+, 3. HSV+ AND (FLAG+ OR HIS+). The relative abundance of

barcodes in the sorted libraries can be found in Table E.2. After sorting, the five

barcode libraries were combined in equal proportions in order to normalize the relative

abundance of barcodes in the library (Figure 4.9).

 64

Figure 4.9: Normalization of 190-member barcode library. Flow cytometry analysis of
the barcode library showed an over-representation of certain barcodes,
such that only 13 barcodes comprised 50% of the abundance. After
FACS, the library was normalized such that that 30 barcodes represented
50% of the library.

FACS successfully normalized the barcode library such that highly abundant

barcodes were lessened and barcodes with low abundance were enriched (Table 4.2).

The number of barcodes present at greater than 3% decreased by 50% from 8 to 4, and

the number of barcodes between 0.1 and 1% abundance increased by approximately

1.5-fold, from 76 to 108.

0

1

2

3

4

5

6

7

%
 B

ar
co

de
 A

bu
nd

an
ce

Barcode

After Sorting

Before Sorting

0

1

2

3

4

5

6

7

%
 B

ar
co

de
 A

bu
nd

an
ce

Barcode

After Sorting

Before Sorting

0

1

2

3

4

5

6

7
%

 B
ar

co
de

 A
bu

nd
an

ce

Barcode

After Sorting

Before Sorting

0

1

2

3

4

5

6

7
%

 B
ar

co
de

 A
bu

nd
an

ce

Barcode

After Sorting

Before Sorting

 65

Table 4.2: Abundance of barcodes in library before and after normalization by FACS.

4.7 Optimization of Promoter and Barcode Expression Conditions

Initially, a strong constitutive GPD promoter was used to drive barcode

expression for ease of use. To examine whether barcode expression affected cell

growth rates, a mixture of cells constitutively expressing 10 barcodes of different

lengths was grown overnight at 30°C from stocks in either log phase, stationary phase,

4°C or -80°C, and then immunolabeled to determine barcode distribution (Figure

4.10). No significant differences in barcode abundance was found after less than 24

hours.

Abundance Before Sort After Sort
>2% 16 8
1-2% 13 25
0.1-1% 76 107
0.01-0.1% 74 50
< 0.01% 37 26

 66

Figure 4.10: Effect of different environmental conditions on barcoded cell growth.
After overnight growth after revival from log phase, stationary phase,
4°C or -80°C stocks, a mixture of cells expressing barcodes with
different lengths did not exhibit any significant growth biases.

In addition, the abundance of cells expressing eight barcodes of different

lengths, ranging from 1 to 21 repeats or approximately 2 kDa to 40 kDa, was

examined over three days of growth at 30°C (Figure 4.11). After three days of

growth, cells expressing smaller barcodes ranging from one to five repeats

outcompeted those expressing larger barcodes (seven or more repeats). This suggests

that expression of larger barcodes hampers cell growth rate over time scales longer

than one day.

log

sta
tio

na
ry 4°C -80

°C
0.0

0.5

1.0

Pr
op

or
tio

n
of

 B
ar

co
de

Log Stationary 4°C -80°C

 67

Figure 4.11: Growth of cells constitutively expressing barcodes over longer time
scales. Over three days of growth, cells expressing shorter barcodes (less
than 5 repeats) outcompeted those with longer barcodes. No decrease in
CMYC signal was observed, suggesting barcodes were not degraded.

In order to lessen the barcode-induced cellular growth bias, the constitutive

GDP promoter driving barcode expression was swapped with a galactose (GAL)

inducible promoter. Induction times and temperatures were tested in order to

maximize barcode expression levels. Specifically, a library of cells expressing

barcodes with different lengths and combinations of HA, HSV, HIS, AU1, GLU, and

FLAG was grown overnight in non-inductive glucose media to log phase. Then, cells

were passaged into galactose media with 1% glucose for induction at 20°C or 30°C

over three days. Expression was monitored by immunolabeling with an antibody

against the cmyc tag (Figure 4.12).

1000

10000

0 1 2 3

M
ed

ia
n

C
M

YC
 S

ig
na

l (
af

u)

Time (days)

1
2
5.1
5.2
6
9
17
21

Repeats

3000

6000

0 1 2 3
0.0

0.5

1.0
1
2
5
5
6
7
17
21

Time (days)

Pr
op

or
tio

n
of

 B
ar

co
de

Repeats

9

 68

Figure 4.12: Optimization of barcode induction conditions. Barcode expression was
monitored over three days of induction in galactose media at 20°C or
30°C (top panel). 21-24 hours of induction at 30°C resulted in the highest
expression levels. Barcode expression levels were higher in log phase
cells (bottom panel).

Barcode expression was found to be highest at earlier induction times of 21-24

hours, and expression levels were 1.5-2 fold higher at 30°C as compared to 20°C.

Expression decreased by 40-50% after three days of induction at both temperatures

0

1000

2000

3000

4000

5000

6000

20 30 40 50 60 70 80

C
M

YC
 S

ig
na

l (
af

u)

Induction Time (h)

20C MFI
30C MFI

R² = 0.43784

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20

CM
YC

 S
ig

na
l (

af
u)

OD600

 69

tested. In addition, barcodes were more highly expressed in log phase cells, and

decreased with a function of cell density (R2 = 0.44).

4.8 Discussion

It was found that up to four unique barcodes could be produced using a single

fluorophore if the antibodies used for immunodetection had high brightness. This was

only achievable using two spectrally distinct fluorophores, PE and Alexa Fluor 647,

given the constraint of the flow cytometers available to us. However, it may be

possible if a flow cytometer equipped with a violet laser was used. In this instance,

extremely bright fluorophores like quantum dots could be employed [80].

Although 16 epitope tag repeats produced a fourth distinct intensity in some

cases upon immunolabeling, only 1 and 4 repeats were included when the barcode

library was constructed. Due to the instability of long repeats DNA, each plasmid had

to be screened for the correct size insert in order to make sure the repeat region had

not become shorter during the subcloning process. This process would become too

laborious when large numbers of barcodes were created in a library format.

A saturating amount of antibody was used to maximize fluorescent signal and

minimize the deviation of barcoded populations. In some cases, this was not sufficient

to generate a high enough signal to distinguish a significant amount of cells from the

negative. Thus, four repeats were used instead of one for GLU and HIS epitope tags to

create binary barcodes for these epitope tags. The use of four epitope repeats allowed

the majority of cells to be distinct from the negative when dim fluorophores such as

Marina Blue and APC-Cy7 were used. On a molecular level, four epitope repeats

likely accommodate at least two fluorophore-conjugated antibodies, while one or two

 70

repeats would likely only accommodate one, effectively doubling the fluorescent

signal when four repeats are used.

The fluorescence of a given epitope tag can be affected by the presence or

absence of other tags. This phenomenon is most noticeable for epitopes that produce

multiple intensities upon immunolabeling because of their narrow fluorescence

distribution compared to epitopes that produce binary intensities. The observed

differences may be the result of one or a combination of the following: differences in

protein expression level due to barcode length, errors in compensation due to

mathematical subtraction of a large fluorescent signal out of channel with a dimmer

signal [79], energy transfer between fluorophores, and protein structure blocking

epitope tag sites from being bound by antibodies.

It was found that cells constitutively expressing barcodes of different lengths

were not outcompeted over short time scales (one day or less) or after revival from

stationary phase cultures, or stocks stored at 4°C or -80°C. However, over longer time

scales of two or more days, cells expressing shorter barcodes outcompeted those

expressing longer barcodes. This suggests that the growth bias imposed by constitutive

barcode expression could be overcome for experiments lasting one day or less by

increasing the proportion of cells with longer barcodes to shorter barcodes in the

inoculum. Another potential solution would be to construct barcodes of equal lengths

by the addition of scrambled epitope tags or other spacers. Ultimately, inducible

barcode expression was adopted because of concern for using barcodes in a library

format in which some rare members may be lost due to growth biases. Barcodes

expression was found to decrease with cell density, indicating that cells in stationary

phase do not express barcodes as well as those in log phase. This could be due to a

 71

variety of factors including nutrient limitation causing a decrease in heterologous

protein translation and secretion, and structural changes to the yeast cell wall during

stationary phase [81]–[83].

 72

GENERATION OF THOUSANDS CELLULAR FLUORESCENT BARCODES
USING ELEVEN-COLORS

5.1 Introduction

In this chapter, the creation of more than 1,000 unique barcodes is discussed.

Specifically, combinations of seven different epitope tags were constructed using a

library approach via homologous recombination or overlap extension PCR. FACS

enrichment and cloning of rare barcodes is presented. Restriction digest and ligation

was used to combine 11 epitope tags to create additional diversity. Analysis of

barcode plasmid instability and work-arounds are presented, as well as flow cytometry

analysis of barcode abundances. In addition, design considerations for optimizing a

13-color flow cytometry panel are discussed.

5.1.1 Molecular cloning techniques

There are a variety of molecular cloning approaches that can be used to

combine multiple DNA fragments combinatorically, including yeast-mediated

homologous recombination, restriction enzyme digestion, Golden Gate assembly, and

Gibson assembly. Homologous recombination is a process by which linear DNA

fragments with short homologous regions (30-50bp) can be combined in yeast cells

[84]. This method has been used for both chromosomal insertion and deletion [85], as

well as for ligase-free plasmid cloning [86]. For example, homologous recombination

has been used to create a randomly shuffled antibody library with up to 107 members

Chapter 5

 73

[87]. Homologous recombination can be used to assemble many (up to 25) DNA

fragments up to many kilobases in length for synthetic biology applications [88], [89].

There are also a variety of in vitro assembly methods for molecular cloning,

including traditional restriction enzymes, Golden Gate cloning, and Gibson assembly.

Traditional restriction enzymes combine DNA fragments together with high fidelity,

but each fragment requires a unique pair of enzyme sites and typically multiple

fragments cannot be subcloned simultaneously. In contrast, Golden Gate cloning uses

type IIS restriction enzymes that cut outside of their recognition sequence, leaving

overhangs of typically 4 nucleotides in length [90], [91]. Cut sites can be designed so

that there are up to 256 unique overhangs, therefore allowing the assembly of multiple

fragments using a single restriction enzyme. Using Golden Gate cloning, up to nine

fragments and six repetitive DNA fragments have been assembled with 85-90%

efficiency in a single reaction [92]. Also, Gibson assembly is a one-pot approach that

can be used to combine multiple dsDNA fragments with short (20-40bp) homologous

regions [93]. Specifically, dsDNA fragments are subjected to partial exonuclease

digestion, followed by annealing of homologous regions, PCR to fill in the gaps, and

ligation to repair the nicks. Gibson assembly is a useful tool for gene and genome

cloning, as it has been used to assemble a synthetic genome with more than 500kb in

length.

5.1.2 Fluorescence Activated Cell Sorting (FACS)

Fluorescence activated cell sorting (FACS) is an extension of flow cytometry

in which cells with desired fluorescence properties can be physically separated from

undesired cells. FACS is frequently used in protein engineering to isolate rare cells

expressing high-affinity binding proteins [94], as well as in antibody development to

 74

isolate B cells for high-affinity antibody production [95]. For example, FACS has be

used to isolate bone marrow stem cells from mice for myocardial repair applications

[96], as well as to enrich cells expressing high-affinity antibodies for protein

engineering applications [97]. FACS allows desired cells to be sorted in real time into

tubes or multi-well plates. Specifically, a particular charge is applied to a droplet that

contains a single cell, and the charged droplet is separated into the correct container by

electromagnetic deflection plates [98].

5.2 Expansion of Barcode Library Using Additional Epitope Tags

Seven additional epitope tags were used to further expand the barcode library

from hundreds to thousands of combinations (Table 5.1). We used two approaches,

homologous recombination and overlap extension PCR, to rapidly expand the barcode

library using a one-pot method (Figure 5.1). DNA fragments either contained an

epitope tag surrounded by flexible glycine-serine linkers with less than 80% homology

with respect to each other, which was previously shown to be the threshold for

homologous recombination in yeast [87], or only glycine-serine linkers to act as

spacers.

In the homologous recombination approach, DNA fragments of different sizes

containing glycine-serine linkers with or without epitope tags were generated by

partial or full restriction digest. DNA fragments and a vector fragment containing a

GAL promoter and the C-terminal alpha-agglutinin protein domain for yeast surface

display were transformed into yeast. For the overlap extension PCR approach, DNA

fragments containing two glycine-serine linkers with or without an epitope tag were

generated by complete restriction digest. Then, fragments were used in an overlap

PCR reaction in which the glycine-serine linkers would prime each other to make new

 75

epitope tag combinations. The PCR product was transformed into yeast along with the

backbone vector fragment to create new barcodes.

Figure 5.1: Rapid generation of barcode combinations by homologous recombination.
Homologous recombination of DNA fragments containing glycine-serine
linkers with or without an epitope tag were used to expand the barcode
library in a one-pot approach. Seven fragments and nine crossovers are
required, in theory, to create a plasmid.

5.3 Enrichment of Unique Barcode Combinations by FACS

Barcode library diversity was assessed by immunolabeling and flow cytometry

of five out of seven of the epitope tags, T7, V5, AcV5, AU5, and E2, due to cytometer

constraints. Analysis of protein expression and epitope tag abundances showed that

10% of the expressing cells in the library generated by homologous recombination

contained combinations of two or more epitope tags. This subset was enriched using

FACS using four sorting strategies to encompass all 32 possible barcode combinations

(Figure 5.2). After the first round of sorting, 90% of the cells in each library were

T7L2 L3 AU5L4 L5 V5L6 L7 E2tagL8

STIIL1 L2 StagL3 L4 AcV5L5 L6 EtagL7 L8

L1cmyc HA HSV HIS AU1 Glu FLAGL10

L1 L2L2 L3

L3 L4

L4 L5 L6 L7

L8 L9

L9 L10L7 L8

L5 L6

L10

 76

enriched for combinations of two or more epitope tags. An additional round of FACS

was used to isolate specific epitope tag combinations.

Figure 5.2: Enrichment of combination barcodes by FACS. The barcode library
generated by homologous recombination contained combinations of T7,
V5, E2, AcV5, and AU5 epitope tags. This subset, which comprised 10%
of the expressing cells, was enriched by FACS.

Sort AcV5+ AND

Sort E2+ AND

Sort T7+ AND

Sort V5+ AND

T7
 si

gn
al

 (a
fu

)

V5
 s

ig
na

l

Ac
V5

 s
ig

na
l

AU
5

sig
na

l

E2
 s

ig
na

l

Before sort

105103101

CMYC signal (afu)

105

103

100

104

 77

Similarly, the barcode library generated by overlap extension PCR was

assessed by immunolabeling and flow cytometry (Figure 5.3). This analysis revealed

that 0.3% of the expressing cells contained at least one of the T7, V5, AcV5, AU5, or

E2 tags. Given the rarity of barcodes containing epitope tags other than cmyc, this

subset was enriched in one round of sorting regardless of epitope tag combinations.

After one round, 5.5% of the expressing cells contained combinations of two or more

epitope tags. Specific barcode combinations ranging from 0.1% to 1% of expressing

cells were enriched by a second round of sorting.

Figure 5.3: FACS enrichment of combination barcodes in overlap PCR library. The
unsorted library contained only 0.3% of cells that had epitope tags other
than cmyc. After one round of FACS, this subset was enriched to 25%. In
the sorted library, 5.5% of the cells expressing barcodes contained
combinations of two or more epitope tags. These were isolated using an
additional round of FACS.

In total we were able to recover 18 of the 32 possible barcode combinations

(Table 5.2). After specific barcode combinations were sorted into tubes, the yeast cells

Before Sort

After Sort

105103101

CMYC signal (afu)

105103101

CMYC signal (afu)

105

103

104

V5
 S

ig
na

l (
af

u)

10-3 T7
 S

ig
na

l (
af

u)

E2
 S

ig
na

l (
af

u)

Ac
V5

 S
ig

na
l (

af
u)

AU
5

Si
gn

al
 (a

fu
)

T7
 S

ig
na

l (
af

u)

E2
 S

ig
na

l (
af

u)

Ac
V5

 S
ig

na
l (

af
u)

AU
5

Si
gn

al
 (a

fu
)

105

103

104

V5
 S

ig
na

l (
af

u)

10-3

 78

were streaked out onto agar plates to select for single colonies. Colonies were

analyzed by immunolabeling and flow cytometry to confirm barcode expression and

epitope tag combination were as expected. Then, plasmid DNA was isolated from

yeast and transformed into E coli for amplification and purification. Recovered

plasmids were confirmed for the correct combination of epitope tags by Sanger

sequencing.

Table 5.1: T7, V5, AcV5, AU5, and E2 barcode combinations recovered.

5.4 Generation of Unique 11-Epitope Tag Barcode Plasmids and Analysis of
Barcode Plasmid Instability

Next, existing barcode plasmids were combined using subcloning in order to

expand the number of unique barcodes from hundreds to thousands (Figure 5.4). We

T7 V5 AU5 AcV5 E2
0 0 1 1 1
1 0 0 1 1
0 1 0 1 1
1 1 1 0 0
1 1 0 0 1
0 0 1 1 0
1 0 0 1 0
0 1 0 1 0
0 0 1 0 1
0 1 1 0 0
0 1 0 0 1
1 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 79

created 18 separate libraries, with each library containing a plasmid with a specific

combination of T7, V5, AcV5, AU5, and E2 epitope tags as the vector fragment. The

5 barcode libraries containing combinations of HA, HSV, HIS, AU1, GLU, and FLAG

epitope tags in different proportions were used as inserts.

Figure 5.4: Generation of thousands of barcode plasmids. 18 libraries containing up to
190 barcodes each were created using subcloning. A plasmid containing
a specific combination of T7, V5, AcV5, AU5, and E2 epitope tags was
used as the vector fragment. Five libraries containing different
proportions of up to 190 barcodes composed of HA, HSV, HIS, AU1,
GLU, and FLAG epitope tags were combined and used as insert
fragments.

SpeI and XhoI restriction enzymes were used to generate the DNA fragments,

containing the vector fragments with T7, V5, AcV5, AU5, and E2 epitope tag

combinations, and the inserts with HA, HSV, HIS, AU1, GLU, and FLAG

Barcode Inserts
5 libraries with up to 190 barcodes
HA, HSV, HIS, AU1, GLU, FLAG

18 Barcode vectors
particular combination of

AcV5, AU5, E2, V5, T7 tags

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

X

18 Barcode Libraries
Each with a particular AcV5, AU5, E2, V5, T7 combination

and a mixture of HA, HSV, HIS, AU1, GLU, FLAG combinations

Restriction digest,
ligation, E. coli
transformation

 80

combinations and the alpha-agglutinin protein. However, restriction digest and agarose

gel electrophoresis of the resulting barcode library DNA showed no full-length

barcode plasmids were present. Agarose gel electrophoresis of the HA, HSV, HIS,

AU1, GLU, and FLAG libraries showed a heterogeneous mixture of plasmid sizes,

ranging from approximately 1-8 kb. Analytical check digest of these libraries showed

only a subset of the library DNA contained full-length barcode plasmids, which are

expected to be 7-9 kb in length, while a significant portion of the DNA was made up

of smaller DNA, which we term mini-plasmids (Figure 5.5).

Figure 5.5: Barcode library contains DNA plasmids with heterogeneous sizes. Check
digest of the HA, HSV, HIS, AU1, GLU, and FLAG libraries showed
only a subset of DNA was composed of full-length barcode plasmids (top
panel). Analytical restriction digest (bottom panel) showed a subset of
DNA contains elements necessary for barcode expression including
secretion signal and cmyc tag, alpha-agglutinin protein, and GAL
promoter.

SpeI + XhoI digest Undigested

Agalpha1 Mini-plasmids

Linear full-length plasmids

1.5

0.5

5.0

kb

SS+cmyc

Agalpha1

GAL

1.5

0.5

5.0

kb

 81

A cocktail of restriction enzymes that digests backbone DNA but not insert

DNA containing barcodes was used to prevent mini-plasmids from preferentially

transforming E. coli, thereby increasing the number of transformants containing new

barcode plasmids. Specifically, HA, HSV, HIS, AU1, GLU, and FLAG barcode

fragments were excised by SpeI and XhoI digest. Then, the insert DNA was digested

with AclI, BstNI, EciI, DraI, and NdeI restriction enzymes to cut up the backbone and

mini-plasmids so that they would not be capable of transforming E. coli. After ligation

of vector and insert fragments and E. coli transformation, plasmid DNA was purified

and checked for full-length plasmids by analytical check digest (Figure 5.6).

Analytical check digest of the 11-epitope tag barcode libraries showed that 14 out of

18 libraries contained a significant amount of full-length plasmids, suggesting

subcloning of new barcode combinations was successful. Moreover, mini-plasmids

were present despite our efforts to eliminate them from the libraries during subcloning.

Figure 5.6: Analytical restriction digest of 11-epitope tag barcode plasmid libraries.
18 barcode libraries were checked for full-length DNA by restriction
digest with XbaI and agarose gel electrophoresis. This analysis showed
that 14 out of 18 libraries (all except libraries 1, 5, 10, and 14) contained
a significant amount of full-length plasmids, suggesting that the libraries
contain barcodes with new combinations of up to 11 epitope tags. Mini-
plasmids also formed in these libraries, despite our efforts to eliminate
them during subcloning.

PC1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 82

In order to obtain additional insight into the identity and origin of the mini-

plasmids, E. coli clones containing mini-plasmids were isolated from the 11-epitope

tag libraries and their plasmids were analyzed by restriction digest and agarose gel

electrophoresis (Figure 5.7). The results show that AclI and EciI restriction enzymes

cut mini-plasmids in at least two places, resulting in major bands at 2kb and 400bp,

and 800bp and 150bp respectively. AclI can cut in up to 5 locations for a full-length

barcode plasmid, creating bands containing E coli origin and barcode (3.5kb), uracil

cassette (URA), CEN/ARS, and partial ampicillin resistance gene (Amp) (2kb), CYC1

terminator and F1 origin (800bp), partial Amp gene (400bp), and partial URA gene

(200bp). Also, EciI cuts in up to four places, generating DNA fragments containing

barcodes, F1 origin, and partial URA sequences (4kb), partial URA and partial Amp

(2kb), partial Amp and E coli replication origin (800bp), and partial E coli replication

origin (150bp). Based on the analytical restriction digest, this suggests mini-plasmids

are composed of URA, CEN/ARS, E coli origin, and ampicillin genetic elements from

the barcode plasmid backbone.

 83

Figure 5.7: Analytical restriction digest of mini-plasmids. Restriction digest with EciI
and AclI enzymes, which cut the barcode backbone in multiple locations,
suggests miniplasmids are composed of URA, Amp, CEN/ARS, and E.
coli origin genetic elements.

5.5 Flow Cytometry Analysis of 12-Color Barcode Libraries

The 18 new barcode libraries were assessed by flow cytometry to determine

the barcode expression level and abundance of new barcodes containing combinations

of up to 11 epitope tags. Each plasmid library was transformed into yeast, barcode

expression was induced, and cells were immunolabeled with either a 6-color panel

containing CMYC, T7, V5, AcV5, AU5, and E2 antibodies, or a 7-color panel

containing CMYC, HA, HSV, HIS, AU1, GLU, and FLAG antibodies (Figure F.1).

Analysis of the barcode libraries with the 6-color panel shows that 14 out of 18

libraries had a significant fraction (25-50%) of cells with expressed barcode plasmids

(Table 5.3). Also, all expressing cells contained the expected combination of T7, V5,

AcV5, AU5, and E2 epitope tags. The non-expressing cell fraction could be due to a

combination of factors including a yeast surface display artifact [64], and mini-

EciI digest

Mini-plasmid
clone 1

Mini-plasmid
clone 2

Mini-plasmid
clone 3

c1 c2 c3

1.5
0.5

5.0
kb

 84

plasmids containing URA and CEN/ARS elements without or with an out-of-frame

barcode.

Table 5.2: Analysis of barcode expression in 18 libraries with combinations of up to
11 epitope tags.

Flow cytometry analysis of barcode libraries with the 7-color antibody panel

against HA, HSV, HIS, AU1, GLU, and FLAG tags allowed quantification of the

percentage of barcodes in the libraries containing barcodes with new combinations of

up to 11-epitope tags (Table 5.4). We found that 85-92% of cells expressing barcodes

contained new combinations of up to 11 epitope tags for 13 out of 14 of the libraries,

while the AcV5/T7 library contained only 60% new barcodes. This is likely due to

incomplete restriction digestion and dephosphorylation of the vector during

subcloning.

Library % CMYC+ Cells
AcV5 7.5
AU5 41
T7 59.5
E2 50.9
pBC2 1.33
V5 51.3
AU5/V5 45.7
AU5/V5/T7 28
T7/V5/E2 38.6
AcV5/AU5/E2 7.49
T7/V5 52.4
T7/AcV5/E2 42.1
V5/E2 52.8
AU5/E2 4.41
AcV5/V5 26.9
AcV5/V5/E2 46.5
AcV5/AU5 28.5
AcV5/T7 44.8

 85

Table 5.3: Quantification of new barcodes with combinations of up to 11 epitope tags.

In addition, barcode identities and their relative abundance were determined

for the AU5 library using FlowJo software by manual gating analysis as described

earlier (Table 5.5). We found that 90 unique barcodes, or 47% of all possible

barcodes, were present at 0.01% (100 cells) or more, with relative abundances ranging

from 0.01 to 13%. There were 25 barcodes present at 1% or greater in the library, and

the barcode containing only T7, V5, AcV5, AU5, and E2 epitope tags was the most

abundant.

Library % New Barcodes
AU5 89.5
T7 89
E2 88
V5 85.5
AU5/V5 89.5
AU5/V5/T7 85.2
T7/V5/E2 86.1
T7/V5 86.9
T7/AcV5/E2 90.1
V5/E2 87.9
AcV5/V5 86.4
AcV5/V5/E2 91.4
AcV5/AU5 87.4
AcV5/T7 60.9

 86

Table 5.4: Barcodes with the highest abundance present in the AU5 library.

5.6 Optimization of a 13-Color Flow Cytometry Panel and Error Analysis

Next, a 13-color flow cytometry panel was developed in order to

simultaneously analyze barcodes from all 14 libraries (Table 5.6 and Table F.1).

Notably, CMYC was analyzed using the AF647 instead of AF488 so that barcodes

could be multiplexed with yeast-GFP clones. For applications not requiring the use of

this channel, CMYC can be used with AF488 and an additional readout, such as

binding affinity, could be measured using AF647.

HA HSV HIS AU1 GLU FLAG Percent
0 0 0 0 0 0 13.580
0 1 0 0 0 0 8.143
0 0 0 0 1 0 7.240
0 1 0 0 0 1 5.756
0 0 0 1 0 0 5.570
0 1 0 1 0 1 5.024
0 0 0 1 1 0 4.879
4 0 0 0 0 0 3.909
0 0 0 0 0 1 3.756
0 0 0 1 0 1 3.011
0 0 1 0 0 0 2.486
0 4 0 0 0 0 2.475
0 1 0 0 1 1 2.410
0 0 1 0 1 0 2.374
0 0 0 0 1 1 1.925
1 0 0 0 1 0 1.598
0 1 1 1 0 0 1.375
0 0 1 1 0 1 1.362
1 0 1 0 1 0 1.314
0 0 1 1 0 0 1.231
0 1 1 0 0 0 1.167
1 0 0 0 0 0 1.126
0 1 0 1 1 0 0.988
0 1 0 1 0 0 0.964
0 4 0 0 0 1 0.951

 87

Table 5.5: 13-color panel used to analyze barcodes and additional variables of interest.

Initially, saturating antibody concentrations (100nM) CMYC was used for

labeling. However, the bright signal from AF647 obscured the signals for AcV5 APC-

CY7 and AU5 AF700 due to high spillover, such that positive and negative

populations contained too much overlap to be identified accurately (Figure F.1).

Titration of a-CMYC showed that 1-10 nM gave the most separation between positive

and negative AU5 and AcV5 populations. Similarly, spillover from PE fluorophore

obscured the PE-Cy5 signal such that AU1 positive events could not be distinguished

from the negative. Therefore, HA-PE was titrated as to maximize the distinguishability

of HA populations while minimizing the spillover into PE-Cy5 such that AU1 positive

populations were not obscured (Figure 5.7). It was found that 10nM HA-PE provided

the maximum HA-PE signal while allowing 1AU1 populations to be separable from

the negative population. In addition, we could not find an appropriate concentration at

which HIS-QD705 did not obscure signals in other fluorescent channels, and it was

excluded from further analyses.

Epitope Flurophore Laser Detector
GLU Marina Blue 355 450/50
V5 QD525 355 530/30
HIS QD705 355 670 LP
 GFP 488 530/30
FLAG PerCP 488 685/35
HA PE 532 575/25
T7 PE-TexasRed 532 610/20
AU1 PE-Cy5 532 660/20
HSV PE-Cy5.5 532 710/50
E2 tag PE-Cy7 532 780/60
cmyc Alexa Fluor 647 633 660/20
AU5 Alexa Fluor 700 633 730/45
AcV5 APC-Cy7 633 780/60

 88

Figure 5.8: Titration of HA-PE to optimize barcode distinguishability for HA and AU1
epitope tags. HA-PE was titrated from 0.1 nM to 100 nM in order to
maximize the separation of HA+ and HA- events while minimizing the
spillover into PE-Cy5 channel. At 100 nM HA-PE (red box), it was not
possible to capture any 1AU1+ cells. When HA-PE was used at 10nM
(black box), spillover into PE-Cy5 was lessened, allowing the distinction
of AU1+ and AU1- populations.

Next, we sought to assess the distinguishability of positive and negative

epitope tag populations with the new antibody fluorophore panel. Yeast expressing

known barcode controls were immunolabeled with a-CMYC and one additional

epitope tag antibody. Gating analysis was used to quantify the percentage of

H
A

si
gn

al
 (a

fu
)

Negative control a-HA-PE titration

1AU1 and 4AU1
positive control

10nM a-HA-PE
negative control

H
A

si
gn

al
 (a

fu
)

CMYC signal (afu)

100nM a-HA-PE
negative control

AU
1

si
gn

al
 (a

fu
)

10510310-3

105

103

104

100

104 CMYC signal (afu)

CMYC signal (afu) CMYC signal (afu)CMYC signal (afu)

105

103

104

100

 89

incorrectly identified cells and the percentage of cells captured (Table 5.7). In general,

15-98% of a barcoded population was captured with 0.6% or fewer false events.

Table 5.6: False positive and cells captured analysis for 12-color panel.

5.7 Discussion

Homologous recombination of glycine-serine linkers with less than 80%

homology to each other were used to create barcodes with combinations of T7, V5,

AcV5, AU5, and E2 epitope tags. 18 out of 32, or 50% of all possible epitope tag

combinations, were obtained using this approach. Specifically, 6 out of 6 possible

barcodes containing single epitope tags were created, as well as 7 out of 10 double, 5

out of 10 triple, 0 out of 5 quadruple, and 0 out of 1 quintuple barcodes. One possible

Population
% cells

captured
% false
positive

AcV5+ 59 0.6
AcV5- 14-60 0.4
AU5+ 78 0.4
AU5- 38-80 0.2
AU1+ 83.5 0.2
AU1- 28-65 0.27
E2+ 100 0
E2- 100 0

FLAG+ 95 0.1
FLAG- 83-95 0.3
HA+ 95 0.3
HA- 75-95 0.5
HSV+ 88 0.2
HSV- 50-86 0
T7+ 65 0.2
T7- 38-80 0.1
V5+ 88 0
V5- 80-95 0.27
GLU+ 80 0
GLU- 30-98 0

 90

explanation for why all 32 barcode combinations were not obtained could be because

the homologous recombination approach did not work as intended. Although 80%

homology was shown previously to be sufficient to prevent unwanted homologous

recombination events [87], our results show that this level of homology was

insufficient to prevent unwanted recombination events in this case.

We found that glycine-serine linkers recombined regardless of their homology

in most plasmids that were sequenced. This could be because the homology was not

distributed evenly across the DNA due to glycine only being encoded by GGN. It is

possible that glycine-serine linker DNA recombined, regardless of their dissimilarity

because of the large stretches of guanine nucleotides. In addition, the high number of

crossover events required to generate barcode plasmid combinations hindered barcode

creation. It is likely that we obtained few barcodes with three epitope tags, and no

barcodes with four or more epitope tags because of the requirement for more crossover

events to occur.

Homologous recombination could be a more successful approach to barcode

generation if the number of epitope tags used and thus crossovers required were

lessened. Our results support this idea, because a greater variety of barcode

combinations were obtained when partially digested epitope tag linker fragments were

used instead of fully digested fragments to create a barcode library. Only barcodes

containing zero or single epitope tags were found when DNA containing single

epitope tags surrounded by linkers, and thus requiring nine crossovers, were used.

However, diverse barcode combinations were found when partially digested inserts

were used, which likely required 2-4 crossovers to generate a full plasmid.

 91

 It may be possible to achieve a higher rate of successful combinations by

altering the method used to generate combinations. For example, Golden Gate cloning

has been used to assemble up to nine fragments simultaneously with 85-90%

efficiency [90], [91] and a similar efficiency for 5 to 6 tandem repeat fragments [92].

In addition, Gibson assembly may lead to greater success for assembling epitope tag

combinations than an overlap extension PCR approach because dsDNA fragments

could be assembled without random reannealing of ssDNA fragments [93].

 The probability of successful epitope tag combinations could also be improved

by designing a system that relies on specific recombination. One approach could be to

use different types of flexible linkers instead of only glycine-serine linkers for a

homologous recombination, Gibson assembly, or overlap extension PCR approach

[99]. Alternatively, Golden Gate assembly could be used for specific recombination by

designing unique 4-base pair overhangs to combine epitope tags together.

 Full-length plasmids containing barcodes with combinations of up to 11-

epitope tags libraries were successfully created after mini-plasmids were prevented

from transforming E coli cells by restriction digest of barcode backbone fragments.

Mini-plasmid removal from subcloning reactions was essential to permit subcloning of

new barcodes, likely due to their increased transformation efficiency and small size.

Our results show that mini-plasmids were made up of DNA fragments from barcode

backbone plasmids and can contain yeast and E. coli replication elements as well as

genes or gene fragments for selective growth in ampicillin and uracil dropout media.

Another interesting observation is that mini-plasmids persisted in the new barcode

libraries despite being fragmented during subcloning. This suggests that mini-plasmids

form during cell growth due to barcode plasmid replication instability in E. coli cells,

 92

likely due to the long tandem repeat DNA regions. Interestingly, plasmid instability

was not observed in yeast cells, which could be due to increased fidelity of eukaryotic

transcription machinery [100].

There are a number of potential solutions to remove mini-plasmids from the

barcode library or prevent their formation. If mini-plasmids are not removed by

selection, it could also be possible to use FACS or magnetic-bead sorting to remove

yeast cells that are not expressing barcodes due to harboring of a mini-plasmid. In

order to prevent the formation of mini-plasmids, barcodes could be redesigned so that

other flexible linkers aside from (G4S)3 are used to decrease the length of DNA repeats

or a shorter linker could be used. It is also possible that mini-plasmids will be less

likely to form if epitope tag repeats are not used, as we did not observe any mini-

plasmids with T7, V5, AcV5, AU5, and E2 barcodes which only contained single

repeats. Alternatively, different recombinase deficient E. coli strains could be tested to

see if mini-plasmid formation is lessened. This approach has shown to be successful in

some cases [71].

Flow cytometry analysis of barcode distribution in the 11-epitope tag libraries

showed that barcodes ranged in abundance over four orders of magnitude. Some

possible explanations for the wide distribution include experimental error in handling

small amounts of DNA, a greater propensity for smaller barcode plasmids to transform

cells, and a higher likelihood for larger barcode plasmids with long repeats to be

deleted due to erroneous transcription. Bias in barcode abundances could be corrected

by FACS as demonstrated earlier. Also, barcodes could be redesigned with spacer

regions such that their length and plasmid size is more uniform.

 93

DEVELOPMENT OF SOFTWARE FOR RAPID BARCODE
IDENTIFICATION AND ABUDANCE QUANTIFICATION

6.1 Introduction

Flow cytometry can provide informative, high-dimensional data about cellular

structure function, as current advanced flow cytometers can measure up to 20

parameters at once [65]. Manual analysis of multidimensional flow cytometry data

involves gating or grouping cells into discrete populations based on their fluorescence

and size characteristics. This approach suffers from a number of drawbacks due to its

cumbersome and time-consuming nature for complex data sets. For example, analysis

of 16 markers from 130 patent leukocyte samples took more than 15 hours to complete

[101].

The primary advantage of computational approaches to flow cytometry data

analysis is that they can decrease analysis time in some cases from hours to minutes.

Dozens of open-source software packages for computationally assisted analysis of

flow cytometry data are available [101]–[105]. These software packages apply

mathematical models to segment data, of which the three most common approaches

are centroid based clustering (k-means), density based clustering, and distribution

model-based clustering. K-means clustering is very fast but requires a priori

information about the central location and number of clusters, and can only cluster

populations with spherical shapes [106]. Distribution based mixture modeling, the

most commonly used being Gaussian, typically are more robust than k-means, but

Chapter 6

 94

their utility is limited due to necessity of making assumptions about the distribution of

the data and the number of mixture components [105], [107]. Bayesian Information

Criterion or Akaike Information Criterion can be used to determine the best mixture

model fit and estimate the number of clusters without prior information [108]. Some

methods use both k-means to partition the data and distribution-based models for

clustering [109]. Density based clustering can be used to overcome limitations

requiring a priori information about the location and number of clusters, or about the

underlying distribution of the data, but in some cases cannot be applied to high-

dimensional data and require use of a subspace [108], [110].

In this chapter, new software for rapid identification and quantification of

barcode abundances from flow cytometry data is presented. Density-based clustering

using the DBSCAN algorithm [111] and Gaussian kernel density estimation [112]

were used to cluster cells with similar fluorescence properties and estimate barcode

abundances. Barcode identities were elucidated by comparing minimum and

maximum cellular fluorescence values within a cluster. In addition, the accuracy of

our approach was calculated using many data sets, and the total number of barcodes

created and their relative abundances were estimated computationally.

6.2 Overview of Computational Barcode Identification Method

Analysis of barcode flow cytometry data for identification and quantification

of ~200 populations took approximately four hours to complete for one sample and

required more than 200 unique gates. Therefore, it would be cumbersome to analyze a

large number of samples using a manual approach. To automate and hasten data

analysis, we developed a computational method to identify and quantify barcodes

from flow cytometry data (Figure 6.1). First, data was gated in FlowJo to exclude

 95

cells whose fluorescence could not be assigned as belonging to a particular population

for a given color. This process required a maximum of 23 gates and took less than 30

minutes for approximately ten samples. After gating, samples were analyzed with a

Python script to identify and quantify barcode populations. First, fluorescence data

was transformed from linear to log space and cells with negative fluorescence values

were assigned a positive fluorescence value based on the median fluorescence of the

positive events in the negative population for a particular fluorophore. Cells with

negative fluorescence have little to no fluorescence, always belong to the negative

population, and arise due to instrument baseline subtraction and compensation error

[113].

The software uses the DBSCAN clustering algorithm and Gaussian kernel

density estimation to perform the analysis. DBSCAN is a density-based clustering

algorithm which clusters together nearest neighbors, and relies on two parameters, the

maximum search distance to look for additional nearest neighbors and the minimum

number of nearest neighbors required to assign a core point [111]. Using this

approach, DBSCAN can cluster groups together regardless of their shape, which is

necessary in this case. We also first tried implementing k-means because it is faster

than DBSCAN, but the approach did not work based on its requirement for data to be

centroid. Gaussian kernel density estimation (KDE) is a method that can estimate the

probability density function of data based on a Gaussian model [114]. KDE assigns a

density score to each data point, and in this case lower density areas were excluded

from the analysis to decrease noise in the data.

 96

Figure 6.1: Computational approach to barcode identification and abundance
quantification. Flow cytometry data was gated to exclude cells whose
fluorescence could not be assigned to a particular population for any
given color. Then, data was analyzed using a Python script which used
DBSCAN clustering to assign cells to one of two clusters based on the
density of nearest neighbors. This assignment process was repeated for
each epitope tag that produced ‘binary’ intensities when immunolabeled.
Barcodes were partitioned based on their binary fluorescence intensities,
and these groups were analyzed by DBSCAN for epitopes that when
immunolabeled produced up to three distinct populations. DBSCAN
assigned cells in to up to three clusters (one negative and two positive).
For cases in which two clusters were assigned, KDE was used to remove
outlying cells and DBSCAN was re-run to assess if one or two
populations with positive fluorescence intensities were present. Finally,
cells were grouped by an 11-digit identifier corresponding to their
barcode (0 for negative, 1 for low positive, and 2 for high positive) and
the number of cells belonging to that barcode was quantified and
normalized to calculate relative abundances. Information was exported to
Excel for further analysis if required.

The DBSCAN algorithm was used to identify cells as belonging to one of two

groups or clusters for epitope tags which produced binary populations when

immunolabeled (binary epitope tag). For each epitope tag or fluorophore, cells were

assigned a number, either ‘0’ or ‘1’ which indicated which cluster they were assigned

to (Figure 6.2). Then, minimum and maximum fluorescence values were used to

Cluster data using
DBSCAN

Assign barcode
intensity to data in

each cluster

Kernel density
estimation to

remove noisy data
Clustering before
KDE filtering KDE After KDE filtering

Clustering after
KDE filtering

Clustering before
KDE filtering KDE After KDE filtering

Clustering after
KDE filteringClustering before

KDE filtering KDE After KDE filtering
Clustering after
KDE filtering

1HSV

0HSV

2HSV

Gating to remove
noisy data

Cluster 0

Cluster 1
Cluster 2

Cluster 1

Repeat for each epitope tag

If # clusters ≠ 2

 97

calculate which cluster and cells should be assigned ‘0’ indicating negative

fluorescence and ‘1’ indicating positive fluorescence. This approach was repeated for

each binary epitope tag and then cells were grouped together based on their binary

barcode ID. A binary barcode ID is an eight-digit identifier that represents a cell’s

assignment to eight epitope tag populations. For example, the binary barcode ID

‘01010101’ represents an assignment to the negative population for T7, AU5, E2, and

GLU epitope tags and to the positive population for V5, AcV5, HIS, and FLAG

epitope tags.

Figure 6.2: Assignment of cells to one of two clusters using DBSCAN. DBSCAN uses
a nearest neighbor density based approach to group cells together. In this
case, it was used to identify cells as belonging to one of two populations
for each binary fluorophore. The python script also calculated statistics
for each cluster which were subsequently used to determine which cluster
should be assigned ‘0’ and ‘1’. After all binary epitope tags were
assigned, cells were grouped by their binary barcode identity.

epitope is: GLU
cluster ID is: 1
minimum value: 3.409
maximum value: 4.798
mean value: 3.989
standard deviation: 0.275
cluster abundance is: 26.827 %
cluster ID is: 0
minimum value: 1.284
maximum value: 3.355
mean value: 2.789
standard deviation: 0.292
Cluster abundance is: 72.75 %

Example statistics

Example output
‘Binary’ Barcode ID : row numbers corresponding to data points (cells) in that population
“00000101":[0,8,20,25,61,122,126,154,178,180,215,226,250...]
"00000100":[34,38,41,55,70,72,109,135,137,148,160,169,184...]
"00000011":[30,43,59,63,78,91,107,145,156,192,230,243,245...]

FL
AG

 s
ig

na
l

H
IS

 s
ig

na
l

G
LU

 s
ig

na
l

cluster ‘0’

cluster ‘1’

CMYC signal CMYC signal CMYC signal

cluster ‘0’

cluster ‘1’

cluster ‘0’

cluster ‘1’

 98

Next, cell subpopulations grouped by their binary ID were analyzed by

DBSCAN for the three epitope tags that produced multiple intensities when

immunolabeled, specifically HSV, AU1, and HA. Binary ID clusters were first

segmented based on their HSV population, and then by HA and AU1 in parallel

because HSV had lower fluorescence variability than HA or AU1 as determined by

manual analysis. DBSCAN was used to cluster cells into one, two, or three groups

labeled ‘0’, ‘1’, and ‘2’. Then, minimum and maximum statistics were used to

determine the correct cluster labels for each cell, representing negative fluorescence or

‘0’, low positive fluorescence or ‘1’, and high positive fluorescence or ‘2’. In the case

in which two clusters were found, it was possible that there were two positive barcode

populations present. However, cellular fluorescence variability may be obscuring the

populations from DBSCAN as the algorithm requires there to be a significant decrease

in density between two clusters to identify them as separate groups (Figure 6.3).

Thus, cells assigned to the ‘1’ cluster were subjected to KDE which mapped

them to an approximate probability density function and cells located in regions of low

density were excluded. Exclusion criterion was based on a fraction of the maximum

density value calculated by KDE and were determined empirically. The exclusion

cutoff was dependent on the particular epitope tag, total number of data points in the

cluster, and the maximum relative density value assigned by KDE. For example,

clusters with a low number of cells required a less strict filter than clusters a large

number of cells (>10,000). Then, DBSCAN was executed again on this filtered data

subset in order to cluster the cells into two groups. Statistics were used as before to

assign cells to either a ‘1’ or low positive or ‘2’ or high positive cluster.

 99

Figure 6.3: Clustering cells for epitopes with multiple fluorescence intensities by
DBSCAN and KDE. Cells were clustered with DBSCAN to determine
negative and positive populations. If two populations were found, KDE
was applied to filter out cells in areas of low relative density. Lastly,
DBSCAN was used again to assign cells to low positive and high
positive clusters.

Lastly, cells were grouped by their 11-digit barcode ID identifier representing

their assignment to each epitope tag. For example, the barcode ID ‘1110021011’

represents cells with positive T7, V5, and AU5 fluorescence, negative AcV5 and E2

fluorescence, high positive HA fluorescence, low positive HSV fluorescence, negative

Clustering before
KDE filtering KDE After KDE filtering

Clustering after
KDE filtering

Clustering before
KDE filtering KDE After KDE filtering

Clustering after
KDE filtering

Log10 CMYC signal

Log10 CMYC signal

Lo
g 1

0
H

SV
 s

ig
na

l
Lo

g 1
0

H
SV

 s
ig

na
l

 100

HIS fluorescence, and positive GLU and FLAG fluorescence. The relative abundance

of each barcode was determined by counting the number of cells assigned to each

barcode ID and normalizing by the total number of cells in all clusters.

6.3 Establishment of Filtering Criteria and Analysis of Software Accuracy

Control samples containing barcodes with known identities and abundances

were used to assess the accuracy of the software and to determine filtering criteria for

excluding false barcodes. For example, a sample containing 10 barcodes was analyzed

using the approach described above, and the results of this analysis are shown in

Table 6.1. The algorithm returned 16 barcodes, meaning in this case six of them were

false. After analyzing the software results versus those obtained by manual inspection,

we determined that a criterion of excluding barcodes present at abundances 100-fold

below the expected value could be applied to remove false barcodes, or below 0.1%

abundance in this case.

 101

Table 6.1: Barcode identities and abundances found by software for control sample
containing 10 barcodes. Note that false barcodes are highlighted in red.

In addition, barcode identification software accuracy and associated types of

error were quantified by manual inspection of DBSCAN clustering outputs.

Specifically, data for each DBSCAN clustering was graphically displayed and

inspected manually for errors. The types of errors we found were missed barcodes due

to insufficient cell density, mislabeled ‘high intensity’ barcodes due to the absence of

a lower positive intensity cluster, and falsely identified barcodes (Figure 6.4). False

barcodes encompassed those clusters that were identified as negative or ‘0’ but were

actually ‘1’ or positive, populations that were erroneously clustered together, and

segmentation of one population into two or more clusters.

Barcode Number points Abundance
00000000000 44753 50.84
00000000100 8638 9.81
00001000000 7964 9.05
00010000000 7536 8.56
00100000000 6603 7.50
10000000000 4052 4.60
00000000001 3650 4.15
00000000010 2190 2.49
00000010000 1882 2.14
00000100000 686 0.78
10000100000 34 0.04
00100000001 15 0.02
00010000100 8 0.01
00100000100 7 0.01
00100010000 2 0.00
10001000000 1 0.00

 102

Figure 6.4: Types of errors encountered during barcode identification and clustering.
DBSCAN clustering was used to identify populations for each epitope
tag present in the sample. This information was compiled for all tags to
determine the number of barcodes present in the samples. Manual
inspection of DBSCAN outputs showed five types of errors for cluster
identification, including merging of two populations, incorrect labeling of
positive clusters, missed clusters, incorrectly partitioned clusters, and
positive clusters incorrectly identified as negative or vice versa.

For each of the 14 libraries, error analysis of the number of falsely identified

barcodes before and after filtering criterion were applied, as well as quantification of

mislabeled or missed barcode populations are shown in Table 6.2. The number of

barcodes found by the software in each library after filtering ranged from 35-79 with

an average of 57 barcodes. Of the barcodes found, on average 2 barcodes were

mislabeled, 4-5 were falsely identified before filtering and 1 was falsely identified

CMYC Signal (afu)

Ep
ito

pe
 S

ig
na

l (
af

u)

CMYC Signal (afu)

Ep
ito

pe
 S

ig
na

l (
af

u)

Correct Identification Merging Error Incorrect Positive Barcode Label

Incorrect Cluster Splitting Incorrect Positive-Negative
Barcode Label

Missed Cluster

Missed ‘0’ Cluster

Missed ‘1’ Cluster

 103

after filtering, indicating filtering criterion were effective in eliminating most false

barcodes from the analysis.

Table 6.2: Analysis of barcode identification software accuracy and error assessment.

An overall summary of barcode software accuracy and an estimation of the

total number of barcodes is shown in Table 6.3. We estimate that 16-43% (100-600)

barcodes were missed based on manual inspection of the number of clusters missed by

the software. On average, we had a low rate of misidentification of barcodes after

filtering criterion were applied, with 2.4% falsely identified barcodes and 4%

mislabeled barcodes. Based on the number of barcodes found by the software and an

estimation of the number of missed barcodes, we estimate that between 1,115 and

1,570 barcodes were created in total.

