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A primary goal of biologists is to characterize the dynamic and complex 

behaviors of biological systems. Large, robust data sets that examine many biological 

molecules in a variety of conditions are desirable to gain a more multifaceted view of 

the cell. In addition, single-cell analysis technologies are used to characterize cellular 

heterogeneity and reduce biological noise that exists within isogenic populations. 

Noise in gene and protein expression arises from the stochasticity of underlying 

biochemical reactions, and can confer phenotypic variation which may be 

advantageous in certain circumstances. However, established technologies for high-

throughput, single-cell proteomic analysis have limited throughput.  

Multiplexing methods, such as fluorescent barcoding, can dramatically 

decrease the number of samples and in turn enable collection of more robust data sets 

including many replicates, conditions, and proteins. Fluorescent barcoding is a 

powerful tool for identification of different cells within a heterogeneous mixture using 

a unique fluorescent identifier or ‘barcode’. Fluorescent barcoding can potentially 

reduce the number of samples thousands of fold, thereby facilitating massively-

parallel single-cell analysis of biomolecular and cellular libraries. Current fluorescent 

cell barcoding systems are composed of small numbers of barcodes (~10-100), and in 

some cases are single-use and have toxicity issues.  

The work described here presents the creation of the largest fluorescent 

barcoding system to date consisting of over 980 unique, genetically-encoded barcodes. 

ABSTRACT 



 xxv 

We made a library of plasmids encoding protein scaffolds that are composed of 

different lengths and combinations of epitope tags connected by flexible linkers. Cells 

expressing protein barcodes were identified by their distinct fluorescence upon 

immunolabeling. Multiplexing capability was greatly expanded by the discovery that 

barcodes with four distinct fluorescence intensities can be created by expression of 

different epitope tag repeat lengths. The effect of barcode expression on cellular 

growth, and the influence of different promoters and growth conditions on barcode 

expression was examined. A software package was developed to rapidly analyze 

barcode flow cytometry data, decreasing analysis time ~10-fold.  

The multiplexing power of the fluorescent barcoding system was demonstrated 

in two applications. Barcode fusion did not hinder binding of an a-prion antibody for 

recombinant prion protein, suggesting barcodes can be used for multiplexed analysis 

of biomolecular libraries including high-throughput, quantitative protein-protein 

interaction studies. Barcodes were also used to simultaneously measure the dynamic 

response of endogenous yeast proteins in single-cells to environmental perturbations. 

Changes in protein abundance and variability as well as expression distributions were 

observed, suggesting cells may employ a bet-hedging mechanism to more quickly 

adapt to fluctuating environments. In addition, long epitope tag repeats facilitated 

immunodetection of endogenous, low abundance proteins in yeast by increasing the 

detection limit ~40-fold, potentially enabling analysis of > 1,600 low abundance 

proteins by flow cytometry.   
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INTRODUCTION 

1.1 Motivation and Goals  

A major goal in the field of biology is to understand the complex and dynamic 

interactions and behaviors of biological systems, which can include molecules, cells, 

tissues, and organisms. Another area of interest in systems biology is to use large-scale 

data sets to derive computational predictive models for biological systems. For 

example, transcriptomics, proteomics, and interactomics data sets were synthesized to 

create a perturbed metabolic network model of galactose utilization in yeast [1]. 

Omics data is arguably the primary driving force behind systems biology [2]. Omics is 

the large-scale study of biological molecules that contribute to cellular function, and 

includes genomics, epigenomics, transcriptomics, proteomics, metabolomics, 

interactomics, and lipidomics [3]. Such studies aim to characterize the quantitative and 

dynamic behavior of biological molecules with spatiotemporal resolution and to 

elucidate cellular pathways and networks.  

In order to fully describe a cellular system, large and robust data sets that 

examine many biological molecules under a variety of conditions and with many 

replicates are desirable. In addition, systems biology and omics studies can benefit 

from single-cell analysis technologies because they permit characterization of cellular 

heterogeneity and reduction of biological noise. Phenotypic heterogeneity exists 

within isogenic non-isogenic populations, and arises from the inherent stochasticity of 

gene and protein expression [4]. Stochastic processes create noise, or variation, and 
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has been observed in a variety of cellular systems [5], [6]. Gene and protein 

expression noise is thought to provide an advantage in certain circumstances, and 

underlies adaptive advantages such as bacterial persistence [7], [8] and bet-hedging 

[9]–[11]. In order to fully understand cellular behavior, single-cell analysis is desirable 

as it reduces noise and can reveal heterogeneity that is not captured by average 

measurements [12].  

Established methods for high-throughput, single-cell proteomic analysis such 

as imaging, flow cytometry, microfluidics [13], and mass cytometry [14] often require 

cumbersome robotics systems and multi-well plates to analyze thousands of samples 

that are needed for systems-wide studies. As a result, single-cell proteomics has not 

been as widely implemented as single-cell genomics or transcriptomics [14]–[16]. 

Technologies to increase the throughput of single-cell proteomics methods can 

enhance systems biology studies by decreasing the number of samples required, and in 

turn enabling more replicates, conditions, and proteins to be studied.  

Cellular fluorescent barcoding is a powerful tool that can be used to identify 

different types of cells within a heterogeneous mixture using a unique fluorescent 

identifier or ‘barcode’. Thus, fluorescent barcoding enables multiplexed analysis of 

biomolecular and cellular libraries, potentially resulting in hundreds to thousands fold 

reduction in the number of samples needed for a study. Current fluorescent cell 

barcoding systems suffer from a number of drawbacks (Table 1.1). Some barcoding 

systems are single-use, meaning that barcodes are not genetically encoded and cells 

have to be barcoded individually before each experiment [17]–[23]. Other fluorescent 

cell barcoding systems have reported toxicity [24]–[26], and some methods rely on 

microscopy, which is lower throughput than flow cytometry [25], [27]. Existing 
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fluorescent cell barcoding systems have a limited number of spectrally distinct 

barcodes, on the order of 10 [19]–[21], [24], [26]–[28] to 100 [17], [18], [23], [25].  

Table 1.1: Drawbacks of existing fluorescent barcoding systems  

 

The primary goal of this work is to engineer an improved fluorescent 

barcoding system for massively-parallel analysis of biomolecular and cellular 

libraries, potentially enabling multiplexed experimentation and analysis of thousands 

of different biological molecules in a single sample. In the first part of this work we 

discuss our design for a genetically-encoded fluorescent barcoding system. 

Fluorescent barcodes are produced upon immunolabeling of cell-expressed, 

engineered protein scaffolds, which are composed of different epitope tags connected 

by flexible linkers. Out of this work, a general method for exponential expansion of 

tandem DNA sequences was developed. Also, a tangential application using long 

tandem repeating epitope tags for improved flow cytometric immunodetection of 

endogenous low abundance proteins in single-cells is described. In addition, the 

instability of plasmids containing tandem nucleotide repeat regions in E. coli is 

explored using multiple methods including deep sequencing.  

In the second part of this work, we discuss the development of a multi-color 

fluorescent barcoding system for high-throughput, single-cell analysis of biomolecular 

1. Krutzik, P.O. and Nolan, G.P. (2006) Nature Methods
2. Mali, P. et. al. (2013) Nature Methods
3. Mohome, M. et. al. (2017) Molecular Therapy
4. Chen, R. et. al. (2015) ACS Synthetic Biology
5. Mattheakis, L.C. et. al. (2004) Analytical Biochemistry

Barcoding Method Max # Barcodes Single Use Toxicity Analysis Method
Zinc Finger oligonucleotide barcoding2 6 Microscopy
Fluorescent protein barcoding3 41 X Flow Cytometry
Organelle and fluorescent protein barcoding4 64 X Microscopy
Dye barcoding1,5 96 X Flow Cytometry
Epitope tag barcoding (this work) >980 Flow Cytometry
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and cellular libraries. Specifically, we present an approach to create up to four distinct 

intensities using a single fluorophore, greatly enhancing the number of possible 

barcodes over previously established binary schemes. A 190-member barcode library 

was created by subcloning six-different types of epitope tags differing in repeat 

number, and the barcode library was characterized and normalized FACS. In addition, 

the effects of constitutive and inducible promoters on barcode expression and relative 

cell growth rates are explored.   

In the third part of this work, we discuss the expansion of the fluorescent 

barcoding system to over 1,100 members by incorporation of 5 addition epitope tags. 

Specifically, 18 plasmids encoding combinations of 5 different epitope tags were 

created using homologous recombination and overlap PCR. Barcode expression was 

validated by flow cytometry and clones were isolated by FACS. Then, the barcode 

system was expanded to create 11-epitope tag combinations by subcloning the 18 5-

eptiope tag plasmids with the 190-plasmid library containing combinations of 6 

additional epitope tags. We estimated that the barcode libraries contain a total of 

~1,100-1,500 unique barcodes using a software package that was developed for rapid 

identification and quantification of barcoded populations from flow cytometry data.   

In the last part of this work, we illustrate the utility of fluorescent barcoding for 

multiplexed single-cell analysis of biomolecular and cellular libraries. In one 

application, we find that barcode expression does not affect the apparent binding 

affinity of an a-prion antibody for recombinant prion protein, suggesting fluorescent 

barcodes can be used for multiplexed analysis of biomolecular libraries including 

protein-protein interaction studies. In a second application, we simultaneously 

examine the dynamic, single-cell expression profiles of endogenous yeast GFP fusion 
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proteins in different environments using fluorescent barcodes. This study uncovered 

interesting responses to fluctuating environments, including bimodal expression 

profiles and changes in protein expression abundance and variation, which may 

suggest that cells employ bet-hedging in order to adapt more easily to sudden 

environmental fluctuations. Overall, we have engineered an improved fluorescent 

barcoding system with greater than 10-fold more barcodes than existing systems, and 

demonstrate its use for multiplexed single-cell analysis of bimolecular and cellular 

libraries.        

1.2 Design and Application of Previous Fluorescent Cell Barcoding Systems 

Cellular fluorescent barcoding is an emerging technology that is used to 

multiplex samples for single cell-based assays or identify cells in mixed populations. 

An advantage of cellular barcoding is that it enables high-throughput single-cell 

analysis, is compatible with standard methods such as flow cytometry and microscopy, 

and does not require specialized robotics or microarray technologies. Fluorescent cell 

barcoding has demonstrated utility for many applications including cell signaling 

studies and drug screens, protein-protein interaction screens, and cancer and stem cell 

tracking in vitro and in vivo.    

The first example of cellular fluorescent barcoding was first published in 2004, 

and used binary combinations of 5 different colors of fluorescent quantum dots to 

create 10 distinct barcodes that were introduced into cells via peptide-mediated 

delivery [19]. This method is advantageous because it can be used with microscopy or 

flow cytometry, but is not genetically encoded so cell samples have to be barcoded in 

multi-well plates and then mixed together for analysis. Also, three barcodes were used 

in a cellular assay to identify CHO cell lines expressing different GPCRs and to 
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measure changes in the cells’ agonist-induced calcium levels [19]. Recently, another 

fluorescent nanoparticle based barcoding system used three colors and up to six 

intensity levels to create 20 nanoparticle barcodes [22]. These nanoparticles were 

loaded into cells via endocytosis and used for microscopy based tracking.  

In 2006, a fluorescent-dye based barcoding method was developed which used 

different combinations and concentrations of three different fluorescent dyes to create 

96 barcodes with up to four florescence intensities [18]. This method is advantageous 

because it permits multiplexing up to ~100-fold, but it is not genetically-encoded so 

cells have to be stained in multi-well plates before analysis, and it is not compatible 

with live cells. The dye-based fluorescent barcoding system was used to screen small 

molecule phosphatase and kinase inhibitors in a single cell-based assay. In addition, 

dye barcoding was applied to study the heterogeneous signaling response of different 

types of mouse primary cells to varying cytokine concentrations.  

A related mass cytometry barcoding method used binary combinations of 

seven lanthanide metals to barcode 96 cells by surface-linked chemical conjugation 

[17]. Advantages of this method include the ability to measure ~40 parameters in a 

single-cell and the ability to create ~100 barcodes. However, mass barcodes are not 

genetically encoded so cells have to be barcoded individually before mixing and 

analysis. Mass barcoding also requires a mass cytometer, which are not commonly 

available. Mass barcodes were used to multiplex the analysis of peripheral blood 

mononuclear cells (PBMCs) to twelve different cytokine stimuli during eight different 

time points, as well as the response of PBMCs from eight different donors to 12 

stimuli. In addition, the signaling response of PBMCs to kinase inhibitors was 

characterized using an eight-point dilution and 12 different stimulus conditions, as 
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well as 14 phospho-antibodies to characterize signaling pathway response and 10 

antibodies specific for cell surface markers to identify different cell types.        

Recently, fluorescent protein based barcoding systems have been developed by 

multiple groups independently. One group used three different fluorescence proteins to 

create 12 barcodes, and applied four barcodes in a cell based assay to determine the 

activity of cells expressing HIV-1 protease variants via an eGFP reporter [28]. 

Another study used combinations of up to three fluorescent proteins and six colors to 

create 41 fluorescent protein barcodes [26]. They tracked proliferation rates of 21 

barcoded clones derived from a mouse glioblastoma cell line in vitro and in a mouse 

model. A third group created 26 total barcodes using three fluorescence proteins 

expressed under two different translational control elements to create off, low, and 

high intensities for a fluorescent protein [24]. However, a 10 to 20-fold decrease in 

cell viability was observed when combinations of two or more fluorescent proteins 

were transduced. Six fluorescent barcodes were applied to track clonal growth in vitro 

in response to different microRNAs, as well as the in vivo growth of mouse 

hematopoetic stem cells and human cord blood cells. Overall, fluorescent protein 

based barcoding systems are advantageous because they can be easily used in multiple 

cell types, and are compatible with flow cytometry and microscopy, but have limited 

applications due to their relatively small library sizes and in some cases reported 

toxicity issues when multiple fluorescent proteins are expressed in the same cell.  

Another fluorescent protein based barcoding system used color and protein 

localization to identify cells [25]. 64 barcodes were created using four different 

fluorescent proteins and four localizations. The fluorescent barcoding system was 

applied in a fluorescent yeast two hybrid assay to screen for protein-protein 
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interactions between eight coiled-coil leucine zipper proteins. Specifically, bait 

proteins were tagged with a peroxisome targeting sequence and the prey proteins were 

fused to RFP. Absence of an interaction was indicated by diffuse red fluorescence, 

while presence of an interaction was indicated by red puncta, and 10-20 cells were 

used to calculate an interaction score. A success of this barcoding system was the 

ability to create more than 50 barcodes and demonstration of fluorescent barcoding for 

multiplex protein-protein interaction screens. Disadvantages include the use of lower-

throughput microscopy resulting in low cell counts and false positive interactions, as 

well as toxicity issues when pairs of fluorescent proteins were targeted to certain 

organelles within cells and when certain combinations of coiled-coil proteins were 

expressed. 

A unique approach to fluorescent cell barcoding is the use of cell surface 

displayed zinc finger domains that hybridize to different fluorescently labeled 

oligonucleotides [27]. Specifically, six cells were barcoded by expression of a unique 

zinc finger domain and sequential labeling with two different fluorescently labeled 

oligonucleotides. Advantages of this method include that is it genetically-encoded and 

can be used for multiplexed experimentation and analysis, whereas drawbacks include 

the dependence on microscopy and adherent cell types, as well as limited library sizes. 

The zinc finger barcodes were used for in applications for cellular immunopurification 

and increased transduction efficiency using oligonucleotide tagged lentivirus.    

1.3 Single-Cell Analysis and Protein Expression Noise  

Genetically identical cells can exhibit phenotypic heterogeneity, which is due 

to noise in gene and protein expression [5], [29]. Noise originates from stochastic 

biochemical processes involving small numbers of molecules, including random birth 



 9 

and death of mRNA and protein molecules and promoter on/off transitions due to 

stochastic transcription factor binding [4], [30]–[32]. For example, a study examining 

single-cell transcription events in E. coli using a microfluidics platform found that 

protein expression occurs in stochastic bursts, and that the variation in burst size and 

frequency contributed to deviations in gene expression [33]. This phenomenon has 

been observed by others [34], and was quantified using a Gamma distribution model 

to describe gene and protein expression heterogeneity [35].  

Other sources of noise include cell-cycle differences and unequal partitioning 

of cellular components during cell division [4], [36]. For example, 900 yeast 

promoters were assessed in different environmental conditions using single-cell 

reporter protein measurements. Gene expression noise was found to be higher in more 

nutrient poor conditions, and varied significantly due to cell-cycle differences [36]. In 

addition, gene and protein expression noise was observed to vary significantly with 

chromosomal location due to differences in chromatin conformations and histone 

modifications [37], [38]. For example, a study examining GFP expression levels at 

500 different genomic locations found that chromosomal position affects protein 

expression levels in yeast up to 15-fold and noise up to 20-fold.   

Additionally, pathway specific feedback loops have been studied as an 

additional source of noise. Studies have used both natural and synthetic gene 

regulatory networks to understand phenotypic heterogeneity. For example, the E. coli 

lac operon exhibited bistable state behavior at intermediate induction conditions 

leading to two phenotypic states [39]. A study examining the mulitstability of the 

galactose signaling network in S. cerevisiae found that positive and negative feedback 

loops contributed to multiple stable states and cellular memory [40]. Moreover, 



 10 

different pathway or gene-specific factors may influence gene and protein expression 

noise. Studies have found that essential genes, including those involved in proteasome 

and protein synthesis [32], [41], exhibit lower noise than others [42], while stress 

related genes tended to be noisier on average.   

Cellular heterogeneity and gene expression noise can confer adaptive 

advantages when cells encounter an environmental change, and phenotypic 

heterogeneity has been observed in both isogenic and genetically diverse cells 

including E. coli, yeast, and mammalian cancer cells. In E. coli, two coexisting cell 

states, namely expression of low and high amounts of membrane lactose permeases, 

were observed at induction intermediate concentrations using the lac operon [43]. It 

was found that infrequent disassociation of the lac repressor protein was responsible 

for bursts of protein expression resulting in the lactose metabolizing phenotype.  

Studies in yeast have found that cellular heterogeneity in protein expression 

can confer adaptive advantages to fluctuating or adverse environments [44]. A subset 

of yeast proteins exhibited bimodal expression patterns under nitrogen starvation, 

oxidative or reducing environments. Upon further investigation, it was found that the 

high expressing phenotype conferred a growth advantage over short starvation time 

scales while the low expressing phenotype was more advantageous over long times 

[10]. In another study, yeast cells were engineered to have either slow or fast 

transitions from two phenotypic states as a result of stochastic gene expression [11]. 

Under fast environmental fluctuations, frequent switchers had a growth advantage 

while the converse was true when environmental changes occurred infrequently. 

Taken together, these results suggest microbial cells can exhibit multiple phenotypic 
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states characterized by noise in gene and protein expression, which can confer a 

fitness advantage in certain circumstances.  

Cellular heterogeneity among cancer cell populations has been shown to confer 

drug resistance. For example, a subpopulation of cancer cells were observed to be 

drug-tolerant, exhibiting more than 100-fold reduced drug sensitivity [45]. It was 

found that this cell subset had a modified chromatin state with higher expression of the 

histone demethylase KDMA5A, suggesting epigenetic mechanisms may underlie drug 

resistance in this case. In another study, the proteome dynamics of a lung carcinoma 

cell line in response to an anti-cancer drug was examined [46]. The protein expression 

profiles of 1,200 endogenous fluorescent protein fusion clones were quantified, and it 

was found that a subset of proteins exhibited bimodal expression profiles that 

conferred improved drug resistance. Overall, cellular heterogeneity has been observed 

in many cell types and has many potential underlying sources including gene and 

protein expression noise. Single-cell analysis methods are necessary to fully capture 

and understand cellular heterogeneity.  
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MATERIALS AND METHODS 

2.1 Yeast Barcode Expression Plasmid Construction 

The yeast expression vector pBC1 was derived from two plasmids: p416-25Q-

GPD was purchased from Addgene and pUC57-SS-cmyc-AGalpha1 was synthesized 

by Life Technologies. pBC1 was constructed from the p416-25Q-GPD vector and 

pUC57-SS-cmyc-AGalpha1 was created by restriction digest with XbaI and XhoI 

restriction enzymes and ligation of p416 backbone and SS-cmyc-AGalpha1 insert. 

pBC1 contains the C-terminal domain of the alpha-agglutinin mating protein 

(AGalpha1) downstream, a secretion signal (SS), a cmyc tag, and a constitutive GPD 

promoter upstream of the repeat region.  

The pBC1-GAL plasmid was created by changing the GPD promoter for the 

inducible GAL promoter. The GAL inducible promoter was obtained from the 

pCTCON2 plasmid. The pBC2 plasmid was adapted with additional G4S3 linkers and 

an AfeI cloning site for subcloning of protein fusions of interest to barcodes using a 

commercially synthesized oligonucleotide. GFP epitope tag integration plasmids were 

created by restriction digestion of the pRSII40X plasmid series (Addgene) with SacI 

and KpnI. A synthesized oligonucleotide containing N-terminal and C-terminal 

regions of GFP homology, a restriction enzyme site for linearization, and a multiple 

cloning site for the epitope repeats was subcloned into the pRSII plasmid backbone. 
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Lastly, epitope tag repeats were subcloned from the pBC1 plasmids to the pRSII 

plasmids.  

2.2 Creation of Tandem Repeating Epitope Tag Plasmids for Multiple Unique 
Intensity Barcodes  

Epitope tag oligonucleotides were synthesized by Integrated DNA 

Technologies. Oligonucleotides contain a single copy of HA, HIS, FLAG, GLU-GLU, 

AU1, or HSV epitope tag followed by (G4S)3 and (G4S)1 linkers, as well as a PacI site 

upstream of the epitope tag, and an AsiSI site and a 3’ unique restriction site flanking 

the (G4S)1 linker, such as XmaI for HIS. Each single epitope tag was subcloned into 

the pBC1 constitutive yeast expression vector, and epitope tag repeat number was 

expanded exponentially from 1 to 2, 4, 8, 16, and in some cases 32 and 64 repeats by 

iterative restriction digestion and ligation. To increase the number of repeats, pBC1 

containing n epitope tag repeats was digested with PacI and 3' unique site restriction 

enzymes to create insert and separately digested with AsiSI and 3' unique site 

restriction enzymes to create an acceptor vector. PacI and AsiSI have compatible two-

base pair overhangs that cannot be digested by either enzyme after ligation. The 

resulting construct contained 2n epitope tag repeats, with each repeat separated by an 

undigestible 5’AsiSI/3’PacI site. The 3’ unique restriction enzyme sites used to 

expand the number of repeats were BamHI, ClaI, XmaI, EcoRI, HindIII, and SalI for 

HA, HSV, HIS, AU1, Glu-Glu, and FLAG, respectively.  

Epitope tag repeats were checked for the correct size by restriction digest. 

Plasmids were transformed into high-efficiency chemically competent NEB5α E. coli 

or NEB Stable E. coli (New England Biolabs), and colonies were selected on LB agar 

plates containing 100 µg/mL ampicillin. Sanger sequencing failed to provide an 
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accurate nucleotide sequence of greater than four repeats due to sequence redundancy. 

Ultimately, Pacbio SMRT next generation sequencing was used to determine the 

distribution of epitope tag repeat lengths.  

2.3 Development of Multiple Color Fluorescent Barcodes by Subcloning 
Epitope Tag Repeat Combinations.  

Each of the six epitope tags used initially are flanked on either side by a unique 

pair of restriction enzyme sites, allowing the creation of barcode plasmids with 

combinations of epitope tags with varying repeat lengths. For example, to construct a 

barcode plasmid containing 4HA and 1HSV, an acceptor vector containing pBC1-

1HSV an an insert plasmid containing pBC1-4HA were digested with SpeI and 

BamHI restriction enzyme sites. After purification of the insert and vector DNA 

fragments, DNA was ligated in a 3:1 molar insert to vector ratio either overnight at 

16°C or at room temperature for 1 hour, and transformed into NEB Stable or NEB 10ß 

cells using chemical transformation or electroporation. Single E coli colonies were 

picked from a selective agar plate grown overnight at 37°C and screened by restriction 

digest for the correct insert sizes.  

Barcode plasmids were also confirmed by protein expression and cellular 

immunolabeling. Specifically, plasmids were transformed into the yeast strain 

BY4741 (MATa his3∆0 leu2∆0 met15∆0 ura3∆0) [47] by the standard lithium-acetate 

method [48] or by electroporation [49], and selected for on URA dropout agar plates 

for 3-4 days. Single colonies were grown at 30°C in selective SD glucose media to 

early or mid log phase, and if required transferred to SG galactose media to induce 

barcode expression for an additional 24 hours, immunolabeled, and analyzed by flow 

cytometry.  
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2.4 Fluorophore Antibody Conjugation and Multicolor Flow Cytometry Panel 
Development  

Epitope tag antibodies were purchased from commercial sources (Abcam, 

Sigma Aldrich, Life Technologies, BioRad, BioLegend, Jackson Immunoresearch, 

EMD Millipore). Antibodies for HA, V5, E2, and AcV5 were purchased from Abcam. 

Secondary Alexa Fluor conjugate antibodies, quantum dot conjugate antibodies, and 

HIS antibody was purchased from Life Technologies. FLAG was purchased from 

Sigma Aldrich. AU5, AU1, and GLU antibodies were purchased from Biolegend. 

HSV and T7 antibodies were purchased from Millipore. Fluorophores were covalently 

conjugated to antibody lysine residues using either succinimidyl ester chemistry [50] 

for small molecule Alexa Fluor 488, 647, and 700 or Marina Blue dyes (Life 

Technologies), or Lightning-Link antibody conjugation kits (Innova Biosciences) for 

protein fluorophores including APC-Cy7, PE-TexasRed, PE-Cy5, PE-Cy5.5, PE-Cy7, 

and PerCP. For Alexa Fluor dyes, antibody conjugates were dialyzed overnight against 

PBS pH 7.4 and molar ratios of fluorophore to antibody were between 3:1 and 10:1 as 

calculated from spectrophotometry measurements. For lightning-link technology, 

molar ratios of fluorophore to antibody were estimated to be between 1:1 and 2:1 by 

spectrophotometry. In addition, in some experiments different antibody species were 

used to enhance the signal from some of the dimmer fluorophores. Specifically, rat a-

FLAG and a-rat PerCP conjugate, human a-V5 with biotin a-human and streptavidin 

QDot 525 conjugate, chicken a-cmyc and a-chicken AF488 or AF647 conjugate, and 

rabbit a-HIS and a-rabbit QDot705 conjugate.  

2.5 Barcode Immunofluorescence and Flow Cytometry Analysis 

A known number of yeast cells expressing barcodes were incubated in PBS pH 

7.4 + 0.1% BSA containing at least a 10-fold stoichiometric excess of a-epitope tag 
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antibodies for 1 hour at room temperature with mixing after 30 minutes. The number 

of proteins per cell was estimated by us and others [51] to be 50,000-100,000 copies 

per cell. Cells were washed twice with PBS+BSA and if necessary incubated with 

fluorophore-conjugated secondary antibodies for 30 minutes on ice. Samples were 

washed twice in PBS+BSA and analyzed using either an Accuri C6 flow cytometer or 

a FACSAriaII cell sorter.  

Antibodies were titrated to determine the binding affinity, and in most cases a 

saturating condition was used for immunolabeling (typically 10-100nM). For 13-color 

flow cytometry, however, compensation and spillover prohibited saturating conditions 

to be used for all fluorophores. It was experimentally determined that 1-5 nM cmyc 

with 35 nM a-chicken AF647 and 10 nM HA-PE gave the best compromise between 

brightness and spillover.  

Flowjo software was used to calculate compensation matrices and analyze 

data. To calculate compensation, cell samples labeled with a single fluorophore or 

fluorophore conjugated beads were used. For some experiments, fluorescence minus 

one controls were used to determine negative and positive populations. Yeast clones 

expressing single barcodes labeled with cmyc and one additional epitope tag were 

used to distinguish positive populations, quantify the percent of barcodes captured and 

estimate the error between barcodes. 

To manually analyze a flow cytometry data set of barcode mixtures, first a gate 

was drawn on the cell population in order to exclude debris and minimize forward and 

side scatter differences between cells. Then, a conservative gate was drawn on the 

cmyc channel for normalization of protein expression. Barcoded subpopulations were 

visualized on 2-D scatter plots by the fluorescence intensity of one epitope tag versus 



 17 

the normalization fluorescence, and gates were drawn around the subpopulations as to 

minimize overlap between them and remove any cells with ambiguous barcodes.  

2.6 Expansion of Barcode Library by Random Homologous Recombination of 
Epitope Tags and Fluorescence Activated Cell Sorting (FACS) 

In order to generate additional barcodes, we developed a strategy to create new 

epitope tag combinations in one reaction using random recombination of the flexible 

glycine-serine homologous linkers that surround epitope tags. Specifically, nine 

additional epitope tags, namely S tag, AcV5, AU5, StrepTagII, V5, E2, T7, VSVG, 

and E tag, flanked by (G4S)3 linkers and two sets of restriction enzymes, were 

synthesized by Genewiz. Three approaches were used to create DNA plasmids 

encoding epitope tag combinations: homologous recombination with full restriction 

digest, partial restriction digest, or overlap PCR. For the restriction digest and 

homologous recombination approach, inserts containing epitope tags surrounded by 

linkers were generated by digesting the synthesized plasmid with a log 10 titration of 

NheI or SphI restriction enzymes. The insert and vector were purified and transformed 

into yeast. A third strategy used fully digested epitope-linker DNAs as primers in an 

overlap PCR reaction to create new epitope tag combinations.  

The three yeast barcode libraries were analyzed for barcode combinations 

using flow cytometry, and each unique combination was enriched and isolated by 

FACS. After sorting, yeast clones expressing barcodes were selected on agar plates 

and tested for barcode expression using flow cytometry. After barcoded yeast clones 

were confirmed, plasmids were rescued by zymoprep and transformation into NEB 

Stable E. coli. Barcode plasmids were also confirmed for the correct epitope tag 

combination by Sanger sequencing.  
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2.7 Construction of Libraries Containing Thousands of Unique Barcodes 

To construct a large and diverse barcode plasmid library, epitope tags with 

repeat lengths that generate unique fluorescent signatures when expressed and 

immunolabeled in yeast were combined in three sequential reactions to generate up to 

216 barcodes. In the first round, plasmids containing 1 and 4 HA were subcloned as 

mentioned above in a one pot reaction with 1 and 4 HSV to create 8 unique barcodes. 

4HIS and 1 and 4 AU1, and 4 GLU-GLU and 1FLAG were combined in the same 

manner to create 5 and 3 unique barcodes respectively. Then, the HA-HSV and HIS-

AU1 libraries were crossed using subcloning to make 54 unique barcodes. Finally, the 

HA-HSV-HIS-AU1 library was crossed with the GLU-FLAG library to make up to 

216 unique barcode combinations using 6 epitope tags.  

To further expand the number of barcodes, we constructed 18 barcode libraries 

using a unique plasmid from the second round of barcode creation, which contain 

combinations of AcV5, AU5, V5, E2, and T7 epitope tags, as the acceptor vector and 

the library of 216 barcodes as the insert. Specifically, DNA was digested with SpeI 

and XhoI restriction enzyme sites to linearize the vector and excise DNA encoding the 

barcode and AGAlpha1 protein. Additionally, the inserts were digested with a cocktail 

of restriction enzymes, including NdeI, BstNI, AclI, EciI, and DraI, to digest the mini-

plasmids. Mini-plasmids are non-full-length plasmids composed of backbone DNA 

fragments with partially or fully deleted barcode regions that arose from plasmid 

instability in E. coli due to repeating DNA regions.   

DNA inserts and vectors were gel purified, ligated overnight at 16°C, purified, 

transformed into NEB 10ß cells, and plated at three different dilutions to determine the 

library size. After overnight growth on agar plates, E coli colonies were miniprepped 

to obtain plasmid DNA. Barcode library DNA was transformed into yeast using the 
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high efficiency lithium acetate method, and yeast libraries were grown up in selective 

media and dilutions were plated on selective agar to determine library size. Yeast 

libraries were grown in glucose liquid media to log phase and induced in galactose 

media for 24 hours at 30°C prior to immunolabeling and flow cytometry.  

2.8 Construction and Analysis of Barcode Pacbio SMRT Library   

Barcodes contain tandem GC-rich DNA sequences, prohibiting Sanger 

sequencing for constructs containing more than 4 repeats. Therefore, we used Pacbio 

SMRT sequencing to determine the distribution of epitope tag repeat lengths and 

barcode combinations in the library. Approximately 100 plasmids containing different 

repeat lengths and combinations of HA, HSV, HIS, GLU-GLU, AU1, and HSV 

epitope tags were prepared for Pacbio sequencing by restriction digest with XbaI and 

XhoI to excise the DNA fragment encoding the barcode ORF. BluePippin was used to 

remove most of the backbone fragments from the sample, and the remaining DNA 

inserts were adapted for SMRT sequencing. After sequencing, raw data was filtered 

using a circular consensus sequence (CCS) cutoff of 3 and a quality score of 0.9. The 

‘reads of insert’ protocol from SMRT analysis portal was used to generate CCS reads.  

We created a method to analyze the distribution of repeat lengths in the Pacbio 

library. Specifically, we used the LALIGN algorithm [52] implemented by W.R. 

Pearson at UVA, which finds internal, non-intersecting duplications in nucleotide 

sequences. The default gap open penalty of -12 and gap extension penalty of -4 were 

used to compute expectation values. An expectation threshold value of 1e-4 was used 

to filter out incorrect alignments. Additionally, Python scripts were written to further 

process the LALIGN data. These scripts determined the epitope tag repeat lengths and 
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their frequency, the frequency of particular barcode combinations, and the barcode 

combination for each Pacbio sequence read.  

2.9 Detection and Quantification of Low-Abundance, Endogenous Repeat 
Fusion Proteins in Cells  

GFP epitope tag repeat plasmids were constructed as described above. 

Plasmids were linearized with XhoI, purified, and transformed into yeast GFP fusion 

strains using the lithium acetate ssDNA method. Single clones were isolated after 3-4 

days of growth on selective URA dropout plates, and FLAG integration and GFP 

knockout was confirmed by immunolabeling and flow cytometry. Specifically, cells 

were fixed for two hours in 4% formaldehyde. After two washes, cell walls were 

digested by addition of 50 µg/mL zymolyase in PBS for 1 hour at 30°C. Spheroplasts 

were permeabilized by incubation with 0.25% Triton-X in PBS for 30 minutes with 

rotation at room temperature. Cells were washed 3 times in PBS and incubated with 

100 µg/mL RNase A for 15 minutes at 37°C.  Then, cells were incubated with 10nM 

a-FLAG in at least 10-fold stoichiometric excess for 2 hours at room temperature, 

washed three times with PBS supplemented with 4% BSA and incubated with 35 nM 

Alexa Fluor 647 conjugated a-mouse antibody for 1 hour at room temperature and 

SYTOX Green nucleic acid stain or propidium iodide for 10 minutes. After three 

washes with PBS and 4% BSA, cells were analyzed on an Accuri C6 flow cytometer. 

Cells were also analyzed using a Zeiss LSM 800 confocal microscope equipped with a 

63x oil lens.  

2.10 Expression and Purification of Recombinant Mouse Prion Protein  

The NEB T7 E. coli strain containing the pET11a-MoPrP 23-230 plasmid was 

grown overnight in a 250 mL starter culture from a single colony. The starter culture 
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was inoculated into a 30L New Brunswick Scientific BioFlo 4500 bioreactor 

containing 20L of TB media. After cells reached an OD600 of 1, IPTG was used to 

induce protein expression for 4 hours. The protein was purified as previously 

described by isolation and homogenization of inclusion bodies, size exclusion 

chromatography, oxidation for two weeks at 4°C, reverse phase HPLC, and 

lyophilization [53]. Recombinant prion protein purity was confirmed by SDS-Page, 

Coomassie and silver stain. For fluorescent labeling, a stoichiometric excess of Alexa 

Fluor 647 NHS ester was incubated in 0.1M sodium bicarbonate buffer, pH 8 with 

lyophilized prion protein. Labeled, precipitated PrP was recovered by centrifugation 

and solubilized in refolding buffer consisting of 4M Urea, 0.25 mM oxidized 

glutathione (GSSG), and 0.1M Tris (pH 8) for 90 min to create the alpha helical form 

of the prion protein [54]. For labeling experiments, prion protein in refolding buffer 

was rapidly diluted into PBS pH 7.4 at 100 nM or lower to avoid precipitation.   

2.11 Creation and Assessment of Barcoded ICSM18 2.6.1 scFv  

A plasmid containing pCTCON2-ICSM18 2.6.1 was previously constructed by 

Kyle Doolan. The ICSM18 2.6.1 sequence was isolated by PCR using primers to 

amplify the gene and change the restriction enzyme sites used for subcloning. The 

DNA fragment was cloned into the pBC2 plasmid and two libraries containing a 

mixture of barcode plasmids. Cells were grown up in SD media and induced in SG 

media for 24-48 hours at 20°C or 30°C. For immunolabeling, Alexa Fluor 647 labeled 

alpha helical prion protein was titrated with cells displaying ICSM18 2.6.1 or 

barcoded ICSM18 2.6.1 in PBS pH 7.4. Cells were immunolabeled with cmyc and a-

chicken Alexa Fluor 488 to normalize for differences in protein expression level, and 

barcode antibodies if needed, as described above.    
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2.12 Construction of Barcoded Yeast GFP Fusion Strains  

Yeast clones from the yeast GFP fusion collection [55] were unfrozen from -

80°C stocks and grown overnight in 96-well plates with shaking at 800 rpm using an 

orbital microplate shaker (Benchmark Scientific) at 30°C. Cells were replicated onto 

SD-HIS plates using a prong replicator and grown overnight. 100ng each of either a 

single barcode plasmid or barcode plasmid libraries were transformed into each strain 

as previously described [48]. After 3-4 days of selection on SD-His-Ura plates, single 

clones were picked to select yeast clones expressing a single barcode. Single strains 

were preserved in 96-well plates.  

2.13 Identification of Unique Barcoded Yeast GFP Fusion Strains and 
Environmental Perturbations  

Yeast GFP fusion strains expressing a unique and known combination of T7, 

V5, AU5, AcV5, and E2 epitope tags were pooled in mixtures to screen for an 

unknown combination of HA, HSV, HIS, AU1, GLU-GLU, and FLAG epitope tags. 

For identification of unique barcodes, mixtures of barcoded yeast GFP fusion strains 

were grown up in SD to log phase and induced in SG media. In some cases, cells were 

fixed in 1-4% formaldehyde for 10 minutes and permeabilized in 100% methanol to 

lessen cellular autofluorescence. Cells expressing barcodes were immunolabled as 

described above and analyzed on a FACSAriaII cell sorter.  

For perturbation experiments, after induction of barcode expression cells were 

exposed to an environmental change (e.g. ethanol, oxidative stress, heat shock) at a 

range of concentrations and fixed at various time points, usually less than two hours. 

For immunostaining, cells were permeabilized, immunolabeled, and analyzed as 

described previously.  
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2.14 Conversion of Arbitrary Fluorescence to Protein Abundance  

Recombinant eGFP (recGFP) produced in E. coli and purified by ion exchange 

chromatography was a gift from Dr. Wilfred Chen at the University of Delaware. 

recGFP was assessed by Coomassie stain as 90% pure by ImageJ. recGFP 

concentration was estimated to be 0.67 ± 0.08 mg/mL by BCA assay (Thermo 

Scientific Pierce). Quantitative Western blotting was used to determine the abundance 

of GFP in the TDH3-GFP yeast strain. Briefly, 40, 50, 60, 70, 80, 90, and 100 ng of 

recGFP and lysate from a known number TDH3-GFP cells were loaded onto an SDS-

PAGE gel and transferred onto nitrocellulose membrane. a-GFP antibody (Life 

Technologies) and a-mouse HRP conjugated antibody (Life Technologies) were used 

to detect chemiluminescence. GFP intensities were quantified using ImageJ 

(Schneider et al., 2012), and a standard curve of chemiluminescence versus amount of 

recGFP was plotted. The abundance of GFP in the TDH3-GFP fusion strain was 

calculated from the standard curve as 2.7 million molecules per cell.  

A relationship between arbitrary GFP fluorescence and GFP protein abundance 

was determined by linear regression after analyzing the TDH3-GFP fusion strain by 

flow cytometry. To correlate FLAG signal with protein abundance, eGFP with 16 

FLAG was expressed as a fusion to AGalpha1, and cells were immunolabeled with a-

FLAG and Alexa Fluor 647 conjugated a-mouse antibodies and analyzed by flow 

cytometry.  

 



 24 

DEVELOPMENT OF ONE-COLOR EPITOPE TAG REPEAT BARCODES 
AND THEIR USE FOR DETECTION OF ENDOGENOUS, LOW-

ABUNDANCE PROTEINS IN SINGLE-CELLS 

3.1 Introduction 

In this chapter, fluorescent cellular barcode design considerations are 

discussed, including the desire for a high degree of barcode diversity, the need for 

high-throughput measurement capability, and the advantages of a genetically-encoded 

barcoding system that can be reused for multiple experiments. A new method for 

iterative exponential expansion of tandem repeating DNA sequences, and its use for 

the creation of single-color barcodes composed of repeating epitope tags is presented. 

Furthermore, evidence supporting instability of tandem epitope tags in E. coli is 

presented, including DNA gel electrophoresis analysis, protein expression analysis by 

flow cytometry, and next-generation sequencing analysis of tandem repeating barcode 

DNA. Also, we show that the flow cytometric detection and quantification of 

endogenous low-abundance proteins in single-cells is enabled by the use of protein 

fusions to long epitope tag repeats.  

3.1.1 Fluorophores and Protein Detection Methods  

Fluorophores are molecules that produce fluorescence, or in other words emit 

light at a longer wavelength after absorbing light. Fluorophores are used widely to 

detect proteins, nucleic acids, organelles, and even cells. The three major types of 

fluorophores are: small organic dyes, fluorescent proteins, and quantum dots [56]. The 

Chapter 3 
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two most widely used methods for protein detection using a fluorescent reporter are 

immunolabeling with fluorophore-conjugated antibodies or genetic fusions with 

fluorescent proteins. Proteins are typically studied in cells and tissues using 

fluorescence microscopy or flow cytometry [56]. 

Fluorescent protein fusions are advantageous because they enable direct 

detection via genetic fusion to a protein of interest, and can be used to visualize 

proteins in living cells. Disadvantages of fluorescence proteins include the limited 

number of spectrally distinct proteins [57] and the potential impact on protein function 

due to their relatively large size. Moreover, fluorescent barcoding systems that are 

fluorescent protein based have been unable to achieve large numbers (>100)  of 

barcodes due to these limitations [24]–[26].  

Immunolabeling has distinct advantages over fluorescence protein fusions. 

Immunolabeling is compatible with a wide range (>40) of fluorophores, and therefore 

can be used to detect a greater variety of proteins in a single cell [58], and it is less 

likely to impact protein function as it is an indirect detection method. However, 

immunolabeling is often limited to surface proteins or requires cell fixation and 

permeabilization for intracellular proteins. Immunolabeling also requires high affinity, 

high specificity antibodies [56]. Previous barcoding systems based on immunolabeling 

have been successful in achieving ~100 barcodes [17].  

Epitope tags are short sequences of amino acids, typically 6-15 residues in 

length, that can be genetically fused to proteins for detection or purification [59]. 

Epitope tags protein fusions are created by genetic fusion to the beginning or end of a 

DNA sequence encoding the protein of interest. Once the tagged protein is expressed, 

it can be detected by immunostaining with a specific a-epitope tag antibody. 
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Additionally, epitope tags are advantageous because they have a minimal impact on 

protein function and structure due to their small size [60], and there are dozens of 

commercially available epitope tags and corresponding antibodies. The epitope tags 

and their amino acid sequences used in this work are listed in Table 3.1. 

Table 3.1: Epitope tags and amino acid sequences used in this work. 

 

3.1.2 Yeast Surface Display 

Yeast surface display is a powerful method that is used to engineer proteins 

with desirable properties. For example, yeast surface display has been used to engineer 

a fibronectin domain with picomolar binding affinity [61], as well as proteins with 

enhanced thermal stability and soluble secretion efficiency [62]. To perform yeast 

surface display, a protein of interest is typically genetically fused to one of two yeast 

cell mating proteins, namely the C-terminal portion of the a-agglutinin protein or the 

a-agglutinin (AGA) protein [63]. Notably, the a-agglutinin system requires 

Epitope Sequence    
c-Myc EQKLIEEDL      
HA YPYDVPDYA      
HIS HHHHHH     
AU1 DTYRYI     
Glu-Glu EYMPME    
FLAG DYKDDDDK    
HSV QPELAPEDPED       
T7 MASMTGGQQMG   
E2 tag SSTSSDFRDR   
V5 GKPIPNPLLGLDST   
AU5 TDFYLK     
AcV5 SWKDASGWS      
E-tag GAPVPYPDPLEPR         
VSV-G YTDIEMNRLGK  
Strep Tag II WSHPQFEK      
S tag KETAAAKFERQHMDS 
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transformation of a single plasmid encoding the protein of interest fused to alpha-

agglutinin. In contrast, the a-agglutinin display system requires both a plasmid and 

genetic integration. Using this method, the protein to be displayed is genetically fused 

to the AGA2 protein and expressed from a plasmid, and the yeast strain for protein 

expression is genetically modified by chromosomal integration of a gene encoding the 

AGA1 protein [64].  

3.1.3 Methods for High-Throughput Cell Biology   

The two major tools used for high-throughput cell biology are flow cytometry 

and fluorescence microscopy. Flow cytometry is a powerful tool for high-throughput, 

single-cell analysis and has led to many novel discoveries in cell biology. Flow 

cytometry is routinely used in immunology to identify cell subtypes and rare cell 

phenotypes, such as in the identification of rare HIV specific T cells [65]. In flow 

cytometry, a sample of cells containing fluorophores, that have been introduced by 

genetic fusions, staining, immunolabeling, are introduced into a rapid (>10,000 events 

per second) laminar flow stream. As the cells travel in the flow stream, they are 

focused into single file by hydrodynamic focusing. Then, single cells are interrogated 

at the flow cell by a series of lasers, causing the fluorophores in the cell to be excited 

and subsequently emit fluorescence which is captured by photodetector arrays 

equipped with spectral filters [66]. Flow cytometry is particularly powerful because it 

can measure multiple biomolecules simultaneously in a single cell (nucleic acids, 

proteins, ions, lipids), with each entity to be detected assigned a different, spectrally 

distinct fluorophore. Currently, state of the art flow cytometers can measure up to 20 

parameters in a single cell [58].  



 28 

Automated fluorescence microscopy is another tool that is frequently used for 

high-throughput cell biology. For example, it has been used for many studies 

examining yeast proteomics in response to environmental fluctuations [10], [67], [68]. 

These systems can be used to quantify fluorescence by automated imaging of cells 

cultured in multi-well plates and image processing using software to quantify pixel 

intensity [69]. Fluorescent barcoding systems that are fluorescence microscopy based 

are often lower throughput and measure fewer cells per barcode than flow cytometry, 

and can therefore have more inherent noise [25], [27].  

3.1.4 Instability of Tandem Repeating DNA  

Tandem DNA repeat sequences are present in bacterial and eukaryotic 

genomes and on circular plasmids. Changes in the length of repetitive DNA sequences 

are known to underlie a number of human genetic conditions including Huntington’s 

disease, spinocellular ataxia, and mynotonic dystrophy [70]. In addition, deletion or 

changes to plasmid DNA harboring repeat regions have detrimental consequences 

including reduced plasmid yield and quality, and can hamper molecular cloning [71]. 

Repetitive nucleotide sequences are known to undergo expansion or deletion events 

via a variety of mechanisms including RecA mediated homologous recombination 

[72] and recA independent mechanisms such as replication slippage caused by the 

formation of secondary structure [73], sister chromosome exchange, and single-strand 

annealing [74]. The frequency of recombination in plasmids has been shown to be 

affected by the length of the repeat and spacing between repeats [75]. For unstable 

plasmid propagation, some have found that the genetic background of the E. coli strain 

can minimize the frequency of recombination events [71].   
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3.2 Design Considerations for an Improved Fluorescent Cell Barcoding System  

To create distinct fluorescent barcodes, we created thousands of DNA plasmids 

encoding protein barcodes, which can be used to identify different cells in a 

heterogeneous mixture. Barcodes are composed of epitope tags, differing in both the 

type of tag and number of repeats, connected by flexible glycine-serine linkers 

(Figure 3.1). For convenience, we fused barcodes to the yeast surface alpha-agglutinin 

mating protein, although barcodes could also be fused to a different protein or 

expressed intracellularly. Different types of epitope tags are used to create barcodes 

with more fluorophores or ‘colors’, whereas different repeat numbers of an epitope tag 

are used to create spectrally distinct intensities of a particular color.  

 

Figure 3.1: Fluorescent barcoding design. Fluorescent barcodes are composed of 
epitope tags connected by flexible linkers that produce spectrally distinct 
colors when expressed in cells and immunolabeled with fluorophore 
conjugated a-epitope tag antibodies. Barcodes are fused to the yeast 
surface protein alpha-agglutinin and are genetically encoded on a 
plasmid.  
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To use the barcoding system, first barcode plasmids are transformed into cells 

of interest. Then, the barcoded cells are pooled into a single tube, immunolabeled with 

fluorophore conjugated antibodies, and analyzed by flow cytometry (Figure 3.2). 

After analysis, different types of cells present in the heterogeneous sample are 

deconvolved by their fluorescent barcode’s unique combination of colors and 

fluorescent intensities. Barcodes can be used to distinguish members of biomolecular 

and cellular libraries in a heterogeneous mixture. For example, barcodes can be used 

to identify different types of cells, cells expressing different fluorescent fusion 

proteins, cells with different genetic knockouts, and cells expressing different protein 

mutants. Additional variables that have a fluorescent readout can be multiplexed with 

fluorescent barcodes, including intracellular fluorescent protein fusions, protein-

protein interaction assays, nucleic acid or lipid stains, cell-cycle analysis, ion indicator 

dyes, and live/dead cell staining. 

 

Figure 3.2: Fluorescent barcoding workflow. Plasmids encoding distinct fluorescent 
barcodes are transformed into cells of interest. Then, barcoded cells are 
pulled into a single tube, immunolabeled, and analyzed by flow 
cytometry. Finally, the flow cytometry data is analyzed to determine the 
fluorescent barcode associated with each cell. 
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3.3 Exponential Expansion of Epitope Tag DNA Sequences and Instability of 
Long Epitope Tag Repeats in E. coli  

We (Appendix A, C) developed a method to construct tandem epitope tag 

repeats in order to create barcodes with distinct fluorescent intensities. This method 

uses iterative restriction digest and destructive ligation, and is generally applicable to 

any DNA sequence of interest. For example, a plasmid encoding a single HIS tag 

followed by (G4S)3 was digested with PacI and XmaI restriction enzymes to generate 

the HIS-(G4S)3 insert to be duplicated, and the same plasmid was separately digested 

with AsiSI and XmaI to generate an acceptor vector, which retained the sequence 

encoding HIS-(G4S)3. Ligation of the gel purified products resulted in duplication of 

sequence encoding the HIS-(G4S)3 as well as destruction of the AsiSI and PacI sites 

which had been cut prior to ligation, while one copy of each of these sites was retained 

on the new vector. The length of the insert was doubled upon each repetition of the 

process to generate plasmids encoding (HIS-(G4S)3)4, (HIS-(G4S)3)8,, and (HIS-

(G4S)3)16.  