Library
False Barcodes
Before Filtering

False Barcodes
After Filtering

Mislabeled
Barcodes

Missed
Barcodes

of Barcodes
After Filtering

00100 9 4 2 5-21 74
10000 4 0 2 14-48 79
01000 9 1 2 10-42 64
00001 7 2 2 17-57 63
11100 4 3 2 13-69 41
01100 10 4 3 8-36 64
11001 7 2 3 8-36 53
11000 5 0 3 14-48 55
10011 1 0 0 5-21 55
01001 2 0 0 5-27 71
01010 2 1 5 13-45 56
01011 0 0 4 17-72 36
00110 4 1 2 13-39 44
10010 2 1 1 12-48 35

 104

Table 6.3: Summary of barcode identification software accuracy and estimation of
total barcodes

6.4 Discussion

We developed software to identify barcodes and quantify their relative

abundances from flow cytometry data. The major advantage to using a computational

approach to analyze multicolor flow cytometry data, in this case, is that the time taken

to analyze samples was decreased from hours to minutes. Specifically, one sample

took about four hours to analyze manually, but only ~25 minutes with a computational

approach. Overall, it is worthwhile to use computational approaches for large flow

cytometry data sets with multiple colors and complex gating schemes, as they are

faster than manual approaches.

However, the computational approach to barcodes identification has some

drawbacks including the time-consuming optimization of DBSCAN and KDE

parameters and less accuracy than the manual approach. There are a number of

improvements that can be made to the software which could decrease the error rate

and the number of missed or misidentified barcodes, such as the use of more robust

barcode exclusion criteria. In addition, analysis could be further automated by not

require manual pre-filtering. Currently, the software sacrifices identification of all

present barcode populations for a low error rate of false barcode identification.

Count Percentage
Min barcodes missed (software) 154 16.31
Max barcodes missed (software) 609 43.53
False barcodes 19 2.41
Mislabeled barcodes 31 3.92
Total barcodes found 980
Estimated total barcodes 1115 - 1570

 105

In order to improve the accuracy of the software, one approach could be to use

data sets with larger amounts of cells, and thus would be amenable to more stringent

filtering criteria without rare barcode population loss. Acquiring larger data sets is

feable as flow cytometry can measure ~108 cells per hour. This could have multiple

positive effects including a decreased number of missed or mislabeled barcode

populations and a decreased number of barcode splitting events due to insufficient cell

density within a cluster. More stringent filtering could also decrease the number of

false barcodes by enhancing separation between clusters and thus lower the probability

of cluster merging.

One drawback of the software is that it cannot label a cluster as a low positive

or high positive cluster in the absolute case, meaning without the presence of other

clusters. Rather, the software calculates the maximum value present in each cluster

and then compares them to assign labels. In most cases, mislabeled clusters are not an

issue because negative clusters are the most abundant in the barcode libraries,

followed by low positive and high positive clusters. An alternative approach to

assigning cluster labels could be used including simply inputting a range of

fluorescence values in which negative, low positive, and high positive clusters could

occur. This approach would work well for epitope tags that produce binary

populations when immunolabeled. However, this is not a simple task for epitope tags

that produce multiple intensities when immunolabeled due to the interdependencies

between other epitope tags and the fluorescence as discussed in Chapter 3. Ideally,

machine learning could be used with training data to determine the optimal parameters

for multiple intensity epitope tags, taking into account the presence or absence of other

epitope tags.

 106

We have identified a critical exclusion criterion, the relative abundance of a

barcode, as essential to computational barcode identification with a low error rate. In

addition, it would be advantageous to identify additional exclusion criteria in order to

improve the accuracy of the software. For example, statistics on cluster fluorescence

intensity and deviation could be used to exclude cells in addition to the abundance

criterion. Also, additional control samples with defined numbers of barcodes should be

analyzed computationally to determine if the abundance exclusion criterion is

sufficient to exclude false barcodes in all cases or to help identify additional exclusion

criteria. Lastly, a disadvantage of our computational approach compared to others is

that it requires pre-filtering data using manual gating to accurately identify barcode

populations. If KDE is applied to all epitope tags instead of only those that produce

barcodes with multiple intensities, it could eliminate the need for manual gating and

decrease the time needed to analyze flow cytometry data as well as the need for

manual analysis.

 107

APPLICATION OF FLUORESCENT BARCODING FOR MULTIPLEXED
ANALYSIS OF BIOMOLECULAR AND CELLULAR LIBRARIES

7.1 Introduction

In this chapter, application of the fluorescent barcoding system to the

multiplexed analysis of biomolecular and cellular libraries is presented. First,

application of barcoding scFvs for the multiplexed, quantitative analysis of protein-

protein interactions is discussed. Towards this goal, we determined the effect of

barcode expression on the affinity of the a-prion scFv ICSM18 2.6.1 for recombinant

prion protein, and discuss the production and characterization of recombinant prion

protein.

In a second application, the fluorescent barcoding system was applied to study

the dynamic behavior of yeast GFP protein fusion clones in different environments.

Specifically, we assigned genetically-encoded unique fluorescent barcodes to yeast

GFP fusion clones and evaluate possible factors influencing barcode expression. In

addition, we simultaneously examined the single-cell protein expression dynamics of

barcoded yeast GFP clones in response to ten different environmental conditions and

over a range of times. We found interesting responses including changes in protein

abundance, variation, and distribution, which may suggest that cells use a bet-hedging

strategy for enhanced fitness in fluctuating environments. In addition, proteins of

unknown function were studied, and changes in their expression profiles due to

environmental perturbation potentially indicate functional significance.

Chapter 7

 108

7.2 Prion Diseases and Potential Antibody Therapeutics

Prion diseases are invariably fatal neurodegenerative diseases that cause

abnormal protein folding, which results in dementia and other debilitating symptoms

[115]. Prion diseases can be inherited in 15% of cases, sporadic, or acquired through

tainted bovine consumption, cannibalism, or contaminated surgical equipment [116].

Prion disease is caused by the introduction of the disease-causing, misfolded prion

protein (PrPSc). Misfolded prion protein converts the native, membrane bound alpha-

helical prion protein (PrPC) into a disease causing, beta-sheet rich form (PrPSc) [117].

The conversion process from an alpha-helical form to a beta-sheet rich form is unique

in that it is not genetic in nature, but rather is caused by interaction of the PrPSc protein

with PrPC protein [118], [119]. In support of this, knockout mice that do not express

normal prion protein do not develop prion disease [120]. Misfolded prion protein often

forms aggregate and amyloid structures, which cause neuronal death and can be seen

as deposits in the brains of affected patients [121].

Cell culture and mouse model studies have shown that antibodies targeting the

normally folded prion protein may be able to interrupt the conversion process [122]–

[125]. While antibodies have shown limited therapeutic efficacy in mouse models by

injection or viral delivery [126], [127], none have been successful in human trials,

possibly due to difficulty of accumulation in the brain due to the blood brain barrier.

Engineering techniques can be used to improve affinity and stability, and could result

in a-prion antibodies with increased therapeutic efficacy. Engineering approaches for

improved antibody therapeutics have shown promise in treatments for other disease

including Alzheimer’s disease [128], rheumatoid arthritis [129], and respiratory

syncytial virus [130].

 109

In our laboratory, a number of a-prion single-chain variable fragments (scFvs)

have been engineered for increased affinity and stability. scFvs are protein fusions

composed of the variable heavy (VH) and variable light (VL) portions of an antibody,

connected by a designed flexible linker [131]. They are advantageous for engineering

and surface-display approaches because they are small (~25 kDa) and composed of a

single domain. Variants of the a-prion antibody ICSM18 [126] were engineered in our

laboratory using random mutagenesis and yeast surface display.

The clone ICSM18 2.6.1 was found by other lab members to have increased

stability and soluble CHO expressed yields as compared to wild type ICSM18.

Improvements in the stability of ICSM18 2.6.1 can be attributed to three amino acid

substitutions in framework regions of the immunoglobulin domains (R91G, M77V,

M21I), a mutation in the flexible linker (G116D), and four silent mutations leading to

improved yeast codon usage. The R91G mutation may have reduced steric hindrance

near the binding pocket, allowing for increased contact between the scFv and PrP. The

methionine substitutions to valine and isoleucine are smaller and higher on the

hydrophobic index. These properties may improve stability by permitting greater

burial into the hydrophobic protein core. The linker amino acid substitution to a

charged residue may have helped improve linker stability and solubility [99].

7.2.1 Protein-Protein Interactions

Protein-protein interactions, including receptor-ligand interactions, underlie

many important biological processes including signal transduction and membrane

transport. Aberrant protein-protein interactions play a central role in many diseases,

including Creutzfeld-Jakob disease (CJD), Alzheimer’s disease, and Huntington’s

disease [132]. Protein-protein interaction strength is governed by electrostatic forces

 110

including hydrogen bonding and Van der Waals interactions. Protein-protein

interactions are stabilized by interaction of hydrophobic, complementary faces with at

least 600 square angstroms of buried surface area [133]. Studies on the specific

contribution of amino acids to protein interaction interfaces found that tryptophan,

tyrosine, and arginine occurred most frequently, possibly due to their ability to form

multiple types of interactions including pi-interactions, hydrogen bonding,

hydrophobic interactions, and salt bridges [134].

The strength of a protein-protein interaction is related to the free energy of

binding:

∆𝐺 = 	−𝑅𝑇𝑙𝑛𝐾+

where R is the ideal gas constant, T is temperature, and Kd is the equilibrium

dissociation constant. The dissociation constant for equilibrium interaction is dictated

by the ratio of the on and off rates of binding, koff/kon. There are many methods to

estimate the strength of a protein-protein interaction. Techniques are based on

measurements of kinetic parameters, which include surface-plasmon resonance [135]

and isothermal calorimetry [136], and equilibrium measurements, such as antigen

titration [51]. Many quantitative and non-quantitative methods to screen for protein-

protein interactions exist, including affinity purification and mass spectrometry [137],

FRET [138], proximity ligation assay [139], [140], and yeast two hybrid [141].

7.2.2 Single-Cell analysis of the S. cerevisiae Proteome in Fluctuating
Environments

Cellular heterogeneity within cell isogenic populations is caused by noise in

gene expression due to the stochasticity of biochemical processes involving small

numbers of molecules [4], [32]. This heterogeneity is often masked using traditional

 111

methods such as Western blotting or mass spectrometry. Phenotypic heterogeneity in

cell signaling and protein expression has been observed in a variety of cell types and

affects many important phenomena including cellular fitness improvements during

environmental fluctuations [9], [10], [142], differential response of cancer cell

subpopulations to drugs [45], [143], [144] , stem-cell lineage [145], and bacterial

persistence [7]. For example, over 1000 clones derived from lung carcinoma, with

each clone expressing a different endogenous fluorescent protein fusion, were

examined during response to the drug camptothecin by time-lapse microscopy [46].

Some of the protein fusions exhibited bimodal expression patterns, which suggest they

may play a role in cell subpopulation’s escape from drug action. In another study,

time-lapse microscopy of clonal yeast populations exhibited a range of growth rates,

with slow growing phenotypes correlating with resistance to heat killing and higher

expression of the trehalose biosynthesis protein Tsl1 [9].

Typically, single-cell proteomic analysis studies use high-throughput tools

such as automated fluorescence microscopy or flow cytometry to measure the

response of cells expressing fluorescent protein fusions under endogenous promoters.

To facilitate studies of proteome dynamics, a collection of over 4,000 yeast clones

representing 75% of the yeast proteome was created, with each clone expressing a

GFP fusion from the native open reading frame [55]. Using this collection, 70% of

proteins with unknown localization were assigned into 22 distinct subcellular

compartments. Since this study, the GFP fusion collection has been widely used to

assess the yeast proteome in normal environments [41], and in response to

perturbations including DNA damage agents such as hydroxyurea, methyl

 112

methanesulfonate, and UV irradiation [13], [67], [68], osmotic stress [146], and

reducing, oxidizing, and heat stress [10].

A study of the yeast proteome in rich and minimal media using flow cytometry

found that proteins expressed at the same median level can have different amounts of

noise, or variance in protein expression from cell to cell [41], and that protein

expression noise is likely predominantly affected by the stochastic production and

destruction of mRNA [32]. In addition, noise levels were associated with different

functional groups of genes. For example, genes involved in protein synthesis are quiet

whereas genes involved in production of proteins that respond to environmental

changes are noisy. The authors suggest that imprecise protein expression regulation

could be beneficial in that it could allow more rapid adaptations to fluctuating

environments.

Studies have also examined the behavior of the yeast proteome in response to

environmental perturbations with single-cell resolution, providing additional insight

into protein localization and abundance changes that are masked by population

averaging. For example, yeast proteome dynamics studies have uncovered that

proteins can change localization or abundance in response to stress, and some proteins

respond in a stress specific manner [13], [67], [68]. One study found that hydroxyurea,

which slows DNA replication by limiting dNTP pools and biosynthesis enzymes, was

associated with localization changes in proteins involved in mRNA decapping. Methyl

methanesulfonate, which causes DNA damage that cannot be repaired, is associated

with localization changes in genes associated with the cell cycle and DNA repair [67].

In addition, another study uncovered a bet-hedging mechanism which was

employed by yeast cells grown in a low nitrogen environment [10]. A subset of yeast

 113

GFP fusion clones exhibited bimodal expression profiles in response to low nitrogen

stress, which may reflect a survival strategy. Specifically, cells expressing the PRE3

GFP fusion protein partitioned into high and low expressing subpopulations after a

day of nitrogen starvation. Investigation of these subpopulations growth rate showed

that the PRE3 high expressing subpopulation had a fitness advantage over 24h time

scale but the low expressing subpopulation outcompeted the high expressing

subpopulation over 4 days.

7.3 Application of Fluorescent Barcoding for the Study of Recombinant Prion
Protein-Antibody Interactions

Fluorescent cell barcoding could be used to screen biomolecular libraries for

protein-protein interactions and quantify binding affinities. In principle, members of a

biomolecular library such as a cDNA library could be assigned to unique fluorescent

barcodes by co-transformation or genetic fusion. Barcoded yeast also expressing

surface displayed proteins of interest could be titrated with soluble antigens to screen

for interaction partners. For example, yeast surface display and next-generation DNA

sequencing were used to identify hundreds of peptides with affinity for mouse and

human T-cell receptors [147]. Antigen titration could be conducted to estimate the

dissociation constant and quantify the strength of the protein-protein interaction.

Towards this goal, we investigated the interaction between recombinant alpha-

helical prion protein (PrPa) and yeast surface displayed ICSM18 2.6.1 scFv, which

was genetically fused to barcodes of varying lengths. Specifically, we subcloned the

nucleotide sequence encoding for the ICSM18 2.6.1 variant into pCTCON2 and pBC2

plasmids, a 5-eptiope tag barcode library, and an 11-epitope tag barcode library.

Expression of the scFv in pCTCON2 adds an N-terminal CMYC tag and a C-terminal

 114

HA tag connected by flexible linkers, and a fusion to the AGA2 yeast mating protein.

Expression of the scFv in pBC2 adds an N-terminal CMYC tag and linker, and a C-

terminal fusion to a domain of the alpha-agglutinin yeast mating protein. scFv barcode

library plasmids are composed of an N-terminal CMYC tag and linker, the scFv, the

barcodes which are composed of 1 to 11 epitope tags connected by (G4S)3 linkers, and

finally the alpha-agglutinin domain.

Recombinant PrPa was produced in a 30L bioreactor fermentation of E. coli

cells. Protein was isolated from inclusion bodies by ultracentrifugation and purified

from host cell proteins using size-exclusion chromatography (SEC) (Figure 7.1). SEC

fractions were tested for the presence of PrP by Western blotting, and purity was

assessed to be more than 90% using Coomassie and silver stains. Then, protein was

oxidized by exposure to atmospheric air for two weeks, followed by reverse-phase

HPLC to isolate the oxidized protein fraction. After lyophilization, PrP was

resolubilized in water and labeled with Alexa Fluor 647 using succinimidyl ester

chemistry. Fluorescently conjugated protein was diluted into 4M Urea with Tris and

oxidized glutathione at pH 8, allowing formation of an alpha-helical structure [54].

 115

Figure 7.1: Production and purification of recombinant mouse prion protein.
Recombinant prion protein was produced in a 4 hour biofermentation
using E. coli cells. Inclusion bodies were isolated by ultracentrifugation
and solubilized. SEC was used to purify prion protein from host cell
proteins and fractions were tested for the presence of prion protein by
Western blotting. Purity was assessed using Coomassie and silver
staining. Prion protein was oxidized for two weeks by exposure to air and
oxidized protein was purified from reduced by RP-HPLC and
lyophilized. Finally, oxidized protein was resuspended in buffer to form
an alpha-helical structure and conjugated to Alexa Fluor 647.

Fluorescently labeled PrPa was titrated with ICSM18 2.6.1 scFv displayed on

the yeast surface with or without barcodes in PBS 0.1% BSA pH 7.4 (Figure 7.2).

Prior to immunolabeling, cells were induced for 24h in galactose media at 20°C or

30°C. Previous experiments by other lab members showed the binding affinity of

ICSM18 2.6.1 for PrPa to be ~2nM when expressed in the pCTCON2 vector.

However, the titration did not result in a characteristic saturated binding curve for any

Coomassie

Silver Stain

25
35

15
10

kDa

kDa

25
35

15
10

SEC Chromatogram

Ab
so

rb
an

ce
 2

80
 n

m

Fraction
1 2 3 4 5 6 7 8 9

Western Blot – ISCM18 scFv

25
35

15

kDa

Fraction 1 2 3 4 5 6 7 8 9

E. coli bioreactor
fermentation

Resuspend cell pellet in
Tris/EDTA buffer

Microfluidize

Ultracentrifugation

Wash with Tris/EDTA buffer

Solubilize inclusion bodies
8M GdnHCl/100 mM DTT

SEC, buffer exchange
6M GdnHCl/5 mM DTT

2 week oxidation

RP-HPLC

Lyophilization

Refolding
4M Urea/Tris/GSSG

Test for binding

0
5

10
15
20
25
30

40 45 50 55

A2
80

 In
te

ns
ity

x
10

00
00

Time (min)

RP-HPLC

 116

of the constructs tested, possibly due to aggregation of PrP. PrP could not be titrated

above 100nM due to insolubility. Notably, all expressing cells appeared to interact

with PrP, and no nonspecific interaction of PrP with the non-expressing cell

population was observed.

Figure 7.2: Titration of PrP with surface-displayed barcoded ICSM18 2.6.1. Yeast
cells displaying ICSM18 2.6.1 as a fusion to AGA2 (pCTCON2) or
alpha-aggutinin with (5-tag and 11-tag) or without (pBC2) barcodes were
titrated with fluorescently labeled recombinant PrPa. Saturation did not
occur as expected in all cases, possibly due to PrPa aggregation, and PrPa
did not bind nonspecifically to non-expressing yeast cells. Importantly,
all cells expressing recombinant proteins on the surface bound PrPa.

In order to evaluate if barcodes have an effect on the affinity of the PrP

ICSM18 2.6.1 interaction, total PrP signal, which is proportional to the amount of PrP

bound, was normalized by the median total CMYC fluorescence, which is related to

the expression level of the surface displayed protein (Figure 7.3). We found that

PCTCON2

PBC2

5-tag
barcodes

11-tag
barcodes

1nM, 20C 10nM, 20C 100nM, 20C 1nM, 30C 10nM, 30C 100nM, 30C

Pr
P

sig
na

l (
af

u)

CMYC
signal (afu)

107

105

103

101

107101 103 105

 117

ICSM18 2.6.1 barcode fusions that were induced at 20°C for 24h had the highest

normalized PrP signal as compared to non-barcoded ICSM18 2.6.1 expressed at 20°C

or 30°C or barcoded ICSM18 2.6.1 fusions induced at 30°C. This suggests that

barcodes do not affect the apparent affinity of ICSM18 2.6.1 PrP interactions when

scFV is expressed at 20°C.

 118

Figure 7.3: Effect of barcodes on the affinity of PrP ICSM18 2.6.1 interaction. The
apparent affinity of yeast surface displayed ICSM18 2.6.1 PrP interaction
was not affected when barcoded scFv was expressed at 20°C. This is
suggested by the similar or higher median normalized PrP signal for
barcoded ICSM18 2.6.1 as compared to ICSM18 2.6.1 without barcodes
(pCTCON2 and pBC2) at multiple PrP concentrations.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 0.5 1 1.5 2

N
or

m
al

iz
ed

 P
rP

 S
ig

na
l

Log10 PrP (nM)

30°C Induction

pCTCON2

pBC2

5-Tag Barcodes

11-Tag Barcodes

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 0.5 1 1.5 2

N
or

m
al

iz
ed

 P
rP

 S
ig

na
l

Log10 PrP (nM)

20°C Induction
pCTCON2
pBC2
5-tag Barcodes
11-Tag Barcodes

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 0.5 1 1.5 2

N
or

m
al

iz
ed

 P
rP

 S
ig

na
l

Log10 PrP (nM)

30°C Induction

pCTCON2

pBC2

5-Tag Barcodes

11-Tag Barcodes

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 0.5 1 1.5 2

N
or

m
al

iz
ed

 P
rP

 S
ig

na
l

Log10 PrP (nM)

20°C Induction
pCTCON2
pBC2
5-tag Barcodes
11-Tag Barcodes

 119

Notably, ICSM18 2.6.1 exhibited lower CMYC signal when fused to alpha-

agglutinin with or without barcodes as compared to the AGA2 fusion, suggesting

lower expression levels (Figure 7.4). The ICSM18 2.6.1 alpha-agglutinin fusion

without barcodes exhibited a 7-fold decrease in expression at 20°C and an 8.5-fold

decrease in expression at 30°C compared to the AGA2 fusion. An additional 4-fold

decrease in expression was observed when ICSM18 2.6.1 was fused to barcodes and

expressed at 20°C. Expression of barcoded ICSM18 2.6.1 at 30°C exhibited a 11-fold

decrease in expression with 5-tag barcodes and a 6-fold decrease in expression with

11-tag barcode fusions. Interestingly, the scFv had higher median expression at 30°C

when barcodes were not present, but 20°C was favored for expression of barcode scFv

fusions. In all cases, 30°C induction resulted in a higher percentage of cells expressing

yeast surface displayed proteins.

Figure 7.4: Expression of ICSM18 2.6.1 scFv is affected by barcode fusion. Yeast
surface displayed ICSM18 2.6.1 barcode fusions exhibited 4 to 11-fold
lower median expression as compared to ICSM18 2.6.1 alone.
Expression levels were higher at 20°C for barcoded scFv and 30°C for
scFv only. The percentage of expressing cells was higher in all cases
when protein expression was induced at 30°C.

1.E+03

1.E+04

1.E+05

1.E+06

M
ed

ia
n

C
M

YC
 S

ig
na

l

0
10
20
30
40
50
60
70
80
90

100

%
 E

xp
re

ss
in

g
C

el
ls

 120

After optimizing the induction temperature of barcoded ICSM18 2.6.1

expression, we hypothesized that barcoded scFv expression could be improved by

increasing the induction time for protein expression. Previous studies have shown that

induction of heterologous yeast surface displayed proteins can be improved by varying

induction time up from 20-48 hours [148]. Yeast surface displayed barcoded scFv

expression levels were measured as a function of induction time at 20°C by

immunolabeling with antibodies against the N-terminal CMYC tag and additionally

with antibodies against the barcode epitope tags (Figure 7.5). Results show that

barcoded ICSM18 2.6.1 expression improved approximately 3-fold after an additional

24h of induction. Further studies could be conducted to determine if longer induction

times would be beneficial.

Figure 7.5: Effect of induction time on barcoded ICSM18 2.6.1 expression. Barcoded
scFv expression improved approximately 3-fold after an addition 24h of
induction at 20C, suggesting that longer induction times may be
beneficial for higher expression.

CMYC Signal

Ba
rc

od
e

Si
gn

al
 (a

fu
)

CMYC Signal (afu)

Barcodes

Barcodes +
ICSM18 2.6.1

24h induction 32h induction 48h induction

Ba
rc

od
e

Si
gn

al
 (a

fu
)

CMYC Signal (afu)
107

105

103

101

107

105

103

101

107101 103 105

107101 103 105

 121

7.4 Assignment of Unique Barcodes to Yeast GFP Fusion Clones and
Investigation of Factors Affecting Barcode Expression

Systems biology is a research area in which a large amount of data, i.e.

genomic, transcriptomic, metabolomics, or proteomic scale, is used to assess the

behavior of cells, tissues, and organisms and create predictive models [2]. In addition,

single-cell analysis provides greater resolution of information than methods that rely

on population averaging, and it can reveal interesting phenomena that are masked by

population averaging approaches. Previous single-cell studies of the yeast proteome

have used time-consuming methods including robotics-based flow cytometry or

automated fluorescence microscopy. Moreover, cells have only been investigated in a

limited number of environments due to the large number of samples required. The

fluorescent cell barcoding tool we have developed is a powerful multiplexing method

for single-cell analysis that can greatly decrease the number of samples needed for a

study by approximately 100 to 1000-fold. Therefore, fluorescent cell barcoding can

enhance yeast proteomics studies by decreasing the amount of time and samples

needed, and also allowing more replicates and perturbations to be studied.

We applied the fluorescent cell barcoding system to study the dynamic

response of yeast proteins to environmental perturbations using the yeast GFP fusion

collection. This collection is composed of over 4,000 yeast clones with each one

expressing a different GFP fusion protein from the native open reading frame [55].

Clones were chosen based on those which were previously reported to have large

coefficients in variation (CV) [41], which is defined as the standard deviation

normalized by the mean, or those which were reported to have bimodal expression

patterns in certain environmental conditions [10]. Additional yeast GFP clones that

express proteins of unknown function, representing 17.6% of the yeast proteome, were

 122

chosen for this study. We hypothesized that investigating changes in protein

expression profiles in different environmental conditions could lead to insight into

protein function.

Each of the fifteen barcode libraries, which are defined by a unique

combination of 5 epitope tags, were transformed into 12 or 13 yeast GFP clones. Also,

plasmids with known combinations of 5 epitope tags were transformed into clones.

Single clones harboring a barcode plasmid an a unique endogenous GFP fusion

protein were picked from selective agar plates. Then up to 15 barcoded yeast GFP

clones, each containing a plasmid with a known combination of 5 epitope tags and an

unknown combination of the other 6 epitope tags, were mixed together in a single tube

for screening by immunolabeling and flow cytometry.

The results of the barcode screening experiments are shown in Table 7.1. 49

out of 81 (60.49%) of the barcoded yeast GFP clones were unique, and the probability

of unique assignment rose to 72.41% when GFP clones assigned to specific 5-tag

plasmids were excluded. In addition, the most commonly observed barcodes were

those with 5-epitope tag combinations, namely AcV5/V5, V5, and T7/V5/E2. These

results are not surprising because the 5 epitope tag plasmids were the most abundant

barcodes present in the libraries (Appendix H). In general, the majority of barcodes in

the libraries were observed once (56%) or two times (35.09%), indicating barcode

libraries contain diverse combinations.

 123

Table 7.1: Frequency of barcode observations during one-by-one assignment to yeast
GFP clones.

Interestingly, more than 93% of attempted barcode plasmid transformations

were successful, but only 54% of these successful transformants had barcode

expression as observed by immunolabeling and flow cytometry (Table 7.2). This

suggested that barcoded yeast clones were acquiring the selective marker during

plasmid transformation but not a functional barcode. In addition, we calculated the

probability of observing a yeast GPF clone with barcode expression given that the

clone was transformed with either a 5-epitope tag plasmid or a mixture of barcode

library plasmids (Table 7.3). Statistical comparison of the samples showed that the

probabilities were significantly different (p = 0.11). Taken together, these data suggest

that the mini-plasmids present in the barcode library were likely the underlying cause

of the discrepancy between the number of successful transformants and the number of

transformants expressing functional barcodes.

Including transformants with 5-tag plasmids
observations # barcodes % barcodes # unique barcodes

1 28 31.65 28
2 28 32.91 14
3 12 22.78 4
4 8 5.06 2
5 5 7.59 1

total # unique barcodes 49
total % unique barcodes 60.49

Excluding transformants with 5-tag plasmids
observations # barcodes % barcodes # unique barcodes

1 28 56.14 28
2 24 35.09 12
3 6 8.77 2

total # unique barcodes 42
total % unique barcodes 72.41

 124

Table 7.2: Summary of yeast GFP barcode transformation and screening results.

Table 7.3: Barcode expression probability comparison between yeast GFP clones
transformed with 5-tag plasmids and 11-tag libraries.

Barcoded yeast GFP clone screening was conducted twice with the same

transformants but different proportions of each clone. We observed that barcoded

mixtures of yeast GFP clones had heterogeneous barcode expression, with an average

expression of approximately 20% (Figure 7.6). Typically, cells expressing barcodes

without the presence of mini-plasmids exhibited 50-70% expression, suggesting

removal of cells containing mini-plasmids would restore expression levels. We

Result Count
Attempted GFP Clone Barcode Transformation 161
Successful GFP Clone Barcode Transformation 150
GFP Clones with Barcode Expression 84
GFP Clones with Unique Barcode Expresssion 49

Sample
transformants without

barcode expression
transformants with
barcode expression

% transformants with
barcode expression

SC 1 7 11 61.11
UK 1 4 12 75.00

average 67.65

SC 2 4 9 69.23
SC 3 10 4 28.57
SC 4 8 6 42.86
SC 5 7 7 50.00
SC 6 6 5 45.45
UK 2 3 4 57.14
UK 3 5 5 50.00
UK 4 8 5 38.46
UK 5 3 8 72.73
UK 6 4 5 55.56

average 50.00

 125

observed a recovery of barcode expression levels to 55.4% of cells after

immunolabeling a mixture of barcoded yeast-GFP clones that had been screened

previously for barcode expression.

Figure 7.6: Barcoded yeast GFP mixtures exhibit a range of low expression
percentages. Barcoded mixtures of yeast GFP clones exhibited
expression heterogeneity, with an average expression level of ~20%.
Typical barcode expression percentages ranged from 50-70%. The
approximately two-fold lower expression percentage observed is
consistent with the number of transformants expressing barcodes
observed.

An alternative hypothesis for the low percentage of expression observed is that

induction conditions are non-optimal for barcoded yeast GFP clones. Therefore,

barcode expression was monitored over 64 hours of induction at two temperatures for

four different mixtures of barcoded yeast GFP clones (Figure 7.7). Again, we

observed that mixtures had a range of expression percentages. The expression level

0
1
2
3
4
5
6
7

0-10 10-20 20-30 30-40 40-50 50-60

C
ou

nt

% Expressing Cells

 126

and percentage of cells expressing barcodes was not improved for any of the mixtures

at the times and temperatures tested. Additionally, the 24h and 30°C condition used

for all other experiments was sufficient to induced barcode expression. These results

suggest that low percentages of expressing cells are not caused by suboptimal barcode

induction conditions.

Figure 7.7: Barcoded yeast GFP clone mixture expression levels are unchanged in
different induction conditions. Four mixtures containing different
barcoded yeast GFP clones were tested for expression levels by
immunolabeling with an antibody against the CMYC tag at two different
temperatures and 64h of expression. Mixtures exhibited a range of
expression percentages that did not vary with the induction conditions
tested. Therefore, the low percentage of expressing cells is likely not
caused by suboptimal induction conditions.

0

2

4

6

8

10

12

14

20 30 40 50 60 70

%
 C

M
YC

+
C

el
ls

Induction Time (h)

Sample 1
Sample 2
Sample 3
Sample 4

 127

7.5 Improvement of GFP Signal to Background Ratio in Fixed Yeast Cells

Fixation of barcoded GFP cells is necessary for studies involving proteome

dynamics because of the amount of processing time required for immunolabeling and

flow cytometry measurements. Therefore, we investigated the effect of formaldehyde

fixation on GFP fluorescence. A GFP fusion clone with highly fluorescent GFP

expression and a negative control strain with the same genetic background as the GFP

clones were grown overnight and fixed using either 1% OR 4% formaldehyde in PBS

pH 7.4 for up to one hour (Figure 7.8). Fixation caused a decrease in GFP

fluorescence, as also observed by others [149], with almost 2-fold losses after 10

minutes in the 1% condition. Over the time-course, 1% formaldehyde had less of an

effect on GFP fluorescence than 4% formaldehyde as expected. Cells fixed at all

conditions were checked for a lack of growth after 24h. GFP chromophore formation

is accomplished by the folding, cyclization, and atmospheric oxidation of three amino

acid side chains, T65, Y66, G67 [150]. These results suggest that formaldehyde may

alter the structure of GFP, effectively lowering chromophore signal.

 128

Figure 7.8: Effect of formaldehyde fixation on GFP fluorescence. GFP fluorescence of
a highly expressed yeast GFP fusion clone was monitored over time
during fixation with either 1% or 4% formaldehyde in PBS pH 7.4. At
both conditions tested, formaldehyde lowered the GFP signal by almost
2-fold after only 10 minutes. As expected, 1% formaldehyde had less of a
detrimental effect than 4% at longer times.

In addition, we wanted to improve the GFP detection sensitivity by increasing

the signal to background ratio. It should be possible to achieve this by lowering

cellular autofluorescence, which is ubiquitous in the 500-600nm range due to the

presence of flavins, which are small molecule redox cofactors [151]. We hypothesized

that permeabilization of the cell membrane would allow diffusion of flavins outside of

the cell, effectively lowering autofluorescence. Autofluorescence and GFP

fluorescence were measured by flow cytometry after fixed cells were exposed to

different permeabilization reagents including detergents and alcohols (Figure 7.9).

0

5000

10000

15000

20000

25000

30000

0 20 40 60

M
ed

ia
n

G
FP

 S
ig

na
l (

af
u)

Fixation time (minutes)

Background

1% Formaldehyde

4% Formaldehyde

 129

The signal to background ratio was calculated by dividing the median fluorescence

value for yeast cells expressing GFP by yeast cells not expressing GFP. Mild detergent

permeabilization methods mildly improved detection sensitivity by lowering

autofluorescence, and this effect was more pronounced for alcohols. In addition, when

mild fixation conditions were used (1% formaldehyde for 10 minutes), alcohol

permeabilization restored the GFP signal to background ratio to levels seen in unfixed

cells. Effectively, alcohol lowered cellular autofluorescence enough to overcome the

decrease in GFP signal caused by formaldehyde.

Figure 7.9: Permeabilization improves the signal to background ratio for fixed cells
expressing GFP by lowering autofluorescence. Only mild improvements
in GFP signal to background were achieved when detergents were used
(left panel). Alcohols were more successful in improving the detection
sensitivity by lowering autofluorescence. Alcohol fixation improved the
signal to background ratio for GFP to unfixed cell levels by lowering
autofluorescence, effectively overcoming the decrease in GFP signal due
to fixation.

0

5

10

15

20

25

Ra
tio

 S
ig

na
l to

 B
ac

kg
ro

un
d

0

5

10

15

20

25

Not fixed Fixed
(1%, 10m)

Methanol Ethanol

Ra
tio

 S
ig

na
l t

o
Ba

ck
gr

ou
nd

 130

7.6 Dynamic Behavior of S. cerevisiae Protein Expression in Response to
Environmental Perturbations

We examined the single-cell protein expression profiles of barcoded yeast GFP

fusion clones in response to environmental perturbations as a first demonstration of

barcode technology applied to studies of single-cell yeast proteomics. The barcoded

GFP fusion clone mixtures contained different number of barcoded clones, GFP fusion

proteins, and assigned barcodes. Two mixtures, containing four and seven barcoded

yeast GFP clones, were studied under four different environmental conditions and at

two different time points after perturbation. One mixture contained barcoded yeast

GFP fusion clones that express proteins known to be upregulated in response to certain

environmental stresses (Table 7.4). The other sample contained barcoded yeast GFP

fusion clones whose fusion proteins are known to be upregulated in response to certain

stresses, as well as some clones with unknown function (Table 7.5).

Table 7.4: Mixture of four barcoded yeast GFP clones with known stress responses.

Table 7.5: Mixture of seven barcoded yeast GFP clones with either known stress
responses or unknown function.

GFP Clone ORF GFP Clone Name Barcode Related Stress Response Description
YDR513W GRX2 10011000000 oxidative stress Cytoplasmic glutaredoxin
YBR126C TPS1 00001000000 heat shock Synthase subunit of trehalose-6-P synthase/phosphatase complex
YJR104C SOD1 11000000000 oxidative stress Cytosolic copper-zinc superoxide dismutase
YER103W SSA4 00100000000 heat shock Heat shock protein that is highly induced upon stress

GFP Clone ORF GFP Clone Name Barcode Description
YIL127C RRT14 10011000000 Putative protein of unknown function

YDR099W* BMH2 11001000000 14-3-3 protein, minor isoform
YNR014W 01001010000 Putative protein of unknown function
YGL108C 01011000000 Protein of unknown function, predicted to be palmitoylated
YGR012W MCY1 10000000010 Putative cysteine synthase
YER062C* GPP2 11000000000 DL-glycerol-3-phosphate phosphatase involved in glycerol biosynthesis
YCR016W 01100100000 Putative protein of unknown function

*control

 131

Specifically, barcoded yeast GFP clones were mixed together in approximately

equal proportions in a single tube and exposed to either no stress, heat stress at 37°C,

oxidative stress induced by 1mM H2O2, or alcohol stress with 5% ethanol for up to

one hour. Cells were washed with PBS and fixed with formaldehyde to preserve

cellular structure at the time points indicated. Before barcode immunolabeling, cells

were permeabilization with methanol to lower autofluorescence. Analysis of single-

cell protein expression profiles for barcoded yeast GFP clones with known stress

responses revealed interesting and in some cases unexpected behavior (Figure 7.10).

GRX2 is a cytoplasmic glutaredoxin involved thiol oxidoreduction and has

been reported to have increased gene expression in response to oxidative, osmotic, and

heat stress as well as stationary phase growth [152]. We found that GRX2 had a

bimodal expression profile, with 2-6% of cells expressing GRX2 at a 50-fold higher

level on average. cells expressing high levels of GRX2 were statistically significantly

larger than those in the low expressing population (p = < 10-7). Also, SSA4 is a heat

shock protein that is highly induced under heat stress conditions, and has also been

reported to be induced during oxidative and ethanol stress [153]–[155]. We found that

SSA4 on average increased 2-fold after 30 minutes of heat stress at 37°C and

expression rose to 3-fold after 60 minutes. In addition, the expression distribution of

SSA4 was significantly smaller than during non-stressed conditions. CV decreased

1.7-fold on average from 101 in non-stress conditions to 60 at 30 minutes and 56 at 60

minutes. SSA4 expression was not induced during ethanol or oxidative stress, and

upregulation of the cytosolic copper/zinc superoxide dismutase SOD1 was also not

observed. One possible explanation for no SOD1 change is that the perturbation

 132

conditions were too mild to induce significant increases in protein expression, or that

protein expression was not upregulated during the examined time points [156].

Figure 7.10: Single-cell dynamic protein expression response to environmental
perturbations. GRX2, a thiol oxidoreductase, exhibited a bimodal
expression profile in all conditions tested. Cells in the high expressing
GRX2 population were larger than those in the low expressing
population. SSA4, a heat shock protein, was upregulated in heat stress
and a contraction in protein expression deviation was observed. SSA4
also had decreased expression after 30 minutes of heat shock.
Interestingly, SOD1 is known to increase expression during oxidative
stress, but remained unchanged in this case.

5% ETOH

1mM H2O2

37°C

None

GRX2 TPS1 SSA4SOD1

GFP signal (afu)

Re
la

tiv
e

Co
un

t

30 minutes

Background
60 minutes

0 minutes

10-3 0 103 104 FSC

GRX2 High GFP
GRX2 Low GFP

0 103 104 10510-3

10-3

0
103

104

105

SS
C

 133

In addition, a second mixture of seven barcoded yeast GFP clones containing

proteins of unknown function and control proteins with reported stress responses was

studied under the same stress conditions (Figure 7.11). The protein expression levels

of the five proteins with unknown functions remained unchanged under all conditions

tested, with the exception of YGL108C. After 30 minutes of heat stress, cells

expressing a GFP YGL108C fusion exhibited a bimodal expression pattern with 11%

of cells expressing the protein at ~100-fold higher levels. YGL108C expression

returned to basal levels after an additional 30 minutes, which is reasonable because

protein half lives in yeast can be as low as < 4 minutes with an average half-life of ~40

minutes [157]. In addition, it is not entirely surprising that most of the unknown

function protein expression profiles remained unchanged, as only three stress

conditions were tested and these proteins are likely only upregulated in specific

circumstances.

The proteins of known function, BMH2 and GPP2, remained unchanged in the

conditions tested. BMH2 is a regulatory protein important in RAS/MAPK signaling

and vesicle transport, and has been reported to be upregulated during DNA replication

stress [67]. GPP2 is a phosphatase involved in glycerol biosynthesis and has been

shown to be upregulated in response to the oxidant paraquat, which produces

superoxide anions [158]. It is likely we did not observe induction of GPP2 with

hydrogen peroxide because it may be specifically induced in response to agents that

generate superoxide such as menadione and paraquat.

 134

Figure 7.11: Dynamic, single-cell response of endogenous yeast GFP fusion proteins
with unknown function to environmental perturbations. The five proteins
with unknown function (RRT14, YNR014W, YGL108C, MCY1, and
YCR016W) remained unchanged in response to the stress conditions
tested, with the exception of the 30 minute heat shock condition for
YGL108C. During this condition, YGL108C had a bimodal expression
profile with 11.3% of yeast cells exhibiting high expression levels.

Next, we applied fluorescent barcoding to simultaneously study the response of

a larger set of endogenous yeast GFP fusion proteins (Table I.1). 46 barcoded yeast

GFP clones were mixed together in a single tube and exposed to eleven different stress

conditions for two hours (Table I.2). After immunolabeling and flow cytometry,

barcodes were used to identify the yeast GFP clones, and their single-cell expression

profiles before and after perturbations were elucidated (Figure 7.12). To elucidate

GFP distributions and quantify abundance changes, manual analysis was used to de-

convolve barcoded populations and a Python script was written to analyze GFP

expression profiles (Appendix J). Due to an immunolabeling error, specifically the

5% ETOH

1mM
H2O2

37°C

None

GFP signal (afu)

Re
la

tiv
e

Co
un

t

RRT14 BMH2 YGL108CYNR014W MCY1 GPP2 YCR016W

10-30 103 104

30 min

Background
60 min

0 min

GFP High
11.3

GFP High
11.3%

 135

addition of insufficient HA antibody, only 32 of the 46 barcoded clone were

distinguished.

This result demonstrates that fluorescent barcoding can enable massively

parallel analysis of cellular libraries, permitting the study of cellular behavior in a

wider array of different conditions and potentially gaining a more multifaceted view of

the cell. Specifically in this case, the use of 32 fluorescent barcodes decreased the

number of samples required from 416 to 13. The GFP expression distributions

elucidated by single-cell analysis show that protein abundance varies from cell-to-cell,

showing that average measurements are insufficient to capture protein abundance.

Moreover, these results show that variation in protein expression levels changes on a

protein to protein basis, and could indicate pathway specific regulatory mechanisms or

differences in promoter noise [32], [41]. One interesting finding was that the

distribution of the ribosomal subunit proteins, namely RPS30B, RPL1B, RPL9A,

RPL20, and RPL21, had increased variation in response to diamide. This observation

could suggest that translation is upregulated in a subset of cells in response to diamide

stress, as diamide is known to damage proteins by thiol oxidation, which causes the

formation of disulfide bonds.

 136

 137

 138

Figure 7.12: Barcodes enable multiplexed analysis of 32 single-cell protein expression
distributions in 12 environmental conditions. Barcoded yeast GFP clones
were pooled in a single sample and exposed to stress for two hours. After
immunolabeling and barcode deconvolution, their GFP protein
expression profiles were elucidated. Note that the clones that could not be
deconvolved are indicated by an underscore. The lognormal fits are
indicated by the dashed red line.

In addition, the protein abundance and variation changes in response to

different environmental conditions were quantified (Figure 7.13). In general, we

found that protein abundance increased in response to diamide and DTT, and

decreased in response to heat stress. One interpretation for this observation is that cells

increase protein expression in response to protein misfolding caused by oxidative or

reductive damage. Decreases in the variation of protein expression was more

commonly observed than abundance changes, with dimaide causing the most changes

significantly affecting 20 out of the 32 proteins studied. In response to stress

conditions, most proteins decreased their expression variation, suggesting a bet-

hedging response in which cells express a wider array of protein expression levels in

order to more rapidly combat adverse environments.

 139

 140

Figure 7.13: Protein abundance and variation changes in response to environmental
stress. Fold change was calculated as the ratio of the protein abundance
or CV after stress versus before stress. Proteins that were upregulated or
had wider variation after stress are shown in green and those that were
downregulated or had narrower distributions are shown in red. Fold
changes greater than 1.4 times the average abundance or CV of the non-
stress condition replicates were considered significant.

7.7 Discussion

In this chapter, we present proof of concept applications to illustrate the use of

fluorescent barcoding for multiplexed analysis of biomolecular and cellular libraries.

Towards the demonstration of fluorescent cell barcoding for massively-parallel

analysis of biomolecular libraries including protein-protein interactions studies, we

determined the binding affinity of a yeast surface displayed, barcoded a-prion scFv,

ICSM18 2.6.1 for recombinant prion protein. Specifically, we discuss the production,

characterization, and use of recombinant prion protein in antigen titrations to

determine the affinity of barcoded and non-barcoded ICSM18 2.6.1. Our preliminary

results indicate that barcodes do not have a detrimental effect on the apparent

interaction affinity, as shown by equivalent normalized binding signal for barcoded

and non-barcoded ICSM18 2.6.1. We also demonstrate that barcoded ICSM18 2.6.1

has full-length expression on the yeast surface.

However, the expression level of barcoded ICSM18 2.6.1 was significantly

lower with barcodes, which is surprising since this mutant was engineered to have

higher stability on the yeast surface. Low expression of barcode ICSM18 2.6.1 fusions

could be caused by a variety of factors, including the presence of mini-plasmids (for

11-tag barcodes), improper folding of the scFv, or interaction of the scFv with the cell

surface when it is attached to barcodes which can be substantially lengthier than the

 141

typically used one or two epitope tag fusions. In addition, the yeast surface displayed

barcoded ICSM18 2.6.1 could have poor expression due to the need to fold the

ICSM18 2.6.1 into the correct structure before secretion. Along the same lines, it is

likely that long barcodes do not exhibit a decrease in expression level and have higher

expression levels at 30°C because they do not require folding. In support of the

folding hypothesis, the apparent binding affinity for barcoded ICSM18 2.6.1 was

restored to levels similar to non-barcoded scFv when protein expression was induced

at 20°C, suggesting that slower specific growth rates may improve barcoded ICSM18

2.6.1 folding via slower kinetics [159].

In order to further improve the expression of barcoded ICSM18 and possibly

other scFvs, dual promoter expression vectors could be used. In this scheme, the scFv

mutant would be expressed in one transcript and the fluorescent barcode on a separate

one. Elimination of a direct fusion may improve ICSM18 2.6.1 expression levels to

those exhibited for pCTCON2 or pBC2. In addition, using a more stable yeast surface

displayed protein could lead to improvements in protein-barcode expression.

Additional improvements in barcoded ICSM18 2.6.1 expression could be obtained by

fusion to AGA2 instead of alpha-agglutinin, as ICSM18 2.6.1 alone fused to AGA2

had ~7-fold lower expression than when fused to alpha-agglutinin.

Immunolabeling of barcoded ICSM18 2.6.1 fusions over 2.5 days of induction

at 20°C showed expression increased over time. However, the ICSM18 2.6.1 barcode

profile at all induction times examined was characteristic of that observed for barcodes

alone at 24h, whereas barcodes exhibited multiple subpopulations after 2.5 days. This

could indicate that either expression of barcoded ICSM18 2.6.1 is too low to observe

multiple populations, or that only certain, likely smaller barcodes, are expressed when

 142

fused to ICSM18 2.6.1. Further experiments in which specific epitope tags are labeled

could shed light on this observation. Although we have shown preliminarily that

barcodes do not affect the ICSM18 prion interaction affinity, the effect of specific

barcodes on binding affinity should be elucidated by further experiments.

In the second part of this work, we discuss the assignment of fluorescent

barcodes to yeast GFP clones for the multiplexed study of single-cell protein dynamics

in response to environmental perturbations. To assign barcodes to yeast GFP clones,

two approaches could be used, namely a one-by-one approach or a library approach. In

the one-by-one approach, plasmids harboring unique barcodes could be assigned using

a multi-well plate transformation, or a library of plasmids could be used followed by

clonal screening. We chose to use a one-by-one approach due to its ease of execution,

and successfully assigned 49 unique barcodes to yeast GFP clones. However, the

approach is most suitable for smaller studies on the order of 100 clones, and is limited

by the highest abundant barcodes in the libraries. Currently, one-by-one assignment

would likely only result in on the order of 100 unique barcoded yeast GFP clones, as

there are approximately 300 barcodes present in the top 1-10% of barcode libraries

(Appendix H).

Normalization of barcode libraries by FACS could greatly improve the number

of unique barcodes assigned to yeast GFP clones using a one-by-one approach.

Specifically, FACS could be used to normalize the distribution of barcodes in the

libraries, as demonstrated in Chapter 4, and to lessen the amount of background 5-

epitope tag barcodes in the libraries, as illustrated by the increase in unique barcode

assignment from 60-72% when barcode plasmids were not specifically assigned to

yeast GFP clones. Also, a high rate of successful barcode transformation was observed

 143

(>93%) but there was a low rate of successful yeast GFP clones expressing barcodes

(50%), likely due to the presence of mini-plasmids in the barcode library DNA. In

order to improve the likelihood of yeast GFP clones expressing functional barcodes,

sorting of barcoded yeast GFP clones could be used to remove cells harboring mini-

plasmids. An alternative approach would be to separate full-length barcode plasmids

from mini-plasmids by gel electrophoresis prior to yeast transformation.

 Although we have used a one-by-one approach to assign barcodes to yeast

GFP clones, random assignment using a library approach could also be used.

Specifically, yeast GFP clones could be pooled and transformed with a mixture of

barcode plasmids followed by limiting dilution to achieve an expected value of one to

one assignment. This approach is advantageous because it is limited by a particular

range of barcode abundance, likely one order of magnitude, instead of by the most

abundant barcodes. A library barcode assignment approach would likely lead to a

higher number of uniquely barcoded yeast GFP clones, as the majority of barcodes in

our libraries range in abundance from 0.1-1%. Also, with a library approach FACS

could be used to easily remove transformants harboring mini-plasmids. One

disadvantage of this approach is that barcode GFP clone assignment is not known a

priori, and would require additional experiments such as gene amplification and DNA

sequencing in order to ascertain the identity of the GFP fusion.

After assigning unique fluorescent barcodes to yeast GFP clones, we studied

the dynamic single-cell response of GFP fusion proteins to a variety of environmental

perturbation. Our experiments revealed interesting dynamic behavior, including

bimodal expression profiles for GRX2 under all conditions and for YGL108C during

heat stress. The bimodal expression profile of GRX2 was ubiquitous under all

 144

conditions tested, and the high expressing fraction was composed of larger cells on

average. Taken together, these results could suggest that the high expressing fraction

is in stationary phase, as GRX2 has been shown to be upregulated during stationary

phase, and stationary phase cells are larger than log phase cells [81]. This hypothesis

can be further elucidated by cell cycle analysis and growth rate studies. Also, the

bimodal expression of YGL108C GFP fusions could indicate that this protein in

somehow involved in a rapid and transient stress response regime [160]. In addition,

we found that yeast cells increase expression of the SSA4 heat shock protein 2-3 fold

after yeast were incubated for one hour at 37°C. Furthermore, the variation in protein

expression within the population decreased by approximately two-fold. This behavior,

which is revealed by single-cell analysis, could be indicative of a bet-hedging

mechanism in which cells express a wider range of protein expression levels under

non-stress conditions as to more quickly adapt to sudden environmental changes.

 145

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The main objective of this work was to develop a fluorescent barcoding system

that can be used for massively parallel single-cell analysis of bimolecular and cellular

libraries. The work described here discusses the approaches used to engineer, to the

best of our knowledge, the largest fluorescent barcoding system to date consisting of

over 1000 unique, genetically-encoded barcodes. In addition, we have illustrated the

power of this system by applying the method to analyze protein-protein interaction

affinities and high-throughput, single-cell protein expression dynamics in response to

environmental perturbations. The barcoding system developed throughout this work

can be further expanded upon for greater multiplexing capability, and can be used in a

variety of research applications that would greatly benefit from massively-parallel

single-cell analysis, including systems biology, computational modeling of protein-

protein interactions and rational antibody design, protein-protein interaction screening,

and antibody engineering and epitope/paratope mapping.

In the first part of this work, we discuss the development of single-color

barcodes composed of up to 16 repeating epitope tags connected by flexible linkers,

using a new, generally-applicable method for exponential expansion of tandem DNA

repeats. This method could be used for subcloning any sequence of interest, such as

CRISPR guide RNA or poly-glutamine sequences. Epitope tag repeat proteins up to 34

kDa exhibited full-length expression that did not decrease with increasing repeat

Chapter 8

 146

length, and can improve immunodetection by more than 100-fold for yeast-surface

displayed protein fusions and more than 40-fold for endogenous protein fusions.

Epitope tag repeats can be used to enhance immunodetection for low abundance

proteins or for proteins in which no antibody is available, as well as improve

immunopurification due to avidity effects. We demonstrate that long epitope fusions

can enable flow cytometry detection of endogenous low abundance proteins in yeast,

thus enabling the study of more than 1,600 low abundance proteins using single-cell

analysis. In addition, we discovered that plasmids containing long epitope tag repeats

are unstable in E. coli and developed a computational approach to analyze next-

generation sequencing data in support of this observation.

In the second part of this work, engineering of a multi-color fluorescent

barcoding system is presented. We demonstrate that up to four distinct fluorescence

intensities can be achieved by fluorescence normalization and expression of epitope

tag repeats of different lengths, and that the number of distinct intensities is heavily

influenced by fluorophore brightness. To our knowledge, this is the first example of a

genetically-encoded fluorescent barcoding system with the capability to generate

barcodes with four fluorescence intensities using a single fluorophore. 190 out of 216

possible barcodes were created by combining 6 different types of epitope tags with

varying repeat lengths, resulting in greater than 2-fold more barcodes than any other

published system. In addition, we identified critical epitope tag interdependencies

causing differences in the fluorescence of barcoded subpopulations, and show that

there is a bias for smaller barcodes with fewer repeats to have higher library

abundances, suggesting transformation efficiency is affected by repeat length.

 147

Furthermore, constitutive barcode expression was found to impact cell growth

rate in a size-dependent manner, and an inducible promoter was used to minimize this

bias, highlighting the importance of inducible promoters for production of toxic

proteins or in for cellular libraries with rare members that could be lost due to growth

differences. To expand the barcode library from hundreds to thousands of members,

18 barcodes made of 5 additional epitope tag combinations were constructed by

homologous recombination or PCR. We found that, contrary to previous reports [87],

nucleotide sequences with less than 80% homology were capable of recombination.

This finding may suggest that homologous recombination can occur regardless of

exact homology or that the distribution of non-homologous residues can affect the

probability of recombination.

Fourteen barcode libraries consisting of combinations of up to 11 epitope tags

were constructed, resulting in the creation of more than 1100 barcodes by

computational estimation. Our barcoding system has 10-fold more barcodes than any

other published to date and 20-fold more than any other genetically-encoded

barcoding system. In addition, mini-plasmids composed of plasmid backbone without

barcode regions spontaneously formed as a result of unstable plasmids caused by

epitope tag repeats. This highlights the importance of minimizing repeating sequence

length if possible and using recombinase deficient cell lines for cloning. Also,

software was developed to rapidly analyze high-dimensional flow cytometry data,

resulting in a decrease in time required for analysis from 4 hours to approximately 25

minutes per data set. The software we have developed could be used to cluster,

identify, and quantify other multi-color flow cytometry data sets. We found that the

 148

software had a low error rate (2.5% false identification, 4.5% mislabeled barcode

positive intensities) and modest accuracy (16-44% of barcodes missed).

In the final part of this work, we applied the fluorescent barcoding system to

illustrate its use for multiplexed, single-cell analysis of biomolecular and cellular

libraries. Towards the application of fluorescent barcodes for studying protein-protein

interactions, we barcoded the a-prion scFv ICSM18 2.6.1 and produced and

characterized recombinant prion protein. We found that barcode expression did not

impact the apparent binding affinity of ICSM18 2.6.1 for prion protein, but did

observe a decrease in expression for barcoded scFv compared to non-barcoded scFv.

These results suggest that barcodes could be used for multiplexed analysis of

biomolecular libraries composed of protein mutants, which are useful for studies

involving protein-protein interactions, epitope/paratope mapping, or rational antibody

design applications.

In a second application, we applied the fluorescent barcoding system to

examine the dynamic, single-cell response of yeast proteins to environmental changes

using yeast clones that express a particular protein GFP fusion from the endogenous

promoter. Barcode plasmid transformation into yeast GFP fusion clones was very

successful (94% of the 150 clones attempted), but only 50% of clones had barcode

expression and only 30% contained unique barcode combinations. In addition, we

studied the dynamic response of yeast GFP fusion clones to different environmental

stresses including heat, oxidative stress, and ethanol, and found interesting changes in

protein abundance, distribution, or bimodality for three proteins (SSA4, GRX2, and

YGL108C). This illustrates the utility of fluorescent barcoding for systems biology

applications, as it permits more replicates, time points, and conditions to be studied

 149

more easily by decreasing the fold-number of samples required by the number of

barcodes used. Furthermore, this application highlights that single-cell analysis can

provide additional insight into proteomics studies that are masked with population

averaging methods.

8.2 Future Work

In the first part of this work, we discuss the development of single-color

barcodes composed of different lengths of repeating epitope tags connected by flexible

linkers. Long repeats were used to greatly improve immunodetection by flow

cytometry, enabling detection of low abundance endogenous fusion proteins in yeast.

Future studies could focus on a more expansive study of epitope fusion proteins in

single-cells, and their behavior could be studied in different environmental conditions

or cell types. For example, many low abundance proteins are not well studied, have

unknown functions, or have important roles in cellular function such as transcription

factors.

In addition, deep sequencing and gel electrophoresis were used to investigate

the instability of plasmids containing long epitope tag repeats. This work could be

expanded upon by investigating methods to decrease repeat instability, including using

different E. coli strains, varying linker sequences or shortening linkers to decrease the

number of repeats or repeat length, and developing an E. coli free cloning method

such as homologous recombination. In addition, the deep sequencing data could be

further analyzed to potentially elucidate patterns of plasmid deletion and could suggest

mechanisms underlying this phenomenon or approaches to decease recombination

frequency.

 150

In the second part of this work, we developed a fluorescent barcoding system

for multiplexed, single-cell analysis, resulting in the creation of over 1,100 unique

fluorescent barcodes. A number of approaches could be used to further expand the

number of unique barcodes, as up to 2048 unique binary combinations are possible

with 11-epitope tags and up to 3420 combinations are possible with the current

libraries. The number of multiple intensity barcodes could potentially be expanded by

increasing the number of ‘bright’ fluorophores using a different flow cytometry setup

with capability for quantum dot detection, or brightness could be enhanced using

species specific antibodies and secondary detection. Additionally, it is likely that more

than 200 barcodes could be recovered by successful cloning of the four remaining

barcode libraries. Furthermore, new barcode combinations could be created if

additional libraries were constructed with a focus on missing or rare epitope tag

combinations from the 6-epitope tag library, and 18-fold more barcodes could be

constructed if the missing 5-epitope tag combinations are created.

Future experiments focusing on the construction of additional barcodes may

benefit from using a different subcloning method such as Golden Gate cloning or

homologous recombination. It is possible to clone up to nine inserts at once using

Golden Gate cloning, which could be advantageous from a time perspective, although

efficiency has been shown to decrease for repetitive sequences [92]. Spacer sequences

could be incorporated to create plasmids with homogenous sizes, possibly lessening

the observed transformation bias but potentially increasing the likelihood of plasmid

instability. Homologous recombination could be advantageous, as repeat plasmids are

unstable in E. coli. This method is also rapid and could be conducted in one step

 151

assuming barcodes were constructed with unique linker sequences that would permit

specific recombination.

In the third part of this work, we developed software for the rapid

identification and quantification of barcodes from flow cytometry data using the

DBSCAN clustering algorithm and kernel density estimation. Although the software

greatly decreased the time required to analyze multicolor flow cytometry data and had

a low error rate, many barcodes were missed by the algorithm. In order to improve the

accuracy of the software, larger data sets could be used, which would allow the use of

more stringent filtering criteria and in turn increased density and regularity of

barcoded subpopulations. In addition, manual preprocessing of data could be

eliminated if kernel density estimation were used to filter out noisy data points in all

channels instead of only those with multiple fluorescence intensities. Furthermore,

future experiments should focus on identification of additional filtering criteria to

eliminate false positive barcodes by analysis of more control data sets. Finally, the

software could be improved if fluorophore intensity identification could be

accomplished in the absence of populations with lesser intensities. In order to

accomplish this, data sets would have to be analyzed for identification criteria such as

minimum and maximum fluorescence values for a certain intensity, taking into

account epitope tag interdependency effects.

In the final part of this work, we illustrate the utility of the fluorescent

barcoding system for multiplexed analysis of biomolecular and cellular libraries. In a

first application, we studied the interaction of recombinant mouse prion protein with

the barcoded a-prion scFv ICSM18 2.6.1. Further applications involving barcoded

biomolecular libraries should explore the impact of other scFvs or proteins of interest

 152

on surface-displayed protein expression. Protein expression levels may also be

improved using a dual promoter vector or AGA2 fusion, and the effect of specific

barcodes on the apparent binding affinity of ICSM18 2.6.1 prion interactions should

be elucidated. In addition, DNA barcodes could be used to uniquely assign members

of bimolecular libraries to fluorescent barcodes. DNA barcodes can be created using

type IIS restriction enzyme sites and incorporated randomly into fluorescent barcodes.

After deep sequencing to pair DNA and fluorescent barcodes, members of a

biomolecular library can be uniquely DNA barcoded by PCR or gene synthesis and

assigned to a fluorescent barcode via subcloning with a unique pair of DNA barcode

sticky ends.

Furthermore, in a second fluorescent barcoding application, we simultaneously

examined the dynamics of endogenous yeast GFP fusion proteins in single-cells in

response to environmental perturbations. Follow up experiments should be conducted

to explore the reproducibility and noise associated with GFP fusion protein dynamics,

and results should be verified in the absence of barcodes. Further experiments can be

conducted to explore the interesting protein expression dynamics found in this work,

including additional time points, conditions, and fluorescent readouts such as cell

cycle analysis, as well as other types of experiments such as fitness measurements. In

addition, studies of barcoded yeast GFP fusion clones could be expanded to hundreds

to thousands of proteins after improvements to the barcode libraries have been made.

A number of improvements can be made to the barcode libraries in order to

improve the likelihood of unique barcode assignment to yeast GFP clones. We found

that mini-plasmids and highly abundant barcodes affected the number of transformants

with expressed barcodes and unique barcodes respectively. To decrease the number of

 153

mini-plasmids using a one-by-one transformation approach, barcode DNA could be

purified by gel extraction before transformation to remove mini-plasmids. In addition,

barcode libraries could be sorted using FACS to lessen the number of highly abundant

barcodes and enrich rare barcodes. If barcodes are transformed into a library of yeast

GFP clones instead of with a one-by-one approach, FACS could be used to eliminate

transformants with no barcode expression and simultaneously lessen the number of

transformants expressing highly abundant barcodes.

In this work, a one-by-one barcode assignment approach was used in which

individual yeast GFP clones were transformed with a mixture of barcodes and

individual transformants were screened for unique barcode assignment. This approach

is advantageous because assignment is known prior to experimentation, but it is

somewhat low throughput. Alternatively, more high-throughput library methods could

be used for barcode assignment. In a library approach, barcodes could be assigned to

libraries of interest randomly in a one pot transformation. Limiting dilution could be

used to isolate a specific set of barcodes with an expected value of one. For example,

barcodes with 1% abundance would appear once on average for a limiting dilution of

100 clones. For biomolecular libraries in which pairings are genetically linked on a

plasmid, deep sequencing can be used to determine barcode assignment. For cellular

libraries such as the yeast GFP library, clones that exhibit interesting behavior could

be isolated with FACS and the fusion protein could be amplified by PCR for

sequencing to determine barcode clone parings.

Fluorescent barcoding is a powerful tool that can be used for massively-

parallel analysis of biomolecular and cellular libraries of interest, and information

derived from these studies can be applicable to many research areas including systems

 154

biology, biochemistry, molecular dynamics, and protein engineering. In addition to the

applications described in this work, it may be possible to apply fluorescent barcoding

to many applications including high-throughput screens for protein-protein

interactions, assessment of gene function using knockout libraries, and quantitative

analysis of the effect of point mutations on binding affinity for protein engineering

[161], [162], paratope/epitope mapping [163], and protein docking model applications

[164]. Fluorescent barcoding may be particularly useful when it is desirable to assess

interactions with multiple targets, such as bispecific or broadly neutralizing antibodies,

and to evaluate for the absence of binding which can be used to improve antibody

specificity. Fluorescent barcoding may also be extended to other cell types such as

mammalian and E. coli cells.

 155

[1] T. Ideker et al., “Integrated Genomic and Proteomic Analyses of a
Systematically Perturbed Metabolic Network,” Science (80-.)., vol. 292, no.
May, pp. 929–935, 2001.

[2] H. Chuang, M. Hofree, and T. Ideker, “A Decade of Systems Biology,” Annu.
Rev. Cell Dev. Biol., vol. 26, pp. 721–44, 2010.

[3] L. Hood, J. R. Heath, M. E. Phelps, and B. Lin, “Systems Biology and New
Technologies Enable Predictive and Preventative Medicine,” Science (80-.).,
vol. 306, no. October, pp. 640–644, 2004.

[4] J. M. Raser and E. K. O’Shea, “Control of Stochasticity in Eukaryotic Gene
Expression,” Science (80-.)., vol. 304, no. 5678, pp. 1811–1814, 2004.

[5] M. B. Elowitz, A. J. Levine, and E. D. Siggia, “Stochastic Gene Expression in a
Single Cell,” Science (80-.)., vol. 297, no. August, pp. 1183–1186, 2002.

[6] L. S. Weinberger, J. C. Burnett, J. E. Toettcher, A. P. Arkin, and D. V Schaffer,
“Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop : HIV-1
Tat Fluctuations Drive Phenotypic Diversity,” Cell, vol. 122, pp. 169–182,
2005.

[7] N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler, “Bacterial
Persistence as a Phenotypic Switch,” Science (80-.)., vol. 305, no. September,
pp. 1622–1626, 2004.

[8] E. Kussell, R. Kishony, N. Q. Balaban, and S. Leibler, “Bacterial Persistence :
A Model of Survival in Changing Environments,” Genetics, vol. 1814, no.
April, pp. 1807–1814, 2005.

[9] S. F. Levy, N. Ziv, and M. L. Siegal, “Bet Hedging in Yeast by Heterogeneous ,
Age-Correlated Expression of a Stress Protectant,” PLoS Biol., vol. 10, no. 5,
2012.

[10] M. Breker, M. Gymrek, and M. Schuldiner, “A novel single-cell screening
platform reveals proteome plasticity during yeast stress responses,” J. Cell
Biol., vol. 200, no. 6, pp. 839–850, 2013.

REFERENCES

 156

[11] M. Acar, J. T. Mettetal, and A. Van Oudenaarden, “Stochastic switching as a
survival strategy in fluctuating environments,” Nat. Genet., vol. 40, no. 4, pp.
471–475, 2008.

[12] X. Liu et al., “Analysis of Cell Fate from Single-Cell Gene Expression Profiles
in C . elegans,” Cell, vol. 139, pp. 623–633, 2009.

[13] N. Dénervaud, J. Becker, R. Delgado-gonzalo, P. Damay, A. S. Rajkumar, and
M. Unser, “A chemostat array enables the spatio-temporal analysis of the yeast
proteome,” PNAS, vol. 110, no. 39, 2013.

[14] J. R. Heath, A. Ribas, and P. S. Mischel, “Single-cell analysis tools for drug
discovery and development,” Nat. Rev. Drug Discov., vol. 15, no. 3, pp. 204–
216, 2015.

[15] D. Wang and S. Bodovitz, “Single cell analysis : the new frontier in ‘ omics ,’”
Trends Biotechnol., vol. 28, pp. 281–290, 2010.

[16] G. P. Irish, J.M., Kotecha, N. and Nolan, “Mapping normal and cancer cell
signalling networks : towards single-cell proteomics,” Nat. Rev. Cancer, vol. 6,
no. February, pp. 146–155, 2006.

[17] B. Bodenmiller et al., “Multiplexed mass cytometry profiling of cellular states
perturbed by small-molecule regulators,” Nat. Biotechnol., vol. 30, no. 9, pp.
857–866, 2012.

[18] P. O. Krutzik and G. P. Nolan, “Fluorescent cell barcoding in flow cytometry
allows high-throughput drug screening and signaling profiling,” Nat. Methods,
vol. 3, no. 5, 2006.

[19] L. C. Mattheakis et al., “Optical coding of mammalian cells using
semiconductor quantum dots,” Anal. Biochem., vol. 327, pp. 200–208, 2004.

[20] C. Lin et al., “Submicrometre geometrically encoded fluorescent barcodes self-
assembled from DNA,” Nat. Chem., vol. 4, no. September, 2012.

[21] B. Akkaya et al., “A Simple, Versatile Antibody-Based Barcoding Method for
Flow Cytometry,” J. Immunol., vol. 197, pp. 2027–38, 2017.

[22] C. Kuo et al., “Optically Encoded Semiconducting Polymer Dots with Single-
Wavelength Excitation for Barcoding and Tracking of Single Cells,” Anal.
Chem., 2017.

[23] R. L. Mccarthy, D. H. Mak, J. K. Burks, and M. C. Barton, “Rapid

 157

monoisotopic cisplatin based barcoding for multiplexed mass cytometry,” Sci.
Rep., pp. 1–6, 2017.

[24] T. Maetzig et al., “A Lentiviral Fluorescent Genetic Barcoding System for Flow
Cytometry-Based Multiplex Tracking,” Mol. Ther., vol. 25, no. 3, pp. 606–620,
2017.

[25] R. Chen et al., “A Barcoding Strategy Enabling Higher-Throughput Library
Screening by Microscopy,” ACS Synth. Biol., 2015.

[26] M. Mohme et al., “Optical Barcoding for Single-Clone Tracking to Study
Tumor Heterogeneity,” Mol. Ther., vol. 25, no. 2, 2017.

[27] G. M. Mali, P., Aach, J. Lee, J., Levner, D., Nip, L. and Church, “Barcoding
cells using cell-surface programmable DNA-binding domains,” Nat. Methods,
vol. 10, no. 5, pp. 403–6, 2013.

[28] C. A. Smurthwaite et al., “Fluorescent Genetic Barcoding in Mammalian Cells
for Enhanced Multiplexing Capabilities in Flow Cytometry,” Cytom. Part A,
vol. 1, no. 2, pp. 105–113, 2014.

[29] J. M. Raser and E. K. and O’Shea, “Noise in Gene Expression : Origins,
Consequences, and Control,” Science (80-.)., vol. 309, pp. 2010–2014, 2005.

[30] Y. Taniguchi et al., “Quantifying E. coli Proteome and Transcriptome with
Single-Molecule Sensitivity in Single Cells,” Science (80-.)., no. 533, 2011.

[31] W. J. Blake, M. Kærn, C. R. Cantor, and J. J. Collins, “Noise in eukaryotic gene
expression,” Nature, vol. 422, no. 2003, pp. 633–7, 2003.

[32] A. Bar-even et al., “Noise in protein expression scales with natural protein
abundance,” Nat. Genet., vol. 38, no. 6, pp. 636–643, 2006.

[33] L. Cai, N. Friedman, and X. S. Xie, “Stochastic protein expression in individual
cells at the single molecule level,” Nature, vol. 440, no. March, 2006.

[34] E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. Van
Oudenaarden, “Regulation of noise in the expression of a single gene,” Nat.
Genet., vol. 31, no. April, pp. 69–73, 2002.

[35] N. Friedman, L. Cai, and X. S. Xie, “Linking Stochastic Dynamics to
Population Distribution : An Analytical Framework of Gene Expression,” Phys.
Rev. Lett., 2006.

[36] L. Keren et al., “Noise in gene expression is coupled to growth rate,” Genome

 158

Res., pp. 1893–1902, 2015.

[37] X. Chen and J. Zhang, “The Genomic Landscape of Position Effects on Protein
Expression Level and Noise in Yeast,” Cell Syst., vol. 2, no. 5, pp. 347–354,
2016.

[38] A. Becskei, B. B. Kaufmann, and A. Van Oudenaarden, “Contributions of low
molecule number and chromosomal positioning to stochastic gene expression,”
Nat. Genet., vol. 37, no. 9, pp. 937–944, 2005.

[39] E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shralman, and A. van
Oudenaarden, “Multistability in the lactose utilization network of Escherichia
coli,” Nature, vol. 4680, no. 1982, pp. 4677–4680, 2004.

[40] M. Acar, A. Becskei, and A. Van Oudenaarden, “Enhancement of cellular
memory by reducing stochastic transitions,” Nature, vol. 435, no. May, pp. 1–5,
2005.

[41] J. R. S. Newman et al., “Single-cell proteomic analysis of S . cerevisiae reveals
the architecture of biological noise,” Nature, vol. 441, no. June, 2006.

[42] H. B. Fraser, A. E. Hirsh, G. Giaever, J. Kumm, and M. B. Eisen, “Noise
Minimization in Eukaryotic Gene Expression,” PLoS Biol., vol. 2, no. 6, pp.
834–838, 2004.

[43] P. J. Choi, L. Cai, K. Frieda, and X. S. Xie, “A Stochastic Single-Molecule
Event Triggers Phenotype Switching of a Bacterial Cell,” Science (80-.)., vol.
4142, no. October, pp. 442–447, 2008.

[44] N. Vardi, S. Levy, M. Assaf, and M. Carmi, “Report Budding Yeast Escape
Commitment to the Phosphate Starvation Program Using Gene Expression
Noise,” Curr. Biol., vol. 23, no. 20, pp. 2051–2057, 2013.

[45] S. V Sharma et al., “A Chromatin-Mediated Reversible Drug-Tolerant State in
Cancer Cell Subpopulations,” Cell, vol. 141, no. 1, pp. 69–80, 2010.

[46] A. A. Cohen et al., “Dynamic Proteomics of Individual Cancer Cells in
Response to a Drug,” Science (80-.)., vol. 322, no. December, pp. 1511–1517,
2008.

[47] C. B. Brachmann, A. Davies, G. J. Cost, and E. Caputo, “Designer Deletion
Strains derived from Saccharomyces cerevisiae S288C : a Useful set of Strains
and Plasmids for PCR-mediated Gene Disruption and Other Applications,”
Yeast, vol. 132, pp. 115–132, 1998.

 159

[48] R. D. Gietz and R. H. Schiestl, “Microtiter plate transformation using the LiAc /
SS carrier DNA / PEG method,” Nat. Protoc., vol. 2, no. 1, pp. 5–9, 2008.

[49] D. W. et. al. Colby, “Engineering Antibody Affinity by Yeast Surface Display,”
Methods Enzymol., vol. 388, no. 2000, pp. 348–358, 2004.

[50] G. T. Hermanson, Bioconjugate Techniques, Second Edi. Rockford, Illinois,
USA, 2008.

[51] G. Chao, W. L. Lau, B. J. Hackel, S. L. Sazinsky, S. M. Lippow, and K. D.
Wittrup, “Isolating and engineering human antibodies using yeast surface
display,” Nat. Protoc., vol. 1, no. 2, pp. 755–769, 2007.

[52] W. Huang, X. and Miller, “A Time-Efficient , Linear-Space Similarity
Algorithm,” Adv. Appl. Math., vol. 357, pp. 337–357, 1991.

[53] I. Mehlhorn et al., “High-Level Expression and Characterization of a Purified
142-Residue Polypeptide of the Prion Protein,” Biochemistry, vol. 35, pp.
5528–5537, 1996.

[54] B. Lu, P. J. Beck, and J. Chang, “Oxidative folding of murine prion mPrP (23-
231),” Eur. J. Biochem., vol. 268, pp. 3767–3773, 2001.

[55] W. Huh et al., “Global analysis of protein localization in budding yeast,”
Nature, vol. 425, pp. 686–91, 2003.

[56] R. Y. Giepmans, B.N. Adams, S.R., Ellisman, M.H. and Tsien, “The
Fluorescent Toolbox for Assessing Protein Location and Function,” Science
(80-.)., vol. 312, no. April, 2006.

[57] N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing
fluorescent proteins,” Nat. Methods, vol. 2, no. 12, pp. 905–909, 2005.

[58] S. C. Bendall, G. P. Nolan, M. Roederer, and P. K. Chattopadhyay, “A deep
profiler ’ s guide to cytometry,” Trends Immunol., vol. 33, no. 7, pp. 323–332,
2012.

[59] B. Brizzard, “Epitope tagging,” Biotechnqiues, vol. 44, no. 5, pp. 693–695,
2008.

[60] J. W. Jarvik and C. A. Telmer, “EPITOPE TAGGING,” Annu. Rev. Genet., vol.
32, pp. 601–18, 1998.

[61] B. J. Hackel, A. Kapila, and K. D. Wittrup, “Picomolar Affinity Fibronectin
Domains Engineered Utilizing Loop Length Diversity , Recursive Mutagenesis

 160

, and Loop Shuffling,” pp. 1238–1252, 2008.

[62] E. V Shusta, M. C. Kieke, E. Parke, D. M. Kranz, and K. D. Wittrup, “Yeast
Polypeptide Fusion Surface Display Levels Predict Thermal Stability and
Soluble Secretion Efficiency,” JMB, pp. 949–956, 1999.

[63] K. and Ueda, “Yeast cell-surface display — applications of molecular display,”
Appl Microbiol Biotechnol, vol. 64, pp. 28–40, 2004.

[64] K. D. Boder, E.T. and Wittrup, “Yeast surface display for screening
combinatorial polypeptide libraries,” Nat. Biotechnol., vol. 15, pp. 553–7, 1997.

[65] S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow
cytometry : unravelling the immune system,” Nat. Rev. Immunol., vol. 4, no.
August, pp. 1160–1163, 2004.

[66] V. P. Zharov, V. V Tuchin, and A. Ta, “In Vivo Flow Cytometry : A Horizon of
Opportunities,” Cytom. Part A, pp. 737–745, 2011.

[67] J. M. Tkach et al., “Dissecting DNA damage response pathways by analysing
protein localization and abundance changes during DNA replication stress,”
Nat. Cell Biol., vol. 14, no. 9, pp. 966–976, 2012.

[68] Y. T. Chong, J. L. Y. Koh, C. Boone, and B. J. Andrews, “Yeast Proteome
Dynamics from Single Cell Imaging and Automated Analysis Resource Yeast
Proteome Dynamics from Single Cell Imaging and Automated Analysis,” Cell,
vol. 161, no. 6, pp. 1413–1424, 2015.

[69] R. Pepperkok and J. Ellenberg, “Microscopy for systems biology,” Nat. Mol.
Cell Biol., vol. 7, no. September, pp. 690–696, 2006.

[70] R. et al. Wooster, “Instability of short tandem repeats (microsatellites) in human
cancers,” Nat. Genet., vol. 6, pp. 152–6, 1994.

[71] F. A. Al-allaf, O. E. Tolmachov, L. P. Zambetti, V. Tchetchelnitski, and H.
Mehmet, “Remarkable stability of an instability-prone lentiviral vector plasmid
in Escherichia coli Stbl3,” 3 Biotech, vol. 3, pp. 61–70, 2013.

[72] J. P. Jakupciak and R. D. Wells, “Genetic Instabilities in (CTG CAG) Repeats
Occur by Recombination,” JBC, vol. 274, no. 33, pp. 23468–23479, 1999.

[73] D. R. Leach, “Long DNA palindromes, cruciform structures, genetic instability,
and secondary structure repair,” BioEssays, vol. 16, no. 27, pp. 893–900, 1994.

[74] M. Bzymek and S. T. Lovett, “Instability of repetitive DNA sequences : The

 161

role of replication in multiple mechanisms,” PNAS, vol. 98, no. 15, 2001.

[75] X. Bi, L. F. Liu, and U. Wood, “A Replicational Model for DNA
Recombination between Direct Repeats,” JMB, vol. 256, pp. 849–858, 1996.

[76] J. S. Ghaemmaghami, S, Huh, W., Bower, K., Howson, R.W., Belle, A.,
Dephoure, N., OShea, E.K., Weissman, “Global analysis of protein expression
in yeast,” Nature, vol. 108, no. 1997, pp. 737–741, 2003.

[77] P. Tompa, J. Prilusky, I. Silman, and J. L. Sussman, “Structural disorder serves
as a weak signal for intracellular protein degradation,” Proteins Struct. Funct.
Genet., vol. 71, no. 2, pp. 903–909, 2008.

[78] N. Baumgarth and M. Roederer, “A practical approach to multicolor flow
cytometry for immunophenotyping,” J. Immunol. Methods, vol. 243, pp. 77–97,
2000.

[79] M. Roederer, “Spectral Compensation for Flow Cytometry : Visualization
Artifacts , Limitations , and Caveats,” Cytometry, vol. 45, pp. 194–205, 2001.

[80] P. K. Chattopadhyay et al., “Quantum dot semiconductor nanocrystals for
immunophenotyping by polychromatic flow cytometry,” Nat. Med., vol. 12, no.
8, pp. 972–977, 2006.

[81] M. Werner-washburne, E. Braun, G. C. Johnston, and R. A. Singer, “Stationary
Phase in the Yeast Saccharomyces cerevisiae,” Microbiol. Rev., vol. 57, no. 2,
pp. 383–401, 1993.

[82] A. E. Wentz and E. V Shusta, “A Novel High-Throughput Screen Reveals
Yeast Genes That Increase Secretion of Heterologous Proteins,” Appl. Environ.
Microbiol., vol. 73, no. 4, pp. 1189–1198, 2007.

[83] F. M. Klis, “Dynamics of cell wall structure in Saccharomyces cerevisiae,”
FEMS Microbiol. Rev., vol. 26, pp. 239–56, 2002.

[84] T. L. Orr-weaver, J. W. Szostak, and R. J. Rothsteint, “Yeast transformation : A
model system for the study of recombination,” PNAS, vol. 78, no. 10, pp. 6354–
6358, 1981.

[85] M. C. Lorenz, R. S. Muir, E. Lim, J. Mcelver, J. Heitman, and S. C. Weber,
“Gene disruption with PCR products in Saccharomyces cerevisiae,” Gene, vol.
158, pp. 113–117, 1995.

[86] K. R. Oldenburg, K. T. Vo, S. Michaelis, and C. Paddon, “Recombination-

 162

mediated PCR-directed plasmid construction in vivo in yeast,” Nucleic Acids
Res., vol. 25, no. 2, pp. 451–452, 1997.

[87] J. S. Swers, B. A. Kellogg, and K. D. Wittrup, “Shuffled antibody libraries
created by in vivo homologous recombination and yeast surface display,”
Nucleic Acids Res., vol. 32, no. 3, pp. 1–8, 2004.

[88] D. G. Gibson et al., “One-step assembly in yeast of 25 overlapping DNA
fragments to form a complete synthetic Mycoplasma genitalium genome,”
PNAS, vol. 105, no. 51, pp. 20404–20409, 2008.

[89] Z. Shao, H. Zhao, and H. Zhao, “DNA assembler , an in vivo genetic method
for rapid construction of biochemical pathways,” Nucleic Acids Res., vol. 37,
no. 2, pp. 1–10, 2009.

[90] C. Engler, R. Gruetzner, R. Kandzia, and S. Marillonnet, “Golden Gate
Shuffling : A One-Pot DNA Shuffling Method Based on Type IIs Restriction
Enzymes,” PlosOne, vol. 4, no. 5, 2009.

[91] C. Engler, R. Kandzia, and S. Marillonnet, “A One Pot , One Step , Precision
Cloning Method with High Throughput Capability,” PlosOne, vol. 3, no. 11,
2008.

[92] E. Weber, R. Gruetzner, S. Werner, C. Engler, and S. Marillonnet, “Assembly
of Designer TAL Effectors by Golden Gate Cloning,” PlosOne, vol. 6, no. 5,
2011.

[93] D. G. Gibson et al., “Enzymatic assembly of DNA molecules up to several
hundred kilobases,” Nat. Methods, vol. 6, no. 5, pp. 12–16, 2009.

[94] P. D. Holler, P. O. Holman, E. V Shusta, S. O. Herrin, K. D. Wittrup, and D. M.
Kranz, “In vitro evolution of a T cell receptor with high affinity for peptide ͞
MHC,” PNAS, vol. 97, no. 10, pp. 5387–5392, 2000.

[95] J. Wrammert et al., “Rapid cloning of high-affinity human monoclonal
antibodies against influenza virus,” Nature, vol. 453, no. May, 2008.

[96] D. Orlic et al., “Bone marrow cells regenerate infarcted myocardium,” Nature,
vol. 410, no. April, pp. 701–705, 2001.

[97] E. T. Boder, K. S. Midelfort, and K. D. Wittrup, “Directed evolution of
antibody fragments with monovalent femtomolar antigen-binding affinity,”
PNAS, vol. 2000, no. 20, pp. 1–5, 2000.

 163

[98] L. A. Hulett, H.R., Bonner, W.A., Barrett, J., Herzenberg, “Cell Sorting :
Automated Separation of Mammalian Cells as a Function of Intracellular
Fluorescence,” Science (80-.)., vol. 166, no. 3906, pp. 747–749, 1969.

[99] X. Chen, J. L. Zaro, and W. Shen, “Fusion protein linkers : Property , design
and functionality,” Adv. Drug Deliv. Rev., vol. 65, no. 10, pp. 1357–1369, 2013.

[100] L. A. Wagner, R. B. Weiss, R. Driscoll, D. S. Dunn, and R. F. Gesteland,
“Transcriptional slippage occurs during elongation at runs of adenine or
thymine in Escherichia coli,” Nucleic Acids Res., vol. 18, no. 12, pp. 3529–35,
1990.

[101] C. P. Verschoor, A. Lelic, J. L. Bramson, D. M. E. Bowdish, and H. Maecker,
“An introduction to automated flow cytometry gating tools and their
implementation,” Front. Immunol., vol. 6, no. July, pp. 1–9, 2015.

[102] N. Aghaeepour et al., “Critical assessment of automated flow cytometry data
analysis techniques,” Nat. Methods, vol. 10, no. 3, 2013.

[103] R. O’Neill, K., Aghaeepour, N., Spidlen, J., and Brinkman, “Flow Cytometry
Bioinformatics,” Plos Comput. Biol., vol. 9, no. 12, 2013.

[104] F. Hahne et al., “flowCore : a Bioconductor package for high throughput flow
cytometry,” BMC Bioinformatics, vol. 10, no. 106, 2009.

[105] K. Lo, F. Hahne, R. R. Brinkman, and R. Gottardo, “flowClust : a Bioconductor
package for automated gating of flow cytometry data,” BMC Bioinformatics,
vol. 10, no. 145, 2009.

[106] N. Aghaeepour, R. Nikolic, H. H. Hoos, and R. R. Brinkman, “Rapid Cell
Population Identification in Flow Cytometry Data,” Cytom. Part A, vol. 79, pp.
6–13, 2011.

[107] P. Qiu et al., “Extracting a cellular hierarchy from high-dimensional cytometry
data with SPADE,” Nat. Biotechnol., vol. 29, no. 10, pp. 886–891, 2011.

[108] I. P. Sugár and S. C. Sealfon, “Misty Mountain clustering : application to fast
unsupervised flow cytometry gating,” BMC Bioinformatics, vol. 11, no. 502,
2010.

[109] Y. Ge and S. C. Sealfon, “flowPeaks : a fast unsupervised clustering for flow
cytometry data via K -means and density peak finding,” vol. 28, no. 15, pp.
2052–2058, 2012.

 164

[110] Y. Qian et al., “Elucidation of Seventeen Human Peripheral Blood B-Cell
Subsets and Quantification of the Tetanus Response Using a Density-Based
Method for the Automated Identification of Cell Populations in
Multidimensional Flow Cytometry Data,” Cytom. Part B, vol. 82, no. May, pp.
69–82, 2010.

[111] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise,” in Proceedings of
2nd International Conference on Knowledge Discovery and Data Mining, 1996.

[112] U. Naumann and M. P. Wand, “Automation in High-Content Flow Cytometry
Screening,” Cytom. Part A, vol. 75, pp. 789–797, 2009.

[113] D. R. Parks, M. Roederer, and W. A. Moore, “A New ‘“ Logicle ”’ Display
Method Avoids Deceptive Effects of Logarithmic Scaling for Low Signals and
Compensated Data,” Cytom. Part A, vol. 551, no. April, pp. 541–551, 2006.

[114] M. P. Chacon, J.E., Duong, T., Wand, “Asymptotics for General Multivariate
Kernel Density Derivative Estimators,” Stat. Sin., vol. 21, no. 2, pp. 807–840,
2011.

[115] B. Stanley, “Molecular Biology of Prion Diseases,” Science (80-.)., vol. 252,
pp. 1515–22, 1991.

[116] J. Collinge, “Prion Diseases of Humans and Animals: Their Causes and
Molecular Basis,” Annu. Rev. Neurosci., vol. 24, pp. 519–50, 2001.

[117] S. B. Prusiner, “Novel Proteinaceous Infectious Particles Cause Scrapie,”
Science (80-.)., vol. 216, pp. 136–144, 1982.

[118] S. Prusiner et al., “Transgenetic Studies Implicate Interactions between
Homologous PrP lsoforms in Scrapie Prion Replication,” Cell, vol. 63, pp. 673–
86, 1990.

[119] J. Masel, V. A. A. Jansen, and M. A. Nowak, “Quantifying the kinetic
parameters of prion replication,” Biophys. Chem., vol. 77, pp. 139–152, 1999.

[120] H. Biieler, A. Aguui, A. Sailer, and R. Greiner, “Mice Devoid of PrP Are
Resistant to Scrapie,” Cell, vol. 73, pp. 1339–1347, 1993.

[121] H. Budka, “Neuropathological Diagnostic Criteria for Creutzfeldt-Jakob
Disease (CJD) and Other Human Spongiform Encephalopathies (Prion
Diseases),” Brain Pathol., vol. 5, no. 4, pp. 459–66, 1995.

 165

[122] C. Song et al., “Effect of intraventricular infusion of anti-prion protein
monoclonal antibodies on disease progression in prion-infected mice,” J. Gen.
Virol., no. 2008, pp. 1533–1544, 2017.

[123] D. Peretz et al., “Antibodies inhibit prion propagation and clear cell cultures of
prion infectivity,” Nature, vol. 412, no. August, pp. 739–743, 2001.

[124] M. Enari, E. Flechsig, and C. Weissmann, “Scrapie prion protein accumulation
by scrapie- infected neuroblastoma cells abrogated by exposure to a prion
protein antibody,” PNAS, vol. 98, no. 16, pp. 9295–9299, 2001.

[125] G. Donofrio, F. L. Heppner, M. Polymenidou, C. Musahl, and A. Aguzzi,
“Paracrine Inhibition of Prion Propagation by Anti-PrP Single-Chain Fv
Miniantibodies,” J. Virol., vol. 79, no. 13, pp. 8330–8338, 2005.

[126] A. R. White, P. Enever, M. Tayebi, and R. Mushens, “Monoclonal antibodies
inhibit prion replication and delay the development of prion disease,” Nature,
vol. 422, no. March, pp. 18–21, 2003.

[127] F. Moda et al., “Brain delivery of AAV9 expressing an anti-PrP monovalent
antibody delays prion disease in mice,” Prion, no. October, pp. 383–390, 2012.

[128] Y. J. Yu et al., “Boosting Brain Uptake of a Therapeutic Antibody by Reducing
Its Affinity for a Transcytosis Target,” Sci. Transl. Med., vol. 3, no. 84, 2011.

[129] T. Igawa et al., “letters Antibody recycling by engineered pH-dependent
antigen binding improves the duration of antigen neutralization,” Nat.
Biotechnol., vol. 28, no. 11, pp. 1203–1207, 2010.

[130] W. F. Dall’Acqua, P. A. Kiener, and H. Wu, “Properties of Human IgG1s
Engineered for Enhanced Binding to the Neonatal Fc Receptor (FcRn),” JBC,
vol. 281, no. 33, pp. 23514–23524, 2006.

[131] J. S. Huston et al., “Protein engineering of antibody binding sites : Recovery of
specific activity in an anti-digoxin single-chain Fv analogue produced in
Escherichia coli,” PNAS, vol. 85, no. August, pp. 5879–5883, 1988.

[132] M. W. Gonzalez and M. G. Kann, “Chapter 4: Protein Interactions and
Disease,” PLoS Comput. Biol., vol. 8, no. 12, 2012.

[133] J. Chothia, C. and Janin, “Principles of protein-protein recognition,” Nature, pp.
705–8, 1975.

[134] A. A. Bogan and K. S. Thorn, “Anatomy of Hot Spots in Protein Interfaces,”

 166

JMB, vol. 280, pp. 1–9, 1998.

[135] J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical
and Biological Species,” Chem. Rev., vol. 108, pp. 462–493, 2008.

[136] M. M. Pierce, C. S. Raman, and B. T. Nall, “Isothermal Titration Calorimetry
of Protein – Protein Interactions,” Methods, vol. 221, pp. 213–221, 1999.

[137] T. Berggård, S. Linse, and P. James, “Methods for the detection and analysis of
protein – protein interactions,” Proteomics, vol. 7, pp. 2833–2842, 2007.

[138] E. A. Jares-Erijman and T. M. Jovin, “FRET imaging,” Nat. Biotechnol., vol.
21, no. 11, pp. 1387–1395, 2003.

[139] L. Gu, C. Li, J. Aach, D. E. Hill, M. Vidal, and G. M. Church, “Multiplex
single-molecule interaction profiling of DNA-barcoded proteins,” Nature, vol.
515, no. 7528, pp. 554–557, 2014.

[140] A. P. Frei et al., “Highly multiplexed simultaneous detection of RNAs and
proteins in single cells,” Nat. Methods, vol. 13, no. 3, pp. 269–77, 2016.

[141] P. Uetz et al., “A comprehensive analysis of protein-protein interactions in
Saccharomyces cerevisiae,” Nature, vol. 403, no. February, 2000.

[142] S. Paliwal, P. A. Iglesias, K. Campbell, Z. Hilioti, A. Groisman, and A.
Levchenko, “MAPK-mediated bimodal gene expression and adaptive gradient
sensing in yeast,” Nature, vol. 446, no. March, 2007.

[143] S. L. Spencer, S. Gaudet, J. G. Albeck, J. M. Burke, and P. K. Sorger, “Non-
genetic origins of cell-to-cell variability in,” Nature, vol. 459, no. 7245, pp.
428–432, 2009.

[144] R. A. Burrell, N. Mcgranahan, J. Bartek, and C. Swanton, “The causes and
consequences of genetic,” Nature, vol. 501, pp. 338–45, 2013.

[145] H. H. Chang, M. Hemberg, M. Barahona, D. E. Ingber, and S. Huang,
“Transcriptome-wide noise controls lineage choice in mammalian progenitor
cells,” Nature, vol. 453, no. May, pp. 4–8, 2008.

[146] R. Zhang, H. Yuan, S. Wang, Q. Ouyang, Y. Chen, and N. Hao, “High-
throughput single-cell analysis for the proteomic dynamics study of the yeast
osmotic stress response,” Sci. Rep., 2017.

[147] M. E. Birnbaum et al., “Deconstructing the Peptide-MHC Specificity of T Cell
Recognition,” Cell, vol. 157, pp. 1073–1087, 2014.

 167

[148] K. D. Boder, E.T. and Wittrup, “Yeast Surface Display for Directed Evolution
of Protein Expression , Affinity , and Stability,” Methods Enzymol., vol. 328,
no. 1999, pp. 430–444, 2000.

[149] M. G. Paez-segala et al., “Fixation-resistant photoactivatable fluorescent
proteins for CLEM,” Nat. Methods, vol. 12, no. 3, 2015.

[150] B. G. Reid and G. C. Flynn, “Chromophore Formation in Green Fluorescent
Protein,” Biochemistry, vol. 97403, no. 97, pp. 6786–6791, 1997.

[151] G. M. Benson, R.C., Meyer, R.A., Zaruba, M.E., and McKhann, “Cellular
autofluorescence - Is it due to flavins?,” J. Histochem. Cytochem., vol. 27, pp.
44–48, 1979.

[152] S. Luikenhuis, G. Perrone, I. W. Dawes, and C. M. Grant, “The Yeast
Saccharomyces cerevisiae Contains Two Glutaredoxin Genes That Are
Required for Protection against Reactive Oxygen Species,” Mol. Biol. Cell, vol.
9, pp. 1081–1091, 1998.

[153] C. Godon et al., “The H2O2 Stimulon in Saccharomyces cerevisiae,” J. Biol.
Chem., vol. 273, no. 34, pp. 22480–22489, 1998.

[154] R. Boorsteins and A. Craigsv, “Structure and Regulation of the SSA4 HSP70
Gene of Saccharomyces cerevisiae,” J. Biol. Chem., vol. 26, no. 31, pp. 18912–
18921, 1990.

[155] D. Stanley, A. Bandara, S. Fraser, P. J. Chambers, and G. A. Stanley, “The
ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae,” J.
Appl. Microbiol., vol. 109, no. Demain 2009, pp. 13–24, 2010.

[156] L. A. Sturtz, K. Diekert, L. T. Jensen, R. Lill, and V. Cizewski, “A Fraction of
Yeast Cu , Zn-Superoxide Dismutase and Its Metallochaperone , CCS ,
Localize to the Intermembrane Space of Mitochondria,” J. Biol. Chem., vol.
276, no. 41, pp. 38084–38089, 2001.

[157] A. Belle, A. Tanay, L. Bitincka, R. Shamir, and E. K. O. Shea, “Quantification
of protein half-lives in the budding yeast proteome,” PNAS, vol. 103, no. 35,
pp. 13004–9, 2006.

[158] A. Påhlman, K. Granath, R. Ansell, S. Hohmann, and L. Adler, “The Yeast
Glycerol 3-Phosphatases Gpp1p and Gpp2p Are Required for Glycerol
Biosynthesis and Differentially Involved in the Cellular Responses to Osmotic ,
Anaerobic , and Oxidative Stress,” J. Biol. Chem., vol. 276, no. 5, pp. 3555–
3563, 2001.

 168

[159] B. J. Hackel, D. Huang, J. C. Bubolz, X. X. Wang, and E. V Shusta,
“Production of Soluble and Active Transferrin Receptor-Targeting Single-
Chain Antibody using Saccharomyces cerevisiae,” Pharmaceultical Res., vol.
23, no. 4, pp. 790–797, 2006.

[160] E. P. Miller, M.J., Xuong, N., and Geiduschek, “Quantitative Analysis of the
Heat Shock Response of Saccharomyces cerevisiae,” J. Bacteriol., vol. 151, no.
1, pp. 311–327, 1982.

[161] S. J. Fleishman et al., “Computational Design of Proteins Targeting the
Conserved Stem Region of Influenza Hemagglutinin,” Science (80-.)., vol. 979,
no. May, pp. 816–822, 2011.

[162] T. A. Whitehead et al., “Optimization of affinity , specificity and function of
designed influenza inhibitors using deep sequencing,” Nat. Biotechnol., vol. 30,
no. 6, pp. 543–548, 2012.

[163] K. M. Doolan and D. W. Colby, “Conformation-Dependent Epitopes
Recognized by Prion Protein Antibodies Probed Using Mutational Scanning
and Deep Sequencing,” J. Mol. Biol., vol. 427, no. 2, pp. 328–340, 2015.

[164] R. Moretti et al., “Community-wide evaluation of methods for predicting the
effect of mutations on protein–protein interactions,” Proteins, no. July, pp.
1980–1987, 2013.

 169

ADDITIONAL CONTRIBUTORS

Joe Reynolds constructed the first pBC1 plasmid containing a GPD promoter,

multiple cloning site, C-terminal alpha-agglutinin protein, and a CYC1 terminator.

Erin Aho created pCTCON2-1HA, 2HA, 3HA, 4HA, and 5HA constructs

using a PCR based expansion method. She found that 1HA and 4HA gave distinct

fluorescence intensities using ‘ideal’ antibodies, i.e. high brightness with secondary

labeling

Seth Ritter developed the idea for the exponential expansion of repeating DNA

sequences. He also constructed some of the single epitope repeat constructs

(Appendix C, Table C.1)

Quentin Dubroff created some of the barcode plasmids consisting of epitope

tag combinations, that were used in the beginning of this project (Appendix C, Table

C.1)

Greg Vorsanger implemented the LALIGN algorithm and wrote the Python

scripts for analysis of the SMRT data with direction from Stefanie Berges. Stefanie

wrote Python scripts to generate graphics from analyzed data. Greg also assisted in the

development of the barcode identification software, specifically with the decision to

use DBSCAN clustering and Gaussian Kernel Density Estimation.