The same process was applied to generate analogous series of plasmids 

encoding tandem repeats of the HA, FLAG, AU1, GLU, and HSV epitope tags. 

Restriction enzyme digest was used to excise the repeat regions and DNA was run on 

an agarose gel to check for the correct size (Figure 3.3). Also, Sanger sequencing was 

used to confirm the repeat lengths of the barcode plasmids. However, plasmids with 

more than four repeats failed to sequence due to their repetitive structure and high GC 

content.  
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Figure 3.3: Exponential tandem expansion of epitope tag repeats. The left panel shows 
a general method for the exponential expansion of repeat sequences by 
destructive ligation of AsiSI and PacI restriction enzyme sites. The use of 
two restriction enzyme sites which are destroyed upon ligation, in 
conjunction with a third enzyme whose site is preserved, is key to 
iterative duplication of tandem sequences. The process was repeated to 
iteratively double the number of epitope tags up to sixteen repeats. The 
right panel shows an example of a DNA gel with plasmids digested to 
excise the repeat regions of differing lengths.  

Occasionally, barcode plasmids recovered from E. coli colonies contained 

unexpected repeat lengths. For example, we observed a plasmid that appeared to 

contain ~6 repeats by restriction digest after attempted subcloning of a 16 repeat 

plasmid (Figure 3.4). Similarly, plasmids recovered after attempted subcloning of 32 
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and 64 repeat GLU constructs contained repeat lengths smaller than the starting 

plasmid. After encountering these difficulties, we hypothesized that plasmids with 16 

or more repeats were unstable in E. coli. To test this hypothesis, we subcloned 1, 4, 

and 16 repeats of HA, HSV, HIS, AU1, GLU, and FLAG epitope tags that had been 

previously confirmed to be the correct size into the pBC1-GAL backbone vector. 

DNA plasmids were purified from E. coli in a library format and transformed into 

yeast cells.  

 

Figure 3.4: Instability of long epitope tag repeat plasmids. Repeat plasmids were 
subcloned using the expansion method and transformed into E. coli. 
Single colonies were picked and plasmids were purified, restriction 
digested to excise the repeat region, and run on an agarose gel. The left 
panel shows an unexpected AU1 plasmid of ~6 repeats in length. The 
right panel shows DNA repeat regions after attempted subcloning of 4, 
16, 32, and 64 GLU repeats. Notably, all 64 repeat plasmids and two out 
of three of the 32 repeat plasmids have the incorrect size, whereas all of 
the 16 and 4 repeat plasmids are the correct size. 

After barcode expression and immunolabeling, we observed that cells 

expressing 1 and 4 repeat barcodes formed single populations with an expected 

kbp
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increase in fluorescence with repeat length (Figure 3.5), suggesting that 1 and 4 repeat 

plasmids are stable in E. coli. However, immunolabeling of cells expressing the 16 

repeat plasmids produced a heterogeneous mixture of fluorescence intensities, with no 

observed increase in fluorescence. This suggests that 16 repeat plasmids are unstable 

in E. coli.  

    

Figure 3.5: Long epitope tag repeats are unstable. Mixtures containing either 1, 4, or 
16 repeat plasmids were transformed, expressed, and immunolabeled in 
yeast cells. Cells expressing 1 and 4 repeats create populations with more 
homogenous fluorescence and exhibit an expected increase in repeat 
length. Cells expressing 16 repeat proteins have more heterogeneous 
fluorescence and no increase in fluorescent signal was observed.   
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Additionally, we isolated yeast clones expressing 16 repeat barcodes from the 

library and analyzed the immunolabeled cells by flow cytometry. We found that 

daughter cells from each clone had a uniform but subtly different fluorescent 

signature, suggesting that the observed fluorescence heterogeneity was caused by 

clonal due to repeat instability (Figure 3.6). Importantly, yeast cells expressing 16 

repeat barcodes derived from plasmids that were checked for the correct length on an 

agarose gel produced a uniform population with increased fluorescent signal (See 

Section 3.4). This observation suggests that long repeat plasmids are not unstable in 

yeast. 
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Figure 3.6: Repeat plasmid instability underlies fluorescence heterogeneity. Single 
yeast clones were isolated from 16 repeat libraries and analyzed by flow 
cytometry. Immunolabeled daughter cells from single clones produced 
uniform fluorescent signatures, suggesting clonal variation caused by 
repeat plasmid instability is the underlying cause of the observed 
fluorescence heterogeneity of the 16 repeat barcodes.  

3.4 Analysis of Epitope Tag Repeat Lengths and Barcode Plasmids by SMRT 
Sequencing  

To further investigate epitope tag repeat instability, we used SMRT sequencing 

(Pacific Biosciences) to investigate the lengths of epitope tag repeats in plasmids. 

SMRT sequencing is a type of next generation sequencing exhibiting long read lengths 

and uniform coverage (limited GC or AT bias). First, repeat plasmids were restriction 

digested to isolate the open reading frame and size exclusion was used to remove 

AU
1 

si
gn

al
 (a

fu
)

CMYC signal (afu)

16 AU1 mixtureAU1 clone 1 AU1 clone 2

105103101

H
SV

 s
ig

na
l (

af
u)

CMYC signal (afu)

HSV clone 1 HSV clone 2 16 HSV mixture

105103101

105

103

101

105

103

104



 37 

backbone DNA fragments. After sequencing, raw data was filtered and circular 

consensus reads were determined using Pacbio SMRT analysis portal.  

Along with our collaborator, Dr. Greg Vorsanger at Johns Hopkins University, 

we developed a computational method for barcode identity and repeat length analysis 

(Appendix A). The method uses the LALIGN algorithm to determine the number of 

epitope tag repeats and types of epitope tags present in each SMRT sequence read. 

Then, custom Python software was used to compile and synthesize the information 

from all reads (Appendix B). CCS consensus sequences were filtered for a quality 

score of 0.9 and at least 3 passes, and LALIGN alignments with an expectation value 

> 10-4 were rejected.  

In general, we found the majority sequence reads contained epitope tag repeats 

of the expected lengths, namely 1, 2, 4, 8, and 16, and 32, with the exception of GLU 

whose dominant lengths were 1 and 14 repeats (Figure 3.7). Additionally, we found a 

significant number of reads with unexpected repeat lengths ranging from 3-50 repeats. 

Reads of unexpected repeat lengths ranged from 0.11% for HIS to 0.48% for HSV 

(Table C.2). Taken together, this illustrates that epitope tag repeat plasmids are 

unstable in E. coli and area capable of forming a range of sizes. Furthermore, we 

examined the SMRT data on a barcode basis and found that the number of barcodes 

with different repeat lengths differed significantly from expected. We found 717 

unique barcode sequences comprised of combinations and repeat lengths of HA-HSV-

HIS-AU1-GLU-FLAG epitope tags (Table C.1), but we expected that there were only 

110 unique barcodes in the sample (Table C.3) 
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Figure 3.7: Distribution of epitope repeat lengths found using SMRT sequencing. 
Epitope repeat lengths had a central tendency towards expected sizes, 
namely 1, 2, 4, 8, and 16 repeats. However, a significant number of reads 
contained repeats of unexpected sizes, ranging from 3-50 repeats, 
supporting the hypothesis that epitope tag repeat plasmids are unstable in 
E. coli.  

3.5 Cellular Expression of Single-Color, Multiple-Intensity Fluorescent 
Barcodes  

Epitope tag repeat sequences were expressed in cells as genetic fusions to the 

C-terminal domain of alpha-agglutinin under the constitutive GPD promoter. The 

fusion proteins also contained N-terminal cmyc tags, which, due to the presence of the 

GPI anchor at the C-terminus, allowed monitoring of full-length expression of the 

epitope tag repeat fusion (Figure 3.8). Cells expressing the fusion proteins were 

immunolabeled with an antibody specific for cmyc and analyzed by flow cytometry. 

Surprisingly, a general trend was observed in which cmyc signal increased slightly 
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with number of repeats demonstrating that epitope repeat sequences up to 34 kDa are 

well-expressed.  

 

Figure 3.8: Cellular expression of epitope tag repeats. Epitope tag repeats contain an 
N-terminal cmyc tag for expression normalization and a C-terminal 
fusion to the alpha-agglutinin yeast surface protein. In general, epitope 
tag repeats were well-expressed and their expression did not decrease 
with repeat length.   

Immunolabeling of cells expressing tandem epitope tag repeats of varying 

lengths, fused to AGα1, with primary antibodies followed by secondary antibodies 

conjugated to Alexa Fluor 647, generally resulted in increases in fluorescent signal 

with increasing numbers of epitope tag copies (Figure 3.8). Fusion of the protein to 

tandem epitope tag repeats resulted in four to ten-fold increases in fluorescence 

intensity for HIS, FLAG, AU1, and HSV epitopes as compared to a single epitope tag. 

Large increases in signal, 54-fold and 101-fold, were observed for 16 HA and 16 
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GLUGLU repeats, respectively, under the conditions tested. Such large increases 

likely arose from the choice of antibody labelling concentration.  

 

Figure 3.9: Multiple epitope tag repeats increase immunofluorescence intensity. Cells 
expressing the C-terminal alpha-agglutinin domain fused to a range of 
epitope tag repeat lengths were analyzed by flow cytometry after labeling 
with unconjugated primary antibodies and Alexa Fluor 647-conjugated 
secondary antibodies. Immunofluorescence intensity increased with 
repeat number up to 101-fold. 

Antibodies specific for HA and AU1, directly conjugated to PE and PE-Cy7 

respectively, were used to immunolabel cells expressing AGα1 fused to several 

tandem epitope tag repeats of varying length. Fluorescent signals increased 31-fold for 
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16 HA repeats and 34-fold for 16 AU1 repeats as compared to a single epitope tag 

(Figure 3.9). The use of tandem epitope repeats separated by flexible linkers may 

therefore be especially beneficial for immunolabeling with directly conjugated 

primary antibodies, as they often produce a lower median fluorescent signal than 

fluorophore-conjugated secondary antibodies, which benefit from signal amplification 

during secondary labeling.     

 

Figure 3.10: Epitope tag repeats increase immunofluorescence intensity with direct 
detection. Cells expressing the C-terminal alpha-aggutinin domain fused 
to a range of epitope tag repeat lengths were analyzed by flow cytometry 
after labeling with fluorophore-conjugated antibodies. 
Immunofluorescence intensity for repeat proteins was improved over 30-
fold as compared to a single epitope tag when cells were immunolabeled 
with fluorophore-conjugated antibodies.  
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3.6 Application of Long Epitope Tag Repeat Fusions for Improved Flow 
Cytometric Analysis of Endogenous, Low-Abundance Proteins in Single-
Cells  

Given the large increase in immunofluorescent signal afforded by long epitope 

tag repeats, we posited that they would be useful for detection of low abundance 

proteins. 1 and 16 FLAG epitope tag repeats were subcloned into an integrating 

plasmid containing regions of GFP homology and transformed into seven yeast GFP 

fusion clones [55] that have been shown to be undetectable by flow cytometry by us 

and others [41]. The resulting clones expressed 1 or 16 FLAG fusion proteins from the 

endogenous promoter instead of a GFP fusion. Epitope tag fusion clones were grown 

to log phase, immunolabeled, and analyzed by flow cytometry and confocal 

microscopy (Figure D.1). The median fluorescence intensity did not vary drastically 

from experiment to experiment (Figure 3.10), illustrating that 16FLAG repeats are a 

reliable and reproducible method for protein immunodetection by flow cytometry. 
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Figure 3.11: Detection of endogenous, low abundance yeast proteins by long epitope 
tag repeat fusion. 16FLAG repeat fusions were integrated into the yeast 
genome using a plasmid with homology to GFP. Detection of 16FLAG 
fusion proteins was reproducible (n = 3 experiments), and low abundance 
proteins were not detected with 1FLAG fusions.  

 Proteins ranging in abundance from approximately 200 to 7,000 molecules per 

cell were detected above background, and their single cell expression profiles were 

elucidated, using 16 FLAG fusions but not 1FLAG or GFP fusions (Figure 3.11). 

Fusion of low abundance proteins to 16 FLAG repeats improved the limit of detection 

by 40-fold over previous flow cytometry based methods [41], [76] permitting 

detection of proteins expressed as levels as low as 200 molecules per cell. Moreover, 
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addition of FLAG repeats did not affect the apparent protein expression level (Figure 

D.2), suggesting the increase in limit of detection is due to the enhanced signal 

afforded by brighter fluorophores and polyclonal antibodies. The protein expression 

distribution is comparable for FLAG repeats and GFP fusions as shown by detection 

of a highly abundant yeast GFP fusion protein (Figure D.3) .   

Epitope tag repeats enabled quantification of low abundance proteins. 

Quantitative Western blotting was used to correlate GFP fluorescence and protein 

abundance (Figure D.4). To relate 16FLAG signal and protein abundance, eGFP and 

16FLAG were expressed in cells as a fusion to AGa1, immunolabeled, and measured 

by flow cytometry. 16 FLAG signal was correlated to protein abundance by linear 

regression, and the relationship was used to quantify the abundance of the epitope tag 

fusion proteins. Quantification by 16FLAG repeats loosely correlates with previously 

reported protein abundances (R2 = 0.24) (Figure D.5) which is in agreement with 

other studies [10], [32], [41]. 

 

Figure 3.12: Single-cell protein expression profiles of low abundance endogenous 
proteins. Protein expression profiles for low abundance proteins 
expressed at levels as low as 200 molecules per cell were elucidated by 
flow cytometric analysis of immunolabeled cells expressing 16FLAG 
fusion proteins, but not GFP fusions.  
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3.7 Discussion 

To improve the number of spectrally distinct cell barcodes over previous 

systems, we used immunolabeling with fluorophore-conjugated antibodies rather than 

fluorescence proteins. As aforementioned, immunolabeling permits the use of 

fluorescence proteins, quantum dots, and small organic fluorophores, increasing the 

number of colors available and therefore the number of possible distinct fluorescent 

barcodes. Furthermore, fluorescent cell barcodes are analyzed using flow cytometry 

rather than fluorescence microscopy, allowing for greater throughput [14]. Current 

flow cytometers are capable of analyzing up to 18 fluorescence parameters 

simultaneously at a rate of >10,000 cells per second [58], potentially enabling 218 or 

more than 260,000 fluorescence barcodes with only a binary scheme.  

Epitope tag repeat barcodes up to 34 kDa, fused to the C-terminal alpha 

agglutinin domain in yeast for surface expression, exhibited full-length constitutive 

expression at similar or greater levels as a single epitope tag. An apparent increase in 

relative expression with repeat number could be due to greater accessibility, through 

the cell wall, of the cmyc tag to antibodies in solution since the epitope tag is farther 

away from the cell surface. Expression of the GLU epitope tag fusion proteins 

appeared weaker than other epitope tags, likely because the GLU DNA sequence used 

was not codon optimized for expression in yeast. Overall, the data suggests that 

unstructured epitope tag repeat proteins up to 34 kDa are well expressed. These 

observations agree with the finding that protein disorder does not strongly correlate 

with degradation rates in vivo [77].  

Epitope tag repeat fusions enhanced the immunodetction of surface-displayed 

proteins by up to 101-fold using flow cytometry. Moreover, 16 FLAG epitope repeat 

fusions were shown to enhance the limit of detection of endogenous yeast proteins by 
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40-fold, enabling more than 1,600 proteins expressed at as low as 200 molecules per 

cell to be studied by flow cytometry. The larger than expected increase in fluorescent 

signal is due to the higher brightness of Alexa Fluor 647 as compared to GFP, as well 

as the enhancement of fluorescence signal by polyclonal antibodies. The proof of 

principle experiment shown here could easily be expanded upon to study hundreds or 

thousands of yeast proteins with single-cell resolution, potentially uncovering 

interesting bimodal protein expression profiles or those with large variation. The long 

epitope repeat fusion approach could also be useful for detection of low abundance 

proteins in other microbes and mammalian cells.     

Overall, these findings demonstrate that immunofluorescence signals can be 

substantially increased through fusion of a protein of interest to long, unstructured 

polypeptides composed of tandem repeats of epitope tags separated by flexible linkers, 

enabling single-cell detection and quantification of endogenous, low abundance 

proteins by flow cytometry. Fusing proteins of interest to tandem epitope tag repeat 

polypeptides may be useful to overcome hurdles associated with detecting proteins in 

several cases, including detection of low abundance antigens, detection by weakly 

binding antibodies, use of non-optimal excitation wavelengths or filters for 

fluorophores used, and for fluorophores which are dim, the latter two of which are 

commonly encountered in multicolor flow cytometry. Long epitope tag repeat fusions 

may also improve the efficiency of other antibody-mediated processes, including 

immunopurification and Western blotting, due to avidity effects. Additionally, the 

DNA repeat sequence expansion method described here may useful for generating 

proteins composed of repeating domains for molecular recognition, protein 
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purification, and biosynthetic polymer synthesis. The method could also be useful in 

the construction of vectors encoding CRISPR guide RNAs in tandem.  
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ENGINEERING A SIX-COLOR, HIGH-THROUGHPUT CELLULAR 
FLUORESCENT BARCODING SYSTEM  

4.1 Introduction 

In this chapter, we develop barcodes with unique fluorescence intensities, and 

quantify uniqueness as a function of cells captured and false positives. The 

construction of hundreds of genetically-encoded fluorescent barcodes by combination 

of epitope tags is discussed, and the diversity of the barcode library is assessed by 

flow cytometry. In addition, the effect of barcode length on plasmid transformation 

bias and cell growth rate is examined. The effect of fluorophore brightness on the 

number of unique fluorescent barcodes and the influence of the presence of certain 

epitope tags on barcode brightness is assessed.     

4.1.1 Fluorescent Cell Barcoding Systems with Multiple Intensities  

Previous fluorescent barcoding systems that have achieved multiple 

fluorescence intensities using a single fluorophore have done so by modulating dye 

[18] or polymer dot loading [22] amount. These systems are disadvantageous 

compared to genetically encoded barcoding schemes because they are single-use. 

Previous genetically encoded fluorescent barcoding systems have not been successful 

in achieving multiple intensities using a single fluorophore, because of too much 

variance in fluorescent signal possibly due to fluorophore brightness or low protein 

expression levels [24], [25], [27]. Recently, it was demonstrated that different 

Chapter 4 
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translational control elements can be used to modulate protein expression levels and 

create three different intensities [24]. To our knowledge, our approach of fluorescence 

normalization and immunodetection is the first instance of a genetically encoded 

cellular barcoding system that can overcome these limitations to achieve four distinct 

intensities using a single fluorophore.   

4.1.2 Multicolor Flow Cytometry  

Multicolor flow cytometry is a powerful tool because it enables tens of 

parameters of interest to be measured in single-cells. Current flow cytometers can 

measure more than 17 parameters simultaneously [65]. There are a number of 

variables that have to be considered when designing a multicolor flow cytometry 

panel, such as the lasers and detectors available on the instrument, compatible 

fluorophores and their relative brightness, antibody-fluorophore conjugation or 

secondary detection, and compensation [78]. The wavelengths of the lasers and 

detectors dictate which fluorophores can be used for the experiment. Typically, the 

brightest fluorophores are more desirable, as they have high quantum yields and 

extinction coefficients, their spectrum overlaps minimally with cellular 

autofluorescence, and they are capable of being measured with high sensitivity [78]. 

Fluorophores brightness will also depend on the flow cytometer being used due to 

differences in filter position and bandwidth and laser power.  

It is often necessary to directly conjugate fluorophores to antibodies in 

multicolor flow cytometry due to the limited number of antibody species and isotypes 

available. This can be accomplished by a variety of different chemistries including 

linkage to cysteine and lysine groups as well as carbohydrates [50]. Alternatively, 

unconjugated antibodies against the target of interest and polyclonal fluorophore-
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conjugated antibodies specific for the species and isotype of the unconjugated 

antibody ca be used to amplify the fluorescent signal.  

In addition, it is desirable to use fluorophores that have non-overlapping 

spectral emission because of the added need for compensation [79]. Compensation is 

the mathematical correction of flow cytometry data for spectral overlap. Specifically, 

it is the subtraction, by use of a constant coefficient, of fluorescence spillover into 

more than one detector. Compensation can be detrimental to discrimination of positive 

and negative events because subtraction of large spillover often causes negative 

population broadening [65].    

4.2 Construction of Barcodes with Multiple Unique Fluorescent Intensities 

We have developed a collection of genetically-encoded protein barcodes for 

multiplexed cell analysis using immunofluorescence and flow cytometry. Our cell 

barcoding method can enable massive experimental and analytical sample 

parallelization, thereby reducing associated cost and effort (Figure 3.2). The barcode 

collection is composed of DNA sequences that when expressed in cells produce 

proteins that specifically identify the cells containing each sequence. Each barcode is 

composed of epitope tags differing in repeat number and combination connected by 

flexible (G4S)3 linkers (Figure 3.1). Barcodes are genetically encoded on a plasmid, 

and when expressed are displayed on the yeast cell surface by fusion to the C-terminal 

domain of the alpha-agglutinin mating protein. Each barcode contains an N-terminal 

cmyc tag for normalization of protein expression. Fluorophore-conjugated antibodies 

can specifically bind to epitope tags, producing unique fluorescent signatures that are 

measured with single-cell resolution by flow cytometry.  
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To create the barcode collection, first DNA encoding an epitope tag connected 

by a flexible linker was expanded exponentially up to 64 repeats (Figure 3.3), 

resulting in 35 plasmids. Then, barcode plasmids encoding different numbers of 

epitope tag repeats were constitutively expressed in yeast, immunolabeled, and 

analyzed using flow cytometry. We were able to create up to four distinct barcodes 

with different fluorescence intensities for a single color, using HA, AU1, and FLAG 

epitope tags, three distinct intensities for HSV, and two for HIS and GLU (Figure 

4.1). 

 

Figure 4.1: Construction of barcodes with distinct fluorescence intensities. Different 
fluorescent intensities were created by variation of epitope tag repeat 
length and normalization of total fluorescence signal to correct for 
variation in protein expression.  

Normalized 
Fluorescence

Re
la

tiv
e 

Co
un

t

AU1 FLAGHA

HSV HIS GLU

Re
la

tiv
e 

Co
un

t

Normalized 
Fluorescence



 52 

 Distinct fluorescence intensities were achieved by normalization of total 

fluorescence signal (Figure 4.2). For each cell, the fluorescent signal from its 

immunolabeled epitope tags was normalized by the fluorescent signal from its 

immunolabeled cmyc tags. This normalization corrects for the variation in 

fluorescence signal resulting from differences in protein expression between cells. 

Specifically, up to four distinct intensities could be achieved using a single 

fluorophore after immunolabeling cells expressing 0, 1, 4, or 16 epitope tag repeats 

and normalizing the epitope signal by the cmyc signal.  

 

Figure 4.2: Creation of up to four distinct intensities per fluorophore. Cells exhibit 
large variations in fluorescence due to differences in protein expression. 
This variation can be minimized by normalization of one fluorescent 
signal by another for each cell, effectively correcting for differences in 
fluorescence due to protein expression. Up to two distinct barcodes could 
be distinguished for each fluorophore by total fluorescence signals. After 
normalizeation of HA signal by cmyc signal for each cell, up to four 
unique fluorescence intensities were achieved for a single fluorophore.    

A barcode is considered to be unique if its immunofluorescent intensity 
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identifying cells as belonging to a particular barcoded population was quantified by 

manual gating. The percentage of incorrectly identified events as a function of the 

percentage of events captured showed that at least 10% of events can be captured with 

less than 1% incorrect for AU1, HA, and FLAG barcodes (Figure 4.3). Using this 

analysis method, we found that 0, 1, 4, and 16 repeats could produce distinct 

intensities for HA, AU1, and FLAG, and 0, 1, and 4 repeats for HSV.  

 

Figure 4.3: Quantification of distinct fluorescence intensities. A barcode with a 
particular fluorescence intensity was defined as being distinct if at least 
10% of cells could be captured with less than 1% of cells belonging to a 
different barcode.   

4.3 Barcodes with distinct fluorescent intensities are fluorophore-dependent   

The number of fluorescence intensities that can be achieved using a single 
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fluorescent signals. For example, four distinct intensities were achieved when FLAG 

barcodes were labeled with mouse a-FLAG and a-mouse Alexa Fluor 647, but not 

with a-FLAG PE-CY7 conjugate (Figure 4.4).  

 

Figure 4.4: The number of distinct fluorescence intensities is fluorophore dependent. 
For example, FLAG was found to have four distinct intensities when 
antibodies that produce a very bright signal, such as Alexa Fluor 647, 
were used for immunolabeling. However, when dimmer fluorophores 
were used, such as PE-Cy7, only two unique fluorescence intensities 
could be achieved.  

4.4 Creation of a Fluorescent Barcode Plasmid Library  

In order to expand the fluorescent barcoding system beyond single-color 

barcodes, we used restriction digest based subcloning to combine different types of 

epitope tags together, resulting in barcodes with multiple fluorescent colors and 

intensities. Each epitope tag and linker is flanked by a unique pair of restriction 

enzyme sites, which can be used to excise particular epitope tags and combine them 
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together. Specifically, we created a barcode plasmid library comprised of up to 216 

possible combinations of HA, HSV, HIS, AU1, GLU, and FLAG epitope tags with 

three intensities for HA, HSV, and AU1, and two intensities for HIS, GLU, and 

FLAG.  

Three rounds of subcloning were used to generate the barcode library (Figure 

4.5). In the first round, three subcloning steps were used to generate 16 plasmids, 

namely combinations of 1 and 4 HA and HSV (8 plasmids), 4HIS and 1 and 4AU1 (5 

plasmids), and 4GLU and 1 FLAG (3 plasmids). In the second round, the HA-HSV 

library was crossed with the HIS-AU1 library for a total of 54 plasmids, and in the 

third round the HA-HSV-HIS-AU1 library was crossed with the GLU-FLAG library 

for a maximum possible 216 unique barcodes. We also made a library consisting of 

only epitope tag repeat lengths that would produce binary fluorescent barcodes, 

comprised of 1HA, 1HSV, 4HIS, 1AU1, 4GLU, and 1FLAG epitope tags.  
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Figure 4.5: Barcode library creation by combination of epitope tag DNA sequences. A 
library of barcode plasmids was created by combining epitope tag repeat 
lengths that when expressed in cells and immunolabeled, resulted in 
distinct fluorescent barcodes. Three rounds of subcloning using 
restriction digest were used to create a library containing up to 216 
distinct barcodes.   

4.5 Assessment of Barcode Library Diversity by Immunofluorescence and Flow 
Cytometry   

In order to determine how many unique barcodes that had been created, we 

transformed the barcode plasmid library into yeast, induced protein expression by 

galactose induction, immunolabeled the cells, and analyzed the barcoded cells by flow 

cytometry. For immunolabeling, we used 100nM of each antibody fluorophore 

conjugate, and for cmyc 35nM a-chicken Alexa Fluor 488 was used with the 

unconjugated a-cmyc antibody. Seven of the thirteen available colors on the 

FACSAria were used to analyze the library. Fluorophores were selected by their 

brightness and to minimize spillover between channels. Further information about the 
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epitope-fluorophore pairs and lasers and detectors used to analyze the barcoded library 

can be found in Table 4.1.   

Table 4.1: Fluorophore panel and flow cytometer configuration used for barcode 
library analysis.   

 

To distinguish between barcoded cell subpopulations within a mixture, we 

used a gating strategy to segment the cells by epitopes with binary unique fluorescent 

intensities and then by epitopes with multiple fluorescent intensities (Figure 4.6). 

First, cells were gated on forward and side scatter to exclude debris. Then, cells with 

high cmyc signal, which is indicative of protein expression level, were further 

examined for barcode fluorescence. Gating on cmyc also excludes those cells that do 

not express barcodes, which is characteristic of yeast surface display [64], and is 

typically 30-50% of the total cells.   

Epitope Flurophore Laser Detector    
GLU Marina Blue 355 450/50 
cmyc Alexa Fluor 488 488  530/30 
HA PE 532  575/25  
HSV PE-Cy5.5 532  710/50  
FLAG PE-Cy7 532  780/60 
AU1 Alexa Fluor 647 633  660/20   
HIS APC-Cy7 633  780/60    
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Figure 4.6: Method used to distinguish barcoded cell populations. Cells were gated on 
cmyc positive events to consider only those expressing barcodes. Then, 
cells were subdivided by epitope tags that produce binary fluorescent 
intensities (HIS, FLAG, GLU), and then by epitope tags that produce 
multiple fluorescence intensities (HSV, HA, AU1).  

During barcode deconvolution analysis, it is critical to first segment cells by 

epitope tags which produce binary intensities after immunolabeling. This is because 

the presence or absence of other epitope tags can dramatically affect the fluorescence 

of epitopes with multiple intensities, and thus the location of a cell population 

expressing a particular barcode. For example, the fluorescence of cells expressing 
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examples include decreasing AU1 signal with increasing HSV signal, and increasing 

HA signal with HSV signal.  
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Figure 4.7: Barcode distinguishability for fluorophores with multiple intensities is 
affected by the presence or absence of certain epitope tags. Examples 
include an increase in signal for the 1HA population due to the presence 
of a GLU epitope tag (top), an increase in HA signal (middle) and a 
decrease in AU1 signal (bottom) with increasing HSV length. Identical 
gates are overlaid to illustrate fluorescence differences between barcodes.  
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The relative abundance of barcodes in the library was assessed by flow 

cytometry. 190 barcodes out of 216 possible were found to be abundant at greater than 

0.01% (Table E.1). However, the distribution of barcodes in the library was biased 

such that only 13 barcodes represented 50% of the library. Also, average repeat length 

inversely related to barcode abundance, such that ~4 repeats was the average length 

for barcodes present at 1-10% abundance and ~7 repeats was the average length for 

barcodes present at 0.01-0.1% with an expected repeat length of 6.5 (Figure 4.8). 

Moreover, more abundant barcodes (0.1-10%) contained significantly more 0 and 1 

HA, HSV, and AU1 repeats fewer 4 repeats, while the converse was true for less 

abundant barcodes (0.01-0.1%). Taken together, these results suggest that there is a 

transformation bias favoring smaller barcodes, which could be due to transformation 

preference favoring smaller plasmids and/or plasmids containing fewer repeat regions. 



 62 

 

Figure 4.8: Relationship between repeat length and library abundance. The distribution 
of repeat lengths in the top 10% of barcodes is significantly smaller (4 
repeats on average) than that of the overall library (6.5 repeats on 
average). In the top 10% of barcodes, zero HA, HSV, or AU1 repeats are 
highly enriched and four repeats are underrepresented. Taken together, 
this suggests that there is a bias favoring plasmids with shorter repeat 
lengths, possibly due to a transformation and/or ligation preference for 
smaller plasmids. This could explain the observed over-representation of 
certain barcodes in the library.  
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4.6 Correction of Barcode Library Abundance Bias by FACS 

In order to correct the over-representation of particular barcodes, the library 

was sorted using FACS as to minimize the overly abundant barcodes and to 

simultaneously enrich the barcodes with low abundance. Specifically, the library was 

sorted using three logic strategies: 1. HA+ AND AU1+ AND GLU-, 2. HA+ AND 

AU1- and GLU+, 3. HSV+ AND (FLAG+ OR HIS+). The relative abundance of 

barcodes in the sorted libraries can be found in Table E.2. After sorting, the five 

barcode libraries were combined in equal proportions in order to normalize the relative 

abundance of barcodes in the library (Figure 4.9).      
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Figure 4.9: Normalization of 190-member barcode library. Flow cytometry analysis of 
the barcode library showed an over-representation of certain barcodes, 
such that only 13 barcodes comprised 50% of the abundance. After 
FACS, the library was normalized such that that 30 barcodes represented 
50% of the library.   

FACS successfully normalized the barcode library such that highly abundant 

barcodes were lessened and barcodes with low abundance were enriched (Table 4.2). 

The number of barcodes present at greater than 3% decreased by 50% from 8 to 4, and 

the number of barcodes between 0.1 and 1% abundance increased by approximately 

1.5-fold, from 76 to 108.   
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Table 4.2: Abundance of barcodes in library before and after normalization by FACS.  

 

4.7 Optimization of Promoter and Barcode Expression Conditions  

Initially, a strong constitutive GPD promoter was used to drive barcode 

expression for ease of use. To examine whether barcode expression affected cell 

growth rates, a mixture of cells constitutively expressing 10 barcodes of different 

lengths was grown overnight at 30°C from stocks in either log phase, stationary phase, 

4°C or -80°C, and then immunolabeled to determine barcode distribution (Figure 

4.10). No significant differences in barcode abundance was found after less than 24 

hours. 

Abundance Before Sort After Sort
>2% 16 8
1-2% 13 25
0.1-1% 76 107
0.01-0.1% 74 50
< 0.01% 37 26
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Figure 4.10: Effect of different environmental conditions on barcoded cell growth. 
After overnight growth after revival from log phase, stationary phase, 
4°C or -80°C stocks, a mixture of cells expressing barcodes with 
different lengths did not exhibit any significant growth biases.  

In addition, the abundance of cells expressing eight barcodes of different 

lengths, ranging from 1 to 21 repeats or approximately 2 kDa to 40 kDa, was 

examined over three days of growth at 30°C (Figure 4.11). After three days of 

growth, cells expressing smaller barcodes ranging from one to five repeats 

outcompeted those expressing larger barcodes (seven or more repeats). This suggests 

that expression of larger barcodes hampers cell growth rate over time scales longer 

than one day.  
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Figure 4.11: Growth of cells constitutively expressing barcodes over longer time 
scales. Over three days of growth, cells expressing shorter barcodes (less 
than 5 repeats) outcompeted those with longer barcodes. No decrease in 
CMYC signal was observed, suggesting barcodes were not degraded.  

In order to lessen the barcode-induced cellular growth bias, the constitutive 

GDP promoter driving barcode expression was swapped with a galactose (GAL) 

inducible promoter. Induction times and temperatures were tested in order to 

maximize barcode expression levels. Specifically, a library of cells expressing 

barcodes with different lengths and combinations of HA, HSV, HIS, AU1, GLU, and 

FLAG was grown overnight in non-inductive glucose media to log phase. Then, cells 

were passaged into galactose media with 1% glucose for induction at 20°C or 30°C 

over three days. Expression was monitored by immunolabeling with an antibody 

against the cmyc tag (Figure 4.12).  
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Figure 4.12: Optimization of barcode induction conditions. Barcode expression was 
monitored over three days of induction in galactose media at 20°C or 
30°C (top panel). 21-24 hours of induction at 30°C resulted in the highest 
expression levels. Barcode expression levels were higher in log phase 
cells (bottom panel).  

Barcode expression was found to be highest at earlier induction times of 21-24 

hours, and expression levels were 1.5-2 fold higher at 30°C as compared to 20°C. 

Expression decreased by 40-50% after three days of induction at both temperatures 
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tested. In addition, barcodes were more highly expressed in log phase cells, and 

decreased with a function of cell density (R2 = 0.44).  

4.8 Discussion 

It was found that up to four unique barcodes could be produced using a single 

fluorophore if the antibodies used for immunodetection had high brightness. This was 

only achievable using two spectrally distinct fluorophores, PE and Alexa Fluor 647, 

given the constraint of the flow cytometers available to us. However, it may be 

possible if a flow cytometer equipped with a violet laser was used. In this instance, 

extremely bright fluorophores like quantum dots could be employed [80].  

Although 16 epitope tag repeats produced a fourth distinct intensity in some 

cases upon immunolabeling, only 1 and 4 repeats were included when the barcode 

library was constructed. Due to the instability of long repeats DNA, each plasmid had 

to be screened for the correct size insert in order to make sure the repeat region had 

not become shorter during the subcloning process. This process would become too 

laborious when large numbers of barcodes were created in a library format.  

A saturating amount of antibody was used to maximize fluorescent signal and 

minimize the deviation of barcoded populations. In some cases, this was not sufficient 

to generate a high enough signal to distinguish a significant amount of cells from the 

negative. Thus, four repeats were used instead of one for GLU and HIS epitope tags to 

create binary barcodes for these epitope tags. The use of four epitope repeats allowed 

the majority of cells to be distinct from the negative when dim fluorophores such as 

Marina Blue and APC-Cy7 were used. On a molecular level, four epitope repeats 

likely accommodate at least two fluorophore-conjugated antibodies, while one or two 
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repeats would likely only accommodate one, effectively doubling the fluorescent 

signal when four repeats are used.  

The fluorescence of a given epitope tag can be affected by the presence or 

absence of other tags. This phenomenon is most noticeable for epitopes that produce 

multiple intensities upon immunolabeling because of their narrow fluorescence 

distribution compared to epitopes that produce binary intensities. The observed 

differences may be the result of one or a combination of the following: differences in 

protein expression level due to barcode length, errors in compensation due to 

mathematical subtraction of a large fluorescent signal out of channel with a dimmer 

signal [79], energy transfer between fluorophores, and protein structure blocking 

epitope tag sites from being bound by antibodies.  

It was found that cells constitutively expressing barcodes of different lengths 

were not outcompeted over short time scales (one day or less) or after revival from 

stationary phase cultures, or stocks stored at 4°C or -80°C. However, over longer time 

scales of two or more days, cells expressing shorter barcodes outcompeted those 

expressing longer barcodes. This suggests that the growth bias imposed by constitutive 

barcode expression could be overcome for experiments lasting one day or less by 

increasing the proportion of cells with longer barcodes to shorter barcodes in the 

inoculum. Another potential solution would be to construct barcodes of equal lengths 

by the addition of scrambled epitope tags or other spacers. Ultimately, inducible 

barcode expression was adopted because of concern for using barcodes in a library 

format in which some rare members may be lost due to growth biases. Barcodes 

expression was found to decrease with cell density, indicating that cells in stationary 

phase do not express barcodes as well as those in log phase. This could be due to a 
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variety of factors including nutrient limitation causing a decrease in heterologous 

protein translation and secretion, and structural changes to the yeast cell wall during 

stationary phase [81]–[83].   
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GENERATION OF THOUSANDS CELLULAR FLUORESCENT BARCODES 
USING ELEVEN-COLORS 

5.1 Introduction 

In this chapter, the creation of more than 1,000 unique barcodes is discussed. 

Specifically, combinations of seven different epitope tags were constructed using a 

library approach via homologous recombination or overlap extension PCR. FACS 

enrichment and cloning of rare barcodes is presented. Restriction digest and ligation 

was used to combine 11 epitope tags to create additional diversity. Analysis of 

barcode plasmid instability and work-arounds are presented, as well as flow cytometry 

analysis of barcode abundances. In addition, design considerations for optimizing a 

13-color flow cytometry panel are discussed.  

5.1.1 Molecular cloning techniques   

There are a variety of molecular cloning approaches that can be used to 

combine multiple DNA fragments combinatorically, including yeast-mediated 

homologous recombination, restriction enzyme digestion, Golden Gate assembly, and 

Gibson assembly. Homologous recombination is a process by which linear DNA 

fragments with short homologous regions (30-50bp) can be combined in yeast cells 

[84]. This method has been used for both chromosomal insertion and deletion [85], as 

well as for ligase-free plasmid cloning [86]. For example, homologous recombination 

has been used to create a randomly shuffled antibody library with up to 107 members 

Chapter 5 
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[87]. Homologous recombination can be used to assemble many (up to 25) DNA 

fragments up to many kilobases in length for synthetic biology applications [88], [89].  

There are also a variety of in vitro assembly methods for molecular cloning, 

including traditional restriction enzymes, Golden Gate cloning, and Gibson assembly. 

Traditional restriction enzymes combine DNA fragments together with high fidelity, 

but each fragment requires a unique pair of enzyme sites and typically multiple 

fragments cannot be subcloned simultaneously. In contrast, Golden Gate cloning uses 

type IIS restriction enzymes that cut outside of their recognition sequence, leaving 

overhangs of typically 4 nucleotides in length [90], [91]. Cut sites can be designed so 

that there are up to 256 unique overhangs, therefore allowing the assembly of multiple 

fragments using a single restriction enzyme. Using Golden Gate cloning, up to nine 

fragments and six repetitive DNA fragments have been assembled with 85-90% 

efficiency in a single reaction [92]. Also, Gibson assembly is a one-pot approach that 

can be used to combine multiple dsDNA fragments with short (20-40bp) homologous 

regions [93]. Specifically, dsDNA fragments are subjected to partial exonuclease 

digestion, followed by annealing of homologous regions, PCR to fill in the gaps, and 

ligation to repair the nicks. Gibson assembly is a useful tool for gene and genome 

cloning, as it has been used to assemble a synthetic genome with more than 500kb in 

length.  

5.1.2 Fluorescence Activated Cell Sorting (FACS) 

Fluorescence activated cell sorting (FACS) is an extension of flow cytometry 

in which cells with desired fluorescence properties can be physically separated from 

undesired cells. FACS is frequently used in protein engineering to isolate rare cells 

expressing high-affinity binding proteins [94], as well as in antibody development to 
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isolate B cells for high-affinity antibody production [95]. For example, FACS has be 

used to isolate bone marrow stem cells from mice for myocardial repair applications 

[96], as well as to enrich cells expressing high-affinity antibodies for protein 

engineering applications [97]. FACS allows desired cells to be sorted in real time into 

tubes or multi-well plates. Specifically, a particular charge is applied to a droplet that 

contains a single cell, and the charged droplet is separated into the correct container by 

electromagnetic deflection plates [98].  

5.2 Expansion of Barcode Library Using Additional Epitope Tags  

Seven additional epitope tags were used to further expand the barcode library 

from hundreds to thousands of combinations (Table 5.1). We used two approaches, 

homologous recombination and overlap extension PCR, to rapidly expand the barcode 

library using a one-pot method (Figure 5.1). DNA fragments either contained an 

epitope tag surrounded by flexible glycine-serine linkers with less than 80% homology 

with respect to each other, which was previously shown to be the threshold for 

homologous recombination in yeast [87], or only glycine-serine linkers to act as 

spacers.  

In the homologous recombination approach, DNA fragments of different sizes 

containing glycine-serine linkers with or without epitope tags were generated by 

partial or full restriction digest. DNA fragments and a vector fragment containing a 

GAL promoter and the C-terminal alpha-agglutinin protein domain for yeast surface 

display were transformed into yeast. For the overlap extension PCR approach, DNA 

fragments containing two glycine-serine linkers with or without an epitope tag were 

generated by complete restriction digest. Then, fragments were used in an overlap 

PCR reaction in which the glycine-serine linkers would prime each other to make new 
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epitope tag combinations. The PCR product was transformed into yeast along with the 

backbone vector fragment to create new barcodes.  

 

Figure 5.1: Rapid generation of barcode combinations by homologous recombination. 
Homologous recombination of DNA fragments containing glycine-serine 
linkers with or without an epitope tag were used to expand the barcode 
library in a one-pot approach. Seven fragments and nine crossovers are 
required, in theory, to create a plasmid.   

5.3 Enrichment of Unique Barcode Combinations by FACS 

Barcode library diversity was assessed by immunolabeling and flow cytometry 

of five out of seven of the epitope tags, T7, V5, AcV5, AU5, and E2, due to cytometer 

constraints. Analysis of protein expression and epitope tag abundances showed that 

10% of the expressing cells in the library generated by homologous recombination 

contained combinations of two or more epitope tags. This subset was enriched using 

FACS using four sorting strategies to encompass all 32 possible barcode combinations 

(Figure 5.2).  After the first round of sorting, 90% of the cells in each library were 
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enriched for combinations of two or more epitope tags. An additional round of FACS 

was used to isolate specific epitope tag combinations.  

 

Figure 5.2:  Enrichment of combination barcodes by FACS. The barcode library 
generated by homologous recombination contained combinations of T7, 
V5, E2, AcV5, and AU5 epitope tags. This subset, which comprised 10% 
of the expressing cells, was enriched by FACS.  
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Similarly, the barcode library generated by overlap extension PCR was 

assessed by immunolabeling and flow cytometry (Figure 5.3). This analysis revealed 

that 0.3% of the expressing cells contained at least one of the T7, V5, AcV5, AU5, or 

E2 tags. Given the rarity of barcodes containing epitope tags other than cmyc, this 

subset was enriched in one round of sorting regardless of epitope tag combinations. 

After one round, 5.5% of the expressing cells contained combinations of two or more 

epitope tags. Specific barcode combinations ranging from 0.1% to 1% of expressing 

cells were enriched by a second round of sorting.  

 

Figure 5.3: FACS enrichment of combination barcodes in overlap PCR library. The 
unsorted library contained only 0.3% of cells that had epitope tags other 
than cmyc. After one round of FACS, this subset was enriched to 25%. In 
the sorted library, 5.5% of the cells expressing barcodes contained 
combinations of two or more epitope tags. These were isolated using an 
additional round of FACS.  

In total we were able to recover 18 of the 32 possible barcode combinations 
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were streaked out onto agar plates to select for single colonies. Colonies were 

analyzed by immunolabeling and flow cytometry to confirm barcode expression and 

epitope tag combination were as expected. Then, plasmid DNA was isolated from 

yeast and transformed into E coli for amplification and purification. Recovered 

plasmids were confirmed for the correct combination of epitope tags by Sanger 

sequencing.  

Table 5.1: T7, V5, AcV5, AU5, and E2 barcode combinations recovered.  

 
 

5.4 Generation of Unique 11-Epitope Tag Barcode Plasmids and Analysis of 
Barcode Plasmid Instability 

Next, existing barcode plasmids were combined using subcloning in order to 

expand the number of unique barcodes from hundreds to thousands (Figure 5.4). We 

T7 V5 AU5 AcV5 E2
0 0 1 1 1
1 0 0 1 1
0 1 0 1 1
1 1 1 0 0
1 1 0 0 1
0 0 1 1 0
1 0 0 1 0
0 1 0 1 0
0 0 1 0 1
0 1 1 0 0
0 1 0 0 1
1 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
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created 18 separate libraries, with each library containing a plasmid with a specific 

combination of T7, V5, AcV5, AU5, and E2 epitope tags as the vector fragment. The 

5 barcode libraries containing combinations of HA, HSV, HIS, AU1, GLU, and FLAG 

epitope tags in different proportions were used as inserts.  

 

Figure 5.4: Generation of thousands of barcode plasmids. 18 libraries containing up to 
190 barcodes each were created using subcloning. A plasmid containing 
a specific combination of T7, V5, AcV5, AU5, and E2 epitope tags was 
used as the vector fragment. Five libraries containing different 
proportions of up to 190 barcodes composed of HA, HSV, HIS, AU1, 
GLU, and FLAG epitope tags were combined and used as insert 
fragments.  

SpeI and XhoI restriction enzymes were used to generate the DNA fragments, 

containing the vector fragments with T7, V5, AcV5, AU5, and E2 epitope tag 

combinations, and the inserts with HA, HSV, HIS, AU1, GLU, and FLAG 
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combinations and the alpha-agglutinin protein. However, restriction digest and agarose 

gel electrophoresis of the resulting barcode library DNA showed no full-length 

barcode plasmids were present. Agarose gel electrophoresis of the HA, HSV, HIS, 

AU1, GLU, and FLAG libraries showed a heterogeneous mixture of plasmid sizes, 

ranging from approximately 1-8 kb. Analytical check digest of these libraries showed 

only a subset of the library DNA contained full-length barcode plasmids, which are 

expected to be 7-9 kb in length, while a significant portion of the DNA was made up 

of smaller DNA, which we term mini-plasmids (Figure 5.5).   

 

Figure 5.5: Barcode library contains DNA plasmids with heterogeneous sizes. Check 
digest of the HA, HSV, HIS, AU1, GLU, and FLAG libraries showed 
only a subset of DNA was composed of full-length barcode plasmids (top 
panel). Analytical restriction digest (bottom panel) showed a subset of 
DNA contains elements necessary for barcode expression including 
secretion signal and cmyc tag, alpha-agglutinin protein, and GAL 
promoter.  

SpeI + XhoI digest Undigested

Agalpha1 Mini-plasmids

Linear full-length plasmids

1.5

0.5

5.0

kb

SS+cmyc

Agalpha1

GAL

1.5

0.5

5.0

kb



 81 

A cocktail of restriction enzymes that digests backbone DNA but not insert 

DNA containing barcodes was used to prevent mini-plasmids from preferentially 

transforming E. coli, thereby increasing the number of transformants containing new 

barcode plasmids. Specifically, HA, HSV, HIS, AU1, GLU, and FLAG barcode 

fragments were excised by SpeI and XhoI digest. Then, the insert DNA was digested 

with AclI, BstNI, EciI, DraI, and NdeI restriction enzymes to cut up the backbone and 

mini-plasmids so that they would not be capable of transforming E. coli. After ligation 

of vector and insert fragments and E. coli transformation, plasmid DNA was purified 

and checked for full-length plasmids by analytical check digest (Figure 5.6). 

Analytical check digest of the 11-epitope tag barcode libraries showed that 14 out of 

18 libraries contained a significant amount of full-length plasmids, suggesting 

subcloning of new barcode combinations was successful. Moreover, mini-plasmids 

were present despite our efforts to eliminate them from the libraries during subcloning.  

 

Figure  5.6: Analytical restriction digest of 11-epitope tag barcode plasmid libraries. 
18 barcode libraries were checked for full-length DNA by restriction 
digest with XbaI and agarose gel electrophoresis. This analysis showed 
that 14 out of 18 libraries (all except libraries 1, 5, 10, and 14) contained 
a significant amount of full-length plasmids, suggesting that the libraries 
contain barcodes with new combinations of up to 11 epitope tags. Mini-
plasmids also formed in these libraries, despite our efforts to eliminate 
them during subcloning.  
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In order to obtain additional insight into the identity and origin of the mini-

plasmids, E. coli clones containing mini-plasmids were isolated from the 11-epitope 

tag libraries and their plasmids were analyzed by restriction digest and agarose gel 

electrophoresis (Figure 5.7). The results show that AclI and EciI restriction enzymes 

cut mini-plasmids in at least two places, resulting in major bands at 2kb and 400bp, 

and 800bp and 150bp respectively. AclI can cut in up to 5 locations for a full-length 

barcode plasmid, creating bands containing E coli origin and barcode (3.5kb), uracil 

cassette (URA), CEN/ARS, and partial ampicillin resistance gene (Amp) (2kb), CYC1 

terminator and F1 origin (800bp), partial Amp gene (400bp), and partial URA gene 

(200bp). Also, EciI cuts in up to four places, generating DNA fragments containing 

barcodes, F1 origin, and partial URA sequences (4kb), partial URA and partial Amp 

(2kb), partial Amp and E coli replication origin (800bp), and partial E coli replication 

origin (150bp). Based on the analytical restriction digest, this suggests mini-plasmids 

are composed of URA, CEN/ARS, E coli origin, and ampicillin genetic elements from 

the barcode plasmid backbone.  
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Figure 5.7: Analytical restriction digest of mini-plasmids. Restriction digest with EciI 
and AclI enzymes, which cut the barcode backbone in multiple locations, 
suggests miniplasmids are composed of URA, Amp, CEN/ARS, and E. 
coli origin genetic elements.  

5.5 Flow Cytometry Analysis of 12-Color Barcode Libraries 

The 18 new barcode libraries were assessed by flow cytometry to determine 

the barcode expression level and abundance of new barcodes containing combinations 

of up to 11 epitope tags. Each plasmid library was transformed into yeast, barcode 

expression was induced, and cells were immunolabeled with either a 6-color panel 

containing CMYC, T7, V5, AcV5, AU5, and E2 antibodies, or a 7-color panel 

containing CMYC, HA, HSV, HIS, AU1, GLU, and FLAG antibodies (Figure F.1). 