Olga Morozova and Stefanie Berges both contributed to the production and

purification of the recombinant mouse prion protein. Kyle McHugh refolded and

labeled the protein with Alexa Fluor 647 NHS ester.

Appendix A

 170

SOFTWARE FOR ANALYSIS OF SMRT SEQUENCING DATA

#!/bin/bash

script="fasta/fasta-36.3.8e/bin/lalign36 -d 0 -m 9 -E 0.0001 -n -f 12 -g 4"
echo "Aligning GLUGLU"
time $script 3passes_CCS.fasta ref_sequences/GluGlu_G4S.fasta >
data/3passes_full_GluGlu_G4S
echo "Aligning HA"
time $script 3passes_CCS.fasta ref_sequences/HA_G4S.fasta >
data/3passes_full_HA_G4S
echo "Aligning AU1"
time $script 3passes_CCS.fasta ref_sequences/AU1_G4S.fasta >
data/3passes_full_AU1_G4S
echo "Aligning FLAG"
time $script 3passes_CCS.fasta ref_sequences/FLAG_G4S.fasta >
data/3passes_full_FLAG_G4S
echo "Aligning HIS"
time $script 3passes_CCS.fasta ref_sequences/HIS_G4S.fasta >
data/3passes_full_HIS_G4S
echo "Aligning HSV"
time $script 3passes_CCS.fasta ref_sequences/HSV_G4S.fasta >
data/3passes_full_HSV_G4S
echo "Aligning CMYC"
time $script 3passes_CCS.fasta ref_sequences/CMYC_G4S.fasta >
data/3passes_full_CMYC_G4S
echo "Done Aligning."

Appendix B

 171

#!/bin/sh

echo "HA"
python process_local_align.py --afile data/3passes_full_HA_G4S --name HA_G4S --
lfile ref_sequences/length_ref_seqs.json --tfile ref_sequences/ref_len_thresh.json

echo "CMYC"
python process_local_align.py --afile data/3passes_full_CMYC_G4S --name
CMYC_G4S --lfile ref_sequences/length_ref_seqs.json --tfile
ref_sequences/ref_len_thresh.json

echo "FLAG"
python process_local_align.py --afile data/3passes_full_FLAG_G4S --name
FLAG_G4S --lfile ref_sequences/length_ref_seqs.json --tfile
ref_sequences/ref_len_thresh.json

echo "GLUGLU"
python process_local_align.py --afile data/3passes_full_GluGlu_G4S --name
GluGlu_G4S --lfile ref_sequences/length_ref_seqs.json --tfile
ref_sequences/ref_len_thresh.json

echo "HIS"
python process_local_align.py --afile data/3passes_full_HIS_G4S --name HIS_G4S -
-lfile ref_sequences/length_ref_seqs.json --tfile ref_sequences/ref_len_thresh.json

echo "HSV"
python process_local_align.py --afile data/3passes_full_HSV_G4S --name HSV_G4S
--lfile ref_sequences/length_ref_seqs.json --tfile ref_sequences/ref_len_thresh.json

echo "AGAlpha1"
python process_local_align.py --afile data/3passes_full_AGAlpha1 --name AGAlpha1
--lfile ref_sequences/length_ref_seqs.json --tfile ref_sequences/ref_len_thresh.json

echo "AU1"
python process_local_align.py --afile data/3passes_full_AU1_G4S --name AU1_G4S
--lfile ref_sequences/length_ref_seqs.json --tfile ref_sequences/ref_len_thresh.json

 172

import argparse
import requests
import numpy
import json
import time
import os.path
from collections import defaultdict
from pprint import pprint
def get_ref_dict(lenfile):
 with open(lenfile,'r') as data:
 len_dict = json.load(data)
pprint(len_dict)
 return len_dict

def get_matrices_from_file(filename):
 matrix_dict = {}
 curr_matrix = ""
 with open(filename,'r') as f:
 in_matrix = False
 curr_name = ""
 for line in f:
 if ">>>m" in line:
 curr_name = line[6:]
print line
 if in_matrix:
 if ">>><<<" in line:
 in_matrix = False
 matrix_dict[curr_name] = curr_matrix
 else:
 curr_matrix += line
 elif "%_id %_sim lsw alen an0 ax0 pn0 px0 an1 ax1 pn1 px1
gapq gapl fs" in line:
 in_matrix = True
 curr_matrix = ""
 return matrix_dict

def make_list_matrix(matrix):
 #print "MATRIX"
 #print matrix
 #print "END MATRIX"
 i = 0
 #dynamic based on length returned
 mat_len = len(matrix.split('\n')) -1
 #static based on the lalign program
 mat_width = 6
 mat_list = numpy.zeros((mat_len,18))
 for line in matrix.split('\n'):
 line = line.replace("\t"," ")
 j =0
 split_spaces = line[69:].split(" ")
 for item in split_spaces:

 if item != '':
 mat_list[i][j] = item
 j+=1
 i+=1
print split_spaces

 173

print mat_list
 return mat_list

#matrix, matching threshold, dict1, dict2
#default, 0.85
def analyze_matrix(list_matrix,seq_len,len_thresh,match_thresh = 0.85):
 unique_vals = {}
 top_match = 0.0
 top_e_val = 0.0
 match_count = 0
 for row in list_matrix:
 match_val = row[3]
 e_val = row [2]
 #if e_Val not in dict, add and grab the match
 if e_val not in unique_vals:
 unique_vals[e_val] = match_val

 #if match val greater, set it to highest and grab eval
 if match_val > top_match:
 if row[6] >= seq_len - len_thresh and row[6] <= seq_len +
len_thresh:
 top_match = match_val
 top_e_val = e_val
 if match_val > match_thresh:
 if row[6] >= seq_len - len_thresh and row[6] <= seq_len +
len_thresh:
 match_count+=1
 #print "GOOD len:", row[6], "vs:" , seq_len
 else:
 pass
 #print "BAD len:", row[6], "vs:" , seq_len

 best_match_dict = {"Count": match_count,"Top E Value": top_e_val, "Best
Match Value": top_match}
 return unique_vals,best_match_dict

def run_alignment(filename,run_name,ref_len_name,len_thresh_name):
 #length of reference
 ref_len_dict = get_ref_dict(ref_len_name)
 #maximm length error for alingment
 len_thresh_dict = get_ref_dict(len_thresh_name)
 seq_len = ref_len_dict["Length"][run_name]
 len_thresh = len_thresh_dict["Thresh"][run_name]
 info_dict = {}
 info_dict[run_name] = {}
 matrix_dict = get_matrices_from_file(filename)
 outfile = run_name + "_analysis.json"
 print "This file has:", len(matrix_dict.keys()), "matrices present."
 for key in matrix_dict.keys():
 list_matrix = make_list_matrix(matrix_dict[key])

print list_matrix
 unique_dict,best_dict =
analyze_matrix(list_matrix,seq_len,len_thresh,0.90)
 #for testing

 174

print unique_dict,best_dict
 if best_dict["Count"] > 0:
 info_dict[run_name][key] = {}
 info_dict[run_name][key]["Best"] = best_dict
 info_dict[run_name][key]["Unique"] = unique_dict
 output_str = json.dumps(info_dict, sort_keys=True, indent=4,
separators=(',', ': '))
 with open(outfile,'w') as f:
 f.write(output_str)

#for testing only
if __name__ == "__main__":
 parser = argparse.ArgumentParser(description="Give a file to process")
 parser.add_argument('--afile', metavar="f",type = str)
 parser.add_argument('--lfile', metavar="l",type = str)
 parser.add_argument('--name', metavar="n",type = str)
 parser.add_argument('--tfile', metavar='t',type = str)
 args = parser.parse_args()
 if args.afile and args.name and args.lfile and args.tfile:
 run_alignment(args.afile,args.name,args.lfile,args.tfile)
 else:
 print "Need filename, len file name, threshold file name and name of
run!"

debug()

 175

import json
import os
import argparse
from pprint import pprint
#grabs all json, makes one dict with keys based on reference and data within
def make_dict(json_dir):
 alignment_dict = {}
 for name in os.listdir(json_dir):
 print name
 json_file = os.path.join(json_dir,name)
 with open(json_file,'r') as f:
 data = json.load(f)
 alignment_dict = dict(alignment_dict, **data)

print alignment_dict.keys()
 for key in alignment_dict.keys():
 print "Reference:",key, "has: " , len(alignment_dict[key].keys()),
"sequences"
 return alignment_dict

#get all seq_ids. For now this is hardcoded to use CMYC!!
def get_sequence_ids(ad,list_mode):
 seq_id_list = []
 print "List mode = ", list_mode
 #ONLY CMYC
 if list_mode == "CMYC":
 raw_seq_list = ad["CMYC_G4S"].keys()
 for key in raw_seq_list:
 if ad["CMYC_G4S"][key]["Best"]["Count"] > 0:
 #assume no 0's
 if key not in ad["AGAlpha1"]: #and
ad["AGAlpha1"][key]["Best"]["Count"] == 0:
 seq_id_list.append(key)
 #ONLY AGA
 if list_mode == "AGA":
 raw_seq_list = ad["AGAlpha1"].keys()
 for key in raw_seq_list:
 if ad["AGAlpha1"][key]["Best"]["Count"] > 0:
 if key not in ad["CMYC_G4S"]: # and
ad["CMYC_G4S"][key]["Best"]["Count"] == 0:
 seq_id_list.append(key)

 #BOTH
 if list_mode == "CMYC+AGA":
 raw_seq_list = ad["CMYC_G4S"].keys()
 for key in raw_seq_list:
 #if ad["CMYC_G4S"][key]["Best"]["Count"] > 0 and key in
ad["AGAlpha1"] and ad["AGAlpha1"][key]["Best"]["Count"] > 0:
 if key in ad["AGAlpha1"]:
 seq_id_list.append(key)

 if list_mode == "ALL":
 raw_seq_dict = {}
 for ref in ad.keys():
 for key in ad[ref].keys():

 176

 raw_seq_dict[key] = 1
 seq_id_list = raw_seq_dict.keys()

 if list_mode == "NEITHER":
 raw_seq_dict = {}
 for ref in ad.keys():
 for key in ad[ref].keys():
 raw_seq_dict[key] = 1
 print "TOTAL KEYS:", len(raw_seq_dict.keys())
 for key in ad["CMYC_G4S"].keys():
 if key in ad["AGAlpha1"]:
 del raw_seq_dict[key]
 for key in ad["AGAlpha1"].keys():
 if key in ad["CMYC_G4S"]:
 if key in raw_seq_dict:
 del raw_seq_dict[key]
 seq_id_list = raw_seq_dict.keys()
 return seq_id_list

#get barcodes by seqid. Takes dict from all json files and Returns dict of
seqid : barcode:
def get_barcode_dict(ad,seq_id_list,key_order):
 barcode_dict = {}
 for seq_id in seq_id_list:
 barcode_list = []
 for key in key_order:
 if seq_id in ad[key]:
 barcode_list.append(ad[key][seq_id]["Best"]["Count"])
 else:
 barcode_list.append(0)
 barcode_dict[seq_id] = barcode_list

 return barcode_dict

#gets barcode frequency in data set.
#expects dictionary of seqid : barcode
#returns dictionary with barcode: frequency, count, seqids/ on off
def get_barcode_frequency_dict(bc_dict,total_barcodes, seq_ids = False):
 bc_freq_dict = {}
 for seq_id in bc_dict.keys():
 raw_s = ""
 for item in bc_dict[seq_id]:
 raw_s += str(item)
 raw_s += "-"
 barcode_string = raw_s[:-1]
 #default dict too awkward here.
 if barcode_string in bc_freq_dict:
 bc_freq_dict[barcode_string]["Count"] += 1
 if seq_ids:
 bc_freq_dict[barcode_string]["Seq_IDs"].append(seq_id)
 else:
 bc_freq_dict[barcode_string] = {}
 bc_freq_dict[barcode_string]["Count"] = 1
 if seq_ids:
 bc_freq_dict[barcode_string]["Seq_IDs"] = [seq_id]

 177

 #at this point we have a dictionary with all the barcodes and counts, need
to get frequencies.
 for key in bc_freq_dict.keys():
 bc_freq_dict[key]["Frequency"] =
float(bc_freq_dict[key]["Count"])/float(total_barcodes)

pprint(bc_freq_dict)
 return bc_freq_dict
#takes alignment dict. Returns dict for each ref sequence with key: ref seq :
Number of matches : freq and seqids/onoff
def
get_best_match_dicts(ad,seq_id_list,key_order,total_count,output_name,seq_ids
= False):
 for key in key_order:
 best_match_dict = {}
 #for seq_id in ad[key].keys():
 for seq_id in seq_id_list:
 if seq_id in ad[key]:
 count = ad[key][seq_id]["Best"]["Count"]
 if count in best_match_dict:
 best_match_dict[count]["Count"] += 1
 if seq_ids:
 best_match_dict[count]["Seq_IDs"].append(seq_id)
 else:
 best_match_dict[count] = {}
 best_match_dict[count]["Count"] = 1
 if seq_ids:
 best_match_dict[count]["Seq_IDs"] = [seq_id]
 #do frequency
 for match_num in best_match_dict.keys():
 best_match_dict[match_num]["Frequency"] =
float(best_match_dict[match_num]["Count"])/float(total_count)

pprint(best_match_dict)
 #print each to own file
 if seq_ids:
 outfile = output_name + "_" + key +
"best_match_table_w_seq_ids.json"
 else:
 outfile = output_name + "_" + key + "best_match_table.json"
 json_to_file(outfile,best_match_dict)

def json_to_file(name, jdict):
 output = json.dumps(jdict, sort_keys = True, indent=4, separators=(',', ':
'))
 with open(name,'w') as f:
 f.write(output)

def run_analysis(json_dir,output_name,list_mode):
 a_dict = make_dict(json_dir)

 #get sequence IDS
 print "Getting sequence ideas for mode:", list_mode
 seq_id_list = get_sequence_ids(a_dict,list_mode)
 print "This mode returned", len(seq_id_list), "ids"
 #hardcode for now for order reasons
 key_order =

 178

["HA_G4S","HSV_G4S","HIS_G4S","AU1_G4S","GluGlu_G4S","FLAG_G4S"]
 bc_dict = get_barcode_dict(a_dict,seq_id_list,key_order)
 print "bc_dict has this many barcodes:", len(bc_dict.keys())
 bc_file = output_name + "_barcodes_table.json"
 #write barcode dict to file
 json_to_file(bc_file,bc_dict)

 #Get number of barcodes form CMYC file - NOT GENERIC
 total_barcodes = len(seq_id_list)
 #Get barcode count dictionary w/ and w/out seq ids
 bc_count_dict = get_barcode_frequency_dict(bc_dict,total_barcodes)
 bc_count_dict_seqs =
get_barcode_frequency_dict(bc_dict,total_barcodes,True)
 #print to file w/ and w/o seqs
 bcf_file = output_name + "_barcode_frequency_table.json"
 json_to_file(bcf_file,bc_count_dict)
 bcf_file_w_seqs = output_name + "_barcode_frequency_table_w_seqs.json"
 json_to_file(bcf_file_w_seqs,bc_count_dict_seqs)
 #this calls its own json_to_file

get_best_match_dicts(a_dict,seq_id_list,key_order,len(seq_id_list),output_nam
e)

get_best_match_dicts(a_dict,seq_id_list,key_order,len(seq_id_list),output_nam
e,True)

if __name__ == "__main__":
 parser = argparse.ArgumentParser(description= "Give a directory of JSON to
eat")
 parser.add_argument ("--list_mode",metavar="l",type=str)
 parser.add_argument("--json_dir",metavar="d",type=str)
 parser.add_argument("--output_name",metavar="o",type=str)
 args = parser.parse_args()
 list_mode = "all"
 if args.list_mode:
 list_mode = args.list_mode
 if args.json_dir and args.output_name:
 run_analysis(args.json_dir,args.output_name,list_mode)
 else:
 print "Error, no directory or output name provided!"
 print "List modes: ALL, AGA_only, CMYC_only, AGA+CMYC, NEITHER"

 179

import numpy as np
import os
import json
from collections import defaultdict
import csv

file_path = "/Users/Stefanie/PycharmProjects/untitled/Pacbio_tables"

if not os.path.exists(file_path):
 os.makedirs(file_path)
os.chdir(file_path)

json_filename = "/Users/Stefanie/Dropbox/Pacbio
Analysis/1120/1120_CYMC+AGA_barcode_frequency_table.json"

barcodetabledict = {}

with open(json_filename,'r') as f:
 barcode_dict = json.load(f)

for barcodeid in barcode_dict.keys():
 count = barcode_dict[barcodeid]['Count']
 barcodetabledict[barcodeid] = count

fields = ['Barcode ID','Count']
with open('Pacbio barcode table.csv','w') as f:
 w = csv.writer(f,fields)
 w.writerow(fields)
 for row in barcodetabledict.items():
 w.writerow([row[0],row[1]])

 180

import numpy as np
import os
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import json
from collections import defaultdict

file_path = "/Users/Stefanie/PycharmProjects/untitled/Pacbio_graphics"

if not os.path.exists(file_path):
 os.makedirs(file_path)
os.chdir(file_path)

tagnames = ['HA','HSV','HIS','GluGlu','AU1','FLAG']
epcolor = ['blue','red','green','purple','orange','magenta']
i = 1
#[fig,ax] = plt.subplots(2,3,sharex=False,sharey=False)

odd_repeats_dict = defaultdict(lambda: defaultdict(float))

for name in tagnames:
 json_filename = "/Users/Stefanie/Dropbox/Pacbio
Analysis/1120/1120_CMYC_"+name+'_G4Sbest_match_table.json'
 with open (json_filename,'r') as f:
 repeat_freq_dict = json.load(f)
 repeat_length_list = []
 counts_list = []
 freq_list = []
 count_odd_repeat_sizes = 0
 total_reads = 0
 for numrep in repeat_freq_dict.keys():
 #print 'repeat',numrep
 count = repeat_freq_dict[numrep]["Count"]
 #print 'count',count
 freq = repeat_freq_dict[numrep]["Frequency"]
 repeat_length_list.append(int(numrep))
 counts_list.append(count)
 freq_list.append(freq)
 total_reads += count
 if numrep not in ['1','2','4','8','16','32','14']:
 count_odd_repeat_sizes += count
 odd_repeats_dict[name]['Count'] = count_odd_repeat_sizes
 odd_repeats_dict[name]['Percent'] =
float(count_odd_repeat_sizes)/float(total_reads)

 counts_list_log = np.log10(counts_list)
 repeat_counts_list = map(lambda x,y:[x,y],repeat_length_list,counts_list)
 repeat_counts_list_log = map(lambda
x,y:[x,y],repeat_length_list,counts_list_log)
 repeat_counts_list.sort(key=lambda x:x[0])
 repeat_counts_list_log.sort(key=lambda x:x[0])

 181

 xvals = map(lambda x:x[0],repeat_counts_list)
 yvals = map(lambda x:x[1],repeat_counts_list)

 [fig,ax] = plt.subplots()
 ind = np.arange(0,len(repeat_length_list))
 width = 0.5
 c = colors.cnames[epcolor[i-1]]
 plt.bar(ind,yvals,width,color=c)
 ax.set_xticks(ind+width/2)
 ax.set_xticklabels(xvals)
 plt.title(name,fontsize=16)
 plt.xlabel('Repeat length')
 plt.ylabel('Count')
 plt.tight_layout()
 plt.savefig('Repeat counts CMYC only '+name)
 i = i+1
#plt.show()

with open('Pacbio odd repeats.txt','w') as f:

f.write(json.dumps(odd_repeats_dict,sort_keys=True,indent=4,separators=(',',
':')))

 182

BARCODE SMRT LIBRARY DATA

Table C.1: Individually constructed barcodes

HA HSV HIS AU1 GLU FLAG Barcode Name
Date

Constructed Constructed By
0 0 0 0 0 0 pBC1 Joe Reynolds
1 0 0 0 0 0 1HA 1/14/13 Seth Ritter
2 0 0 0 0 0 2HA 1/16/13 Seth Ritter
4 0 0 0 0 0 4HA 1/21/13 Seth Ritter
8 0 0 0 0 0 8HA 4/8/13 Seth Ritter
16 0 0 0 0 0 16HA 3/19/13 Seth Ritter
32 0 0 0 0 0 32HA 12/3/13 Stefanie Berges
0 0 1 0 0 0 1HIS 1/22/13 Seth Ritter
0 0 2 0 0 0 2HIS 4/21/13 Stefanie Berges
0 0 4 0 0 0 4HIS 5/15/13 Stefanie Berges
0 0 8 0 0 0 8HIS 6/5/13 Stefanie Berges
0 0 16 0 0 0 16HIS 6/11/13 Stefanie Berges
0 0 16 0 0 0 16HIS 10/24/14 Quentin Dubroff
2 0 1 0 0 0 2HA1HIS 5/22/13 Stefanie Berges
2 0 4 0 0 0 2HA4HIS 5/31/13 Stefanie Berges
2 0 8 0 0 0 2HA8HIS 6/11/13 Stefanie Berges
8 0 1 0 0 0 8HA1HIS 5/22/13 Stefanie Berges
8 0 4 0 0 0 8HA4HIS 6/5/13 Stefanie Berges
8 0 8 0 0 0 8HA8HIS 6/11/13 Stefanie Berges
0 0 0 1 0 0 1AU1 7/25/13 Seth Ritter
0 0 0 2 0 0 2AU1 9/13/13 Seth Ritter
0 0 0 4 0 0 4AU1 9/25/13 Stefanie Berges
0 0 0 8 0 0 8AU1 11/11/13 Stefanie Berges
0 0 0 16 0 0 16AU1 11/11/13 Stefanie Berges
0 0 0 32 0 0 32AU1 12/4/13 Stefanie Berges
0 0 0 0 1 0 1GluGlu 7/25/13 Seth Ritter
0 0 0 0 2 0 2GluGlu 9/25/13 Stefanie Berges
0 0 0 0 4 0 4GluGlu 9/29/13 Seth Ritter
0 0 0 0 8 0 8GluGlu 10/21/13 Seth Ritter
0 0 0 0 16 0 16GluGlu 10/24/13 Stefanie Berges
0 0 0 0 32 0 32GluGlu 11/11/13 Stefanie Berges
0 0 0 0 64 0 64GluGlu 12/4/13 Stefanie Berges
0 1 0 0 0 0 1HSV 10/21/13 Stefanie Berges
0 2 0 0 0 0 2HSV 10/24/13 Stefanie Berges
0 4 0 0 0 0 4HSV 10/25/13 Stefanie Berges
0 8 0 0 0 0 8HSV 11/8/13 Stefanie Berges
0 16 0 0 0 0 16HSV 12/3/13 Stefanie Berges
0 0 0 0 0 1 1FLAG 7/25/13 Seth Ritter
0 0 0 0 0 2 2FLAG 9/25/13 Stefanie Berges
0 0 0 0 0 4 4FLAG 10/8/13 Stefanie Berges
0 0 0 0 0 8 8FLAG 10/18/13 Stefanie Berges
0 0 0 0 0 16 16FLAG 11/7/13 Stefanie Berges
0 0 0 0 0 32 32FLAG 12/3/13 Stefanie Berges
1 0 4 0 0 0 1HA4HIS 1/16/14 Stefanie Berges
4 0 4 0 0 0 4HA4HIS 1/16/14 Stefanie Berges
16 0 4 0 0 0 16HA4HIS 1/19/14 Stefanie Berges
1 0 0 1 0 0 1HA1AU1 1/13/14 Stefanie Berges
4 0 0 1 0 0 4HA1AU1 1/13/14 Stefanie Berges
16 0 0 1 0 0 16HA1AU1 8/25/14 Stefanie Berges
16 0 0 1 0 0 16HA1AU1 1/13/14 Stefanie Berges
16 0 0 4 0 0 16HA4AU1 5/23/14 Quentin Dubroff
16 0 0 8 0 0 16HA8AU1 9/9/14 Quentin Dubroff
16 0 0 8 0 0 16HA8AU1 4/22/14 Quentin Dubroff
16 0 0 16 0 0 16HA16AU1 11/6/14 Stefanie Berges
16 0 0 16 0 0 16HA16AU1 5/6/14 Quentin Dubroff
0 0 4 1 0 0 4HIS1AU1 1/16/14 Stefanie Berges
0 0 4 4 0 0 4HIS4AU1 2/7/14 Stefanie Berges
0 0 4 8 0 0 4HIS8AU1 5/13/14 Quentin Dubroff
0 0 4 16 0 0 4HIS16AU1 9/9/14 Quentin Dubroff
0 0 4 16 0 0 4HIS16AU1 4/23/14 Quentin Dubroff

Appendix C

 183

1 0 0 4 0 0 1HA4AU1 2/7/14 Stefanie Berges
1 0 0 8 0 0 1HA8AU1 3/6/14 Quentin Dubroff
1 0 0 16 0 0 1HA16AU1 10/14/14 Quentin Dubroff
4 0 0 4 0 0 4HA4AU1 2/11/14 Stefanie Berges
4 0 0 8 0 0 4HA8AU1 2/7/14 Stefanie Berges
4 0 0 16 0 0 4HA16AU1 8/25/14 Stefanie Berges
4 0 0 16 0 0 4HA16AU1 4/18/14 Quentin Dubroff
1 0 4 1 0 0 1HA4HIS1AU1 1/29/14 Quentin Dubroff
4 0 4 1 0 0 4HA4HIS1AU1 1/19/14 Stefanie Berges
16 0 4 1 0 0 16HA4HIS1AU1 7/15/14 Quentin Dubroff
16 0 4 1 0 0 16HA4HIS1AU1 1/29/14 Quentin Dubroff
16 0 4 1 0 0 16HA4HIS1AU1 9/2/14 Stefanie Berges
1 0 4 4 0 0 1HA4HIS4AU1 2/7/14 Stefanie Berges
4 0 4 4 0 0 4HA4HIS4AU1 2/7/14 Stefanie Berges
16 0 4 4 0 0 16HA4HIS4AU1 10/14/14 Quentin Dubroff
16 0 4 4 0 0 16HA4HIS4AU1 2/7/14 Stefanie Berges
1 0 4 8 0 0 1HA4HIS8AU1 3/18/14 Quentin Dubroff
1 0 4 16 0 0 1HA4HIS16AU1 8/25/14 Stefanie Berges
1 0 4 16 0 0 1HA4HIS16AU1 3/18/14 Quentin Dubroff
4 0 4 8 0 0 4HA4HIS8AU1 7/30/14 Quentin Dubroff
4 0 4 16 0 0 4HA4HIS16AU1 10/14/14 Quentin Dubroff
4 0 4 16 0 0 4HA4HIS16AU1 4/23/14 Quentin Dubroff
16 0 4 8 0 0 16HA4HIS8AU1 9/9/14 Quentin Dubroff
16 0 4 16 0 0 16HA4HIS16AU1 10/14/14 Quentin Dubroff
1 0 4 1 1 0 1HA4HIS1AU11GluGlu 6/26/14 Quentin Dubroff
0 0 0 8 1 0 8AU11GluGlu 6/26/14 Quentin Dubroff
0 0 4 0 1 0 4HIS1GluGlu 6/26/14 Quentin Dubroff
1 0 0 8 1 0 1HA8AU11GluGlu 6/26/14 Quentin Dubroff
0 0 4 1 1 0 4HIS1AU11GluGlu 6/26/14 Quentin Dubroff
1 0 4 0 1 0 1HA4HIS1GluGlu 6/26/14 Quentin Dubroff
4 0 4 4 1 0 4HA4HIS4AU11GluGlu 10/10/14 Quentin Dubroff
1 0 4 4 1 0 1HA4HIS4AU11GluGlu 10/10/14 Quentin Dubroff
0 0 0 1 1 0 1AU11GluGlu 10/10/14 Quentin Dubroff
0 0 0 1 16 0 1AU116GluGlu 11/20/14 Quentin Dubroff
0 0 0 4 1 0 4AU11GluGlu 6/26/14 Quentin Dubroff
0 0 0 4 16 0 4AU116GluGlu 11/20/14 Quentin Dubroff
0 0 0 16 1 0 16AU11GluGlu 12/19/14 Stefanie Berges
0 0 0 16 16 0 16AU116GluGlu 11/20/14 Quentin Dubroff
1 0 0 0 1 0 1HA1GluGlu 6/26/14 Quentin Dubroff
1 0 0 0 16 0 1HA16GluGlu 11/20/14 Quentin Dubroff
4 0 0 0 1 0 4HA1GluGlu 10/10/14 Quentin Dubroff
4 0 0 0 16 0 4HA16GluGlu 11/20/14 Quentin Dubroff
16 0 0 0 1 0 16HA1GluGlu 11/20/14 Quentin Dubroff
16 0 0 0 16 0 16HA16GluGlu 12/19/14 Stefanie Berges
1 0 0 1 1 0 1HA1AU11GluGlu 10/10/14 Quentin Dubroff
1 0 0 1 16 0 1HA1AU116GluGlu 11/20/14 Quentin Dubroff
1 0 0 4 1 0 1HA4AU11GluGlu 6/26/14 Quentin Dubroff
1 0 0 4 16 0 1HA4AU116GluGlu 11/20/14 Quentin Dubroff
1 0 0 16 1 0 1HA16AU11GluGlu 11/20/14 Quentin Dubroff
1 0 0 16 16 0 1HA16AU116GluGlu 11/20/14 Quentin Dubroff
4 0 0 1 1 0 4HA1AU11GluGlu 11/20/14 Quentin Dubroff
4 0 0 1 16 0 4HA1AU116GluGlu 11/20/14 Quentin Dubroff
4 0 0 4 1 0 4HA4AU11GluGlu 11/20/14 Quentin Dubroff
4 0 0 4 16 0 4HA4AU116GluGlu 11/20/14 Quentin Dubroff
4 0 0 16 1 0 4HA16AU11GluGlu 11/20/14 Quentin Dubroff
4 0 0 16 16 0 4HA16AU116GluGlu 12/19/14 Stefanie Berges
16 0 0 1 1 0 16HA1AU11GluGlu 11/20/14 Quentin Dubroff
16 0 0 1 16 0 16HA1AU116GluGlu 11/20/14 Quentin Dubroff
16 0 0 4 1 0 16HA4AU11GluGlu 10/10/14 Quentin Dubroff
16 0 0 4 16 0 16HA4AU116GluGlu 12/19/14 Stefanie Berges

 184

Table C.2: Abundance of SMRT reads with nonstandard repeat lengths

Epitope Count Percent
AU1 170 0.26
FLAG 13 0.45
GLU 153 0.38
HA 108 0.14
HIS 31 0.11
HSV 29 0.48

 185

Table C.3: Unique barcodes found in SMRT sample

Barcode	ID #	CCS	Reads Barcode	ID	 #	CCS	Reads Barcode	ID	 #	CCS	Reads Barcode	ID	 #	CCS	Reads
4-0-0-0-14-0 328 16-0-4-16-0-0 11 0-0-0-0-0-1 4 0-0-0-0-0-31 2
1-0-0-2-14-0 319 4-0-0-1-12-0 11 1-0-0-17-1-0 4 4-0-0-6-0-0 2
0-16-0-0-0-0 283 4-0-4-0-0-0 11 0-13-0-0-0-0 4 13-0-0-9-0-0 2
4-0-0-1-14-0 244 16-0-0-5-0-0 11 4-0-0-0-15-0 4 8-0-4-1-0-0 2
1-0-0-4-14-0 193 16-0-0-0-14-0 11 15-0-0-17-1-0 4 12-0-0-0-0-0 2
8-0-8-0-0-0 191 0-0-4-9-0-0 11 0-0-0-6-14-0 4 1-0-0-3-0-0 2
4-0-4-8-0-0 172 0-0-0-0-0-15 11 1-0-0-0-13-0 4 0-0-0-25-0-0 2
16-0-0-0-0-0 166 0-0-0-32-0-0 10 0-0-0-0-26-0 4 1-0-0-7-14-0 2
1-0-0-16-0-0 160 4-0-4-5-1-0 10 14-0-0-1-0-0 4 1-0-0-26-0-0 2
0-0-0-4-14-0 158 1-0-0-0-0-0 10 0-0-0-2-14-0 4 15-0-0-9-0-0 2
1-0-0-1-14-0 141 4-0-0-15-0-0 10 0-0-0-0-21-0 4 0-0-0-8-14-0 2
0-0-0-16-1-0 137 2-0-4-0-0-0 10 15-0-0-4-1-0 4 11-0-3-1-1-0 2
13-0-3-0-1-0 137 0-12-0-0-0-0 10 3-0-2-9-0-0 4 16-0-4-7-0-0 2
0-0-0-16-0-0 133 0-0-1-0-0-0 10 16-0-0-18-1-0 4 13-0-0-4-0-0 2
1-0-0-16-1-0 130 0-4-0-0-0-0 10 16-0-0-6-0-0 4 10-0-4-4-0-0 2
1-0-0-16-14-0 124 4-0-0-0-0-0 10 1-0-0-1-11-0 4 2-0-0-1-0-0 2
16-0-0-1-0-0 116 0-0-0-1-1-0 9 0-0-0-0-27-0 4 15-0-0-6-0-0 2
16-0-0-1-1-0 116 1-0-0-1-9-0 9 1-0-0-14-13-0 4 3-0-3-7-0-0 2
0-0-16-0-0-0 109 4-0-0-0-12-0 9 16-0-0-6-1-0 4 14-0-0-2-0-0 2
4-0-4-16-0-0 104 0-0-0-0-2-0 9 0-0-4-12-0-0 4 0-0-0-13-0-0 2
0-0-0-0-0-16 102 1-0-0-1-1-0 9 15-0-4-8-0-0 4 16-0-4-10-0-0 2
0-0-4-16-0-0 94 16-0-0-3-0-0 9 4-0-0-15-1-0 4 0-0-0-2-10-0 2
4-0-4-4-0-0 87 1-0-0-15-14-0 9 4-0-0-4-1-0 4 11-0-2-0-1-0 2
0-0-0-1-14-0 76 2-0-0-0-0-0 9 1-0-0-4-13-0 4 9-0-0-4-1-0 2
1-0-0-0-12-0 76 15-0-0-8-0-0 9 4-0-0-2-1-0 4 16-0-0-1-14-0 2
16-0-4-0-0-0 72 2-0-8-0-0-0 9 10-0-0-0-0-0 4 15-0-0-6-1-0 2
16-0-4-1-0-0 70 4-0-4-17-0-0 9 0-0-0-5-14-0 4 4-0-0-1-10-0 2
1-0-0-0-14-0 65 16-0-0-5-1-0 9 0-9-0-0-0-0 4 3-0-0-1-12-0 2
0-0-4-8-0-0 64 0-0-0-4-13-0 9 1-0-0-0-11-0 4 0-7-0-0-0-0 2
4-0-0-16-0-0 63 0-0-0-8-1-0 8 2-0-0-4-0-0 4 5-0-0-0-14-0 2
4-0-0-4-14-0 62 2-0-1-0-0-0 8 7-0-4-0-0-0 3 9-0-0-4-0-0 2
16-0-0-4-1-0 60 4-0-4-7-0-0 8 0-0-4-6-0-0 3 4-0-4-14-0-0 2
16-0-0-4-0-0 60 0-0-0-14-0-0 8 14-0-4-0-0-0 3 4-0-0-2-12-0 2
0-0-0-0-14-0 59 0-0-0-0-0-32 8 1-0-0-16-13-0 3 0-0-0-0-20-0 2
1-0-4-14-0-0 59 1-0-4-13-0-0 8 4-0-4-12-0-0 3 8-0-5-0-0-0 2
4-0-4-4-1-0 58 1-0-1-0-0-0 8 1-0-0-3-13-0 3 0-0-0-15-13-0 2
8-0-4-0-0-0 58 0-0-15-0-0-0 8 1-0-0-5-14-0 3 0-0-0-31-0-0 2
16-0-0-8-0-0 57 16-0-0-17-1-0 8 12-0-4-1-0-0 3 12-0-3-2-1-0 2
1-0-0-4-1-0 54 1-0-0-1-13-0 8 1-0-0-2-1-0 3 13-0-0-0-0-0 2
1-0-0-4-0-0 54 1-0-4-0-1-0 8 0-0-0-17-0-0 3 4-0-0-17-14-0 2
0-15-0-0-0-0 51 0-0-4-1-1-0 8 1-0-0-14-1-0 3 7-0-3-0-1-0 2
1-0-0-3-14-0 50 4-0-0-4-0-0 8 16-0-4-11-0-0 3 15-0-0-1-14-0 2
16-0-4-4-0-0 45 0-0-0-14-1-0 8 14-0-4-1-0-0 3 7-0-0-2-0-0 2
1-0-4-8-0-0 44 4-0-0-1-1-0 8 1-0-0-13-0-0 3 3-0-0-1-10-0 2
4-0-0-16-1-0 38 4-0-4-5-0-0 8 15-0-0-2-0-0 3 3-0-0-16-0-0 2
4-0-0-8-0-0 33 9-0-0-3-1-0 8 12-0-4-0-0-0 3 1-0-0-4-15-0 2
16-0-4-5-0-0 32 16-0-0-3-1-0 8 13-0-2-0-1-0 3 15-0-0-2-1-0 2
0-0-0-0-28-0 31 4-0-0-1-0-0 8 1-0-0-17-0-0 3 0-0-0-12-0-0 2
8-0-8-1-0-0 30 4-0-0-0-1-0 7 1-0-0-0-10-0 3 3-0-0-4-14-0 2
12-0-3-0-1-0 28 4-0-0-14-0-0 7 0-0-0-0-22-0 3 8-0-4-2-0-0 2
0-8-0-0-0-0 28 4-0-4-9-0-0 7 8-0-1-1-0-0 3 0-0-0-0-17-0 2
0-2-0-0-0-0 27 8-0-7-0-0-0 7 1-0-0-13-14-0 3 4-0-0-2-0-0 2
1-0-0-2-13-0 27 1-0-4-2-1-0 7 4-0-0-12-1-0 3 1-0-0-4-12-0 2
16-0-0-2-0-0 27 15-0-0-4-0-0 7 0-0-0-3-14-0 3 4-0-0-1-9-0 2
0-0-0-0-0-0 26 0-10-0-0-0-0 7 6-0-8-0-0-0 3 0-0-4-7-0-0 2
16-0-4-8-0-0 26 0-0-0-1-13-0 6 0-0-0-13-1-0 3 1-0-0-8-14-0 2
4-0-0-16-14-0 24 11-0-3-0-1-0 6 15-0-0-5-1-0 3 13-0-4-1-0-0 2
13-0-3-1-1-0 22 0-0-0-4-1-0 6 0-0-0-20-0-0 3 0-0-0-9-14-0 2
0-0-0-0-0-4 21 0-0-2-0-0-0 6 1-0-0-15-13-0 3 3-0-0-4-0-0 2
0-0-4-0-0-0 21 14-0-0-1-1-0 6 15-0-4-3-0-0 3 3-0-0-14-0-0 2
4-0-0-2-14-0 21 1-0-0-14-0-0 6 1-0-0-1-12-0 3 4-0-0-14-1-0 2
0-14-0-0-0-0 21 8-0-8-2-0-0 6 10-0-0-4-0-0 3 8-0-0-16-1-0 2
1-0-4-4-0-0 20 1-0-0-5-0-0 6 12-0-0-1-1-0 3 0-0-0-5-19-0 1
16-0-0-2-1-0 20 4-0-4-15-0-0 6 1-0-0-12-1-0 3 0-0-0-0-16-0 1
0-0-0-0-4-0 20 4-0-0-9-0-0 6 16-0-0-0-1-0 3 16-0-0-14-0-0 1
1-0-4-4-1-0 18 4-0-4-6-0-0 6 13-0-0-1-1-0 3 2-0-0-0-24-0 1
4-0-0-0-13-0 18 0-0-4-4-0-0 6 0-0-14-0-0-0 3 2-0-0-4-28-0 1
16-0-0-9-0-0 18 0-0-0-0-0-14 6 12-0-0-4-1-0 3 4-0-0-1-18-0 1
0-0-8-0-0-0 18 0-0-0-8-0-0 6 2-0-0-0-14-0 3 12-0-2-0-1-0 1
1-0-4-1-0-0 18 7-0-8-0-0-0 6 14-0-0-3-0-0 3 2-0-6-0-0-0 1
1-0-0-15-0-0 18 8-0-0-0-0-0 5 14-0-0-4-1-0 3 13-0-0-16-1-0 1
1-0-0-15-1-0 18 15-0-4-0-0-0 5 0-0-4-13-0-0 3 4-0-0-1-7-0 1
1-0-0-8-0-0 18 0-0-0-10-0-0 5 0-0-4-10-0-0 3 4-0-0-5-12-0 1
15-0-4-1-0-0 17 1-0-0-3-1-0 5 16-0-0-11-0-0 3 6-0-6-1-0-0 1
0-0-4-15-0-0 17 14-0-0-0-0-0 5 16-0-4-6-0-0 2 1-0-0-16-10-0 1
1-0-0-2-12-0 16 0-0-0-0-0-8 5 15-0-0-3-0-0 2 14-0-3-1-1-0 1
0-0-0-15-1-0 16 4-0-0-17-0-0 5 4-0-3-7-0-0 2 1-0-0-11-8-0 1
0-0-4-14-0-0 16 0-0-0-0-7-0 5 1-0-0-4-10-0 2 5-0-4-15-0-0 1
3-0-0-0-0-0 16 1-0-0-6-14-0 5 1-0-0-15-12-0 2 3-0-4-4-1-0 1
4-0-4-1-0-0 16 1-0-0-11-14-0 5 1-0-4-15-0-0 2 8-0-0-1-14-0 1
16-0-0-16-1-0 16 15-0-0-5-0-0 5 4-0-0-7-0-0 2 6-0-0-6-0-0 1
0-1-0-0-0-0 15 0-0-0-1-0-0 5 13-0-0-8-0-0 2 3-0-4-11-0-0 1
0-0-0-0-1-0 15 13-0-3-2-1-0 5 4-0-0-17-1-0 2 2-0-0-3-0-0 1
16-0-4-2-0-0 15 1-0-4-0-0-0 5 1-0-4-9-0-0 2 0-0-0-10-9-0 1
8-0-1-0-0-0 15 1-0-0-14-14-0 5 10-0-3-0-1-0 2 14-0-3-0-0-0 1
0-0-0-4-0-0 14 12-0-3-1-1-0 5 0-0-0-4-11-0 2 8-0-0-3-28-0 1
0-0-0-15-14-0 14 15-0-0-1-1-0 5 0-3-0-0-0-0 2 6-0-0-1-0-0 1
15-0-0-0-0-0 14 16-0-0-10-0-0 5 11-0-4-0-0-0 2 5-0-0-15-1-0 1
0-0-0-15-0-0 13 15-0-4-4-0-0 5 4-0-0-6-1-0 2 0-6-0-0-0-0 1
4-0-0-1-13-0 13 14-0-0-4-0-0 5 0-0-0-0-19-0 2 24-0-0-2-2-0 1
0-0-0-0-0-2 13 16-0-4-3-0-0 5 1-0-0-0-8-0 2 17-0-7-14-1-0 1
1-0-0-1-0-0 13 4-0-0-5-14-0 5 0-0-0-11-0-0 2 1-0-0-17-14-0 1
15-0-0-1-0-0 13 0-0-4-0-1-0 5 4-0-0-15-14-0 2 1-0-0-2-11-0 1
1-0-0-8-1-0 13 15-0-4-2-0-0 5 4-0-4-3-0-0 2 0-0-0-3-11-0 1
16-0-0-4-14-0 12 1-0-0-3-12-0 4 14-0-4-5-0-0 2 1-0-0-2-0-0 1
0-0-0-2-0-0 12 1-0-0-9-14-0 4 1-0-0-2-10-0 2 1-0-4-3-0-0 1
0-11-0-0-0-0 12 1-0-0-3-11-0 4 7-0-7-0-0-0 2 6-0-0-0-14-0 1
16-0-4-9-0-0 12 4-0-0-4-13-0 4 6-0-0-1-14-0 2 4-0-3-8-0-0 1
0-0-4-1-0-0 12 16-0-0-2-14-0 4 0-0-0-0-0-5 2 4-0-0-19-1-0 1
1-0-0-11-0-0 1 0-0-0-0-50-0 4 0-0-0-0-0-30 2 0-0-0-10-4-0 1