Analysis of the barcode libraries with the 6-color panel shows that 14 out of 18 

libraries had a significant fraction (25-50%) of cells with expressed barcode plasmids 

(Table 5.3). Also, all expressing cells contained the expected combination of T7, V5, 

AcV5, AU5, and E2 epitope tags. The non-expressing cell fraction could be due to a 

combination of factors including a yeast surface display artifact [64], and mini-

EciI digest
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plasmids containing URA and CEN/ARS elements without or with an out-of-frame 

barcode.   

Table 5.2: Analysis of barcode expression in 18 libraries with combinations of up to 
11 epitope tags.   

 

Flow cytometry analysis of barcode libraries with the 7-color antibody panel 

against HA, HSV, HIS, AU1, GLU, and FLAG tags allowed quantification of the 

percentage of barcodes in the libraries containing barcodes with new combinations of 

up to 11-epitope tags (Table 5.4). We found that 85-92% of cells expressing barcodes 

contained new combinations of up to 11 epitope tags for 13 out of 14 of the libraries, 

while the AcV5/T7 library contained only 60% new barcodes. This is likely due to 

incomplete restriction digestion and dephosphorylation of the vector during 

subcloning.       

Library % CMYC+ Cells
AcV5 7.5
AU5 41
T7 59.5
E2 50.9
pBC2 1.33
V5 51.3
AU5/V5 45.7
AU5/V5/T7 28
T7/V5/E2 38.6
AcV5/AU5/E2 7.49
T7/V5 52.4
T7/AcV5/E2 42.1
V5/E2 52.8
AU5/E2 4.41
AcV5/V5 26.9
AcV5/V5/E2 46.5
AcV5/AU5 28.5
AcV5/T7 44.8
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Table  5.3: Quantification of new barcodes with combinations of up to 11 epitope tags. 

 

In addition, barcode identities and their relative abundance were determined 

for the AU5 library using FlowJo software by manual gating analysis as described 

earlier (Table 5.5). We found that 90 unique barcodes, or 47% of all possible 

barcodes, were present at 0.01% (100 cells) or more, with relative abundances ranging 

from 0.01 to 13%. There were 25 barcodes present at 1% or greater in the library, and 

the barcode containing only T7, V5, AcV5, AU5, and E2 epitope tags was the most 

abundant.  

Library % New Barcodes
AU5 89.5
T7 89
E2 88
V5 85.5
AU5/V5 89.5
AU5/V5/T7 85.2
T7/V5/E2 86.1
T7/V5 86.9
T7/AcV5/E2 90.1
V5/E2 87.9
AcV5/V5 86.4
AcV5/V5/E2 91.4
AcV5/AU5 87.4
AcV5/T7 60.9
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Table 5.4: Barcodes with the highest abundance present in the AU5 library.  

 

5.6 Optimization of a 13-Color Flow Cytometry Panel and Error Analysis   

Next, a 13-color flow cytometry panel was developed in order to 

simultaneously analyze barcodes from all 14 libraries (Table 5.6 and Table F.1). 

Notably, CMYC was analyzed using the AF647 instead of AF488 so that barcodes 

could be multiplexed with yeast-GFP clones. For applications not requiring the use of 

this channel, CMYC can be used with AF488 and an additional readout, such as 

binding affinity, could be measured using AF647.  

HA HSV HIS AU1 GLU FLAG Percent
0 0 0 0 0 0 13.580
0 1 0 0 0 0 8.143
0 0 0 0 1 0 7.240
0 1 0 0 0 1 5.756
0 0 0 1 0 0 5.570
0 1 0 1 0 1 5.024
0 0 0 1 1 0 4.879
4 0 0 0 0 0 3.909
0 0 0 0 0 1 3.756
0 0 0 1 0 1 3.011
0 0 1 0 0 0 2.486
0 4 0 0 0 0 2.475
0 1 0 0 1 1 2.410
0 0 1 0 1 0 2.374
0 0 0 0 1 1 1.925
1 0 0 0 1 0 1.598
0 1 1 1 0 0 1.375
0 0 1 1 0 1 1.362
1 0 1 0 1 0 1.314
0 0 1 1 0 0 1.231
0 1 1 0 0 0 1.167
1 0 0 0 0 0 1.126
0 1 0 1 1 0 0.988
0 1 0 1 0 0 0.964
0 4 0 0 0 1 0.951
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Table 5.5: 13-color panel used to analyze barcodes and additional variables of interest.  

 

Initially, saturating antibody concentrations (100nM) CMYC was used for 

labeling. However, the bright signal from AF647 obscured the signals for AcV5 APC-

CY7 and AU5 AF700 due to high spillover, such that positive and negative 

populations contained too much overlap to be identified accurately (Figure F.1). 

Titration of a-CMYC showed that 1-10 nM gave the most separation between positive 

and negative AU5 and AcV5 populations. Similarly, spillover from PE fluorophore 

obscured the PE-Cy5 signal such that AU1 positive events could not be distinguished 

from the negative. Therefore, HA-PE was titrated as to maximize the distinguishability 

of HA populations while minimizing the spillover into PE-Cy5 such that AU1 positive 

populations were not obscured (Figure 5.7). It was found that 10nM HA-PE provided 

the maximum HA-PE signal while allowing 1AU1 populations to be separable from 

the negative population. In addition, we could not find an appropriate concentration at 

which HIS-QD705 did not obscure signals in other fluorescent channels, and it was 

excluded from further analyses.  

Epitope Flurophore Laser Detector     
GLU Marina Blue 355 450/50 
V5 QD525 355  530/30 
HIS QD705 355  670 LP 
 GFP 488  530/30 
FLAG PerCP 488  685/35 
HA PE 532  575/25     
T7 PE-TexasRed 532  610/20 
AU1 PE-Cy5 532  660/20 
HSV PE-Cy5.5 532  710/50  
E2 tag PE-Cy7 532  780/60 
cmyc Alexa Fluor 647 633  660/20 
AU5 Alexa Fluor 700 633  730/45  
AcV5 APC-Cy7 633  780/60 
 



 88 

 

Figure 5.8: Titration of HA-PE to optimize barcode distinguishability for HA and AU1 
epitope tags. HA-PE was titrated from 0.1 nM to 100 nM in order to 
maximize the separation of HA+ and HA- events while minimizing the 
spillover into PE-Cy5 channel. At 100 nM HA-PE (red box), it was not 
possible to capture any 1AU1+ cells. When HA-PE was used at 10nM 
(black box), spillover into PE-Cy5 was lessened, allowing the distinction 
of AU1+ and AU1- populations.    

Next, we sought to assess the distinguishability of positive and negative 

epitope tag populations with the new antibody fluorophore panel. Yeast expressing 

known barcode controls were immunolabeled with a-CMYC and one additional 

epitope tag antibody. Gating analysis was used to quantify the percentage of 
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incorrectly identified cells and the percentage of cells captured (Table 5.7). In general, 

15-98% of a barcoded population was captured with 0.6% or fewer false events.    

Table 5.6: False positive and cells captured analysis for 12-color panel.  

 

5.7 Discussion 

Homologous recombination of glycine-serine linkers with less than 80% 

homology to each other were used to create barcodes with combinations of T7, V5, 

AcV5, AU5, and E2 epitope tags. 18 out of 32, or 50% of all possible epitope tag 

combinations, were obtained using this approach. Specifically, 6 out of 6 possible 

barcodes containing single epitope tags were created, as well as 7 out of 10 double, 5 

out of 10 triple, 0 out of 5 quadruple, and 0 out of 1 quintuple barcodes. One possible 

Population
% cells

captured
% false 
positive

AcV5+ 59 0.6
AcV5- 14-60 0.4
AU5+ 78 0.4
AU5- 38-80 0.2
AU1+ 83.5 0.2
AU1- 28-65 0.27
E2+ 100 0
E2- 100 0

FLAG+ 95 0.1
FLAG- 83-95 0.3
HA+ 95 0.3
HA- 75-95 0.5
HSV+ 88 0.2
HSV- 50-86 0
T7+ 65 0.2
T7- 38-80 0.1
V5+ 88 0
V5- 80-95 0.27
GLU+ 80 0
GLU- 30-98 0



 90 

explanation for why all 32 barcode combinations were not obtained could be because 

the homologous recombination approach did not work as intended. Although 80% 

homology was shown previously to be sufficient to prevent unwanted homologous 

recombination events [87], our results show that this level of homology was 

insufficient to prevent unwanted recombination events in this case.  

We found that glycine-serine linkers recombined regardless of their homology 

in most plasmids that were sequenced. This could be because the homology was not 

distributed evenly across the DNA due to glycine only being encoded by GGN. It is 

possible that glycine-serine linker DNA recombined, regardless of their dissimilarity 

because of the large stretches of guanine nucleotides. In addition, the high number of 

crossover events required to generate barcode plasmid combinations hindered barcode 

creation. It is likely that we obtained few barcodes with three epitope tags, and no 

barcodes with four or more epitope tags because of the requirement for more crossover 

events to occur.    

Homologous recombination could be a more successful approach to barcode 

generation if the number of epitope tags used and thus crossovers required were 

lessened. Our results support this idea, because a greater variety of barcode 

combinations were obtained when partially digested epitope tag linker fragments were 

used instead of fully digested fragments to create a barcode library. Only barcodes 

containing zero or single epitope tags were found when DNA containing single 

epitope tags surrounded by linkers, and thus requiring nine crossovers, were used. 

However, diverse barcode combinations were found when partially digested inserts 

were used, which likely required 2-4 crossovers to generate a full plasmid.  
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 It may be possible to achieve a higher rate of successful combinations by 

altering the method used to generate combinations. For example, Golden Gate cloning 

has been used to assemble up to nine fragments simultaneously with 85-90% 

efficiency [90], [91] and a similar efficiency for 5 to 6 tandem repeat fragments [92]. 

In addition, Gibson assembly may lead to greater success for assembling epitope tag 

combinations than an overlap extension PCR approach because dsDNA fragments 

could be assembled without random reannealing of ssDNA fragments [93].  

 The probability of successful epitope tag combinations could also be improved 

by designing a system that relies on specific recombination. One approach could be to 

use different types of flexible linkers instead of only glycine-serine linkers for a 

homologous recombination, Gibson assembly, or overlap extension PCR approach 

[99]. Alternatively, Golden Gate assembly could be used for specific recombination by 

designing unique 4-base pair overhangs to combine epitope tags together.  

 Full-length plasmids containing barcodes with combinations of up to 11-

epitope tags libraries were successfully created after mini-plasmids were prevented 

from transforming E coli cells by restriction digest of barcode backbone fragments. 

Mini-plasmid removal from subcloning reactions was essential to permit subcloning of 

new barcodes, likely due to their increased transformation efficiency and small size. 

Our results show that mini-plasmids were made up of DNA fragments from barcode 

backbone plasmids and can contain yeast and E. coli replication elements as well as 

genes or gene fragments for selective growth in ampicillin and uracil dropout media. 

Another interesting observation is that mini-plasmids persisted in the new barcode 

libraries despite being fragmented during subcloning. This suggests that mini-plasmids 

form during cell growth due to barcode plasmid replication instability in E. coli cells, 
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likely due to the long tandem repeat DNA regions. Interestingly, plasmid instability 

was not observed in yeast cells, which could be due to increased fidelity of eukaryotic 

transcription machinery [100].  

There are a number of potential solutions to remove mini-plasmids from the 

barcode library or prevent their formation. If mini-plasmids are not removed by 

selection, it could also be possible to use FACS or magnetic-bead sorting to remove 

yeast cells that are not expressing barcodes due to harboring of a mini-plasmid. In 

order to prevent the formation of mini-plasmids, barcodes could be redesigned so that 

other flexible linkers aside from (G4S)3 are used to decrease the length of DNA repeats 

or a shorter linker could be used. It is also possible that mini-plasmids will be less 

likely to form if epitope tag repeats are not used, as we did not observe any mini-

plasmids with T7, V5, AcV5, AU5, and E2 barcodes which only contained single 

repeats. Alternatively, different recombinase deficient E. coli strains could be tested to 

see if mini-plasmid formation is lessened. This approach has shown to be successful in 

some cases [71].   

Flow cytometry analysis of barcode distribution in the 11-epitope tag libraries 

showed that barcodes ranged in abundance over four orders of magnitude. Some 

possible explanations for the wide distribution include experimental error in handling 

small amounts of DNA, a greater propensity for smaller barcode plasmids to transform 

cells, and a higher likelihood for larger barcode plasmids with long repeats to be 

deleted due to erroneous transcription. Bias in barcode abundances could be corrected 

by FACS as demonstrated earlier. Also, barcodes could be redesigned with spacer 

regions such that their length and plasmid size is more uniform.      
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DEVELOPMENT OF SOFTWARE FOR RAPID BARCODE 
IDENTIFICATION AND ABUDANCE QUANTIFICATION  

6.1 Introduction 

Flow cytometry can provide informative, high-dimensional data about cellular 

structure function, as current advanced flow cytometers can measure up to 20 

parameters at once [65]. Manual analysis of multidimensional flow cytometry data 

involves gating or grouping cells into discrete populations based on their fluorescence 

and size characteristics. This approach suffers from a number of drawbacks due to its 

cumbersome and time-consuming nature for complex data sets. For example, analysis 

of 16 markers from 130 patent leukocyte samples took more than 15 hours to complete 

[101].  

The primary advantage of computational approaches to flow cytometry data 

analysis is that they can decrease analysis time in some cases from hours to minutes. 

Dozens of open-source software packages for computationally assisted analysis of 

flow cytometry data are available [101]–[105]. These software packages apply 

mathematical models to segment data, of which the three most common approaches 

are centroid based clustering (k-means), density based clustering, and distribution 

model-based clustering. K-means clustering is very fast but requires a priori 

information about the central location and number of clusters, and can only cluster 

populations with spherical shapes [106]. Distribution based mixture modeling, the 

most commonly used being Gaussian, typically are more robust than k-means, but 

Chapter 6 



 94 

their utility is limited due to necessity of making assumptions about the distribution of 

the data and the number of mixture components [105], [107]. Bayesian Information 

Criterion or Akaike Information Criterion can be used to determine the best mixture 

model fit and estimate the number of clusters without prior information [108]. Some 

methods use both k-means to partition the data and distribution-based models for 

clustering [109]. Density based clustering can be used to overcome limitations 

requiring a priori information about the location and number of clusters, or about the 

underlying distribution of the data, but in some cases cannot be applied to high-

dimensional data and require use of a subspace [108], [110].    

In this chapter, new software for rapid identification and quantification of 

barcode abundances from flow cytometry data is presented. Density-based clustering 

using the DBSCAN algorithm [111] and Gaussian kernel density estimation [112] 

were used to cluster cells with similar fluorescence properties and estimate barcode 

abundances. Barcode identities were elucidated by comparing minimum and 

maximum cellular fluorescence values within a cluster. In addition, the accuracy of 

our approach was calculated using many data sets, and the total number of barcodes 

created and their relative abundances were estimated computationally.  

6.2 Overview of Computational Barcode Identification Method 

Analysis of barcode flow cytometry data for identification and quantification 

of ~200 populations took approximately four hours to complete for one sample and 

required more than 200 unique gates. Therefore, it would be cumbersome to analyze a 

large number of samples using a manual approach. To automate and hasten data 

analysis, we developed a computational method to identify and quantify barcodes 

from flow cytometry data (Figure 6.1). First, data was gated in FlowJo to exclude 
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cells whose fluorescence could not be assigned as belonging to a particular population 

for a given color. This process required a maximum of 23 gates and took less than 30 

minutes for approximately ten samples. After gating, samples were analyzed with a 

Python script to identify and quantify barcode populations. First, fluorescence data 

was transformed from linear to log space and cells with negative fluorescence values 

were assigned a positive fluorescence value based on the median fluorescence of the 

positive events in the negative population for a particular fluorophore. Cells with 

negative fluorescence have little to no fluorescence, always belong to the negative 

population, and arise due to instrument baseline subtraction and compensation error 

[113].  

The software uses the DBSCAN clustering algorithm and Gaussian kernel 

density estimation to perform the analysis. DBSCAN is a density-based clustering 

algorithm which clusters together nearest neighbors, and relies on two parameters, the 

maximum search distance to look for additional nearest neighbors and the minimum 

number of nearest neighbors required to assign a core point [111]. Using this 

approach, DBSCAN can cluster groups together regardless of their shape, which is 

necessary in this case. We also first tried implementing k-means because it is faster 

than DBSCAN, but the approach did not work based on its requirement for data to be 

centroid. Gaussian kernel density estimation (KDE) is a method that can estimate the 

probability density function of data based on a Gaussian model [114]. KDE assigns a 

density score to each data point, and in this case lower density areas were excluded 

from the analysis to decrease noise in the data.  
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Figure 6.1: Computational approach to barcode identification and abundance 
quantification. Flow cytometry data was gated to exclude cells whose 
fluorescence could not be assigned to a particular population for any 
given color. Then, data was analyzed using a Python script which used 
DBSCAN clustering to assign cells to one of two clusters based on the 
density of nearest neighbors. This assignment process was repeated for 
each epitope tag that produced ‘binary’ intensities when immunolabeled. 
Barcodes were partitioned based on their binary fluorescence intensities, 
and these groups were analyzed by DBSCAN for epitopes that when 
immunolabeled produced up to three distinct populations. DBSCAN 
assigned cells in to up to three clusters (one negative and two positive). 
For cases in which two clusters were assigned, KDE was used to remove 
outlying cells and DBSCAN was re-run to assess if one or two 
populations with positive fluorescence intensities were present. Finally, 
cells were grouped by an 11-digit identifier corresponding to their 
barcode (0 for negative, 1 for low positive, and 2 for high positive) and 
the number of cells belonging to that barcode was quantified and 
normalized to calculate relative abundances. Information was exported to 
Excel for further analysis if required.  

The DBSCAN algorithm was used to identify cells as belonging to one of two 

groups or clusters for epitope tags which produced binary populations when 

immunolabeled (binary epitope tag). For each epitope tag or fluorophore, cells were 

assigned a number, either ‘0’ or ‘1’ which indicated which cluster they were assigned 

to (Figure 6.2). Then, minimum and maximum fluorescence values were used to 
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calculate which cluster and cells should be assigned ‘0’ indicating negative 

fluorescence and ‘1’ indicating positive fluorescence. This approach was repeated for 

each binary epitope tag and then cells were grouped together based on their binary 

barcode ID. A binary barcode ID is an eight-digit identifier that represents a cell’s 

assignment to eight epitope tag populations. For example, the binary barcode ID 

‘01010101’ represents an assignment to the negative population for T7, AU5, E2, and 

GLU epitope tags and to the positive population for V5, AcV5, HIS, and FLAG 

epitope tags.  

 

Figure 6.2: Assignment of cells to one of two clusters using DBSCAN. DBSCAN uses 
a nearest neighbor density based approach to group cells together. In this 
case, it was used to identify cells as belonging to one of two populations 
for each binary fluorophore. The python script also calculated statistics 
for each cluster which were subsequently used to determine which cluster 
should be assigned ‘0’ and ‘1’. After all binary epitope tags were 
assigned, cells were grouped by their binary barcode identity.   

epitope is: GLU
cluster ID is: 1
minimum value: 3.409
maximum value: 4.798
mean value: 3.989
standard deviation: 0.275
cluster abundance is: 26.827 %
cluster ID is: 0
minimum value: 1.284
maximum value: 3.355
mean value: 2.789
standard deviation: 0.292
Cluster abundance is: 72.75 %

Example statistics

Example output
‘Binary’ Barcode ID : row numbers corresponding to data points (cells) in that population
“00000101":[0,8,20,25,61,122,126,154,178,180,215,226,250...]
"00000100":[34,38,41,55,70,72,109,135,137,148,160,169,184...]
"00000011":[30,43,59,63,78,91,107,145,156,192,230,243,245...]
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Next, cell subpopulations grouped by their binary ID were analyzed by 

DBSCAN for the three epitope tags that produced multiple intensities when 

immunolabeled, specifically HSV, AU1, and HA. Binary ID clusters were first 

segmented based on their HSV population, and then by HA and AU1 in parallel 

because HSV had lower fluorescence variability than HA or AU1 as determined by 

manual analysis. DBSCAN was used to cluster cells into one, two, or three groups 

labeled ‘0’, ‘1’, and ‘2’. Then, minimum and maximum statistics were used to 

determine the correct cluster labels for each cell, representing negative fluorescence or 

‘0’, low positive fluorescence or ‘1’, and high positive fluorescence or ‘2’. In the case 

in which two clusters were found, it was possible that there were two positive barcode 

populations present. However, cellular fluorescence variability may be obscuring the 

populations from DBSCAN as the algorithm requires there to be a significant decrease 

in density between two clusters to identify them as separate groups (Figure 6.3).  

Thus, cells assigned to the ‘1’ cluster were subjected to KDE which mapped 

them to an approximate probability density function and cells located in regions of low 

density were excluded. Exclusion criterion was based on a fraction of the maximum 

density value calculated by KDE and were determined empirically. The exclusion 

cutoff was dependent on the particular epitope tag, total number of data points in the 

cluster, and the maximum relative density value assigned by KDE. For example, 

clusters with a low number of cells required a less strict filter than clusters a large 

number of cells ( >10,000). Then, DBSCAN was executed again on this filtered data 

subset in order to cluster the cells into two groups. Statistics were used as before to 

assign cells to either a ‘1’ or low positive or ‘2’ or high positive cluster.  
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Figure 6.3: Clustering cells for epitopes with multiple fluorescence intensities by 
DBSCAN and KDE. Cells were clustered with DBSCAN to determine 
negative and positive populations. If two populations were found, KDE 
was applied to filter out cells in areas of low relative density. Lastly, 
DBSCAN was used again to assign cells to low positive and high 
positive clusters.   

Lastly, cells were grouped by their 11-digit barcode ID identifier representing 

their assignment to each epitope tag. For example, the barcode ID ‘1110021011’ 

represents cells with positive T7, V5, and AU5 fluorescence, negative AcV5 and E2 

fluorescence, high positive HA fluorescence, low positive HSV fluorescence, negative 
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HIS fluorescence, and positive GLU and FLAG fluorescence. The relative abundance 

of each barcode was determined by counting the number of cells assigned to each 

barcode ID and normalizing by the total number of cells in all clusters.     

6.3  Establishment of Filtering Criteria and Analysis of Software Accuracy  

Control samples containing barcodes with known identities and abundances 

were used to assess the accuracy of the software and to determine filtering criteria for 

excluding false barcodes. For example, a sample containing 10 barcodes was analyzed 

using the approach described above, and the results of this analysis are shown in 

Table 6.1. The algorithm returned 16 barcodes, meaning in this case six of them were 

false. After analyzing the software results versus those obtained by manual inspection, 

we determined that a criterion of excluding barcodes present at abundances 100-fold 

below the expected value could be applied to remove false barcodes, or below 0.1% 

abundance in this case.  
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Table   6.1: Barcode identities and abundances found by software for control sample 
containing 10 barcodes. Note that false barcodes are highlighted in red.  

 
 

In addition, barcode identification software accuracy and associated types of 

error were quantified by manual inspection of DBSCAN clustering outputs. 

Specifically, data for each DBSCAN clustering was graphically displayed and 

inspected manually for errors. The types of errors we found were missed barcodes due 

to insufficient cell density, mislabeled ‘high intensity’ barcodes due to the absence of 

a lower positive intensity cluster, and falsely identified barcodes (Figure 6.4). False 

barcodes encompassed those clusters that were identified as negative or ‘0’ but were 

actually ‘1’ or positive, populations that were erroneously clustered together, and 

segmentation of one population into two or more clusters.  

Barcode Number points Abundance
00000000000 44753 50.84
00000000100 8638 9.81
00001000000 7964 9.05
00010000000 7536 8.56
00100000000 6603 7.50
10000000000 4052 4.60
00000000001 3650 4.15
00000000010 2190 2.49
00000010000 1882 2.14
00000100000 686 0.78
10000100000 34 0.04
00100000001 15 0.02
00010000100 8 0.01
00100000100 7 0.01
00100010000 2 0.00
10001000000 1 0.00



 102 

 

Figure 6.4: Types of errors encountered during barcode identification and clustering. 
DBSCAN clustering was used to identify populations for each epitope 
tag present in the sample. This information was compiled for all tags to 
determine the number of barcodes present in the samples. Manual 
inspection of DBSCAN outputs showed five types of errors for cluster 
identification, including merging of two populations, incorrect labeling of 
positive clusters, missed clusters, incorrectly partitioned clusters, and 
positive clusters incorrectly identified as negative or vice versa.  

For each of the 14 libraries, error analysis of the number of falsely identified 

barcodes before and after filtering criterion were applied, as well as quantification of 

mislabeled or missed barcode populations are shown in Table 6.2. The number of 

barcodes found by the software in each library after filtering ranged from 35-79 with 

an average of 57 barcodes. Of the barcodes found, on average 2 barcodes were 

mislabeled, 4-5 were falsely identified before filtering and 1 was falsely identified 
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after filtering, indicating filtering criterion were effective in eliminating most false 

barcodes from the analysis.  

Table 6.2: Analysis of barcode identification software accuracy and error assessment.  

  

An overall summary of barcode software accuracy and an estimation of the 

total number of barcodes is shown in Table 6.3. We estimate that 16-43% (100-600) 

barcodes were missed based on manual inspection of the number of clusters missed by 

the software. On average, we had a low rate of misidentification of barcodes after 

filtering criterion were applied, with 2.4% falsely identified barcodes and 4% 

mislabeled barcodes. Based on the number of barcodes found by the software and an 

estimation of the number of missed barcodes, we estimate that between 1,115 and 

1,570 barcodes were created in total.  

Library
# False Barcodes 
Before Filtering

# False Barcodes 
After Filtering

# Mislabeled 
Barcodes

# Missed 
Barcodes

# of Barcodes 
After Filtering

00100 9 4 2 5-21 74
10000 4 0 2 14-48 79
01000 9 1 2 10-42 64
00001 7 2 2 17-57 63
11100 4 3 2 13-69 41
01100 10 4 3 8-36 64
11001 7 2 3 8-36 53
11000 5 0 3 14-48 55
10011 1 0 0 5-21 55
01001 2 0 0 5-27 71
01010 2 1 5 13-45 56
01011 0 0 4 17-72 36
00110 4 1 2 13-39 44
10010 2 1 1 12-48 35
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Table 6.3: Summary of barcode identification software accuracy and estimation of 
total barcodes     

 

6.4 Discussion 

We developed software to identify barcodes and quantify their relative 

abundances from flow cytometry data. The major advantage to using a computational 

approach to analyze multicolor flow cytometry data, in this case, is that the time taken 

to analyze samples was decreased from hours to minutes. Specifically, one sample 

took about four hours to analyze manually, but only ~25 minutes with a computational 

approach. Overall, it is worthwhile to use computational approaches for large flow 

cytometry data sets with multiple colors and complex gating schemes, as they are 

faster than manual approaches.  

However, the computational approach to barcodes identification has some 

drawbacks including the time-consuming optimization of DBSCAN and KDE 

parameters and less accuracy than the manual approach. There are a number of 

improvements that can be made to the software which could decrease the error rate 

and the number of missed or misidentified barcodes, such as the use of more robust 

barcode exclusion criteria. In addition, analysis could be further automated by not 

require manual pre-filtering. Currently, the software sacrifices identification of all 

present barcode populations for a low error rate of false barcode identification. 

Count Percentage
Min barcodes missed (software) 154 16.31
Max barcodes missed (software) 609 43.53
False barcodes 19 2.41
Mislabeled barcodes 31 3.92
Total barcodes found 980
Estimated total barcodes 1115 - 1570
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In order to improve the accuracy of the software, one approach could be to use 

data sets with larger amounts of cells, and thus would be amenable to more stringent 

filtering criteria without rare barcode population loss. Acquiring larger data sets is 

feable as flow cytometry can measure ~108 cells per hour. This could have multiple 

positive effects including a decreased number of missed or mislabeled barcode 

populations and a decreased number of barcode splitting events due to insufficient cell 

density within a cluster. More stringent filtering could also decrease the number of 

false barcodes by enhancing separation between clusters and thus lower the probability 

of cluster merging.  

One drawback of the software is that it cannot label a cluster as a low positive 

or high positive cluster in the absolute case, meaning without the presence of other 

clusters. Rather, the software calculates the maximum value present in each cluster 

and then compares them to assign labels. In most cases, mislabeled clusters are not an 

issue because negative clusters are the most abundant in the barcode libraries, 

followed by low positive and high positive clusters. An alternative approach to 

assigning cluster labels could be used including simply inputting a range of 

fluorescence values in which negative, low positive, and high positive clusters could 

occur. This approach would work well for epitope tags that produce binary 

populations when immunolabeled. However, this is not a simple task for epitope tags 

that produce multiple intensities when immunolabeled due to the interdependencies 

between other epitope tags and the fluorescence as discussed in Chapter 3. Ideally, 

machine learning could be used with training data to determine the optimal parameters 

for multiple intensity epitope tags, taking into account the presence or absence of other 

epitope tags.  
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We have identified a critical exclusion criterion, the relative abundance of a 

barcode, as essential to computational barcode identification with a low error rate. In 

addition, it would be advantageous to identify additional exclusion criteria in order to 

improve the accuracy of the software. For example, statistics on cluster fluorescence 

intensity and deviation could be used to exclude cells in addition to the abundance 

criterion. Also, additional control samples with defined numbers of barcodes should be 

analyzed computationally to determine if the abundance exclusion criterion is 

sufficient to exclude false barcodes in all cases or to help identify additional exclusion 

criteria. Lastly, a disadvantage of our computational approach compared to others is 

that it requires pre-filtering data using manual gating to accurately identify barcode 

populations. If KDE is applied to all epitope tags instead of only those that produce 

barcodes with multiple intensities, it could eliminate the need for manual gating and 

decrease the time needed to analyze flow cytometry data as well as the need for 

manual analysis.  
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APPLICATION OF FLUORESCENT BARCODING FOR MULTIPLEXED 
ANALYSIS OF BIOMOLECULAR AND CELLULAR LIBRARIES 

7.1 Introduction 

In this chapter, application of the fluorescent barcoding system to the 

multiplexed analysis of biomolecular and cellular libraries is presented. First, 

application of barcoding scFvs for the multiplexed, quantitative analysis of protein-

protein interactions is discussed. Towards this goal, we determined the effect of 

barcode expression on the affinity of the a-prion scFv ICSM18 2.6.1 for recombinant 

prion protein, and discuss the production and characterization of recombinant prion 

protein.  

In a second application, the fluorescent barcoding system was applied to study 

the dynamic behavior of yeast GFP protein fusion clones in different environments. 

Specifically, we assigned genetically-encoded unique fluorescent barcodes to yeast 

GFP fusion clones and evaluate possible factors influencing barcode expression. In 

addition, we simultaneously examined the single-cell protein expression dynamics of 

barcoded yeast GFP clones in response to ten different environmental conditions and 

over a range of times. We found interesting responses including changes in protein 

abundance, variation, and distribution, which may suggest that cells use a bet-hedging 

strategy for enhanced fitness in fluctuating environments. In addition, proteins of 

unknown function were studied, and changes in their expression profiles due to 

environmental perturbation potentially indicate functional significance.  

Chapter 7 
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7.2 Prion Diseases and Potential Antibody Therapeutics  

Prion diseases are invariably fatal neurodegenerative diseases that cause 

abnormal protein folding, which results in dementia and other debilitating symptoms 

[115]. Prion diseases can be inherited in 15% of cases, sporadic, or acquired through 

tainted bovine consumption, cannibalism, or contaminated surgical equipment [116]. 

Prion disease is caused by the introduction of the disease-causing, misfolded prion 

protein (PrPSc). Misfolded prion protein converts the native, membrane bound alpha-

helical prion protein (PrPC) into a disease causing, beta-sheet rich form (PrPSc) [117]. 

The conversion process from an alpha-helical form to a beta-sheet rich form is unique 

in that it is not genetic in nature, but rather is caused by interaction of the PrPSc protein 

with PrPC protein [118], [119]. In support of this, knockout mice that do not express 

normal prion protein do not develop prion disease [120]. Misfolded prion protein often 

forms aggregate and amyloid structures, which cause neuronal death and can be seen 

as deposits in the brains of affected patients [121].   

Cell culture and mouse model studies have shown that antibodies targeting the 

normally folded prion protein may be able to interrupt the conversion process [122]–

[125]. While antibodies have shown limited therapeutic efficacy in mouse models by 

injection or viral delivery [126], [127], none have been successful in human trials, 

possibly due to difficulty of accumulation in the brain due to the blood brain barrier. 

Engineering techniques can be used to improve affinity and stability, and could result 

in a-prion antibodies with increased therapeutic efficacy. Engineering approaches for 

improved antibody therapeutics have shown promise in treatments for other disease 

including Alzheimer’s disease [128], rheumatoid arthritis [129], and respiratory 

syncytial virus [130]. 
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In our laboratory, a number of a-prion single-chain variable fragments (scFvs) 

have been engineered for increased affinity and stability. scFvs are protein fusions 

composed of the variable heavy (VH) and variable light (VL) portions of an antibody, 

connected by a designed flexible linker [131]. They are advantageous for engineering 

and surface-display approaches because they are small (~25 kDa) and composed of a 

single domain. Variants of the a-prion antibody ICSM18 [126] were engineered in our 

laboratory using random mutagenesis and yeast surface display.  

The clone ICSM18 2.6.1 was found by other lab members to have increased 

stability and soluble CHO expressed yields as compared to wild type ICSM18. 

Improvements in the stability of ICSM18 2.6.1 can be attributed to three amino acid 

substitutions in framework regions of the immunoglobulin domains (R91G, M77V, 

M21I), a mutation in the flexible linker (G116D), and four silent mutations leading to 

improved yeast codon usage. The R91G mutation may have reduced steric hindrance 

near the binding pocket, allowing for increased contact between the scFv and PrP. The 

methionine substitutions to valine and isoleucine are smaller and higher on the 

hydrophobic index. These properties may improve stability by permitting greater 

burial into the hydrophobic protein core. The linker amino acid substitution to a 

charged residue may have helped improve linker stability and solubility [99].  

7.2.1 Protein-Protein Interactions 

Protein-protein interactions, including receptor-ligand interactions, underlie 

many important biological processes including signal transduction and membrane 

transport. Aberrant protein-protein interactions play a central role in many diseases, 

including Creutzfeld-Jakob disease (CJD), Alzheimer’s disease, and Huntington’s 

disease [132]. Protein-protein interaction strength is governed by electrostatic forces 
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including hydrogen bonding and Van der Waals interactions. Protein-protein 

interactions are stabilized by interaction of hydrophobic, complementary faces with at 

least 600 square angstroms of buried surface area [133]. Studies on the specific 

contribution of amino acids to protein interaction interfaces found that tryptophan, 

tyrosine, and arginine occurred most frequently, possibly due to their ability to form 

multiple types of interactions including pi-interactions, hydrogen bonding, 

hydrophobic interactions, and salt bridges [134].      

The strength of a protein-protein interaction is related to the free energy of 

binding: 

∆𝐺 = 	−𝑅𝑇𝑙𝑛𝐾+ 

where R is the ideal gas constant, T is temperature, and Kd is the equilibrium 

dissociation constant. The dissociation constant for equilibrium interaction is dictated 

by the ratio of the on and off rates of binding, koff/kon. There are many methods to 

estimate the strength of a protein-protein interaction. Techniques are based on 

measurements of kinetic parameters, which include surface-plasmon resonance [135] 

and isothermal calorimetry [136], and equilibrium measurements, such as antigen 

titration [51]. Many quantitative and non-quantitative methods to screen for protein-

protein interactions exist, including affinity purification and mass spectrometry [137], 

FRET [138], proximity ligation assay [139], [140], and yeast two hybrid [141].  

7.2.2 Single-Cell analysis of the S. cerevisiae Proteome in Fluctuating 
Environments 

Cellular heterogeneity within cell isogenic populations is caused by noise in 

gene expression due to the stochasticity of biochemical processes involving small 

numbers of molecules  [4], [32]. This heterogeneity is often masked using traditional 
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methods such as Western blotting or mass spectrometry. Phenotypic heterogeneity in 

cell signaling and protein expression has been observed in a variety of cell types and 

affects many important phenomena including cellular fitness improvements during 

environmental fluctuations [9], [10], [142], differential response of cancer cell 

subpopulations to drugs [45], [143], [144] , stem-cell lineage [145], and bacterial 

persistence [7]. For example, over 1000 clones derived from lung carcinoma, with 

each clone expressing a different endogenous fluorescent protein fusion, were 

examined during response to the drug camptothecin by time-lapse microscopy [46]. 

Some of the protein fusions exhibited bimodal expression patterns, which suggest they 

may play a role in cell subpopulation’s escape from drug action. In another study, 

time-lapse microscopy of clonal yeast populations exhibited a range of growth rates, 

with slow growing phenotypes correlating with resistance to heat killing and higher 

expression of the trehalose biosynthesis protein Tsl1 [9].   

Typically, single-cell proteomic analysis studies use high-throughput tools 

such as automated fluorescence microscopy or flow cytometry to measure the 

response of cells expressing fluorescent protein fusions under endogenous promoters. 

To facilitate studies of proteome dynamics, a collection of over 4,000 yeast clones 

representing 75% of the yeast proteome was created, with each clone expressing a 

GFP fusion from the native open reading frame [55]. Using this collection, 70% of 

proteins with unknown localization were assigned into 22 distinct subcellular 

compartments. Since this study, the GFP fusion collection has been widely used to 

assess the yeast proteome in normal environments [41], and in response to 

perturbations including DNA damage agents such as hydroxyurea, methyl 
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methanesulfonate, and UV irradiation [13], [67], [68], osmotic stress [146], and 

reducing, oxidizing, and heat stress [10]. 

A study of the yeast proteome in rich and minimal media using flow cytometry 

found that proteins expressed at the same median level can have different amounts of 

noise, or variance in protein expression from cell to cell [41], and that protein 

expression noise is likely predominantly affected by the stochastic production and 

destruction of mRNA [32]. In addition, noise levels were associated with different 

functional groups of genes. For example, genes involved in protein synthesis are quiet 

whereas genes involved in production of proteins that respond to environmental 

changes are noisy. The authors suggest that imprecise protein expression regulation 

could be beneficial in that it could allow more rapid adaptations to fluctuating 

environments.   

Studies have also examined the behavior of the yeast proteome in response to 

environmental perturbations with single-cell resolution, providing additional insight 

into protein localization and abundance changes that are masked by population 

averaging. For example, yeast proteome dynamics studies have uncovered that 

proteins can change localization or abundance in response to stress, and some proteins 

respond in a stress specific manner [13], [67], [68]. One study found that hydroxyurea, 

which slows DNA replication by limiting dNTP pools and biosynthesis enzymes, was 

associated with localization changes in proteins involved in mRNA decapping. Methyl 

methanesulfonate, which causes DNA damage that cannot be repaired, is associated 

with localization changes in genes associated with the cell cycle and DNA repair [67].  

In addition, another study uncovered a bet-hedging mechanism which was 

employed by yeast cells grown in a low nitrogen environment [10]. A subset of yeast 
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GFP fusion clones exhibited bimodal expression profiles in response to low nitrogen 

stress, which may reflect a survival strategy. Specifically, cells expressing the PRE3 

GFP fusion protein partitioned into high and low expressing subpopulations after a 

day of nitrogen starvation. Investigation of these subpopulations growth rate showed 

that the PRE3 high expressing subpopulation had a fitness advantage over 24h time 

scale but the low expressing subpopulation outcompeted the high expressing 

subpopulation over 4 days.  

7.3 Application of Fluorescent Barcoding for the Study of Recombinant Prion 
Protein-Antibody Interactions 

Fluorescent cell barcoding could be used to screen biomolecular libraries for 

protein-protein interactions and quantify binding affinities. In principle, members of a 

biomolecular library such as a cDNA library could be assigned to unique fluorescent 

barcodes by co-transformation or genetic fusion. Barcoded yeast also expressing 

surface displayed proteins of interest could be titrated with soluble antigens to screen 

for interaction partners. For example, yeast surface display and next-generation DNA 

sequencing were used to identify hundreds of peptides with affinity for mouse and 

human T-cell receptors [147]. Antigen titration could be conducted to estimate the 

dissociation constant and quantify the strength of the protein-protein interaction.  

Towards this goal, we investigated the interaction between recombinant alpha-

helical prion protein (PrPa) and yeast surface displayed ICSM18 2.6.1 scFv, which 

was genetically fused to barcodes of varying lengths. Specifically, we subcloned the 

nucleotide sequence encoding for the ICSM18 2.6.1 variant into pCTCON2 and pBC2 

plasmids, a 5-eptiope tag barcode library, and an 11-epitope tag barcode library. 

Expression of the scFv in pCTCON2 adds an N-terminal CMYC tag and a C-terminal 
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HA tag connected by flexible linkers, and a fusion to the AGA2 yeast mating protein. 

Expression of the scFv in pBC2 adds an N-terminal CMYC tag and linker, and a C-

terminal fusion to a domain of the alpha-agglutinin yeast mating protein. scFv barcode 

library plasmids are composed of an N-terminal CMYC tag and linker, the scFv, the 

barcodes which are composed of 1 to 11 epitope tags connected by (G4S)3 linkers, and 

finally the alpha-agglutinin domain.   

Recombinant PrPa was produced in a 30L bioreactor fermentation of E. coli 

cells. Protein was isolated from inclusion bodies by ultracentrifugation and purified 

from host cell proteins using size-exclusion chromatography (SEC) (Figure 7.1). SEC 

fractions were tested for the presence of PrP by Western blotting, and purity was 

assessed to be more than 90% using Coomassie and silver stains. Then, protein was 

oxidized by exposure to atmospheric air for two weeks, followed by reverse-phase 

HPLC to isolate the oxidized protein fraction. After lyophilization, PrP was 

resolubilized in water and labeled with Alexa Fluor 647 using succinimidyl ester 

chemistry. Fluorescently conjugated protein was diluted into 4M Urea with Tris and 

oxidized glutathione at pH 8, allowing formation of an alpha-helical structure [54].     
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Figure 7.1: Production and purification of recombinant mouse prion protein. 
Recombinant prion protein was produced in a 4 hour biofermentation 
using E. coli cells. Inclusion bodies were isolated by ultracentrifugation 
and solubilized. SEC was used to purify prion protein from host cell 
proteins and fractions were tested for the presence of prion protein by 
Western blotting. Purity was assessed using Coomassie and silver 
staining. Prion protein was oxidized for two weeks by exposure to air and 
oxidized protein was purified from reduced by RP-HPLC and 
lyophilized. Finally, oxidized protein was resuspended in buffer to form 
an alpha-helical structure and conjugated to Alexa Fluor 647.  

Fluorescently labeled PrPa was titrated with ICSM18 2.6.1 scFv displayed on 

the yeast surface with or without barcodes in PBS 0.1% BSA pH 7.4 (Figure 7.2). 

Prior to immunolabeling, cells were induced for 24h in galactose media at 20°C or 

30°C. Previous experiments by other lab members showed the binding affinity of 

ICSM18 2.6.1 for PrPa to be ~2nM when expressed in the pCTCON2 vector. 

However, the titration did not result in a characteristic saturated binding curve for any 
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of the constructs tested, possibly due to aggregation of PrP. PrP could not be titrated 

above 100nM due to insolubility. Notably, all expressing cells appeared to interact 

with PrP, and no nonspecific interaction of PrP with the non-expressing cell 

population was observed.  

 

Figure 7.2: Titration of PrP with surface-displayed barcoded ICSM18 2.6.1. Yeast 
cells displaying ICSM18 2.6.1 as a fusion to AGA2 (pCTCON2) or 
alpha-aggutinin with (5-tag and 11-tag) or without (pBC2) barcodes were 
titrated with fluorescently labeled recombinant PrPa. Saturation did not 
occur as expected in all cases, possibly due to PrPa aggregation, and PrPa 
did not bind nonspecifically to non-expressing yeast cells. Importantly, 
all cells expressing recombinant proteins on the surface bound PrPa. 

In order to evaluate if barcodes have an effect on the affinity of the PrP 

ICSM18 2.6.1 interaction, total PrP signal, which is proportional to the amount of PrP 

bound, was normalized by the median total CMYC fluorescence, which is related to 

the expression level of the surface displayed protein (Figure 7.3). We found that 
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ICSM18 2.6.1 barcode fusions that were induced at 20°C for 24h had the highest 

normalized PrP signal as compared to non-barcoded ICSM18 2.6.1 expressed at 20°C 

or 30°C or barcoded ICSM18 2.6.1 fusions induced at 30°C. This suggests that 

barcodes do not affect the apparent affinity of ICSM18 2.6.1 PrP interactions when 

scFV is expressed at 20°C.   
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Figure 7.3: Effect of barcodes on the affinity of PrP ICSM18 2.6.1 interaction. The 
apparent affinity of yeast surface displayed ICSM18 2.6.1 PrP interaction 
was not affected when barcoded scFv was expressed at 20°C. This is 
suggested by the similar or higher median normalized PrP signal for 
barcoded ICSM18 2.6.1 as compared to ICSM18 2.6.1 without barcodes 
(pCTCON2 and pBC2) at multiple PrP concentrations.    
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Notably, ICSM18 2.6.1 exhibited lower CMYC signal when fused to alpha-

agglutinin with or without barcodes as compared to the AGA2 fusion, suggesting 

lower expression levels (Figure 7.4). The ICSM18 2.6.1 alpha-agglutinin fusion 

without barcodes exhibited a 7-fold decrease in expression at 20°C and an 8.5-fold 

decrease in expression at 30°C compared to the AGA2 fusion. An additional 4-fold 

decrease in expression was observed when ICSM18 2.6.1 was fused to barcodes and 

expressed at 20°C. Expression of barcoded ICSM18 2.6.1 at 30°C exhibited a 11-fold 

decrease in expression with 5-tag barcodes and a 6-fold decrease in expression with 

11-tag barcode fusions. Interestingly, the scFv had higher median expression at 30°C 

when barcodes were not present, but 20°C was favored for expression of barcode scFv 

fusions. In all cases, 30°C induction resulted in a higher percentage of cells expressing 

yeast surface displayed proteins.   

 

Figure 7.4: Expression of ICSM18 2.6.1 scFv is affected by barcode fusion. Yeast 
surface displayed ICSM18 2.6.1 barcode fusions exhibited 4 to 11-fold 
lower median expression as compared to ICSM18 2.6.1 alone. 
Expression levels were higher at 20°C for barcoded scFv and 30°C for 
scFv only. The percentage of expressing cells was higher in all cases 
when protein expression was induced at 30°C.   
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After optimizing the induction temperature of barcoded ICSM18 2.6.1 

expression, we hypothesized that barcoded scFv expression could be improved by 

increasing the induction time for protein expression. Previous studies have shown that 

induction of heterologous yeast surface displayed proteins can be improved by varying 

induction time up from 20-48 hours [148]. Yeast surface displayed barcoded scFv 

expression levels were measured as a function of induction time at 20°C by 

immunolabeling with antibodies against the N-terminal CMYC tag and additionally 

with antibodies against the barcode epitope tags (Figure 7.5).  Results show that 

barcoded ICSM18 2.6.1 expression improved approximately 3-fold after an additional 

24h of induction. Further studies could be conducted to determine if longer induction 

times would be beneficial.  

  

Figure 7.5: Effect of induction time on barcoded ICSM18 2.6.1 expression. Barcoded 
scFv expression improved approximately 3-fold after an addition 24h of 
induction at 20C, suggesting that longer induction times may be 
beneficial for higher expression.  
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7.4 Assignment of Unique Barcodes to Yeast GFP Fusion Clones and 
Investigation of Factors Affecting Barcode Expression 

Systems biology is a research area in which a large amount of data, i.e. 

genomic, transcriptomic, metabolomics, or proteomic scale, is used to assess the 

behavior of cells, tissues, and organisms and create predictive models [2]. In addition, 

single-cell analysis provides greater resolution of information than methods that rely 

on population averaging, and it can reveal interesting phenomena that are masked by 

population averaging approaches. Previous single-cell studies of the yeast proteome 

have used time-consuming methods including robotics-based flow cytometry or 

automated fluorescence microscopy. Moreover, cells have only been investigated in a 

limited number of environments due to the large number of samples required. The 

fluorescent cell barcoding tool we have developed is a powerful multiplexing method 

for single-cell analysis that can greatly decrease the number of samples needed for a 

study by approximately 100 to 1000-fold. Therefore, fluorescent cell barcoding can 

enhance yeast proteomics studies by decreasing the amount of time and samples 

needed, and also allowing more replicates and perturbations to be studied.  

We applied the fluorescent cell barcoding system to study the dynamic 

response of yeast proteins to environmental perturbations using the yeast GFP fusion 

collection. This collection is composed of over 4,000 yeast clones with each one 

expressing a different GFP fusion protein from the native open reading frame [55]. 

Clones were chosen based on those which were previously reported to have large 

coefficients in variation (CV) [41], which is defined as the standard deviation 

normalized by the mean, or those which were reported to have bimodal expression 

patterns in certain environmental conditions [10]. Additional yeast GFP clones that 

express proteins of unknown function, representing 17.6% of the yeast proteome, were 
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chosen for this study. We hypothesized that investigating changes in protein 

expression profiles in different environmental conditions could lead to insight into 

protein function.  

Each of the fifteen barcode libraries, which are defined by a unique 

combination of 5 epitope tags, were transformed into 12 or 13 yeast GFP clones. Also, 

plasmids with known combinations of 5 epitope tags were transformed into clones. 

Single clones harboring a barcode plasmid an a unique endogenous GFP fusion 

protein were picked from selective agar plates. Then up to 15 barcoded yeast GFP 

clones, each containing a plasmid with a known combination of 5 epitope tags and an 

unknown combination of the other 6 epitope tags, were mixed together in a single tube 

for screening by immunolabeling and flow cytometry.  

The results of the barcode screening experiments are shown in Table 7.1. 49 

out of 81 (60.49%) of the barcoded yeast GFP clones were unique, and the probability 

of unique assignment rose to 72.41% when GFP clones assigned to specific 5-tag 

plasmids were excluded. In addition, the most commonly observed barcodes were 

those with 5-epitope tag combinations, namely AcV5/V5, V5, and T7/V5/E2. These 

results are not surprising because the 5 epitope tag plasmids were the most abundant 

barcodes present in the libraries (Appendix H). In general, the majority of barcodes in 

the libraries were observed once (56%) or two times (35.09%), indicating barcode 

libraries contain diverse combinations.   
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Table 7.1: Frequency of barcode observations during one-by-one assignment to yeast 
GFP clones.  

 

Interestingly, more than 93% of attempted barcode plasmid transformations 

were successful, but only 54% of these successful transformants had barcode 

expression as observed by immunolabeling and flow cytometry (Table 7.2). This 

suggested that barcoded yeast clones were acquiring the selective marker during 

plasmid transformation but not a functional barcode. In addition, we calculated the 

probability of observing a yeast GPF clone with barcode expression given that the 

clone was transformed with either a 5-epitope tag plasmid or a mixture of barcode 

library plasmids (Table 7.3). Statistical comparison of the samples showed that the 

probabilities were significantly different (p = 0.11). Taken together, these data suggest 

that the mini-plasmids present in the barcode library were likely the underlying cause 

of the discrepancy between the number of successful transformants and the number of 

transformants expressing functional barcodes.  

Including transformants with 5-tag plasmids
# observations # barcodes % barcodes # unique barcodes

1 28 31.65 28
2 28 32.91 14
3 12 22.78 4
4 8 5.06 2
5 5 7.59 1

total # unique barcodes 49
total % unique barcodes 60.49

Excluding transformants with 5-tag plasmids
# observations # barcodes % barcodes # unique barcodes

1 28 56.14 28
2 24 35.09 12
3 6 8.77 2

total # unique barcodes 42
total % unique barcodes 72.41
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Table 7.2: Summary of yeast GFP barcode transformation and screening results. 

  

Table 7.3: Barcode expression probability comparison between yeast GFP clones 
transformed with 5-tag plasmids and 11-tag libraries.  

 

Barcoded yeast GFP clone screening was conducted twice with the same 

transformants but different proportions of each clone. We observed that barcoded 

mixtures of yeast GFP clones had heterogeneous barcode expression, with an average 

expression of approximately 20% (Figure 7.6). Typically, cells expressing barcodes 

without the presence of mini-plasmids exhibited 50-70% expression, suggesting 

removal of cells containing mini-plasmids would restore expression levels. We 

Result Count
Attempted GFP Clone Barcode Transformation 161
Successful GFP Clone Barcode Transformation 150
GFP Clones with Barcode Expression 84
GFP Clones with Unique Barcode Expresssion 49

Sample
# transformants without 

barcode expression
# transformants with  
barcode expression

%  transformants with 
barcode expression

SC 1 7 11 61.11
UK 1 4 12 75.00

average 67.65

SC 2 4 9 69.23
SC 3 10 4 28.57
SC 4 8 6 42.86
SC 5 7 7 50.00
SC 6 6 5 45.45
UK 2 3 4 57.14
UK 3 5 5 50.00
UK 4 8 5 38.46
UK 5 3 8 72.73
UK 6 4 5 55.56

average 50.00
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observed a recovery of barcode expression levels to 55.4% of cells after 

immunolabeling a mixture of barcoded yeast-GFP clones that had been screened 

previously for barcode expression.      

 

Figure 7.6: Barcoded yeast GFP mixtures exhibit a range of low expression 
percentages. Barcoded mixtures of yeast GFP clones exhibited 
expression heterogeneity, with an average expression level of ~20%. 
Typical barcode expression percentages ranged from 50-70%. The 
approximately two-fold lower expression percentage observed is 
consistent with the number of transformants expressing barcodes 
observed.   

An alternative hypothesis for the low percentage of expression observed is that 

induction conditions are non-optimal for barcoded yeast GFP clones. Therefore, 

barcode expression was monitored over 64 hours of induction at two temperatures for 

four different mixtures of barcoded yeast GFP clones (Figure 7.7). Again, we 

observed that mixtures had a range of expression percentages. The expression level 
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and percentage of cells expressing barcodes was not improved for any of the mixtures 

at the times and temperatures tested. Additionally, the 24h and 30°C condition used 

for all other experiments was sufficient to induced barcode expression. These results 

suggest that low percentages of expressing cells are not caused by suboptimal barcode 

induction conditions. 

 

Figure 7.7: Barcoded yeast GFP clone mixture expression levels are unchanged in 
different induction conditions. Four mixtures containing different 
barcoded yeast GFP clones were tested for expression levels by 
immunolabeling with an antibody against the CMYC tag at two different 
temperatures and 64h of expression. Mixtures exhibited a range of 
expression percentages that did not vary with the induction conditions 
tested. Therefore, the low percentage of expressing cells is likely not 
caused by suboptimal induction conditions.  
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7.5 Improvement of GFP Signal to Background Ratio in Fixed Yeast Cells 

Fixation of barcoded GFP cells is necessary for studies involving proteome 

dynamics because of the amount of processing time required for immunolabeling and 

flow cytometry measurements. Therefore, we investigated the effect of formaldehyde 

fixation on GFP fluorescence. A GFP fusion clone with highly fluorescent GFP 

expression and a negative control strain with the same genetic background as the GFP 

clones were grown overnight and fixed using either 1% OR 4% formaldehyde in PBS 

pH 7.4 for up to one hour (Figure 7.8). Fixation caused a decrease in GFP 

fluorescence, as also observed by others [149], with almost 2-fold losses after 10 

minutes in the 1% condition. Over the time-course, 1% formaldehyde had less of an 

effect on GFP fluorescence than 4% formaldehyde as expected. Cells fixed at all 

conditions were checked for a lack of growth after 24h. GFP chromophore formation 

is accomplished by the folding, cyclization, and atmospheric oxidation of three amino 

acid side chains, T65, Y66, G67 [150]. These results suggest that formaldehyde may 

alter the structure of GFP, effectively lowering chromophore signal.  
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Figure 7.8: Effect of formaldehyde fixation on GFP fluorescence. GFP fluorescence of 
a highly expressed yeast GFP fusion clone was monitored over time 
during fixation with either 1% or 4% formaldehyde in PBS pH 7.4. At 
both conditions tested, formaldehyde lowered the GFP signal by almost 
2-fold after only 10 minutes. As expected, 1% formaldehyde had less of a 
detrimental effect than 4% at longer times.  

In addition, we wanted to improve the GFP detection sensitivity by increasing 

the signal to background ratio. It should be possible to achieve this by lowering 

cellular autofluorescence, which is ubiquitous in the 500-600nm range due to the 

presence of flavins, which are small molecule redox cofactors [151]. We hypothesized 

that permeabilization of the cell membrane would allow diffusion of flavins outside of 

the cell, effectively lowering autofluorescence. Autofluorescence and GFP 

fluorescence were measured by flow cytometry after fixed cells were exposed to 

different permeabilization reagents including detergents and alcohols (Figure 7.9). 
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The signal to background ratio was calculated by dividing the median fluorescence 

value for yeast cells expressing GFP by yeast cells not expressing GFP. Mild detergent 

permeabilization methods mildly improved detection sensitivity by lowering 

autofluorescence, and this effect was more pronounced for alcohols. In addition, when 

mild fixation conditions were used (1% formaldehyde for 10 minutes), alcohol 

permeabilization restored the GFP signal to background ratio to levels seen in unfixed 

cells. Effectively, alcohol lowered cellular autofluorescence enough to overcome the 

decrease in GFP signal caused by formaldehyde.  

 

Figure 7.9: Permeabilization improves the signal to background ratio for fixed cells 
expressing GFP by lowering autofluorescence. Only mild improvements 
in GFP signal to background were achieved when detergents were used 
(left panel). Alcohols were more successful in improving the detection 
sensitivity by lowering autofluorescence. Alcohol fixation improved the 
signal to background ratio for GFP to unfixed cell levels by lowering 
autofluorescence, effectively overcoming the decrease in GFP signal due 
to fixation.     
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7.6 Dynamic Behavior of S. cerevisiae Protein Expression in Response to 
Environmental Perturbations  

We examined the single-cell protein expression profiles of barcoded yeast GFP 

fusion clones in response to environmental perturbations as a first demonstration of 

barcode technology applied to studies of single-cell yeast proteomics. The barcoded 

GFP fusion clone mixtures contained different number of barcoded clones, GFP fusion 

proteins, and assigned barcodes. Two mixtures, containing four and seven barcoded 

yeast GFP clones, were studied under four different environmental conditions and at 

two different time points after perturbation. One mixture contained barcoded yeast 

GFP fusion clones that express proteins known to be upregulated in response to certain 

environmental stresses (Table 7.4). The other sample contained barcoded yeast GFP 

fusion clones whose fusion proteins are known to be upregulated in response to certain 

stresses, as well as some clones with unknown function (Table 7.5).   

Table 7.4: Mixture of four barcoded yeast GFP clones with known stress responses. 

 

Table 7.5: Mixture of seven barcoded yeast GFP clones with either known stress 
responses or unknown function.  

 

GFP Clone ORF GFP Clone Name Barcode Related Stress Response Description
YDR513W GRX2 10011000000 oxidative stress Cytoplasmic glutaredoxin
YBR126C TPS1 00001000000 heat shock Synthase subunit of trehalose-6-P synthase/phosphatase complex
YJR104C SOD1 11000000000 oxidative stress Cytosolic copper-zinc superoxide dismutase 
YER103W SSA4 00100000000 heat shock Heat shock protein that is highly induced upon stress

GFP Clone ORF GFP Clone Name Barcode Description
YIL127C RRT14 10011000000 Putative protein of unknown function

YDR099W* BMH2 11001000000 14-3-3 protein, minor isoform
YNR014W 01001010000 Putative protein of unknown function
YGL108C 01011000000 Protein of unknown function, predicted to be palmitoylated
YGR012W MCY1 10000000010 Putative cysteine synthase
YER062C* GPP2 11000000000 DL-glycerol-3-phosphate phosphatase involved in glycerol biosynthesis
YCR016W 01100100000 Putative protein of unknown function

*control
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Specifically, barcoded yeast GFP clones were mixed together in approximately 

equal proportions in a single tube and exposed to either no stress, heat stress at 37°C, 

oxidative stress induced by 1mM H2O2, or alcohol stress with 5% ethanol for up to 

one hour. Cells were washed with PBS and fixed with formaldehyde to preserve 

cellular structure at the time points indicated. Before barcode immunolabeling, cells 

were permeabilization with methanol to lower autofluorescence. Analysis of single-

cell protein expression profiles for barcoded yeast GFP clones with known stress 

responses revealed interesting and in some cases unexpected behavior (Figure 7.10).   

GRX2 is a cytoplasmic glutaredoxin involved thiol oxidoreduction and has 

been reported to have increased gene expression in response to oxidative, osmotic, and 

heat stress as well as stationary phase growth [152]. We found that GRX2 had a 

bimodal expression profile, with 2-6% of cells expressing GRX2 at a 50-fold higher 

level on average. cells expressing high levels of GRX2 were statistically significantly 

larger than those in the low expressing population (p = < 10-7). Also, SSA4 is a heat 

shock protein that is highly induced under heat stress conditions, and has also been 

reported to be induced during oxidative and ethanol stress [153]–[155]. We found that 

SSA4 on average increased 2-fold after 30 minutes of heat stress at 37°C and 

expression rose to 3-fold after 60 minutes. In addition, the expression distribution of 

SSA4 was significantly smaller than during non-stressed conditions. CV decreased 

1.7-fold on average from 101 in non-stress conditions to 60 at 30 minutes and 56 at 60 

minutes. SSA4 expression was not induced during ethanol or oxidative stress, and 

upregulation of the cytosolic copper/zinc superoxide dismutase SOD1 was also not 

observed. One possible explanation for no SOD1 change is that the perturbation 
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conditions were too mild to induce significant increases in protein expression, or that 

protein expression was not upregulated during the examined time points [156]. 

 

 

 

Figure 7.10: Single-cell dynamic protein expression response to environmental 
perturbations. GRX2, a thiol oxidoreductase, exhibited a bimodal 
expression profile in all conditions tested. Cells in the high expressing 
GRX2 population were larger than those in the low expressing 
population. SSA4, a heat shock protein, was upregulated in heat stress 
and a contraction in protein expression deviation was observed. SSA4 
also had decreased expression after 30 minutes of heat shock. 
Interestingly, SOD1 is known to increase expression during oxidative 
stress, but remained unchanged in this case.  
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In addition, a second mixture of seven barcoded yeast GFP clones containing 

proteins of unknown function and control proteins with reported stress responses was 

studied under the same stress conditions (Figure 7.11). The protein expression levels 

of the five proteins with unknown functions remained unchanged under all conditions 

tested, with the exception of YGL108C. After 30 minutes of heat stress, cells 

expressing a GFP YGL108C fusion exhibited a bimodal expression pattern with 11% 

of cells expressing the protein at ~100-fold higher levels. YGL108C expression 

returned to basal levels after an additional 30 minutes, which is reasonable because 

protein half lives in yeast can be as low as < 4 minutes with an average half-life of ~40 

minutes [157]. In addition, it is not entirely surprising that most of the unknown 

function protein expression profiles remained unchanged, as only three stress 

conditions were tested and these proteins are likely only upregulated in specific 

circumstances.  

The proteins of known function, BMH2 and GPP2, remained unchanged in the 

conditions tested. BMH2 is a regulatory protein important in RAS/MAPK signaling 

and vesicle transport, and has been reported to be upregulated during DNA replication 

stress [67]. GPP2 is a phosphatase involved in glycerol biosynthesis and has been 

shown to be upregulated in response to the oxidant paraquat, which produces 

superoxide anions [158]. It is likely we did not observe induction of GPP2 with 

hydrogen peroxide because it may be specifically induced in response to agents that 

generate superoxide such as menadione and paraquat.   
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Figure 7.11: Dynamic, single-cell response of endogenous yeast GFP fusion proteins 
with unknown function to environmental perturbations. The five proteins 
with unknown function (RRT14, YNR014W, YGL108C, MCY1, and 
YCR016W) remained unchanged in response to the stress conditions 
tested, with the exception of the 30 minute heat shock condition for 
YGL108C. During this condition, YGL108C had a bimodal expression 
profile with 11.3% of yeast cells exhibiting high expression levels.  

Next, we applied fluorescent barcoding to simultaneously study the response of 

a larger set of endogenous yeast GFP fusion proteins (Table I.1). 46 barcoded yeast 

GFP clones were mixed together in a single tube and exposed to eleven different stress 

conditions for two hours (Table I.2). After immunolabeling and flow cytometry, 

barcodes were used to identify the yeast GFP clones, and their single-cell expression 

profiles before and after perturbations were elucidated (Figure 7.12). To elucidate 

GFP distributions and quantify abundance changes, manual analysis was used to de-

convolve barcoded populations and a Python script was written to analyze GFP 

expression profiles (Appendix J). Due to an immunolabeling error, specifically the 
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addition of insufficient HA antibody, only 32 of the 46 barcoded clone were 

distinguished.  

This result demonstrates that fluorescent barcoding can enable massively 

parallel analysis of cellular libraries, permitting the study of cellular behavior in a 

wider array of different conditions and potentially gaining a more multifaceted view of 

the cell. Specifically in this case, the use of 32 fluorescent barcodes decreased the 

number of samples required from 416 to 13. The GFP expression distributions 

elucidated by single-cell analysis show that protein abundance varies from cell-to-cell, 

showing that average measurements are insufficient to capture protein abundance. 

Moreover, these results show that variation in protein expression levels changes on a 

protein to protein basis, and could indicate pathway specific regulatory mechanisms or 

differences in promoter noise [32], [41]. One interesting finding was that the 

distribution of the ribosomal subunit proteins, namely RPS30B, RPL1B, RPL9A, 

RPL20, and RPL21, had increased variation in response to diamide. This observation 

could suggest that translation is upregulated in a subset of cells in response to diamide 

stress, as diamide is known to damage proteins by thiol oxidation, which causes the 

formation of disulfide bonds.  
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Figure 7.12: Barcodes enable multiplexed analysis of 32 single-cell protein expression 
distributions in 12 environmental conditions. Barcoded yeast GFP clones 
were pooled in a single sample and exposed to stress for two hours. After 
immunolabeling and barcode deconvolution, their GFP protein 
expression profiles were elucidated. Note that the clones that could not be 
deconvolved are indicated by an underscore. The lognormal fits are 
indicated by the dashed red line.    

In addition, the protein abundance and variation changes in response to 

different environmental conditions were quantified (Figure 7.13). In general, we 

found that protein abundance increased in response to diamide and DTT, and 

decreased in response to heat stress. One interpretation for this observation is that cells 

increase protein expression in response to protein misfolding caused by oxidative or 

reductive damage. Decreases in the variation of protein expression was more 

commonly observed than abundance changes, with dimaide causing the most changes 

significantly affecting 20 out of the 32 proteins studied. In response to stress 

conditions, most proteins decreased their expression variation, suggesting a bet-

hedging response in which cells express a wider array of protein expression levels in 

order to more rapidly combat adverse environments.   
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Figure 7.13: Protein abundance and variation changes in response to environmental 
stress. Fold change was calculated as the ratio of the protein abundance 
or CV after stress versus before stress. Proteins that were upregulated or 
had wider variation after stress are shown in green and those that were 
downregulated or had narrower distributions are shown in red. Fold 
changes greater than 1.4 times the average abundance or CV of the non-
stress condition replicates were considered significant. 

7.7 Discussion 

In this chapter, we present proof of concept applications to illustrate the use of 

fluorescent barcoding for multiplexed analysis of biomolecular and cellular libraries. 

Towards the demonstration of fluorescent cell barcoding for massively-parallel 

analysis of biomolecular libraries including protein-protein interactions studies, we 

determined the binding affinity of a yeast surface displayed, barcoded a-prion scFv, 

ICSM18 2.6.1 for recombinant prion protein. Specifically, we discuss the production, 

characterization, and use of recombinant prion protein in antigen titrations to 

determine the affinity of barcoded and non-barcoded ICSM18 2.6.1. Our preliminary 

results indicate that barcodes do not have a detrimental effect on the apparent 

interaction affinity, as shown by equivalent normalized binding signal for barcoded 

and non-barcoded ICSM18 2.6.1. We also demonstrate that barcoded ICSM18 2.6.1 

has full-length expression on the yeast surface.  

However, the expression level of barcoded ICSM18 2.6.1 was significantly 

lower with barcodes, which is surprising since this mutant was engineered to have 

higher stability on the yeast surface. Low expression of barcode ICSM18 2.6.1 fusions 

could be caused by a variety of factors, including the presence of mini-plasmids (for 

11-tag barcodes), improper folding of the scFv, or interaction of the scFv with the cell 

surface when it is attached to barcodes which can be substantially lengthier than the 
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typically used one or two epitope tag fusions. In addition, the yeast surface displayed 

barcoded ICSM18 2.6.1 could have poor expression due to the need to fold the 

ICSM18 2.6.1 into the correct structure before secretion. Along the same lines, it is 

likely that long barcodes do not exhibit a decrease in expression level and have higher 

expression levels at 30°C because they do not require folding. In support of the 

folding hypothesis, the apparent binding affinity for barcoded ICSM18 2.6.1 was 

restored to levels similar to non-barcoded scFv when protein expression was induced 

at 20°C, suggesting that slower specific growth rates may improve barcoded ICSM18 

2.6.1 folding via slower kinetics [159]. 

In order to further improve the expression of barcoded ICSM18 and possibly 

other scFvs, dual promoter expression vectors could be used. In this scheme, the scFv 

mutant would be expressed in one transcript and the fluorescent barcode on a separate 

one. Elimination of a direct fusion may improve ICSM18 2.6.1 expression levels to 

those exhibited for pCTCON2 or pBC2. In addition, using a more stable yeast surface 

displayed protein could lead to improvements in protein-barcode expression. 

Additional improvements in barcoded ICSM18 2.6.1 expression could be obtained by 

fusion to AGA2 instead of alpha-agglutinin, as ICSM18 2.6.1 alone fused to AGA2 

had ~7-fold lower expression than when fused to alpha-agglutinin.  

Immunolabeling of barcoded ICSM18 2.6.1 fusions over 2.5 days of induction 

at 20°C showed expression increased over time. However, the ICSM18 2.6.1 barcode 

profile at all induction times examined was characteristic of that observed for barcodes 

alone at 24h, whereas barcodes exhibited multiple subpopulations after 2.5 days. This 

could indicate that either expression of barcoded ICSM18 2.6.1 is too low to observe 

multiple populations, or that only certain, likely smaller barcodes, are expressed when 
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fused to ICSM18 2.6.1. Further experiments in which specific epitope tags are labeled 

could shed light on this observation. Although we have shown preliminarily that 

barcodes do not affect the ICSM18 prion interaction affinity, the effect of specific 

barcodes on binding affinity should be elucidated by further experiments.  

In the second part of this work, we discuss the assignment of fluorescent 

barcodes to yeast GFP clones for the multiplexed study of single-cell protein dynamics 

in response to environmental perturbations. To assign barcodes to yeast GFP clones, 

two approaches could be used, namely a one-by-one approach or a library approach. In 

the one-by-one approach, plasmids harboring unique barcodes could be assigned using 

a multi-well plate transformation, or a library of plasmids could be used followed by 

clonal screening. We chose to use a one-by-one approach due to its ease of execution, 

and successfully assigned 49 unique barcodes to yeast GFP clones. However, the 

approach is most suitable for smaller studies on the order of 100 clones, and is limited 

by the highest abundant barcodes in the libraries. Currently, one-by-one assignment 

would likely only result in on the order of 100 unique barcoded yeast GFP clones, as 

there are approximately 300 barcodes present in the top 1-10% of barcode libraries 

(Appendix H).  

Normalization of barcode libraries by FACS could greatly improve the number 

of unique barcodes assigned to yeast GFP clones using a one-by-one approach. 

Specifically, FACS could be used to normalize the distribution of barcodes in the 

libraries, as demonstrated in Chapter 4, and to lessen the amount of background 5-

epitope tag barcodes in the libraries, as illustrated by the increase in unique barcode 

assignment from 60-72% when barcode plasmids were not specifically assigned to 

yeast GFP clones. Also, a high rate of successful barcode transformation was observed 
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(>93%) but there was a low rate of successful yeast GFP clones expressing barcodes 

(50%), likely due to the presence of mini-plasmids in the barcode library DNA. In 

order to improve the likelihood of yeast GFP clones expressing functional barcodes, 

sorting of barcoded yeast GFP clones could be used to remove cells harboring mini-

plasmids. An alternative approach would be to separate full-length barcode plasmids 

from mini-plasmids by gel electrophoresis prior to yeast transformation.    

 Although we have used a one-by-one approach to assign barcodes to yeast 

GFP clones, random assignment using a library approach could also be used. 

Specifically, yeast GFP clones could be pooled and transformed with a mixture of 

barcode plasmids followed by limiting dilution to achieve an expected value of one to 

one assignment. This approach is advantageous because it is limited by a particular 

range of barcode abundance, likely one order of magnitude, instead of by the most 

abundant barcodes. A library barcode assignment approach would likely lead to a 

higher number of uniquely barcoded yeast GFP clones, as the majority of barcodes in 

our libraries range in abundance from 0.1-1%. Also, with a library approach FACS 

could be used to easily remove transformants harboring mini-plasmids. One 

disadvantage of this approach is that barcode GFP clone assignment is not known a 

priori, and would require additional experiments such as gene amplification and DNA 

sequencing in order to ascertain the identity of the GFP fusion.  

After assigning unique fluorescent barcodes to yeast GFP clones, we studied 

the dynamic single-cell response of GFP fusion proteins to a variety of environmental 

perturbation. Our experiments revealed interesting dynamic behavior, including 

bimodal expression profiles for GRX2 under all conditions and for YGL108C during 

heat stress. The bimodal expression profile of GRX2 was ubiquitous under all 
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conditions tested, and the high expressing fraction was composed of larger cells on 

average.  Taken together, these results could suggest that the high expressing fraction 

is in stationary phase, as GRX2 has been shown to be upregulated during stationary 

phase, and stationary phase cells are larger than log phase cells [81]. This hypothesis 

can be further elucidated by cell cycle analysis and growth rate studies. Also, the 

bimodal expression of YGL108C GFP fusions could indicate that this protein in 

somehow involved in a rapid and transient stress response regime [160]. In addition, 

we found that yeast cells increase expression of the SSA4 heat shock protein 2-3 fold 

after yeast were incubated for one hour at 37°C. Furthermore, the variation in protein 

expression within the population decreased by approximately two-fold. This behavior, 

which is revealed by single-cell analysis, could be indicative of a bet-hedging 

mechanism in which cells express a wider range of protein expression levels under 

non-stress conditions as to more quickly adapt to sudden environmental changes.     
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CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

The main objective of this work was to develop a fluorescent barcoding system 

that can be used for massively parallel single-cell analysis of bimolecular and cellular 

libraries. The work described here discusses the approaches used to engineer, to the 

best of our knowledge, the largest fluorescent barcoding system to date consisting of 

over 1000 unique, genetically-encoded barcodes. In addition, we have illustrated the 

power of this system by applying the method to analyze protein-protein interaction 

affinities and high-throughput, single-cell protein expression dynamics in response to 

environmental perturbations. The barcoding system developed throughout this work 

can be further expanded upon for greater multiplexing capability, and can be used in a 

variety of research applications that would greatly benefit from massively-parallel 

single-cell analysis, including systems biology, computational modeling of protein-

protein interactions and rational antibody design, protein-protein interaction screening, 

and antibody engineering and epitope/paratope mapping.  

In the first part of this work, we discuss the development of single-color 

barcodes composed of up to 16 repeating epitope tags connected by flexible linkers, 

using a new, generally-applicable method for exponential expansion of tandem DNA 

repeats. This method could be used for subcloning any sequence of interest, such as 

CRISPR guide RNA or poly-glutamine sequences. Epitope tag repeat proteins up to 34 

kDa exhibited full-length expression that did not decrease with increasing repeat 

Chapter 8 
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length, and can improve immunodetection by more than 100-fold for yeast-surface 

displayed protein fusions and more than 40-fold for endogenous protein fusions. 

Epitope tag repeats can be used to enhance immunodetection for low abundance 

proteins or for proteins in which no antibody is available, as well as improve 

immunopurification due to avidity effects. We demonstrate that long epitope fusions 

can enable flow cytometry detection of endogenous low abundance proteins in yeast, 

thus enabling the study of more than 1,600 low abundance proteins using single-cell 

analysis. In addition, we discovered that plasmids containing long epitope tag repeats 

are unstable in E. coli and developed a computational approach to analyze next-

generation sequencing data in support of this observation.  

In the second part of this work, engineering of a multi-color fluorescent 

barcoding system is presented. We demonstrate that up to four distinct fluorescence 

intensities can be achieved by fluorescence normalization and expression of epitope 

tag repeats of different lengths, and that the number of distinct intensities is heavily 

influenced by fluorophore brightness. To our knowledge, this is the first example of a 

genetically-encoded fluorescent barcoding system with the capability to generate 

barcodes with four fluorescence intensities using a single fluorophore. 190 out of 216 

possible barcodes were created by combining 6 different types of epitope tags with 

varying repeat lengths, resulting in greater than 2-fold more barcodes than any other 

published system. In addition, we identified critical epitope tag interdependencies 

causing differences in the fluorescence of barcoded subpopulations, and show that 

there is a bias for smaller barcodes with fewer repeats to have higher library 

abundances, suggesting transformation efficiency is affected by repeat length.  
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Furthermore, constitutive barcode expression was found to impact cell growth 

rate in a size-dependent manner, and an inducible promoter was used to minimize this 

bias, highlighting the importance of inducible promoters for production of toxic 

proteins or in for cellular libraries with rare members that could be lost due to growth 

differences. To expand the barcode library from hundreds to thousands of members, 

18 barcodes made of 5 additional epitope tag combinations were constructed by 

homologous recombination or PCR. We found that, contrary to previous reports [87], 

nucleotide sequences with less than 80% homology were capable of recombination. 

This finding may suggest that homologous recombination can occur regardless of 

exact homology or that the distribution of non-homologous residues can affect the 

probability of recombination.  

Fourteen barcode libraries consisting of combinations of up to 11 epitope tags 

were constructed, resulting in the creation of more than 1100 barcodes by 

computational estimation. Our barcoding system has 10-fold more barcodes than any 

other published to date and 20-fold more than any other genetically-encoded 

barcoding system. In addition, mini-plasmids composed of plasmid backbone without 

barcode regions spontaneously formed as a result of unstable plasmids caused by 

epitope tag repeats. This highlights the importance of minimizing repeating sequence 

length if possible and using recombinase deficient cell lines for cloning. Also, 

software was developed to rapidly analyze high-dimensional flow cytometry data, 

resulting in a decrease in time required for analysis from 4 hours to approximately 25 

minutes per data set. The software we have developed could be used to cluster, 

identify, and quantify other multi-color flow cytometry data sets. We found that the 
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software had a low error rate (2.5% false identification, 4.5% mislabeled barcode 

positive intensities) and modest accuracy (16-44% of barcodes missed).  

In the final part of this work, we applied the fluorescent barcoding system to 

illustrate its use for multiplexed, single-cell analysis of biomolecular and cellular 

libraries. Towards the application of fluorescent barcodes for studying protein-protein 

interactions, we barcoded the a-prion scFv ICSM18 2.6.1 and produced and 

characterized recombinant prion protein. We found that barcode expression did not 

impact the apparent binding affinity of ICSM18 2.6.1 for prion protein, but did 

observe a decrease in expression for barcoded scFv compared to non-barcoded scFv. 

These results suggest that barcodes could be used for multiplexed analysis of 

biomolecular libraries composed of protein mutants, which are useful for studies 

involving protein-protein interactions, epitope/paratope mapping, or rational antibody 

design applications.  

In a second application, we applied the fluorescent barcoding system to 

examine the dynamic, single-cell response of yeast proteins to environmental changes 

using yeast clones that express a particular protein GFP fusion from the endogenous 

promoter. Barcode plasmid transformation into yeast GFP fusion clones was very 

successful (94% of the 150 clones attempted), but only 50% of clones had barcode 

expression and only 30% contained unique barcode combinations. In addition, we 

studied the dynamic response of yeast GFP fusion clones to different environmental 

stresses including heat, oxidative stress, and ethanol, and found interesting changes in 

protein abundance, distribution, or bimodality for three proteins (SSA4, GRX2, and 

YGL108C). This illustrates the utility of fluorescent barcoding for systems biology 

applications, as it permits more replicates, time points, and conditions to be studied 
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more easily by decreasing the fold-number of samples required by the number of 

barcodes used. Furthermore, this application highlights that single-cell analysis can 

provide additional insight into proteomics studies that are masked with population 

averaging methods.  

8.2 Future Work 

In the first part of this work, we discuss the development of single-color 

barcodes composed of different lengths of repeating epitope tags connected by flexible 

linkers. Long repeats were used to greatly improve immunodetection by flow 

cytometry, enabling detection of low abundance endogenous fusion proteins in yeast. 

Future studies could focus on a more expansive study of epitope fusion proteins in 

single-cells, and their behavior could be studied in different environmental conditions 

or cell types. For example, many low abundance proteins are not well studied, have 

unknown functions, or have important roles in cellular function such as transcription 

factors.  

In addition, deep sequencing and gel electrophoresis were used to investigate 

the instability of plasmids containing long epitope tag repeats. This work could be 

expanded upon by investigating methods to decrease repeat instability, including using 

different E. coli strains, varying linker sequences or shortening linkers to decrease the 

number of repeats or repeat length, and developing an E. coli free cloning method 

such as homologous recombination. In addition, the deep sequencing data could be 

further analyzed to potentially elucidate patterns of plasmid deletion and could suggest 

mechanisms underlying this phenomenon or approaches to decease recombination 

frequency.  
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In the second part of this work, we developed a fluorescent barcoding system 

for multiplexed, single-cell analysis, resulting in the creation of over 1,100 unique 

fluorescent barcodes. A number of approaches could be used to further expand the 

number of unique barcodes, as up to 2048 unique binary combinations are possible 

with 11-epitope tags and up to 3420 combinations are possible with the current 

libraries. The number of multiple intensity barcodes could potentially be expanded by 

increasing the number of ‘bright’ fluorophores using a different flow cytometry setup 

with capability for quantum dot detection, or brightness could be enhanced using 

species specific antibodies and secondary detection. Additionally, it is likely that more 

than 200 barcodes could be recovered by successful cloning of the four remaining 

barcode libraries. Furthermore, new barcode combinations could be created if 

additional libraries were constructed with a focus on missing or rare epitope tag 

combinations from the 6-epitope tag library, and 18-fold more barcodes could be 

constructed if the missing 5-epitope tag combinations are created.   

Future experiments focusing on the construction of additional barcodes may 

benefit from using a different subcloning method such as Golden Gate cloning or 

homologous recombination. It is possible to clone up to nine inserts at once using 

Golden Gate cloning, which could be advantageous from a time perspective, although 

efficiency has been shown to decrease for repetitive sequences [92]. Spacer sequences 

could be incorporated to create plasmids with homogenous sizes, possibly lessening 

the observed transformation bias but potentially increasing the likelihood of plasmid 

instability. Homologous recombination could be advantageous, as repeat plasmids are 

unstable in E. coli. This method is also rapid and could be conducted in one step 
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assuming barcodes were constructed with unique linker sequences that would permit 

specific recombination.  

In the third part of this work, we developed software for the rapid 

identification and quantification of barcodes from flow cytometry data using the 

DBSCAN clustering algorithm and kernel density estimation. Although the software 

greatly decreased the time required to analyze multicolor flow cytometry data and had 

a low error rate, many barcodes were missed by the algorithm. In order to improve the 

accuracy of the software, larger data sets could be used, which would allow the use of 

more stringent filtering criteria and in turn increased density and regularity of 

barcoded subpopulations. In addition, manual preprocessing of data could be 

eliminated if kernel density estimation were used to filter out noisy data points in all 

channels instead of only those with multiple fluorescence intensities. Furthermore, 

future experiments should focus on identification of additional filtering criteria to 

eliminate false positive barcodes by analysis of more control data sets. Finally, the 

software could be improved if fluorophore intensity identification could be 

accomplished in the absence of populations with lesser intensities. In order to 

accomplish this, data sets would have to be analyzed for identification criteria such as 

minimum and maximum fluorescence values for a certain intensity, taking into 

account epitope tag interdependency effects.     

In the final part of this work, we illustrate the utility of the fluorescent 

barcoding system for multiplexed analysis of biomolecular and cellular libraries. In a 

first application, we studied the interaction of recombinant mouse prion protein with 

the barcoded a-prion scFv ICSM18 2.6.1. Further applications involving barcoded 

biomolecular libraries should explore the impact of other scFvs or proteins of interest 
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on surface-displayed protein expression. Protein expression levels may also be 

improved using a dual promoter vector or AGA2 fusion, and the effect of specific 

barcodes on the apparent binding affinity of ICSM18 2.6.1 prion interactions should 

be elucidated. In addition, DNA barcodes could be used to uniquely assign members 

of bimolecular libraries to fluorescent barcodes. DNA barcodes can be created using 

type IIS restriction enzyme sites and incorporated randomly into fluorescent barcodes. 

After deep sequencing to pair DNA and fluorescent barcodes, members of a 

biomolecular library can be uniquely DNA barcoded by PCR or gene synthesis and 

assigned to a fluorescent barcode via subcloning with a unique pair of DNA barcode 

sticky ends.   

Furthermore, in a second fluorescent barcoding application, we simultaneously 

examined the dynamics of endogenous yeast GFP fusion proteins in single-cells in 

response to environmental perturbations. Follow up experiments should be conducted 

to explore the reproducibility and noise associated with GFP fusion protein dynamics, 

and results should be verified in the absence of barcodes. Further experiments can be 

conducted to explore the interesting protein expression dynamics found in this work, 

including additional time points, conditions, and fluorescent readouts such as cell 

cycle analysis, as well as other types of experiments such as fitness measurements. In 

addition, studies of barcoded yeast GFP fusion clones could be expanded to hundreds 

to thousands of proteins after improvements to the barcode libraries have been made.  

A number of improvements can be made to the barcode libraries in order to 

improve the likelihood of unique barcode assignment to yeast GFP clones. We found 

that mini-plasmids and highly abundant barcodes affected the number of transformants 

with expressed barcodes and unique barcodes respectively. To decrease the number of 



 153 

mini-plasmids using a one-by-one transformation approach, barcode DNA could be 

purified by gel extraction before transformation to remove mini-plasmids. In addition, 

barcode libraries could be sorted using FACS to lessen the number of highly abundant 

barcodes and enrich rare barcodes. If barcodes are transformed into a library of yeast 

GFP clones instead of with a one-by-one approach, FACS could be used to eliminate 

transformants with no barcode expression and simultaneously lessen the number of 

transformants expressing highly abundant barcodes.     

In this work, a one-by-one barcode assignment approach was used in which 

individual yeast GFP clones were transformed with a mixture of barcodes and 

individual transformants were screened for unique barcode assignment. This approach 

is advantageous because assignment is known prior to experimentation, but it is 

somewhat low throughput. Alternatively, more high-throughput library methods could 

be used for barcode assignment. In a library approach, barcodes could be assigned to 

libraries of interest randomly in a one pot transformation. Limiting dilution could be 

used to isolate a specific set of barcodes with an expected value of one. For example, 

barcodes with 1% abundance would appear once on average for a limiting dilution of 

100 clones. For biomolecular libraries in which pairings are genetically linked on a 

plasmid, deep sequencing can be used to determine barcode assignment. For cellular 

libraries such as the yeast GFP library, clones that exhibit interesting behavior could 

be isolated with FACS and the fusion protein could be amplified by PCR for 

sequencing to determine barcode clone parings.    

Fluorescent barcoding is a powerful tool that can be used for massively-

parallel analysis of biomolecular and cellular libraries of interest, and information 

derived from these studies can be applicable to many research areas including systems 
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biology, biochemistry, molecular dynamics, and protein engineering. In addition to the 

applications described in this work, it may be possible to apply fluorescent barcoding 

to many applications including high-throughput screens for protein-protein 

interactions, assessment of gene function using knockout libraries, and quantitative 

analysis of the effect of point mutations on binding affinity for protein engineering 

[161], [162], paratope/epitope mapping [163], and protein docking model applications 

[164]. Fluorescent barcoding may be particularly useful when it is desirable to assess 

interactions with multiple targets, such as bispecific or broadly neutralizing antibodies, 

and to evaluate for the absence of binding which can be used to improve antibody 

specificity. Fluorescent barcoding may also be extended to other cell types such as 

mammalian and E. coli cells.  
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ADDITIONAL CONTRIBUTORS 

Joe Reynolds constructed the first pBC1 plasmid containing a GPD promoter, 

multiple cloning site, C-terminal alpha-agglutinin protein, and a CYC1 terminator.  

Erin Aho created pCTCON2-1HA, 2HA, 3HA, 4HA, and 5HA constructs 

using a PCR based expansion method. She found that 1HA and 4HA gave distinct 

fluorescence intensities using ‘ideal’ antibodies, i.e. high brightness with secondary 

labeling 

Seth Ritter developed the idea for the exponential expansion of repeating DNA 

sequences. He also constructed some of the single epitope repeat constructs 

(Appendix C, Table C.1) 

Quentin Dubroff created some of the barcode plasmids consisting of epitope 

tag combinations, that were used in the beginning of this project (Appendix C, Table 

C.1)  

Greg Vorsanger implemented the LALIGN algorithm and wrote the Python 

scripts for analysis of the SMRT data with direction from Stefanie Berges. Stefanie 

wrote Python scripts to generate graphics from analyzed data. Greg also assisted in the 

development of the barcode identification software, specifically with the decision to 

use DBSCAN clustering and Gaussian Kernel Density Estimation.  

Olga Morozova and Stefanie Berges both contributed to the production and 

purification of the recombinant mouse prion protein. Kyle McHugh refolded and 

labeled the protein with Alexa Fluor 647 NHS ester.  
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SOFTWARE FOR ANALYSIS OF SMRT SEQUENCING DATA 

 
#!/bin/bash 
 
script="fasta/fasta-36.3.8e/bin/lalign36 -d 0 -m 9 -E 0.0001 -n -f 12 -g 4"  
echo "Aligning GLUGLU" 
time $script 3passes_CCS.fasta ref_sequences/GluGlu_G4S.fasta > 
data/3passes_full_GluGlu_G4S 
echo "Aligning HA" 
time $script 3passes_CCS.fasta ref_sequences/HA_G4S.fasta > 
data/3passes_full_HA_G4S 
echo "Aligning AU1" 
time $script 3passes_CCS.fasta ref_sequences/AU1_G4S.fasta > 
data/3passes_full_AU1_G4S 
echo "Aligning FLAG" 
time $script 3passes_CCS.fasta ref_sequences/FLAG_G4S.fasta > 
data/3passes_full_FLAG_G4S 
echo "Aligning HIS" 
time $script 3passes_CCS.fasta ref_sequences/HIS_G4S.fasta > 
data/3passes_full_HIS_G4S 
echo "Aligning HSV" 
time $script 3passes_CCS.fasta ref_sequences/HSV_G4S.fasta > 
data/3passes_full_HSV_G4S 
echo "Aligning CMYC" 
time $script 3passes_CCS.fasta ref_sequences/CMYC_G4S.fasta > 
data/3passes_full_CMYC_G4S 
echo "Done Aligning." 
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#!/bin/sh 
 
echo "HA" 
python process_local_align.py --afile data/3passes_full_HA_G4S  --name HA_G4S --
lfile ref_sequences/length_ref_seqs.json --tfile ref_sequences/ref_len_thresh.json 
 
echo "CMYC" 
python process_local_align.py --afile data/3passes_full_CMYC_G4S  --name 
CMYC_G4S --lfile ref_sequences/length_ref_seqs.json --tfile 
ref_sequences/ref_len_thresh.json 
 
echo "FLAG" 
python process_local_align.py --afile data/3passes_full_FLAG_G4S  --name 
FLAG_G4S --lfile ref_sequences/length_ref_seqs.json --tfile 
ref_sequences/ref_len_thresh.json 
 
echo "GLUGLU" 
python process_local_align.py --afile data/3passes_full_GluGlu_G4S  --name 
GluGlu_G4S --lfile ref_sequences/length_ref_seqs.json --tfile 
ref_sequences/ref_len_thresh.json 
 
echo "HIS" 
python process_local_align.py --afile data/3passes_full_HIS_G4S  --name HIS_G4S -
-lfile ref_sequences/length_ref_seqs.json --tfile ref_sequences/ref_len_thresh.json 
 
echo "HSV" 
python process_local_align.py --afile data/3passes_full_HSV_G4S  --name HSV_G4S 
--lfile ref_sequences/length_ref_seqs.json --tfile ref_sequences/ref_len_thresh.json 
 
echo "AGAlpha1" 
python process_local_align.py --afile data/3passes_full_AGAlpha1 --name AGAlpha1 
--lfile ref_sequences/length_ref_seqs.json --tfile ref_sequences/ref_len_thresh.json 
 
echo "AU1" 
python process_local_align.py --afile data/3passes_full_AU1_G4S  --name AU1_G4S 
--lfile ref_sequences/length_ref_seqs.json --tfile ref_sequences/ref_len_thresh.json 
 
 
 
 
  



 172 

import argparse 
import requests 
import numpy 
import json 
import time 
import os.path 
from collections import defaultdict 
from pprint import pprint 
def get_ref_dict(lenfile): 
   with open(lenfile,'r') as data: 
      len_dict = json.load(data)  
#     pprint(len_dict) 
      return len_dict 
 
def get_matrices_from_file(filename): 
   matrix_dict = {} 
   curr_matrix = "" 
   with open(filename,'r') as f:  
      in_matrix = False 
      curr_name = "" 
      for line in f: 
         if ">>>m" in line: 
            curr_name = line[6:] 
#        print line 
         if in_matrix:   
            if ">>><<<" in line: 
               in_matrix = False 
               matrix_dict[curr_name] = curr_matrix 
            else: 
               curr_matrix += line  
         elif "%_id  %_sim  lsw  alen  an0  ax0  pn0  px0  an1  ax1 pn1 px1 
gapq gapl  fs" in line: 
            in_matrix = True 
            curr_matrix = "" 
   return matrix_dict 
       
def make_list_matrix(matrix): 
   #print "MATRIX" 
   #print matrix  
   #print "END MATRIX" 
   i = 0 
   #dynamic based on length returned 
   mat_len = len(matrix.split('\n')) -1 
   #static based on the lalign program 
   mat_width = 6 
   mat_list = numpy.zeros((mat_len,18)) 
   for line in matrix.split('\n'): 
      line = line.replace("\t"," ") 
      j =0  
      split_spaces = line[69:].split(" ") 
      for item in split_spaces: 
       
         if item != '': 
            mat_list[i][j] = item 
            j+=1 
      i+=1             
#     print split_spaces 
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#  print mat_list 
   return mat_list 
 
#matrix, matching threshold, dict1, dict2 
#default, 0.85 
def analyze_matrix(list_matrix,seq_len,len_thresh,match_thresh = 0.85): 
   unique_vals = {} 
   top_match = 0.0 
   top_e_val = 0.0 
   match_count = 0 
   for row in list_matrix: 
      match_val  = row[3]     
      e_val = row [2] 
      #if e_Val not in dict, add and grab the match 
      if e_val not in unique_vals: 
         unique_vals[e_val] = match_val  
 
      #if match val greater, set it to highest and grab eval 
      if match_val > top_match: 
         if row[6] >= seq_len - len_thresh and row[6] <= seq_len + 
len_thresh: 
            top_match = match_val 
            top_e_val = e_val 
      if match_val > match_thresh: 
         if row[6] >= seq_len - len_thresh and row[6] <= seq_len + 
len_thresh: 
            match_count+=1 
            #print "GOOD len:", row[6], "vs:" , seq_len 
         else: 
            pass 
            #print "BAD len:", row[6], "vs:" , seq_len 
       
   best_match_dict = {"Count": match_count,"Top E Value":  top_e_val, "Best 
Match Value":  top_match} 
   return unique_vals,best_match_dict  
 
 
def run_alignment(filename,run_name,ref_len_name,len_thresh_name): 
   #length of reference 
   ref_len_dict = get_ref_dict(ref_len_name) 
   #maximm length error for alingment 
   len_thresh_dict = get_ref_dict(len_thresh_name) 
   seq_len = ref_len_dict["Length"][run_name] 
   len_thresh = len_thresh_dict["Thresh"][run_name] 
   info_dict = {} 
   info_dict[run_name] = {} 
   matrix_dict = get_matrices_from_file(filename) 
   outfile = run_name + "_analysis.json" 
   print "This file has:", len(matrix_dict.keys()), "matrices present." 
   for key in matrix_dict.keys(): 
      list_matrix = make_list_matrix(matrix_dict[key]) 
 
#     print list_matrix 
      unique_dict,best_dict = 
analyze_matrix(list_matrix,seq_len,len_thresh,0.90) 
      #for testing 
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#     print unique_dict,best_dict 
      if best_dict["Count"] > 0: 
         info_dict[run_name][key] = {} 
         info_dict[run_name][key]["Best"] = best_dict 
         info_dict[run_name][key]["Unique"] = unique_dict 
   output_str = json.dumps(info_dict, sort_keys=True, indent=4, 
separators=(',', ': ')) 
   with open(outfile,'w') as f: 
      f.write(output_str)     
 
#for testing only 
if __name__ == "__main__": 
   parser = argparse.ArgumentParser(description="Give a file to process") 
   parser.add_argument('--afile', metavar="f",type = str) 
   parser.add_argument('--lfile', metavar="l",type = str) 
   parser.add_argument('--name', metavar="n",type = str) 
   parser.add_argument('--tfile', metavar='t',type = str) 
   args = parser.parse_args() 
   if args.afile and args.name and args.lfile and args.tfile: 
      run_alignment(args.afile,args.name,args.lfile,args.tfile) 
   else: 
      print "Need filename, len file name, threshold file name and name of 
run!" 
       