 186

Barcode	ID #	CCS	Reads Barcode	ID	 #	CCS	Reads Barcode	ID	 #	CCS	Reads Barcode	ID	 #	CCS	Reads
4-0-0-0-14-0 328 16-0-4-16-0-0 11 0-0-0-0-0-1 4 0-0-0-0-0-31 2
1-0-0-2-14-0 319 4-0-0-1-12-0 11 1-0-0-17-1-0 4 4-0-0-6-0-0 2
0-16-0-0-0-0 283 4-0-4-0-0-0 11 0-13-0-0-0-0 4 13-0-0-9-0-0 2
4-0-0-1-14-0 244 16-0-0-5-0-0 11 4-0-0-0-15-0 4 8-0-4-1-0-0 2
1-0-0-4-14-0 193 16-0-0-0-14-0 11 15-0-0-17-1-0 4 12-0-0-0-0-0 2
8-0-8-0-0-0 191 0-0-4-9-0-0 11 0-0-0-6-14-0 4 1-0-0-3-0-0 2
4-0-4-8-0-0 172 0-0-0-0-0-15 11 1-0-0-0-13-0 4 0-0-0-25-0-0 2
16-0-0-0-0-0 166 0-0-0-32-0-0 10 0-0-0-0-26-0 4 1-0-0-7-14-0 2
1-0-0-16-0-0 160 4-0-4-5-1-0 10 14-0-0-1-0-0 4 1-0-0-26-0-0 2
0-0-0-4-14-0 158 1-0-0-0-0-0 10 0-0-0-2-14-0 4 15-0-0-9-0-0 2
1-0-0-1-14-0 141 4-0-0-15-0-0 10 0-0-0-0-21-0 4 0-0-0-8-14-0 2
0-0-0-16-1-0 137 2-0-4-0-0-0 10 15-0-0-4-1-0 4 11-0-3-1-1-0 2
13-0-3-0-1-0 137 0-12-0-0-0-0 10 3-0-2-9-0-0 4 16-0-4-7-0-0 2
0-0-0-16-0-0 133 0-0-1-0-0-0 10 16-0-0-18-1-0 4 13-0-0-4-0-0 2
1-0-0-16-1-0 130 0-4-0-0-0-0 10 16-0-0-6-0-0 4 10-0-4-4-0-0 2
1-0-0-16-14-0 124 4-0-0-0-0-0 10 1-0-0-1-11-0 4 2-0-0-1-0-0 2
16-0-0-1-0-0 116 0-0-0-1-1-0 9 0-0-0-0-27-0 4 15-0-0-6-0-0 2
16-0-0-1-1-0 116 1-0-0-1-9-0 9 1-0-0-14-13-0 4 3-0-3-7-0-0 2
0-0-16-0-0-0 109 4-0-0-0-12-0 9 16-0-0-6-1-0 4 14-0-0-2-0-0 2
4-0-4-16-0-0 104 0-0-0-0-2-0 9 0-0-4-12-0-0 4 0-0-0-13-0-0 2
0-0-0-0-0-16 102 1-0-0-1-1-0 9 15-0-4-8-0-0 4 16-0-4-10-0-0 2
0-0-4-16-0-0 94 16-0-0-3-0-0 9 4-0-0-15-1-0 4 0-0-0-2-10-0 2
4-0-4-4-0-0 87 1-0-0-15-14-0 9 4-0-0-4-1-0 4 11-0-2-0-1-0 2
0-0-0-1-14-0 76 2-0-0-0-0-0 9 1-0-0-4-13-0 4 9-0-0-4-1-0 2
1-0-0-0-12-0 76 15-0-0-8-0-0 9 4-0-0-2-1-0 4 16-0-0-1-14-0 2
16-0-4-0-0-0 72 2-0-8-0-0-0 9 10-0-0-0-0-0 4 15-0-0-6-1-0 2
16-0-4-1-0-0 70 4-0-4-17-0-0 9 0-0-0-5-14-0 4 4-0-0-1-10-0 2
1-0-0-0-14-0 65 16-0-0-5-1-0 9 0-9-0-0-0-0 4 3-0-0-1-12-0 2
0-0-4-8-0-0 64 0-0-0-4-13-0 9 1-0-0-0-11-0 4 0-7-0-0-0-0 2
4-0-0-16-0-0 63 0-0-0-8-1-0 8 2-0-0-4-0-0 4 5-0-0-0-14-0 2
4-0-0-4-14-0 62 2-0-1-0-0-0 8 7-0-4-0-0-0 3 9-0-0-4-0-0 2
16-0-0-4-1-0 60 4-0-4-7-0-0 8 0-0-4-6-0-0 3 4-0-4-14-0-0 2
16-0-0-4-0-0 60 0-0-0-14-0-0 8 14-0-4-0-0-0 3 4-0-0-2-12-0 2
0-0-0-0-14-0 59 0-0-0-0-0-32 8 1-0-0-16-13-0 3 0-0-0-0-20-0 2
1-0-4-14-0-0 59 1-0-4-13-0-0 8 4-0-4-12-0-0 3 8-0-5-0-0-0 2
4-0-4-4-1-0 58 1-0-1-0-0-0 8 1-0-0-3-13-0 3 0-0-0-15-13-0 2
8-0-4-0-0-0 58 0-0-15-0-0-0 8 1-0-0-5-14-0 3 0-0-0-31-0-0 2
16-0-0-8-0-0 57 16-0-0-17-1-0 8 12-0-4-1-0-0 3 12-0-3-2-1-0 2
1-0-0-4-1-0 54 1-0-0-1-13-0 8 1-0-0-2-1-0 3 13-0-0-0-0-0 2
1-0-0-4-0-0 54 1-0-4-0-1-0 8 0-0-0-17-0-0 3 4-0-0-17-14-0 2
0-15-0-0-0-0 51 0-0-4-1-1-0 8 1-0-0-14-1-0 3 7-0-3-0-1-0 2
1-0-0-3-14-0 50 4-0-0-4-0-0 8 16-0-4-11-0-0 3 15-0-0-1-14-0 2
16-0-4-4-0-0 45 0-0-0-14-1-0 8 14-0-4-1-0-0 3 7-0-0-2-0-0 2
1-0-4-8-0-0 44 4-0-0-1-1-0 8 1-0-0-13-0-0 3 3-0-0-1-10-0 2
4-0-0-16-1-0 38 4-0-4-5-0-0 8 15-0-0-2-0-0 3 3-0-0-16-0-0 2
4-0-0-8-0-0 33 9-0-0-3-1-0 8 12-0-4-0-0-0 3 1-0-0-4-15-0 2
16-0-4-5-0-0 32 16-0-0-3-1-0 8 13-0-2-0-1-0 3 15-0-0-2-1-0 2
0-0-0-0-28-0 31 4-0-0-1-0-0 8 1-0-0-17-0-0 3 0-0-0-12-0-0 2
8-0-8-1-0-0 30 4-0-0-0-1-0 7 1-0-0-0-10-0 3 3-0-0-4-14-0 2
12-0-3-0-1-0 28 4-0-0-14-0-0 7 0-0-0-0-22-0 3 8-0-4-2-0-0 2
0-8-0-0-0-0 28 4-0-4-9-0-0 7 8-0-1-1-0-0 3 0-0-0-0-17-0 2
0-2-0-0-0-0 27 8-0-7-0-0-0 7 1-0-0-13-14-0 3 4-0-0-2-0-0 2
1-0-0-2-13-0 27 1-0-4-2-1-0 7 4-0-0-12-1-0 3 1-0-0-4-12-0 2
16-0-0-2-0-0 27 15-0-0-4-0-0 7 0-0-0-3-14-0 3 4-0-0-1-9-0 2
0-0-0-0-0-0 26 0-10-0-0-0-0 7 6-0-8-0-0-0 3 0-0-4-7-0-0 2
16-0-4-8-0-0 26 0-0-0-1-13-0 6 0-0-0-13-1-0 3 1-0-0-8-14-0 2
4-0-0-16-14-0 24 11-0-3-0-1-0 6 15-0-0-5-1-0 3 13-0-4-1-0-0 2
13-0-3-1-1-0 22 0-0-0-4-1-0 6 0-0-0-20-0-0 3 0-0-0-9-14-0 2
0-0-0-0-0-4 21 0-0-2-0-0-0 6 1-0-0-15-13-0 3 3-0-0-4-0-0 2
0-0-4-0-0-0 21 14-0-0-1-1-0 6 15-0-4-3-0-0 3 3-0-0-14-0-0 2
4-0-0-2-14-0 21 1-0-0-14-0-0 6 1-0-0-1-12-0 3 4-0-0-14-1-0 2
0-14-0-0-0-0 21 8-0-8-2-0-0 6 10-0-0-4-0-0 3 8-0-0-16-1-0 2
1-0-4-4-0-0 20 1-0-0-5-0-0 6 12-0-0-1-1-0 3 0-0-0-5-19-0 1
16-0-0-2-1-0 20 4-0-4-15-0-0 6 1-0-0-12-1-0 3 0-0-0-0-16-0 1
0-0-0-0-4-0 20 4-0-0-9-0-0 6 16-0-0-0-1-0 3 16-0-0-14-0-0 1
1-0-4-4-1-0 18 4-0-4-6-0-0 6 13-0-0-1-1-0 3 2-0-0-0-24-0 1
4-0-0-0-13-0 18 0-0-4-4-0-0 6 0-0-14-0-0-0 3 2-0-0-4-28-0 1
16-0-0-9-0-0 18 0-0-0-0-0-14 6 12-0-0-4-1-0 3 4-0-0-1-18-0 1
0-0-8-0-0-0 18 0-0-0-8-0-0 6 2-0-0-0-14-0 3 12-0-2-0-1-0 1
1-0-4-1-0-0 18 7-0-8-0-0-0 6 14-0-0-3-0-0 3 2-0-6-0-0-0 1
1-0-0-15-0-0 18 8-0-0-0-0-0 5 14-0-0-4-1-0 3 13-0-0-16-1-0 1
1-0-0-15-1-0 18 15-0-4-0-0-0 5 0-0-4-13-0-0 3 4-0-0-1-7-0 1
1-0-0-8-0-0 18 0-0-0-10-0-0 5 0-0-4-10-0-0 3 4-0-0-5-12-0 1
15-0-4-1-0-0 17 1-0-0-3-1-0 5 16-0-0-11-0-0 3 6-0-6-1-0-0 1
0-0-4-15-0-0 17 14-0-0-0-0-0 5 16-0-4-6-0-0 2 1-0-0-16-10-0 1
1-0-0-2-12-0 16 0-0-0-0-0-8 5 15-0-0-3-0-0 2 14-0-3-1-1-0 1
0-0-0-15-1-0 16 4-0-0-17-0-0 5 4-0-3-7-0-0 2 1-0-0-11-8-0 1
0-0-4-14-0-0 16 0-0-0-0-7-0 5 1-0-0-4-10-0 2 5-0-4-15-0-0 1
3-0-0-0-0-0 16 1-0-0-6-14-0 5 1-0-0-15-12-0 2 3-0-4-4-1-0 1
4-0-4-1-0-0 16 1-0-0-11-14-0 5 1-0-4-15-0-0 2 8-0-0-1-14-0 1
16-0-0-16-1-0 16 15-0-0-5-0-0 5 4-0-0-7-0-0 2 6-0-0-6-0-0 1
0-1-0-0-0-0 15 0-0-0-1-0-0 5 13-0-0-8-0-0 2 3-0-4-11-0-0 1
0-0-0-0-1-0 15 13-0-3-2-1-0 5 4-0-0-17-1-0 2 2-0-0-3-0-0 1
16-0-4-2-0-0 15 1-0-4-0-0-0 5 1-0-4-9-0-0 2 0-0-0-10-9-0 1
8-0-1-0-0-0 15 1-0-0-14-14-0 5 10-0-3-0-1-0 2 14-0-3-0-0-0 1
0-0-0-4-0-0 14 12-0-3-1-1-0 5 0-0-0-4-11-0 2 8-0-0-3-28-0 1
0-0-0-15-14-0 14 15-0-0-1-1-0 5 0-3-0-0-0-0 2 6-0-0-1-0-0 1
15-0-0-0-0-0 14 16-0-0-10-0-0 5 11-0-4-0-0-0 2 5-0-0-15-1-0 1
0-0-0-15-0-0 13 15-0-4-4-0-0 5 4-0-0-6-1-0 2 0-6-0-0-0-0 1
4-0-0-1-13-0 13 14-0-0-4-0-0 5 0-0-0-0-19-0 2 24-0-0-2-2-0 1
0-0-0-0-0-2 13 16-0-4-3-0-0 5 1-0-0-0-8-0 2 17-0-7-14-1-0 1
1-0-0-1-0-0 13 4-0-0-5-14-0 5 0-0-0-11-0-0 2 1-0-0-17-14-0 1
15-0-0-1-0-0 13 0-0-4-0-1-0 5 4-0-0-15-14-0 2 1-0-0-2-11-0 1
1-0-0-8-1-0 13 15-0-4-2-0-0 5 4-0-4-3-0-0 2 0-0-0-3-11-0 1
16-0-0-4-14-0 12 1-0-0-3-12-0 4 14-0-4-5-0-0 2 1-0-0-2-0-0 1
0-0-0-2-0-0 12 1-0-0-9-14-0 4 1-0-0-2-10-0 2 1-0-4-3-0-0 1
0-11-0-0-0-0 12 1-0-0-3-11-0 4 7-0-7-0-0-0 2 6-0-0-0-14-0 1
16-0-4-9-0-0 12 4-0-0-4-13-0 4 6-0-0-1-14-0 2 4-0-3-8-0-0 1
0-0-4-1-0-0 12 16-0-0-2-14-0 4 0-0-0-0-0-5 2 4-0-0-19-1-0 1
1-0-0-11-0-0 1 0-0-0-0-50-0 4 0-0-0-0-0-30 2 0-0-0-10-4-0 1

 187

SINGLE-CELL DETECTION AND QUANTIFICATION OF ENDOGENOUS
LOW ABUNDANCE REPEAT PROTEINS IN YEAST USING FLOW

CYTOMETRY

Figure D.1: 16FLAG fusions enable detection of low abundance endogenous proteins
by confocal fluorescence microscopy. Fluorescent confocal images of
yeast cells taken with a 63x oil lens. Protein expression and localization
is shown in pink and the nucleus is shown in green.

PET18

MED7KXD1 MRPS18

TFS1Negative FMP32

CDC8

Appendix D

 188

Figure D.2: Expression of GFP with or without FLAG fusion. GFP signal was
measured by flow cytometry for surface-displayed alpha-agglutinin GFP
fusion proteins also expressing 0, 1, or 16 FLAG repeats. GFP signal did
not decrease significantly when FLAG fusions were added, suggesting
FLAG fusions do not alter protein expression levels.

0

200

400

600

800

1000

1200

0 1 16

M
ed

ia
n

G
F

P
 S

ig
na

l

Number of FLAG Repeats

p = 0.8
p = 0.07

 189

Figure D.3: Detection of a highly expressed endogenous yeast protein by FLAG or
GFP fusion. The THD3 protein was detected in yeast using flow
cytometry by fusion to either 16FLAG or a GFP, showing a low rate of
false negatives and false positives with either detection method.

 190

Figure D.4: Conversion of GFP and 16FLAG signals from arbitrary fluorescence units
to protein abundance. (a) recGFP purity was estimated to be 90% by
Coomassie stain. (b) Western blot of TDH3-GFP whole cell lysate and a
standard curve of purified recGFP. (c) Quantification of (b) estimates the
abundance of TDH3-GFP as 2.7 million molecules per cell. A
relationship between median arbitrary GFP fluorescence and GFP protein
abundance was determined by linear regression (GFP molecules per
cell*106 = 8.81*Median GFP fluorescence – 6,741. (d) A relationship
between molecules per cell and median 16FLAG signal was determined
by immunolabeling cells expressing a GFP and 16FLAG AG⍺1 fusion
protein. The relationship between molecules per cell and 16FLAG signal
was related by linear regression to be 1.41*16FLAG signal – 199.63.

 191

Figure D.5: Quantification of protein abundance. Protein abundance was quantified by
relating protein expression detected by flow cytometry and Western
blotting. Our results agree somewhat with previous reports (R2 = 0.24).

 192

ASSESSMENT OF RELATIVE ABUNDANCE OF BARCODES IN 7-COLOR
LIBRARIES

Table E.1: Relative abundance of barcodes in 7-color library before FACS sorting

HA HSV HIS AU1 GLU FLAG %	Abundance HA HSV HIS AU1 GLU FLAG %	Abundance
4 0 0 0 0 0 6.774 0 4 1 1 0 1 0.092
1 0 0 1 1 0 5.478 4 4 1 1 1 0 0.090
0 4 0 0 0 0 5.022 4 0 1 4 0 0 0.087
4 0 0 1 0 1 4.252 0 0 1 1 1 1 0.087
0 0 1 1 0 1 3.868 0 0 0 4 0 1 0.086
4 0 1 0 1 0 3.638 0 1 0 4 0 0 0.085
0 4 0 1 0 1 3.587 1 4 0 4 0 0 0.083
0 4 1 0 1 0 3.548 4 4 0 1 0 1 0.079
0 1 0 0 0 0 2.848 0 1 0 4 1 0 0.076
1 4 1 0 1 0 2.751 1 1 0 1 0 1 0.075
1 4 0 0 0 0 2.718 0 4 1 0 0 0 0.072
1 0 1 1 1 0 2.632 0 1 1 0 0 1 0.071
0 0 0 1 0 0 2.342 1 4 0 0 0 1 0.070
0 0 1 1 1 0 2.191 4 1 1 4 0 0 0.069
0 0 1 1 0 0 2.065 0 0 0 0 1 0 0.068
1 1 0 1 1 0 2.007 1 0 1 0 1 1 0.067
0 0 0 0 0 0 1.761 0 1 0 0 1 0 0.064
0 1 1 1 0 0 1.644 4 4 0 0 0 1 0.064
0 0 0 1 1 0 1.604 4 4 0 0 1 1 0.061
4 1 0 1 0 1 1.456 4 1 1 1 1 0 0.060
0 4 0 0 1 1 1.398 4 4 0 1 0 0 0.059
0 1 1 1 0 1 1.356 0 4 1 4 1 0 0.059
0 0 1 0 1 0 1.353 1 1 1 1 0 1 0.054
4 1 1 0 1 0 1.353 4 4 1 4 0 0 0.046
0 0 1 0 1 1 1.340 4 4 0 1 1 0 0.043
1 0 1 1 0 0 1.319 0 0 1 4 1 1 0.042
0 4 0 0 0 1 1.191 4 1 1 0 1 1 0.041
0 0 1 4 0 0 1.085 4 1 0 1 1 1 0.037
1 4 0 0 1 0 1.055 0 4 0 4 1 1 0.036
0 0 1 0 0 0 0.984 0 4 0 1 1 1 0.036
0 4 0 1 1 0 0.909 1 4 1 1 0 0 0.035
1 0 1 0 1 0 0.884 1 0 1 0 0 1 0.035
0 0 0 1 0 1 0.733 0 1 1 4 1 0 0.035
4 0 1 1 0 1 0.710 1 4 0 1 0 1 0.033
0 1 0 1 0 0 0.646 1 4 1 4 1 0 0.032
1 1 0 0 1 1 0.582 1 4 1 1 1 1 0.032
4 1 1 1 0 0 0.579 4 1 1 0 0 1 0.030
4 1 0 1 0 0 0.566 1 4 1 0 0 1 0.029
0 1 0 1 0 1 0.554 0 4 1 4 1 1 0.028
1 0 0 0 0 0 0.546 4 0 1 0 1 1 0.026
0 1 1 0 0 0 0.540 1 4 1 0 0 0 0.025
1 0 0 1 1 1 0.531 4 0 1 1 1 1 0.024
0 1 0 1 1 0 0.514 1 4 0 4 1 0 0.024
0 0 0 0 0 1 0.512 4 0 0 1 1 1 0.024
0 0 1 4 1 0 0.489 1 1 0 0 0 1 0.024
0 4 1 0 1 1 0.474 0 0 0 4 1 1 0.023
0 0 1 4 0 1 0.457 1 0 1 1 1 1 0.023
1 0 0 0 1 0 0.440 1 1 1 1 1 1 0.023
1 1 1 1 1 0 0.437 4 1 1 1 1 1 0.022
0 1 0 0 1 1 0.436 4 4 0 0 1 0 0.022
0 1 1 0 1 1 0.415 1 1 1 0 1 1 0.022
1 0 0 1 0 1 0.413 4 0 1 0 0 1 0.021
4 0 0 1 0 0 0.392 1 0 1 0 0 0 0.021
4 0 1 1 1 0 0.390 4 1 1 0 0 0 0.021
1 1 1 0 1 0 0.389 1 4 0 1 1 1 0.020

Appendix E

 193

1 1 0 0 1 0 0.375 4 0 0 1 1 0 0.020
0 4 1 1 1 1 0.370 0 4 0 4 0 0 0.018
1 1 0 1 0 0 0.355 4 1 0 1 1 0 0.018
0 1 0 0 0 1 0.328 4 1 0 0 0 1 0.017
4 4 0 0 0 0 0.313 0 1 1 4 0 1 0.016
0 4 1 1 1 0 0.309 1 4 1 4 0 0 0.016
1 1 1 1 0 0 0.297 1 1 1 0 0 1 0.015
1 1 0 4 0 0 0.294 1 0 0 4 0 1 0.014
4 4 1 0 1 0 0.285 4 4 1 0 0 1 0.014
0 0 0 1 1 1 0.282 1 0 1 4 0 1 0.013
0 0 0 4 1 0 0.271 4 4 1 1 1 1 0.012
0 1 1 1 1 0 0.270 4 4 1 0 0 0 0.012
0 0 0 0 1 1 0.253 4 0 0 4 0 0 0.011
4 1 1 1 0 1 0.252 1 0 0 4 1 0 0.011
4 1 0 0 1 1 0.237 4 1 0 4 0 0 0.011
0 0 0 4 0 0 0.236 4 4 0 1 1 1 0.011
1 0 0 1 0 0 0.230 1 1 0 4 1 0 0.008
4 0 1 1 0 0 0.229 1 1 1 4 0 0 0.008
1 4 1 0 1 1 0.212 0 1 0 4 1 1 0.008
1 4 0 1 1 0 0.212 4 1 1 4 1 0 0.007
1 4 0 1 0 0 0.207 0 1 1 4 1 1 0.007
0 1 1 0 1 0 0.198 1 4 0 4 0 1 0.007
0 4 1 0 0 1 0.194 1 4 1 1 0 1 0.007
1 4 1 1 1 0 0.187 1 1 1 4 1 0 0.006
4 1 0 0 0 0 0.184 0 4 1 4 0 1 0.006
4 0 0 4 0 1 0.182 1 0 1 4 1 0 0.006
1 0 0 0 0 1 0.169 0 1 0 4 0 1 0.006
4 0 0 0 0 1 0.166 1 1 1 4 0 1 0.004
0 1 1 1 1 1 0.150 1 1 0 4 0 1 0.004
4 4 1 1 0 0 0.144 4 4 0 4 0 0 0.003
1 1 0 0 0 0 0.144 4 1 0 0 1 0 0.003
0 1 1 4 0 0 0.143 4 4 1 4 0 1 0.003
0 0 1 0 0 1 0.143 4 4 1 4 1 0 0.003
0 4 0 0 1 0 0.142 4 4 0 4 1 1 0.003
0 4 0 1 0 0 0.141 1 4 0 4 1 1 0.002
1 0 1 1 0 1 0.139 4 0 1 4 1 0 0.002
4 4 0 4 0 1 0.139 4 1 0 4 1 0 0.002
1 1 1 0 0 0 0.136 4 4 0 4 1 0 0.002
1 1 0 1 1 1 0.135 4 4 1 4 1 1 0.002
4 4 1 1 0 1 0.135 1 4 1 4 1 1 0.002
4 1 0 4 0 1 0.130 4 0 0 0 1 0 0.001
1 0 1 4 0 0 0.129 1 1 1 4 1 1 0.001
4 4 1 0 1 1 0.121 1 0 0 4 1 1 0.001
4 0 1 4 0 1 0.119 1 0 1 4 1 1 0.001
0 4 0 4 1 0 0.118 1 0 0 4 0 0 0.000
0 1 0 1 1 1 0.117 4 0 0 4 1 0 0.000
1 4 0 0 1 1 0.113 1 1 0 4 1 1 0.000
4 0 0 0 1 1 0.112 4 1 0 4 1 1 0.000
0 4 1 1 0 0 0.108 1 4 1 4 0 1 0.000
4 1 1 4 0 1 0.101 4 0 1 4 1 1 0.000
0 4 0 4 0 1 0.096 4 1 1 4 1 1 0.000
0 4 1 4 0 0 0.096 4 0 0 4 1 1 0.000
4 0 1 0 0 0 0.095 1 0 0 0 1 1 0.000

 194

Table E.2: Relative abundance of barcodes in sorted 7-color libraries

 195

 196

 197

ASSESSMENT OF BARCODES IN 12-COLOR LIBRARIES

Figure F.1: Flow cytometry analysis of 11-epitope tag barcode libraries. Flow
cytometry analysis shows 14 out of 18 libraries had a significant, 25-
50%, of cells expressing barcodes, and that all cells expressing barcodes
contained the expected combination of T7, V5, AcV5, AU5, and E2
epitope tags. Moreover, 13 out of 14 libraries contained 85-90% new
barcode combinations of up to 11 epitope tags.

Appendix F

 198

Figure F.2: CMYC AF647 titration. Control barcodes containing AcV5, AU5, and
CMYC barcodes were titrated with CMYC antibody and labeled with
either 100nM AcV5 APC-CY7 or 100nM AU5 AF700 and 35 nM a-
chicken AF647 antibody. It was found that 1-10 nM CMYC antibody
was optimal for capturing the highest amount of barcodes with the lowest
percentage of false positives.

AU
5

Si
gn

al
AU

5
Si

gn
al

CMYC Signal
Negative Control

Positive Control
0.1nM 1nM 10nM 100nM

CMYC Signal

0.1nM 1nM 10nM 100nM

Ac
V5

 S
ig

na
l

Ac
V5

 S
ig

na
l

CMYC Signal

Negative Control

Positive Control
0.1nM 1nM 10nM 100nM

CMYC Signal

0.1nM 1nM 10nM 100nM

 199

Table F.1: Antibody concentrations and epitope tag fluorophore pairs used for flow
cytometry analysis.

Epitope Fluorophore Ab (nM)
AcV5 APC-Cy7 100
AU5 AF700 100
AU1 PE-Cy5 100
E2 PE-Cy7 100

FLAG PerCP 100
HA PE 10

HSV PE-Cy5.5 10
T7 PE-TexasRed 100
V5* QD25 100
GLU Marina Blue 100

CMYC** AF647 3

** 35nM anti-chicken AF647 was also used

*35nM anti-human biotin and 10nM streptavidin QD525
were also used

 200

BARCODE IDENTIFICATION AND QUANTIFICATION SOFTWARE
PYTHON SCRIPT

import numpy as np
import os
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
import time
import csv
import json
from collections import defaultdict
from scipy.stats import gaussian_kde

#data structure containing rows, points, and label data.
class RPLdata:
 rows = []
 points = []
 labels = []
 rpl = []

 def __init__(self,r=None,p=None,l=None,rpl=None):
 self.rp_by_label_dict = defaultdict(list)

 if rpl == None:
 self.rows = r
 self.points = p
 self.labels = l
 self.rpl = map(lambda x,y,z: [x,y,z], r,p,l)
 self.load_rp_by_label_dict()
 elif rpl != None:
 self.update_rpl(rpl)
 #self.load_rp_by_label_dict()

 #refresh the datastructure with new RPL values
 def update_rpl(self,new_rpl):
 self.rpl = new_rpl
 self.split_rpl()
 self.load_rp_by_label_dict()

 #updates r,p,l lists from rpl
 def split_rpl(self):
 self.rows = []
 self.points = []
 self.labels = []
 for r,p,l in self.rpl:

Appendix G

 201

 self.rows.append(r)
 self.points.append(p)
 self.labels.append(l)

 #loads a dict with labels as keys and list of row/point# pairs as values
 def load_rp_by_label_dict(self):
 for r,p,l in self.rpl:
 self.rp_by_label_dict[l].append([r,p])
 # print "RPL dict has this many keys, should match
#clusters:",len(self.rp_by_label_dict.keys())
 for k,v in self.rp_by_label_dict.items():
 # print "Keys",k, "Length:", len(v)
 pass

 #take in new list for the given label. Update RPL, but changes order!
 def update_rpl_by_label(self,label,list):
 self.rp_by_label_dict[label] = list
 self.make_rpl_from_label_dict()

 #add a new cluster to rpl, replace old cluster label 1
 #middle cluster label becomes 1 and top cluster becomes 2
 def split_rp_dict_label(self,old_label,rpl):
 print 'old label to be removed is:',old_label
 #print 'B4 pop'
 for k in self.rp_by_label_dict.keys():
 pass
 #print 'key',k
 #print 'value',len(self.rp_by_label_dict[k])
 #print 'After pop'
 self.rp_by_label_dict.pop(old_label)
 for k in self.rp_by_label_dict.keys():
 pass
 #print 'key',k
 #print 'value',len(self.rp_by_label_dict[k])
 max = 0
 max_label = ''
 for r,p,l in rpl:
 if l != -1:
 if p[1] > max:
 max = p[1]
 max_label = l
 #print "max_label is:", max_label
 label_list = []
 for r,p,l, in rpl:
 if l != -1:
 label_list.append(l)
 number_unique_labels = len(set(label_list))
 print 'number of unique dbscan labels is:',number_unique_labels

 if number_unique_labels == 1:
 for r,p,l in rpl:
 if l == max_label:
 self.rp_by_label_dict[1].append([r,p])
 elif number_unique_labels == 2:
 for r,p,l in rpl:
 if l == max_label:

 202

 self.rp_by_label_dict[2].append([r,p])
 elif l != -1:
 self.rp_by_label_dict[1].append([r,p])
 elif number_unique_labels > 2:
 min_length = 1000000
 count_dict = defaultdict(int)
 for r,p,l in rpl:
 if l != -1:
 count_dict[l]+=1
 for l in count_dict.keys():
 if count_dict[l] < min_length:
 min_length = count_dict[l]
 min_count_label = l
 print 'minimum count label is:',min_count_label
 max = 0
 for r,p,l in rpl:
 if l not in [-1,min_count_label]:
 if p[1] > max:
 max = p[1]
 max_label = l
 print 'max label is:',max_label
 for r,p,l in rpl:
 if l == max_label:
 self.rp_by_label_dict[2].append([r,p])
 elif l not in [min_count_label,-1]:
 self.rp_by_label_dict[1].append([r,p])

 self.make_rpl_from_label_dict()
 for k,v in self.rp_by_label_dict.items():
 print "Keys",k, "Length:", len(v)

 #ends up sorting by label, but not main goal
 def make_rpl_from_label_dict(self):
 self.rpl = []
 for label,rp_list in self.rp_by_label_dict.items():
 #each dict value is an rp_list pair. Need to make an rpl triple
 new_l = map(lambda x: [x[0],x[1],label] ,rp_list)
 self.rpl += new_l
 #print "Len of rpl is now:", len(self.rpl), len(v)
 self.split_rpl()

 #returns list of points with given label
 def get_rp_for_label(self,label):
 return self.rp_by_label_dict[label]

###
##########
#input data from flowjo columns fluorophores rows fluorescence values for
each cell
#output linear, log, and normalized log transformed data with negative values
set to value near zero cluster
def transposedata(filename,tagspresent_dict,tfval_dict,start):

 d = np.genfromtxt(filename,delimiter=',',dtype='float',skip_header=1)

 data = np.zeros_like(d) #store data

 203

 #transform data if negative to value near zero, also take log10 of
transformed data
 for fluor in tagspresent_dict.keys():
 print 'fluorophore:',fluor
 col = tagspresent_dict[fluor][2] #column number that fluor data is
stored
 print 'column:',col
 eptag = tagspresent_dict[fluor][0] #epitope tag name string
 print 'epitope tag:',eptag
 tagpresent = tagspresent_dict[fluor][1] #is tag present in data set
 print 'tag present?',tagpresent

 for row in range(0,len(d)):
 if eptag in ['FSC','GFP']:
 #set negative values = 1 for GFP or FSC channels
 dpoint = d[row,col]
 if dpoint > 0:
 data[row,col] = dpoint
 elif dpoint <= 0:
 data[row,col] = 1
 else:
 tfval = tfval_dict[fluor]
 #print 'transformation value:',tfval
 dpoint = d[row,col]
 if dpoint <= 0: #if negative value, set to value that is in 0
cluster
 dpoint_tf = tfval
 elif dpoint > 0: #values larger than 0
 dpoint_tf = dpoint
 data[row,col] = dpoint_tf
 log_data = np.log10(data)
 np.savetxt('log transposed data.csv',log_data,fmt='%f',delimiter=',')
 #np.savetxt('linear transposed data.csv',data,fmt='%f',delimiter=',')

 #find cmyc column
 for fluor in tagspresent_dict.keys():
 eptag = tagspresent_dict[fluor][0]
 col = tagspresent_dict[fluor][2]
 if eptag == 'CMYC':
 cmyccol = col
 print 'cmyc is in column:',cmyccol

 #normalize epitope fluorescence values (except cmyc, gfp, fsc, by cmyc
fluor)
 data_norm = np.zeros_like(d)
 for fluor in tagspresent_dict.keys():
 print 'fluorophore:',fluor
 col = tagspresent_dict[fluor][2] #column number that fluor data is
stored
 print 'column:',col
 eptag = tagspresent_dict[fluor][0] #epitope tag name string
 print 'epitope tag:',eptag
 tagpresent = tagspresent_dict[fluor][1] #is tag present in data set
 print 'tag present?',tagpresent
 for row in range(0,len(data_norm)):

 204

 datapoint = d
 if eptag in ['CMYC','FSC','GFP']: #do not normalize
 data_norm[row,col] = data[row,col]
 else: #normalize by cmyc fluor
 data_norm[row,col] =
float(data[row,col])/float(data[row,cmyccol])
 log_norm_data = np.log10(data_norm)

 #np.savetxt('normalized transposed
data.csv',data_norm,fmt='%f',delimiter=',')
 np.savetxt('normalized log transposed
data.csv',log_norm_data,fmt='%f',delimiter=',')

 print 'finished normalizing data'
 print 'Run time: %s' % str(time.time()-start)
 print '---'
 return data

###

#input is transformed fluorescence data, performs DBSCAN on subset of data
for each fluorophore
#calculates the correct cluster 0 or 1 by computing the minimum fluor in each
cluster
#output is dictionary maps epitope to RPL (row, point, label)
def
binary_dbscan(norm_data_fname,tagspresent_dict,dbscanparams_dict,binary_dict,
currfluor,plotclusters,file_path_binary,directory):
 start = time.time()

 data =
np.genfromtxt(norm_data_fname,delimiter=',',dtype='float',skip_header=1)

 #data = data[0:100000,:] #testing using a subset of data
 print 'total number of data points is:', len(data)

 #Run DBSCAN for the fluorophore input called currfluor
 for fluor in tagspresent_dict.keys():
 eptag = tagspresent_dict[fluor][0]
 if eptag == 'CMYC':
 cmyccol = tagspresent_dict[fluor][2]
 print 'cmyc is in column:',cmyccol

 epitope = tagspresent_dict[currfluor][0]
 tagpresent = tagspresent_dict[currfluor][1]
 colnumber = tagspresent_dict[currfluor][2]
 print 'Current fluorophore is:', currfluor
 print 'Epitope is:', epitope
 print 'Is epitope present?', tagpresent
 print 'Data stored in column number:', colnumber

 #use a subset of data bc dbscan is slow
 if len(data) < 100000:
 samplesize = len(data)
 else:
 samplesize = 100000

 205

 rows_list = range(0,samplesize)

 #Select data subset for DBSCAN 2-D clustering
 db_data = np.zeros((samplesize,2))
 if 'normalized' in norm_data_fname:
 db_data[:,0] = data[0:samplesize,colnumber] #epitope tag, x-axis
 db_data[:,1] = data[0:samplesize,0] #FSC, y-axis
 else:
 db_data[:,0] = data[0:samplesize,cmyccol] #cmyc,x-axis
 db_data[:,1] = data[0:samplesize,colnumber] #epitope tag, y-axis

 if epitope not in ['FSC','GFP','CMYC'] and tagpresent == 'yes':

 #Look up DBSCAN parameters for the current epitope tag
 searchdist = dbscanparams_dict[epitope][0]
 minpoints = dbscanparams_dict[epitope][1]
 print 'DBSCAN max search distance:',searchdist
 print 'DBSCAN min points:',minpoints

 #Run DBSCAN####
 db =
DBSCAN(eps=searchdist,min_samples=minpoints,algorithm="kd_tree").fit(db_data)

 #create list of labels (0, 1, 2, ect.) for data point (row) #if label
== -1 is a noise point
 # number of unique labels == number of clusters
 labels = db.labels_

 # Number of clusters in labels, ignoring noise if present
 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
 print('Number of DBSCAN clusters: %d' % n_clusters_)

 dbscan_labeled_points = map(lambda x,y:[x,y],labels,db_data)
 #find minimum value in dataset and cooresponding label to find low
cluster
 min = 100000
 min_label = ''
 for l,p in dbscan_labeled_points:
 if l != -1:
 if 'normalized' in norm_data_fname:
 if p[0] < min:
 min = p[0]
 min_label = l
 else:
 if p[1] < min:
 min = p[1]
 min_label = l
 print 'min dbscan cluster id is:',min_label
 if n_clusters_ > 1:
 #find maximum value and corresponding label
 max = 0
 max_label = ''
 for l,p in dbscan_labeled_points:
 if l != -1:
 if 'normalized' in norm_data_fname:
 if p[0] > max:
 max = p[0]

 206

 max_label = l
 else:
 if p[1] > max:
 max = p[1]
 max_label = l
 print 'max dbscan cluster id is:',max_label
 #find mid cluster if clusters == 3
 if n_clusters_ == 3:
 unique_labels = set(labels)
 for l in unique_labels:
 if l not in [min_label,max_label,'-1',-1]:
 mid_label = l
 print 'mid dbscan cluster id is:',mid_label

 #update labels so that low cluster is 0 and high cluster is 1
 updated_labels = []
 for l,p in dbscan_labeled_points:
 #print 'old label',l
 if l != -1:
 if n_clusters_ <= 2:
 if l == min_label:
 updated_labels.append(0)
 else:
 updated_labels.append(1)
 if n_clusters_ == 3:
 if l == max_label:
 updated_labels.append(2)
 elif l == mid_label:
 updated_labels.append(1)
 elif l == min_label:
 updated_labels.append(0)
 if l == -1:
 updated_labels.append(-1)
 #print 'new label',-1

 updated_dbscan_labeled_points = map(lambda x,y:
[x,y],updated_labels,db_data)

 #make RPL object to store row, point, label for DBSCAN
 rows_list = range(0,samplesize)
 rpl = RPLdata(r=rows_list,p=db_data,l=updated_labels)
 print 'first 10 rows:',rpl.rows[0:10]
 print 'first 10 points:',rpl.points[0:10]
 print 'first 10 labels:',rpl.labels[0:10]

 #################### Plot results ####################
 if plotclusters == True:
 #create matrix of zeros with same size as labels
 core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
 #set to True if data point belongs to any cluster, set to False
if noise
 core_samples_mask[db.core_sample_indices_] = True

 unique_labels = set(labels)
 colors = ['r','b','g']
 plt.figure()

 207

 for k, c in zip(unique_labels, colors):
 if k == -1:
 c = 'k'
 ### creates array of length = number of samples
 ### returns True if data point is in a particular cluster,
else False
 ### the number of class_member_mask arrays created is equal
to the number of clusters found by dbscan +1 (noise)
 class_member_mask = (labels == k)

 ### xy matrix contains the data points within a particular
cluster, as well as their coordinates
 ### # rows = number of samples in cluster, # columns = number
of dimensions
 xy = db_data[class_member_mask & core_samples_mask]

 #plot clustered data
 plt.plot(xy[:,0], xy[:,1], '.', markerfacecolor=c,
 markeredgecolor='k', markersize=4)

 #plot outliers
 xy = db_data[class_member_mask & ~core_samples_mask]
 plt.plot(xy[:,0], xy[:,1], '.', markerfacecolor=c,
 markeredgecolor='k', markersize=2)
 if 'normalized' in norm_data_fname:
 plt.ylabel('FSC')
 plt.xlabel(epitope)
 plt.axis([-6,2,3,5])
 else:
 plt.ylabel(epitope)
 plt.xlabel('CMYC')
 plt.axis([3,5.5,0,5.5])
 os.chdir(file_path_binary)
 plt.savefig(epitope +'.png')
 #plt.show()
 os.chdir(directory)

 elif epitope not in ['FSC','GFP','CMYC'] or tagpresent == 'no':
 labels = []
 for i in range(0,samplesize):
 labels.append(0)
 #make RPL object to store row, point, label for DBSCAN
 rows_list = range(0,samplesize)
 rpl = RPLdata(r=rows_list,p=db_data,l=labels)
 print 'first 10 rows:',rpl.rows[0:10]
 print 'first 10 points:',rpl.points[0:10]
 print 'first 10 labels:',rpl.labels[0:10]

 #make rpl.points list instead of numpy array
 xyvals = []
 for x,y in rpl.points:
 xyvals.append([x,y])
 #save off RPL for each binary ID
 binary_dict[epitope] = map(lambda x,y,z:
[x,y,z],rpl.rows,xyvals,rpl.labels)

 with open('binary dbscan clusters data.txt', 'w') as f:

 208

 f.write(json.dumps(binary_dict,separators=(',',
':'),indent=4,sort_keys=True))

 print 'Run time: %s' % str(time.time()-start)
 print '---'
 print 'finished DBSCAN'
 return binary_dict
###

#input:dictionary from dbscan with key epitope, value RPL (row,point,label)
(point is norm epitope fluor,FSC)
#output: dictionary with key epitope to L (label) to value RP
def dbscan_binary_dict_by_label(dbscan_fname):

 DB_bin_dict_by_label = defaultdict(lambda: defaultdict(list))

 with open(dbscan_fname,'r') as f:
 binary_dict = json.load(f)

 for epitope in binary_dict.keys():
 #print 'epitope is:',epitope
 rows = map(lambda x:x[0],binary_dict[epitope])
 points = map(lambda x:x[1],binary_dict[epitope])
 labels = map(lambda x:x[2],binary_dict[epitope])
 RPs = map(lambda x,y:[x,y],rows,points)
 for i in range(0,len(labels)):
 DB_bin_dict_by_label[epitope][labels[i]].append(RPs[i])

 for epitope in DB_bin_dict_by_label.keys():
 #print 'epitope is:',epitope
 for clusterid in DB_bin_dict_by_label[epitope]:
 #print 'cluster id is:',clusterid
 RP_list = DB_bin_dict_by_label[epitope][clusterid]
 #print 'first 3 RPs',RP_list[0:3]

 with open('dbscan binary dict by label.txt','w') as f:
 f.write(json.dumps(DB_bin_dict_by_label,separators=(',',
':'),sort_keys=True))
 print '---'
 print 'finished making binary dict by label'
 return DB_bin_dict_by_label
###

#input: dbscan binary dict by label, maps epitope to label (clusterid) to
value RP pairs (point is norm epitope,FSC)
#output: dictionary key epitope to label (clusterid) to value RP pairs (point
is cmyc,epitope)

def
notnorm_binary_dict_by_label(DB_bin_dict_by_label,log_data_fname,tagspresent_
dict):

 data =
np.genfromtxt(log_data_fname,delimiter=',',dtype='float',skip_header=1)

 NN_binary_dict_by_label = defaultdict(lambda:defaultdict(list))

 209

 #find cmyc column
 for fluor in tagspresent_dict.keys():
 eptag = tagspresent_dict[fluor][0]
 col = tagspresent_dict[fluor][2]
 if eptag == 'CMYC':
 cmyccol = col
 #print 'cmyc is in column:',cmyccol

 #print 'keys',DB_bin_dict_by_label.keys()
 for epitope in DB_bin_dict_by_label:
 #print 'epitope is:',epitope
 for fluor in tagspresent_dict.keys():
 eptag = tagspresent_dict[fluor][0]
 epcol = tagspresent_dict[fluor][2]
 if epitope == eptag:
 currcol = epcol
 #print 'current column:',currcol
 for clusterid in DB_bin_dict_by_label[epitope]:
 #print 'clusterid',clusterid
 RP_list = DB_bin_dict_by_label[epitope][clusterid]
 rows_list = map(lambda x:x[0],RP_list)
 #print 'rows:',rows_list[0:5]
 RP_list_new = []
 for r in rows_list:
 cmycpoint = data[r,cmyccol]
 eppoint = data[r,currcol]
 RP_list_new.append([r,[cmycpoint,eppoint]])
 NN_binary_dict_by_label[epitope][clusterid]=RP_list_new

 for e in NN_binary_dict_by_label.keys():
 print 'epitope is',e
 for cid in NN_binary_dict_by_label[e]:
 print 'cluster id is:',cid
 RPs = NN_binary_dict_by_label[e][cid]
 print 'first 3 RPs is',RPs[0:3]

 with open('not norm binary dict by label.txt','w') as f:
 f.write(json.dumps(NN_binary_dict_by_label,separators=(',',
':'),sort_keys=True))

 print '---'
 print 'finished making binary dict by label'
 return NN_binary_dict_by_label

###

#input is dictionary with keys epitope to label (clusterid) to RP pair
(row,point)
#calculates statistics for each epitope, clusterid in binary DBSCAN
#output is stats dict with keys epitope, clusterid,
'mean','min','max','abundance' and corresponding values

def calc_dbscan_stats(dict_by_label,epitope_col,savefile):

 stats_dict = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))

 totalpoints = 0

 210

 for epitope in dict_by_label.keys():
 for clusterid in dict_by_label[epitope]:
 if clusterid not in [-1,'-1']:
 RPs = dict_by_label[epitope][clusterid]
 points = map(lambda x:x[1],RPs)
 eppoints = map(lambda x:x[epitope_col],points)
 #calc stats
 min_cluster = min(eppoints)
 max_cluster = max(eppoints)
 mean_cluster = np.mean(eppoints)
 sd_cluster = np.std(eppoints)
 #print 'minimum value:',min_cluster
 #print 'maximum value:',max_cluster
 #print 'mean value:',mean_cluster
 #print 'standard deviation:',sd_cluster
 stats_dict[epitope][clusterid]['min'].append(min_cluster)
 stats_dict[epitope][clusterid]['max'].append(max_cluster)
 stats_dict[epitope][clusterid]['mean'].append(mean_cluster)
 stats_dict[epitope][clusterid]['std dev'].append(sd_cluster)
 stats_dict[epitope][clusterid]['number
points'].append(len(points))
 totalpoints+=len(points)

 for epitope in dict_by_label.keys():
 for clusterid in dict_by_label[epitope]:
 RPs = dict_by_label[epitope][clusterid]
 points = map(lambda x:x[1],RPs)
 eppoints = map(lambda x:x[epitope_col],points)
 abundance = float(len(eppoints))/float(totalpoints)*100
 stats_dict[epitope][clusterid]['abundance'].append(abundance)

 with open(savefile, 'w') as f:
 f.write(json.dumps(stats_dict,f,separators=(',',
':'),indent=4,sort_keys=True))

 print 'finished calculating dbscan stats'
 print '---'
 #return stats_dict

###

#inputs are normalized data array, and normalized stats dictionary
#determines cluster id for each data point based on 'min' and 'max' values
calculated from DBSCAN clustering results
#output is dictionary with keys epitope,clusterid, value RP (row, normalized
epitope fluorescence)

def binary_minmax(tagspresent_dict,stats_fname,data_fname):

 binary_minmax_dict = defaultdict(lambda: defaultdict(list))

 with open(stats_fname,'r') as f:
 stats_dict = json.load(f)

 data =
np.genfromtxt(data_fname,delimiter=',',dtype='float',skip_header=1)

 211

 for epitope in stats_dict.keys():
 #print 'epitope is:',epitope
 for fluor in tagspresent_dict.keys():
 ep = tagspresent_dict[fluor][0]
 col = tagspresent_dict[fluor][2]
 if ep == epitope:
 currcol = col
 #print 'current column is:',currcol
 currdata = data[:,currcol]
 for clusterid in stats_dict[epitope]:
 #print 'cluster id is:',clusterid
 if clusterid not in [-1,'-1']: #do not include the noise points
 minval = stats_dict[epitope][clusterid]['min']
 maxval = stats_dict[epitope][clusterid]['max']
 for r in range(0,len(currdata)):
 datapoint = currdata[r]
 if datapoint >= minval and datapoint <= maxval:

binary_minmax_dict[epitope][clusterid].append([r,datapoint])

 #check that the stats are ok
 #for epitope in binary_minmax_dict.keys():
 # print 'epitope is:',epitope
 for clusterid in binary_minmax_dict[epitope]:
 # print 'cluster id is:',clusterid
 points = map(lambda
x:x[1],binary_minmax_dict[epitope][clusterid])
 # print 'mean of cluster',clusterid,'is:',np.mean(points)
 # print 'abundance of
cluster',clusterid,'is:',float(len(points))/float(len(data))*100

 with open('all binary cluster data.txt', 'w') as f:
 f.write(json.dumps(binary_minmax_dict,f,separators=(',',
':'),sort_keys=True))

 print 'finished clustering binary data'
 print '---'
 return binary_minmax_dict

###

#input is dictionary with keys epitope, clusterid, value RP pair (rownumber,
normalized epitope fluorescence value)
#output dictionary: maps row number to epitope name to clusterid (dbscan
label)
deletes any rows that are missing a binary ID

def binaryids_by_rows(minmax_fname):

 with open(minmax_fname,'r') as f:
 binary_minmax_dict = json.load(f)

 binary_dict_by_rows = defaultdict(lambda: defaultdict(str))

 numeps = len(binary_minmax_dict.keys())
 print 'the number of epitope tags is:',numeps

 212

 row_delete_counter = 0
 for epitope in binary_minmax_dict.keys():
 for clusterid in binary_minmax_dict[epitope]:
 rp = binary_minmax_dict[epitope][clusterid]
 row_list = map(lambda x:x[0],rp)
 points_list = map(lambda x:x[1],rp)
 for r in row_list:
 binary_dict_by_rows[r][epitope] = clusterid
 #delete any rows that don't have all of the epitopes mapped to a cluster
id
 for row in binary_dict_by_rows.keys():
 epitopes = binary_dict_by_rows[row]
 if len(epitopes) != numeps:
 del binary_dict_by_rows[row]
 #print 'deleted row'
 row_delete_counter+=1

 print "This is how many rows we deleted:", row_delete_counter
 with open('binary dict by rows.txt', 'w') as f:
 f.write(json.dumps(binary_dict_by_rows,separators=(',',
':'),indent=4,sort_keys=True))

 return binary_dict_by_rows

###

#input: A dictionary of row numbers to epitope tags to label (dbscan
clusterid)
#output: A dictionary of row numbers to cluster binary id value
(Concatenating the epitope clusterids in order)

def make_row_binaryid_dict(bin_ids_dict,binary_signature_order):
 row_binaryid_dict ={}
 for row in bin_ids_dict:
 signature = ""
 #Use epitopes in signature order input list to order the signature.
 for epitope in binary_signature_order:
 # print "current index:", bin_ids_dict[row][epitope]
 clusterid = bin_ids_dict[row][epitope]
 signature += (str(clusterid))
 row_binaryid_dict[row] = signature
 # print "signature for row",row,"is:", signature

 return row_binaryid_dict
###

#input: A dictionary of rownumbers to a binary cluster id value
#output: A dictionary of binary tag ids to corresponding row numbers

def swap_binaryid_row_dict(input_dict):

 binaryid_row_dict = defaultdict(list)
 #rows are k, clusterids are v
 for k, v in input_dict.items():
 #clusterids now used for key, append the row value to the list
 binaryid_row_dict[v].append(k)

 213

 #print "Are these 1?:",set(cluster_rows_dict.keys()) ==
set(input_dict.values())
 print "Number of unique binary cluster IDS:",
len(binaryid_row_dict.keys())

 with open("binary_IDS_dict.txt",'w') as f:
 f.write(json.dumps(binaryid_row_dict,f,separators=(',',
':'),indent=4,sort_keys=True))
 return binaryid_row_dict
###

#input binaryid_row_dict with key binaryID map to list of rows, normalized
and non-normalized data
#output: stats dictionary with abundance %, number of points in each binary
id (cluster), and MFIs + SDs for each fluorophore

def
calc_binaryID_stats(tagspresentdict,binID_fname,norm_data_fname,data_fname):

 with open(binID_fname,'r') as f:
 binary_ID_dict = json.load(f)

 norm_data =
np.genfromtxt(norm_data_fname,skip_header=1,delimiter=',',dtype='float')
 data =
np.genfromtxt(data_fname,skip_header=1,delimiter=',',dtype='float')

 binid_stats_dict_normalized = defaultdict(lambda: defaultdict(float))
 binid_stats_dict = defaultdict(lambda: defaultdict(float))

 #find total data that was clustered
 totaldata = len(data)
 total_clustered_data = 0
 for binaryid in binary_ID_dict.keys():
 rowlist = binary_ID_dict[binaryid]
 total_clustered_data+=len(rowlist)

 #calculate statistics for each binaryID
 for binaryid in binary_ID_dict.keys():
 rowlist = binary_ID_dict[binaryid]
 clustered_abundance =
float(len(rowlist))/float(total_clustered_data)*100
 total_abundance = float(len(rowlist))/float(totaldata)*100

 binid_stats_dict[binaryid]['Number points'] = len(rowlist)
 binid_stats_dict[binaryid]['Abundance clustered'] =
clustered_abundance
 binid_stats_dict[binaryid]['Abundance total'] =total_abundance

 binid_stats_dict_normalized[binaryid]['Number points'] = len(rowlist)
 binid_stats_dict_normalized[binaryid]['Abundance clustered'] =
clustered_abundance
 binid_stats_dict_normalized[binaryid]['Abundance total']
=total_abundance

 for fluor in tagspresentdict.keys():

 214

 epitope = tagspresentdict[fluor][0]
 col = tagspresentdict[fluor][2]
 if epitope not in ['FSC','CMYC','GFP']:
 fluorlist = []
 fluorlistnorm = []
 for r in rowlist:
 fluorlist.append(data[r,col])
 fluorlistnorm.append(norm_data[r,col])
 binid_stats_dict[binaryid][epitope+' MFI']=np.mean(fluorlist)
 binid_stats_dict[binaryid][epitope+' SD'] = np.std(fluorlist)
 binid_stats_dict_normalized[binaryid][epitope+'
MFI']=np.mean(fluorlistnorm)
 binid_stats_dict_normalized[binaryid][epitope+' SD'] =
np.std(fluorlistnorm)

 with open("BinaryID stats dict.txt",'w') as f:
 f.write(json.dumps(binid_stats_dict,separators=(',',
':'),indent=4,sort_keys=True))
 with open('BinaryID normalized stats dict.txt','w') as f:
 f.write(json.dumps(binid_stats_dict_normalized,separators=(',',
':'),indent=4,sort_keys=True))

 fields =
['Barcode','T7','V5','AU5','AcV5','E2','HIS','GLU','FLAG','Number
points','Abundance clustered','Abundance total',
 'T7 MFI','T7 SD','V5 MFI','V5 SD','AU5 MFI','AU5 SD','AcV5
MFI','AcV5 SD','E2 MFI','E2 SD','HIS SD'
 ,'GLU MFI','GLU SD','FLAG MFI','FLAG SD']

 barcode_indices = ['T7','V5','AU5','AcV5','E2','HIS','GLU','FLAG']

 for key in binid_stats_dict:
 for i in range(0,len(barcode_indices)):
 binid_stats_dict[key][barcode_indices[i]] = key[i]

 for key in binid_stats_dict_normalized:
 for i in range(0,len(barcode_indices)):
 binid_stats_dict_normalized[key][barcode_indices[i]] = key[i]

 dw = binid_stats_dict
 with open('binary barcode stats.csv','w') as f:
 w = csv.DictWriter(f,fields)
 w.writeheader()
 for k in dw:
 w.writerow({field: dw[k].get(field) or k for field in fields})

 dw = binid_stats_dict_normalized
 with open('binary barcode normalized stats.csv','w') as f:
 w = csv.DictWriter(f,fields)
 w.writeheader()
 for k in dw:
 w.writerow({field: dw[k].get(field) or k for field in fields})

 return binid_stats_dict,binid_stats_dict_normalized

 215

###

#input original data file (transposed, not normalized data) and binaryIDs
dict filtered by large clusters only
#output dictionary with keys binaryID to epitope to points (cmyc,epitope
fluor) pairs for all barcode colors
def plot_binary_clusters_data(binaryID_fname,tagspresent_dict,data_fname):

 data =
np.genfromtxt(data_fname,delimiter=',',dtype='float',skip_header=1)

 with open(binaryID_fname,'r') as f:
 binaryID_dict = json.load(f)

 for fluor in tagspresent_dict.keys():
 ep = tagspresent_dict[fluor][0]
 col = tagspresent_dict[fluor][2]
 if ep == 'CMYC':
 cmyccol = col
 #print cmyccol

 plotdict = defaultdict(lambda:defaultdict(list))

 for binID in binaryID_dict.keys():
 #print 'binid id',binID
 rows_list = binaryID_dict[binID]
 for fluor in tagspresent_dict.keys():
 epitope = tagspresent_dict[fluor][0]
 column = tagspresent_dict[fluor][2]
 #print 'epitope is:',epitope
 if epitope not in ['FSC','CMYC','GFP']:
 #print 'banana'
 xypoints = []
 for r in rows_list:
 #print r
 cmycpoint = data[r,cmyccol]
 #print cmycpoint
 epitopepoint = data[r,column]
 #print epitopepoint
 xypoints.append([cmycpoint,epitopepoint])
 #print len(xypoints)
 #print 'apple'
 plotdict[binID][epitope]=xypoints

 with open('plotdict.txt','w') as f:
 f.write(json.dumps(plotdict,separators=(',',
':'),indent=4,sort_keys=True))
 print 'finished finding plotting data'
 return plotdict
###

def plot_binary_clusters(plotdict,directory,file_path_plots):

 for binID in plotdict.keys():
 fig = plt.figure()
 fig.canvas.set_window_title(binID)
 i = 0

 216

 j = 0
 for epitope in plotdict[binID]:
 ax = plt.subplot2grid((3,4),(i,j))
 x = map(lambda x:x[0],plotdict[binID][epitope])
 y = map(lambda x:x[1],plotdict[binID][epitope])
 ax.plot(x,y,'.',markerfacecolor = 'c',markersize=2)
 plt.axis([3,5,0,5])
 plt.xlabel('CMYC')
 plt.xticks(fontsize=10)
 plt.yticks(fontsize=10)
 plt.ylabel(epitope)
 plt.tight_layout()
 #print i,j
 if j < 3:
 j+=1
 else:
 j = 0
 i+=1
 #plt.show()
 os.chdir(file_path_plots)
 plt.savefig(binID+' barcode plot.png')
 os.chdir(directory)
 print '---'
 print 'finished making binary plots'

###

#input files containing dictionary of binaryid mapped to rows list,
dictionary of binaryid mapped to stats
#output dictionary of binaryid map to rows list after filtering criteria have
been applied to remove false positive barcodes
def
filter_binary_clusters(binarydict_fname,binary_stats_fname,expected_value):

 filtered_binary_clusters = defaultdict(list)
 filtered_binary_stats = defaultdict(lambda:defaultdict(float))

 with open(binarydict_fname,'r') as f:
 binaryid_dict = json.load(f)

 with open(binary_stats_fname,'r') as f:
 binaryid_stats_dict = json.load(f)

 for binaryid in binaryid_dict.keys():
 print 'binaryid:',binaryid
 cluster_abundance = binaryid_stats_dict[binaryid]['Abundance total']
 num_points = binaryid_stats_dict[binaryid]['Number points']
 #remove low abundance (<0.01% of sample) barcodes
 if cluster_abundance > expected_value and num_points >=100:
 filtered_binary_clusters[binaryid] = binaryid_dict[binaryid]
 filtered_binary_stats[binaryid] = binaryid_stats_dict[binaryid]

 print 'the number of clusters before
filtering:',len(binaryid_dict.keys())
 print 'the number of clusters after
filtering:',len(filtered_binary_clusters.keys())

 217

 with open('filtered binary barcode dict.txt','w') as f:
 f.write(json.dumps(filtered_binary_clusters,f,separators=(',',
':'),sort_keys=True,indent=4))

 with open('filtered binary barcode stats.txt','w') as f:
 f.write(json.dumps(filtered_binary_stats,f,separators=(',',
':'),sort_keys=True,indent=4))

 fields =
['Barcode','T7','V5','AU5','AcV5','E2','HIS','GLU','FLAG','Number
points','Abundance clustered','Abundance total',
 'T7 MFI','T7 SD','V5 MFI','V5 SD','AU5 MFI','AU5 SD','AcV5
MFI','AcV5 SD','E2 MFI','E2 SD','HIS SD'
 ,'GLU MFI','GLU SD','FLAG MFI','FLAG SD']

 barcode_indices = ['T7','V5','AU5','AcV5','E2','HIS','GLU','FLAG']

 for key in filtered_binary_stats:
 for i in range(0,len(barcode_indices)):
 filtered_binary_stats[key][barcode_indices[i]] = key[i]

 dw = filtered_binary_stats
 with open('filtered binary barcode stats.csv','w') as f:
 w = csv.DictWriter(f,fields)
 w.writeheader()
 for k in dw:
 w.writerow({field: dw[k].get(field) or k for field in fields})

 return filtered_binary_clusters,filtered_binary_stats
###

#input: dictionary with keys binary id string and value list of row numbers
in that binary cluster (8 tags)
#output: dictionary maps binary id to hsv clusterid to RP list (row,point)
#output2: dictionary with key binaryid map to hsv clusterid to 'HA' or 'AU1'
to RPL list (row, point,label)

def
multicluster(dbscanparams_dict,tagspresent_dict,final_multi_dict,binaryid_fna
me,data_fname,epitope_to_cluster,plotclusters,directory,subdirectory):
 #plotclusters = False ###!!!DO NOT PLOT

 #load original data matrix
 data =
np.genfromtxt(data_fname,delimiter=',',dtype='float',skip_header=1)

 #load dictionary containing key binaryID map to value rows
 with open(binaryid_fname) as f:
 binaryid_row_dict = json.load(f)

 for fluor in tagspresent_dict.keys():
 ep = tagspresent_dict[fluor][0]
 col = tagspresent_dict[fluor][2]
 if ep == 'CMYC':
 cmyccol = col
 if ep == epitope_to_cluster:

 218

 multiepcol = col
 print 'CMYC data is stored in column:',cmyccol
 print epitope_to_cluster + 'data is stored in column:', multiepcol

 #DBSCAN params
 if epitope_to_cluster == 'HSV':
 #store data after clustering
 multi_dict = defaultdict(lambda: defaultdict(list))
 elif epitope_to_cluster in ['AU1','HA']:
 with open(directory+'/HSV clusters.txt','r') as f:
 multi_dict = json.load(f)

 if epitope_to_cluster == 'HSV':
 for binary_ID in binaryid_row_dict.keys():
 multiepdata = []
 cmycdata = []
 print 'binary cluster is:',binary_ID
 rows_list = binaryid_row_dict[binary_ID]
 #get data from rows in each binary id, for HSV and cmyc fluors
 for r in rows_list:
 multiepdata.append(data[r,multiepcol])
 cmycdata.append(data[r,cmyccol])
 print 'the total number of cells in this cluster
is:',len(multiepdata)

 db_data = np.zeros((len(multiepdata),2))
 for r in range(0,len(multiepdata)):
 db_data[r,0] = cmycdata[r]
 db_data[r,1] = multiepdata[r]

 #override default parameter if data set is small
 num_points = len(db_data)
 print 'number of points is:',num_points
 if num_points < 3000:
 searchdist = 0.2
 corepoint = 30
 elif num_points < 10000:
 searchdist = 0.1
 corepoint = 80
 elif num_points < 15000:
 searchdist = 0.1
 corepoint = 100

 else:
 searchdist = dbscanparams_dict['HSV_bin'][0]
 corepoint = dbscanparams_dict['HSV_bin'][1]
 print 'DBSCAN search distance is:',searchdist
 print 'DBSCAN core point is:',corepoint

 print 'starting dbscan'
 db =
DBSCAN(eps=searchdist,min_samples=corepoint,algorithm="kd_tree").fit(db_data)
 dbscan_labels = db.labels_

 #print "Number of points:",len(db_data)
 #print "Number of rows:", len(rows_list)
 #print "Len labels:", len(dbscan_labels)

 219

 #print "db first 10:", db_data[0:10]
 #print "rows first 10:", rows_list[0:10]
 #print "labels first 10:",dbscan_labels[0:10]
 dbscan_labeled_points = map(lambda x,y:
[x,y],dbscan_labels,db_data)

 # Number of clusters in labels, ignoring noise if present
 n_clusters_ = len(set(dbscan_labels)) - (1 if -1 in dbscan_labels
else 0)
 print('Number of DBSCAN clusters: %d' % n_clusters_)

 #find minimum value in dataset and cooresponding label to find
low cluster
 min = 100000
 min_label = ''
 for l,p in dbscan_labeled_points:
 if l != -1:
 if p[1] < min:
 min = p[1]
 min_label = l
 print 'min dbscan cluster id is:',min_label

 if n_clusters_ > 1:
 #find maximum value and corresponding label
 max = 0
 max_label = ''
 for l,p in dbscan_labeled_points:
 if l != -1:
 if p[1] > max:
 max = p[1]
 max_label = l
 print 'max dbscan cluster id is:',max_label
 #find mid cluster if clusters == 3
 if n_clusters_ == 3:
 unique_labels = set(dbscan_labels)
 for l in unique_labels:
 if l not in [min_label,max_label,'-1',-1]:
 mid_label = l
 print 'mid dbscan cluster id is:',mid_label

 #update labels so that clusters are numbered in order of fluor
intensity instead of randomly
 updated_labels = []
 for l,p in dbscan_labeled_points:
 #print 'old label',l
 if l != -1:
 if n_clusters_ <= 2:
 if l == min_label:
 updated_labels.append(0)
 else:
 updated_labels.append(1)
 if n_clusters_ == 3:
 if l == max_label:
 updated_labels.append(2)
 elif l == mid_label:
 updated_labels.append(1)
 elif l == min_label:

 220

 updated_labels.append(0)
 if l == -1:
 updated_labels.append(-1)

 updated_dbscan_labeled_points = map(lambda
x,y:[x,y],db_data,updated_labels)

 rpl = RPLdata(r=rows_list,p=db_data,l=updated_labels)
 print "RPL:", len(rpl.labels),len(rpl.points),len(rpl.rows)

 #Get counts in DBSCAN clusters by label
 counts = defaultdict(int)
 for label in updated_labels:
 counts[label] +=1
 print "Counts histo:", counts

 #################### Plot results ####################
 if plotclusters == True:
 plt.figure()
 core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
 core_samples_mask[db.core_sample_indices_] = True
 unique_labels = set(dbscan_labels)
 colors = ['r','b','g','m']
 for k, c in zip(unique_labels, colors):
 if k == -1:
 c = 'k'
 class_member_mask = (db.labels_ == k)
 xy = db_data[class_member_mask & core_samples_mask]
 #plot clustered data
 plt.plot(xy[:,0], xy[:,1], '.',
markerfacecolor=c,markeredgecolor='k', markersize=6)
 #plot outliers
 xy = db_data[class_member_mask & ~core_samples_mask]
 plt.plot(xy[:,0], xy[:,1], '.',
markerfacecolor=c,markeredgecolor='k', markersize=2)
 plt.ylabel(epitope_to_cluster)
 plt.xlabel('CMYC')
 plt.title(binary_ID)
 plt.axis([3,5.5,0,5],fontsize=8)
 #plt.show()
 os.chdir(subdirectory)
 plt.savefig(binary_ID+" "+epitope_to_cluster+'
DBSCAN_r1.png')
 os.chdir(directory)

 #Filtering/Fixing the bad top cluster.
 if n_clusters_ == 2:
 print "Two CLUSTERS, STARTING FILTER"
 rpl =
filter_noise(rpl,binary_ID,epitope_to_cluster,hsvcluster='',label=1,directory
=directory,subdirectory=subdirectory)
 elif n_clusters_ == 1:
 print "ONE cluster, STARTING FILTER"
 rpl =
filter_noise(rpl,binary_ID,epitope_to_cluster,hsvcluster='',label=0,directory
=directory,subdirectory=subdirectory)
 else:

 221

 print "More than TWO CLUSTERS, NO FILTER"

 #make rpl.points list instead of numpy array
 xyvals = []
 for x,y in rpl.points:
 xyvals.append([x,y])
 #save off RP for each binary ID by label
 for i in range(0,len(rpl.labels)):
 label = rpl.labels[i]
 row = rows_list[i]
 point = xyvals[i]
 multi_dict[binary_ID][label].append([row,point])

 with open(directory+'/HSV clusters.txt', 'w') as f:
 f.write(json.dumps(multi_dict,f,separators=(',',
':'),sort_keys=True,indent=4))

 elif epitope_to_cluster in ['HA','AU1']:
 for binary_ID in multi_dict.keys():
 for hsvcluster in multi_dict[binary_ID]:
 if hsvcluster not in ['-1',-1]:
 multiepdata = []
 cmycdata = []
 print 'binary cluster is:',binary_ID
 print 'hsv cluster is:',hsvcluster
 rp_list = multi_dict[binary_ID][hsvcluster]
 rows_list = map(lambda x:x[0],rp_list)
 for r in rows_list:
 multiepdata.append(data[r,multiepcol])
 cmycdata.append(data[r,cmyccol])
 print 'the total number of cells in this cluster
is:',len(multiepdata)
 db_data = np.zeros((len(multiepdata),2))
 for r in range(0,len(multiepdata)):
 db_data[r,0] = cmycdata[r]
 db_data[r,1] = multiepdata[r]

 #override default dbscan core point parameter if data set
is small
 num_points = len(rows_list)
 print 'len rows list',num_points
 if epitope_to_cluster in ['HA','AU1']:
 if num_points < 2000:
 corepoint = 30
 searchdist = 0.25
 elif num_points < 3000:
 corepoint = 30
 searchdist = 0.2
 elif num_points < 5000:
 corepoint = 40
 searchdist = 0.15
 elif num_points < 10000:
 corepoint = 60
 searchdist = 0.15
 elif num_points < 20000:
 corepoint = 80
 searchdist = 0.1

 222

 elif num_points < 40000:
 corepoint = 100
 searchdist = 0.1
 else:
 corepoint = 100
 searchdist = 0.1
 if epitope_to_cluster == 'AU1':
 if binary_ID == '00000000' and num_points > 20000:
 searchdist = 0.15
 corepoint = 100

 #elif epitope_to_cluster == 'HA' and num_points > 100:
 # searchdist = dbscanparams_dict['HA_bin'][0]
 # corepoint = dbscanparams_dict['HA_bin'][1]
 #elif epitope_to_cluster == 'AU1' and num_points > 100:
 # searchdist = dbscanparams_dict['AU1_bin'][0]
 # corepoint = dbscanparams_dict['AU1_bin'][1]
 print 'dbscan corepoint:',corepoint
 print 'dbscan search distance',searchdist

 print 'starting dbscan'
 db =
DBSCAN(eps=searchdist,min_samples=corepoint,algorithm="kd_tree").fit(db_data)

 #create list of labels (0, 1, 2, ect.) for data point
(row)m if label == -1 is a noise point
 # number of unique labels == number of clusters
 dbscan_labels = db.labels_

 #print "Number of points:",len(db_data)
 #print "Number of rows:", len(rows_list)
 #print "Len labels:", len(dbscan_labels)
 #print "db first 10:", db_data[0:10]
 #print "rows first 10:", rows_list[0:10]
 #print "labels first 10:",dbscan_labels[0:10]
 dbscan_labeled_points = map(lambda x,y:
[x,y],dbscan_labels,db_data)

 # Number of clusters in labels, ignoring noise if present
 n_clusters_ = len(set(dbscan_labels)) - (1 if -1 in
dbscan_labels else 0)
 print('Number of DBSCAN clusters: %d' % n_clusters_)

 #find minimum value in dataset and cooresponding label to
find low cluster
 min = 100000
 min_label = ''
 for l,p in dbscan_labeled_points:
 if l != -1:
 if p[1] < min:
 min = p[1]
 min_label = l
 print 'min dbscan cluster id is:',min_label

 if n_clusters_ > 1:
 #find maximum value and corresponding label

 223

 max = 0
 max_label = ''
 for l,p in dbscan_labeled_points:
 if l != -1:
 if p[1] > max:
 max = p[1]
 max_label = l
 print 'max dbscan cluster id is:',max_label
 #find mid cluster if clusters == 3
 if n_clusters_ == 3:
 unique_labels = set(dbscan_labels)
 for l in unique_labels:

 if l not in [min_label,max_label,'-1',-1]:
 mid_label = l
 print 'mid dbscan cluster id is:',mid_label

 #update labels so that clusters are numbered in order of
fluor intensity instead of randomly
 updated_labels = []
 for l,p in dbscan_labeled_points:
 #print 'old label',l
 if l != -1:
 if n_clusters_ <= 2:
 if l == min_label:
 updated_labels.append(0)
 else:
 updated_labels.append(1)
 if n_clusters_ == 3:
 if l == max_label:
 updated_labels.append(2)
 elif l == mid_label:
 updated_labels.append(1)
 elif l == min_label:
 updated_labels.append(0)
 if l == -1:
 updated_labels.append(-1)

 updated_dbscan_labeled_points = map(lambda
x,y:[x,y],db_data,updated_labels)

 rpl = RPLdata(r=rows_list,p=db_data,l=updated_labels)
 print "RPL:",
len(rpl.labels),len(rpl.points),len(rpl.rows)

 #Get counts in DBSCAN clusters by label
 counts = defaultdict(int)
 for label in updated_labels:
 counts[label] +=1
 print "Counts histo:", counts

 #################### Plot results ####################
 if plotclusters == True:
 plt.figure()
 core_samples_mask = np.zeros_like(db.labels_,
dtype=bool)
 core_samples_mask[db.core_sample_indices_] = True

 224

 unique_labels = set(dbscan_labels)
 colors = ['r','b','g','m']
 for k, c in zip(unique_labels, colors):
 if k == -1:
 c = 'k'
 class_member_mask = (db.labels_ == k)
 xy = db_data[class_member_mask &
core_samples_mask]
 #plot clustered data
 plt.plot(xy[:,0], xy[:,1], '.',
markerfacecolor=c,markeredgecolor='k', markersize=6)
 #plot outliers
 xy = db_data[class_member_mask &
~core_samples_mask]
 plt.plot(xy[:,0], xy[:,1], '.',
markerfacecolor=c,markeredgecolor='k', markersize=2)
 plt.ylabel(epitope_to_cluster)
 plt.xlabel('CMYC')
 plt.title(binary_ID)
 plt.axis([3,5.5,0,5],fontsize=8)
 #plt.show()
 os.chdir(subdirectory)
 plt.savefig(binary_ID+" "+epitope_to_cluster+'
'+hsvcluster+' DBSCAN_r1.png')
 os.chdir(directory)

 #Filtering/Fixing the bad top cluster.
 if n_clusters_ == 2:
 print "TWO CLUSTERS, STARTING FILTER"
 rpl =
filter_noise(rpl,binary_ID,epitope_to_cluster,hsvcluster,label=1,directory=di
rectory,subdirectory=subdirectory)
 elif n_clusters_ == 1:
 print 'one cluster starting filter'
 rpl =
filter_noise(rpl,binary_ID,epitope_to_cluster,hsvcluster,label=0,directory=di
rectory,subdirectory=subdirectory)
 else:
 print "NOT 1 or 2 CLUSTERS, NO FILTER"

 xyvals = []
 for x,y in rpl.points:
 xyvals.append([x,y])
 #save off RPL for each binary ID
 rpl_list = []
 for i in range(0,len(rpl.rows)):

rpl_list.append([rpl.rows[i],xyvals[i],rpl.labels[i]])

final_multi_dict[binary_ID][hsvcluster][epitope_to_cluster] = rpl_list

 with open(directory+'/final barcode dict '+epitope_to_cluster+'.txt',
'w') as f:
 f.write(json.dumps(final_multi_dict,f,separators=(',', ':')))
#,sort_keys=True,indent=4))

 return multi_dict, final_multi_dict

 225

###

#takes in the an RPLdata by hsvcluster and label, removes noise using
gaussian_kde, returns data.
def
filter_noise(rpl,binary_ID,epitope_to_cluster,hsvcluster,label,directory,subd
irectory):

 #gets a list of (row,point) for the given label
 data = rpl.get_rp_for_label(label)
 #if label == '1stpass':
 # data = []
 # for i in range(0,len(rpl.rows)):
 # data.append([rpl.rows[i],rpl.points[i]])
 print "Number of points before filtering:", len(data)
 num_points = len(data)
 #plot data before filtering w kde fit
 x = map(lambda x: x[1][0],data)
 y = map(lambda x: x[1][1],data)
 stack = np.vstack([x,y])
 kde = gaussian_kde(stack)(stack)
 fig1, ax= plt.subplots(2)
 cax = ax[0].scatter(x,y, c=kde, s=10, edgecolor='')
 fig1.colorbar(cax)

 #show filtered
 #pair up the list of rp points with the kde values
 rpl_data_with_kde = map(lambda x,y: [x,y],data,kde)
 #sort list from lowest to highest kde value (lower = noisier/less dense)
 sorted_kde = sorted(kde)
 #cutoff_thresh = 0.25 if (num_points < 50000) else 0.2
 #print "KDE min/max:", min(kde),max(kde)
 #cutoff_value = (max(kde)-min(kde))*cutoff_thresh
 max_kde = max(kde)
 print 'int max_kde:',np.round(max_kde)
 if epitope_to_cluster == 'HSV':
 if label == 0:
 cutoff_frac = 0.2
 cutoff_value = float(max_kde)*cutoff_frac
 if label == 1:
 if np.round(max_kde) <= 2:
 cutoff_frac = 0.3
 elif np.round(max_kde) <= 3 and num_points < 10000:
 cutoff_frac = 0.3
 elif np.round(max_kde) <= 3 and num_points > 10000:
 cutoff_frac = 0.3
 elif num_points < 6000 and np.round(max_kde) <= 3:
 cutoff_frac = 0.2
 #elif np.round(max_kde) <= 4:
 # cutoff_value = float(max_kde)*0.4
 else:
 cutoff_frac = 0.1
 if num_points > 10000 and binary_ID == '00000000':
 cutoff_frac = 0.5
 cutoff_value = float(max_kde)*cutoff_frac
 if epitope_to_cluster == 'HA':
 print 'label',label

 226

 if label == 1:
 binidchar = list(binary_ID)
 if binidchar[6] == '1' and num_points > 2000:
 cutoff_frac = 0.6
 elif np.round(max_kde) <= 1:
 cutoff_frac = 0.3
 elif np.round(max_kde) <= 2:
 cutoff_frac = 0.4
 elif np.round(max_kde) <= 4:
 cutoff_frac = 0.4
 else:
 cutoff_frac = 0.2
 cutoff_value = float(max_kde)*cutoff_frac
 elif label == 0:
 if num_points > 5000:
 cutoff_frac = 0.4
 cutoff_value = float(max_kde)*cutoff_frac
 if np.round(max_kde) <= 1:
 cutoff_frac = 0.2
 cutoff_value = float(max_kde)*cutoff_frac
 if binary_ID == '00000110':
 cutoff_frac = 0.5
 cutoff_value = float(max_kde)*cutoff_frac
 else:
 cutoff_frac = 0.2
 cutoff_value = float(max_kde)*cutoff_frac
 if binary_ID == '00000000' and label == 1:
 cutoff_frac = 0.7
 cutoff_value = float(max_kde)*cutoff_frac
 if binary_ID == '00000001' and label == 1:
 cutoff_frac = 0.6
 cutoff_value = float(max_kde)*cutoff_frac
 if epitope_to_cluster == 'AU1':
 if label == 1:
 if num_points > 10000:
 cutoff_frac = 0.3
 cutoff_value = float(max_kde)*cutoff_frac
 elif np.round(max_kde) > 4:
 cutoff_frac = 0.3
 else:
 cutoff_frac = 0.15
 if binary_ID == '00000000' and num_points > 5000:
 cutoff_frac = 0.5
 cutoff_value = float(max_kde)*cutoff_frac
 if label == 0:
 cutoff_frac = 0.15
 cutoff_value = float(max_kde)*cutoff_frac

 print 'max_kde is:',max_kde
 print 'cutoff_fraction is',cutoff_frac

 filtered_data_with_kde = filter(lambda x: x[1] > cutoff_value,
rpl_data_with_kde) #throw away noisy points (low kde)
 filtered_rpl_data = map(lambda x: x[0], filtered_data_with_kde) #grab
only rpl, no kde
 #print "filtered data first 10:", filtered_rpl_data[0:10]
 filtered_data = map(lambda x: x[1], filtered_rpl_data) #grab only

 227

coordinates, no rpl no kde
 #print "Lengths:", "Pre filter:",len(rpl_data_with_kde),"After
filter:",len(filtered_data_with_kde), "Diff:", len(filtered_data_with_kde)-
len(rpl_data_with_kde)
 #print 'filtered data fluor values only:',filtered_data[0:10]
 old_rpl_len = len(rpl.rpl)
 #print "Old RPL length:", len(rpl.rpl),
 rpl.update_rpl_by_label(label,filtered_rpl_data)
 #print "New RPL length:", len(rpl.rpl)
 #print "change in rpl length:", len(rpl.rpl)- old_rpl_len
 print 'number of deleted points is:',len(data)-len(filtered_rpl_data)
 #filtered_kde = map(lambda x: x[1], filtered_data_with_kde) #grab only
kde values

 #plot after filtering
 x = map(lambda x: x[0],filtered_data) #grab x-coordinates
 y = map(lambda x: x[1],filtered_data) #grab y-coordinates
 stack = np.vstack([x,y])
 #fig2, ax[1] = plt.subplots(212)
 cax2 = ax[1].scatter(x,y, s=10, edgecolor='')
 #plt.show()
 os.chdir(subdirectory)
 plt.savefig(binary_ID+' '+epitope_to_cluster+' '+hsvcluster+' KDE.png')
 os.chdir(directory)

 #Need to run DBSCAN on filtered_data, load back into RPL
 #hsv_searchdist = dbscanparams_dict['HSV_multi'][0]
 #hsv_corepoint = dbscanparams_dict['HSV_multi'][1]

 #choose parameters based on number of points in top cluster
 if epitope_to_cluster == 'HSV':
 if label == 0:
 hsv_corepoint = 50
 hsv_searchdist = 0.1
 elif label == 1:
 if num_points < 2000:
 hsv_corepoint = 30
 hsv_searchdist = 0.15
 elif num_points < 3000:
 hsv_corepoint = 40
 hsv_searchdist = 0.1
 elif num_points < 5000:
 hsv_corepoint = 60
 hsv_searchdist = 0.1
 elif num_points > 9000:
 hsv_searchdist = 0.07
 hsv_corepoint = 100
 else:
 hsv_corepoint=80
 hsv_searchdist=0.08
 elif epitope_to_cluster == 'HA' or epitope_to_cluster == 'AU1':
 if num_points < 300:
 hsv_corepoint = 30
 hsv_searchdist = 0.2
 elif num_points < 1000:
 hsv_corepoint = 40
 hsv_searchdist = 0.5

 228

 elif num_points < 2000:
 hsv_corepoint = 40
 hsv_searchdist = 0.1
 elif num_points < 3000:
 hsv_corepoint = 60
 hsv_searchdist = 0.1
 elif num_points < 6000:
 hsv_corepoint = 80
 hsv_searchdist = 0.08
 else:
 hsv_corepoint = 100
 hsv_searchdist = 0.08
 if label == 0:
 if num_points > 10000:
 hsv_searchdist = 0.1
 hsv_corepoint = 100
 elif num_points > 5000:
 hsv_searchdist = 0.1
 hsv_corepoint = 80
 elif num_points < 1000:
 hsv_corepoint = 20
 hsv_searchdist = 0.2
 else:
 hsv_corepoint = 60
 hsv_searchdist = 0.15
 #elif epitope_to_cluster == 'AU1':

 print 'DBSCAN search dist is:',hsv_searchdist
 print 'DBSCAN core points is:',hsv_corepoint

 db =
DBSCAN(eps=hsv_searchdist,min_samples=hsv_corepoint,algorithm="kd_tree").fit(
filtered_data)
 labels = db.labels_
 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
 print 'Number of dbscan clusters is:', n_clusters_

 # while n_clusters_ > 2:
 # print 'N clusters greater than 2. starting iterative dbscan'
 # hsv_searchdist = hsv_searchdist+0.01
 # db =
DBSCAN(eps=hsv_searchdist,min_samples=hsv_corepoint,algorithm="kd_tree").fit(
filtered_data)
 # labels = db.labels_
 # n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
 # print 'Number of dbscan clusters is:', n_clusters_

 counts = defaultdict(int)
 for L in labels:
 counts[L] +=1
 print "Counts histo:", counts

 #################### Plot results ####################
 #get x and y coordinates
 x = map(lambda x: x[0],filtered_data) #grab x-coordinates
 y = map(lambda x: x[1],filtered_data) #grab y-coordinates

 229

 plt.figure()
 unique_labels = set(labels)

 #cluster 0 = red, cluster 1 = blue, cluster 2 = yellow
 colors_dict = {0:'r',1:'b',2:'y',-1:'k',3:'m',4:'g',5:'c'}
 #bin data by label for plotting

 dict_by_label = defaultdict(list)
 for index in range(0,len(labels)):
 l = labels[index]
 dict_by_label[l].append([x[index],y[index]])

 for l in unique_labels:
 xl = map(lambda x: x[0],dict_by_label[l])
 yl = map(lambda x: x[1],dict_by_label[l])
 if l == -1:
 plt.plot(xl,yl,'.',markerfacecolor=colors_dict[l],markeredgecolor
= 'k',markersize=2)
 else:
 plt.plot(xl,yl,'.',markerfacecolor=colors_dict[l],markeredgecolor
= 'k',markersize=6)
 plt.ylabel(epitope_to_cluster)
 plt.xlabel('CMYC')
 plt.axis([3,5.5,0,5],fontsize=8)
 #plt.show()
 os.chdir(subdirectory)
 plt.savefig(binary_ID+" "+epitope_to_cluster+' '+hsvcluster+'
DBSCAN_r2.png')
 os.chdir(directory)

 if n_clusters_ > 1 and n_clusters_ < 4:
 #new_db_labels = labels
 #makes list of form [[r1,p1,l1],[r2,p2,l2]]
 new_filtered_rpl_data = map(lambda x,y:
[x[0],x[1],y],filtered_rpl_data,labels)
 #print new_filtered_rpl_data
 #given the old label, we take a new rpl list and make two new labels.
 #give it a list of the form [[r1,p1,l1],[r2,p2,l2]]
 print 'label to remove data from is:',label
 print len(new_filtered_rpl_data)
 rpl.split_rp_dict_label(label,new_filtered_rpl_data)
 else:
 pass
 return rpl
###
################################
#input binaryid map to hsv label map to 'HA' map to RPL
#input binaryid map to hsv label map to 'AU1' map to RPL
#output 1: dictionary with epitopeID (all 11) to rows list
#output 2: 'barcode abundance' dictionary with epitope ID to abundance,
number of cells, MFI, SD for each fluor
#also makes csv file with epitopeID, abundance normalized by clustered and by
total data
def make_barcode_table(fname,data_fname,tagspresent_dict):

 print "Making barcode table."

 230

 #load dictionaries containing binaryid map to hsv label map to 'HA' or
'AU1' map to RPL list
 for i in range(0,len(fname)):
 with open(fname[i]) as f:
 if 'HA' in fname[i]:
 HA_dict = json.load(f)
 elif 'AU1' in fname[i]:
 AU1_dict = json.load(f)

 original_data =
np.genfromtxt(data_fname,delimiter=',',dtype='float',skip_header=1)
 total_data = len(original_data)
 total_clustered = 0

 #makes barcode_to_row dict epitope ID (11 tags) map to row list
 #makes row_barcode_dict maps row number to epitope ID
 barcode_abundance_dict = defaultdict(lambda: defaultdict(float))
 print "Banana."
 # print "Ha_dict keys:", HA_dict.keys()
 #count the full (11 color) barcode appearances
 barcode_count_dict = defaultdict(int)
 barcode_to_row_dict =defaultdict(list)
 #dictionary of rows to full (11 color) binary ids
 row_barcode_dict = {}
 print "Len of keys:",len(HA_dict.keys())
 for binary_id in HA_dict.keys():
 print "Bin_id", binary_id
 #print "id:",binary_id
 print "Len of this hsvlabel:",len(HA_dict[binary_id].keys())
 for hsvlabel in HA_dict[binary_id].keys():
 #print "hsvlabel:",hsvlabel
 #print "HSV keys:",HA_dict[binary_id][hsvlabel].keys()
 rpl_list_HA = HA_dict[binary_id][hsvlabel]['HA']
 rpl_list_AU = AU1_dict[binary_id][hsvlabel]['AU1']
 print "length of rpl lists:",len(rpl_list_HA),len(rpl_list_AU)
 rpl_HA = RPLdata(rpl=rpl_list_HA)
 rpl_AU = RPLdata(rpl=rpl_list_AU)
 rpl_HA_row_dict = dict(zip(rpl_HA.rows,rpl_HA.labels))
 rpl_AU_row_dict = dict(zip(rpl_AU.rows,rpl_AU.labels))
 present_rows = set(rpl_HA_row_dict.keys() +
rpl_AU_row_dict.keys())
 #print len(present_rows)
 for row in present_rows:
 if row in rpl_HA_row_dict and row in rpl_AU_row_dict:
 if rpl_HA_row_dict[row] != -1 and rpl_AU_row_dict[row] !=
-1:
 #print "making full barcode with:",
binary_id[0:5],rpl_HA_row_dict[row],
hsvlabel,binary_id[5],rpl_AU_row_dict[row],binary_id[6:]
 full_barcode = str(binary_id[0:5]) +
str(rpl_HA_row_dict[row]) + str(hsvlabel) + str(binary_id[5]) +
str(rpl_AU_row_dict[row]) + str(binary_id[6:])
 #print "Full barcode is:",full_barcode
 row_barcode_dict[row] = full_barcode
 barcode_to_row_dict[full_barcode].append(row)
 barcode_count_dict[full_barcode] +=1
 total_clustered +=1

 231

 #For each barcode id, calculates cluster abundance, number points, mean,
sd fluorescence for each epitope
 for full_barcode in barcode_to_row_dict.keys():
 #print 'full barcode',full_barcode
 num_points = len(barcode_to_row_dict[full_barcode])
 abundance_clustered =
float(barcode_count_dict[full_barcode])/float(total_clustered)*100
 abundance_total =
float(barcode_count_dict[full_barcode])/float(total_data)*100
 barcode_abundance_dict[full_barcode]['Abundance clustered'] =
abundance_clustered
 barcode_abundance_dict[full_barcode]['Abundance total'] =
abundance_total
 barcode_abundance_dict[full_barcode]['Number points'] = num_points
 for fluor in tagspresent_dict.keys():
 #print fluor
 currep = tagspresent_dict[fluor][0]
 currcol = tagspresent_dict[fluor][2]
 if currep not in ['FSC','CMYC','GFP']:
 fluorlist = []
 for row in barcode_to_row_dict[full_barcode]:
 fluorlist.append(original_data[row,currcol])
 mean_fluor = np.mean(fluorlist)
 sd_fluor = np.std(fluorlist)
 barcode_abundance_dict[full_barcode][currep+' MFI'] =
mean_fluor
 barcode_abundance_dict[full_barcode][currep+' SD'] = sd_fluor
 #print 'keys',barcode_abundance_dict[full_barcode].keys()

 header =
['Barcode','T7','V5','AU5','AcV5','E2','HA','HSV','HIS','AU1','GLU','FLAG','N
umber points','Abundance clustered','Abundance total',
 'T7 MFI','T7 SD','V5 MFI','V5 SD','AU5 MFI','AU5 SD','AcV5
MFI','AcV5 SD','E2 MFI','E2 SD','HA MFI','HA SD','HSV MFI','HSV SD',
 'HIS MFI','HIS SD','AU1 MFI','AU1 SD','GLU MFI','GLU SD','FLAG
MFI','FLAG SD']
 barcode_indices =
['T7','V5','AU5','AcV5','E2','HA','HSV','HIS','AU1','GLU','FLAG']

 for key in barcode_abundance_dict:
 for i in range(0,len(barcode_indices)):
 barcode_abundance_dict[key][barcode_indices[i]] = key[i]
 #print barcode_count_dict
 #print barcode_to_row_dict

 with open('Barcode abundance dict.txt','w') as f:
 f.write(json.dumps(barcode_abundance_dict,separators=(',',
':'),indent=4,sort_keys=True))

 with open ('barcodeID to rows dict.txt','w') as f:
 f.write(json.dumps(barcode_to_row_dict,separators=(',',
':'),indent=4,sort_keys=True))

 dw = barcode_abundance_dict
 with open('Barcode abundances.csv','w') as f:
 w = csv.DictWriter(f,header)

 232

 w.writeheader()
 for k in dw:
 w.writerow({field: dw[k].get(field) or k for field in header})

 return barcode_to_row_dict,barcode_abundance_dict

###

def filter_clusters_multi(rowsdictfilename,statsdictfilename,expected_value):
#input: dictionary of barcode ids to rows, dictionary of barcode ids to
statistics
#output: dictionary of barcode ids to rows, filtered by expected value
criteria

 filtered_barcodes_dict = defaultdict(list)
 filtered_barcodes_stats = defaultdict(lambda: defaultdict(float))

 with open(rowsdictfilename,'r') as f:
 barcode_dict_rows = json.load(f)

 with open(statsdictfilename,'r') as f:
 stats_dict = json.load(f)

 #append barcode and rows list to new dict if meets abundance cutoff
criteria
 for barcodeid in stats_dict.keys():
 bar_abundance = stats_dict[barcodeid]['Abundance clustered']
 num_points = stats_dict[barcodeid]['Number points']
 rows_list = barcode_dict_rows[barcodeid]
 if bar_abundance > expected_value and num_points >= 100:
 filtered_barcodes_dict[barcodeid] = rows_list
 filtered_barcodes_stats[barcodeid] = stats_dict[barcodeid]

 with open('filtered barcodeID to rows dict.txt','w') as f:
 f.write(json.dumps(filtered_barcodes_dict,separators=(',',
':'),indent=4,sort_keys=True))

 with open('filtered barcodeID stats dict.txt','w') as f:
 f.write(json.dumps(filtered_barcodes_stats,separators=(',',
':'),indent=4,sort_keys=True))

 barcode_indices =
['T7','V5','AU5','AcV5','E2','HA','HSV','HIS','AU1','GLU','FLAG']

 for key in filtered_barcodes_stats:
 for i in range(0,len(barcode_indices)):
 filtered_barcodes_stats[key][barcode_indices[i]] = key[i]

 header =
['Barcode','T7','V5','AU5','AcV5','E2','HA','HSV','HIS','AU1','GLU','FLAG','N
umber points','Abundance clustered','Abundance total',
 'T7 MFI','T7 SD','V5 MFI','V5 SD','AU5 MFI','AU5 SD','AcV5
MFI','AcV5 SD','E2 MFI','E2 SD','HA MFI','HA SD','HSV MFI','HSV SD',
 'HIS MFI','HIS SD','AU1 MFI','AU1 SD','GLU MFI','GLU SD','FLAG
MFI','FLAG SD']

 dw = filtered_barcodes_stats

 233

 with open('Filtered barcode abundances.csv','w') as f:
 w = csv.DictWriter(f,header)
 w.writeheader()
 for k in dw:
 w.writerow({field: dw[k].get(field) or k for field in header})

 print 'number of barcodes before
filtering:',len(barcode_dict_rows.keys())
 print 'number of barcodes after
filtering:',len(filtered_barcodes_dict.keys())

 return filtered_barcodes_dict,filtered_barcodes_stats
###

#input: A dictionary of binary tag ids to corresponding row numbers list
#output: A dictionary with binary tag ids to corresponding list of GFP fluor
values

def GFP_hist(binID_fname,data_fname,BY_fname,GFP_col,directory):

 data =
np.genfromtxt(data_fname,delimiter=',',dtype='float',skip_header=1)
 bydata =
np.genfromtxt(BY_fname,delimiter=',',dtype='float',skip_header=1)

 with open(binID_fname,'r') as f:
 binary_ID_dict = json.load(f)

 GFP_dict = defaultdict(list)

 BY_list = []
 for entry in bydata[:,1]:
 if entry > 0:
 BY_list.append(np.log10(entry))

 i = 0
 j = 0
 #large_clusters = 0
 number_clusters = len(binary_ID_dict.keys())
 print 'the number of clusters for plotting is:',number_clusters
 for binaryid in binary_ID_dict.keys():
 #print binaryid
 for row in binary_ID_dict[binaryid]:
 GFPval = data[row,GFP_col]
 if GFPval > 0:
 GFP_dict[binaryid].append(GFPval)
 length = len(GFP_dict[binaryid])
 #print 'npoints in cluster is:',length
 #only want to plot large clusters
 #if length > 100:
 # large_clusters += 1
 #print 'the number of large clusters is',large_clusters
 plotgridsize = (np.int(np.ceil(float(number_clusters)/float(4))),4)

 for binaryid in GFP_dict.keys():
 BYplot = BY_list[0:len(GFP_dict[binaryid])]
 #print "i,j is: ", i,j

 234

 #fig = plt.figure()
 #plt.subplots(figsize=(20,10))
 ax = plt.subplot2grid(plotgridsize,(i,j))
 ax.hist(GFP_dict[binaryid],bins=100,range=[0,5],fc =
(0,1,0,0.5),histtype='stepfilled')
 ax.hist(BYplot,bins=100,range=[0,5],fc =
(0.5,0.5,0.5,0.3),histtype='stepfilled')
 if i != plotgridsize[0]-1:
 ax.xaxis.set_visible(False)
 plt.title(binaryid,fontsize=12)
 plt.xticks(fontsize=10)
 plt.yticks(fontsize=8)
 plt.tight_layout()

 if j < plotgridsize[1]-1:
 j+=1
 elif j == plotgridsize[1]-1 and i < plotgridsize[0]-1:
 i+=1
 j=0
 plt.savefig(directory+'/GFP histograms.png')
 #plt.show()
 print 'finished plotting GFP histograms'
 return GFP_dict

###

def plot_results(filename):
 with open(filename,'r') as f:
 hsv_dict = json.load(f)

 #HSV dict has key binary id value row, point xy pair, label
 print hsv_dict.keys()
 for binaryID in hsv_dict:
 print 'Binary ID:',binaryID
 xy = map(lambda x: x[1],hsv_dict[binaryID])
 print len(xy)
 labels = map(lambda labels: labels[2],hsv_dict[binaryID])
 unique_labels = set(labels)
 #cluster 0 = red, cluster 1 = blue, cluster 2 = yellow
 colors_dict = {0:'r',1:'b',2:'y',-1:'k'}

 #bin data by labels
 dict_by_label = defaultdict(list)
 for index in range(0,len(labels)):
 l = labels[index]
 xyval = xy[index]
 dict_by_label[l].append([xyval])

 fig,ax = plt.subplots()
 for l in unique_labels:
 x = map(lambda x: x[0][0],dict_by_label[l])
 y = map(lambda x: x[0][1],dict_by_label[l])
 #print l
 #print len(x)
 #plot clusters only
 if l != -1:

 235

plt.plot(x,y,'.',markerfacecolor=colors_dict[l],markeredgecolor =
'k',markersize=6)
 #plot outliers and clusters
 #if l == -1:
 #
plt.plot(x,y,'.',markerfacecolor=colors_dict[l],markeredgecolor =
'k',markersize=2)
 #else:
 #
plt.plot(x,y,'.',markerfacecolor=colors_dict[l],markeredgecolor =
'k',markersize=6)
 plt.title(binaryID)
 plt.xlabel('CMYC')
 plt.ylabel('HSV')
 plt.axis([2.5,5.5,0,5])
 fig.savefig(binaryID+'.png')
 #plt.show()

def main():

 file_path =
"/Users/Stefanie/PycharmProjects/untitled/Gen3_AcV5_T7_library"
 file_path_binary = file_path + '/binary DBSCAN'
 file_path_hsv = file_path+"/HSV"
 file_path_ha = file_path+"/HA"
 file_path_au = file_path+"/AU1"
 file_path_epitopes = file_path+'/eptiope plots'
 for i in
[file_path,file_path_epitopes,file_path_au,file_path_ha,file_path_hsv,file_pa
th_binary]:
 if not os.path.exists(i):
 os.makedirs(i)
 os.chdir(file_path)

 start = time.time()
 filename = '/Users/Stefanie/Desktop/Gen3 libraries clusters
data/Gen3_library_18.csv'
 #BY_fname = '/Users/Stefanie/Desktop/GFP+Bar mixes 4-2-17/Autofluor
GFP.csv'

 #used this for Gen3 libraries BY
 #key is fluorophore, value[0] is epitope, value[1] is present or not?,
value[2] is column data is stored in
 tagspresent_dict = {'FSC':['FSC','yes',0],'AF647':['AU1','yes',1],'APC-
Cy7':['HIS','yes',2],'AF700':['V5','no',3],'Marina Blue':['GLU','yes',4],

'AF488':['CMYC','yes',5],'QDot525':['AU5','no',12],'PE':['HA','yes',6],'PE-
Cy5':['NA','no',7],
 'PE-Cy5.5':['HSV','yes',8],'PE-
Cy7':['FLAG','yes',9],'PE-TexasRed':['T7','no',10],
 'PerCP':['E2','no',11],'QDot705':['AcV5','no',13]}

 #use this for BY Gen3 control sample
 #tagspresent_dict = {'FSC':['FSC','yes',0],'APC':['AU1','yes',1],'APC-
Cy7':['AcV5','yes',2],'AF700':['AU5','yes',3],
 # 'Marina
Blue':['GLU','yes',4],'AF488':['CMYC','yes',5],'QDot525':['V5','no',12],'PE':

 236

['HA','yes',6],
 # 'PE-Cy5':['NA','no',7],'PE-
Cy5.5':['HSV','yes',8],'PE-Cy7':['E2','yes',9],'PE-TexasRed':['T7','yes',10],
 # 'PerCP':['FLAG','yes',11],'QDot705':['HIS','no',13]}

 #dictionary containing value to set negative data points to in linear
space
 tfval_dict = {'AF647':100,'APC-Cy7':100,'AF700':100,'Marina
Blue':200,'QDot525':100,'PE':100,'PE-Cy5':10,'PE-Cy5.5':100,
 'PE-Cy7':10,'PE-
TexasRed':100,'PerCP':100,'QDot705':10,'AF488':1}

 #name of file containing normalized log transformed data (you want to do
binary dbscan on this)
 norm_data_fname = file_path+'/normalized log transposed data.csv'
 #name of file containing log transformed data
 log_data_fname = file_path+'/log transposed data.csv'
 #name of file with saved binary dbscan dictionary map epitope name to RPL
list
 dbscan_fname = file_path+'/binary dbscan clusters data.txt'
 #name of file with binary dbscan dictionary map epitope name to label to
RP list
 dbscan_by_label_fname = file_path+'/dbscan binary dict by label.txt'
 #name of file with binary dbscan dictionary map epitope name to label to
RP list, where P is (cmyc,epitope fluor)
 notnorm_by_label_fname = file_path+'/not norm binary dict by label.txt'
 #name of dict with normalized binary dbscan stats, map epitope name to
label to stats
 stats_fname = file_path+'/dbscan norm stats.txt'
 #name of dict with non-normalized binary dbscan stats, map epitope name
to label to stats
 stats_notnorm_fname = file_path+'/dbscan not norm stats.txt'
 #name of dict with all binary clusters, maps epitope name to label to RP
list, where P is epitope fluor
 minmax_fname = file_path+'/all binary cluster data.txt'
 #name of dict with binaryIDS mapped to rows in data matrix
 binaryID_fname = file_path+'/binary_IDS_dict.txt'
 #name of file containing dict of binaryID statistics (abundance, number
points, MFIs, SDs)
 binary_stats_fname = file_path+ '/BinaryID stats dict.txt'
 #name of file containing dict of binaryID normalized statistics
(abundance, number points, MFIs, SDs)
 binary_norm_stats_fname = file_path+ '/BinaryID normalized stats
dict.txt'
 #name of file containing dict with filtered binaryIDs map to rows list
 filtered_binary_dict_fname = file_path+'/filtered binary barcode
dict.txt'
 #name of file containing dict with filtered binaryIDs map to stats
 filtered_binary_dict_stats_fname = file_path+'/filtered binary barcode
stats.txt'
 #name of dictionary with binaryid map to hsv label to 'HA' map to list of
RPL pairs
 final_barcode_dict_fname_ha = file_path+'/final barcode dict HA.txt'
 #name of dictionary with binaryid map to hsv label to 'HA' map to list of
RPL pairs
 final_barcode_dict_fname_au1 = file_path+'/final barcode dict AU1.txt'
 #name of dictionary with barcode ID mapped abundance and MFI, SD for

 237

fluororphores
 final_barcode_abundance_fname = file_path+'/Barcode abundance dict.txt'
 #name of dictionary with barcodeid mapped to rows list
 final_barcode_dict_fname = file_path+'/barcodeID to rows dict.txt'

 #use for BY control sample
 #dbscanparams_dict =
{'HIS':[0.08,50],'GLU':[0.08,50],'FLAG':[0.08,50],'HSV':[0.1,50]
 #
,'HA':[0.1,40],'AU1':[0.1,80],'T7':[0.08,50],'E2':[0.08,50],'V5':[0.08,50]
 # ,'AcV5':[0.08,50],'AU5':[0.08,50]}

 #use for Gen3 BY libraries
 dbscanparams_dict =
{'HIS':[0.1,100],'GLU':[0.1,100],'FLAG':[0.1,100],'HSV_bin':[0.15,100]

,'HA_bin':[0.1,40],'AU1_bin':[0.1,80],'T7':[0.08,50],'E2':[0.08,50],'V5':[0.0
8,50]
 ,'AcV5':[0.08,50],'AU5':[0.08,50]}

 #use for Gen3 control sample
 #binary_signature_order =
['T7','V5','AU5','AcV5','E2','HA','HSV','HIS','AU1','GLU','FLAG']

 #use for Gen3 BY Libs
 binary_signature_order = ['T7','V5','AU5','AcV5','E2','HIS','GLU','FLAG']

 ############RUN FUNCTIONS##################
 #transpose data, normalizes data
 data = transposedata(filename,tagspresent_dict,tfval_dict,start)