#  debug() 
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import json 
import os 
import argparse 
from pprint import pprint  
#grabs all json, makes one dict with keys based on reference and data within 
def make_dict(json_dir): 
   alignment_dict = {}     
   for name in os.listdir(json_dir): 
      print name 
      json_file = os.path.join(json_dir,name) 
      with open(json_file,'r') as f: 
         data = json.load(f) 
         alignment_dict = dict(alignment_dict, **data) 
 
#  print alignment_dict.keys()     
   for key in alignment_dict.keys(): 
      print "Reference:",key, "has: " ,  len(alignment_dict[key].keys()), 
"sequences" 
   return alignment_dict 
 
#get all seq_ids. For now this is hardcoded to use CMYC!! 
def get_sequence_ids(ad,list_mode): 
   seq_id_list = [] 
   print "List mode  = ", list_mode 
   #ONLY CMYC 
   if list_mode == "CMYC": 
      raw_seq_list = ad["CMYC_G4S"].keys() 
                for key in raw_seq_list: 
                   if ad["CMYC_G4S"][key]["Best"]["Count"] > 0: 
                #assume no 0's 
                      if key not in ad["AGAlpha1"]: #and 
ad["AGAlpha1"][key]["Best"]["Count"] == 0: 
                                   seq_id_list.append(key) 
   #ONLY AGA 
   if list_mode == "AGA": 
      raw_seq_list = ad["AGAlpha1"].keys() 
      for key in raw_seq_list: 
         if ad["AGAlpha1"][key]["Best"]["Count"] > 0: 
            if key not in ad["CMYC_G4S"]: # and 
ad["CMYC_G4S"][key]["Best"]["Count"] == 0:  
               seq_id_list.append(key) 
 
   #BOTH 
   if list_mode == "CMYC+AGA": 
      raw_seq_list = ad["CMYC_G4S"].keys() 
      for key in raw_seq_list: 
         #if ad["CMYC_G4S"][key]["Best"]["Count"] > 0 and key in 
ad["AGAlpha1"] and ad["AGAlpha1"][key]["Best"]["Count"] > 0: 
         if key in ad["AGAlpha1"]: 
            seq_id_list.append(key)        
 
   if list_mode == "ALL": 
      raw_seq_dict = {} 
      for ref in ad.keys(): 
         for key in ad[ref].keys(): 
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            raw_seq_dict[key] = 1 
      seq_id_list = raw_seq_dict.keys() 
    
   if list_mode == "NEITHER": 
      raw_seq_dict = {} 
      for ref in ad.keys(): 
         for key in ad[ref].keys(): 
            raw_seq_dict[key] = 1 
      print "TOTAL KEYS:", len(raw_seq_dict.keys()) 
      for key in ad["CMYC_G4S"].keys(): 
         if key in ad["AGAlpha1"]: 
            del raw_seq_dict[key] 
      for key in ad["AGAlpha1"].keys(): 
         if key in ad["CMYC_G4S"]:   
            if key in raw_seq_dict: 
               del raw_seq_dict[key] 
      seq_id_list = raw_seq_dict.keys() 
   return seq_id_list 
 
 
#get barcodes by seqid. Takes dict from all json files and Returns dict of 
seqid : barcode: 
def get_barcode_dict(ad,seq_id_list,key_order): 
   barcode_dict = {} 
   for seq_id in seq_id_list: 
      barcode_list = [] 
      for key in key_order: 
         if seq_id in ad[key]: 
            barcode_list.append(ad[key][seq_id]["Best"]["Count"]) 
         else: 
            barcode_list.append(0) 
      barcode_dict[seq_id] = barcode_list 
 
   return barcode_dict 
 
#gets barcode frequency in data set.  
#expects dictionary of seqid : barcode 
#returns dictionary with barcode: frequency, count, seqids/ on off 
def get_barcode_frequency_dict(bc_dict,total_barcodes, seq_ids = False): 
   bc_freq_dict = {} 
   for seq_id in bc_dict.keys(): 
      raw_s = "" 
      for item in bc_dict[seq_id]: 
         raw_s += str(item)  
         raw_s += "-" 
      barcode_string = raw_s[:-1] 
      #default dict too awkward here. 
      if barcode_string in bc_freq_dict: 
         bc_freq_dict[barcode_string]["Count"] += 1 
         if seq_ids: 
            bc_freq_dict[barcode_string]["Seq_IDs"].append(seq_id) 
      else: 
         bc_freq_dict[barcode_string] = {}   
         bc_freq_dict[barcode_string]["Count"] = 1 
         if seq_ids: 
            bc_freq_dict[barcode_string]["Seq_IDs"] = [seq_id]  
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   #at this point we have a dictionary with all the barcodes and counts, need 
to get frequencies. 
   for key in bc_freq_dict.keys(): 
      bc_freq_dict[key]["Frequency"] = 
float(bc_freq_dict[key]["Count"])/float(total_barcodes) 
 
#  pprint(bc_freq_dict) 
   return bc_freq_dict 
#takes alignment dict. Returns dict for each ref sequence with key: ref seq : 
Number of matches : freq and seqids/onoff 
def 
get_best_match_dicts(ad,seq_id_list,key_order,total_count,output_name,seq_ids 
= False): 
   for key in key_order: 
      best_match_dict = {}    
      #for seq_id in ad[key].keys(): 
      for seq_id in seq_id_list: 
         if seq_id in ad[key]: 
            count = ad[key][seq_id]["Best"]["Count"] 
            if count in best_match_dict: 
               best_match_dict[count]["Count"] += 1 
               if seq_ids: 
                  best_match_dict[count]["Seq_IDs"].append(seq_id) 
            else: 
               best_match_dict[count] = {} 
               best_match_dict[count]["Count"] = 1 
               if seq_ids: 
                  best_match_dict[count]["Seq_IDs"] = [seq_id] 
      #do frequency 
      for match_num in best_match_dict.keys(): 
         best_match_dict[match_num]["Frequency"] = 
float(best_match_dict[match_num]["Count"])/float(total_count) 
 
#     pprint(best_match_dict) 
      #print each to own file 
      if seq_ids: 
         outfile = output_name + "_" + key + 
"best_match_table_w_seq_ids.json" 
      else:   
         outfile = output_name + "_" + key + "best_match_table.json" 
      json_to_file(outfile,best_match_dict) 
 
def json_to_file(name, jdict): 
   output = json.dumps(jdict, sort_keys = True, indent=4, separators=(',', ': 
')) 
   with open(name,'w') as f: 
      f.write(output) 
    
def run_analysis(json_dir,output_name,list_mode): 
   a_dict = make_dict(json_dir) 
 
   #get sequence IDS 
   print "Getting sequence ideas for mode:", list_mode 
   seq_id_list = get_sequence_ids(a_dict,list_mode) 
   print "This mode returned", len(seq_id_list), "ids" 
   #hardcode for now for order reasons 
   key_order = 
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["HA_G4S","HSV_G4S","HIS_G4S","AU1_G4S","GluGlu_G4S","FLAG_G4S"] 
   bc_dict = get_barcode_dict(a_dict,seq_id_list,key_order) 
   print "bc_dict has this many barcodes:", len(bc_dict.keys())  
   bc_file = output_name + "_barcodes_table.json" 
   #write barcode dict to file 
   json_to_file(bc_file,bc_dict) 
 
   #Get number of barcodes form CMYC file - NOT GENERIC 
   total_barcodes = len(seq_id_list) 
   #Get barcode count dictionary w/ and w/out seq ids  
   bc_count_dict = get_barcode_frequency_dict(bc_dict,total_barcodes) 
   bc_count_dict_seqs = 
get_barcode_frequency_dict(bc_dict,total_barcodes,True)       
   #print to file w/ and w/o seqs 
   bcf_file = output_name +  "_barcode_frequency_table.json" 
   json_to_file(bcf_file,bc_count_dict) 
   bcf_file_w_seqs = output_name + "_barcode_frequency_table_w_seqs.json" 
   json_to_file(bcf_file_w_seqs,bc_count_dict_seqs) 
   #this calls its own json_to_file 
   
get_best_match_dicts(a_dict,seq_id_list,key_order,len(seq_id_list),output_nam
e)     
   
get_best_match_dicts(a_dict,seq_id_list,key_order,len(seq_id_list),output_nam
e,True) 
 
 
if __name__ == "__main__": 
   parser = argparse.ArgumentParser(description= "Give a directory of JSON to 
eat") 
   parser.add_argument ("--list_mode",metavar="l",type=str) 
   parser.add_argument("--json_dir",metavar="d",type=str) 
   parser.add_argument("--output_name",metavar="o",type=str) 
   args = parser.parse_args() 
   list_mode = "all" 
   if args.list_mode: 
      list_mode = args.list_mode 
   if args.json_dir and args.output_name: 
      run_analysis(args.json_dir,args.output_name,list_mode) 
   else: 
      print "Error, no directory or output name provided!" 
      print "List modes: ALL, AGA_only, CMYC_only, AGA+CMYC, NEITHER" 
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import numpy as np 
import os 
import json 
from collections import defaultdict 
import csv 
 
file_path = "/Users/Stefanie/PycharmProjects/untitled/Pacbio_tables" 
 
if not os.path.exists(file_path): 
    os.makedirs(file_path) 
os.chdir(file_path) 
 
json_filename = "/Users/Stefanie/Dropbox/Pacbio 
Analysis/1120/1120_CYMC+AGA_barcode_frequency_table.json" 
 
barcodetabledict = {} 
 
with open(json_filename,'r') as f: 
    barcode_dict = json.load(f) 
 
for barcodeid in barcode_dict.keys(): 
    count = barcode_dict[barcodeid]['Count'] 
    barcodetabledict[barcodeid] = count 
 
fields = ['Barcode ID','Count'] 
with open('Pacbio barcode table.csv','w') as f: 
    w = csv.writer(f,fields) 
    w.writerow(fields) 
    for row in barcodetabledict.items(): 
        w.writerow([row[0],row[1]]) 
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import numpy as np 
import os 
import matplotlib.pyplot as plt 
import matplotlib.colors as colors 
import json 
from collections import defaultdict 
 
 
file_path = "/Users/Stefanie/PycharmProjects/untitled/Pacbio_graphics" 
 
 
if not os.path.exists(file_path): 
    os.makedirs(file_path) 
os.chdir(file_path) 
 
tagnames = ['HA','HSV','HIS','GluGlu','AU1','FLAG'] 
epcolor = ['blue','red','green','purple','orange','magenta'] 
i = 1 
#[fig,ax] = plt.subplots(2,3,sharex=False,sharey=False) 
 
odd_repeats_dict = defaultdict(lambda: defaultdict(float)) 
 
for name in tagnames: 
    json_filename = "/Users/Stefanie/Dropbox/Pacbio 
Analysis/1120/1120_CMYC_"+name+'_G4Sbest_match_table.json' 
    with open (json_filename,'r') as f: 
        repeat_freq_dict = json.load(f) 
    repeat_length_list = [] 
    counts_list = [] 
    freq_list = [] 
    count_odd_repeat_sizes = 0 
    total_reads = 0 
    for numrep in repeat_freq_dict.keys(): 
        #print 'repeat',numrep 
        count = repeat_freq_dict[numrep]["Count"] 
        #print 'count',count 
        freq = repeat_freq_dict[numrep]["Frequency"] 
        repeat_length_list.append(int(numrep)) 
        counts_list.append(count) 
        freq_list.append(freq) 
        total_reads += count 
        if numrep not in ['1','2','4','8','16','32','14']: 
            count_odd_repeat_sizes += count 
    odd_repeats_dict[name]['Count'] = count_odd_repeat_sizes 
    odd_repeats_dict[name]['Percent'] = 
float(count_odd_repeat_sizes)/float(total_reads) 
 
 
    counts_list_log = np.log10(counts_list) 
    repeat_counts_list = map(lambda x,y:[x,y],repeat_length_list,counts_list) 
    repeat_counts_list_log = map(lambda 
x,y:[x,y],repeat_length_list,counts_list_log) 
    repeat_counts_list.sort(key=lambda x:x[0]) 
    repeat_counts_list_log.sort(key=lambda x:x[0]) 
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    xvals = map(lambda x:x[0],repeat_counts_list) 
    yvals = map(lambda x:x[1],repeat_counts_list) 
 
    [fig,ax] = plt.subplots() 
    ind = np.arange(0,len(repeat_length_list)) 
    width = 0.5 
    c = colors.cnames[epcolor[i-1]] 
    plt.bar(ind,yvals,width,color=c) 
    ax.set_xticks(ind+width/2) 
    ax.set_xticklabels(xvals) 
    plt.title(name,fontsize=16) 
    plt.xlabel('Repeat length') 
    plt.ylabel('Count') 
    plt.tight_layout() 
    plt.savefig('Repeat counts CMYC only '+name) 
    i = i+1 
#plt.show() 
 
with open('Pacbio odd repeats.txt','w') as f: 
    
f.write(json.dumps(odd_repeats_dict,sort_keys=True,indent=4,separators=(',', 
':'))) 
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BARCODE SMRT LIBRARY DATA 

Table C.1: Individually constructed barcodes  

 
 

HA HSV HIS AU1 GLU FLAG Barcode Name
Date 

Constructed Constructed By
0 0 0 0 0 0 pBC1 Joe Reynolds
1 0 0 0 0 0 1HA 1/14/13 Seth Ritter
2 0 0 0 0 0 2HA 1/16/13 Seth Ritter
4 0 0 0 0 0 4HA 1/21/13 Seth Ritter
8 0 0 0 0 0 8HA 4/8/13 Seth Ritter
16 0 0 0 0 0 16HA 3/19/13 Seth Ritter
32 0 0 0 0 0 32HA 12/3/13 Stefanie Berges
0 0 1 0 0 0 1HIS 1/22/13 Seth Ritter
0 0 2 0 0 0 2HIS 4/21/13 Stefanie Berges
0 0 4 0 0 0 4HIS 5/15/13 Stefanie Berges
0 0 8 0 0 0 8HIS 6/5/13 Stefanie Berges
0 0 16 0 0 0 16HIS 6/11/13 Stefanie Berges
0 0 16 0 0 0 16HIS 10/24/14 Quentin Dubroff
2 0 1 0 0 0 2HA1HIS 5/22/13 Stefanie Berges
2 0 4 0 0 0 2HA4HIS 5/31/13 Stefanie Berges
2 0 8 0 0 0 2HA8HIS 6/11/13 Stefanie Berges
8 0 1 0 0 0 8HA1HIS 5/22/13 Stefanie Berges
8 0 4 0 0 0 8HA4HIS 6/5/13 Stefanie Berges
8 0 8 0 0 0 8HA8HIS 6/11/13 Stefanie Berges
0 0 0 1 0 0 1AU1 7/25/13 Seth Ritter
0 0 0 2 0 0 2AU1 9/13/13 Seth Ritter
0 0 0 4 0 0 4AU1 9/25/13 Stefanie Berges
0 0 0 8 0 0 8AU1 11/11/13 Stefanie Berges
0 0 0 16 0 0 16AU1 11/11/13 Stefanie Berges
0 0 0 32 0 0 32AU1 12/4/13 Stefanie Berges
0 0 0 0 1 0 1GluGlu 7/25/13 Seth Ritter
0 0 0 0 2 0 2GluGlu 9/25/13 Stefanie Berges
0 0 0 0 4 0 4GluGlu 9/29/13 Seth Ritter
0 0 0 0 8 0 8GluGlu 10/21/13 Seth Ritter
0 0 0 0 16 0 16GluGlu 10/24/13 Stefanie Berges
0 0 0 0 32 0 32GluGlu 11/11/13 Stefanie Berges
0 0 0 0 64 0 64GluGlu 12/4/13 Stefanie Berges
0 1 0 0 0 0 1HSV 10/21/13 Stefanie Berges
0 2 0 0 0 0 2HSV 10/24/13 Stefanie Berges
0 4 0 0 0 0 4HSV 10/25/13 Stefanie Berges
0 8 0 0 0 0 8HSV 11/8/13 Stefanie Berges
0 16 0 0 0 0 16HSV 12/3/13 Stefanie Berges
0 0 0 0 0 1 1FLAG 7/25/13 Seth Ritter
0 0 0 0 0 2 2FLAG 9/25/13 Stefanie Berges
0 0 0 0 0 4 4FLAG 10/8/13 Stefanie Berges
0 0 0 0 0 8 8FLAG 10/18/13 Stefanie Berges
0 0 0 0 0 16 16FLAG 11/7/13 Stefanie Berges
0 0 0 0 0 32 32FLAG 12/3/13 Stefanie Berges
1 0 4 0 0 0 1HA4HIS 1/16/14 Stefanie Berges
4 0 4 0 0 0 4HA4HIS 1/16/14 Stefanie Berges
16 0 4 0 0 0 16HA4HIS 1/19/14 Stefanie Berges
1 0 0 1 0 0 1HA1AU1 1/13/14 Stefanie Berges
4 0 0 1 0 0 4HA1AU1 1/13/14 Stefanie Berges
16 0 0 1 0 0 16HA1AU1 8/25/14 Stefanie Berges
16 0 0 1 0 0 16HA1AU1 1/13/14 Stefanie Berges
16 0 0 4 0 0 16HA4AU1 5/23/14 Quentin Dubroff
16 0 0 8 0 0 16HA8AU1 9/9/14 Quentin Dubroff
16 0 0 8 0 0 16HA8AU1 4/22/14 Quentin Dubroff
16 0 0 16 0 0 16HA16AU1 11/6/14 Stefanie Berges
16 0 0 16 0 0 16HA16AU1 5/6/14 Quentin Dubroff
0 0 4 1 0 0 4HIS1AU1 1/16/14 Stefanie Berges
0 0 4 4 0 0 4HIS4AU1 2/7/14 Stefanie Berges
0 0 4 8 0 0 4HIS8AU1 5/13/14 Quentin Dubroff
0 0 4 16 0 0 4HIS16AU1 9/9/14 Quentin Dubroff
0 0 4 16 0 0 4HIS16AU1 4/23/14 Quentin Dubroff

Appendix C 
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1 0 0 4 0 0 1HA4AU1 2/7/14 Stefanie Berges
1 0 0 8 0 0 1HA8AU1 3/6/14 Quentin Dubroff
1 0 0 16 0 0 1HA16AU1 10/14/14 Quentin Dubroff
4 0 0 4 0 0 4HA4AU1 2/11/14 Stefanie Berges
4 0 0 8 0 0 4HA8AU1 2/7/14 Stefanie Berges
4 0 0 16 0 0 4HA16AU1 8/25/14 Stefanie Berges
4 0 0 16 0 0 4HA16AU1 4/18/14 Quentin Dubroff
1 0 4 1 0 0 1HA4HIS1AU1 1/29/14 Quentin Dubroff
4 0 4 1 0 0 4HA4HIS1AU1 1/19/14 Stefanie Berges
16 0 4 1 0 0 16HA4HIS1AU1 7/15/14 Quentin Dubroff
16 0 4 1 0 0 16HA4HIS1AU1 1/29/14 Quentin Dubroff
16 0 4 1 0 0 16HA4HIS1AU1 9/2/14 Stefanie Berges
1 0 4 4 0 0 1HA4HIS4AU1 2/7/14 Stefanie Berges
4 0 4 4 0 0 4HA4HIS4AU1 2/7/14 Stefanie Berges
16 0 4 4 0 0 16HA4HIS4AU1 10/14/14 Quentin Dubroff
16 0 4 4 0 0 16HA4HIS4AU1 2/7/14 Stefanie Berges
1 0 4 8 0 0 1HA4HIS8AU1 3/18/14 Quentin Dubroff
1 0 4 16 0 0 1HA4HIS16AU1 8/25/14 Stefanie Berges
1 0 4 16 0 0 1HA4HIS16AU1 3/18/14 Quentin Dubroff
4 0 4 8 0 0 4HA4HIS8AU1 7/30/14 Quentin Dubroff
4 0 4 16 0 0 4HA4HIS16AU1 10/14/14 Quentin Dubroff
4 0 4 16 0 0 4HA4HIS16AU1 4/23/14 Quentin Dubroff
16 0 4 8 0 0 16HA4HIS8AU1 9/9/14 Quentin Dubroff
16 0 4 16 0 0 16HA4HIS16AU1 10/14/14 Quentin Dubroff
1 0 4 1 1 0 1HA4HIS1AU11GluGlu 6/26/14 Quentin Dubroff
0 0 0 8 1 0 8AU11GluGlu 6/26/14 Quentin Dubroff
0 0 4 0 1 0 4HIS1GluGlu 6/26/14 Quentin Dubroff
1 0 0 8 1 0 1HA8AU11GluGlu 6/26/14 Quentin Dubroff
0 0 4 1 1 0 4HIS1AU11GluGlu 6/26/14 Quentin Dubroff
1 0 4 0 1 0 1HA4HIS1GluGlu 6/26/14 Quentin Dubroff
4 0 4 4 1 0 4HA4HIS4AU11GluGlu 10/10/14 Quentin Dubroff
1 0 4 4 1 0 1HA4HIS4AU11GluGlu 10/10/14 Quentin Dubroff
0 0 0 1 1 0 1AU11GluGlu 10/10/14 Quentin Dubroff
0 0 0 1 16 0 1AU116GluGlu 11/20/14 Quentin Dubroff
0 0 0 4 1 0 4AU11GluGlu 6/26/14 Quentin Dubroff
0 0 0 4 16 0 4AU116GluGlu 11/20/14 Quentin Dubroff
0 0 0 16 1 0 16AU11GluGlu 12/19/14 Stefanie Berges
0 0 0 16 16 0 16AU116GluGlu 11/20/14 Quentin Dubroff
1 0 0 0 1 0 1HA1GluGlu 6/26/14 Quentin Dubroff
1 0 0 0 16 0 1HA16GluGlu 11/20/14 Quentin Dubroff
4 0 0 0 1 0 4HA1GluGlu 10/10/14 Quentin Dubroff
4 0 0 0 16 0 4HA16GluGlu 11/20/14 Quentin Dubroff
16 0 0 0 1 0 16HA1GluGlu 11/20/14 Quentin Dubroff
16 0 0 0 16 0 16HA16GluGlu 12/19/14 Stefanie Berges
1 0 0 1 1 0 1HA1AU11GluGlu 10/10/14 Quentin Dubroff
1 0 0 1 16 0 1HA1AU116GluGlu 11/20/14 Quentin Dubroff
1 0 0 4 1 0 1HA4AU11GluGlu 6/26/14 Quentin Dubroff
1 0 0 4 16 0 1HA4AU116GluGlu 11/20/14 Quentin Dubroff
1 0 0 16 1 0 1HA16AU11GluGlu 11/20/14 Quentin Dubroff
1 0 0 16 16 0 1HA16AU116GluGlu 11/20/14 Quentin Dubroff
4 0 0 1 1 0 4HA1AU11GluGlu 11/20/14 Quentin Dubroff
4 0 0 1 16 0 4HA1AU116GluGlu 11/20/14 Quentin Dubroff
4 0 0 4 1 0 4HA4AU11GluGlu 11/20/14 Quentin Dubroff
4 0 0 4 16 0 4HA4AU116GluGlu 11/20/14 Quentin Dubroff
4 0 0 16 1 0 4HA16AU11GluGlu 11/20/14 Quentin Dubroff
4 0 0 16 16 0 4HA16AU116GluGlu 12/19/14 Stefanie Berges
16 0 0 1 1 0 16HA1AU11GluGlu 11/20/14 Quentin Dubroff
16 0 0 1 16 0 16HA1AU116GluGlu 11/20/14 Quentin Dubroff
16 0 0 4 1 0 16HA4AU11GluGlu 10/10/14 Quentin Dubroff
16 0 0 4 16 0 16HA4AU116GluGlu 12/19/14 Stefanie Berges
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Table C.2: Abundance of SMRT reads with nonstandard repeat lengths  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Epitope Count Percent
AU1 170 0.26
FLAG 13 0.45
GLU 153 0.38
HA 108 0.14
HIS 31 0.11
HSV 29 0.48
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Table C.3: Unique barcodes found in SMRT sample 

 

Barcode	ID #	CCS	Reads Barcode	ID	 #	CCS	Reads Barcode	ID	 #	CCS	Reads Barcode	ID	 #	CCS	Reads
4-0-0-0-14-0 328 16-0-4-16-0-0 11 0-0-0-0-0-1 4 0-0-0-0-0-31 2
1-0-0-2-14-0 319 4-0-0-1-12-0 11 1-0-0-17-1-0 4 4-0-0-6-0-0 2
0-16-0-0-0-0 283 4-0-4-0-0-0 11 0-13-0-0-0-0 4 13-0-0-9-0-0 2
4-0-0-1-14-0 244 16-0-0-5-0-0 11 4-0-0-0-15-0 4 8-0-4-1-0-0 2
1-0-0-4-14-0 193 16-0-0-0-14-0 11 15-0-0-17-1-0 4 12-0-0-0-0-0 2
8-0-8-0-0-0 191 0-0-4-9-0-0 11 0-0-0-6-14-0 4 1-0-0-3-0-0 2
4-0-4-8-0-0 172 0-0-0-0-0-15 11 1-0-0-0-13-0 4 0-0-0-25-0-0 2
16-0-0-0-0-0 166 0-0-0-32-0-0 10 0-0-0-0-26-0 4 1-0-0-7-14-0 2
1-0-0-16-0-0 160 4-0-4-5-1-0 10 14-0-0-1-0-0 4 1-0-0-26-0-0 2
0-0-0-4-14-0 158 1-0-0-0-0-0 10 0-0-0-2-14-0 4 15-0-0-9-0-0 2
1-0-0-1-14-0 141 4-0-0-15-0-0 10 0-0-0-0-21-0 4 0-0-0-8-14-0 2
0-0-0-16-1-0 137 2-0-4-0-0-0 10 15-0-0-4-1-0 4 11-0-3-1-1-0 2
13-0-3-0-1-0 137 0-12-0-0-0-0 10 3-0-2-9-0-0 4 16-0-4-7-0-0 2
0-0-0-16-0-0 133 0-0-1-0-0-0 10 16-0-0-18-1-0 4 13-0-0-4-0-0 2
1-0-0-16-1-0 130 0-4-0-0-0-0 10 16-0-0-6-0-0 4 10-0-4-4-0-0 2
1-0-0-16-14-0 124 4-0-0-0-0-0 10 1-0-0-1-11-0 4 2-0-0-1-0-0 2
16-0-0-1-0-0 116 0-0-0-1-1-0 9 0-0-0-0-27-0 4 15-0-0-6-0-0 2
16-0-0-1-1-0 116 1-0-0-1-9-0 9 1-0-0-14-13-0 4 3-0-3-7-0-0 2
0-0-16-0-0-0 109 4-0-0-0-12-0 9 16-0-0-6-1-0 4 14-0-0-2-0-0 2
4-0-4-16-0-0 104 0-0-0-0-2-0 9 0-0-4-12-0-0 4 0-0-0-13-0-0 2
0-0-0-0-0-16 102 1-0-0-1-1-0 9 15-0-4-8-0-0 4 16-0-4-10-0-0 2
0-0-4-16-0-0 94 16-0-0-3-0-0 9 4-0-0-15-1-0 4 0-0-0-2-10-0 2
4-0-4-4-0-0 87 1-0-0-15-14-0 9 4-0-0-4-1-0 4 11-0-2-0-1-0 2
0-0-0-1-14-0 76 2-0-0-0-0-0 9 1-0-0-4-13-0 4 9-0-0-4-1-0 2
1-0-0-0-12-0 76 15-0-0-8-0-0 9 4-0-0-2-1-0 4 16-0-0-1-14-0 2
16-0-4-0-0-0 72 2-0-8-0-0-0 9 10-0-0-0-0-0 4 15-0-0-6-1-0 2
16-0-4-1-0-0 70 4-0-4-17-0-0 9 0-0-0-5-14-0 4 4-0-0-1-10-0 2
1-0-0-0-14-0 65 16-0-0-5-1-0 9 0-9-0-0-0-0 4 3-0-0-1-12-0 2
0-0-4-8-0-0 64 0-0-0-4-13-0 9 1-0-0-0-11-0 4 0-7-0-0-0-0 2
4-0-0-16-0-0 63 0-0-0-8-1-0 8 2-0-0-4-0-0 4 5-0-0-0-14-0 2
4-0-0-4-14-0 62 2-0-1-0-0-0 8 7-0-4-0-0-0 3 9-0-0-4-0-0 2
16-0-0-4-1-0 60 4-0-4-7-0-0 8 0-0-4-6-0-0 3 4-0-4-14-0-0 2
16-0-0-4-0-0 60 0-0-0-14-0-0 8 14-0-4-0-0-0 3 4-0-0-2-12-0 2
0-0-0-0-14-0 59 0-0-0-0-0-32 8 1-0-0-16-13-0 3 0-0-0-0-20-0 2
1-0-4-14-0-0 59 1-0-4-13-0-0 8 4-0-4-12-0-0 3 8-0-5-0-0-0 2
4-0-4-4-1-0 58 1-0-1-0-0-0 8 1-0-0-3-13-0 3 0-0-0-15-13-0 2
8-0-4-0-0-0 58 0-0-15-0-0-0 8 1-0-0-5-14-0 3 0-0-0-31-0-0 2
16-0-0-8-0-0 57 16-0-0-17-1-0 8 12-0-4-1-0-0 3 12-0-3-2-1-0 2
1-0-0-4-1-0 54 1-0-0-1-13-0 8 1-0-0-2-1-0 3 13-0-0-0-0-0 2
1-0-0-4-0-0 54 1-0-4-0-1-0 8 0-0-0-17-0-0 3 4-0-0-17-14-0 2
0-15-0-0-0-0 51 0-0-4-1-1-0 8 1-0-0-14-1-0 3 7-0-3-0-1-0 2
1-0-0-3-14-0 50 4-0-0-4-0-0 8 16-0-4-11-0-0 3 15-0-0-1-14-0 2
16-0-4-4-0-0 45 0-0-0-14-1-0 8 14-0-4-1-0-0 3 7-0-0-2-0-0 2
1-0-4-8-0-0 44 4-0-0-1-1-0 8 1-0-0-13-0-0 3 3-0-0-1-10-0 2
4-0-0-16-1-0 38 4-0-4-5-0-0 8 15-0-0-2-0-0 3 3-0-0-16-0-0 2
4-0-0-8-0-0 33 9-0-0-3-1-0 8 12-0-4-0-0-0 3 1-0-0-4-15-0 2
16-0-4-5-0-0 32 16-0-0-3-1-0 8 13-0-2-0-1-0 3 15-0-0-2-1-0 2
0-0-0-0-28-0 31 4-0-0-1-0-0 8 1-0-0-17-0-0 3 0-0-0-12-0-0 2
8-0-8-1-0-0 30 4-0-0-0-1-0 7 1-0-0-0-10-0 3 3-0-0-4-14-0 2
12-0-3-0-1-0 28 4-0-0-14-0-0 7 0-0-0-0-22-0 3 8-0-4-2-0-0 2
0-8-0-0-0-0 28 4-0-4-9-0-0 7 8-0-1-1-0-0 3 0-0-0-0-17-0 2
0-2-0-0-0-0 27 8-0-7-0-0-0 7 1-0-0-13-14-0 3 4-0-0-2-0-0 2
1-0-0-2-13-0 27 1-0-4-2-1-0 7 4-0-0-12-1-0 3 1-0-0-4-12-0 2
16-0-0-2-0-0 27 15-0-0-4-0-0 7 0-0-0-3-14-0 3 4-0-0-1-9-0 2
0-0-0-0-0-0 26 0-10-0-0-0-0 7 6-0-8-0-0-0 3 0-0-4-7-0-0 2
16-0-4-8-0-0 26 0-0-0-1-13-0 6 0-0-0-13-1-0 3 1-0-0-8-14-0 2
4-0-0-16-14-0 24 11-0-3-0-1-0 6 15-0-0-5-1-0 3 13-0-4-1-0-0 2
13-0-3-1-1-0 22 0-0-0-4-1-0 6 0-0-0-20-0-0 3 0-0-0-9-14-0 2
0-0-0-0-0-4 21 0-0-2-0-0-0 6 1-0-0-15-13-0 3 3-0-0-4-0-0 2
0-0-4-0-0-0 21 14-0-0-1-1-0 6 15-0-4-3-0-0 3 3-0-0-14-0-0 2
4-0-0-2-14-0 21 1-0-0-14-0-0 6 1-0-0-1-12-0 3 4-0-0-14-1-0 2
0-14-0-0-0-0 21 8-0-8-2-0-0 6 10-0-0-4-0-0 3 8-0-0-16-1-0 2
1-0-4-4-0-0 20 1-0-0-5-0-0 6 12-0-0-1-1-0 3 0-0-0-5-19-0 1
16-0-0-2-1-0 20 4-0-4-15-0-0 6 1-0-0-12-1-0 3 0-0-0-0-16-0 1
0-0-0-0-4-0 20 4-0-0-9-0-0 6 16-0-0-0-1-0 3 16-0-0-14-0-0 1
1-0-4-4-1-0 18 4-0-4-6-0-0 6 13-0-0-1-1-0 3 2-0-0-0-24-0 1
4-0-0-0-13-0 18 0-0-4-4-0-0 6 0-0-14-0-0-0 3 2-0-0-4-28-0 1
16-0-0-9-0-0 18 0-0-0-0-0-14 6 12-0-0-4-1-0 3 4-0-0-1-18-0 1
0-0-8-0-0-0 18 0-0-0-8-0-0 6 2-0-0-0-14-0 3 12-0-2-0-1-0 1
1-0-4-1-0-0 18 7-0-8-0-0-0 6 14-0-0-3-0-0 3 2-0-6-0-0-0 1
1-0-0-15-0-0 18 8-0-0-0-0-0 5 14-0-0-4-1-0 3 13-0-0-16-1-0 1
1-0-0-15-1-0 18 15-0-4-0-0-0 5 0-0-4-13-0-0 3 4-0-0-1-7-0 1
1-0-0-8-0-0 18 0-0-0-10-0-0 5 0-0-4-10-0-0 3 4-0-0-5-12-0 1
15-0-4-1-0-0 17 1-0-0-3-1-0 5 16-0-0-11-0-0 3 6-0-6-1-0-0 1
0-0-4-15-0-0 17 14-0-0-0-0-0 5 16-0-4-6-0-0 2 1-0-0-16-10-0 1
1-0-0-2-12-0 16 0-0-0-0-0-8 5 15-0-0-3-0-0 2 14-0-3-1-1-0 1
0-0-0-15-1-0 16 4-0-0-17-0-0 5 4-0-3-7-0-0 2 1-0-0-11-8-0 1
0-0-4-14-0-0 16 0-0-0-0-7-0 5 1-0-0-4-10-0 2 5-0-4-15-0-0 1
3-0-0-0-0-0 16 1-0-0-6-14-0 5 1-0-0-15-12-0 2 3-0-4-4-1-0 1
4-0-4-1-0-0 16 1-0-0-11-14-0 5 1-0-4-15-0-0 2 8-0-0-1-14-0 1
16-0-0-16-1-0 16 15-0-0-5-0-0 5 4-0-0-7-0-0 2 6-0-0-6-0-0 1
0-1-0-0-0-0 15 0-0-0-1-0-0 5 13-0-0-8-0-0 2 3-0-4-11-0-0 1
0-0-0-0-1-0 15 13-0-3-2-1-0 5 4-0-0-17-1-0 2 2-0-0-3-0-0 1
16-0-4-2-0-0 15 1-0-4-0-0-0 5 1-0-4-9-0-0 2 0-0-0-10-9-0 1
8-0-1-0-0-0 15 1-0-0-14-14-0 5 10-0-3-0-1-0 2 14-0-3-0-0-0 1
0-0-0-4-0-0 14 12-0-3-1-1-0 5 0-0-0-4-11-0 2 8-0-0-3-28-0 1
0-0-0-15-14-0 14 15-0-0-1-1-0 5 0-3-0-0-0-0 2 6-0-0-1-0-0 1
15-0-0-0-0-0 14 16-0-0-10-0-0 5 11-0-4-0-0-0 2 5-0-0-15-1-0 1
0-0-0-15-0-0 13 15-0-4-4-0-0 5 4-0-0-6-1-0 2 0-6-0-0-0-0 1
4-0-0-1-13-0 13 14-0-0-4-0-0 5 0-0-0-0-19-0 2 24-0-0-2-2-0 1
0-0-0-0-0-2 13 16-0-4-3-0-0 5 1-0-0-0-8-0 2 17-0-7-14-1-0 1
1-0-0-1-0-0 13 4-0-0-5-14-0 5 0-0-0-11-0-0 2 1-0-0-17-14-0 1
15-0-0-1-0-0 13 0-0-4-0-1-0 5 4-0-0-15-14-0 2 1-0-0-2-11-0 1
1-0-0-8-1-0 13 15-0-4-2-0-0 5 4-0-4-3-0-0 2 0-0-0-3-11-0 1
16-0-0-4-14-0 12 1-0-0-3-12-0 4 14-0-4-5-0-0 2 1-0-0-2-0-0 1
0-0-0-2-0-0 12 1-0-0-9-14-0 4 1-0-0-2-10-0 2 1-0-4-3-0-0 1
0-11-0-0-0-0 12 1-0-0-3-11-0 4 7-0-7-0-0-0 2 6-0-0-0-14-0 1
16-0-4-9-0-0 12 4-0-0-4-13-0 4 6-0-0-1-14-0 2 4-0-3-8-0-0 1
0-0-4-1-0-0 12 16-0-0-2-14-0 4 0-0-0-0-0-5 2 4-0-0-19-1-0 1
1-0-0-11-0-0 1 0-0-0-0-50-0 4 0-0-0-0-0-30 2 0-0-0-10-4-0 1
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Barcode	ID #	CCS	Reads Barcode	ID	 #	CCS	Reads Barcode	ID	 #	CCS	Reads Barcode	ID	 #	CCS	Reads
4-0-0-0-14-0 328 16-0-4-16-0-0 11 0-0-0-0-0-1 4 0-0-0-0-0-31 2
1-0-0-2-14-0 319 4-0-0-1-12-0 11 1-0-0-17-1-0 4 4-0-0-6-0-0 2
0-16-0-0-0-0 283 4-0-4-0-0-0 11 0-13-0-0-0-0 4 13-0-0-9-0-0 2
4-0-0-1-14-0 244 16-0-0-5-0-0 11 4-0-0-0-15-0 4 8-0-4-1-0-0 2
1-0-0-4-14-0 193 16-0-0-0-14-0 11 15-0-0-17-1-0 4 12-0-0-0-0-0 2
8-0-8-0-0-0 191 0-0-4-9-0-0 11 0-0-0-6-14-0 4 1-0-0-3-0-0 2
4-0-4-8-0-0 172 0-0-0-0-0-15 11 1-0-0-0-13-0 4 0-0-0-25-0-0 2
16-0-0-0-0-0 166 0-0-0-32-0-0 10 0-0-0-0-26-0 4 1-0-0-7-14-0 2
1-0-0-16-0-0 160 4-0-4-5-1-0 10 14-0-0-1-0-0 4 1-0-0-26-0-0 2
0-0-0-4-14-0 158 1-0-0-0-0-0 10 0-0-0-2-14-0 4 15-0-0-9-0-0 2
1-0-0-1-14-0 141 4-0-0-15-0-0 10 0-0-0-0-21-0 4 0-0-0-8-14-0 2
0-0-0-16-1-0 137 2-0-4-0-0-0 10 15-0-0-4-1-0 4 11-0-3-1-1-0 2
13-0-3-0-1-0 137 0-12-0-0-0-0 10 3-0-2-9-0-0 4 16-0-4-7-0-0 2
0-0-0-16-0-0 133 0-0-1-0-0-0 10 16-0-0-18-1-0 4 13-0-0-4-0-0 2
1-0-0-16-1-0 130 0-4-0-0-0-0 10 16-0-0-6-0-0 4 10-0-4-4-0-0 2
1-0-0-16-14-0 124 4-0-0-0-0-0 10 1-0-0-1-11-0 4 2-0-0-1-0-0 2
16-0-0-1-0-0 116 0-0-0-1-1-0 9 0-0-0-0-27-0 4 15-0-0-6-0-0 2
16-0-0-1-1-0 116 1-0-0-1-9-0 9 1-0-0-14-13-0 4 3-0-3-7-0-0 2
0-0-16-0-0-0 109 4-0-0-0-12-0 9 16-0-0-6-1-0 4 14-0-0-2-0-0 2
4-0-4-16-0-0 104 0-0-0-0-2-0 9 0-0-4-12-0-0 4 0-0-0-13-0-0 2
0-0-0-0-0-16 102 1-0-0-1-1-0 9 15-0-4-8-0-0 4 16-0-4-10-0-0 2
0-0-4-16-0-0 94 16-0-0-3-0-0 9 4-0-0-15-1-0 4 0-0-0-2-10-0 2
4-0-4-4-0-0 87 1-0-0-15-14-0 9 4-0-0-4-1-0 4 11-0-2-0-1-0 2
0-0-0-1-14-0 76 2-0-0-0-0-0 9 1-0-0-4-13-0 4 9-0-0-4-1-0 2
1-0-0-0-12-0 76 15-0-0-8-0-0 9 4-0-0-2-1-0 4 16-0-0-1-14-0 2
16-0-4-0-0-0 72 2-0-8-0-0-0 9 10-0-0-0-0-0 4 15-0-0-6-1-0 2
16-0-4-1-0-0 70 4-0-4-17-0-0 9 0-0-0-5-14-0 4 4-0-0-1-10-0 2
1-0-0-0-14-0 65 16-0-0-5-1-0 9 0-9-0-0-0-0 4 3-0-0-1-12-0 2
0-0-4-8-0-0 64 0-0-0-4-13-0 9 1-0-0-0-11-0 4 0-7-0-0-0-0 2
4-0-0-16-0-0 63 0-0-0-8-1-0 8 2-0-0-4-0-0 4 5-0-0-0-14-0 2
4-0-0-4-14-0 62 2-0-1-0-0-0 8 7-0-4-0-0-0 3 9-0-0-4-0-0 2
16-0-0-4-1-0 60 4-0-4-7-0-0 8 0-0-4-6-0-0 3 4-0-4-14-0-0 2
16-0-0-4-0-0 60 0-0-0-14-0-0 8 14-0-4-0-0-0 3 4-0-0-2-12-0 2
0-0-0-0-14-0 59 0-0-0-0-0-32 8 1-0-0-16-13-0 3 0-0-0-0-20-0 2
1-0-4-14-0-0 59 1-0-4-13-0-0 8 4-0-4-12-0-0 3 8-0-5-0-0-0 2
4-0-4-4-1-0 58 1-0-1-0-0-0 8 1-0-0-3-13-0 3 0-0-0-15-13-0 2
8-0-4-0-0-0 58 0-0-15-0-0-0 8 1-0-0-5-14-0 3 0-0-0-31-0-0 2
16-0-0-8-0-0 57 16-0-0-17-1-0 8 12-0-4-1-0-0 3 12-0-3-2-1-0 2
1-0-0-4-1-0 54 1-0-0-1-13-0 8 1-0-0-2-1-0 3 13-0-0-0-0-0 2
1-0-0-4-0-0 54 1-0-4-0-1-0 8 0-0-0-17-0-0 3 4-0-0-17-14-0 2
0-15-0-0-0-0 51 0-0-4-1-1-0 8 1-0-0-14-1-0 3 7-0-3-0-1-0 2
1-0-0-3-14-0 50 4-0-0-4-0-0 8 16-0-4-11-0-0 3 15-0-0-1-14-0 2
16-0-4-4-0-0 45 0-0-0-14-1-0 8 14-0-4-1-0-0 3 7-0-0-2-0-0 2
1-0-4-8-0-0 44 4-0-0-1-1-0 8 1-0-0-13-0-0 3 3-0-0-1-10-0 2
4-0-0-16-1-0 38 4-0-4-5-0-0 8 15-0-0-2-0-0 3 3-0-0-16-0-0 2
4-0-0-8-0-0 33 9-0-0-3-1-0 8 12-0-4-0-0-0 3 1-0-0-4-15-0 2
16-0-4-5-0-0 32 16-0-0-3-1-0 8 13-0-2-0-1-0 3 15-0-0-2-1-0 2
0-0-0-0-28-0 31 4-0-0-1-0-0 8 1-0-0-17-0-0 3 0-0-0-12-0-0 2
8-0-8-1-0-0 30 4-0-0-0-1-0 7 1-0-0-0-10-0 3 3-0-0-4-14-0 2
12-0-3-0-1-0 28 4-0-0-14-0-0 7 0-0-0-0-22-0 3 8-0-4-2-0-0 2
0-8-0-0-0-0 28 4-0-4-9-0-0 7 8-0-1-1-0-0 3 0-0-0-0-17-0 2
0-2-0-0-0-0 27 8-0-7-0-0-0 7 1-0-0-13-14-0 3 4-0-0-2-0-0 2
1-0-0-2-13-0 27 1-0-4-2-1-0 7 4-0-0-12-1-0 3 1-0-0-4-12-0 2
16-0-0-2-0-0 27 15-0-0-4-0-0 7 0-0-0-3-14-0 3 4-0-0-1-9-0 2
0-0-0-0-0-0 26 0-10-0-0-0-0 7 6-0-8-0-0-0 3 0-0-4-7-0-0 2
16-0-4-8-0-0 26 0-0-0-1-13-0 6 0-0-0-13-1-0 3 1-0-0-8-14-0 2
4-0-0-16-14-0 24 11-0-3-0-1-0 6 15-0-0-5-1-0 3 13-0-4-1-0-0 2
13-0-3-1-1-0 22 0-0-0-4-1-0 6 0-0-0-20-0-0 3 0-0-0-9-14-0 2
0-0-0-0-0-4 21 0-0-2-0-0-0 6 1-0-0-15-13-0 3 3-0-0-4-0-0 2
0-0-4-0-0-0 21 14-0-0-1-1-0 6 15-0-4-3-0-0 3 3-0-0-14-0-0 2
4-0-0-2-14-0 21 1-0-0-14-0-0 6 1-0-0-1-12-0 3 4-0-0-14-1-0 2
0-14-0-0-0-0 21 8-0-8-2-0-0 6 10-0-0-4-0-0 3 8-0-0-16-1-0 2
1-0-4-4-0-0 20 1-0-0-5-0-0 6 12-0-0-1-1-0 3 0-0-0-5-19-0 1
16-0-0-2-1-0 20 4-0-4-15-0-0 6 1-0-0-12-1-0 3 0-0-0-0-16-0 1
0-0-0-0-4-0 20 4-0-0-9-0-0 6 16-0-0-0-1-0 3 16-0-0-14-0-0 1
1-0-4-4-1-0 18 4-0-4-6-0-0 6 13-0-0-1-1-0 3 2-0-0-0-24-0 1
4-0-0-0-13-0 18 0-0-4-4-0-0 6 0-0-14-0-0-0 3 2-0-0-4-28-0 1
16-0-0-9-0-0 18 0-0-0-0-0-14 6 12-0-0-4-1-0 3 4-0-0-1-18-0 1
0-0-8-0-0-0 18 0-0-0-8-0-0 6 2-0-0-0-14-0 3 12-0-2-0-1-0 1
1-0-4-1-0-0 18 7-0-8-0-0-0 6 14-0-0-3-0-0 3 2-0-6-0-0-0 1
1-0-0-15-0-0 18 8-0-0-0-0-0 5 14-0-0-4-1-0 3 13-0-0-16-1-0 1
1-0-0-15-1-0 18 15-0-4-0-0-0 5 0-0-4-13-0-0 3 4-0-0-1-7-0 1
1-0-0-8-0-0 18 0-0-0-10-0-0 5 0-0-4-10-0-0 3 4-0-0-5-12-0 1
15-0-4-1-0-0 17 1-0-0-3-1-0 5 16-0-0-11-0-0 3 6-0-6-1-0-0 1
0-0-4-15-0-0 17 14-0-0-0-0-0 5 16-0-4-6-0-0 2 1-0-0-16-10-0 1
1-0-0-2-12-0 16 0-0-0-0-0-8 5 15-0-0-3-0-0 2 14-0-3-1-1-0 1
0-0-0-15-1-0 16 4-0-0-17-0-0 5 4-0-3-7-0-0 2 1-0-0-11-8-0 1
0-0-4-14-0-0 16 0-0-0-0-7-0 5 1-0-0-4-10-0 2 5-0-4-15-0-0 1
3-0-0-0-0-0 16 1-0-0-6-14-0 5 1-0-0-15-12-0 2 3-0-4-4-1-0 1
4-0-4-1-0-0 16 1-0-0-11-14-0 5 1-0-4-15-0-0 2 8-0-0-1-14-0 1
16-0-0-16-1-0 16 15-0-0-5-0-0 5 4-0-0-7-0-0 2 6-0-0-6-0-0 1
0-1-0-0-0-0 15 0-0-0-1-0-0 5 13-0-0-8-0-0 2 3-0-4-11-0-0 1
0-0-0-0-1-0 15 13-0-3-2-1-0 5 4-0-0-17-1-0 2 2-0-0-3-0-0 1
16-0-4-2-0-0 15 1-0-4-0-0-0 5 1-0-4-9-0-0 2 0-0-0-10-9-0 1
8-0-1-0-0-0 15 1-0-0-14-14-0 5 10-0-3-0-1-0 2 14-0-3-0-0-0 1
0-0-0-4-0-0 14 12-0-3-1-1-0 5 0-0-0-4-11-0 2 8-0-0-3-28-0 1
0-0-0-15-14-0 14 15-0-0-1-1-0 5 0-3-0-0-0-0 2 6-0-0-1-0-0 1
15-0-0-0-0-0 14 16-0-0-10-0-0 5 11-0-4-0-0-0 2 5-0-0-15-1-0 1
0-0-0-15-0-0 13 15-0-4-4-0-0 5 4-0-0-6-1-0 2 0-6-0-0-0-0 1
4-0-0-1-13-0 13 14-0-0-4-0-0 5 0-0-0-0-19-0 2 24-0-0-2-2-0 1
0-0-0-0-0-2 13 16-0-4-3-0-0 5 1-0-0-0-8-0 2 17-0-7-14-1-0 1
1-0-0-1-0-0 13 4-0-0-5-14-0 5 0-0-0-11-0-0 2 1-0-0-17-14-0 1
15-0-0-1-0-0 13 0-0-4-0-1-0 5 4-0-0-15-14-0 2 1-0-0-2-11-0 1
1-0-0-8-1-0 13 15-0-4-2-0-0 5 4-0-4-3-0-0 2 0-0-0-3-11-0 1
16-0-0-4-14-0 12 1-0-0-3-12-0 4 14-0-4-5-0-0 2 1-0-0-2-0-0 1
0-0-0-2-0-0 12 1-0-0-9-14-0 4 1-0-0-2-10-0 2 1-0-4-3-0-0 1
0-11-0-0-0-0 12 1-0-0-3-11-0 4 7-0-7-0-0-0 2 6-0-0-0-14-0 1
16-0-4-9-0-0 12 4-0-0-4-13-0 4 6-0-0-1-14-0 2 4-0-3-8-0-0 1
0-0-4-1-0-0 12 16-0-0-2-14-0 4 0-0-0-0-0-5 2 4-0-0-19-1-0 1
1-0-0-11-0-0 1 0-0-0-0-50-0 4 0-0-0-0-0-30 2 0-0-0-10-4-0 1
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SINGLE-CELL DETECTION AND QUANTIFICATION OF ENDOGENOUS 
LOW ABUNDANCE REPEAT PROTEINS IN YEAST USING FLOW 

CYTOMETRY 

 

Figure D.1: 16FLAG fusions enable detection of low abundance endogenous proteins 
by confocal fluorescence microscopy. Fluorescent confocal images of 
yeast cells taken with a 63x oil lens. Protein expression and localization 
is shown in pink and the nucleus is shown in green.  
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Figure D.2: Expression of GFP with or without FLAG fusion. GFP signal was 
measured by flow cytometry for surface-displayed alpha-agglutinin GFP 
fusion proteins also expressing 0, 1, or 16 FLAG repeats. GFP signal did 
not decrease significantly when FLAG fusions were added, suggesting 
FLAG fusions do not alter protein expression levels.  
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Figure D.3: Detection of a highly expressed endogenous yeast protein by FLAG or 
GFP fusion. The THD3 protein was detected in yeast using flow 
cytometry by fusion to either 16FLAG or a GFP, showing a low rate of 
false negatives and false positives with either detection method.  
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Figure D.4: Conversion of GFP and 16FLAG signals from arbitrary fluorescence units 
to protein abundance. (a) recGFP purity was estimated to be 90% by 
Coomassie stain. (b) Western blot of TDH3-GFP whole cell lysate and a 
standard curve of purified recGFP. (c) Quantification of (b) estimates the 
abundance of TDH3-GFP as 2.7 million molecules per cell. A 
relationship between median arbitrary GFP fluorescence and GFP protein 
abundance was determined by linear regression (GFP molecules per 
cell*106 = 8.81*Median GFP fluorescence – 6,741. (d) A relationship 
between molecules per cell and median 16FLAG signal was determined 
by immunolabeling cells expressing a GFP and 16FLAG AG⍺1 fusion 
protein. The relationship between molecules per cell and 16FLAG signal 
was related by linear regression to be 1.41*16FLAG signal – 199.63.  
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Figure D.5: Quantification of protein abundance. Protein abundance was quantified by 
relating protein expression detected by flow cytometry and Western 
blotting. Our results agree somewhat with previous reports (R2 = 0.24).   
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ASSESSMENT OF RELATIVE ABUNDANCE OF BARCODES IN 7-COLOR 
LIBRARIES  

Table E.1: Relative abundance of barcodes in 7-color library before FACS sorting  

  

HA HSV HIS AU1 GLU FLAG %	Abundance HA HSV HIS AU1 GLU FLAG %	Abundance
4 0 0 0 0 0 6.774 0 4 1 1 0 1 0.092
1 0 0 1 1 0 5.478 4 4 1 1 1 0 0.090
0 4 0 0 0 0 5.022 4 0 1 4 0 0 0.087
4 0 0 1 0 1 4.252 0 0 1 1 1 1 0.087
0 0 1 1 0 1 3.868 0 0 0 4 0 1 0.086
4 0 1 0 1 0 3.638 0 1 0 4 0 0 0.085
0 4 0 1 0 1 3.587 1 4 0 4 0 0 0.083
0 4 1 0 1 0 3.548 4 4 0 1 0 1 0.079
0 1 0 0 0 0 2.848 0 1 0 4 1 0 0.076
1 4 1 0 1 0 2.751 1 1 0 1 0 1 0.075
1 4 0 0 0 0 2.718 0 4 1 0 0 0 0.072
1 0 1 1 1 0 2.632 0 1 1 0 0 1 0.071
0 0 0 1 0 0 2.342 1 4 0 0 0 1 0.070
0 0 1 1 1 0 2.191 4 1 1 4 0 0 0.069
0 0 1 1 0 0 2.065 0 0 0 0 1 0 0.068
1 1 0 1 1 0 2.007 1 0 1 0 1 1 0.067
0 0 0 0 0 0 1.761 0 1 0 0 1 0 0.064
0 1 1 1 0 0 1.644 4 4 0 0 0 1 0.064
0 0 0 1 1 0 1.604 4 4 0 0 1 1 0.061
4 1 0 1 0 1 1.456 4 1 1 1 1 0 0.060
0 4 0 0 1 1 1.398 4 4 0 1 0 0 0.059
0 1 1 1 0 1 1.356 0 4 1 4 1 0 0.059
0 0 1 0 1 0 1.353 1 1 1 1 0 1 0.054
4 1 1 0 1 0 1.353 4 4 1 4 0 0 0.046
0 0 1 0 1 1 1.340 4 4 0 1 1 0 0.043
1 0 1 1 0 0 1.319 0 0 1 4 1 1 0.042
0 4 0 0 0 1 1.191 4 1 1 0 1 1 0.041
0 0 1 4 0 0 1.085 4 1 0 1 1 1 0.037
1 4 0 0 1 0 1.055 0 4 0 4 1 1 0.036
0 0 1 0 0 0 0.984 0 4 0 1 1 1 0.036
0 4 0 1 1 0 0.909 1 4 1 1 0 0 0.035
1 0 1 0 1 0 0.884 1 0 1 0 0 1 0.035
0 0 0 1 0 1 0.733 0 1 1 4 1 0 0.035
4 0 1 1 0 1 0.710 1 4 0 1 0 1 0.033
0 1 0 1 0 0 0.646 1 4 1 4 1 0 0.032
1 1 0 0 1 1 0.582 1 4 1 1 1 1 0.032
4 1 1 1 0 0 0.579 4 1 1 0 0 1 0.030
4 1 0 1 0 0 0.566 1 4 1 0 0 1 0.029
0 1 0 1 0 1 0.554 0 4 1 4 1 1 0.028
1 0 0 0 0 0 0.546 4 0 1 0 1 1 0.026
0 1 1 0 0 0 0.540 1 4 1 0 0 0 0.025
1 0 0 1 1 1 0.531 4 0 1 1 1 1 0.024
0 1 0 1 1 0 0.514 1 4 0 4 1 0 0.024
0 0 0 0 0 1 0.512 4 0 0 1 1 1 0.024
0 0 1 4 1 0 0.489 1 1 0 0 0 1 0.024
0 4 1 0 1 1 0.474 0 0 0 4 1 1 0.023
0 0 1 4 0 1 0.457 1 0 1 1 1 1 0.023
1 0 0 0 1 0 0.440 1 1 1 1 1 1 0.023
1 1 1 1 1 0 0.437 4 1 1 1 1 1 0.022
0 1 0 0 1 1 0.436 4 4 0 0 1 0 0.022
0 1 1 0 1 1 0.415 1 1 1 0 1 1 0.022
1 0 0 1 0 1 0.413 4 0 1 0 0 1 0.021
4 0 0 1 0 0 0.392 1 0 1 0 0 0 0.021
4 0 1 1 1 0 0.390 4 1 1 0 0 0 0.021
1 1 1 0 1 0 0.389 1 4 0 1 1 1 0.020

Appendix E 
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1 1 0 0 1 0 0.375 4 0 0 1 1 0 0.020
0 4 1 1 1 1 0.370 0 4 0 4 0 0 0.018
1 1 0 1 0 0 0.355 4 1 0 1 1 0 0.018
0 1 0 0 0 1 0.328 4 1 0 0 0 1 0.017
4 4 0 0 0 0 0.313 0 1 1 4 0 1 0.016
0 4 1 1 1 0 0.309 1 4 1 4 0 0 0.016
1 1 1 1 0 0 0.297 1 1 1 0 0 1 0.015
1 1 0 4 0 0 0.294 1 0 0 4 0 1 0.014
4 4 1 0 1 0 0.285 4 4 1 0 0 1 0.014
0 0 0 1 1 1 0.282 1 0 1 4 0 1 0.013
0 0 0 4 1 0 0.271 4 4 1 1 1 1 0.012
0 1 1 1 1 0 0.270 4 4 1 0 0 0 0.012
0 0 0 0 1 1 0.253 4 0 0 4 0 0 0.011
4 1 1 1 0 1 0.252 1 0 0 4 1 0 0.011
4 1 0 0 1 1 0.237 4 1 0 4 0 0 0.011
0 0 0 4 0 0 0.236 4 4 0 1 1 1 0.011
1 0 0 1 0 0 0.230 1 1 0 4 1 0 0.008
4 0 1 1 0 0 0.229 1 1 1 4 0 0 0.008
1 4 1 0 1 1 0.212 0 1 0 4 1 1 0.008
1 4 0 1 1 0 0.212 4 1 1 4 1 0 0.007
1 4 0 1 0 0 0.207 0 1 1 4 1 1 0.007
0 1 1 0 1 0 0.198 1 4 0 4 0 1 0.007
0 4 1 0 0 1 0.194 1 4 1 1 0 1 0.007
1 4 1 1 1 0 0.187 1 1 1 4 1 0 0.006
4 1 0 0 0 0 0.184 0 4 1 4 0 1 0.006
4 0 0 4 0 1 0.182 1 0 1 4 1 0 0.006
1 0 0 0 0 1 0.169 0 1 0 4 0 1 0.006
4 0 0 0 0 1 0.166 1 1 1 4 0 1 0.004
0 1 1 1 1 1 0.150 1 1 0 4 0 1 0.004
4 4 1 1 0 0 0.144 4 4 0 4 0 0 0.003
1 1 0 0 0 0 0.144 4 1 0 0 1 0 0.003
0 1 1 4 0 0 0.143 4 4 1 4 0 1 0.003
0 0 1 0 0 1 0.143 4 4 1 4 1 0 0.003
0 4 0 0 1 0 0.142 4 4 0 4 1 1 0.003
0 4 0 1 0 0 0.141 1 4 0 4 1 1 0.002
1 0 1 1 0 1 0.139 4 0 1 4 1 0 0.002
4 4 0 4 0 1 0.139 4 1 0 4 1 0 0.002
1 1 1 0 0 0 0.136 4 4 0 4 1 0 0.002
1 1 0 1 1 1 0.135 4 4 1 4 1 1 0.002
4 4 1 1 0 1 0.135 1 4 1 4 1 1 0.002
4 1 0 4 0 1 0.130 4 0 0 0 1 0 0.001
1 0 1 4 0 0 0.129 1 1 1 4 1 1 0.001
4 4 1 0 1 1 0.121 1 0 0 4 1 1 0.001
4 0 1 4 0 1 0.119 1 0 1 4 1 1 0.001
0 4 0 4 1 0 0.118 1 0 0 4 0 0 0.000
0 1 0 1 1 1 0.117 4 0 0 4 1 0 0.000
1 4 0 0 1 1 0.113 1 1 0 4 1 1 0.000
4 0 0 0 1 1 0.112 4 1 0 4 1 1 0.000
0 4 1 1 0 0 0.108 1 4 1 4 0 1 0.000
4 1 1 4 0 1 0.101 4 0 1 4 1 1 0.000
0 4 0 4 0 1 0.096 4 1 1 4 1 1 0.000
0 4 1 4 0 0 0.096 4 0 0 4 1 1 0.000
4 0 1 0 0 0 0.095 1 0 0 0 1 1 0.000
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Table E.2: Relative abundance of barcodes in sorted 7-color libraries  
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ASSESSMENT OF BARCODES IN 12-COLOR LIBRARIES 

 

Figure F.1: Flow cytometry analysis of 11-epitope tag barcode libraries. Flow 
cytometry analysis shows 14 out of 18 libraries had a significant, 25-
50%, of cells expressing barcodes, and that all cells expressing barcodes 
contained the expected combination of T7, V5, AcV5, AU5, and E2 
epitope tags. Moreover, 13 out of 14 libraries contained 85-90% new 
barcode combinations of up to 11 epitope tags.   