 #performs DBSCAN to cluster data subset, maps epitope name to RPL
 binary_dict = defaultdict(list)
 binary_dict =
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict
 ,binary_dict=binary_dict,currfluor = 'Marina
Blue',plotclusters =
True,file_path_binary=file_path_binary,directory=file_path)
 binary_dict =
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict
 ,binary_dict=binary_dict,currfluor =
'QDot525',plotclusters =
True,file_path_binary=file_path_binary,directory=file_path)
 binary_dict =
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict
 ,binary_dict=binary_dict,currfluor =
'QDot705',plotclusters =
True,file_path_binary=file_path_binary,directory=file_path)
 binary_dict =
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict
 ,binary_dict=binary_dict,currfluor =

 238

'PerCP',plotclusters =
True,file_path_binary=file_path_binary,directory=file_path)
 #binary_dict =
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict
 # ,binary_dict=binary_dict,currfluor =
'PE',plotclusters =
True,file_path_binary=file_path_binary,directory=file_path)
 binary_dict =
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict
 ,binary_dict=binary_dict,currfluor = 'PE-
Cy5',plotclusters =
True,file_path_binary=file_path_binary,directory=file_path)
 binary_dict =
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict
 ,binary_dict=binary_dict,currfluor = 'PE-
TexasRed',plotclusters =
True,file_path_binary=file_path_binary,directory=file_path)
 #binary_dict =
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict
 # ,binary_dict=binary_dict,currfluor = 'PE-
Cy5.5',plotclusters =
True,file_path_binary=file_path_binary,directory=file_path)
 binary_dict =
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict
 ,binary_dict=binary_dict,currfluor = 'PE-
Cy7',plotclusters =
True,file_path_binary=file_path_binary,directory=file_path)
 binary_dict =
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict
 ,binary_dict=binary_dict,currfluor =
'AF700',plotclusters =
True,file_path_binary=file_path_binary,directory=file_path)
 binary_dict =
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict
 ,binary_dict=binary_dict,currfluor = 'APC-
Cy7',plotclusters =
True,file_path_binary=file_path_binary,directory=file_path)
 #binary_dict =
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict
 # ,binary_dict=binary_dict,currfluor =
'AF647',plotclusters =
True,file_path_binary=file_path_binary,directory=file_path)

 #creates dictionary binning epitope name and label with RP list where
points are (normalized epitope fluor, FSC)
 DB_bin_dict_by_label = dbscan_binary_dict_by_label(dbscan_fname)

 #creates dictionary binning epitope name and label with RP list where
points are (cmyc fluor, epitope fluor)

 239

 NN_binary_dict_by_label =
notnorm_binary_dict_by_label(DB_bin_dict_by_label,log_data_fname,tagspresent_
dict)

 #calcuates normalized statistics for each binary cluster

calc_dbscan_stats(dict_by_label=DB_bin_dict_by_label,epitope_col=1,savefile='
dbscan norm stats.txt')

 #calcuates non-normalized statistics for each binary cluster

calc_dbscan_stats(dict_by_label=NN_binary_dict_by_label,epitope_col=1,savefil
e='dbscan not norm stats.txt')

 #uses statistics computed from DBSCAN to figure out labels for all
data,maps epitope to label to RP list, where P is epitope fluor
 binary_minmax_dict =
binary_minmax(tagspresent_dict,stats_fname=stats_notnorm_fname,data_fname=log
_data_fname)

 #makes dictionary with row (corresponding to original data matrix) map to
epitope name map to label
 binary_dict_by_rows = binaryids_by_rows(minmax_fname=minmax_fname)

 #makes dictionary with row map to binaryID (concatinated labels for each
epitope)
 row_binaryid_dict =
make_row_binaryid_dict(binary_dict_by_rows,binary_signature_order)

 #makes dictionary with binaryID map to list of rows
 binaryid_row_dict = swap_binaryid_row_dict(row_binaryid_dict)

 #calculates statistics for each binary ID (abundance, number points,
MFIs)
 [binid_stats_dict,binid_stats_dict_norm] =
calc_binaryID_stats(tagspresent_dict,binID_fname=binaryID_fname,norm_data_fna
me=norm_data_fname,data_fname=log_data_fname)

 #creates dictionary with binaryid map to 'epitope' map to list of
points(cmyc,fluor)
 plotdict =
plot_binary_clusters_data(binaryID_fname=binaryID_fname,tagspresent_dict=tags
present_dict,data_fname=log_data_fname)

 #plots data from plotdict epitope vs cmyc for all binaryids

#plot_binary_clusters(plotdict,directory=file_path,file_path_plots=file_path_
epitopes)

 #filters out FP barcodes based on expected value criteria
 [filtered_binary_clusters,filtered_binary_stats] =
filter_binary_clusters(binarydict_fname =
binaryID_fname,binary_stats_fname=binary_stats_fname,expected_value=0.1)

 #plots GFP histogram for each barcode

#GFP_hist(binID_fname=binary_ID_large_fname,data_fname=log_data_fname,BY_fnam

 240

e=BY_fname,GFP_col=5,directory=file_path)

 #######USE THESE ONLY IF YOU NEED TO USE KDE FILTERING FOR MULTIPLE
INTENSITY EPITOPES##########
 #clusters multi-intensity barcodes using DBSCAN and KDE filtering
 final_multi_dict = defaultdict(lambda: defaultdict(lambda:
defaultdict(list)))
 #[multi_dict,final_multi_dict] =
multicluster(dbscanparams_dict,tagspresent_dict,final_multi_dict,binaryid_fna
me=filtered_binary_dict_fname,
 #
data_fname=log_data_fname,epitope_to_cluster='HSV',plotclusters=True,director
y=file_path,subdirectory=file_path_hsv)

 #[multi_dict,final_multi_dict] =
multicluster(dbscanparams_dict,tagspresent_dict,final_multi_dict,binaryid_fna
me=filtered_binary_dict_fname,
 #
data_fname=log_data_fname,epitope_to_cluster='HA',plotclusters=True,directory
=file_path,subdirectory=file_path_ha)

 [multi_dict,final_multi_dict] =
multicluster(dbscanparams_dict,tagspresent_dict,final_multi_dict,binaryid_fna
me=filtered_binary_dict_fname,

data_fname=log_data_fname,epitope_to_cluster='AU1',plotclusters=True,director
y=file_path,subdirectory=file_path_au)

 #creates dictionary of barcodeid (11 number string) to row list
 [barcode_to_row_dict,barcode_abundance_dict] =
make_barcode_table(fname=[final_barcode_dict_fname_ha,final_barcode_dict_fnam
e_au1],data_fname=log_data_fname,tagspresent_dict=tagspresent_dict)

 #filters barcodes based on expected value criteria and returns new
dictionary, csv file
 [filtered_barcodes_dict,filtered_barcodes_stats] =
filter_clusters_multi(rowsdictfilename=final_barcode_dict_fname,statsdictfile
name=final_barcode_abundance_fname,expected_value=0.01)

 end = time.time()
 print '--- %s seconds ---' % str(end - start)

#call main
if __name__ == "__main__":
 main()

 241

SOFTWARE ESTIMATION OF BARCODE IDENTITIES AND
ABUNDANCES IN 11-EPITOPE TAG LIBRARIES

Table H.1: Software estimation of barcode identities and abundances in 11-color
library

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 36444 13.38
00000000010 0 0 0 0 0 0 0 0 0 1 0 29822 10.95
00000000110 0 0 0 0 0 0 0 0 1 1 0 23510 8.63
00000010101 0 0 0 0 0 0 1 0 1 0 1 16813 6.17
00000000101 0 0 0 0 0 0 0 0 1 0 1 15542 5.71
00000001010 0 0 0 0 0 0 0 1 0 1 0 12717 4.67
00000010001 0 0 0 0 0 0 1 0 0 0 1 12548 4.61
00000000001 0 0 0 0 0 0 0 0 0 0 1 11548 4.24
00000000100 0 0 0 0 0 0 0 0 1 0 0 10946 4.02
00000010000 0 0 0 0 0 0 1 0 0 0 0 10143 3.72
00000000011 0 0 0 0 0 0 0 0 0 1 1 8153 2.99
00000020000 0 0 0 0 0 0 2 0 0 0 0 7679 2.82
00000010011 0 0 0 0 0 0 1 0 0 1 1 5549 2.04
00000200000 0 0 0 0 0 2 0 0 0 0 0 4363 1.60
00000100010 0 0 0 0 0 1 0 0 0 1 0 4081 1.50
00000101010 0 0 0 0 0 1 0 1 0 1 0 3156 1.16
00000010100 0 0 0 0 0 0 1 0 1 0 0 3155 1.16
00000100000 0 0 0 0 0 1 0 0 0 0 0 3103 1.14
00000001101 0 0 0 0 0 0 0 1 1 0 1 2875 1.06
00000020200 0 0 0 0 0 0 2 0 2 0 0 2780 1.02
00000020101 0 0 0 0 0 0 2 0 1 0 1 2649 0.97
00000010010 0 0 0 0 0 0 1 0 0 1 0 2235 0.82
00000001000 0 0 0 0 0 0 0 1 0 0 0 2137 0.78
00000011010 0 0 0 0 0 0 1 1 0 1 0 1981 0.73
00000020001 0 0 0 0 0 0 2 0 0 0 1 1906 0.70
00000010110 0 0 0 0 0 0 1 0 1 1 0 1887 0.69
00000001110 0 0 0 0 0 0 0 1 1 1 0 1616 0.59
00000001100 0 0 0 0 0 0 0 1 1 0 0 1599 0.59
00000110001 0 0 0 0 0 1 1 0 0 0 1 1586 0.58
00000210001 0 0 0 0 0 2 1 0 0 0 1 1426 0.52
00000100001 0 0 0 0 0 1 0 0 0 0 1 1414 0.52
00000200001 0 0 0 0 0 2 0 0 0 0 1 1322 0.49
00000210000 0 0 0 0 0 2 1 0 0 0 0 1278 0.47
00000021010 0 0 0 0 0 0 2 1 0 1 0 1109 0.41
00000020010 0 0 0 0 0 0 2 0 0 1 0 1085 0.40
00000000111 0 0 0 0 0 0 0 0 1 1 1 1084 0.40
00000111011 0 0 0 0 0 1 1 1 0 1 1 1082 0.40
00000020011 0 0 0 0 0 0 2 0 0 1 1 1032 0.38
00000220000 0 0 0 0 0 2 2 0 0 0 0 1013 0.37
00000101011 0 0 0 0 0 1 0 1 0 1 1 1001 0.37

T7 Library

Appendix H

 242

00000011000 0 0 0 0 0 0 1 1 0 0 0 1000 0.37
00000001200 0 0 0 0 0 0 0 1 2 0 0 955 0.35
00000110000 0 0 0 0 0 1 1 0 0 0 0 953 0.35
00000101100 0 0 0 0 0 1 0 1 1 0 0 902 0.33
00000020110 0 0 0 0 0 0 2 0 1 1 0 880 0.32
00000010111 0 0 0 0 0 0 1 0 1 1 1 801 0.29
00000011100 0 0 0 0 0 0 1 1 1 0 0 799 0.29
00000011101 0 0 0 0 0 0 1 1 1 0 1 700 0.26
00000120000 0 0 0 0 0 1 2 0 0 0 0 663 0.24
00000100011 0 0 0 0 0 1 0 0 0 1 1 642 0.24
00000210101 0 0 0 0 0 2 1 0 1 0 1 637 0.23
00000200101 0 0 0 0 0 2 0 0 1 0 1 506 0.19
00000001001 0 0 0 0 0 0 0 1 0 0 1 468 0.17
00000011200 0 0 0 0 0 0 1 1 2 0 0 463 0.17
00000111100 0 0 0 0 0 1 1 1 1 0 0 463 0.17
00000110101 0 0 0 0 0 1 1 0 1 0 1 435 0.16
00000110011 0 0 0 0 0 1 1 0 0 1 1 347 0.13
00000200100 0 0 0 0 0 2 0 0 1 0 0 334 0.12
00000011110 0 0 0 0 0 0 1 1 1 1 0 327 0.12
00000100101 0 0 0 0 0 1 0 0 1 0 1 323 0.12
00000220001 0 0 0 0 0 2 2 0 0 0 1 293 0.11
00000110010 0 0 0 0 0 1 1 0 0 1 0 259 0.10
00000121010 0 0 0 0 0 1 2 1 0 1 0 241 0.09
00000211011 0 0 0 0 0 2 1 1 0 1 1 241 0.09
00000100110 0 0 0 0 0 1 0 0 1 1 0 236 0.09
00000101000 0 0 0 0 0 1 0 1 0 0 0 234 0.09
00000120001 0 0 0 0 0 1 2 0 0 0 1 233 0.09
00000201011 0 0 0 0 0 2 0 1 0 1 1 212 0.08
00000000210 0 0 0 0 0 0 0 0 2 1 0 199 0.07
00000101101 0 0 0 0 0 1 0 1 1 0 1 176 0.06
00000220101 0 0 0 0 0 2 2 0 1 0 1 153 0.06
00000020100 0 0 0 0 0 0 2 0 1 0 0 147 0.05
00000021011 0 0 0 0 0 0 2 1 0 1 1 142 0.05
00000111000 0 0 0 0 0 1 1 1 0 0 0 129 0.05
00000020111 0 0 0 0 0 0 2 0 1 1 1 123 0.05
00000011001 0 0 0 0 0 0 1 1 0 0 1 119 0.04
00000210100 0 0 0 0 0 2 1 0 1 0 0 117 0.04
00000111111 0 0 0 0 0 1 1 1 1 1 1 113 0.04
00000101111 0 0 0 0 0 1 0 1 1 1 1 112 0.04

 243

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 24567 14.89
00000000010 0 0 0 0 0 0 0 0 0 1 0 22146 13.42
00000000110 0 0 0 0 0 0 0 0 1 1 0 16149 9.78
00000101010 0 0 0 0 0 1 0 1 0 1 0 7723 4.68
00000010001 0 0 0 0 0 0 1 0 0 0 1 7481 4.53
00000010000 0 0 0 0 0 0 1 0 0 0 0 7263 4.40
00000000100 0 0 0 0 0 0 0 0 1 0 0 6587 3.99
00000010101 0 0 0 0 0 0 1 0 1 0 1 6563 3.98
00000010011 0 0 0 0 0 0 1 0 0 1 1 6146 3.72
00000000001 0 0 0 0 0 0 0 0 0 0 1 4204 2.55
00000201010 0 0 0 0 0 2 0 1 0 1 0 4191 2.54
00000200000 0 0 0 0 0 2 0 0 0 0 0 3955 2.40
00000000011 0 0 0 0 0 0 0 0 0 1 1 3745 2.27
00000000101 0 0 0 0 0 0 0 0 1 0 1 3555 2.15
00000100010 0 0 0 0 0 1 0 0 0 1 0 2381 1.44
00000001000 0 0 0 0 0 0 0 1 0 0 0 2304 1.40
00000010010 0 0 0 0 0 0 1 0 0 1 0 2063 1.25
00000010100 0 0 0 0 0 0 1 0 1 0 0 1888 1.14
00000101110 0 0 0 0 0 1 0 1 1 1 0 1836 1.11
00000001100 0 0 0 0 0 0 0 1 1 0 0 1715 1.04
00000011011 0 0 0 0 0 0 1 1 0 1 1 1588 0.96
00000001101 0 0 0 0 0 0 0 1 1 0 1 1555 0.94
00000010110 0 0 0 0 0 0 1 0 1 1 0 1531 0.93
00000100000 0 0 0 0 0 1 0 0 0 0 0 1419 0.86
00000110001 0 0 0 0 0 1 1 0 0 0 1 1344 0.81
00000011000 0 0 0 0 0 0 1 1 0 0 0 1307 0.79
00000210000 0 0 0 0 0 2 1 0 0 0 0 1203 0.73
00000010111 0 0 0 0 0 0 1 0 1 1 1 1113 0.67
00000021010 0 0 0 0 0 0 2 1 0 1 0 1047 0.63
00000011100 0 0 0 0 0 0 1 1 1 0 0 1019 0.62
00000020001 0 0 0 0 0 0 2 0 0 0 1 950 0.58
00000111010 0 0 0 0 0 1 1 1 0 1 0 947 0.57
00000011010 0 0 0 0 0 0 1 1 0 1 0 918 0.56
00000020101 0 0 0 0 0 0 2 0 1 0 1 862 0.52
00000100001 0 0 0 0 0 1 0 0 0 0 1 808 0.49
00000001011 0 0 0 0 0 0 0 1 0 1 1 736 0.45
00000210101 0 0 0 0 0 2 1 0 1 0 1 719 0.44
00000000111 0 0 0 0 0 0 0 0 1 1 1 616 0.37
00000110011 0 0 0 0 0 1 1 0 0 1 1 584 0.35
00000121010 0 0 0 0 0 1 2 1 0 1 0 565 0.34

V5 Library

 244

00000100110 0 0 0 0 0 1 0 0 1 1 0 522 0.32
00000011201 0 0 0 0 0 0 1 1 2 0 1 500 0.30
00000110101 0 0 0 0 0 1 1 0 1 0 1 446 0.27
00000100011 0 0 0 0 0 1 0 0 0 1 1 413 0.25
00000210001 0 0 0 0 0 2 1 0 0 0 1 411 0.25
00000200101 0 0 0 0 0 2 0 0 1 0 1 393 0.24
00000110000 0 0 0 0 0 1 1 0 0 0 0 381 0.23
00000020010 0 0 0 0 0 0 2 0 0 1 0 366 0.22
00000011110 0 0 0 0 0 0 1 1 1 1 0 349 0.21
00000200100 0 0 0 0 0 2 0 0 1 0 0 339 0.21
00000020000 0 0 0 0 0 0 2 0 0 0 0 335 0.20
00000100101 0 0 0 0 0 1 0 0 1 0 1 276 0.17
00000011111 0 0 0 0 0 0 1 1 1 1 1 258 0.16
00000001001 0 0 0 0 0 0 0 1 0 0 1 253 0.15
00000200001 0 0 0 0 0 2 0 0 0 0 1 219 0.13
00000020210 0 0 0 0 0 0 2 0 2 1 0 216 0.13
00000110010 0 0 0 0 0 1 1 0 0 1 0 184 0.11
00000100100 0 0 0 0 0 1 0 0 1 0 0 152 0.09
00000111011 0 0 0 0 0 1 1 1 0 1 1 146 0.09
00000120001 0 0 0 0 0 1 2 0 0 0 1 140 0.08
00000001111 0 0 0 0 0 0 0 1 1 1 1 118 0.07
00000020100 0 0 0 0 0 0 2 0 1 0 0 109 0.07
00000021110 0 0 0 0 0 0 2 1 1 1 0 104 0.06
00000201110 0 0 0 0 0 2 0 1 1 1 0 100 0.06

 245

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 10395 20.15
00000010001 0 0 0 0 0 0 1 0 0 0 1 3771 7.31
00000010000 0 0 0 0 0 0 1 0 0 0 0 3714 7.20
00000000100 0 0 0 0 0 0 0 0 1 0 0 3221 6.24
00000010101 0 0 0 0 0 0 1 0 1 0 1 2740 5.31
00000000001 0 0 0 0 0 0 0 0 0 0 1 2677 5.19
00000000011 0 0 0 0 0 0 0 0 0 1 1 2541 4.93
00000101010 0 0 0 0 0 1 0 1 0 1 0 2204 4.27
00000000101 0 0 0 0 0 0 0 0 1 0 1 1908 3.70
00000010011 0 0 0 0 0 0 1 0 0 1 1 1885 3.65
00000200000 0 0 0 0 0 2 0 0 0 0 0 1645 3.19
00000201010 0 0 0 0 0 2 0 1 0 1 0 1452 2.81
00000020000 0 0 0 0 0 0 2 0 0 0 0 1419 2.75
00000100000 0 0 0 0 0 1 0 0 0 0 0 1279 2.48
00000010100 0 0 0 0 0 0 1 0 1 0 0 1197 2.32
00000001101 0 0 0 0 0 0 0 1 1 0 1 1016 1.97
00000210000 0 0 0 0 0 2 1 0 0 0 0 603 1.17
00000110001 0 0 0 0 0 1 1 0 0 0 1 565 1.10
00000001000 0 0 0 0 0 0 0 1 0 0 0 514 1.00
00000020100 0 0 0 0 0 0 2 0 1 0 0 459 0.89
00000000111 0 0 0 0 0 0 0 0 1 1 1 448 0.87
00000110000 0 0 0 0 0 1 1 0 0 0 0 416 0.81
00000001100 0 0 0 0 0 0 0 1 1 0 0 405 0.79
00000010111 0 0 0 0 0 0 1 0 1 1 1 382 0.74
00000011000 0 0 0 0 0 0 1 1 0 0 0 381 0.74
00000101110 0 0 0 0 0 1 0 1 1 1 0 381 0.74
00000100001 0 0 0 0 0 1 0 0 0 0 1 351 0.68
00000011011 0 0 0 0 0 0 1 1 0 1 1 337 0.65
00000211010 0 0 0 0 0 2 1 1 0 1 0 291 0.56
00000011100 0 0 0 0 0 0 1 1 1 0 0 272 0.53
00000100011 0 0 0 0 0 1 0 0 0 1 1 268 0.52
00000101100 0 0 0 0 0 1 0 1 1 0 0 240 0.47
00000220000 0 0 0 0 0 2 2 0 0 0 0 204 0.40
00000001011 0 0 0 0 0 0 0 1 0 1 1 183 0.35
00000110011 0 0 0 0 0 1 1 0 0 1 1 165 0.32
00000011001 0 0 0 0 0 0 1 1 0 0 1 162 0.31
00000111100 0 0 0 0 0 1 1 1 1 0 0 151 0.29
00000021010 0 0 0 0 0 0 2 1 0 1 0 145 0.28
00000120000 0 0 0 0 0 1 2 0 0 0 0 139 0.27
00000110101 0 0 0 0 0 1 1 0 1 0 1 136 0.26

T7/V5/AU5 Library

00000001001 0 0 0 0 0 0 0 1 0 0 1 135 0.26

 246

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 12343 15.25
00000000010 0 0 0 0 0 0 0 0 0 1 0 8290 10.24
00000000110 0 0 0 0 0 0 0 0 1 1 0 5852 7.23
00000010000 0 0 0 0 0 0 1 0 0 0 0 5106 6.31
00000010001 0 0 0 0 0 0 1 0 0 0 1 4639 5.73
00000020000 0 0 0 0 0 0 2 0 0 0 0 4174 5.16
00000000001 0 0 0 0 0 0 0 0 0 0 1 4142 5.12
00000000100 0 0 0 0 0 0 0 0 1 0 0 4084 5.05
00000010101 0 0 0 0 0 0 1 0 1 0 1 3682 4.55
00000000101 0 0 0 0 0 0 0 0 1 0 1 3111 3.84
00000001010 0 0 0 0 0 0 0 1 0 1 0 2170 2.68
00000200000 0 0 0 0 0 2 0 0 0 0 0 1857 2.29
00000010100 0 0 0 0 0 0 1 0 1 0 0 1717 2.12
00000020100 0 0 0 0 0 0 2 0 1 0 0 1551 1.92
00000000011 0 0 0 0 0 0 0 0 0 1 1 1409 1.74
00000010010 0 0 0 0 0 0 1 0 0 1 0 1162 1.44
00000100000 0 0 0 0 0 1 0 0 0 0 0 968 1.20
00000010011 0 0 0 0 0 0 1 0 0 1 1 856 1.06
00000210000 0 0 0 0 0 2 1 0 0 0 0 801 0.99
00000100001 0 0 0 0 0 1 0 0 0 0 1 799 0.99
00000010110 0 0 0 0 0 0 1 0 1 1 0 793 0.98
00000001000 0 0 0 0 0 0 0 1 0 0 0 764 0.94
00000001100 0 0 0 0 0 0 0 1 1 0 0 753 0.93
00000110001 0 0 0 0 0 1 1 0 0 0 1 750 0.93
00000220000 0 0 0 0 0 2 2 0 0 0 0 677 0.84
00000100101 0 0 0 0 0 1 0 0 1 0 1 570 0.70
00000100010 0 0 0 0 0 1 0 0 0 1 0 520 0.64
00000200100 0 0 0 0 0 2 0 0 1 0 0 434 0.54
00000120000 0 0 0 0 0 1 2 0 0 0 0 430 0.53
00000101010 0 0 0 0 0 1 0 1 0 1 0 390 0.48
00000210101 0 0 0 0 0 2 1 0 1 0 1 359 0.44
00000011100 0 0 0 0 0 0 1 1 1 0 0 358 0.44
00000110000 0 0 0 0 0 1 1 0 0 0 0 354 0.44
00000001101 0 0 0 0 0 0 0 1 1 0 1 348 0.43
00000020001 0 0 0 0 0 0 2 0 0 0 1 345 0.43
00000011000 0 0 0 0 0 0 1 1 0 0 0 306 0.38
00000110010 0 0 0 0 0 1 1 0 0 1 0 301 0.37
00000110101 0 0 0 0 0 1 1 0 1 0 1 294 0.36
00000001110 0 0 0 0 0 0 0 1 1 1 0 284 0.35
00000000111 0 0 0 0 0 0 0 0 1 1 1 276 0.34

T7/V5/E2 Library

 247

00000020101 0 0 0 0 0 0 2 0 1 0 1 262 0.32
00000210001 0 0 0 0 0 2 1 0 0 0 1 185 0.23
00000100100 0 0 0 0 0 1 0 0 1 0 0 185 0.23
00000210100 0 0 0 0 0 2 1 0 1 0 0 177 0.22
00000100011 0 0 0 0 0 1 0 0 0 1 1 165 0.20
00000100110 0 0 0 0 0 1 0 0 1 1 0 151 0.19
00000011010 0 0 0 0 0 0 1 1 0 1 0 150 0.19
00000101100 0 0 0 0 0 1 0 1 1 0 0 148 0.18
00000220100 0 0 0 0 0 2 2 0 1 0 0 135 0.17
00000010111 0 0 0 0 0 0 1 0 1 1 1 133 0.16
00000001001 0 0 0 0 0 0 0 1 0 0 1 125 0.15
00000110110 0 0 0 0 0 1 1 0 1 1 0 111 0.14
00000200010 0 0 0 0 0 2 0 0 0 1 0 104 0.13

 248

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000110 0 0 0 0 0 0 0 0 1 1 0 16049 11.98
00000000000 0 0 0 0 0 0 0 0 0 0 0 15474 11.55
00000000010 0 0 0 0 0 0 0 0 0 1 0 14484 10.81
00000101010 0 0 0 0 0 1 0 1 0 1 0 7616 5.69
00000000200 0 0 0 0 0 0 0 0 2 0 0 6458 4.82
00000010101 0 0 0 0 0 0 1 0 1 0 1 5335 3.98
00000000101 0 0 0 0 0 0 0 0 1 0 1 5298 3.96
00000201010 0 0 0 0 0 2 0 1 0 1 0 4824 3.60
00000000011 0 0 0 0 0 0 0 0 0 1 1 4180 3.12
00000200000 0 0 0 0 0 2 0 0 0 0 0 4049 3.02
00000010001 0 0 0 0 0 0 1 0 0 0 1 4042 3.02
00000000001 0 0 0 0 0 0 0 0 0 0 1 4037 3.01
00000010011 0 0 0 0 0 0 1 0 0 1 1 3704 2.77
00000010000 0 0 0 0 0 0 1 0 0 0 0 3591 2.68
00000100010 0 0 0 0 0 1 0 0 0 1 0 2032 1.52
00000100000 0 0 0 0 0 1 0 0 0 0 0 2003 1.50
00000010110 0 0 0 0 0 0 1 0 1 1 0 1999 1.49
00000001000 0 0 0 0 0 0 0 1 0 0 0 1743 1.30
00000020000 0 0 0 0 0 0 2 0 0 0 0 1742 1.30
00000001101 0 0 0 0 0 0 0 1 1 0 1 1691 1.26
00000020101 0 0 0 0 0 0 2 0 1 0 1 1536 1.15
00000010100 0 0 0 0 0 0 1 0 1 0 0 1501 1.12
00000010010 0 0 0 0 0 0 1 0 0 1 0 1430 1.07
00000021010 0 0 0 0 0 0 2 1 0 1 0 1222 0.91
00000011000 0 0 0 0 0 0 1 1 0 0 0 1221 0.91
00000020001 0 0 0 0 0 0 2 0 0 0 1 1194 0.89
00000000111 0 0 0 0 0 0 0 0 1 1 1 1046 0.78
00000210000 0 0 0 0 0 2 1 0 0 0 0 1035 0.77
00000001100 0 0 0 0 0 0 0 1 1 0 0 997 0.74
00000010111 0 0 0 0 0 0 1 0 1 1 1 965 0.72
00000111010 0 0 0 0 0 1 1 1 0 1 0 835 0.62
00000011100 0 0 0 0 0 0 1 1 1 0 0 691 0.52
00000100011 0 0 0 0 0 1 0 0 0 1 1 681 0.51
00000020100 0 0 0 0 0 0 2 0 1 0 0 647 0.48
00000110000 0 0 0 0 0 1 1 0 0 0 0 572 0.43
00000110011 0 0 0 0 0 1 1 0 0 1 1 563 0.42
00000211010 0 0 0 0 0 2 1 1 0 1 0 543 0.41
00000220000 0 0 0 0 0 2 2 0 0 0 0 467 0.35
00000101110 0 0 0 0 0 1 0 1 1 1 0 450 0.34
00000120010 0 0 0 0 0 1 2 0 0 1 0 423 0.32

E2 Library

 249

00000111011 0 0 0 0 0 1 1 1 0 1 1 411 0.31
00000101011 0 0 0 0 0 1 0 1 0 1 1 395 0.29
00000020010 0 0 0 0 0 0 2 0 0 1 0 378 0.28
00000121010 0 0 0 0 0 1 2 1 0 1 0 334 0.25
00000020110 0 0 0 0 0 0 2 0 1 1 0 308 0.23
00000100110 0 0 0 0 0 1 0 0 1 1 0 294 0.22
00000120001 0 0 0 0 0 1 2 0 0 0 1 279 0.21
00000101100 0 0 0 0 0 1 0 1 1 0 0 227 0.17
00000120000 0 0 0 0 0 1 2 0 0 0 0 222 0.17
00000001001 0 0 0 0 0 0 0 1 0 0 1 221 0.16
00000120101 0 0 0 0 0 1 2 0 1 0 1 210 0.16
00000201011 0 0 0 0 0 2 0 1 0 1 1 170 0.13
00000000100 0 0 0 0 0 0 0 0 1 0 0 157 0.12
00000111100 0 0 0 0 0 1 1 1 1 0 0 150 0.11
00000200200 0 0 0 0 0 2 0 0 2 0 0 145 0.11
00000021011 0 0 0 0 0 0 2 1 0 1 1 140 0.10
00000110111 0 0 0 0 0 1 1 0 1 1 1 135 0.10
00000211011 0 0 0 0 0 2 1 1 0 1 1 134 0.10
00000111111 0 0 0 0 0 1 1 1 1 1 1 131 0.10
00000100111 0 0 0 0 0 1 0 0 1 1 1 121 0.09
00000101111 0 0 0 0 0 1 0 1 1 1 1 116 0.09
00000101000 0 0 0 0 0 1 0 1 0 0 0 109 0.08
00000211110 0 0 0 0 0 2 1 1 1 1 0 100 0.07

 250

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 28687 13.71
00000000010 0 0 0 0 0 0 0 0 0 1 0 21597 10.32
00000000110 0 0 0 0 0 0 0 0 1 1 0 16781 8.02
00000010001 0 0 0 0 0 0 1 0 0 0 1 11045 5.28
00000010000 0 0 0 0 0 0 1 0 0 0 0 9533 4.56
00000010011 0 0 0 0 0 0 1 0 0 1 1 8464 4.05
00000000200 0 0 0 0 0 0 0 0 2 0 0 7909 3.78
00000000001 0 0 0 0 0 0 0 0 0 0 1 7880 3.77
00000010101 0 0 0 0 0 0 1 0 1 0 1 7800 3.73
00000101010 0 0 0 0 0 1 0 1 0 1 0 7375 3.53
00000000011 0 0 0 0 0 0 0 0 0 1 1 7011 3.35
00000000101 0 0 0 0 0 0 0 0 1 0 1 5397 2.58
00000200000 0 0 0 0 0 2 0 0 0 0 0 5011 2.40
00000201010 0 0 0 0 0 2 0 1 0 1 0 4552 2.18
00000100010 0 0 0 0 0 1 0 0 0 1 0 4543 2.17
00000001101 0 0 0 0 0 0 0 1 1 0 1 2834 1.35
00000010010 0 0 0 0 0 0 1 0 0 1 0 2802 1.34
00000010100 0 0 0 0 0 0 1 0 1 0 0 2618 1.25
00000020000 0 0 0 0 0 0 2 0 0 0 0 2439 1.17
00000020001 0 0 0 0 0 0 2 0 0 0 1 2285 1.09
00000001100 0 0 0 0 0 0 0 1 1 0 0 2216 1.06
00000010110 0 0 0 0 0 0 1 0 1 1 0 2162 1.03
00000001000 0 0 0 0 0 0 0 1 0 0 0 1985 0.95
00000100000 0 0 0 0 0 1 0 0 0 0 0 1901 0.91
00000011010 0 0 0 0 0 0 1 1 0 1 0 1827 0.87
00000010111 0 0 0 0 0 0 1 0 1 1 1 1728 0.83
00000210000 0 0 0 0 0 2 1 0 0 0 0 1697 0.81
00000011100 0 0 0 0 0 0 1 1 1 0 0 1590 0.76
00000110001 0 0 0 0 0 1 1 0 0 0 1 1491 0.71
00000020101 0 0 0 0 0 0 2 0 1 0 1 1485 0.71
00000011011 0 0 0 0 0 0 1 1 0 1 1 1405 0.67
00000011000 0 0 0 0 0 0 1 1 0 0 0 1379 0.66
00000000111 0 0 0 0 0 0 0 0 1 1 1 1376 0.66
00000100110 0 0 0 0 0 1 0 0 1 1 0 1254 0.60
00000101110 0 0 0 0 0 1 0 1 1 1 0 1174 0.56
00000111010 0 0 0 0 0 1 1 1 0 1 0 1166 0.56
00000100001 0 0 0 0 0 1 0 0 0 0 1 1014 0.48
00000110011 0 0 0 0 0 1 1 0 0 1 1 873 0.42
00000121010 0 0 0 0 0 1 2 1 0 1 0 732 0.35
00000100011 0 0 0 0 0 1 0 0 0 1 1 726 0.35

AU5 Library

 251

00000101011 0 0 0 0 0 1 0 1 0 1 1 630 0.30
00000110000 0 0 0 0 0 1 1 0 0 0 0 611 0.29
00000110010 0 0 0 0 0 1 1 0 0 1 0 610 0.29
00000210101 0 0 0 0 0 2 1 0 1 0 1 604 0.29
00000020011 0 0 0 0 0 0 2 0 0 1 1 603 0.29
00000001001 0 0 0 0 0 0 0 1 0 0 1 600 0.29
00000021010 0 0 0 0 0 0 2 1 0 1 0 596 0.28
00000020010 0 0 0 0 0 0 2 0 0 1 0 583 0.28
00000020100 0 0 0 0 0 0 2 0 1 0 0 573 0.27
00000020110 0 0 0 0 0 0 2 0 1 1 0 474 0.23
00000101100 0 0 0 0 0 1 0 1 1 0 0 473 0.23
00000220000 0 0 0 0 0 2 2 0 0 0 0 459 0.22
00000110101 0 0 0 0 0 1 1 0 1 0 1 438 0.21
00000011201 0 0 0 0 0 0 1 1 2 0 1 419 0.20
00000210001 0 0 0 0 0 2 1 0 0 0 1 411 0.20
00000011111 0 0 0 0 0 0 1 1 1 1 1 408 0.20
00000111100 0 0 0 0 0 1 1 1 1 0 0 403 0.19
00000120001 0 0 0 0 0 1 2 0 0 0 1 395 0.19
00000200101 0 0 0 0 0 2 0 0 1 0 1 388 0.19
00000011110 0 0 0 0 0 0 1 1 1 1 0 341 0.16
00000100101 0 0 0 0 0 1 0 0 1 0 1 303 0.14
00000200001 0 0 0 0 0 2 0 0 0 0 1 274 0.13
00000101111 0 0 0 0 0 1 0 1 1 1 1 258 0.12
00000200200 0 0 0 0 0 2 0 0 2 0 0 242 0.12
00000100200 0 0 0 0 0 1 0 0 2 0 0 220 0.11
00000120101 0 0 0 0 0 1 2 0 1 0 1 206 0.10
00000120000 0 0 0 0 0 1 2 0 0 0 0 192 0.09
00000201110 0 0 0 0 0 2 0 1 1 1 0 161 0.08
00000110110 0 0 0 0 0 1 1 0 1 1 0 143 0.07
00000001201 0 0 0 0 0 0 0 1 2 0 1 140 0.07
00000021110 0 0 0 0 0 0 2 1 1 1 0 137 0.07
00000120010 0 0 0 0 0 1 2 0 0 1 0 126 0.06
00000020111 0 0 0 0 0 0 2 0 1 1 1 117 0.06
00000210100 0 0 0 0 0 2 1 0 1 0 0 100 0.05

 252

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000010 0 0 0 0 0 0 0 0 0 1 0 23611 15.03
00000000000 0 0 0 0 0 0 0 0 0 0 0 18132 11.54
00000101010 0 0 0 0 0 1 0 1 0 1 0 8496 5.41
00000000110 0 0 0 0 0 0 0 0 1 1 0 8435 5.37
00000010000 0 0 0 0 0 0 1 0 0 0 0 7912 5.04
00000100010 0 0 0 0 0 1 0 0 0 1 0 5709 3.63
00000000100 0 0 0 0 0 0 0 0 1 0 0 5644 3.59
00000000001 0 0 0 0 0 0 0 0 0 0 1 5401 3.44
00000201010 0 0 0 0 0 2 0 1 0 1 0 4982 3.17
00000000011 0 0 0 0 0 0 0 0 0 1 1 4941 3.14
00000010011 0 0 0 0 0 0 1 0 0 1 1 4572 2.91
00000000101 0 0 0 0 0 0 0 0 1 0 1 4410 2.81
00000010101 0 0 0 0 0 0 1 0 1 0 1 4202 2.67
00000010010 0 0 0 0 0 0 1 0 0 1 0 4190 2.67
00000200000 0 0 0 0 0 2 0 0 0 0 0 4172 2.66
00000010001 0 0 0 0 0 0 1 0 0 0 1 4066 2.59
00000010100 0 0 0 0 0 0 1 0 1 0 0 2494 1.59
00000010110 0 0 0 0 0 0 1 0 1 1 0 2153 1.37
00000001101 0 0 0 0 0 0 0 1 1 0 1 2057 1.31
00000210000 0 0 0 0 0 2 1 0 0 0 0 1933 1.23
00000020000 0 0 0 0 0 0 2 0 0 0 0 1821 1.16
00000001000 0 0 0 0 0 0 0 1 0 0 0 1778 1.13
00000100000 0 0 0 0 0 1 0 0 0 0 0 1567 1.00
00000111010 0 0 0 0 0 1 1 1 0 1 0 1227 0.78
00000000111 0 0 0 0 0 0 0 0 1 1 1 1161 0.74
00000110011 0 0 0 0 0 1 1 0 0 1 1 1084 0.69
00000001100 0 0 0 0 0 0 0 1 1 0 0 1061 0.68
00000011000 0 0 0 0 0 0 1 1 0 0 0 1038 0.66
00000100110 0 0 0 0 0 1 0 0 1 1 0 1026 0.65
00000110010 0 0 0 0 0 1 1 0 0 1 0 1011 0.64
00000111011 0 0 0 0 0 1 1 1 0 1 1 874 0.56
00000010111 0 0 0 0 0 0 1 0 1 1 1 826 0.53
00000021010 0 0 0 0 0 0 2 1 0 1 0 817 0.52
00000020010 0 0 0 0 0 0 2 0 0 1 0 794 0.51
00000101011 0 0 0 0 0 1 0 1 0 1 1 777 0.49
00000000210 0 0 0 0 0 0 0 0 2 1 0 761 0.48
00000110000 0 0 0 0 0 1 1 0 0 0 0 755 0.48
00000101110 0 0 0 0 0 1 0 1 1 1 0 719 0.46
00000100011 0 0 0 0 0 1 0 0 0 1 1 710 0.45
00000020001 0 0 0 0 0 0 2 0 0 0 1 636 0.40

V5/AU5 Library

 253

00000011100 0 0 0 0 0 0 1 1 1 0 0 617 0.39
00000020100 0 0 0 0 0 0 2 0 1 0 0 608 0.39
00000020101 0 0 0 0 0 0 2 0 1 0 1 562 0.36
00000020011 0 0 0 0 0 0 2 0 0 1 1 559 0.36
00000220000 0 0 0 0 0 2 2 0 0 0 0 472 0.30
00000211010 0 0 0 0 0 2 1 1 0 1 0 470 0.30
00000200101 0 0 0 0 0 2 0 0 1 0 1 441 0.28
00000100001 0 0 0 0 0 1 0 0 0 0 1 439 0.28
00000200100 0 0 0 0 0 2 0 0 1 0 0 418 0.27
00000111110 0 0 0 0 0 1 1 1 1 1 0 393 0.25
00000121010 0 0 0 0 0 1 2 1 0 1 0 356 0.23
00000001001 0 0 0 0 0 0 0 1 0 0 1 332 0.21
00000100111 0 0 0 0 0 1 0 0 1 1 1 302 0.19
00000100101 0 0 0 0 0 1 0 0 1 0 1 229 0.15
00000120000 0 0 0 0 0 1 2 0 0 0 0 226 0.14
00000200001 0 0 0 0 0 2 0 0 0 0 1 215 0.14
00000110110 0 0 0 0 0 1 1 0 1 1 0 206 0.13
00000020210 0 0 0 0 0 0 2 0 2 1 0 203 0.13
00000120010 0 0 0 0 0 1 2 0 0 1 0 188 0.12
00000210100 0 0 0 0 0 2 1 0 1 0 0 186 0.12
00000101100 0 0 0 0 0 1 0 1 1 0 0 179 0.11
00000201110 0 0 0 0 0 2 0 1 1 1 0 178 0.11
00000011001 0 0 0 0 0 0 1 1 0 0 1 143 0.09
00000120101 0 0 0 0 0 1 2 0 1 0 1 124 0.08

 254

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 16719 13.77
00000000010 0 0 0 0 0 0 0 0 0 1 0 15570 12.82
00000000110 0 0 0 0 0 0 0 0 1 1 0 10495 8.64
00000000200 0 0 0 0 0 0 0 0 2 0 0 6562 5.40
00000000001 0 0 0 0 0 0 0 0 0 0 1 5921 4.88
00000010001 0 0 0 0 0 0 1 0 0 0 1 5716 4.71
00000000101 0 0 0 0 0 0 0 0 1 0 1 5409 4.46
00000010101 0 0 0 0 0 0 1 0 1 0 1 5383 4.43
00000200000 0 0 0 0 0 2 0 0 0 0 0 4319 3.56
00000001010 0 0 0 0 0 0 0 1 0 1 0 4240 3.49
00000001101 0 0 0 0 0 0 0 1 1 0 1 3196 2.63
00000010000 0 0 0 0 0 0 1 0 0 0 0 2804 2.31
00000000011 0 0 0 0 0 0 0 0 0 1 1 2689 2.21
00000010011 0 0 0 0 0 0 1 0 0 1 1 2584 2.13
00000001000 0 0 0 0 0 0 0 1 0 0 0 2199 1.81
00000010010 0 0 0 0 0 0 1 0 0 1 0 2057 1.69
00000001100 0 0 0 0 0 0 0 1 1 0 0 1910 1.57
00000100010 0 0 0 0 0 1 0 0 0 1 0 1644 1.35
00000020000 0 0 0 0 0 0 2 0 0 0 0 1356 1.12
00000001110 0 0 0 0 0 0 0 1 1 1 0 1348 1.11
00000011000 0 0 0 0 0 0 1 1 0 0 0 1310 1.08
00000010100 0 0 0 0 0 0 1 0 1 0 0 1143 0.94
00000011100 0 0 0 0 0 0 1 1 1 0 0 1111 0.92
00000010210 0 0 0 0 0 0 1 0 2 1 0 1022 0.84
00000011011 0 0 0 0 0 0 1 1 0 1 1 820 0.68
00000011101 0 0 0 0 0 0 1 1 1 0 1 801 0.66
00000210000 0 0 0 0 0 2 1 0 0 0 0 725 0.60
00000011010 0 0 0 0 0 0 1 1 0 1 0 713 0.59
00000000111 0 0 0 0 0 0 0 0 1 1 1 664 0.55
00000020001 0 0 0 0 0 0 2 0 0 0 1 655 0.54
00000100110 0 0 0 0 0 1 0 0 1 1 0 649 0.53
00000101010 0 0 0 0 0 1 0 1 0 1 0 634 0.52
00000010111 0 0 0 0 0 0 1 0 1 1 1 618 0.51
00000020100 0 0 0 0 0 0 2 0 1 0 0 597 0.49
00000100000 0 0 0 0 0 1 0 0 0 0 0 573 0.47
00000020101 0 0 0 0 0 0 2 0 1 0 1 572 0.47
00000120010 0 0 0 0 0 1 2 0 0 1 0 567 0.47
00000110001 0 0 0 0 0 1 1 0 0 0 1 512 0.42
00000020110 0 0 0 0 0 0 2 0 1 1 0 496 0.41
00000001001 0 0 0 0 0 0 0 1 0 0 1 412 0.34

T7/V5 Library

 255

00000100001 0 0 0 0 0 1 0 0 0 0 1 411 0.34
00000120000 0 0 0 0 0 1 2 0 0 0 0 366 0.30
00000021010 0 0 0 0 0 0 2 1 0 1 0 288 0.24
00000001011 0 0 0 0 0 0 0 1 0 1 1 286 0.24
00000001201 0 0 0 0 0 0 0 1 2 0 1 249 0.21
00000111010 0 0 0 0 0 1 1 1 0 1 0 247 0.20
00000011110 0 0 0 0 0 0 1 1 1 1 0 242 0.20
00000110101 0 0 0 0 0 1 1 0 1 0 1 238 0.20
00000100101 0 0 0 0 0 1 0 0 1 0 1 199 0.16
00000210101 0 0 0 0 0 2 1 0 1 0 1 184 0.15
00000011111 0 0 0 0 0 0 1 1 1 1 1 164 0.14
00000200200 0 0 0 0 0 2 0 0 2 0 0 157 0.13
00000011001 0 0 0 0 0 0 1 1 0 0 1 114 0.09
00000121010 0 0 0 0 0 1 2 1 0 1 0 110 0.09
00000021110 0 0 0 0 0 0 2 1 1 1 0 100 0.08

 256

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 16719 13.77
00000000010 0 0 0 0 0 0 0 0 0 1 0 15570 12.82
00000000110 0 0 0 0 0 0 0 0 1 1 0 10495 8.64
00000000200 0 0 0 0 0 0 0 0 2 0 0 6562 5.40
00000000001 0 0 0 0 0 0 0 0 0 0 1 5921 4.88
00000010001 0 0 0 0 0 0 1 0 0 0 1 5716 4.71
00000000101 0 0 0 0 0 0 0 0 1 0 1 5409 4.46
00000010101 0 0 0 0 0 0 1 0 1 0 1 5383 4.43
00000200000 0 0 0 0 0 2 0 0 0 0 0 4319 3.56
00000001010 0 0 0 0 0 0 0 1 0 1 0 4240 3.49
00000001101 0 0 0 0 0 0 0 1 1 0 1 3196 2.63
00000010000 0 0 0 0 0 0 1 0 0 0 0 2804 2.31
00000000011 0 0 0 0 0 0 0 0 0 1 1 2689 2.21
00000010011 0 0 0 0 0 0 1 0 0 1 1 2584 2.13
00000001000 0 0 0 0 0 0 0 1 0 0 0 2199 1.81
00000010010 0 0 0 0 0 0 1 0 0 1 0 2057 1.69
00000001100 0 0 0 0 0 0 0 1 1 0 0 1910 1.57
00000100010 0 0 0 0 0 1 0 0 0 1 0 1644 1.35
00000020000 0 0 0 0 0 0 2 0 0 0 0 1356 1.12
00000001110 0 0 0 0 0 0 0 1 1 1 0 1348 1.11
00000011000 0 0 0 0 0 0 1 1 0 0 0 1310 1.08
00000010100 0 0 0 0 0 0 1 0 1 0 0 1143 0.94
00000011100 0 0 0 0 0 0 1 1 1 0 0 1111 0.92
00000010210 0 0 0 0 0 0 1 0 2 1 0 1022 0.84
00000011011 0 0 0 0 0 0 1 1 0 1 1 820 0.68
00000011101 0 0 0 0 0 0 1 1 1 0 1 801 0.66
00000210000 0 0 0 0 0 2 1 0 0 0 0 725 0.60
00000011010 0 0 0 0 0 0 1 1 0 1 0 713 0.59
00000000111 0 0 0 0 0 0 0 0 1 1 1 664 0.55
00000020001 0 0 0 0 0 0 2 0 0 0 1 655 0.54
00000100110 0 0 0 0 0 1 0 0 1 1 0 649 0.53
00000101010 0 0 0 0 0 1 0 1 0 1 0 634 0.52
00000010111 0 0 0 0 0 0 1 0 1 1 1 618 0.51
00000020100 0 0 0 0 0 0 2 0 1 0 0 597 0.49
00000100000 0 0 0 0 0 1 0 0 0 0 0 573 0.47
00000020101 0 0 0 0 0 0 2 0 1 0 1 572 0.47
00000120010 0 0 0 0 0 1 2 0 0 1 0 567 0.47
00000110001 0 0 0 0 0 1 1 0 0 0 1 512 0.42
00000020110 0 0 0 0 0 0 2 0 1 1 0 496 0.41
00000001001 0 0 0 0 0 0 0 1 0 0 1 412 0.34

T7/AcV5/E2 Library

 257

00000100001 0 0 0 0 0 1 0 0 0 0 1 411 0.34
00000120000 0 0 0 0 0 1 2 0 0 0 0 366 0.30
00000021010 0 0 0 0 0 0 2 1 0 1 0 288 0.24
00000001011 0 0 0 0 0 0 0 1 0 1 1 286 0.24
00000001201 0 0 0 0 0 0 0 1 2 0 1 249 0.21
00000111010 0 0 0 0 0 1 1 1 0 1 0 247 0.20
00000011110 0 0 0 0 0 0 1 1 1 1 0 242 0.20
00000110101 0 0 0 0 0 1 1 0 1 0 1 238 0.20
00000100101 0 0 0 0 0 1 0 0 1 0 1 199 0.16
00000210101 0 0 0 0 0 2 1 0 1 0 1 184 0.15
00000011111 0 0 0 0 0 0 1 1 1 1 1 164 0.14
00000200200 0 0 0 0 0 2 0 0 2 0 0 157 0.13
00000011001 0 0 0 0 0 0 1 1 0 0 1 114 0.09
00000121010 0 0 0 0 0 1 2 1 0 1 0 110 0.09
00000021110 0 0 0 0 0 0 2 1 1 1 0 100 0.08