Appendix F 
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Figure F.2: CMYC AF647 titration. Control barcodes containing AcV5, AU5, and 
CMYC barcodes were titrated with CMYC antibody and labeled with 
either 100nM AcV5 APC-CY7 or 100nM AU5 AF700 and 35 nM a-
chicken AF647 antibody. It was found that 1-10 nM CMYC antibody 
was optimal for capturing the highest amount of barcodes with the lowest 
percentage of false positives.  
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Table F.1: Antibody concentrations and epitope tag fluorophore pairs used for flow 
cytometry analysis.  

 
 

Epitope Fluorophore Ab (nM)
AcV5 APC-Cy7 100
AU5 AF700 100
AU1 PE-Cy5 100
E2 PE-Cy7 100

FLAG PerCP 100
HA PE 10

HSV PE-Cy5.5 10
T7 PE-TexasRed 100
V5* QD25 100
GLU Marina Blue 100

CMYC** AF647 3

** 35nM anti-chicken AF647 was also used

*35nM anti-human biotin and 10nM streptavidin QD525 
were also used
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BARCODE IDENTIFICATION AND QUANTIFICATION SOFTWARE 
PYTHON SCRIPT 

import numpy as np 
import os 
import matplotlib.pyplot as plt 
from sklearn.cluster import DBSCAN 
import time 
import csv 
import json 
from collections import defaultdict 
from scipy.stats import gaussian_kde 
######################################################################### 
#data structure containing rows, points, and label data. 
class RPLdata: 
    rows = [] 
    points = [] 
    labels = [] 
    rpl = [] 
 
    def __init__(self,r=None,p=None,l=None,rpl=None): 
        self.rp_by_label_dict = defaultdict(list) 
 
        if rpl == None: 
            self.rows = r 
            self.points = p 
            self.labels = l 
            self.rpl = map(lambda x,y,z: [x,y,z], r,p,l) 
            self.load_rp_by_label_dict() 
        elif rpl != None: 
            self.update_rpl(rpl) 
            #self.load_rp_by_label_dict() 
 
 
    #refresh the datastructure with new RPL values 
    def update_rpl(self,new_rpl): 
        self.rpl = new_rpl 
        self.split_rpl() 
        self.load_rp_by_label_dict() 
 
 
    #updates r,p,l  lists from rpl 
    def split_rpl(self): 
        self.rows = [] 
        self.points = [] 
        self.labels = [] 
        for r,p,l in self.rpl: 

Appendix G 
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            self.rows.append(r) 
            self.points.append(p) 
            self.labels.append(l) 
 
 
    #loads a dict with labels as keys and list of row/point#  pairs as values 
    def load_rp_by_label_dict(self): 
        for r,p,l in self.rpl: 
            self.rp_by_label_dict[l].append([r,p]) 
       # print "RPL dict has this many keys, should match 
#clusters:",len(self.rp_by_label_dict.keys()) 
        for k,v in self.rp_by_label_dict.items(): 
        #    print "Keys",k, "Length:", len(v) 
            pass 
 
    #take in new list for the given label. Update RPL, but changes order! 
    def update_rpl_by_label(self,label,list): 
            self.rp_by_label_dict[label] = list 
            self.make_rpl_from_label_dict() 
 
    #add a new cluster to rpl, replace old cluster label 1 
    #middle cluster label becomes 1 and top cluster becomes 2 
    def split_rp_dict_label(self,old_label,rpl): 
        print 'old label to be removed is:',old_label 
        #print 'B4 pop' 
        for k in self.rp_by_label_dict.keys(): 
            pass 
            #print 'key',k 
            #print 'value',len(self.rp_by_label_dict[k]) 
        #print 'After pop' 
        self.rp_by_label_dict.pop(old_label) 
        for k in self.rp_by_label_dict.keys(): 
            pass 
            #print 'key',k 
            #print 'value',len(self.rp_by_label_dict[k]) 
        max = 0 
        max_label = '' 
        for r,p,l in rpl: 
            if l != -1: 
                if p[1] > max: 
                    max = p[1] 
                    max_label = l 
        #print "max_label is:", max_label 
        label_list = [] 
        for r,p,l, in rpl: 
            if l != -1: 
                label_list.append(l) 
        number_unique_labels = len(set(label_list)) 
        print 'number of unique dbscan labels is:',number_unique_labels 
 
        if number_unique_labels == 1: 
            for r,p,l in rpl: 
                if l == max_label: 
                    self.rp_by_label_dict[1].append([r,p]) 
        elif number_unique_labels == 2: 
            for r,p,l in rpl: 
                if l == max_label: 
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                    self.rp_by_label_dict[2].append([r,p]) 
                elif l != -1: 
                    self.rp_by_label_dict[1].append([r,p]) 
        elif number_unique_labels > 2: 
            min_length = 1000000 
            count_dict = defaultdict(int) 
            for r,p,l in rpl: 
                if l != -1: 
                    count_dict[l]+=1 
            for l in count_dict.keys(): 
                if count_dict[l] < min_length: 
                    min_length = count_dict[l] 
                    min_count_label = l 
            print 'minimum count label is:',min_count_label 
            max = 0 
            for r,p,l in rpl: 
                if l not in [-1,min_count_label]: 
                    if p[1] > max: 
                        max = p[1] 
                        max_label = l 
            print 'max label is:',max_label 
            for r,p,l in rpl: 
                if l == max_label: 
                    self.rp_by_label_dict[2].append([r,p]) 
                elif l not in [min_count_label,-1]: 
                    self.rp_by_label_dict[1].append([r,p]) 
 
        self.make_rpl_from_label_dict() 
        for k,v in self.rp_by_label_dict.items(): 
            print "Keys",k, "Length:", len(v) 
 
 
    #ends up sorting by label, but not main goal 
    def make_rpl_from_label_dict(self): 
        self.rpl = [] 
        for label,rp_list in self.rp_by_label_dict.items(): 
            #each dict value is an rp_list pair. Need to make an rpl triple 
            new_l = map(lambda x: [x[0],x[1],label] ,rp_list) 
            self.rpl += new_l 
            #print "Len of rpl is now:", len(self.rpl), len(v) 
        self.split_rpl() 
 
    #returns list of points with given label 
    def get_rp_for_label(self,label): 
        return self.rp_by_label_dict[label] 
 
#############################################################################
########## 
#input data from flowjo columns fluorophores rows fluorescence values for 
each cell 
#output linear, log, and normalized log transformed data with negative values 
set to value near zero cluster 
def transposedata(filename,tagspresent_dict,tfval_dict,start): 
 
    d = np.genfromtxt(filename,delimiter=',',dtype='float',skip_header=1) 
 
    data = np.zeros_like(d) #store data 
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    #transform data if negative to value near zero, also take log10 of 
transformed data 
    for fluor in tagspresent_dict.keys(): 
        print 'fluorophore:',fluor 
        col = tagspresent_dict[fluor][2] #column number that fluor data is 
stored 
        print 'column:',col 
        eptag = tagspresent_dict[fluor][0] #epitope tag name string 
        print 'epitope tag:',eptag 
        tagpresent = tagspresent_dict[fluor][1] #is tag present in data set 
        print 'tag present?',tagpresent 
 
        for row in range(0,len(d)): 
            if eptag in ['FSC','GFP']: 
                #set negative values = 1 for GFP or FSC channels 
                dpoint = d[row,col] 
                if dpoint > 0: 
                    data[row,col] = dpoint 
                elif dpoint <= 0: 
                    data[row,col] = 1 
            else: 
                tfval = tfval_dict[fluor] 
                #print 'transformation value:',tfval 
                dpoint = d[row,col] 
                if dpoint <= 0: #if negative value, set to value that is in 0 
cluster 
                    dpoint_tf = tfval 
                elif dpoint > 0: #values larger than 0 
                    dpoint_tf = dpoint 
                data[row,col] = dpoint_tf 
    log_data = np.log10(data) 
    np.savetxt('log transposed data.csv',log_data,fmt='%f',delimiter=',') 
    #np.savetxt('linear transposed data.csv',data,fmt='%f',delimiter=',') 
 
 
    #find cmyc column 
    for fluor in tagspresent_dict.keys(): 
        eptag = tagspresent_dict[fluor][0] 
        col = tagspresent_dict[fluor][2] 
        if eptag == 'CMYC': 
            cmyccol = col 
    print 'cmyc is in column:',cmyccol 
 
    #normalize epitope fluorescence values (except cmyc, gfp, fsc, by cmyc 
fluor) 
    data_norm = np.zeros_like(d) 
    for fluor in tagspresent_dict.keys(): 
        print 'fluorophore:',fluor 
        col = tagspresent_dict[fluor][2] #column number that fluor data is 
stored 
        print 'column:',col 
        eptag = tagspresent_dict[fluor][0] #epitope tag name string 
        print 'epitope tag:',eptag 
        tagpresent = tagspresent_dict[fluor][1] #is tag present in data set 
        print 'tag present?',tagpresent 
        for row in range(0,len(data_norm)): 
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            datapoint = d 
            if eptag in ['CMYC','FSC','GFP']: #do not normalize 
                data_norm[row,col] = data[row,col] 
            else: #normalize by cmyc fluor 
                data_norm[row,col] = 
float(data[row,col])/float(data[row,cmyccol]) 
    log_norm_data = np.log10(data_norm) 
 
    #np.savetxt('normalized transposed 
data.csv',data_norm,fmt='%f',delimiter=',') 
    np.savetxt('normalized log transposed 
data.csv',log_norm_data,fmt='%f',delimiter=',') 
 
    print 'finished normalizing data' 
    print 'Run time: %s' % str(time.time()-start) 
    print '---' 
    return data 
 
#############################################################################
########################################### 
#input is transformed fluorescence data, performs DBSCAN on subset of data 
for each fluorophore 
#calculates the correct cluster 0 or 1 by computing the minimum fluor in each 
cluster 
#output is dictionary maps epitope to RPL (row, point, label) 
def 
binary_dbscan(norm_data_fname,tagspresent_dict,dbscanparams_dict,binary_dict,
currfluor,plotclusters,file_path_binary,directory): 
    start = time.time() 
 
    data = 
np.genfromtxt(norm_data_fname,delimiter=',',dtype='float',skip_header=1) 
 
    #data = data[0:100000,:] #testing using a subset of data 
    print 'total number of data points is:', len(data) 
 
    #Run DBSCAN for the fluorophore input called currfluor 
    for fluor in tagspresent_dict.keys(): 
        eptag = tagspresent_dict[fluor][0] 
        if eptag == 'CMYC': 
            cmyccol = tagspresent_dict[fluor][2] 
    print 'cmyc is in column:',cmyccol 
 
    epitope = tagspresent_dict[currfluor][0] 
    tagpresent = tagspresent_dict[currfluor][1] 
    colnumber = tagspresent_dict[currfluor][2] 
    print 'Current fluorophore is:', currfluor 
    print 'Epitope is:', epitope 
    print 'Is epitope present?', tagpresent 
    print 'Data stored in column number:', colnumber 
 
    #use a subset of data bc dbscan is slow 
    if len(data) < 100000: 
        samplesize = len(data) 
    else: 
        samplesize = 100000 
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    rows_list = range(0,samplesize) 
 
    #Select data subset for DBSCAN 2-D clustering 
    db_data = np.zeros((samplesize,2)) 
    if 'normalized' in norm_data_fname: 
        db_data[:,0] = data[0:samplesize,colnumber] #epitope tag, x-axis 
        db_data[:,1] = data[0:samplesize,0] #FSC, y-axis 
    else: 
        db_data[:,0] = data[0:samplesize,cmyccol] #cmyc,x-axis 
        db_data[:,1] = data[0:samplesize,colnumber] #epitope tag, y-axis 
 
    if epitope not in ['FSC','GFP','CMYC'] and tagpresent == 'yes': 
 
        #Look up DBSCAN parameters for the current epitope tag 
        searchdist = dbscanparams_dict[epitope][0] 
        minpoints = dbscanparams_dict[epitope][1] 
        print 'DBSCAN max search distance:',searchdist 
        print 'DBSCAN min points:',minpoints 
 
        #Run DBSCAN#### 
        db = 
DBSCAN(eps=searchdist,min_samples=minpoints,algorithm="kd_tree").fit(db_data) 
 
        #create list of labels (0, 1, 2, ect.) for data point (row) #if label 
== -1 is a noise point 
        # number of unique labels == number of clusters 
        labels = db.labels_ 
 
        # Number of clusters in labels, ignoring noise if present 
        n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) 
        print('Number of DBSCAN clusters: %d' % n_clusters_) 
 
        dbscan_labeled_points = map(lambda x,y:[x,y],labels,db_data) 
        #find minimum value in dataset and cooresponding label to find low 
cluster 
        min = 100000 
        min_label = '' 
        for l,p in dbscan_labeled_points: 
            if l != -1: 
                if 'normalized' in norm_data_fname: 
                    if p[0] < min: 
                        min = p[0] 
                        min_label = l 
                else: 
                    if p[1] < min: 
                        min = p[1] 
                        min_label = l 
        print 'min dbscan cluster id is:',min_label 
        if n_clusters_ > 1: 
            #find maximum value and corresponding label 
            max = 0 
            max_label = '' 
            for l,p in dbscan_labeled_points: 
                if l != -1: 
                    if 'normalized' in norm_data_fname: 
                        if p[0] > max: 
                            max = p[0] 
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                            max_label = l 
                    else: 
                        if p[1] > max: 
                            max = p[1] 
                            max_label = l 
            print 'max dbscan cluster id is:',max_label 
        #find mid cluster if clusters == 3 
        if n_clusters_ == 3: 
            unique_labels = set(labels) 
            for l in unique_labels: 
                if l not in [min_label,max_label,'-1',-1]: 
                    mid_label = l 
            print 'mid dbscan cluster id is:',mid_label 
 
        #update labels so that low cluster is 0 and high cluster is 1 
        updated_labels = [] 
        for l,p in dbscan_labeled_points: 
            #print 'old label',l 
            if l != -1: 
                if n_clusters_ <= 2: 
                    if l == min_label: 
                        updated_labels.append(0) 
                    else: 
                        updated_labels.append(1) 
                if n_clusters_ == 3: 
                    if l == max_label: 
                        updated_labels.append(2) 
                    elif l == mid_label: 
                        updated_labels.append(1) 
                    elif l == min_label: 
                        updated_labels.append(0) 
            if l == -1: 
                updated_labels.append(-1) 
                #print 'new label',-1 
 
 
        updated_dbscan_labeled_points = map(lambda x,y: 
[x,y],updated_labels,db_data) 
 
        #make RPL object to store row, point, label for DBSCAN 
        rows_list = range(0,samplesize) 
        rpl = RPLdata(r=rows_list,p=db_data,l=updated_labels) 
        print 'first 10 rows:',rpl.rows[0:10] 
        print 'first 10 points:',rpl.points[0:10] 
        print 'first 10 labels:',rpl.labels[0:10] 
 
        #################### Plot results #################### 
        if plotclusters == True: 
            #create matrix of zeros with same size as labels 
            core_samples_mask = np.zeros_like(db.labels_, dtype=bool) 
            #set to True if data point belongs to any cluster, set to False 
if noise 
            core_samples_mask[db.core_sample_indices_] = True 
 
            unique_labels = set(labels) 
            colors = ['r','b','g'] 
            plt.figure() 
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            for k, c in zip(unique_labels, colors): 
                if k == -1: 
                    c = 'k' 
                ### creates array of length = number of samples 
                ### returns True if data point is in a particular cluster, 
else False 
                ### the number of class_member_mask arrays created is equal 
to the number of clusters found by dbscan +1 (noise) 
                class_member_mask = (labels == k) 
 
                ### xy matrix contains the data points within a particular 
cluster, as well as their coordinates 
                ### # rows = number of samples in cluster, # columns = number 
of dimensions 
                xy = db_data[class_member_mask & core_samples_mask] 
 
                #plot clustered data 
                plt.plot(xy[:,0], xy[:,1], '.', markerfacecolor=c, 
                        markeredgecolor='k', markersize=4) 
 
                #plot outliers 
                xy = db_data[class_member_mask & ~core_samples_mask] 
                plt.plot(xy[:,0], xy[:,1], '.', markerfacecolor=c, 
                        markeredgecolor='k', markersize=2) 
            if 'normalized' in norm_data_fname: 
                plt.ylabel('FSC') 
                plt.xlabel(epitope) 
                plt.axis([-6,2,3,5]) 
            else: 
                plt.ylabel(epitope) 
                plt.xlabel('CMYC') 
                plt.axis([3,5.5,0,5.5]) 
            os.chdir(file_path_binary) 
            plt.savefig(epitope +'.png') 
            #plt.show() 
            os.chdir(directory) 
 
    elif epitope not in ['FSC','GFP','CMYC'] or tagpresent == 'no': 
        labels = [] 
        for i in range(0,samplesize): 
            labels.append(0) 
        #make RPL object to store row, point, label for DBSCAN 
        rows_list = range(0,samplesize) 
        rpl = RPLdata(r=rows_list,p=db_data,l=labels) 
        print 'first 10 rows:',rpl.rows[0:10] 
        print 'first 10 points:',rpl.points[0:10] 
        print 'first 10 labels:',rpl.labels[0:10] 
 
    #make rpl.points list instead of numpy array 
    xyvals = [] 
    for x,y in rpl.points: 
        xyvals.append([x,y]) 
    #save off RPL for each binary ID 
    binary_dict[epitope] = map(lambda x,y,z: 
[x,y,z],rpl.rows,xyvals,rpl.labels) 
 
    with open('binary dbscan clusters data.txt', 'w') as f: 
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        f.write(json.dumps(binary_dict,separators=(',', 
':'),indent=4,sort_keys=True)) 
 
    print 'Run time: %s' % str(time.time()-start) 
    print '---' 
    print 'finished DBSCAN' 
    return binary_dict 
#############################################################################
########################################## 
#input:dictionary from dbscan with key epitope, value RPL (row,point,label) 
(point is norm epitope fluor,FSC) 
#output: dictionary with key epitope to L (label) to value RP 
def dbscan_binary_dict_by_label(dbscan_fname): 
 
    DB_bin_dict_by_label = defaultdict(lambda: defaultdict(list)) 
 
    with open(dbscan_fname,'r') as f: 
        binary_dict = json.load(f) 
 
    for epitope in binary_dict.keys(): 
        #print 'epitope is:',epitope 
        rows = map(lambda x:x[0],binary_dict[epitope]) 
        points = map(lambda x:x[1],binary_dict[epitope]) 
        labels = map(lambda x:x[2],binary_dict[epitope]) 
        RPs = map(lambda x,y:[x,y],rows,points) 
        for i in range(0,len(labels)): 
            DB_bin_dict_by_label[epitope][labels[i]].append(RPs[i]) 
 
    for epitope in DB_bin_dict_by_label.keys(): 
        #print 'epitope is:',epitope 
        for clusterid in DB_bin_dict_by_label[epitope]: 
            #print 'cluster id is:',clusterid 
            RP_list = DB_bin_dict_by_label[epitope][clusterid] 
            #print 'first 3 RPs',RP_list[0:3] 
 
    with open('dbscan binary dict by label.txt','w') as f: 
        f.write(json.dumps(DB_bin_dict_by_label,separators=(',', 
':'),sort_keys=True)) 
    print '---' 
    print 'finished making binary dict by label' 
    return DB_bin_dict_by_label 
#############################################################################
########################################## 
#input: dbscan binary dict by label, maps epitope to label (clusterid) to 
value RP pairs (point is norm epitope,FSC) 
#output: dictionary key epitope to label (clusterid) to value RP pairs (point 
is cmyc,epitope) 
 
def 
notnorm_binary_dict_by_label(DB_bin_dict_by_label,log_data_fname,tagspresent_
dict): 
 
    data = 
np.genfromtxt(log_data_fname,delimiter=',',dtype='float',skip_header=1) 
 
    NN_binary_dict_by_label = defaultdict(lambda:defaultdict(list)) 
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    #find cmyc column 
    for fluor in tagspresent_dict.keys(): 
        eptag = tagspresent_dict[fluor][0] 
        col = tagspresent_dict[fluor][2] 
        if eptag == 'CMYC': 
            cmyccol = col 
    #print 'cmyc is in column:',cmyccol 
 
    #print 'keys',DB_bin_dict_by_label.keys() 
    for epitope in DB_bin_dict_by_label: 
        #print 'epitope is:',epitope 
        for fluor in tagspresent_dict.keys(): 
            eptag = tagspresent_dict[fluor][0] 
            epcol = tagspresent_dict[fluor][2] 
            if epitope == eptag: 
                currcol = epcol 
        #print 'current column:',currcol 
        for clusterid in DB_bin_dict_by_label[epitope]: 
            #print 'clusterid',clusterid 
            RP_list = DB_bin_dict_by_label[epitope][clusterid] 
            rows_list = map(lambda x:x[0],RP_list) 
            #print 'rows:',rows_list[0:5] 
            RP_list_new = [] 
            for r in rows_list: 
                cmycpoint = data[r,cmyccol] 
                eppoint = data[r,currcol] 
                RP_list_new.append([r,[cmycpoint,eppoint]]) 
            NN_binary_dict_by_label[epitope][clusterid]=RP_list_new 
 
    for e in NN_binary_dict_by_label.keys(): 
        print 'epitope is',e 
        for cid in NN_binary_dict_by_label[e]: 
            print 'cluster id is:',cid 
            RPs = NN_binary_dict_by_label[e][cid] 
            print 'first 3 RPs is',RPs[0:3] 
 
    with open('not norm binary dict by label.txt','w') as f: 
        f.write(json.dumps(NN_binary_dict_by_label,separators=(',', 
':'),sort_keys=True)) 
 
    print '---' 
    print 'finished making binary dict by label' 
    return NN_binary_dict_by_label 
 
#############################################################################
########################################## 
#input is dictionary with keys epitope to label (clusterid) to RP pair 
(row,point) 
#calculates statistics for each epitope, clusterid in binary DBSCAN 
#output is stats dict with keys epitope, clusterid, 
'mean','min','max','abundance' and corresponding values 
 
def calc_dbscan_stats(dict_by_label,epitope_col,savefile): 
 
    stats_dict = defaultdict(lambda: defaultdict(lambda: defaultdict(list))) 
 
    totalpoints = 0 



 210 

    for epitope in dict_by_label.keys(): 
        for clusterid in dict_by_label[epitope]: 
            if clusterid not in [-1,'-1']: 
                RPs = dict_by_label[epitope][clusterid] 
                points = map(lambda x:x[1],RPs) 
                eppoints = map(lambda x:x[epitope_col],points) 
                #calc stats 
                min_cluster = min(eppoints) 
                max_cluster = max(eppoints) 
                mean_cluster = np.mean(eppoints) 
                sd_cluster = np.std(eppoints) 
                #print 'minimum value:',min_cluster 
                #print 'maximum value:',max_cluster 
                #print 'mean value:',mean_cluster 
                #print 'standard deviation:',sd_cluster 
                stats_dict[epitope][clusterid]['min'].append(min_cluster) 
                stats_dict[epitope][clusterid]['max'].append(max_cluster) 
                stats_dict[epitope][clusterid]['mean'].append(mean_cluster) 
                stats_dict[epitope][clusterid]['std dev'].append(sd_cluster) 
                stats_dict[epitope][clusterid]['number 
points'].append(len(points)) 
                totalpoints+=len(points) 
 
    for epitope in dict_by_label.keys(): 
        for clusterid in dict_by_label[epitope]: 
            RPs = dict_by_label[epitope][clusterid] 
            points = map(lambda x:x[1],RPs) 
            eppoints = map(lambda x:x[epitope_col],points) 
            abundance = float(len(eppoints))/float(totalpoints)*100 
            stats_dict[epitope][clusterid]['abundance'].append(abundance) 
 
    with open(savefile, 'w') as f: 
        f.write(json.dumps(stats_dict,f,separators=(',', 
':'),indent=4,sort_keys=True)) 
 
    print 'finished calculating dbscan stats' 
    print '---' 
    #return stats_dict 
 
#############################################################################
########################################## 
#inputs are normalized data array, and normalized stats dictionary 
#determines cluster id for each data point based on 'min' and 'max' values 
calculated from DBSCAN clustering results 
#output is dictionary with keys epitope,clusterid, value RP (row, normalized 
epitope fluorescence) 
 
def binary_minmax(tagspresent_dict,stats_fname,data_fname): 
 
    binary_minmax_dict = defaultdict(lambda: defaultdict(list)) 
 
    with open(stats_fname,'r') as f: 
        stats_dict = json.load(f) 
 
    data = 
np.genfromtxt(data_fname,delimiter=',',dtype='float',skip_header=1) 
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    for epitope in stats_dict.keys(): 
        #print 'epitope is:',epitope 
        for fluor in tagspresent_dict.keys(): 
            ep = tagspresent_dict[fluor][0] 
            col = tagspresent_dict[fluor][2] 
            if ep == epitope: 
                currcol = col 
                #print 'current column is:',currcol 
        currdata = data[:,currcol] 
        for clusterid in stats_dict[epitope]: 
            #print 'cluster id is:',clusterid 
            if clusterid not in [-1,'-1']: #do not include the noise points 
                minval = stats_dict[epitope][clusterid]['min'] 
                maxval = stats_dict[epitope][clusterid]['max'] 
                for r in range(0,len(currdata)): 
                    datapoint = currdata[r] 
                    if datapoint >= minval and datapoint <= maxval: 
                        
binary_minmax_dict[epitope][clusterid].append([r,datapoint]) 
 
 
    #check that the stats are ok 
    #for epitope in binary_minmax_dict.keys(): 
    #    print 'epitope is:',epitope 
        for clusterid in binary_minmax_dict[epitope]: 
    #        print 'cluster id is:',clusterid 
            points = map(lambda 
x:x[1],binary_minmax_dict[epitope][clusterid]) 
    #        print 'mean of cluster',clusterid,'is:',np.mean(points) 
    #        print 'abundance of 
cluster',clusterid,'is:',float(len(points))/float(len(data))*100 
 
    with open('all binary cluster data.txt', 'w') as f: 
        f.write(json.dumps(binary_minmax_dict,f,separators=(',', 
':'),sort_keys=True)) 
 
    print 'finished clustering binary data' 
    print '---' 
    return binary_minmax_dict 
 
#############################################################################
############################################ 
#input is dictionary with keys epitope, clusterid, value RP pair (rownumber, 
normalized epitope fluorescence value) 
#output dictionary: maps row number to epitope name to clusterid (dbscan 
label) 
# deletes any rows that are missing a binary ID 
 
def binaryids_by_rows(minmax_fname): 
 
    with open(minmax_fname,'r') as f: 
        binary_minmax_dict = json.load(f) 
 
    binary_dict_by_rows = defaultdict(lambda: defaultdict(str)) 
 
    numeps = len(binary_minmax_dict.keys()) 
    print 'the number of epitope tags is:',numeps 
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    row_delete_counter = 0 
    for epitope in binary_minmax_dict.keys(): 
        for clusterid in binary_minmax_dict[epitope]: 
            rp = binary_minmax_dict[epitope][clusterid] 
            row_list = map(lambda x:x[0],rp) 
            points_list = map(lambda x:x[1],rp) 
            for r in row_list: 
                binary_dict_by_rows[r][epitope] = clusterid 
    #delete any rows that don't have all of the epitopes mapped to a cluster 
id 
    for row in binary_dict_by_rows.keys(): 
        epitopes = binary_dict_by_rows[row] 
        if len(epitopes) != numeps: 
            del binary_dict_by_rows[row] 
            #print 'deleted row' 
            row_delete_counter+=1 
 
    print "This is how many rows we deleted:", row_delete_counter 
    with open('binary dict by rows.txt', 'w') as f: 
        f.write(json.dumps(binary_dict_by_rows,separators=(',', 
':'),indent=4,sort_keys=True)) 
 
    return binary_dict_by_rows 
 
#############################################################################
############################################ 
#input: A dictionary of row numbers to epitope tags to label (dbscan 
clusterid) 
#output: A dictionary of row numbers to cluster binary id value 
(Concatenating the epitope clusterids in order) 
 
def make_row_binaryid_dict(bin_ids_dict,binary_signature_order): 
    row_binaryid_dict ={} 
    for row in bin_ids_dict: 
        signature = "" 
        #Use epitopes in signature order input list to order the signature. 
        for epitope in binary_signature_order: 
            # print "current index:", bin_ids_dict[row][epitope] 
            clusterid = bin_ids_dict[row][epitope] 
            signature += (str(clusterid)) 
        row_binaryid_dict[row] = signature 
       # print "signature for row",row,"is:", signature 
 
    return row_binaryid_dict 
#############################################################################
############################################ 
#input: A dictionary of rownumbers to a binary cluster id value 
#output: A dictionary of binary tag ids to corresponding row numbers 
 
def swap_binaryid_row_dict(input_dict): 
 
    binaryid_row_dict = defaultdict(list) 
    #rows are k, clusterids are v 
    for k, v in input_dict.items(): 
        #clusterids now used for key, append the row value to the list 
        binaryid_row_dict[v].append(k) 
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    #print "Are these 1?:",set(cluster_rows_dict.keys()) == 
set(input_dict.values()) 
    print "Number of unique binary cluster IDS:", 
len(binaryid_row_dict.keys()) 
 
    with open("binary_IDS_dict.txt",'w') as f: 
        f.write(json.dumps(binaryid_row_dict,f,separators=(',', 
':'),indent=4,sort_keys=True)) 
    return binaryid_row_dict 
#############################################################################
############################################ 
#input binaryid_row_dict with key binaryID map to list of rows, normalized 
and non-normalized data 
#output: stats dictionary with abundance %, number of points in each binary 
id (cluster), and MFIs + SDs for each fluorophore 
 
def 
calc_binaryID_stats(tagspresentdict,binID_fname,norm_data_fname,data_fname): 
 
    with open(binID_fname,'r') as f: 
        binary_ID_dict = json.load(f) 
 
    norm_data = 
np.genfromtxt(norm_data_fname,skip_header=1,delimiter=',',dtype='float') 
    data = 
np.genfromtxt(data_fname,skip_header=1,delimiter=',',dtype='float') 
 
    binid_stats_dict_normalized = defaultdict(lambda: defaultdict(float)) 
    binid_stats_dict = defaultdict(lambda: defaultdict(float)) 
 
    #find total data that was clustered 
    totaldata = len(data) 
    total_clustered_data = 0 
    for binaryid in binary_ID_dict.keys(): 
        rowlist = binary_ID_dict[binaryid] 
        total_clustered_data+=len(rowlist) 
 
    #calculate statistics for each binaryID 
    for binaryid in binary_ID_dict.keys(): 
        rowlist = binary_ID_dict[binaryid] 
        clustered_abundance = 
float(len(rowlist))/float(total_clustered_data)*100 
        total_abundance = float(len(rowlist))/float(totaldata)*100 
 
        binid_stats_dict[binaryid]['Number points'] = len(rowlist) 
        binid_stats_dict[binaryid]['Abundance clustered'] = 
clustered_abundance 
        binid_stats_dict[binaryid]['Abundance total'] =total_abundance 
 
        binid_stats_dict_normalized[binaryid]['Number points'] = len(rowlist) 
        binid_stats_dict_normalized[binaryid]['Abundance clustered'] = 
clustered_abundance 
        binid_stats_dict_normalized[binaryid]['Abundance total'] 
=total_abundance 
 
        for fluor in tagspresentdict.keys(): 
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            epitope = tagspresentdict[fluor][0] 
            col = tagspresentdict[fluor][2] 
            if epitope not in ['FSC','CMYC','GFP']: 
                fluorlist = [] 
                fluorlistnorm = [] 
                for r in rowlist: 
                    fluorlist.append(data[r,col]) 
                    fluorlistnorm.append(norm_data[r,col]) 
                binid_stats_dict[binaryid][epitope+' MFI']=np.mean(fluorlist) 
                binid_stats_dict[binaryid][epitope+' SD'] = np.std(fluorlist) 
                binid_stats_dict_normalized[binaryid][epitope+' 
MFI']=np.mean(fluorlistnorm) 
                binid_stats_dict_normalized[binaryid][epitope+' SD'] = 
np.std(fluorlistnorm) 
 
 
    with open("BinaryID stats dict.txt",'w') as f: 
        f.write(json.dumps(binid_stats_dict,separators=(',', 
':'),indent=4,sort_keys=True)) 
    with open('BinaryID normalized stats dict.txt','w') as f: 
        f.write(json.dumps(binid_stats_dict_normalized,separators=(',', 
':'),indent=4,sort_keys=True)) 
 
 
    fields = 
['Barcode','T7','V5','AU5','AcV5','E2','HIS','GLU','FLAG','Number 
points','Abundance clustered','Abundance total', 
              'T7 MFI','T7 SD','V5 MFI','V5 SD','AU5 MFI','AU5 SD','AcV5 
MFI','AcV5 SD','E2 MFI','E2 SD','HIS SD' 
                ,'GLU MFI','GLU SD','FLAG MFI','FLAG SD'] 
 
    barcode_indices = ['T7','V5','AU5','AcV5','E2','HIS','GLU','FLAG'] 
 
    for key in binid_stats_dict: 
        for i in range(0,len(barcode_indices)): 
            binid_stats_dict[key][barcode_indices[i]] = key[i] 
 
    for key in binid_stats_dict_normalized: 
        for i in range(0,len(barcode_indices)): 
            binid_stats_dict_normalized[key][barcode_indices[i]] = key[i] 
 
    dw = binid_stats_dict 
    with open('binary barcode stats.csv','w') as f: 
        w = csv.DictWriter(f,fields) 
        w.writeheader() 
        for k in dw: 
            w.writerow({field: dw[k].get(field) or k for field in fields}) 
 
    dw = binid_stats_dict_normalized 
    with open('binary barcode normalized stats.csv','w') as f: 
        w = csv.DictWriter(f,fields) 
        w.writeheader() 
        for k in dw: 
            w.writerow({field: dw[k].get(field) or k for field in fields}) 
 
    return binid_stats_dict,binid_stats_dict_normalized 
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#############################################################################
############################################ 
#input original data file (transposed, not normalized data) and binaryIDs 
dict filtered by large clusters only 
#output dictionary with keys binaryID to epitope to points (cmyc,epitope 
fluor) pairs for all barcode colors 
def plot_binary_clusters_data(binaryID_fname,tagspresent_dict,data_fname): 
 
    data = 
np.genfromtxt(data_fname,delimiter=',',dtype='float',skip_header=1) 
 
    with open(binaryID_fname,'r') as f: 
        binaryID_dict = json.load(f) 
 
    for fluor in tagspresent_dict.keys(): 
        ep = tagspresent_dict[fluor][0] 
        col = tagspresent_dict[fluor][2] 
        if ep == 'CMYC': 
            cmyccol = col 
    #print cmyccol 
 
    plotdict = defaultdict(lambda:defaultdict(list)) 
 
    for binID in binaryID_dict.keys(): 
        #print 'binid id',binID 
        rows_list = binaryID_dict[binID] 
        for fluor in tagspresent_dict.keys(): 
            epitope = tagspresent_dict[fluor][0] 
            column = tagspresent_dict[fluor][2] 
            #print 'epitope is:',epitope 
            if epitope not in ['FSC','CMYC','GFP']: 
                #print 'banana' 
                xypoints = [] 
                for r in rows_list: 
                    #print r 
                    cmycpoint = data[r,cmyccol] 
                    #print cmycpoint 
                    epitopepoint = data[r,column] 
                    #print epitopepoint 
                    xypoints.append([cmycpoint,epitopepoint]) 
                #print len(xypoints) 
                #print 'apple' 
                plotdict[binID][epitope]=xypoints 
 
    with open('plotdict.txt','w') as f: 
        f.write(json.dumps(plotdict,separators=(',', 
':'),indent=4,sort_keys=True)) 
    print 'finished finding plotting data' 
    return plotdict 
#############################################################################
############################################ 
def plot_binary_clusters(plotdict,directory,file_path_plots): 
 
    for binID in plotdict.keys(): 
        fig = plt.figure() 
        fig.canvas.set_window_title(binID) 
        i = 0 
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        j = 0 
        for epitope in plotdict[binID]: 
            ax = plt.subplot2grid((3,4),(i,j)) 
            x = map(lambda x:x[0],plotdict[binID][epitope]) 
            y = map(lambda x:x[1],plotdict[binID][epitope]) 
            ax.plot(x,y,'.',markerfacecolor = 'c',markersize=2) 
            plt.axis([3,5,0,5]) 
            plt.xlabel('CMYC') 
            plt.xticks(fontsize=10) 
            plt.yticks(fontsize=10) 
            plt.ylabel(epitope) 
            plt.tight_layout() 
            #print i,j 
            if j < 3: 
                j+=1 
            else: 
                j = 0 
                i+=1 
        #plt.show() 
        os.chdir(file_path_plots) 
        plt.savefig(binID+' barcode plot.png') 
        os.chdir(directory) 
    print '---' 
    print 'finished making binary plots' 
 
#############################################################################
############################################ 
#input files containing dictionary of binaryid mapped to rows list, 
dictionary of binaryid mapped to stats 
#output dictionary of binaryid map to rows list after filtering criteria have 
been applied to remove false positive barcodes 
def 
filter_binary_clusters(binarydict_fname,binary_stats_fname,expected_value): 
 
    filtered_binary_clusters = defaultdict(list) 
    filtered_binary_stats = defaultdict(lambda:defaultdict(float)) 
 
    with open(binarydict_fname,'r') as f: 
        binaryid_dict = json.load(f) 
 
    with open(binary_stats_fname,'r') as f: 
        binaryid_stats_dict = json.load(f) 
 
    for binaryid in binaryid_dict.keys(): 
        print 'binaryid:',binaryid 
        cluster_abundance = binaryid_stats_dict[binaryid]['Abundance total'] 
        num_points = binaryid_stats_dict[binaryid]['Number points'] 
        #remove low abundance (<0.01% of sample) barcodes 
        if cluster_abundance > expected_value and num_points >=100: 
            filtered_binary_clusters[binaryid] = binaryid_dict[binaryid] 
            filtered_binary_stats[binaryid] = binaryid_stats_dict[binaryid] 
 
    print 'the number of clusters before 
filtering:',len(binaryid_dict.keys()) 
    print 'the number of clusters after 
filtering:',len(filtered_binary_clusters.keys()) 
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    with open('filtered binary barcode dict.txt','w') as f: 
        f.write(json.dumps(filtered_binary_clusters,f,separators=(',', 
':'),sort_keys=True,indent=4)) 
 
    with open('filtered binary barcode stats.txt','w') as f: 
        f.write(json.dumps(filtered_binary_stats,f,separators=(',', 
':'),sort_keys=True,indent=4)) 
 
 
    fields = 
['Barcode','T7','V5','AU5','AcV5','E2','HIS','GLU','FLAG','Number 
points','Abundance clustered','Abundance total', 
              'T7 MFI','T7 SD','V5 MFI','V5 SD','AU5 MFI','AU5 SD','AcV5 
MFI','AcV5 SD','E2 MFI','E2 SD','HIS SD' 
                ,'GLU MFI','GLU SD','FLAG MFI','FLAG SD'] 
 
    barcode_indices = ['T7','V5','AU5','AcV5','E2','HIS','GLU','FLAG'] 
 
    for key in filtered_binary_stats: 
        for i in range(0,len(barcode_indices)): 
            filtered_binary_stats[key][barcode_indices[i]] = key[i] 
 
    dw = filtered_binary_stats 
    with open('filtered binary barcode stats.csv','w') as f: 
        w = csv.DictWriter(f,fields) 
        w.writeheader() 
        for k in dw: 
            w.writerow({field: dw[k].get(field) or k for field in fields}) 
 
    return filtered_binary_clusters,filtered_binary_stats 
#############################################################################
############################################## 
#input: dictionary with keys binary id string and value list of row numbers 
in that binary cluster (8 tags) 
#output: dictionary maps binary id to hsv clusterid to RP list (row,point) 
#output2: dictionary with key binaryid map to hsv clusterid to 'HA' or 'AU1' 
to RPL list (row, point,label) 
 
def 
multicluster(dbscanparams_dict,tagspresent_dict,final_multi_dict,binaryid_fna
me,data_fname,epitope_to_cluster,plotclusters,directory,subdirectory): 
    #plotclusters = False ###!!!DO NOT PLOT 
 
    #load original data matrix 
    data = 
np.genfromtxt(data_fname,delimiter=',',dtype='float',skip_header=1) 
 
    #load dictionary containing key binaryID map to value rows 
    with open(binaryid_fname) as f: 
        binaryid_row_dict = json.load(f) 
 
    for fluor in tagspresent_dict.keys(): 
        ep = tagspresent_dict[fluor][0] 
        col = tagspresent_dict[fluor][2] 
        if ep == 'CMYC': 
            cmyccol = col 
        if ep == epitope_to_cluster: 
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            multiepcol = col 
    print 'CMYC data is stored in column:',cmyccol 
    print epitope_to_cluster + 'data is stored in column:', multiepcol 
 
    #DBSCAN params 
    if epitope_to_cluster == 'HSV': 
        #store data after clustering 
        multi_dict = defaultdict(lambda: defaultdict(list)) 
    elif epitope_to_cluster in ['AU1','HA']: 
        with open(directory+'/HSV clusters.txt','r') as f: 
            multi_dict = json.load(f) 
 
    if epitope_to_cluster == 'HSV': 
        for binary_ID in binaryid_row_dict.keys(): 
            multiepdata = [] 
            cmycdata = [] 
            print 'binary cluster is:',binary_ID 
            rows_list = binaryid_row_dict[binary_ID] 
            #get data from rows in each binary id, for HSV and cmyc fluors 
            for r in rows_list: 
                multiepdata.append(data[r,multiepcol]) 
                cmycdata.append(data[r,cmyccol]) 
            print 'the total number of cells in this cluster 
is:',len(multiepdata) 
 
            db_data = np.zeros((len(multiepdata),2)) 
            for r in range(0,len(multiepdata)): 
                db_data[r,0] = cmycdata[r] 
                db_data[r,1] = multiepdata[r] 
 
            #override default parameter if data set is small 
            num_points = len(db_data) 
            print 'number of points is:',num_points 
            if num_points < 3000: 
                searchdist = 0.2 
                corepoint = 30 
            elif num_points < 10000: 
                searchdist = 0.1 
                corepoint = 80 
            elif num_points < 15000: 
                searchdist = 0.1 
                corepoint = 100 
 
            else: 
                searchdist = dbscanparams_dict['HSV_bin'][0] 
                corepoint = dbscanparams_dict['HSV_bin'][1] 
            print 'DBSCAN search distance is:',searchdist 
            print 'DBSCAN core point is:',corepoint 
 
            print 'starting dbscan' 
            db = 
DBSCAN(eps=searchdist,min_samples=corepoint,algorithm="kd_tree").fit(db_data) 
            dbscan_labels = db.labels_ 
 
            #print "Number of points:",len(db_data) 
            #print "Number of rows:", len(rows_list) 
            #print "Len labels:", len(dbscan_labels) 
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            #print "db first 10:", db_data[0:10] 
            #print "rows first 10:", rows_list[0:10] 
            #print "labels first 10:",dbscan_labels[0:10] 
            dbscan_labeled_points = map(lambda x,y: 
[x,y],dbscan_labels,db_data) 
 
            # Number of clusters in labels, ignoring noise if present 
            n_clusters_ = len(set(dbscan_labels)) - (1 if -1 in dbscan_labels 
else 0) 
            print('Number of DBSCAN clusters: %d' % n_clusters_) 
 
            #find minimum value in dataset and cooresponding label to find 
low cluster 
            min = 100000 
            min_label = '' 
            for l,p in dbscan_labeled_points: 
                if l != -1: 
                    if p[1] < min: 
                        min = p[1] 
                        min_label = l 
            print 'min dbscan cluster id is:',min_label 
 
            if n_clusters_ > 1: 
                 #find maximum value and corresponding label 
                max = 0 
                max_label = '' 
                for l,p in dbscan_labeled_points: 
                    if l != -1: 
                        if p[1] > max: 
                            max = p[1] 
                            max_label = l 
                print 'max dbscan cluster id is:',max_label 
            #find mid cluster if clusters == 3 
            if n_clusters_ == 3: 
                unique_labels = set(dbscan_labels) 
                for l in unique_labels: 
                    if l not in [min_label,max_label,'-1',-1]: 
                        mid_label = l 
                print 'mid dbscan cluster id is:',mid_label 
 
            #update labels so that clusters are numbered in order of fluor 
intensity instead of randomly 
            updated_labels = [] 
            for l,p in dbscan_labeled_points: 
                #print 'old label',l 
                if l != -1: 
                    if n_clusters_ <= 2: 
                        if l == min_label: 
                            updated_labels.append(0) 
                        else: 
                            updated_labels.append(1) 
                    if n_clusters_ == 3: 
                        if l == max_label: 
                            updated_labels.append(2) 
                        elif l == mid_label: 
                            updated_labels.append(1) 
                        elif l == min_label: 
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                            updated_labels.append(0) 
                if l == -1: 
                    updated_labels.append(-1) 
 
            updated_dbscan_labeled_points = map(lambda 
x,y:[x,y],db_data,updated_labels) 
 
            rpl = RPLdata(r=rows_list,p=db_data,l=updated_labels) 
            print "RPL:", len(rpl.labels),len(rpl.points),len(rpl.rows) 
 
            #Get counts in DBSCAN clusters by label 
            counts = defaultdict(int) 
            for label in updated_labels: 
                counts[label] +=1 
            print "Counts histo:", counts 
 
            #################### Plot results #################### 
            if plotclusters == True: 
                plt.figure() 
                core_samples_mask = np.zeros_like(db.labels_, dtype=bool) 
                core_samples_mask[db.core_sample_indices_] = True 
                unique_labels = set(dbscan_labels) 
                colors = ['r','b','g','m'] 
                for k, c in zip(unique_labels, colors): 
                    if k == -1: 
                        c = 'k' 
                    class_member_mask = (db.labels_ == k) 
                    xy = db_data[class_member_mask & core_samples_mask] 
                    #plot clustered data 
                    plt.plot(xy[:,0], xy[:,1], '.', 
markerfacecolor=c,markeredgecolor='k', markersize=6) 
                    #plot outliers 
                    xy = db_data[class_member_mask & ~core_samples_mask] 
                    plt.plot(xy[:,0], xy[:,1], '.', 
markerfacecolor=c,markeredgecolor='k', markersize=2) 
                    plt.ylabel(epitope_to_cluster) 
                    plt.xlabel('CMYC') 
                    plt.title(binary_ID) 
                    plt.axis([3,5.5,0,5],fontsize=8) 
                #plt.show() 
                os.chdir(subdirectory) 
                plt.savefig(binary_ID+" "+epitope_to_cluster+' 
DBSCAN_r1.png') 
                os.chdir(directory) 
 
            #Filtering/Fixing the bad top cluster. 
            if n_clusters_ == 2: 
                print "Two CLUSTERS, STARTING FILTER" 
                rpl = 
filter_noise(rpl,binary_ID,epitope_to_cluster,hsvcluster='',label=1,directory
=directory,subdirectory=subdirectory) 
            elif n_clusters_ == 1: 
                print "ONE cluster, STARTING FILTER" 
                rpl = 
filter_noise(rpl,binary_ID,epitope_to_cluster,hsvcluster='',label=0,directory
=directory,subdirectory=subdirectory) 
            else: 
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                print "More than TWO CLUSTERS, NO FILTER" 
 
            #make rpl.points list instead of numpy array 
            xyvals = [] 
            for x,y in rpl.points: 
                xyvals.append([x,y]) 
            #save off RP for each binary ID by label 
            for i in range(0,len(rpl.labels)): 
                label = rpl.labels[i] 
                row = rows_list[i] 
                point = xyvals[i] 
                multi_dict[binary_ID][label].append([row,point]) 
 
        with open(directory+'/HSV clusters.txt', 'w') as f: 
            f.write(json.dumps(multi_dict,f,separators=(',', 
':'),sort_keys=True,indent=4)) 
 
    elif epitope_to_cluster in ['HA','AU1']: 
        for binary_ID in multi_dict.keys(): 
            for hsvcluster in multi_dict[binary_ID]: 
                if hsvcluster not in ['-1',-1]: 
                    multiepdata = [] 
                    cmycdata = [] 
                    print 'binary cluster is:',binary_ID 
                    print 'hsv cluster is:',hsvcluster 
                    rp_list = multi_dict[binary_ID][hsvcluster] 
                    rows_list = map(lambda x:x[0],rp_list) 
                    for r in rows_list: 
                        multiepdata.append(data[r,multiepcol]) 
                        cmycdata.append(data[r,cmyccol]) 
                    print 'the total number of cells in this cluster 
is:',len(multiepdata) 
                    db_data = np.zeros((len(multiepdata),2)) 
                    for r in range(0,len(multiepdata)): 
                        db_data[r,0] = cmycdata[r] 
                        db_data[r,1] = multiepdata[r] 
 
                    #override default dbscan core point parameter if data set 
is small 
                    num_points = len(rows_list) 
                    print 'len rows list',num_points 
                    if epitope_to_cluster in ['HA','AU1']: 
                        if num_points < 2000: 
                            corepoint = 30 
                            searchdist = 0.25 
                        elif num_points < 3000: 
                            corepoint = 30 
                            searchdist = 0.2 
                        elif num_points < 5000: 
                            corepoint = 40 
                            searchdist = 0.15 
                        elif num_points < 10000: 
                            corepoint = 60 
                            searchdist = 0.15 
                        elif num_points < 20000: 
                            corepoint = 80 
                            searchdist = 0.1 
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                        elif num_points < 40000: 
                            corepoint = 100 
                            searchdist = 0.1 
                        else: 
                            corepoint = 100 
                            searchdist = 0.1 
                    if epitope_to_cluster == 'AU1': 
                        if binary_ID == '00000000' and num_points > 20000: 
                            searchdist = 0.15 
                            corepoint = 100 
 
 
                    #elif epitope_to_cluster == 'HA' and num_points > 100: 
                    #    searchdist = dbscanparams_dict['HA_bin'][0] 
                    #    corepoint = dbscanparams_dict['HA_bin'][1] 
                    #elif epitope_to_cluster == 'AU1' and num_points > 100: 
                    #    searchdist = dbscanparams_dict['AU1_bin'][0] 
                    #    corepoint = dbscanparams_dict['AU1_bin'][1] 
                    print 'dbscan corepoint:',corepoint 
                    print 'dbscan search distance',searchdist 
 
                    print 'starting dbscan' 
                    db = 
DBSCAN(eps=searchdist,min_samples=corepoint,algorithm="kd_tree").fit(db_data) 
 
                    #create list of labels (0, 1, 2, ect.) for data point 
(row)m if label == -1 is a noise point 
                    # number of unique labels == number of clusters 
                    dbscan_labels = db.labels_ 
 
                    #print "Number of points:",len(db_data) 
                    #print "Number of rows:", len(rows_list) 
                    #print "Len labels:", len(dbscan_labels) 
                    #print "db first 10:", db_data[0:10] 
                    #print "rows first 10:", rows_list[0:10] 
                    #print "labels first 10:",dbscan_labels[0:10] 
                    dbscan_labeled_points = map(lambda x,y: 
[x,y],dbscan_labels,db_data) 
 
                    # Number of clusters in labels, ignoring noise if present 
                    n_clusters_ = len(set(dbscan_labels)) - (1 if -1 in 
dbscan_labels else 0) 
                    print('Number of DBSCAN clusters: %d' % n_clusters_) 
 
                    #find minimum value in dataset and cooresponding label to 
find low cluster 
                    min = 100000 
                    min_label = '' 
                    for l,p in dbscan_labeled_points: 
                        if l != -1: 
                            if p[1] < min: 
                                min = p[1] 
                                min_label = l 
                    print 'min dbscan cluster id is:',min_label 
 
                    if n_clusters_ > 1: 
                         #find maximum value and corresponding label 
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                        max = 0 
                        max_label = '' 
                        for l,p in dbscan_labeled_points: 
                            if l != -1: 
                                if p[1] > max: 
                                    max = p[1] 
                                    max_label = l 
                        print 'max dbscan cluster id is:',max_label 
                    #find mid cluster if clusters == 3 
                    if n_clusters_ == 3: 
                        unique_labels = set(dbscan_labels) 
                        for l in unique_labels: 
 
                            if l not in [min_label,max_label,'-1',-1]: 
                                mid_label = l 
                        print 'mid dbscan cluster id is:',mid_label 
 
                    #update labels so that clusters are numbered in order of 
fluor intensity instead of randomly 
                    updated_labels = [] 
                    for l,p in dbscan_labeled_points: 
                        #print 'old label',l 
                        if l != -1: 
                            if n_clusters_ <= 2: 
                                if l == min_label: 
                                    updated_labels.append(0) 
                                else: 
                                    updated_labels.append(1) 
                            if n_clusters_ == 3: 
                                if l == max_label: 
                                    updated_labels.append(2) 
                                elif l == mid_label: 
                                    updated_labels.append(1) 
                                elif l == min_label: 
                                    updated_labels.append(0) 
                        if l == -1: 
                            updated_labels.append(-1) 
 
                    updated_dbscan_labeled_points = map(lambda 
x,y:[x,y],db_data,updated_labels) 
 
                    rpl = RPLdata(r=rows_list,p=db_data,l=updated_labels) 
                    print "RPL:", 
len(rpl.labels),len(rpl.points),len(rpl.rows) 
 
                    #Get counts in DBSCAN clusters by label 
                    counts = defaultdict(int) 
                    for label in updated_labels: 
                        counts[label] +=1 
                    print "Counts histo:", counts 
 
                    #################### Plot results #################### 
                    if plotclusters == True: 
                        plt.figure() 
                        core_samples_mask = np.zeros_like(db.labels_, 
dtype=bool) 
                        core_samples_mask[db.core_sample_indices_] = True 
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                        unique_labels = set(dbscan_labels) 
                        colors = ['r','b','g','m'] 
                        for k, c in zip(unique_labels, colors): 
                            if k == -1: 
                                c = 'k' 
                            class_member_mask = (db.labels_ == k) 
                            xy = db_data[class_member_mask & 
core_samples_mask] 
                            #plot clustered data 
                            plt.plot(xy[:,0], xy[:,1], '.', 
markerfacecolor=c,markeredgecolor='k', markersize=6) 
                            #plot outliers 
                            xy = db_data[class_member_mask & 
~core_samples_mask] 
                            plt.plot(xy[:,0], xy[:,1], '.', 
markerfacecolor=c,markeredgecolor='k', markersize=2) 
                            plt.ylabel(epitope_to_cluster) 
                            plt.xlabel('CMYC') 
                            plt.title(binary_ID) 
                            plt.axis([3,5.5,0,5],fontsize=8) 
                        #plt.show() 
                        os.chdir(subdirectory) 
                        plt.savefig(binary_ID+" "+epitope_to_cluster+' 
'+hsvcluster+' DBSCAN_r1.png') 
                        os.chdir(directory) 
 
                    #Filtering/Fixing the bad top cluster. 
                    if n_clusters_ == 2: 
                        print "TWO CLUSTERS, STARTING FILTER" 
                        rpl = 
filter_noise(rpl,binary_ID,epitope_to_cluster,hsvcluster,label=1,directory=di
rectory,subdirectory=subdirectory) 
                    elif n_clusters_ == 1: 
                        print 'one cluster starting filter' 
                        rpl = 
filter_noise(rpl,binary_ID,epitope_to_cluster,hsvcluster,label=0,directory=di
rectory,subdirectory=subdirectory) 
                    else: 
                        print "NOT 1 or 2 CLUSTERS, NO FILTER" 
 
                    xyvals = [] 
                    for x,y in rpl.points: 
                        xyvals.append([x,y]) 
                    #save off RPL for each binary ID 
                    rpl_list = [] 
                    for i in range(0,len(rpl.rows)): 
                        
rpl_list.append([rpl.rows[i],xyvals[i],rpl.labels[i]]) 
                    
final_multi_dict[binary_ID][hsvcluster][epitope_to_cluster] = rpl_list 
 
        with open(directory+'/final barcode dict '+epitope_to_cluster+'.txt', 
'w') as f: 
            f.write(json.dumps(final_multi_dict,f,separators=(',', ':'))) 
#,sort_keys=True,indent=4)) 
 
    return multi_dict, final_multi_dict 
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#############################################################################
############################################ 
#takes in the an RPLdata by hsvcluster and label, removes noise using 
gaussian_kde, returns data. 
def 
filter_noise(rpl,binary_ID,epitope_to_cluster,hsvcluster,label,directory,subd
irectory): 
 
    #gets a list of (row,point) for the given label 
    data = rpl.get_rp_for_label(label) 
    #if label == '1stpass': 
    #    data = [] 
    #    for i in range(0,len(rpl.rows)): 
    #        data.append([rpl.rows[i],rpl.points[i]]) 
    print "Number of points before filtering:", len(data) 
    num_points = len(data) 
    #plot data before filtering w kde fit 
    x = map(lambda x: x[1][0],data) 
    y = map(lambda x: x[1][1],data) 
    stack = np.vstack([x,y]) 
    kde = gaussian_kde(stack)(stack) 
    fig1, ax= plt.subplots(2) 
    cax = ax[0].scatter(x,y, c=kde, s=10, edgecolor='') 
    fig1.colorbar(cax) 
 
    #show filtered 
    #pair up the list of rp points with the kde values 
    rpl_data_with_kde = map(lambda x,y: [x,y],data,kde) 
    #sort list from lowest to highest kde value (lower = noisier/less dense) 
    sorted_kde = sorted(kde) 
    #cutoff_thresh = 0.25 if (num_points < 50000) else 0.2 
    #print "KDE min/max:", min(kde),max(kde) 
    #cutoff_value = (max(kde)-min(kde))*cutoff_thresh 
    max_kde = max(kde) 
    print 'int max_kde:',np.round(max_kde) 
    if epitope_to_cluster == 'HSV': 
        if label == 0: 
            cutoff_frac = 0.2 
            cutoff_value = float(max_kde)*cutoff_frac 
        if label == 1: 
            if np.round(max_kde) <= 2: 
                cutoff_frac = 0.3 
            elif np.round(max_kde) <= 3 and num_points < 10000: 
                cutoff_frac = 0.3 
            elif np.round(max_kde) <= 3 and num_points > 10000: 
                cutoff_frac = 0.3 
            elif num_points < 6000 and np.round(max_kde) <= 3: 
                cutoff_frac = 0.2 
            #elif np.round(max_kde) <= 4: 
            #    cutoff_value = float(max_kde)*0.4 
            else: 
                cutoff_frac = 0.1 
            if num_points > 10000 and binary_ID == '00000000': 
                cutoff_frac = 0.5 
            cutoff_value = float(max_kde)*cutoff_frac 
    if epitope_to_cluster == 'HA': 
        print 'label',label 
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        if label == 1: 
            binidchar = list(binary_ID) 
            if binidchar[6] == '1' and num_points > 2000: 
                cutoff_frac = 0.6 
            elif np.round(max_kde) <= 1: 
                cutoff_frac = 0.3 
            elif np.round(max_kde) <= 2: 
                cutoff_frac = 0.4 
            elif np.round(max_kde) <= 4: 
                cutoff_frac = 0.4 
            else: 
                cutoff_frac = 0.2 
            cutoff_value = float(max_kde)*cutoff_frac 
        elif label == 0: 
            if num_points > 5000: 
                cutoff_frac = 0.4 
                cutoff_value = float(max_kde)*cutoff_frac 
            if np.round(max_kde) <= 1: 
                cutoff_frac = 0.2 
                cutoff_value = float(max_kde)*cutoff_frac 
            if binary_ID == '00000110': 
                cutoff_frac = 0.5 
                cutoff_value = float(max_kde)*cutoff_frac 
            else: 
                cutoff_frac = 0.2 
                cutoff_value = float(max_kde)*cutoff_frac 
        if binary_ID == '00000000' and label == 1: 
            cutoff_frac = 0.7 
            cutoff_value = float(max_kde)*cutoff_frac 
        if binary_ID == '00000001' and label == 1: 
            cutoff_frac = 0.6 
            cutoff_value = float(max_kde)*cutoff_frac 
    if epitope_to_cluster == 'AU1': 
        if label == 1: 
            if num_points > 10000: 
                cutoff_frac = 0.3 
                cutoff_value = float(max_kde)*cutoff_frac 
            elif np.round(max_kde) > 4: 
                cutoff_frac = 0.3 
            else: 
                cutoff_frac = 0.15 
            if binary_ID == '00000000' and num_points > 5000: 
                cutoff_frac = 0.5 
            cutoff_value = float(max_kde)*cutoff_frac 
        if label == 0: 
            cutoff_frac = 0.15 
            cutoff_value = float(max_kde)*cutoff_frac 
 
    print 'max_kde is:',max_kde 
    print 'cutoff_fraction is',cutoff_frac 
 
    filtered_data_with_kde = filter(lambda x: x[1] > cutoff_value, 
rpl_data_with_kde) #throw away noisy points (low kde) 
    filtered_rpl_data = map(lambda x: x[0], filtered_data_with_kde) #grab 
only rpl, no kde 
    #print "filtered data first 10:", filtered_rpl_data[0:10] 
    filtered_data = map(lambda x: x[1], filtered_rpl_data) #grab only 
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coordinates, no rpl no kde 
    #print "Lengths:", "Pre filter:",len(rpl_data_with_kde),"After 
filter:",len(filtered_data_with_kde), "Diff:", len(filtered_data_with_kde)-
len(rpl_data_with_kde) 
    #print 'filtered data fluor values only:',filtered_data[0:10] 
    old_rpl_len = len(rpl.rpl) 
    #print "Old RPL length:", len(rpl.rpl), 
    rpl.update_rpl_by_label(label,filtered_rpl_data) 
    #print "New RPL length:", len(rpl.rpl) 
    #print "change in rpl length:", len(rpl.rpl)- old_rpl_len 
    print 'number of deleted points is:',len(data)-len(filtered_rpl_data) 
    #filtered_kde = map(lambda x: x[1], filtered_data_with_kde) #grab only 
kde values 
 
    #plot after filtering 
    x = map(lambda x: x[0],filtered_data) #grab x-coordinates 
    y = map(lambda x: x[1],filtered_data) #grab y-coordinates 
    stack = np.vstack([x,y]) 
    #fig2, ax[1] = plt.subplots(212) 
    cax2 = ax[1].scatter(x,y, s=10, edgecolor='') 
    #plt.show() 
    os.chdir(subdirectory) 
    plt.savefig(binary_ID+' '+epitope_to_cluster+' '+hsvcluster+' KDE.png') 
    os.chdir(directory) 
 
    #Need to run DBSCAN on filtered_data, load back into RPL 
    #hsv_searchdist = dbscanparams_dict['HSV_multi'][0] 
    #hsv_corepoint = dbscanparams_dict['HSV_multi'][1] 
 
    #choose parameters based on number of points in top cluster 
    if epitope_to_cluster == 'HSV': 
        if label == 0: 
            hsv_corepoint = 50 
            hsv_searchdist = 0.1 
        elif label == 1: 
            if num_points < 2000: 
                hsv_corepoint = 30 
                hsv_searchdist = 0.15 
            elif num_points < 3000: 
                hsv_corepoint = 40 
                hsv_searchdist = 0.1 
            elif num_points < 5000: 
                hsv_corepoint = 60 
                hsv_searchdist = 0.1 
            elif num_points > 9000: 
                hsv_searchdist = 0.07 
                hsv_corepoint = 100 
            else: 
                hsv_corepoint=80 
                hsv_searchdist=0.08 
    elif epitope_to_cluster == 'HA' or epitope_to_cluster == 'AU1': 
        if num_points < 300: 
            hsv_corepoint = 30 
            hsv_searchdist = 0.2 
        elif num_points < 1000: 
            hsv_corepoint = 40 
            hsv_searchdist = 0.5 
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        elif num_points < 2000: 
            hsv_corepoint = 40 
            hsv_searchdist = 0.1 
        elif num_points < 3000: 
            hsv_corepoint = 60 
            hsv_searchdist = 0.1 
        elif num_points < 6000: 
            hsv_corepoint = 80 
            hsv_searchdist = 0.08 
        else: 
            hsv_corepoint = 100 
            hsv_searchdist = 0.08 
        if label == 0: 
            if num_points > 10000: 
                hsv_searchdist = 0.1 
                hsv_corepoint = 100 
            elif num_points > 5000: 
                hsv_searchdist = 0.1 
                hsv_corepoint = 80 
            elif num_points < 1000: 
                hsv_corepoint = 20 
                hsv_searchdist = 0.2 
            else: 
                hsv_corepoint = 60 
                hsv_searchdist = 0.15 
    #elif epitope_to_cluster == 'AU1': 
 
    print 'DBSCAN search dist is:',hsv_searchdist 
    print 'DBSCAN core points is:',hsv_corepoint 
 
    db = 
DBSCAN(eps=hsv_searchdist,min_samples=hsv_corepoint,algorithm="kd_tree").fit(
filtered_data) 
    labels = db.labels_ 
    n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) 
    print 'Number of dbscan clusters is:', n_clusters_ 
 
    # while n_clusters_ > 2: 
    #     print 'N clusters greater than 2. starting iterative dbscan' 
    #     hsv_searchdist = hsv_searchdist+0.01 
    #     db = 
DBSCAN(eps=hsv_searchdist,min_samples=hsv_corepoint,algorithm="kd_tree").fit(
filtered_data) 
    #     labels = db.labels_ 
    #     n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) 
    #     print 'Number of dbscan clusters is:', n_clusters_ 
 
    counts = defaultdict(int) 
    for L in labels: 
        counts[L] +=1 
    print "Counts histo:", counts 
 
 
    #################### Plot results #################### 
    #get x and y coordinates 
    x = map(lambda x: x[0],filtered_data) #grab x-coordinates 
    y = map(lambda x: x[1],filtered_data) #grab y-coordinates 
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    plt.figure() 
    unique_labels = set(labels) 
 
    #cluster 0 = red, cluster 1 = blue, cluster 2 = yellow 
    colors_dict = {0:'r',1:'b',2:'y',-1:'k',3:'m',4:'g',5:'c'} 
    #bin data by label for plotting 
 
    dict_by_label = defaultdict(list) 
    for index in range(0,len(labels)): 
        l = labels[index] 
        dict_by_label[l].append([x[index],y[index]]) 
 
    for l in unique_labels: 
        xl = map(lambda x: x[0],dict_by_label[l]) 
        yl = map(lambda x: x[1],dict_by_label[l]) 
        if l == -1: 
            plt.plot(xl,yl,'.',markerfacecolor=colors_dict[l],markeredgecolor 
= 'k',markersize=2) 
        else: 
            plt.plot(xl,yl,'.',markerfacecolor=colors_dict[l],markeredgecolor 
= 'k',markersize=6) 
    plt.ylabel(epitope_to_cluster) 
    plt.xlabel('CMYC') 
    plt.axis([3,5.5,0,5],fontsize=8) 
    #plt.show() 
    os.chdir(subdirectory) 
    plt.savefig(binary_ID+" "+epitope_to_cluster+' '+hsvcluster+' 
DBSCAN_r2.png') 
    os.chdir(directory) 
 
    if n_clusters_ > 1 and n_clusters_ < 4: 
        #new_db_labels = labels 
        #makes list of form [[r1,p1,l1],[r2,p2,l2]] 
        new_filtered_rpl_data = map(lambda x,y: 
[x[0],x[1],y],filtered_rpl_data,labels) 
        #print new_filtered_rpl_data 
        #given the old label, we take a new rpl list and make two new labels. 
        #give it a list of the form [[r1,p1,l1],[r2,p2,l2]] 
        print 'label to remove data from is:',label 
        print len(new_filtered_rpl_data) 
        rpl.split_rp_dict_label(label,new_filtered_rpl_data) 
    else: 
        pass 
    return rpl 
#############################################################################
################################ 
#input binaryid map to hsv label map to 'HA' map to RPL 
#input binaryid map to hsv label map to 'AU1' map to RPL 
#output 1: dictionary with epitopeID (all 11) to rows list 
#output 2: 'barcode abundance' dictionary with epitope ID to abundance, 
number of cells, MFI, SD for each fluor 
#also makes csv file with epitopeID, abundance normalized by clustered and by 
total data 
def make_barcode_table(fname,data_fname,tagspresent_dict): 
 
    print "Making barcode table." 
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    #load dictionaries containing binaryid map to hsv label map to 'HA' or 
'AU1' map to RPL list 
    for i in range(0,len(fname)): 
        with open(fname[i]) as f: 
            if 'HA' in fname[i]: 
                HA_dict = json.load(f) 
            elif 'AU1' in fname[i]: 
                AU1_dict = json.load(f) 
 
    original_data = 
np.genfromtxt(data_fname,delimiter=',',dtype='float',skip_header=1) 
    total_data = len(original_data) 
    total_clustered = 0 
 
    #makes barcode_to_row dict epitope ID (11 tags) map to row list 
    #makes row_barcode_dict maps row number to epitope ID 
    barcode_abundance_dict = defaultdict(lambda: defaultdict(float)) 
    print "Banana." 
   # print "Ha_dict keys:", HA_dict.keys() 
    #count the full (11 color) barcode appearances 
    barcode_count_dict = defaultdict(int) 
    barcode_to_row_dict =defaultdict(list) 
    #dictionary of rows to full (11 color) binary ids 
    row_barcode_dict = {} 
    print "Len of keys:",len(HA_dict.keys()) 
    for binary_id in HA_dict.keys(): 
        print "Bin_id", binary_id 
        #print "id:",binary_id 
        print "Len of this hsvlabel:",len(HA_dict[binary_id].keys()) 
        for hsvlabel in HA_dict[binary_id].keys(): 
            #print "hsvlabel:",hsvlabel 
            #print "HSV keys:",HA_dict[binary_id][hsvlabel].keys() 
            rpl_list_HA = HA_dict[binary_id][hsvlabel]['HA'] 
            rpl_list_AU = AU1_dict[binary_id][hsvlabel]['AU1'] 
            print "length of rpl lists:",len(rpl_list_HA),len(rpl_list_AU) 
            rpl_HA = RPLdata(rpl=rpl_list_HA) 
            rpl_AU = RPLdata(rpl=rpl_list_AU) 
            rpl_HA_row_dict = dict(zip(rpl_HA.rows,rpl_HA.labels)) 
            rpl_AU_row_dict = dict(zip(rpl_AU.rows,rpl_AU.labels)) 
            present_rows = set(rpl_HA_row_dict.keys() + 
rpl_AU_row_dict.keys()) 
            #print len(present_rows) 
            for row in present_rows: 
                if row in rpl_HA_row_dict and row in rpl_AU_row_dict: 
                    if rpl_HA_row_dict[row] != -1 and rpl_AU_row_dict[row] != 
-1: 
                        #print "making full barcode with:", 
binary_id[0:5],rpl_HA_row_dict[row], 
hsvlabel,binary_id[5],rpl_AU_row_dict[row],binary_id[6:] 
                        full_barcode = str(binary_id[0:5]) + 
str(rpl_HA_row_dict[row]) + str(hsvlabel) + str(binary_id[5]) + 
str(rpl_AU_row_dict[row]) + str(binary_id[6:]) 
                        #print "Full barcode is:",full_barcode 
                        row_barcode_dict[row] = full_barcode 
                        barcode_to_row_dict[full_barcode].append(row) 
                        barcode_count_dict[full_barcode] +=1 
                        total_clustered +=1 
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    #For each barcode id, calculates cluster abundance, number points, mean, 
sd fluorescence for each epitope 
    for full_barcode in barcode_to_row_dict.keys(): 
        #print 'full barcode',full_barcode 
        num_points = len(barcode_to_row_dict[full_barcode]) 
        abundance_clustered = 
float(barcode_count_dict[full_barcode])/float(total_clustered)*100 
        abundance_total = 
float(barcode_count_dict[full_barcode])/float(total_data)*100 
        barcode_abundance_dict[full_barcode]['Abundance clustered'] = 
abundance_clustered 
        barcode_abundance_dict[full_barcode]['Abundance total'] = 
abundance_total 
        barcode_abundance_dict[full_barcode]['Number points'] = num_points 
        for fluor in tagspresent_dict.keys(): 
            #print fluor 
            currep = tagspresent_dict[fluor][0] 
            currcol = tagspresent_dict[fluor][2] 
            if currep not in ['FSC','CMYC','GFP']: 
                fluorlist = [] 
                for row in barcode_to_row_dict[full_barcode]: 
                    fluorlist.append(original_data[row,currcol]) 
                mean_fluor = np.mean(fluorlist) 
                sd_fluor = np.std(fluorlist) 
                barcode_abundance_dict[full_barcode][currep+' MFI'] = 
mean_fluor 
                barcode_abundance_dict[full_barcode][currep+' SD'] = sd_fluor 
    #print 'keys',barcode_abundance_dict[full_barcode].keys() 
 
    header = 
['Barcode','T7','V5','AU5','AcV5','E2','HA','HSV','HIS','AU1','GLU','FLAG','N
umber points','Abundance clustered','Abundance total', 
              'T7 MFI','T7 SD','V5 MFI','V5 SD','AU5 MFI','AU5 SD','AcV5 
MFI','AcV5 SD','E2 MFI','E2 SD','HA MFI','HA SD','HSV MFI','HSV SD', 
              'HIS MFI','HIS SD','AU1 MFI','AU1 SD','GLU MFI','GLU SD','FLAG 
MFI','FLAG SD'] 
    barcode_indices = 
['T7','V5','AU5','AcV5','E2','HA','HSV','HIS','AU1','GLU','FLAG'] 
 
    for key in barcode_abundance_dict: 
        for i in range(0,len(barcode_indices)): 
            barcode_abundance_dict[key][barcode_indices[i]] = key[i] 
    #print barcode_count_dict 
    #print barcode_to_row_dict 
 
    with open('Barcode abundance dict.txt','w') as f: 
        f.write(json.dumps(barcode_abundance_dict,separators=(',', 
':'),indent=4,sort_keys=True)) 
 
    with open ('barcodeID to rows dict.txt','w') as f: 
        f.write(json.dumps(barcode_to_row_dict,separators=(',', 
':'),indent=4,sort_keys=True)) 
 
    dw = barcode_abundance_dict 
    with open('Barcode abundances.csv','w') as f: 
        w = csv.DictWriter(f,header) 
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        w.writeheader() 
        for k in dw: 
            w.writerow({field: dw[k].get(field) or k for field in header}) 
 
    return barcode_to_row_dict,barcode_abundance_dict 
 
#############################################################################
############################################ 
def filter_clusters_multi(rowsdictfilename,statsdictfilename,expected_value): 
#input: dictionary of barcode ids to rows, dictionary of barcode ids to 
statistics 
#output: dictionary of barcode ids to rows, filtered by expected value 
criteria 
 
    filtered_barcodes_dict = defaultdict(list) 
    filtered_barcodes_stats = defaultdict(lambda: defaultdict(float)) 
 
    with open(rowsdictfilename,'r') as f: 
        barcode_dict_rows = json.load(f) 
 
    with open(statsdictfilename,'r') as f: 
        stats_dict = json.load(f) 
 
    #append barcode and rows list to new dict if meets abundance cutoff 
criteria 
    for barcodeid in stats_dict.keys(): 
        bar_abundance = stats_dict[barcodeid]['Abundance clustered'] 
        num_points = stats_dict[barcodeid]['Number points'] 
        rows_list = barcode_dict_rows[barcodeid] 
        if bar_abundance > expected_value and num_points >= 100: 
            filtered_barcodes_dict[barcodeid] = rows_list 
            filtered_barcodes_stats[barcodeid] = stats_dict[barcodeid] 
 
    with open('filtered barcodeID to rows dict.txt','w') as f: 
        f.write(json.dumps(filtered_barcodes_dict,separators=(',', 
':'),indent=4,sort_keys=True)) 
 
    with open('filtered barcodeID stats dict.txt','w') as f: 
        f.write(json.dumps(filtered_barcodes_stats,separators=(',', 
':'),indent=4,sort_keys=True)) 
 
    barcode_indices = 
['T7','V5','AU5','AcV5','E2','HA','HSV','HIS','AU1','GLU','FLAG'] 
 
    for key in filtered_barcodes_stats: 
        for i in range(0,len(barcode_indices)): 
            filtered_barcodes_stats[key][barcode_indices[i]] = key[i] 
 
    header = 
['Barcode','T7','V5','AU5','AcV5','E2','HA','HSV','HIS','AU1','GLU','FLAG','N
umber points','Abundance clustered','Abundance total', 
              'T7 MFI','T7 SD','V5 MFI','V5 SD','AU5 MFI','AU5 SD','AcV5 
MFI','AcV5 SD','E2 MFI','E2 SD','HA MFI','HA SD','HSV MFI','HSV SD', 
              'HIS MFI','HIS SD','AU1 MFI','AU1 SD','GLU MFI','GLU SD','FLAG 
MFI','FLAG SD'] 
 
    dw = filtered_barcodes_stats 
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    with open('Filtered barcode abundances.csv','w') as f: 
        w = csv.DictWriter(f,header) 
        w.writeheader() 
        for k in dw: 
            w.writerow({field: dw[k].get(field) or k for field in header}) 
 
    print 'number of barcodes before 
filtering:',len(barcode_dict_rows.keys()) 
    print 'number of barcodes after 
filtering:',len(filtered_barcodes_dict.keys()) 
 
    return filtered_barcodes_dict,filtered_barcodes_stats 
#############################################################################
############################################ 
#input: A dictionary of binary tag ids to corresponding row numbers list 
#output: A dictionary with binary tag ids to corresponding list of GFP fluor 
values 
 
def GFP_hist(binID_fname,data_fname,BY_fname,GFP_col,directory): 
 
    data = 
np.genfromtxt(data_fname,delimiter=',',dtype='float',skip_header=1) 
    bydata = 
np.genfromtxt(BY_fname,delimiter=',',dtype='float',skip_header=1) 
 
    with open(binID_fname,'r') as f: 
        binary_ID_dict = json.load(f) 
 
    GFP_dict = defaultdict(list) 
 
    BY_list = [] 
    for entry in bydata[:,1]: 
        if entry > 0: 
            BY_list.append(np.log10(entry)) 
 
    i = 0 
    j = 0 
    #large_clusters = 0 
    number_clusters = len(binary_ID_dict.keys()) 
    print 'the number of clusters for plotting is:',number_clusters 
    for binaryid in binary_ID_dict.keys(): 
        #print binaryid 
        for row in binary_ID_dict[binaryid]: 
            GFPval = data[row,GFP_col] 
            if GFPval > 0: 
                GFP_dict[binaryid].append(GFPval) 
        length = len(GFP_dict[binaryid]) 
        #print 'npoints in cluster is:',length 
        #only want to plot large clusters 
        #if length > 100: 
        #    large_clusters += 1 
    #print 'the number of large clusters is',large_clusters 
    plotgridsize = (np.int(np.ceil(float(number_clusters)/float(4))),4) 
 
    for binaryid in GFP_dict.keys(): 
        BYplot = BY_list[0:len(GFP_dict[binaryid])] 
        #print "i,j is: ", i,j 
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        #fig = plt.figure() 
        #plt.subplots(figsize=(20,10)) 
        ax = plt.subplot2grid(plotgridsize,(i,j)) 
        ax.hist(GFP_dict[binaryid],bins=100,range=[0,5],fc = 
(0,1,0,0.5),histtype='stepfilled') 
        ax.hist(BYplot,bins=100,range=[0,5],fc = 
(0.5,0.5,0.5,0.3),histtype='stepfilled') 
        if i != plotgridsize[0]-1: 
            ax.xaxis.set_visible(False) 
        plt.title(binaryid,fontsize=12) 
        plt.xticks(fontsize=10) 
        plt.yticks(fontsize=8) 
        plt.tight_layout() 
 
        if j < plotgridsize[1]-1: 
            j+=1 
        elif j == plotgridsize[1]-1 and i < plotgridsize[0]-1: 
            i+=1 
            j=0 
    plt.savefig(directory+'/GFP histograms.png') 
    #plt.show() 
    print 'finished plotting GFP histograms' 
    return GFP_dict 
 
#############################################################################
############################################ 
def plot_results(filename): 
    with open(filename,'r') as f: 
         hsv_dict = json.load(f) 
 
    #HSV dict has key binary id value row, point xy pair, label 
    print hsv_dict.keys() 
    for binaryID in hsv_dict: 
        print 'Binary ID:',binaryID 
        xy = map(lambda x: x[1],hsv_dict[binaryID]) 
        print len(xy) 
        labels = map(lambda labels: labels[2],hsv_dict[binaryID]) 
        unique_labels = set(labels) 
        #cluster 0 = red, cluster 1 = blue, cluster 2 = yellow 
        colors_dict = {0:'r',1:'b',2:'y',-1:'k'} 
 
        #bin data by labels 
        dict_by_label = defaultdict(list) 
        for index in range(0,len(labels)): 
            l = labels[index] 
            xyval = xy[index] 
            dict_by_label[l].append([xyval]) 
 
        fig,ax = plt.subplots() 
        for l in unique_labels: 
            x = map(lambda x: x[0][0],dict_by_label[l]) 
            y = map(lambda x: x[0][1],dict_by_label[l]) 
            #print l 
            #print len(x) 
            #plot clusters only 
            if l != -1: 
                



 235 

plt.plot(x,y,'.',markerfacecolor=colors_dict[l],markeredgecolor = 
'k',markersize=6) 
            #plot outliers and clusters 
            #if l == -1: 
            #    
plt.plot(x,y,'.',markerfacecolor=colors_dict[l],markeredgecolor = 
'k',markersize=2) 
            #else: 
            #    
plt.plot(x,y,'.',markerfacecolor=colors_dict[l],markeredgecolor = 
'k',markersize=6) 
        plt.title(binaryID) 
        plt.xlabel('CMYC') 
        plt.ylabel('HSV') 
        plt.axis([2.5,5.5,0,5]) 
        fig.savefig(binaryID+'.png') 
        #plt.show() 
############################################# 
def main(): 
 
    file_path = 
"/Users/Stefanie/PycharmProjects/untitled/Gen3_AcV5_T7_library" 
    file_path_binary = file_path + '/binary DBSCAN' 
    file_path_hsv = file_path+"/HSV" 
    file_path_ha = file_path+"/HA" 
    file_path_au = file_path+"/AU1" 
    file_path_epitopes = file_path+'/eptiope plots' 
    for i in 
[file_path,file_path_epitopes,file_path_au,file_path_ha,file_path_hsv,file_pa
th_binary]: 
        if not os.path.exists(i): 
            os.makedirs(i) 
    os.chdir(file_path) 
 
    start = time.time() 
    filename = '/Users/Stefanie/Desktop/Gen3 libraries clusters 
data/Gen3_library_18.csv' 
    #BY_fname = '/Users/Stefanie/Desktop/GFP+Bar mixes 4-2-17/Autofluor 
GFP.csv' 
 
    #used this for Gen3 libraries BY 
    #key is fluorophore, value[0] is epitope, value[1] is present or not?, 
value[2] is column data is stored in 
    tagspresent_dict = {'FSC':['FSC','yes',0],'AF647':['AU1','yes',1],'APC-
Cy7':['HIS','yes',2],'AF700':['V5','no',3],'Marina Blue':['GLU','yes',4], 
                       
'AF488':['CMYC','yes',5],'QDot525':['AU5','no',12],'PE':['HA','yes',6],'PE-
Cy5':['NA','no',7], 
                       'PE-Cy5.5':['HSV','yes',8],'PE-
Cy7':['FLAG','yes',9],'PE-TexasRed':['T7','no',10], 
                       'PerCP':['E2','no',11],'QDot705':['AcV5','no',13]} 
 
    #use this for BY Gen3 control sample 
    #tagspresent_dict = {'FSC':['FSC','yes',0],'APC':['AU1','yes',1],'APC-
Cy7':['AcV5','yes',2],'AF700':['AU5','yes',3], 
    #                    'Marina 
Blue':['GLU','yes',4],'AF488':['CMYC','yes',5],'QDot525':['V5','no',12],'PE':
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['HA','yes',6], 
    #                    'PE-Cy5':['NA','no',7],'PE-
Cy5.5':['HSV','yes',8],'PE-Cy7':['E2','yes',9],'PE-TexasRed':['T7','yes',10], 
    #                    'PerCP':['FLAG','yes',11],'QDot705':['HIS','no',13]} 
 
    #dictionary containing value to set negative data points to in linear 
space 
    tfval_dict = {'AF647':100,'APC-Cy7':100,'AF700':100,'Marina 
Blue':200,'QDot525':100,'PE':100,'PE-Cy5':10,'PE-Cy5.5':100, 
                  'PE-Cy7':10,'PE-
TexasRed':100,'PerCP':100,'QDot705':10,'AF488':1} 
 
    #name of file containing normalized log transformed data (you want to do 
binary dbscan on this) 
    norm_data_fname = file_path+'/normalized log transposed data.csv' 
    #name of file containing log transformed data 
    log_data_fname = file_path+'/log transposed data.csv' 
    #name of file with saved binary dbscan dictionary map epitope name to RPL 
list 
    dbscan_fname = file_path+'/binary dbscan clusters data.txt' 
    #name of file with binary dbscan dictionary map epitope name to label to 
RP list 
    dbscan_by_label_fname = file_path+'/dbscan binary dict by label.txt' 
    #name of file with binary dbscan dictionary map epitope name to label to 
RP list, where P is (cmyc,epitope fluor) 
    notnorm_by_label_fname = file_path+'/not norm binary dict by label.txt' 
    #name of dict with normalized binary dbscan stats, map epitope name to 
label to stats 
    stats_fname = file_path+'/dbscan norm stats.txt' 
    #name of dict with non-normalized binary dbscan stats, map epitope name 
to label to stats 
    stats_notnorm_fname = file_path+'/dbscan not norm stats.txt' 
    #name of dict with all binary clusters, maps epitope name to label to RP 
list, where P is epitope fluor 
    minmax_fname = file_path+'/all binary cluster data.txt' 
    #name of dict with binaryIDS mapped to rows in data matrix 
    binaryID_fname = file_path+'/binary_IDS_dict.txt' 
    #name of file containing dict of binaryID statistics (abundance, number 
points, MFIs, SDs) 
    binary_stats_fname = file_path+ '/BinaryID stats dict.txt' 
    #name of file containing dict of binaryID normalized statistics 
(abundance, number points, MFIs, SDs) 
    binary_norm_stats_fname = file_path+ '/BinaryID normalized stats 
dict.txt' 
    #name of file containing dict with filtered binaryIDs map to rows list 
    filtered_binary_dict_fname = file_path+'/filtered binary barcode 
dict.txt' 
    #name of file containing dict with filtered binaryIDs map to stats 
    filtered_binary_dict_stats_fname = file_path+'/filtered binary barcode 
stats.txt' 
    #name of dictionary with binaryid map to hsv label to 'HA' map to list of 
RPL pairs 
    final_barcode_dict_fname_ha = file_path+'/final barcode dict HA.txt' 
    #name of dictionary with binaryid map to hsv label to 'HA' map to list of 
RPL pairs 
    final_barcode_dict_fname_au1 = file_path+'/final barcode dict AU1.txt' 
    #name of dictionary with barcode ID mapped abundance and MFI, SD for 



 237 

fluororphores 
    final_barcode_abundance_fname = file_path+'/Barcode abundance dict.txt' 
    #name of dictionary with barcodeid mapped to rows list 
    final_barcode_dict_fname = file_path+'/barcodeID to rows dict.txt' 
 
 
    #use for BY control sample 
    #dbscanparams_dict = 
{'HIS':[0.08,50],'GLU':[0.08,50],'FLAG':[0.08,50],'HSV':[0.1,50] 
    #                    
,'HA':[0.1,40],'AU1':[0.1,80],'T7':[0.08,50],'E2':[0.08,50],'V5':[0.08,50] 
    #                    ,'AcV5':[0.08,50],'AU5':[0.08,50]} 
 
    #use for Gen3 BY libraries 
    dbscanparams_dict = 
{'HIS':[0.1,100],'GLU':[0.1,100],'FLAG':[0.1,100],'HSV_bin':[0.15,100] 
                        
,'HA_bin':[0.1,40],'AU1_bin':[0.1,80],'T7':[0.08,50],'E2':[0.08,50],'V5':[0.0
8,50] 
                        ,'AcV5':[0.08,50],'AU5':[0.08,50]} 
 
    #use for Gen3 control sample 
    #binary_signature_order = 
['T7','V5','AU5','AcV5','E2','HA','HSV','HIS','AU1','GLU','FLAG'] 
 
    #use for Gen3 BY Libs 
    binary_signature_order = ['T7','V5','AU5','AcV5','E2','HIS','GLU','FLAG'] 
 
 
    ############RUN FUNCTIONS################## 
    #transpose data, normalizes data 
    data = transposedata(filename,tagspresent_dict,tfval_dict,start) 
     
    #performs DBSCAN to cluster data subset, maps epitope name to RPL 
    binary_dict = defaultdict(list) 
    binary_dict = 
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict 
                                ,binary_dict=binary_dict,currfluor = 'Marina 
Blue',plotclusters = 
True,file_path_binary=file_path_binary,directory=file_path) 
    binary_dict = 
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict 
                                ,binary_dict=binary_dict,currfluor = 
'QDot525',plotclusters = 
True,file_path_binary=file_path_binary,directory=file_path) 
    binary_dict = 
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict 
                                ,binary_dict=binary_dict,currfluor = 
'QDot705',plotclusters = 
True,file_path_binary=file_path_binary,directory=file_path) 
    binary_dict = 
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict 
                                ,binary_dict=binary_dict,currfluor = 
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'PerCP',plotclusters = 
True,file_path_binary=file_path_binary,directory=file_path) 
    #binary_dict = 
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict 
    #                            ,binary_dict=binary_dict,currfluor = 
'PE',plotclusters = 
True,file_path_binary=file_path_binary,directory=file_path) 
    binary_dict = 
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict 
                                ,binary_dict=binary_dict,currfluor = 'PE-
Cy5',plotclusters = 
True,file_path_binary=file_path_binary,directory=file_path) 
    binary_dict = 
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict 
                                ,binary_dict=binary_dict,currfluor = 'PE-
TexasRed',plotclusters = 
True,file_path_binary=file_path_binary,directory=file_path) 
    #binary_dict = 
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict 
    #                            ,binary_dict=binary_dict,currfluor = 'PE-
Cy5.5',plotclusters = 
True,file_path_binary=file_path_binary,directory=file_path) 
    binary_dict = 
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict 
                                ,binary_dict=binary_dict,currfluor = 'PE-
Cy7',plotclusters = 
True,file_path_binary=file_path_binary,directory=file_path) 
    binary_dict = 
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict 
                                ,binary_dict=binary_dict,currfluor = 
'AF700',plotclusters = 
True,file_path_binary=file_path_binary,directory=file_path) 
    binary_dict = 
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict 
                                ,binary_dict=binary_dict,currfluor = 'APC-
Cy7',plotclusters = 
True,file_path_binary=file_path_binary,directory=file_path) 
    #binary_dict = 
binary_dbscan(norm_data_fname=log_data_fname,tagspresent_dict=tagspresent_dic
t,dbscanparams_dict=dbscanparams_dict 
    #                            ,binary_dict=binary_dict,currfluor = 
'AF647',plotclusters = 
True,file_path_binary=file_path_binary,directory=file_path) 
     
    #creates dictionary binning epitope name and label with RP list where 
points are (normalized epitope fluor, FSC) 
    DB_bin_dict_by_label = dbscan_binary_dict_by_label(dbscan_fname) 
     
    #creates dictionary binning epitope name and label with RP list where 
points are (cmyc fluor, epitope fluor) 
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    NN_binary_dict_by_label = 
notnorm_binary_dict_by_label(DB_bin_dict_by_label,log_data_fname,tagspresent_
dict) 
     
    #calcuates normalized statistics for each binary cluster 
    
calc_dbscan_stats(dict_by_label=DB_bin_dict_by_label,epitope_col=1,savefile='
dbscan norm stats.txt') 
     
    #calcuates non-normalized statistics for each binary cluster 
    
calc_dbscan_stats(dict_by_label=NN_binary_dict_by_label,epitope_col=1,savefil
e='dbscan not norm stats.txt') 
     
    #uses statistics computed from DBSCAN to figure out labels for all 
data,maps epitope to label to RP list, where P is epitope fluor 
    binary_minmax_dict = 
binary_minmax(tagspresent_dict,stats_fname=stats_notnorm_fname,data_fname=log
_data_fname) 
     
    #makes dictionary with row (corresponding to original data matrix) map to 
epitope name map to label 
    binary_dict_by_rows = binaryids_by_rows(minmax_fname=minmax_fname) 
     
    #makes dictionary with row map to binaryID (concatinated labels for each 
epitope) 
    row_binaryid_dict = 
make_row_binaryid_dict(binary_dict_by_rows,binary_signature_order) 
     
    #makes dictionary with binaryID map to list of rows 
    binaryid_row_dict = swap_binaryid_row_dict(row_binaryid_dict) 
     
    #calculates statistics for each binary ID (abundance, number points, 
MFIs) 
    [binid_stats_dict,binid_stats_dict_norm] = 
calc_binaryID_stats(tagspresent_dict,binID_fname=binaryID_fname,norm_data_fna
me=norm_data_fname,data_fname=log_data_fname) 
     
    #creates dictionary with binaryid map to 'epitope' map to list of 
points(cmyc,fluor) 
    plotdict = 
plot_binary_clusters_data(binaryID_fname=binaryID_fname,tagspresent_dict=tags
present_dict,data_fname=log_data_fname) 
     
    #plots data from plotdict epitope vs cmyc for all binaryids 
    
#plot_binary_clusters(plotdict,directory=file_path,file_path_plots=file_path_
epitopes) 
     
    #filters out FP barcodes based on expected value criteria 
    [filtered_binary_clusters,filtered_binary_stats] = 
filter_binary_clusters(binarydict_fname = 
binaryID_fname,binary_stats_fname=binary_stats_fname,expected_value=0.1) 
     
    #plots GFP histogram for each barcode 
    
#GFP_hist(binID_fname=binary_ID_large_fname,data_fname=log_data_fname,BY_fnam
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e=BY_fname,GFP_col=5,directory=file_path) 
 
    #######USE THESE ONLY IF YOU NEED TO USE KDE FILTERING FOR MULTIPLE 
INTENSITY EPITOPES########## 
    #clusters multi-intensity barcodes using DBSCAN and KDE filtering 
    final_multi_dict = defaultdict(lambda: defaultdict(lambda: 
defaultdict(list))) 
    #[multi_dict,final_multi_dict] = 
multicluster(dbscanparams_dict,tagspresent_dict,final_multi_dict,binaryid_fna
me=filtered_binary_dict_fname, 
    #                       
data_fname=log_data_fname,epitope_to_cluster='HSV',plotclusters=True,director
y=file_path,subdirectory=file_path_hsv) 
 
    #[multi_dict,final_multi_dict] = 
multicluster(dbscanparams_dict,tagspresent_dict,final_multi_dict,binaryid_fna
me=filtered_binary_dict_fname, 
    #                          
data_fname=log_data_fname,epitope_to_cluster='HA',plotclusters=True,directory
=file_path,subdirectory=file_path_ha) 
 
    [multi_dict,final_multi_dict] = 
multicluster(dbscanparams_dict,tagspresent_dict,final_multi_dict,binaryid_fna
me=filtered_binary_dict_fname, 
                              
data_fname=log_data_fname,epitope_to_cluster='AU1',plotclusters=True,director
y=file_path,subdirectory=file_path_au) 
 
    #creates dictionary of barcodeid (11 number string) to row list 
    [barcode_to_row_dict,barcode_abundance_dict] = 
make_barcode_table(fname=[final_barcode_dict_fname_ha,final_barcode_dict_fnam
e_au1],data_fname=log_data_fname,tagspresent_dict=tagspresent_dict) 
 
    #filters barcodes based on expected value criteria and returns new 
dictionary, csv file 
    [filtered_barcodes_dict,filtered_barcodes_stats] = 
filter_clusters_multi(rowsdictfilename=final_barcode_dict_fname,statsdictfile
name=final_barcode_abundance_fname,expected_value=0.01) 
 
 
    end = time.time() 
    print '--- %s seconds ---' % str(end - start) 
 
 
#call main 
if __name__ == "__main__": 
    main() 
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SOFTWARE ESTIMATION OF BARCODE IDENTITIES AND 
ABUNDANCES IN 11-EPITOPE TAG LIBRARIES  

Table H.1: Software estimation of barcode identities and abundances in 11-color 
library 

 