 258

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000010 0 0 0 0 0 0 0 0 0 1 0 24022 12.09
00000000110 0 0 0 0 0 0 0 0 1 1 0 22931 11.54
00000000000 0 0 0 0 0 0 0 0 0 0 0 20983 10.56
00000001010 0 0 0 0 0 0 0 1 0 1 0 16621 8.36
00000000011 0 0 0 0 0 0 0 0 0 1 1 15137 7.62
00000010101 0 0 0 0 0 0 1 0 1 0 1 7402 3.72
00000010001 0 0 0 0 0 0 1 0 0 0 1 7032 3.54
00000000100 0 0 0 0 0 0 0 0 1 0 0 6675 3.36
00000010011 0 0 0 0 0 0 1 0 0 1 1 6381 3.21
00000000101 0 0 0 0 0 0 0 0 1 0 1 5834 2.94
00000000001 0 0 0 0 0 0 0 0 0 0 1 4573 2.30
00000200000 0 0 0 0 0 2 0 0 0 0 0 4172 2.10
00000000111 0 0 0 0 0 0 0 0 1 1 1 3465 1.74
00000010110 0 0 0 0 0 0 1 0 1 1 0 3221 1.62
00000001011 0 0 0 0 0 0 0 1 0 1 1 3211 1.62
00000020000 0 0 0 0 0 0 2 0 0 0 0 3060 1.54
00000010010 0 0 0 0 0 0 1 0 0 1 0 2917 1.47
00000001100 0 0 0 0 0 0 0 1 1 0 0 2653 1.34
00000101010 0 0 0 0 0 1 0 1 0 1 0 2490 1.25
00000011010 0 0 0 0 0 0 1 1 0 1 0 2123 1.07
00000001110 0 0 0 0 0 0 0 1 1 1 0 1963 0.99
00000100010 0 0 0 0 0 1 0 0 0 1 0 1914 0.96
00000001000 0 0 0 0 0 0 0 1 0 0 0 1878 0.95
00000010000 0 0 0 0 0 0 1 0 0 0 0 1832 0.92
00000111011 0 0 0 0 0 1 1 1 0 1 1 1706 0.86
00000001101 0 0 0 0 0 0 0 1 1 0 1 1645 0.83
00000021010 0 0 0 0 0 0 2 1 0 1 0 1509 0.76
00000010111 0 0 0 0 0 0 1 0 1 1 1 1443 0.73
00000100011 0 0 0 0 0 1 0 0 0 1 1 1247 0.63
00000020100 0 0 0 0 0 0 2 0 1 0 0 1177 0.59
00000110011 0 0 0 0 0 1 1 0 0 1 1 1122 0.56
00000011100 0 0 0 0 0 0 1 1 1 0 0 814 0.41
00000010100 0 0 0 0 0 0 1 0 1 0 0 775 0.39
00000210101 0 0 0 0 0 2 1 0 1 0 1 749 0.38
00000020101 0 0 0 0 0 0 2 0 1 0 1 713 0.36
00000020110 0 0 0 0 0 0 2 0 1 1 0 682 0.34
00000011000 0 0 0 0 0 0 1 1 0 0 0 621 0.31
00000020010 0 0 0 0 0 0 2 0 0 1 0 613 0.31
00000111010 0 0 0 0 0 1 1 1 0 1 0 613 0.31
00000100110 0 0 0 0 0 1 0 0 1 1 0 606 0.30

V5/E2 Library

 259

00000220000 0 0 0 0 0 2 2 0 0 0 0 575 0.29
00000001111 0 0 0 0 0 0 0 1 1 1 1 566 0.28
00000020001 0 0 0 0 0 0 2 0 0 0 1 547 0.28
00000101100 0 0 0 0 0 1 0 1 1 0 0 531 0.27
00000100000 0 0 0 0 0 1 0 0 0 0 0 511 0.26
00000011101 0 0 0 0 0 0 1 1 1 0 1 507 0.26
00000110001 0 0 0 0 0 1 1 0 0 0 1 471 0.24
00000110010 0 0 0 0 0 1 1 0 0 1 0 436 0.22
00000210001 0 0 0 0 0 2 1 0 0 0 1 395 0.20
00000210000 0 0 0 0 0 2 1 0 0 0 0 376 0.19
00000001001 0 0 0 0 0 0 0 1 0 0 1 372 0.19
00000200100 0 0 0 0 0 2 0 0 1 0 0 346 0.17
00000121010 0 0 0 0 0 1 2 1 0 1 0 344 0.17
00000200101 0 0 0 0 0 2 0 0 1 0 1 341 0.17
00000101011 0 0 0 0 0 1 0 1 0 1 1 337 0.17
00000111111 0 0 0 0 0 1 1 1 1 1 1 245 0.12
00000001200 0 0 0 0 0 0 0 1 2 0 0 233 0.12
00000021110 0 0 0 0 0 0 2 1 1 1 0 204 0.10
00000110110 0 0 0 0 0 1 1 0 1 1 0 190 0.10
00000110101 0 0 0 0 0 1 1 0 1 0 1 185 0.09
00000200001 0 0 0 0 0 2 0 0 0 0 1 184 0.09
00000211011 0 0 0 0 0 2 1 1 0 1 1 179 0.09
00000111100 0 0 0 0 0 1 1 1 1 0 0 163 0.08
00000011110 0 0 0 0 0 0 1 1 1 1 0 143 0.07
00000101110 0 0 0 0 0 1 0 1 1 1 0 139 0.07
00000100001 0 0 0 0 0 1 0 0 0 0 1 137 0.07
00000011001 0 0 0 0 0 0 1 1 0 0 1 130 0.07
00000101000 0 0 0 0 0 1 0 1 0 0 0 127 0.06
00000120000 0 0 0 0 0 1 2 0 0 0 0 123 0.06
00000110111 0 0 0 0 0 1 1 0 1 1 1 119 0.06

 260

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 12556 13.26
00000101010 0 0 0 0 0 1 0 1 0 1 0 6633 7.01
00000000010 0 0 0 0 0 0 0 0 0 1 0 6585 6.95
00000000110 0 0 0 0 0 0 0 0 1 1 0 6575 6.94
00000000100 0 0 0 0 0 0 0 0 1 0 0 6510 6.88
00000010101 0 0 0 0 0 0 1 0 1 0 1 4244 4.48
00000010001 0 0 0 0 0 0 1 0 0 0 1 3801 4.01
00000000101 0 0 0 0 0 0 0 0 1 0 1 3543 3.74
00000000001 0 0 0 0 0 0 0 0 0 0 1 3195 3.37
00000020000 0 0 0 0 0 0 2 0 0 0 0 3122 3.30
00000010000 0 0 0 0 0 0 1 0 0 0 0 3014 3.18
00000010011 0 0 0 0 0 0 1 0 0 1 1 2387 2.52
00000000011 0 0 0 0 0 0 0 0 0 1 1 1936 2.04
00000100010 0 0 0 0 0 1 0 0 0 1 0 1778 1.88
00000001101 0 0 0 0 0 0 0 1 1 0 1 1710 1.81
00000010100 0 0 0 0 0 0 1 0 1 0 0 1701 1.80
00000020100 0 0 0 0 0 0 2 0 1 0 0 1700 1.80
00000010110 0 0 0 0 0 0 1 0 1 1 0 1620 1.71
00000200000 0 0 0 0 0 2 0 0 0 0 0 1578 1.67
00000001100 0 0 0 0 0 0 0 1 1 0 0 1547 1.63
00000101110 0 0 0 0 0 1 0 1 1 1 0 1522 1.61
00000201010 0 0 0 0 0 2 0 1 0 1 0 1422 1.50
00000010010 0 0 0 0 0 0 1 0 0 1 0 1288 1.36
00000100000 0 0 0 0 0 1 0 0 0 0 0 1043 1.10
00000001011 0 0 0 0 0 0 0 1 0 1 1 989 1.04
00000011100 0 0 0 0 0 0 1 1 1 0 0 762 0.80
00000001000 0 0 0 0 0 0 0 1 0 0 0 739 0.78
00000010111 0 0 0 0 0 0 1 0 1 1 1 667 0.70
00000110011 0 0 0 0 0 1 1 0 0 1 1 582 0.61
00000110101 0 0 0 0 0 1 1 0 1 0 1 570 0.60
00000011010 0 0 0 0 0 0 1 1 0 1 0 569 0.60
00000000111 0 0 0 0 0 0 0 0 1 1 1 561 0.59
00000011011 0 0 0 0 0 0 1 1 0 1 1 525 0.55
00000120010 0 0 0 0 0 1 2 0 0 1 0 513 0.54
00000100011 0 0 0 0 0 1 0 0 0 1 1 503 0.53
00000100101 0 0 0 0 0 1 0 0 1 0 1 475 0.50
00000220000 0 0 0 0 0 2 2 0 0 0 0 408 0.43
00000021010 0 0 0 0 0 0 2 1 0 1 0 402 0.42
00000020101 0 0 0 0 0 0 2 0 1 0 1 387 0.41
00000020010 0 0 0 0 0 0 2 0 0 1 0 383 0.40

V5/AcV5 Library

 261

00000210000 0 0 0 0 0 2 1 0 0 0 0 380 0.40
00000011000 0 0 0 0 0 0 1 1 0 0 0 358 0.38
00000020110 0 0 0 0 0 0 2 0 1 1 0 321 0.34
00000110000 0 0 0 0 0 1 1 0 0 0 0 320 0.34
00000020001 0 0 0 0 0 0 2 0 0 0 1 301 0.32
00000120000 0 0 0 0 0 1 2 0 0 0 0 297 0.31
00000011101 0 0 0 0 0 0 1 1 1 0 1 295 0.31
00000001001 0 0 0 0 0 0 0 1 0 0 1 291 0.31
00000100001 0 0 0 0 0 1 0 0 0 0 1 253 0.27
00000110001 0 0 0 0 0 1 1 0 0 0 1 237 0.25
00000101100 0 0 0 0 0 1 0 1 1 0 0 189 0.20
00000200100 0 0 0 0 0 2 0 0 1 0 0 138 0.15
00000011110 0 0 0 0 0 0 1 1 1 1 0 134 0.14
00000111010 0 0 0 0 0 1 1 1 0 1 0 105 0.11
00000111100 0 0 0 0 0 1 1 1 1 0 0 103 0.11
00000021110 0 0 0 0 0 0 2 1 1 1 0 101 0.11

 262

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000110 0 0 0 0 0 0 0 0 1 1 0 19351 13.10
00000010001 0 0 0 0 0 0 1 0 0 0 1 19328 13.09
00000000000 0 0 0 0 0 0 0 0 0 0 0 18618 12.61
00000000100 0 0 0 0 0 0 0 0 1 0 0 14504 9.82
00000100100 0 0 0 0 0 1 0 0 1 0 0 12660 8.57
00000000001 0 0 0 0 0 0 0 0 0 0 1 12574 8.51
00000100000 0 0 0 0 0 1 0 0 0 0 0 9969 6.75
00000010101 0 0 0 0 0 0 1 0 1 0 1 9295 6.29
00000101010 0 0 0 0 0 1 0 1 0 1 0 7229 4.89
00000000101 0 0 0 0 0 0 0 0 1 0 1 7101 4.81
00000020000 0 0 0 0 0 0 2 0 0 0 0 1618 1.10
00000020100 0 0 0 0 0 0 2 0 1 0 0 1546 1.05
00000201010 0 0 0 0 0 2 0 1 0 1 0 1357 0.92
00000000010 0 0 0 0 0 0 0 0 0 1 0 1321 0.89
00000120100 0 0 0 0 0 1 2 0 1 0 0 1277 0.86
00000010000 0 0 0 0 0 0 1 0 0 0 0 1015 0.69
00000001001 0 0 0 0 0 0 0 1 0 0 1 997 0.68
00000001000 0 0 0 0 0 0 0 1 0 0 0 993 0.67
00000010100 0 0 0 0 0 0 1 0 1 0 0 917 0.62
00000120000 0 0 0 0 0 1 2 0 0 0 0 865 0.59
00000110100 0 0 0 0 0 1 1 0 1 0 0 808 0.55
00000110011 0 0 0 0 0 1 1 0 0 1 1 805 0.55
00000001101 0 0 0 0 0 0 0 1 1 0 1 801 0.54
00000110000 0 0 0 0 0 1 1 0 0 0 0 590 0.40
00000010111 0 0 0 0 0 0 1 0 1 1 1 455 0.31
00000200011 0 0 0 0 0 2 0 0 0 1 1 320 0.22
00000110101 0 0 0 0 0 1 1 0 1 0 1 302 0.20
00000110001 0 0 0 0 0 1 1 0 0 0 1 249 0.17
00000001201 0 0 0 0 0 0 0 1 2 0 1 232 0.16
00000010011 0 0 0 0 0 0 1 0 0 1 1 208 0.14
00000001011 0 0 0 0 0 0 0 1 0 1 1 136 0.09
00000001111 0 0 0 0 0 0 0 1 1 1 1 106 0.07

V5/AcV5/E2 Library

 263

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000010 0 0 0 0 0 0 0 0 0 1 0 16666 16.87
00000000000 0 0 0 0 0 0 0 0 0 0 0 13654 13.82
00000000110 0 0 0 0 0 0 0 0 1 1 0 11661 11.80
00000010001 0 0 0 0 0 0 1 0 0 0 1 6993 7.08
00000000001 0 0 0 0 0 0 0 0 0 0 1 5538 5.60
00000010101 0 0 0 0 0 0 1 0 1 0 1 5091 5.15
00000000100 0 0 0 0 0 0 0 0 1 0 0 4905 4.96
00000000101 0 0 0 0 0 0 0 0 1 0 1 3296 3.34
00000010011 0 0 0 0 0 0 1 0 0 1 1 3293 3.33
00000010000 0 0 0 0 0 0 1 0 0 0 0 2771 2.80
00000101010 0 0 0 0 0 1 0 1 0 1 0 2595 2.63
00000000011 0 0 0 0 0 0 0 0 0 1 1 2377 2.41
00000020000 0 0 0 0 0 0 2 0 0 0 0 1535 1.55
00000201010 0 0 0 0 0 2 0 1 0 1 0 1352 1.37
00000020011 0 0 0 0 0 0 2 0 0 1 1 1202 1.22
00000010100 0 0 0 0 0 0 1 0 1 0 0 1026 1.04
00000011111 0 0 0 0 0 0 1 1 1 1 1 1007 1.02
00000100000 0 0 0 0 0 1 0 0 0 0 0 988 1.00
00000001100 0 0 0 0 0 0 0 1 1 0 0 963 0.97
00000010010 0 0 0 0 0 0 1 0 0 1 0 942 0.95
00000200000 0 0 0 0 0 2 0 0 0 0 0 934 0.95
00000001101 0 0 0 0 0 0 0 1 1 0 1 866 0.88
00000010110 0 0 0 0 0 0 1 0 1 1 0 695 0.70
00000110101 0 0 0 0 0 1 1 0 1 0 1 694 0.70
00000021110 0 0 0 0 0 0 2 1 1 1 0 680 0.69
00000211010 0 0 0 0 0 2 1 1 0 1 0 647 0.65
00000020100 0 0 0 0 0 0 2 0 1 0 0 553 0.56
00000110001 0 0 0 0 0 1 1 0 0 0 1 523 0.53
00000011100 0 0 0 0 0 0 1 1 1 0 0 488 0.49
00000110000 0 0 0 0 0 1 1 0 0 0 0 418 0.42
00000100101 0 0 0 0 0 1 0 0 1 0 1 408 0.41
00000100001 0 0 0 0 0 1 0 0 0 0 1 400 0.40
00000001011 0 0 0 0 0 0 0 1 0 1 1 338 0.34
00000101110 0 0 0 0 0 1 0 1 1 1 0 337 0.34
00000020001 0 0 0 0 0 0 2 0 0 0 1 313 0.32
00000020101 0 0 0 0 0 0 2 0 1 0 1 271 0.27
00000001201 0 0 0 0 0 0 0 1 2 0 1 256 0.26
00000021210 0 0 0 0 0 0 2 1 2 1 0 255 0.26
00000121110 0 0 0 0 0 1 2 1 1 1 0 163 0.16
00000011101 0 0 0 0 0 0 1 1 1 0 1 150 0.15

AU5/AcV5 Library

00000021200 0 0 0 0 0 0 2 1 2 0 0 139 0.14
00000021100 0 0 0 0 0 0 2 1 1 0 0 131 0.13
00000021011 0 0 0 0 0 0 2 1 0 1 1 111 0.11
00000220000 0 0 0 0 0 2 2 0 0 0 0 107 0.11

 264

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 56769 51.02
00000000010 0 0 0 0 0 0 0 0 0 1 0 8352 7.51
00000000011 0 0 0 0 0 0 0 0 0 1 1 7183 6.46
00000000100 0 0 0 0 0 0 0 0 1 0 0 4397 3.95
00000000101 0 0 0 0 0 0 0 0 1 0 1 4276 3.84
00000010000 0 0 0 0 0 0 1 0 0 0 0 3921 3.52
00000000001 0 0 0 0 0 0 0 0 0 0 1 3029 2.72
00000110101 0 0 0 0 0 1 1 0 1 0 1 2628 2.36
00000000110 0 0 0 0 0 0 0 0 1 1 0 2319 2.08
00000020000 0 0 0 0 0 0 2 0 0 0 0 1850 1.66
00000010010 0 0 0 0 0 0 1 0 0 1 0 1757 1.58
00000110001 0 0 0 0 0 1 1 0 0 0 1 1517 1.36
00000210001 0 0 0 0 0 2 1 0 0 0 1 1455 1.31
00000100000 0 0 0 0 0 1 0 0 0 0 0 1383 1.24
00000100001 0 0 0 0 0 1 0 0 0 0 1 1253 1.13
00000101010 0 0 0 0 0 1 0 1 0 1 0 1141 1.03
00000001001 0 0 0 0 0 0 0 1 0 0 1 1135 1.02
00000120101 0 0 0 0 0 1 2 0 1 0 1 817 0.73
00000010011 0 0 0 0 0 0 1 0 0 1 1 505 0.45
00000010110 0 0 0 0 0 0 1 0 1 1 0 495 0.44
00000120001 0 0 0 0 0 1 2 0 0 0 1 464 0.42
00000000111 0 0 0 0 0 0 0 0 1 1 1 452 0.41
00000100011 0 0 0 0 0 1 0 0 0 1 1 417 0.37
00000220001 0 0 0 0 0 2 2 0 0 0 1 402 0.36
00000011000 0 0 0 0 0 0 1 1 0 0 0 401 0.36
00000001000 0 0 0 0 0 0 0 1 0 0 0 398 0.36
00000010100 0 0 0 0 0 0 1 0 1 0 0 384 0.35
00000101011 0 0 0 0 0 1 0 1 0 1 1 345 0.31
00000111010 0 0 0 0 0 1 1 1 0 1 0 333 0.30
00000011011 0 0 0 0 0 0 1 1 0 1 1 209 0.19
00000020100 0 0 0 0 0 0 2 0 1 0 0 179 0.16
00000101110 0 0 0 0 0 1 0 1 1 1 0 158 0.14
00000201010 0 0 0 0 0 2 0 1 0 1 0 140 0.13
00000011100 0 0 0 0 0 0 1 1 1 0 0 130 0.12
00000001100 0 0 0 0 0 0 0 1 1 0 0 111 0.10

T7/AcV5 Library

 265

BARCODED YEAST GFP FUSION PROTEINS STUDIED AND
PERTURBATION CONDITIONS USED

Table I.1: Barcoded yeast GFP fusion clones used in this study

GFP Clone ORF GFP Clone Name Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Description
YBL023C MCM2 10011000000 1 0 0 1 1 0 0 0 0 0 0 Protein involved in DNA replication
YBL024W NCL1 01011000000 0 1 0 1 1 0 0 0 0 0 0 S-adenosyl-L-methionine-dependent tRNA: m5C-methyltransferase
YBR067C TIP1 10011200000 1 0 0 1 1 2 0 0 0 0 0 Major cell wall mannoprotein with possible lipase activity
YBR072W HSP26 10011010000 1 0 0 1 1 0 1 0 0 0 0 Small heat shock protein (sHSP) with chaperone activity
YBR208C DUR1,2 00010000000 0 0 0 1 0 0 0 0 0 0 0 Urea amidolyase
YCR016W 01100100000 0 1 1 0 0 1 0 0 0 0 0 Putative protein of unknown function

YDL133C-A RPL41B 00000220100 0 0 0 0 0 2 2 0 1 0 0 Ribosomal 60S subunit protein L41B
YDL168W SFA1 01000220000 0 1 0 0 0 2 2 0 0 0 0 Bifunctional alcohol dehydrogenase and formaldehyde dehydrogenase
YDR023W SES1 10000200011 1 0 0 0 0 2 0 0 0 1 1 Cytosolic seryl-tRNA synthetase
YDR070C FMP16 00000220000 0 0 0 0 0 2 2 0 0 0 0 Protein of unknown function
YEL001C IRC22 00110000000 0 0 1 1 0 0 0 0 0 0 0 Protein of unknown function
YER027C GAL83 00001000010 0 0 0 0 1 0 0 0 0 1 0 One of three possible beta-subunits of the Snf1 kinase complex
YER178W PDA1 00001100000 0 0 0 0 1 1 0 0 0 0 0 E1 alpha subunit of the pyruvate dehydrogenase (PDH) complex
YFL036W RPO41 00100000000 0 0 1 0 0 0 0 0 0 0 0 Mitochondrial RNA polymerase
YGL035C MIG1 00100100000 0 0 1 0 0 1 0 0 0 0 0 Transcription factor involved in glucose repression
YGL048C RPT6 01000010000 0 1 0 0 0 0 1 0 0 0 0 ATPase of the 19S regulatory particle of the 26S proteasome
YGL135W RPL1B 10011020000 1 0 0 1 1 0 2 0 0 0 0 Ribosomal 60S subunit protein L1B
YGL147C RPL9A 01001020000 0 1 0 0 1 0 2 0 0 0 0 Ribosomal 60S subunit protein L9A
YGL207W SPT16 10000000000 1 0 0 0 0 0 0 0 0 0 0 Subunit of the heterodimeric FACT complex (Spt16p-Pob3p)
YGL234W ADE5,7 01010000000 0 1 0 1 0 0 0 0 0 0 0 Enzyme of the 'de novo' purine nucleotide biosynthetic pathway
YGR012W MCY1 10000000010 1 0 0 0 0 0 0 0 0 1 0 Putative cysteine synthase
YGR019W UGA1 10000010000 1 0 0 0 0 0 1 0 0 0 0 Gamma-aminobutyrate (GABA) transaminase
YHL017W 00000020000 0 0 0 0 0 0 2 0 0 0 0 Putative protein of unknown function
YIL127C RRT14 10011100000 1 0 0 1 1 1 0 0 0 0 0 Putative protein of unknown function
YIL137C TMA108 01000000000 0 1 0 0 0 0 0 0 0 0 0 Ribosome-associated, nascent chain binding factor
YJR003C MRX12 11100000000 1 1 1 0 0 0 0 0 0 0 0 Protein that associates with mitochondrial ribosome
YKL096W CWP1 11000020000 1 1 0 0 0 0 2 0 0 0 0 Cell wall mannoprotein that localizes to birth scars of daughter cells

YKL096W-A CWP2 00000200010 0 0 0 0 0 2 0 0 0 1 0 Covalently linked cell wall mannoprotein
YKL142W MRP8 01001010000 0 1 0 0 1 0 1 0 0 0 0 Protein of unknown function
YKL183W LOT5 01000220000 0 1 0 0 0 2 2 0 0 0 0 Protein of unknown function
YLR064W PER33 11001010000 1 1 0 0 1 0 1 0 0 0 0 Protein that localizes to the endoplasmic reticulum
YLR438W CAR2 00001000100 0 0 0 0 1 0 0 0 1 0 0 L-ornithine transaminase (OTAse)
YML100W TSL1 00001000000 0 0 0 0 1 0 0 0 0 0 0 Large subunit of trehalose 6-phosphate synthase/phosphatase complex
YMR099C 11000010000 1 1 0 0 0 0 1 0 0 0 0 Glucose-6-phosphate 1-epimerase (hexose-6-phosphate mutarotase)
YMR120C ADE17 10010000000 1 0 0 1 0 0 0 0 0 0 0 Enzyme of 'de novo' purine biosynthesis
YNL181W PBR1 00100000010 0 0 1 0 0 0 0 0 0 1 0 Putative oxidoreductase
YNL212W VID27 00000020011 0 0 0 0 0 0 2 0 0 1 1 Cytoplasmic protein of unknown function
YOL143C RIB4 01001000000 0 1 0 0 1 0 0 0 0 0 0 Lumazine synthase (DMRL synthase)
YOL144W NOP8 00100220000 0 0 1 0 0 2 2 0 0 0 0 Nucleolar protein required for 60S ribosomal subunit biogenesis
YOL151W GRE2 11001110000 1 1 0 0 1 1 1 0 0 0 0 3-methylbutanal reductase and NADPH-dependent methylglyoxal reductase
YOR083W WHI5 11000100000 1 1 0 0 0 1 0 0 0 0 0 Repressor of G1 transcription
YOR182C RPS30B 01001000011 0 1 0 0 1 0 0 0 0 1 1 Protein component of the small (40S) ribosomal subunit
YOR216C RUD3 10000000100 1 0 0 0 0 0 0 0 1 0 0 Golgi matrix protein
YOR312C RPL20B 11001100000 1 1 0 0 1 1 0 0 0 0 0 Ribosomal 60S subunit protein L20B
YPL079W RPL21B 11001000000 1 1 0 0 1 0 0 0 0 0 0 Ribosomal 60S subunit protein L21B
YPR160W GPH1 11000000000 1 1 0 0 0 0 0 0 0 0 0 Glycogen phosphorylase required for the mobilization of glycogen

Appendix I

 266

Table I.2: Stress perturbations, responses, effective concentrations, and positive
control proteins.

Pe
rt

ur
ba

tio
n

A
ge

nt
M

ec
ha

ni
sm

 o
f a

ct
io

n
C

on
ce

nt
ra

tio
n(

s)
 u

se
d

in

lit
er

at
ur

e
Se

le
ct

ed
 C

on
tr

ol
 G

FP
 fu

si
on

 p
ro

te
in

s
(a

bu
nd

an
ce

)
C

ita
tio

ns

O
xid

at
ive

 s
tre

ss
m

en
ad

io
ne

 (s
up

er
ox

id
e)

,
H2

O
2,

 d
ia

m
id

e

M
en

ad
io

ne
 g

en
er

at
es

 s
up

er
ox

id
e

th
ro

ug
h

fu
ltil

e
re

do
x

cy
cli

ng
. D

ia
m

id
e

is
a

th
io

l s
pe

cif
ic

ox
id

an
t

th
at

 p
ro

m
ot

es
 d

isu
lfid

e
bo

nd
 fo

rm
at

io
n.

 O
xid

at
ive

 s
tre

ss
 c

an
 a

ct
 o

n
pr

ot
ei

ns
, D

NA
, a

nd
 lip

id
, a

nd

in
te

re
fe

re
 w

ith
 c

el
lu

la
r s

ig
na

llin
g

M
en

ad
io

ne
: 0

-4
0

m
M

 d
ia

m
id

e:

1.
5m

M
, H

2O
2:

 0
.3

-4
m

M

CT
T1

 (3
19

),
CT

A1
 (6

23
),

SO
D1

 (5
19

00
0)

, S
O

D2

(1
10

00
),

TR
X2

 (1
72

00
),

G
RX

1
(3

00
0)

, G
RX

2
(3

10
00

),T
RR

1
(2

90
00

0)
Ja

m
ie

so
n

19
98

 Y
ea

st
, S

G
D

DN
A

re
pl

ica
tio

n
st

re
ss

hy
dr

ox
ur

ea
 (H

U)
HU

 L
im

its
 d

NT
P

po
ol

s
by

 in
hi

bi
tio

n
of

 ri
bo

nu
cle

ot
id

e
re

du
ct

as
e

(e
nz

ym
e

ca
ta

lyz
es

 fo
rm

at
io

n
of

dN

TP
s

fro
m

 ri
bo

nu
cle

ot
id

es
) .

0.

2M
 u

p
to

 8
h,

 0
.1

M
 4

h
Tk

as
ch

 2
01

2
Na

t C
el

l B
io

l
DN

A
re

pl
ica

tio
n

st
re

ss
M

M
S

(m
et

hy
l

m
et

ha
ne

su
lfo

na
te

)
Al

ky
la

tin
g

ag
en

t t
ha

t d
am

ag
es

 D
NA

 (m
et

hy
la

tio
n)

 p
re

ve
nt

in
g

DN
A

po
lym

er
as

e
fro

m
 re

pl
ica

tin
g

DN
A

(s
ta

lls
 re

pl
ica

tio
n

fo
rk

s)
0.

03
%

 2
h,

 0
.0

5-
0.

1%
, 0

.0
5%

 u
p

to
 4

 h
ou

rs
Tk

as
ch

 2
01

2
Na

t C
el

l B
io

l

Lo
ss

 o
f p

ro
te

os
ta

sis
M

G
13

2
In

hi
bi

ts
 p

ro
te

as
om

e
ac

tiv
ity

 b
y

bi
nd

in
g

to
 th

e
ac

tiv
e

sit
e

be
ta

 s
ub

un
its

 o
n

th
e

20
S

co
re

50
 u

M
 u

p
to

 4
h,

 2
0u

M
 u

p
to

 3
h

HS
P1

04
 (3

28
00

),
HS

P7
0

(6
44

0)
, S

IS
1

(2
03

00
),

YD
J1

(1

19
00

0)
Le

e
&

G
ol

db
er

g
M

ol
 C

el
l B

io
l 1

99
8

Lo
ss

 o
f p

ro
te

os
ta

sis
Cy

clo
he

xim
id

e
In

hi
bi

ts
 p

ro
te

in
 s

yn
th

es
is

in
 e

uk
ar

yo
te

s
by

 b
lo

ck
in

g
tra

ns
la

tio
na

l e
lo

ng
at

io
n

10
0u

g/
m

L
up

 to
 4

h
PD

R5
 (4

20
00

)
Ka

tz
m

an
n

M
ol

 C
el

l B
io

 1
99

4

He
at

 s
tre

ss
37

C
in

cu
ba

tio
n

He
at

 s
ho

ck
 p

ro
te

in
s

(H
SP

s)
 a

ct
 to

 re
pa

ir,
 re

fo
ld

, o
r d

eg
ra

de
 d

am
ag

ed
 p

ro
te

in
s,

 a
lso

 in
du

ce
s

m
et

ab
ol

ic
ch

an
ge

s
in

clu
di

ng
 in

cr
ea

se
d

tre
ha

lo
se

 s
yn

th
es

is,
 c

el
l c

ylc
e

ar
re

st
, t

ra
ns

cr
ip

tio
na

l
pr

og
ra

m
 a

ct
iva

te
d

by
 H

sf
1

tra
ns

cr
ip

tio
n

fa
ct

or
N/

A
HS

Ps
SG

D,
 V

er
gh

es
e

J.
 2

01
2

M
icr

ob
io

l.
an

d
M

ol
. B

io
. R

ev
.

Nu
tri

en
t s

ta
rv

at
io

n
re

sp
on

se
ra

pa
m

yc
in

TO
R

in
hi

bi
to

r p
ro

te
in

 k
in

as
e

th
at

 in
flu

en
ce

s
ce

ll g
ro

wt
h

(s
ta

rv
at

io
n

re
sp

on
se

, a
m

in
o

ac
id

bi

os
yn

th
es

is,
 tr

an
sc

rip
tio

n
an

d
tra

ns
la

tio
n,

 s
tre

ss
 re

sp
on

se
 g

en
es

, T
CA

 c
yc

le
, r

RN
A.

 ri
bo

so
m

al

pr
ot

ei
n

sy
nt

he
sis

)
20

0n
g/

m
l

TD
H1

 (1
20

00
0)

, Q
CR

2
(3

50
00

),
HS

P2
6

(1
93

00
)

Ch
on

g
20

15
 C

el
l

Re
du

cin
g

st
re

ss
DT

T
M

em
br

an
e

pe
rm

ea
bl

e
re

du
cin

g
ag

en
t t

ha
t t

yp
ica

lly
 a

ct
s

to
 re

du
ce

 th
io

l g
ro

up
s

or
 p

re
ve

nt
s

cy
st

ei
ne

 re
sid

ue
s

fo
rm

 fo
rm

in
g

di
su

lfid
e

bo
nd

s
2m

M
PU

N1
 Y

LR
41

4C
 (1

60
0)

, Y
IP

3
YN

L0
44

W
 (5

50
0)

,
YN

L1
62

W
 R

PL
42

A
(1

36
00

)
Br

ek
er

 2
01

2
JC

B

O
sm

ot
ic

st
re

ss
KC

l,
Na

Cl
, s

or
bi

to
l

Ca
us

es
 w

at
er

 lo
ss

 re
su

ltin
g

in
 c

el
l s

hr
in

ka
ge

, c
el

l g
ro

wt
h

ar
re

st
, a

nd
 a

ct
iva

tio
n

of
 th

e
hi

gh
-

os
m

ol
ar

ity
 g

lyc
er

ol
 (H

O
G

) M
AP

K
pa

th
wa

y
wh

ich
 p

ro
m

ot
es

 g
lyc

er
ol

 s
yn

th
es

is
an

d
so

di
um

/p
ot

as
siu

m
 e

ffl
ux

 p
um

p
ac

tiv
ity

KC
l 0

.2
-0

.8
M

, S
or

bi
to

l:
1M

, N
aC

l:
up

 to
 1

M
YM

R2
51

W
-A

 H
O

R7
 (6

00
0)

, Y
ER

06
2C

 H
O

R2
 (5

00
0)

,
G

PP
1

(1
90

00
0)

Ch
en

 2
00

3
M

ol
. B

io
l.

Ce
ll,

Zh
an

g
20

17
 S

ci.
 R

ep
.,

M
ag

er
 2

00
2

FE
M

S
Ye

as
t R

es
.

Al
co

ho
l s

tre
ss

Et
O

H

In
cr

ea
se

s
pl

as
m

a
m

em
br

an
e

flu
id

ity
 b

y
in

cr
ea

se
d

pr
od

uc
tio

n
of

 e
rg

os
te

ro
l a

nd
 u

ns
at

ur
at

ed
 fa

tty

ac
id

s.
 F

ac
to

rs
 th

at
 im

pr
ov

e
pr

ot
ei

n
st

ab
ilit

y
or

 re
pa

ir
ar

e
up

re
gu

la
te

d
in

clu
di

ng
 tr

eh
al

os
e,

 h
ea

t
sh

oc
k

pr
ot

ei
ns

, t
ra

ns
cr

ip
tio

n
fa

ct
or

s
un

de
r s

tre
ss

-re
sp

on
siv

e
el

em
en

t
5%

HS
P1

2
(4

00
0)

, H
SP

26
 (1

90
00

),
HS

P3
0

(7
80

0)
, H

SP
42

(1

40
0)

, H
SP

78
 (3

00
0)

, H
SP

82
 (4

45
00

0)
, H

SP
10

4
(3

28
00

),
 C

TT
1

(3
19

),
DD

R2
 (4

00
),

SS
A4

 (1
80

00
),

St
an

le
y

J
Ap

pl
 M

icr
ob

io
l 2

01
0,

 D
in

g
20

09
 A

pp
l.

M
icr

ob
io

. B
io

te
ch

.
M

em
br

an
e

st
re

ss
Cl

ot
rim

az
ol

e
In

hi
bi

ts
 e

rg
os

te
ro

l b
io

sy
nt

he
sis

 c
au

sin
g

in
cr

ea
se

d
m

em
br

an
e

pe
rm

ea
bi

lity
10

uM
ER

G
11

 (7
30

00
),

ER
G

13
 (3

50
00

),
ER

G
3

(3
60

00
)

Su
d

I.J
. 1

98
1

J.
 In

ve
st

ig
. D

er
m

.

CD
C1

9
(2

91
00

0)
 T

PS
1

(Y
BR

12
6C

) (
11

00
0)

, B
M

H2

(Y
DR

09
9W

) (
48

00
0)

 267

PYTHON SCRIPT USED TO ANALYZE GFP FLUORESCENCE
DISTRIBUTIONS

from collections import defaultdict
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import os
import scipy.stats as stats
import matplotlib.mlab as mlab
import json

protein_fname = '/Users/Stefanie/Desktop/Protein_Names.txt'
condition_fname = '/Users/Stefanie/Desktop/Condition_Names.txt'
data_directory = '/Users/Stefanie/Desktop/07112017_GFPBAR_EXPORTS'

print 'loading data'
#read protein names and append to list
proteins_list = []
with open(protein_fname,'rU') as f:
 p_list = f.readlines()
 for line in p_list:
 line = line.strip('\n')
 proteins_list.append(line)
#print proteins_list
print '# proteins',len(proteins_list)

#read condition names and append to list
conditions_list = []
with open(condition_fname,'rU') as f:
 c_list = f.readlines()
 for line in c_list:
 line = line.strip('\n')
 conditions_list.append(line)
#print conditions_list
#print len(conditions_list)

#read data file names and append to list
data_names_list = []
for file in os.listdir(data_directory):
 if file.endswith('.csv') and file != 'BY4741.csv':
 data_names_list.append(file)
print '# data files',len(data_names_list)
#print data_names_list[1:10]

#load BY4741 background data

Appendix J

 268

background_fname = data_directory+'/BY4741.csv'
BY4741_data = []
with open(background_fname,'rU') as f:
 back_data = f.readlines()[1:]
 for row in back_data:
 row.strip('\n')
 dpoint = float(row)
 if dpoint >1:
 BY4741_data.append(dpoint)
BY4741_data = np.log10(BY4741_data)

linear_BY4741_data = np.power(BY4741_data,10)
median_BY4741 = np.median(linear_BY4741_data)
std_BY4741 = np.std(linear_BY4741_data)
#print BY4741_data

print 'storing data in dictionary'
data_dict = defaultdict(lambda: defaultdict(list))

#store data in dictionary with keys protein name, condition name, value list
of GFP fluorescence values
for name in data_names_list:
 #print name
 for protein in proteins_list:
 #print protein
 for condition in conditions_list:
 #print condition
 if protein in name and condition in name:
 data_list = []
 with open(data_directory+'/'+str(name),'rU') as f:
 data = f.readlines()[1:]
 for row in data:
 row.strip('\n')
 dpoint = float(row)
 if dpoint > 1:
 data_list.append(dpoint)
 data_list_log = np.log10(data_list)
 data_dict[protein][condition] = data_list_log

#print data_dict['YMR099C']['37C'][0:10]
#print 'banana'
#print data_dict['SES1']['37C'][0:10]
#plot data
plot_var = 'no'
if plot_var == 'yes':
 print 'plotting data'
 colors =
['gray','silver','g','b','m','y','orange','dodgerblue','aqua','lime','maroon'
,'hotpink','darkviolet']
 p_counter = 1
 for protein in data_dict.keys():
 print 'protein is:',protein
 graph = 1
 #plt.figure()
 f,ax =

 269

plt.subplots(len(conditions_list)+1,1,sharex=True,sharey=True,figsize=(4,10))

 #plot background histogram

ax[0].hist(BY4741_data,bins=500,normed=True,fc='k',histtype='stepfilled')
 ax[0].get_yaxis().set_visible(False)
 if p_counter ==1:
 ax[0].legend(['Background'],fontsize='medium',loc=7)

 #plot condition histograms
 for condition in data_dict[protein]:
 if condition == 'None_0h':
 r = 1
 elif condition == 'None_2h':
 r = 2
 else:
 r = 2+graph
 #print condition
 curr_data = data_dict[protein][condition]
 #print 'r is:',r

 est_data_len = int(np.log10(len(curr_data)))
 #print 'approx log10 length data:',est_data_len

 #estimate number bins based on data set size
 if est_data_len == 2:
 b = 50
 elif est_data_len == 3:
 b = 500
 elif est_data_len >= 4:
 b = 1000
 elif est_data_len == 1:
 b = 50
 elif est_data_len == 0:
 b = 1

 #plot histogram GFP data
 [n,bins,patches] =
ax[r].hist(curr_data,bins=b,normed=True,fc=colors[r-1],histtype='stepfilled')
 #ax[r].set_yticks(np.arange(0,2,1))
 ax[r].get_yaxis().set_visible(False)
 plt.xlim((2,5))
 plt.ylim(0,2)
 if p_counter == 1:
 ax[r].legend([condition],fontsize='medium',loc=7)

 #plot best fit normal curve
 [mu,sigma] = stats.norm.fit(curr_data)
 #[a,l,b] = stats.gamma.fit(curr_data)
 y = mlab.normpdf(bins,mu,sigma)
 ax[r].plot(bins, y, 'r--', linewidth=2)
 #ax[r].plot(stats.gamma.pdf(bins,a,l,b))

 if condition not in ['None_0h','None_2h']:
 graph+=1

 p_counter+=1

 270

 f.suptitle(protein,fontsize=20)
 plt.ylabel('Normalized Count')
 plt.xlabel('Log10 GFP Fluorescence (afu)')
 #plt.show()
 save_file = '/Users/Stefanie/PycharmProjects/GFPplots/pdffits/'
 plt.savefig(save_file+protein+'.png',dpi=300)

print 'calculating statistics'
#calculate median and CV for each protein and condition, store in stats_dict
#calcuate 95% CI for control conditions, store in control_stats_dict
stats_dict = defaultdict(lambda: defaultdict(lambda:defaultdict(float)))
control_stats_dict = defaultdict(lambda: defaultdict(float))

for protein in data_dict.keys():
 for condition in data_dict[protein]:
 #print condition
 #linear transformation
 curr_data = np.power(data_dict[protein][condition],10)
 curr_med = np.median(curr_data)
 curr_sd = np.std(curr_data)
 curr_cv = float(curr_sd)/float(curr_med)
 #print curr_med,curr_sd,curr_cv

 stats_dict[protein][condition]['median'] = curr_med
 stats_dict[protein][condition]['sd'] = curr_sd
 stats_dict[protein][condition]['cv'] = curr_cv

 control_med_r1 = stats_dict[protein]['None_0h']['median']
 control_med_r2 = stats_dict[protein]['None_2h']['median']

 control_cv_r1 = stats_dict[protein]['None_0h']['cv']
 control_cv_r2 = stats_dict[protein]['None_2h']['cv']

 control_sd_r1 = stats_dict[protein]['None_0h']['sd']
 control_sd_r2 = stats_dict[protein]['None_2h']['sd']

 #calculate average median and CV
 #calculate standard deviation between two replicates for median and CV
 control_median_avg = np.mean([control_med_r1,control_med_r2])
 control_median_sd = np.std([control_med_r1,control_med_r2])
 control_cv_avg = np.mean([control_cv_r1,control_cv_r2])
 control_cv_sd = np.std([control_cv_r1,control_cv_r2])

 control_median_CI_upper = control_median_avg+3*control_median_sd
 control_median_CI_lower = control_median_avg-3*control_median_sd

 control_cv_CI_upper = control_cv_avg+3*control_cv_sd
 control_cv_CI_lower = control_cv_avg-3*control_cv_sd

 control_stats_dict[protein]['avg_median'] = control_median_avg
 control_stats_dict[protein]['avg_cv'] = control_cv_avg
 control_stats_dict[protein]['99CI_median_upper'] =
control_median_CI_upper
 control_stats_dict[protein]['99CI_median_lower'] =
control_median_CI_lower
 control_stats_dict[protein]['99CI_cv_upper'] = control_cv_CI_upper

 271

 control_stats_dict[protein]['99CI_cv_lower'] = control_cv_CI_lower

fold_change_dict = defaultdict(lambda: defaultdict(
lambda:defaultdict(float)))
significant_changes_dict = defaultdict(lambda: defaultdict(
lambda:defaultdict(lambda: defaultdict(float))))
number_significant_median = 0
number_significant_cv = 0
#for each protein, check if any medians or CVs fall outside of normal 95% CI
for protein in stats_dict:
 median_upper_CI = control_stats_dict[protein]['99CI_median_upper']
 median_lower_CI = control_stats_dict[protein]['99CI_median_lower']
 cv_upper_CI = control_stats_dict[protein]['99CI_cv_upper']
 cv_lower_CI = control_stats_dict[protein]['99CI_cv_lower']
 control_median = control_stats_dict[protein]['avg_median']
 control_cv = control_stats_dict[protein]['avg_cv']

 for condition in stats_dict[protein]:
 condition_median = stats_dict[protein][condition]['median']
 condition_cv = stats_dict[protein][condition]['cv']

 #calculate log2 fold change between non-stress and stress condition
 fold_median = np.log2(float(condition_median)/float(control_median))
 fold_cv = np.log2(float(condition_cv)/float(control_cv))
 fold_change_dict[protein][condition]['median'] = fold_median
 fold_change_dict[protein][condition]['cv'] = fold_cv

 #if distribution is above background/noise
 if condition_median > median_BY4741+std_BY4741:
 #if condition_median < median_lower_CI or condition_median >
median_upper_CI:
 if fold_median > 0.58 or fold_median < -0.58:
 #print 'median outside 95% CI:',protein, condition
 #print 'median before,after
is:',control_median,condition_median
 #print 'fold change median is:',fold_median
 #print '---'

significant_changes_dict[protein][condition]['median']['before'] =
control_median

significant_changes_dict[protein][condition]['median']['after'] =
condition_median

significant_changes_dict[protein][condition]['median']['fold'] = fold_median
 number_significant_median+=1
 #if condition_cv < cv_lower_CI or condition_cv > cv_upper_CI:
 if fold_cv > 0.58 or fold_cv < -0.58:
 #print 'CV outside 95% CI:',protein,condition
 #print 'CV before,after is:',control_cv,condition_cv
 #print 'fold change CV is:',fold_cv
 #print '---'
 significant_changes_dict[protein][condition]['cv']['before']
= control_cv
 significant_changes_dict[protein][condition]['cv']['after'] =
condition_cv
 significant_changes_dict[protein][condition]['cv']['fold'] =

 272

fold_cv
 number_significant_cv+=1

print
json.dumps(significant_changes_dict,sort_keys=True,indent=4,separators=(',','
:'))
print 'number significant median changes:',number_significant_median
print 'number significant CV changes:',number_significant_cv

print 'making 2D array fold change'
#make graphical heat-map representation of fold changes
#make 2D array of rows = proteins, columns = conditions, value = fold-change

#dictionary of condition:column number
conditions_dict = {'Rapamycin':0,'H2O2':1,'Clotrimidazole':2,'MG-
132':3,'Cycoheximide':4,

'MMS':5,'Diamide':6,'ETOH':7,'HydroxyUrea':8,'37C':9,'DTT':10}
row = 0
fold_change_median_array =
np.zeros((len(fold_change_dict.keys()),len(conditions_dict.keys())))
fold_change_cv_array =
np.zeros((len(fold_change_dict.keys()),len(conditions_dict.keys())))

pro_list = []
cond_list = ['Rapamycin','H2O2','Clotrimidazole','MG-
132','Cycloheximide','MMS','Diamide','ETOH','Hydroxyurea','37C','DTT']
for protein in fold_change_dict:
 pro_list.append(protein)
 for condition in conditions_dict.keys():
 column = conditions_dict[condition]
 #print condition,column

 curr_fc_med = fold_change_dict[protein][condition]['median']
 curr_fc_cv = fold_change_dict[protein][condition]['cv']

 fold_change_median_array[row,column] = curr_fc_med
 fold_change_cv_array[row,column] = curr_fc_cv
 row+=1

#plot median fold changes

print cond_list
print pro_list

plt.figure(figsize=(12,12))
ax = plt.gca()
cmap =
mpl.colors.ListedColormap(['maroon','red','lightyellow','lightgreen','green']
)
bounds=[-4,-1,-0.5,0.5,1,4]
norm = mpl.colors.BoundaryNorm(bounds,cmap.N)
plt.imshow(fold_change_median_array,cmap=cmap,norm=norm,aspect='auto',interpo
lation='nearest')
plt.xticks(np.arange(0,len(conditions_dict.keys()),1),cond_list,rotation='ver

 273

tical',fontsize=10)
ax.set_xticks(np.arange(0.5,len(conditions_dict.keys())+0.5,1),minor=True)
plt.yticks(np.arange(0,len(fold_change_dict.keys())),pro_list,fontsize=10)
ax.set_yticks(np.arange(0.5,len(fold_change_dict.keys())+0.5,1),minor=True)
plt.title('Protein Abundance',fontsize=18)
cb = plt.colorbar()
cb.set_label(label='Log2 Fold Change',fontsize=18)
plt.grid(True,which='minor',color='k',linestyle='solid',linewidth=2)
plt.savefig('/Users/Stefanie/PycharmProjects/GFPplots/median_fold_change.png'
,dpi=300)

#plot CV fold change
plt.figure(figsize=(12,12))
ax = plt.gca()
cmap =
mpl.colors.ListedColormap(['maroon','red','lightyellow','lightgreen','green']
)
bounds=[-4,-1,-0.5,0.5,1,4]
norm = mpl.colors.BoundaryNorm(bounds,cmap.N)
plt.imshow(fold_change_cv_array,cmap=cmap,norm=norm,aspect='auto',interpolati
on='nearest')
plt.xticks(np.arange(0,len(conditions_dict.keys()),1),cond_list,rotation='ver
tical',fontsize=10)
ax.set_xticks(np.arange(0.5,len(conditions_dict.keys())+0.5,1),minor=True)
plt.yticks(np.arange(0,len(fold_change_dict.keys())),pro_list,fontsize=10)
ax.set_yticks(np.arange(0.5,len(fold_change_dict.keys())+0.5,1),minor=True)
plt.title('Protein CV',fontsize=18)
cb = plt.colorbar()
cb.set_label(label='Log2 Fold Change',fontsize=18)
plt.grid(True,which='minor',color='k',linestyle='solid',linewidth=2)
plt.savefig('/Users/Stefanie/PycharmProjects/GFPplots/cv_fold_change.png',dpi
=300)