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 36444 13.38
00000000010 0 0 0 0 0 0 0 0 0 1 0 29822 10.95
00000000110 0 0 0 0 0 0 0 0 1 1 0 23510 8.63
00000010101 0 0 0 0 0 0 1 0 1 0 1 16813 6.17
00000000101 0 0 0 0 0 0 0 0 1 0 1 15542 5.71
00000001010 0 0 0 0 0 0 0 1 0 1 0 12717 4.67
00000010001 0 0 0 0 0 0 1 0 0 0 1 12548 4.61
00000000001 0 0 0 0 0 0 0 0 0 0 1 11548 4.24
00000000100 0 0 0 0 0 0 0 0 1 0 0 10946 4.02
00000010000 0 0 0 0 0 0 1 0 0 0 0 10143 3.72
00000000011 0 0 0 0 0 0 0 0 0 1 1 8153 2.99
00000020000 0 0 0 0 0 0 2 0 0 0 0 7679 2.82
00000010011 0 0 0 0 0 0 1 0 0 1 1 5549 2.04
00000200000 0 0 0 0 0 2 0 0 0 0 0 4363 1.60
00000100010 0 0 0 0 0 1 0 0 0 1 0 4081 1.50
00000101010 0 0 0 0 0 1 0 1 0 1 0 3156 1.16
00000010100 0 0 0 0 0 0 1 0 1 0 0 3155 1.16
00000100000 0 0 0 0 0 1 0 0 0 0 0 3103 1.14
00000001101 0 0 0 0 0 0 0 1 1 0 1 2875 1.06
00000020200 0 0 0 0 0 0 2 0 2 0 0 2780 1.02
00000020101 0 0 0 0 0 0 2 0 1 0 1 2649 0.97
00000010010 0 0 0 0 0 0 1 0 0 1 0 2235 0.82
00000001000 0 0 0 0 0 0 0 1 0 0 0 2137 0.78
00000011010 0 0 0 0 0 0 1 1 0 1 0 1981 0.73
00000020001 0 0 0 0 0 0 2 0 0 0 1 1906 0.70
00000010110 0 0 0 0 0 0 1 0 1 1 0 1887 0.69
00000001110 0 0 0 0 0 0 0 1 1 1 0 1616 0.59
00000001100 0 0 0 0 0 0 0 1 1 0 0 1599 0.59
00000110001 0 0 0 0 0 1 1 0 0 0 1 1586 0.58
00000210001 0 0 0 0 0 2 1 0 0 0 1 1426 0.52
00000100001 0 0 0 0 0 1 0 0 0 0 1 1414 0.52
00000200001 0 0 0 0 0 2 0 0 0 0 1 1322 0.49
00000210000 0 0 0 0 0 2 1 0 0 0 0 1278 0.47
00000021010 0 0 0 0 0 0 2 1 0 1 0 1109 0.41
00000020010 0 0 0 0 0 0 2 0 0 1 0 1085 0.40
00000000111 0 0 0 0 0 0 0 0 1 1 1 1084 0.40
00000111011 0 0 0 0 0 1 1 1 0 1 1 1082 0.40
00000020011 0 0 0 0 0 0 2 0 0 1 1 1032 0.38
00000220000 0 0 0 0 0 2 2 0 0 0 0 1013 0.37
00000101011 0 0 0 0 0 1 0 1 0 1 1 1001 0.37

T7 Library
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00000011000 0 0 0 0 0 0 1 1 0 0 0 1000 0.37
00000001200 0 0 0 0 0 0 0 1 2 0 0 955 0.35
00000110000 0 0 0 0 0 1 1 0 0 0 0 953 0.35
00000101100 0 0 0 0 0 1 0 1 1 0 0 902 0.33
00000020110 0 0 0 0 0 0 2 0 1 1 0 880 0.32
00000010111 0 0 0 0 0 0 1 0 1 1 1 801 0.29
00000011100 0 0 0 0 0 0 1 1 1 0 0 799 0.29
00000011101 0 0 0 0 0 0 1 1 1 0 1 700 0.26
00000120000 0 0 0 0 0 1 2 0 0 0 0 663 0.24
00000100011 0 0 0 0 0 1 0 0 0 1 1 642 0.24
00000210101 0 0 0 0 0 2 1 0 1 0 1 637 0.23
00000200101 0 0 0 0 0 2 0 0 1 0 1 506 0.19
00000001001 0 0 0 0 0 0 0 1 0 0 1 468 0.17
00000011200 0 0 0 0 0 0 1 1 2 0 0 463 0.17
00000111100 0 0 0 0 0 1 1 1 1 0 0 463 0.17
00000110101 0 0 0 0 0 1 1 0 1 0 1 435 0.16
00000110011 0 0 0 0 0 1 1 0 0 1 1 347 0.13
00000200100 0 0 0 0 0 2 0 0 1 0 0 334 0.12
00000011110 0 0 0 0 0 0 1 1 1 1 0 327 0.12
00000100101 0 0 0 0 0 1 0 0 1 0 1 323 0.12
00000220001 0 0 0 0 0 2 2 0 0 0 1 293 0.11
00000110010 0 0 0 0 0 1 1 0 0 1 0 259 0.10
00000121010 0 0 0 0 0 1 2 1 0 1 0 241 0.09
00000211011 0 0 0 0 0 2 1 1 0 1 1 241 0.09
00000100110 0 0 0 0 0 1 0 0 1 1 0 236 0.09
00000101000 0 0 0 0 0 1 0 1 0 0 0 234 0.09
00000120001 0 0 0 0 0 1 2 0 0 0 1 233 0.09
00000201011 0 0 0 0 0 2 0 1 0 1 1 212 0.08
00000000210 0 0 0 0 0 0 0 0 2 1 0 199 0.07
00000101101 0 0 0 0 0 1 0 1 1 0 1 176 0.06
00000220101 0 0 0 0 0 2 2 0 1 0 1 153 0.06
00000020100 0 0 0 0 0 0 2 0 1 0 0 147 0.05
00000021011 0 0 0 0 0 0 2 1 0 1 1 142 0.05
00000111000 0 0 0 0 0 1 1 1 0 0 0 129 0.05
00000020111 0 0 0 0 0 0 2 0 1 1 1 123 0.05
00000011001 0 0 0 0 0 0 1 1 0 0 1 119 0.04
00000210100 0 0 0 0 0 2 1 0 1 0 0 117 0.04
00000111111 0 0 0 0 0 1 1 1 1 1 1 113 0.04
00000101111 0 0 0 0 0 1 0 1 1 1 1 112 0.04



 243 

 

Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 24567 14.89
00000000010 0 0 0 0 0 0 0 0 0 1 0 22146 13.42
00000000110 0 0 0 0 0 0 0 0 1 1 0 16149 9.78
00000101010 0 0 0 0 0 1 0 1 0 1 0 7723 4.68
00000010001 0 0 0 0 0 0 1 0 0 0 1 7481 4.53
00000010000 0 0 0 0 0 0 1 0 0 0 0 7263 4.40
00000000100 0 0 0 0 0 0 0 0 1 0 0 6587 3.99
00000010101 0 0 0 0 0 0 1 0 1 0 1 6563 3.98
00000010011 0 0 0 0 0 0 1 0 0 1 1 6146 3.72
00000000001 0 0 0 0 0 0 0 0 0 0 1 4204 2.55
00000201010 0 0 0 0 0 2 0 1 0 1 0 4191 2.54
00000200000 0 0 0 0 0 2 0 0 0 0 0 3955 2.40
00000000011 0 0 0 0 0 0 0 0 0 1 1 3745 2.27
00000000101 0 0 0 0 0 0 0 0 1 0 1 3555 2.15
00000100010 0 0 0 0 0 1 0 0 0 1 0 2381 1.44
00000001000 0 0 0 0 0 0 0 1 0 0 0 2304 1.40
00000010010 0 0 0 0 0 0 1 0 0 1 0 2063 1.25
00000010100 0 0 0 0 0 0 1 0 1 0 0 1888 1.14
00000101110 0 0 0 0 0 1 0 1 1 1 0 1836 1.11
00000001100 0 0 0 0 0 0 0 1 1 0 0 1715 1.04
00000011011 0 0 0 0 0 0 1 1 0 1 1 1588 0.96
00000001101 0 0 0 0 0 0 0 1 1 0 1 1555 0.94
00000010110 0 0 0 0 0 0 1 0 1 1 0 1531 0.93
00000100000 0 0 0 0 0 1 0 0 0 0 0 1419 0.86
00000110001 0 0 0 0 0 1 1 0 0 0 1 1344 0.81
00000011000 0 0 0 0 0 0 1 1 0 0 0 1307 0.79
00000210000 0 0 0 0 0 2 1 0 0 0 0 1203 0.73
00000010111 0 0 0 0 0 0 1 0 1 1 1 1113 0.67
00000021010 0 0 0 0 0 0 2 1 0 1 0 1047 0.63
00000011100 0 0 0 0 0 0 1 1 1 0 0 1019 0.62
00000020001 0 0 0 0 0 0 2 0 0 0 1 950 0.58
00000111010 0 0 0 0 0 1 1 1 0 1 0 947 0.57
00000011010 0 0 0 0 0 0 1 1 0 1 0 918 0.56
00000020101 0 0 0 0 0 0 2 0 1 0 1 862 0.52
00000100001 0 0 0 0 0 1 0 0 0 0 1 808 0.49
00000001011 0 0 0 0 0 0 0 1 0 1 1 736 0.45
00000210101 0 0 0 0 0 2 1 0 1 0 1 719 0.44
00000000111 0 0 0 0 0 0 0 0 1 1 1 616 0.37
00000110011 0 0 0 0 0 1 1 0 0 1 1 584 0.35
00000121010 0 0 0 0 0 1 2 1 0 1 0 565 0.34

V5 Library
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00000100110 0 0 0 0 0 1 0 0 1 1 0 522 0.32
00000011201 0 0 0 0 0 0 1 1 2 0 1 500 0.30
00000110101 0 0 0 0 0 1 1 0 1 0 1 446 0.27
00000100011 0 0 0 0 0 1 0 0 0 1 1 413 0.25
00000210001 0 0 0 0 0 2 1 0 0 0 1 411 0.25
00000200101 0 0 0 0 0 2 0 0 1 0 1 393 0.24
00000110000 0 0 0 0 0 1 1 0 0 0 0 381 0.23
00000020010 0 0 0 0 0 0 2 0 0 1 0 366 0.22
00000011110 0 0 0 0 0 0 1 1 1 1 0 349 0.21
00000200100 0 0 0 0 0 2 0 0 1 0 0 339 0.21
00000020000 0 0 0 0 0 0 2 0 0 0 0 335 0.20
00000100101 0 0 0 0 0 1 0 0 1 0 1 276 0.17
00000011111 0 0 0 0 0 0 1 1 1 1 1 258 0.16
00000001001 0 0 0 0 0 0 0 1 0 0 1 253 0.15
00000200001 0 0 0 0 0 2 0 0 0 0 1 219 0.13
00000020210 0 0 0 0 0 0 2 0 2 1 0 216 0.13
00000110010 0 0 0 0 0 1 1 0 0 1 0 184 0.11
00000100100 0 0 0 0 0 1 0 0 1 0 0 152 0.09
00000111011 0 0 0 0 0 1 1 1 0 1 1 146 0.09
00000120001 0 0 0 0 0 1 2 0 0 0 1 140 0.08
00000001111 0 0 0 0 0 0 0 1 1 1 1 118 0.07
00000020100 0 0 0 0 0 0 2 0 1 0 0 109 0.07
00000021110 0 0 0 0 0 0 2 1 1 1 0 104 0.06
00000201110 0 0 0 0 0 2 0 1 1 1 0 100 0.06
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Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 10395 20.15
00000010001 0 0 0 0 0 0 1 0 0 0 1 3771 7.31
00000010000 0 0 0 0 0 0 1 0 0 0 0 3714 7.20
00000000100 0 0 0 0 0 0 0 0 1 0 0 3221 6.24
00000010101 0 0 0 0 0 0 1 0 1 0 1 2740 5.31
00000000001 0 0 0 0 0 0 0 0 0 0 1 2677 5.19
00000000011 0 0 0 0 0 0 0 0 0 1 1 2541 4.93
00000101010 0 0 0 0 0 1 0 1 0 1 0 2204 4.27
00000000101 0 0 0 0 0 0 0 0 1 0 1 1908 3.70
00000010011 0 0 0 0 0 0 1 0 0 1 1 1885 3.65
00000200000 0 0 0 0 0 2 0 0 0 0 0 1645 3.19
00000201010 0 0 0 0 0 2 0 1 0 1 0 1452 2.81
00000020000 0 0 0 0 0 0 2 0 0 0 0 1419 2.75
00000100000 0 0 0 0 0 1 0 0 0 0 0 1279 2.48
00000010100 0 0 0 0 0 0 1 0 1 0 0 1197 2.32
00000001101 0 0 0 0 0 0 0 1 1 0 1 1016 1.97
00000210000 0 0 0 0 0 2 1 0 0 0 0 603 1.17
00000110001 0 0 0 0 0 1 1 0 0 0 1 565 1.10
00000001000 0 0 0 0 0 0 0 1 0 0 0 514 1.00
00000020100 0 0 0 0 0 0 2 0 1 0 0 459 0.89
00000000111 0 0 0 0 0 0 0 0 1 1 1 448 0.87
00000110000 0 0 0 0 0 1 1 0 0 0 0 416 0.81
00000001100 0 0 0 0 0 0 0 1 1 0 0 405 0.79
00000010111 0 0 0 0 0 0 1 0 1 1 1 382 0.74
00000011000 0 0 0 0 0 0 1 1 0 0 0 381 0.74
00000101110 0 0 0 0 0 1 0 1 1 1 0 381 0.74
00000100001 0 0 0 0 0 1 0 0 0 0 1 351 0.68
00000011011 0 0 0 0 0 0 1 1 0 1 1 337 0.65
00000211010 0 0 0 0 0 2 1 1 0 1 0 291 0.56
00000011100 0 0 0 0 0 0 1 1 1 0 0 272 0.53
00000100011 0 0 0 0 0 1 0 0 0 1 1 268 0.52
00000101100 0 0 0 0 0 1 0 1 1 0 0 240 0.47
00000220000 0 0 0 0 0 2 2 0 0 0 0 204 0.40
00000001011 0 0 0 0 0 0 0 1 0 1 1 183 0.35
00000110011 0 0 0 0 0 1 1 0 0 1 1 165 0.32
00000011001 0 0 0 0 0 0 1 1 0 0 1 162 0.31
00000111100 0 0 0 0 0 1 1 1 1 0 0 151 0.29
00000021010 0 0 0 0 0 0 2 1 0 1 0 145 0.28
00000120000 0 0 0 0 0 1 2 0 0 0 0 139 0.27
00000110101 0 0 0 0 0 1 1 0 1 0 1 136 0.26

T7/V5/AU5 Library

00000001001 0 0 0 0 0 0 0 1 0 0 1 135 0.26
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Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 12343 15.25
00000000010 0 0 0 0 0 0 0 0 0 1 0 8290 10.24
00000000110 0 0 0 0 0 0 0 0 1 1 0 5852 7.23
00000010000 0 0 0 0 0 0 1 0 0 0 0 5106 6.31
00000010001 0 0 0 0 0 0 1 0 0 0 1 4639 5.73
00000020000 0 0 0 0 0 0 2 0 0 0 0 4174 5.16
00000000001 0 0 0 0 0 0 0 0 0 0 1 4142 5.12
00000000100 0 0 0 0 0 0 0 0 1 0 0 4084 5.05
00000010101 0 0 0 0 0 0 1 0 1 0 1 3682 4.55
00000000101 0 0 0 0 0 0 0 0 1 0 1 3111 3.84
00000001010 0 0 0 0 0 0 0 1 0 1 0 2170 2.68
00000200000 0 0 0 0 0 2 0 0 0 0 0 1857 2.29
00000010100 0 0 0 0 0 0 1 0 1 0 0 1717 2.12
00000020100 0 0 0 0 0 0 2 0 1 0 0 1551 1.92
00000000011 0 0 0 0 0 0 0 0 0 1 1 1409 1.74
00000010010 0 0 0 0 0 0 1 0 0 1 0 1162 1.44
00000100000 0 0 0 0 0 1 0 0 0 0 0 968 1.20
00000010011 0 0 0 0 0 0 1 0 0 1 1 856 1.06
00000210000 0 0 0 0 0 2 1 0 0 0 0 801 0.99
00000100001 0 0 0 0 0 1 0 0 0 0 1 799 0.99
00000010110 0 0 0 0 0 0 1 0 1 1 0 793 0.98
00000001000 0 0 0 0 0 0 0 1 0 0 0 764 0.94
00000001100 0 0 0 0 0 0 0 1 1 0 0 753 0.93
00000110001 0 0 0 0 0 1 1 0 0 0 1 750 0.93
00000220000 0 0 0 0 0 2 2 0 0 0 0 677 0.84
00000100101 0 0 0 0 0 1 0 0 1 0 1 570 0.70
00000100010 0 0 0 0 0 1 0 0 0 1 0 520 0.64
00000200100 0 0 0 0 0 2 0 0 1 0 0 434 0.54
00000120000 0 0 0 0 0 1 2 0 0 0 0 430 0.53
00000101010 0 0 0 0 0 1 0 1 0 1 0 390 0.48
00000210101 0 0 0 0 0 2 1 0 1 0 1 359 0.44
00000011100 0 0 0 0 0 0 1 1 1 0 0 358 0.44
00000110000 0 0 0 0 0 1 1 0 0 0 0 354 0.44
00000001101 0 0 0 0 0 0 0 1 1 0 1 348 0.43
00000020001 0 0 0 0 0 0 2 0 0 0 1 345 0.43
00000011000 0 0 0 0 0 0 1 1 0 0 0 306 0.38
00000110010 0 0 0 0 0 1 1 0 0 1 0 301 0.37
00000110101 0 0 0 0 0 1 1 0 1 0 1 294 0.36
00000001110 0 0 0 0 0 0 0 1 1 1 0 284 0.35
00000000111 0 0 0 0 0 0 0 0 1 1 1 276 0.34

T7/V5/E2 Library
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00000020101 0 0 0 0 0 0 2 0 1 0 1 262 0.32
00000210001 0 0 0 0 0 2 1 0 0 0 1 185 0.23
00000100100 0 0 0 0 0 1 0 0 1 0 0 185 0.23
00000210100 0 0 0 0 0 2 1 0 1 0 0 177 0.22
00000100011 0 0 0 0 0 1 0 0 0 1 1 165 0.20
00000100110 0 0 0 0 0 1 0 0 1 1 0 151 0.19
00000011010 0 0 0 0 0 0 1 1 0 1 0 150 0.19
00000101100 0 0 0 0 0 1 0 1 1 0 0 148 0.18
00000220100 0 0 0 0 0 2 2 0 1 0 0 135 0.17
00000010111 0 0 0 0 0 0 1 0 1 1 1 133 0.16
00000001001 0 0 0 0 0 0 0 1 0 0 1 125 0.15
00000110110 0 0 0 0 0 1 1 0 1 1 0 111 0.14
00000200010 0 0 0 0 0 2 0 0 0 1 0 104 0.13
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Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000110 0 0 0 0 0 0 0 0 1 1 0 16049 11.98
00000000000 0 0 0 0 0 0 0 0 0 0 0 15474 11.55
00000000010 0 0 0 0 0 0 0 0 0 1 0 14484 10.81
00000101010 0 0 0 0 0 1 0 1 0 1 0 7616 5.69
00000000200 0 0 0 0 0 0 0 0 2 0 0 6458 4.82
00000010101 0 0 0 0 0 0 1 0 1 0 1 5335 3.98
00000000101 0 0 0 0 0 0 0 0 1 0 1 5298 3.96
00000201010 0 0 0 0 0 2 0 1 0 1 0 4824 3.60
00000000011 0 0 0 0 0 0 0 0 0 1 1 4180 3.12
00000200000 0 0 0 0 0 2 0 0 0 0 0 4049 3.02
00000010001 0 0 0 0 0 0 1 0 0 0 1 4042 3.02
00000000001 0 0 0 0 0 0 0 0 0 0 1 4037 3.01
00000010011 0 0 0 0 0 0 1 0 0 1 1 3704 2.77
00000010000 0 0 0 0 0 0 1 0 0 0 0 3591 2.68
00000100010 0 0 0 0 0 1 0 0 0 1 0 2032 1.52
00000100000 0 0 0 0 0 1 0 0 0 0 0 2003 1.50
00000010110 0 0 0 0 0 0 1 0 1 1 0 1999 1.49
00000001000 0 0 0 0 0 0 0 1 0 0 0 1743 1.30
00000020000 0 0 0 0 0 0 2 0 0 0 0 1742 1.30
00000001101 0 0 0 0 0 0 0 1 1 0 1 1691 1.26
00000020101 0 0 0 0 0 0 2 0 1 0 1 1536 1.15
00000010100 0 0 0 0 0 0 1 0 1 0 0 1501 1.12
00000010010 0 0 0 0 0 0 1 0 0 1 0 1430 1.07
00000021010 0 0 0 0 0 0 2 1 0 1 0 1222 0.91
00000011000 0 0 0 0 0 0 1 1 0 0 0 1221 0.91
00000020001 0 0 0 0 0 0 2 0 0 0 1 1194 0.89
00000000111 0 0 0 0 0 0 0 0 1 1 1 1046 0.78
00000210000 0 0 0 0 0 2 1 0 0 0 0 1035 0.77
00000001100 0 0 0 0 0 0 0 1 1 0 0 997 0.74
00000010111 0 0 0 0 0 0 1 0 1 1 1 965 0.72
00000111010 0 0 0 0 0 1 1 1 0 1 0 835 0.62
00000011100 0 0 0 0 0 0 1 1 1 0 0 691 0.52
00000100011 0 0 0 0 0 1 0 0 0 1 1 681 0.51
00000020100 0 0 0 0 0 0 2 0 1 0 0 647 0.48
00000110000 0 0 0 0 0 1 1 0 0 0 0 572 0.43
00000110011 0 0 0 0 0 1 1 0 0 1 1 563 0.42
00000211010 0 0 0 0 0 2 1 1 0 1 0 543 0.41
00000220000 0 0 0 0 0 2 2 0 0 0 0 467 0.35
00000101110 0 0 0 0 0 1 0 1 1 1 0 450 0.34
00000120010 0 0 0 0 0 1 2 0 0 1 0 423 0.32

E2 Library
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00000111011 0 0 0 0 0 1 1 1 0 1 1 411 0.31
00000101011 0 0 0 0 0 1 0 1 0 1 1 395 0.29
00000020010 0 0 0 0 0 0 2 0 0 1 0 378 0.28
00000121010 0 0 0 0 0 1 2 1 0 1 0 334 0.25
00000020110 0 0 0 0 0 0 2 0 1 1 0 308 0.23
00000100110 0 0 0 0 0 1 0 0 1 1 0 294 0.22
00000120001 0 0 0 0 0 1 2 0 0 0 1 279 0.21
00000101100 0 0 0 0 0 1 0 1 1 0 0 227 0.17
00000120000 0 0 0 0 0 1 2 0 0 0 0 222 0.17
00000001001 0 0 0 0 0 0 0 1 0 0 1 221 0.16
00000120101 0 0 0 0 0 1 2 0 1 0 1 210 0.16
00000201011 0 0 0 0 0 2 0 1 0 1 1 170 0.13
00000000100 0 0 0 0 0 0 0 0 1 0 0 157 0.12
00000111100 0 0 0 0 0 1 1 1 1 0 0 150 0.11
00000200200 0 0 0 0 0 2 0 0 2 0 0 145 0.11
00000021011 0 0 0 0 0 0 2 1 0 1 1 140 0.10
00000110111 0 0 0 0 0 1 1 0 1 1 1 135 0.10
00000211011 0 0 0 0 0 2 1 1 0 1 1 134 0.10
00000111111 0 0 0 0 0 1 1 1 1 1 1 131 0.10
00000100111 0 0 0 0 0 1 0 0 1 1 1 121 0.09
00000101111 0 0 0 0 0 1 0 1 1 1 1 116 0.09
00000101000 0 0 0 0 0 1 0 1 0 0 0 109 0.08
00000211110 0 0 0 0 0 2 1 1 1 1 0 100 0.07
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Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 28687 13.71
00000000010 0 0 0 0 0 0 0 0 0 1 0 21597 10.32
00000000110 0 0 0 0 0 0 0 0 1 1 0 16781 8.02
00000010001 0 0 0 0 0 0 1 0 0 0 1 11045 5.28
00000010000 0 0 0 0 0 0 1 0 0 0 0 9533 4.56
00000010011 0 0 0 0 0 0 1 0 0 1 1 8464 4.05
00000000200 0 0 0 0 0 0 0 0 2 0 0 7909 3.78
00000000001 0 0 0 0 0 0 0 0 0 0 1 7880 3.77
00000010101 0 0 0 0 0 0 1 0 1 0 1 7800 3.73
00000101010 0 0 0 0 0 1 0 1 0 1 0 7375 3.53
00000000011 0 0 0 0 0 0 0 0 0 1 1 7011 3.35
00000000101 0 0 0 0 0 0 0 0 1 0 1 5397 2.58
00000200000 0 0 0 0 0 2 0 0 0 0 0 5011 2.40
00000201010 0 0 0 0 0 2 0 1 0 1 0 4552 2.18
00000100010 0 0 0 0 0 1 0 0 0 1 0 4543 2.17
00000001101 0 0 0 0 0 0 0 1 1 0 1 2834 1.35
00000010010 0 0 0 0 0 0 1 0 0 1 0 2802 1.34
00000010100 0 0 0 0 0 0 1 0 1 0 0 2618 1.25
00000020000 0 0 0 0 0 0 2 0 0 0 0 2439 1.17
00000020001 0 0 0 0 0 0 2 0 0 0 1 2285 1.09
00000001100 0 0 0 0 0 0 0 1 1 0 0 2216 1.06
00000010110 0 0 0 0 0 0 1 0 1 1 0 2162 1.03
00000001000 0 0 0 0 0 0 0 1 0 0 0 1985 0.95
00000100000 0 0 0 0 0 1 0 0 0 0 0 1901 0.91
00000011010 0 0 0 0 0 0 1 1 0 1 0 1827 0.87
00000010111 0 0 0 0 0 0 1 0 1 1 1 1728 0.83
00000210000 0 0 0 0 0 2 1 0 0 0 0 1697 0.81
00000011100 0 0 0 0 0 0 1 1 1 0 0 1590 0.76
00000110001 0 0 0 0 0 1 1 0 0 0 1 1491 0.71
00000020101 0 0 0 0 0 0 2 0 1 0 1 1485 0.71
00000011011 0 0 0 0 0 0 1 1 0 1 1 1405 0.67
00000011000 0 0 0 0 0 0 1 1 0 0 0 1379 0.66
00000000111 0 0 0 0 0 0 0 0 1 1 1 1376 0.66
00000100110 0 0 0 0 0 1 0 0 1 1 0 1254 0.60
00000101110 0 0 0 0 0 1 0 1 1 1 0 1174 0.56
00000111010 0 0 0 0 0 1 1 1 0 1 0 1166 0.56
00000100001 0 0 0 0 0 1 0 0 0 0 1 1014 0.48
00000110011 0 0 0 0 0 1 1 0 0 1 1 873 0.42
00000121010 0 0 0 0 0 1 2 1 0 1 0 732 0.35
00000100011 0 0 0 0 0 1 0 0 0 1 1 726 0.35

AU5 Library
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00000101011 0 0 0 0 0 1 0 1 0 1 1 630 0.30
00000110000 0 0 0 0 0 1 1 0 0 0 0 611 0.29
00000110010 0 0 0 0 0 1 1 0 0 1 0 610 0.29
00000210101 0 0 0 0 0 2 1 0 1 0 1 604 0.29
00000020011 0 0 0 0 0 0 2 0 0 1 1 603 0.29
00000001001 0 0 0 0 0 0 0 1 0 0 1 600 0.29
00000021010 0 0 0 0 0 0 2 1 0 1 0 596 0.28
00000020010 0 0 0 0 0 0 2 0 0 1 0 583 0.28
00000020100 0 0 0 0 0 0 2 0 1 0 0 573 0.27
00000020110 0 0 0 0 0 0 2 0 1 1 0 474 0.23
00000101100 0 0 0 0 0 1 0 1 1 0 0 473 0.23
00000220000 0 0 0 0 0 2 2 0 0 0 0 459 0.22
00000110101 0 0 0 0 0 1 1 0 1 0 1 438 0.21
00000011201 0 0 0 0 0 0 1 1 2 0 1 419 0.20
00000210001 0 0 0 0 0 2 1 0 0 0 1 411 0.20
00000011111 0 0 0 0 0 0 1 1 1 1 1 408 0.20
00000111100 0 0 0 0 0 1 1 1 1 0 0 403 0.19
00000120001 0 0 0 0 0 1 2 0 0 0 1 395 0.19
00000200101 0 0 0 0 0 2 0 0 1 0 1 388 0.19
00000011110 0 0 0 0 0 0 1 1 1 1 0 341 0.16
00000100101 0 0 0 0 0 1 0 0 1 0 1 303 0.14
00000200001 0 0 0 0 0 2 0 0 0 0 1 274 0.13
00000101111 0 0 0 0 0 1 0 1 1 1 1 258 0.12
00000200200 0 0 0 0 0 2 0 0 2 0 0 242 0.12
00000100200 0 0 0 0 0 1 0 0 2 0 0 220 0.11
00000120101 0 0 0 0 0 1 2 0 1 0 1 206 0.10
00000120000 0 0 0 0 0 1 2 0 0 0 0 192 0.09
00000201110 0 0 0 0 0 2 0 1 1 1 0 161 0.08
00000110110 0 0 0 0 0 1 1 0 1 1 0 143 0.07
00000001201 0 0 0 0 0 0 0 1 2 0 1 140 0.07
00000021110 0 0 0 0 0 0 2 1 1 1 0 137 0.07
00000120010 0 0 0 0 0 1 2 0 0 1 0 126 0.06
00000020111 0 0 0 0 0 0 2 0 1 1 1 117 0.06
00000210100 0 0 0 0 0 2 1 0 1 0 0 100 0.05
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Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000010 0 0 0 0 0 0 0 0 0 1 0 23611 15.03
00000000000 0 0 0 0 0 0 0 0 0 0 0 18132 11.54
00000101010 0 0 0 0 0 1 0 1 0 1 0 8496 5.41
00000000110 0 0 0 0 0 0 0 0 1 1 0 8435 5.37
00000010000 0 0 0 0 0 0 1 0 0 0 0 7912 5.04
00000100010 0 0 0 0 0 1 0 0 0 1 0 5709 3.63
00000000100 0 0 0 0 0 0 0 0 1 0 0 5644 3.59
00000000001 0 0 0 0 0 0 0 0 0 0 1 5401 3.44
00000201010 0 0 0 0 0 2 0 1 0 1 0 4982 3.17
00000000011 0 0 0 0 0 0 0 0 0 1 1 4941 3.14
00000010011 0 0 0 0 0 0 1 0 0 1 1 4572 2.91
00000000101 0 0 0 0 0 0 0 0 1 0 1 4410 2.81
00000010101 0 0 0 0 0 0 1 0 1 0 1 4202 2.67
00000010010 0 0 0 0 0 0 1 0 0 1 0 4190 2.67
00000200000 0 0 0 0 0 2 0 0 0 0 0 4172 2.66
00000010001 0 0 0 0 0 0 1 0 0 0 1 4066 2.59
00000010100 0 0 0 0 0 0 1 0 1 0 0 2494 1.59
00000010110 0 0 0 0 0 0 1 0 1 1 0 2153 1.37
00000001101 0 0 0 0 0 0 0 1 1 0 1 2057 1.31
00000210000 0 0 0 0 0 2 1 0 0 0 0 1933 1.23
00000020000 0 0 0 0 0 0 2 0 0 0 0 1821 1.16
00000001000 0 0 0 0 0 0 0 1 0 0 0 1778 1.13
00000100000 0 0 0 0 0 1 0 0 0 0 0 1567 1.00
00000111010 0 0 0 0 0 1 1 1 0 1 0 1227 0.78
00000000111 0 0 0 0 0 0 0 0 1 1 1 1161 0.74
00000110011 0 0 0 0 0 1 1 0 0 1 1 1084 0.69
00000001100 0 0 0 0 0 0 0 1 1 0 0 1061 0.68
00000011000 0 0 0 0 0 0 1 1 0 0 0 1038 0.66
00000100110 0 0 0 0 0 1 0 0 1 1 0 1026 0.65
00000110010 0 0 0 0 0 1 1 0 0 1 0 1011 0.64
00000111011 0 0 0 0 0 1 1 1 0 1 1 874 0.56
00000010111 0 0 0 0 0 0 1 0 1 1 1 826 0.53
00000021010 0 0 0 0 0 0 2 1 0 1 0 817 0.52
00000020010 0 0 0 0 0 0 2 0 0 1 0 794 0.51
00000101011 0 0 0 0 0 1 0 1 0 1 1 777 0.49
00000000210 0 0 0 0 0 0 0 0 2 1 0 761 0.48
00000110000 0 0 0 0 0 1 1 0 0 0 0 755 0.48
00000101110 0 0 0 0 0 1 0 1 1 1 0 719 0.46
00000100011 0 0 0 0 0 1 0 0 0 1 1 710 0.45
00000020001 0 0 0 0 0 0 2 0 0 0 1 636 0.40

V5/AU5 Library
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00000011100 0 0 0 0 0 0 1 1 1 0 0 617 0.39
00000020100 0 0 0 0 0 0 2 0 1 0 0 608 0.39
00000020101 0 0 0 0 0 0 2 0 1 0 1 562 0.36
00000020011 0 0 0 0 0 0 2 0 0 1 1 559 0.36
00000220000 0 0 0 0 0 2 2 0 0 0 0 472 0.30
00000211010 0 0 0 0 0 2 1 1 0 1 0 470 0.30
00000200101 0 0 0 0 0 2 0 0 1 0 1 441 0.28
00000100001 0 0 0 0 0 1 0 0 0 0 1 439 0.28
00000200100 0 0 0 0 0 2 0 0 1 0 0 418 0.27
00000111110 0 0 0 0 0 1 1 1 1 1 0 393 0.25
00000121010 0 0 0 0 0 1 2 1 0 1 0 356 0.23
00000001001 0 0 0 0 0 0 0 1 0 0 1 332 0.21
00000100111 0 0 0 0 0 1 0 0 1 1 1 302 0.19
00000100101 0 0 0 0 0 1 0 0 1 0 1 229 0.15
00000120000 0 0 0 0 0 1 2 0 0 0 0 226 0.14
00000200001 0 0 0 0 0 2 0 0 0 0 1 215 0.14
00000110110 0 0 0 0 0 1 1 0 1 1 0 206 0.13
00000020210 0 0 0 0 0 0 2 0 2 1 0 203 0.13
00000120010 0 0 0 0 0 1 2 0 0 1 0 188 0.12
00000210100 0 0 0 0 0 2 1 0 1 0 0 186 0.12
00000101100 0 0 0 0 0 1 0 1 1 0 0 179 0.11
00000201110 0 0 0 0 0 2 0 1 1 1 0 178 0.11
00000011001 0 0 0 0 0 0 1 1 0 0 1 143 0.09
00000120101 0 0 0 0 0 1 2 0 1 0 1 124 0.08
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Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 16719 13.77
00000000010 0 0 0 0 0 0 0 0 0 1 0 15570 12.82
00000000110 0 0 0 0 0 0 0 0 1 1 0 10495 8.64
00000000200 0 0 0 0 0 0 0 0 2 0 0 6562 5.40
00000000001 0 0 0 0 0 0 0 0 0 0 1 5921 4.88
00000010001 0 0 0 0 0 0 1 0 0 0 1 5716 4.71
00000000101 0 0 0 0 0 0 0 0 1 0 1 5409 4.46
00000010101 0 0 0 0 0 0 1 0 1 0 1 5383 4.43
00000200000 0 0 0 0 0 2 0 0 0 0 0 4319 3.56
00000001010 0 0 0 0 0 0 0 1 0 1 0 4240 3.49
00000001101 0 0 0 0 0 0 0 1 1 0 1 3196 2.63
00000010000 0 0 0 0 0 0 1 0 0 0 0 2804 2.31
00000000011 0 0 0 0 0 0 0 0 0 1 1 2689 2.21
00000010011 0 0 0 0 0 0 1 0 0 1 1 2584 2.13
00000001000 0 0 0 0 0 0 0 1 0 0 0 2199 1.81
00000010010 0 0 0 0 0 0 1 0 0 1 0 2057 1.69
00000001100 0 0 0 0 0 0 0 1 1 0 0 1910 1.57
00000100010 0 0 0 0 0 1 0 0 0 1 0 1644 1.35
00000020000 0 0 0 0 0 0 2 0 0 0 0 1356 1.12
00000001110 0 0 0 0 0 0 0 1 1 1 0 1348 1.11
00000011000 0 0 0 0 0 0 1 1 0 0 0 1310 1.08
00000010100 0 0 0 0 0 0 1 0 1 0 0 1143 0.94
00000011100 0 0 0 0 0 0 1 1 1 0 0 1111 0.92
00000010210 0 0 0 0 0 0 1 0 2 1 0 1022 0.84
00000011011 0 0 0 0 0 0 1 1 0 1 1 820 0.68
00000011101 0 0 0 0 0 0 1 1 1 0 1 801 0.66
00000210000 0 0 0 0 0 2 1 0 0 0 0 725 0.60
00000011010 0 0 0 0 0 0 1 1 0 1 0 713 0.59
00000000111 0 0 0 0 0 0 0 0 1 1 1 664 0.55
00000020001 0 0 0 0 0 0 2 0 0 0 1 655 0.54
00000100110 0 0 0 0 0 1 0 0 1 1 0 649 0.53
00000101010 0 0 0 0 0 1 0 1 0 1 0 634 0.52
00000010111 0 0 0 0 0 0 1 0 1 1 1 618 0.51
00000020100 0 0 0 0 0 0 2 0 1 0 0 597 0.49
00000100000 0 0 0 0 0 1 0 0 0 0 0 573 0.47
00000020101 0 0 0 0 0 0 2 0 1 0 1 572 0.47
00000120010 0 0 0 0 0 1 2 0 0 1 0 567 0.47
00000110001 0 0 0 0 0 1 1 0 0 0 1 512 0.42
00000020110 0 0 0 0 0 0 2 0 1 1 0 496 0.41
00000001001 0 0 0 0 0 0 0 1 0 0 1 412 0.34

T7/V5 Library



 255 

 

00000100001 0 0 0 0 0 1 0 0 0 0 1 411 0.34
00000120000 0 0 0 0 0 1 2 0 0 0 0 366 0.30
00000021010 0 0 0 0 0 0 2 1 0 1 0 288 0.24
00000001011 0 0 0 0 0 0 0 1 0 1 1 286 0.24
00000001201 0 0 0 0 0 0 0 1 2 0 1 249 0.21
00000111010 0 0 0 0 0 1 1 1 0 1 0 247 0.20
00000011110 0 0 0 0 0 0 1 1 1 1 0 242 0.20
00000110101 0 0 0 0 0 1 1 0 1 0 1 238 0.20
00000100101 0 0 0 0 0 1 0 0 1 0 1 199 0.16
00000210101 0 0 0 0 0 2 1 0 1 0 1 184 0.15
00000011111 0 0 0 0 0 0 1 1 1 1 1 164 0.14
00000200200 0 0 0 0 0 2 0 0 2 0 0 157 0.13
00000011001 0 0 0 0 0 0 1 1 0 0 1 114 0.09
00000121010 0 0 0 0 0 1 2 1 0 1 0 110 0.09
00000021110 0 0 0 0 0 0 2 1 1 1 0 100 0.08
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Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 16719 13.77
00000000010 0 0 0 0 0 0 0 0 0 1 0 15570 12.82
00000000110 0 0 0 0 0 0 0 0 1 1 0 10495 8.64
00000000200 0 0 0 0 0 0 0 0 2 0 0 6562 5.40
00000000001 0 0 0 0 0 0 0 0 0 0 1 5921 4.88
00000010001 0 0 0 0 0 0 1 0 0 0 1 5716 4.71
00000000101 0 0 0 0 0 0 0 0 1 0 1 5409 4.46
00000010101 0 0 0 0 0 0 1 0 1 0 1 5383 4.43
00000200000 0 0 0 0 0 2 0 0 0 0 0 4319 3.56
00000001010 0 0 0 0 0 0 0 1 0 1 0 4240 3.49
00000001101 0 0 0 0 0 0 0 1 1 0 1 3196 2.63
00000010000 0 0 0 0 0 0 1 0 0 0 0 2804 2.31
00000000011 0 0 0 0 0 0 0 0 0 1 1 2689 2.21
00000010011 0 0 0 0 0 0 1 0 0 1 1 2584 2.13
00000001000 0 0 0 0 0 0 0 1 0 0 0 2199 1.81
00000010010 0 0 0 0 0 0 1 0 0 1 0 2057 1.69
00000001100 0 0 0 0 0 0 0 1 1 0 0 1910 1.57
00000100010 0 0 0 0 0 1 0 0 0 1 0 1644 1.35
00000020000 0 0 0 0 0 0 2 0 0 0 0 1356 1.12
00000001110 0 0 0 0 0 0 0 1 1 1 0 1348 1.11
00000011000 0 0 0 0 0 0 1 1 0 0 0 1310 1.08
00000010100 0 0 0 0 0 0 1 0 1 0 0 1143 0.94
00000011100 0 0 0 0 0 0 1 1 1 0 0 1111 0.92
00000010210 0 0 0 0 0 0 1 0 2 1 0 1022 0.84
00000011011 0 0 0 0 0 0 1 1 0 1 1 820 0.68
00000011101 0 0 0 0 0 0 1 1 1 0 1 801 0.66
00000210000 0 0 0 0 0 2 1 0 0 0 0 725 0.60
00000011010 0 0 0 0 0 0 1 1 0 1 0 713 0.59
00000000111 0 0 0 0 0 0 0 0 1 1 1 664 0.55
00000020001 0 0 0 0 0 0 2 0 0 0 1 655 0.54
00000100110 0 0 0 0 0 1 0 0 1 1 0 649 0.53
00000101010 0 0 0 0 0 1 0 1 0 1 0 634 0.52
00000010111 0 0 0 0 0 0 1 0 1 1 1 618 0.51
00000020100 0 0 0 0 0 0 2 0 1 0 0 597 0.49
00000100000 0 0 0 0 0 1 0 0 0 0 0 573 0.47
00000020101 0 0 0 0 0 0 2 0 1 0 1 572 0.47
00000120010 0 0 0 0 0 1 2 0 0 1 0 567 0.47
00000110001 0 0 0 0 0 1 1 0 0 0 1 512 0.42
00000020110 0 0 0 0 0 0 2 0 1 1 0 496 0.41
00000001001 0 0 0 0 0 0 0 1 0 0 1 412 0.34

T7/AcV5/E2 Library
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00000100001 0 0 0 0 0 1 0 0 0 0 1 411 0.34
00000120000 0 0 0 0 0 1 2 0 0 0 0 366 0.30
00000021010 0 0 0 0 0 0 2 1 0 1 0 288 0.24
00000001011 0 0 0 0 0 0 0 1 0 1 1 286 0.24
00000001201 0 0 0 0 0 0 0 1 2 0 1 249 0.21
00000111010 0 0 0 0 0 1 1 1 0 1 0 247 0.20
00000011110 0 0 0 0 0 0 1 1 1 1 0 242 0.20
00000110101 0 0 0 0 0 1 1 0 1 0 1 238 0.20
00000100101 0 0 0 0 0 1 0 0 1 0 1 199 0.16
00000210101 0 0 0 0 0 2 1 0 1 0 1 184 0.15
00000011111 0 0 0 0 0 0 1 1 1 1 1 164 0.14
00000200200 0 0 0 0 0 2 0 0 2 0 0 157 0.13
00000011001 0 0 0 0 0 0 1 1 0 0 1 114 0.09
00000121010 0 0 0 0 0 1 2 1 0 1 0 110 0.09
00000021110 0 0 0 0 0 0 2 1 1 1 0 100 0.08
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Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000010 0 0 0 0 0 0 0 0 0 1 0 24022 12.09
00000000110 0 0 0 0 0 0 0 0 1 1 0 22931 11.54
00000000000 0 0 0 0 0 0 0 0 0 0 0 20983 10.56
00000001010 0 0 0 0 0 0 0 1 0 1 0 16621 8.36
00000000011 0 0 0 0 0 0 0 0 0 1 1 15137 7.62
00000010101 0 0 0 0 0 0 1 0 1 0 1 7402 3.72
00000010001 0 0 0 0 0 0 1 0 0 0 1 7032 3.54
00000000100 0 0 0 0 0 0 0 0 1 0 0 6675 3.36
00000010011 0 0 0 0 0 0 1 0 0 1 1 6381 3.21
00000000101 0 0 0 0 0 0 0 0 1 0 1 5834 2.94
00000000001 0 0 0 0 0 0 0 0 0 0 1 4573 2.30
00000200000 0 0 0 0 0 2 0 0 0 0 0 4172 2.10
00000000111 0 0 0 0 0 0 0 0 1 1 1 3465 1.74
00000010110 0 0 0 0 0 0 1 0 1 1 0 3221 1.62
00000001011 0 0 0 0 0 0 0 1 0 1 1 3211 1.62
00000020000 0 0 0 0 0 0 2 0 0 0 0 3060 1.54
00000010010 0 0 0 0 0 0 1 0 0 1 0 2917 1.47
00000001100 0 0 0 0 0 0 0 1 1 0 0 2653 1.34
00000101010 0 0 0 0 0 1 0 1 0 1 0 2490 1.25
00000011010 0 0 0 0 0 0 1 1 0 1 0 2123 1.07
00000001110 0 0 0 0 0 0 0 1 1 1 0 1963 0.99
00000100010 0 0 0 0 0 1 0 0 0 1 0 1914 0.96
00000001000 0 0 0 0 0 0 0 1 0 0 0 1878 0.95
00000010000 0 0 0 0 0 0 1 0 0 0 0 1832 0.92
00000111011 0 0 0 0 0 1 1 1 0 1 1 1706 0.86
00000001101 0 0 0 0 0 0 0 1 1 0 1 1645 0.83
00000021010 0 0 0 0 0 0 2 1 0 1 0 1509 0.76
00000010111 0 0 0 0 0 0 1 0 1 1 1 1443 0.73
00000100011 0 0 0 0 0 1 0 0 0 1 1 1247 0.63
00000020100 0 0 0 0 0 0 2 0 1 0 0 1177 0.59
00000110011 0 0 0 0 0 1 1 0 0 1 1 1122 0.56
00000011100 0 0 0 0 0 0 1 1 1 0 0 814 0.41
00000010100 0 0 0 0 0 0 1 0 1 0 0 775 0.39
00000210101 0 0 0 0 0 2 1 0 1 0 1 749 0.38
00000020101 0 0 0 0 0 0 2 0 1 0 1 713 0.36
00000020110 0 0 0 0 0 0 2 0 1 1 0 682 0.34
00000011000 0 0 0 0 0 0 1 1 0 0 0 621 0.31
00000020010 0 0 0 0 0 0 2 0 0 1 0 613 0.31
00000111010 0 0 0 0 0 1 1 1 0 1 0 613 0.31
00000100110 0 0 0 0 0 1 0 0 1 1 0 606 0.30

V5/E2 Library
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00000220000 0 0 0 0 0 2 2 0 0 0 0 575 0.29
00000001111 0 0 0 0 0 0 0 1 1 1 1 566 0.28
00000020001 0 0 0 0 0 0 2 0 0 0 1 547 0.28
00000101100 0 0 0 0 0 1 0 1 1 0 0 531 0.27
00000100000 0 0 0 0 0 1 0 0 0 0 0 511 0.26
00000011101 0 0 0 0 0 0 1 1 1 0 1 507 0.26
00000110001 0 0 0 0 0 1 1 0 0 0 1 471 0.24
00000110010 0 0 0 0 0 1 1 0 0 1 0 436 0.22
00000210001 0 0 0 0 0 2 1 0 0 0 1 395 0.20
00000210000 0 0 0 0 0 2 1 0 0 0 0 376 0.19
00000001001 0 0 0 0 0 0 0 1 0 0 1 372 0.19
00000200100 0 0 0 0 0 2 0 0 1 0 0 346 0.17
00000121010 0 0 0 0 0 1 2 1 0 1 0 344 0.17
00000200101 0 0 0 0 0 2 0 0 1 0 1 341 0.17
00000101011 0 0 0 0 0 1 0 1 0 1 1 337 0.17
00000111111 0 0 0 0 0 1 1 1 1 1 1 245 0.12
00000001200 0 0 0 0 0 0 0 1 2 0 0 233 0.12
00000021110 0 0 0 0 0 0 2 1 1 1 0 204 0.10
00000110110 0 0 0 0 0 1 1 0 1 1 0 190 0.10
00000110101 0 0 0 0 0 1 1 0 1 0 1 185 0.09
00000200001 0 0 0 0 0 2 0 0 0 0 1 184 0.09
00000211011 0 0 0 0 0 2 1 1 0 1 1 179 0.09
00000111100 0 0 0 0 0 1 1 1 1 0 0 163 0.08
00000011110 0 0 0 0 0 0 1 1 1 1 0 143 0.07
00000101110 0 0 0 0 0 1 0 1 1 1 0 139 0.07
00000100001 0 0 0 0 0 1 0 0 0 0 1 137 0.07
00000011001 0 0 0 0 0 0 1 1 0 0 1 130 0.07
00000101000 0 0 0 0 0 1 0 1 0 0 0 127 0.06
00000120000 0 0 0 0 0 1 2 0 0 0 0 123 0.06
00000110111 0 0 0 0 0 1 1 0 1 1 1 119 0.06
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Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 12556 13.26
00000101010 0 0 0 0 0 1 0 1 0 1 0 6633 7.01
00000000010 0 0 0 0 0 0 0 0 0 1 0 6585 6.95
00000000110 0 0 0 0 0 0 0 0 1 1 0 6575 6.94
00000000100 0 0 0 0 0 0 0 0 1 0 0 6510 6.88
00000010101 0 0 0 0 0 0 1 0 1 0 1 4244 4.48
00000010001 0 0 0 0 0 0 1 0 0 0 1 3801 4.01
00000000101 0 0 0 0 0 0 0 0 1 0 1 3543 3.74
00000000001 0 0 0 0 0 0 0 0 0 0 1 3195 3.37
00000020000 0 0 0 0 0 0 2 0 0 0 0 3122 3.30
00000010000 0 0 0 0 0 0 1 0 0 0 0 3014 3.18
00000010011 0 0 0 0 0 0 1 0 0 1 1 2387 2.52
00000000011 0 0 0 0 0 0 0 0 0 1 1 1936 2.04
00000100010 0 0 0 0 0 1 0 0 0 1 0 1778 1.88
00000001101 0 0 0 0 0 0 0 1 1 0 1 1710 1.81
00000010100 0 0 0 0 0 0 1 0 1 0 0 1701 1.80
00000020100 0 0 0 0 0 0 2 0 1 0 0 1700 1.80
00000010110 0 0 0 0 0 0 1 0 1 1 0 1620 1.71
00000200000 0 0 0 0 0 2 0 0 0 0 0 1578 1.67
00000001100 0 0 0 0 0 0 0 1 1 0 0 1547 1.63
00000101110 0 0 0 0 0 1 0 1 1 1 0 1522 1.61
00000201010 0 0 0 0 0 2 0 1 0 1 0 1422 1.50
00000010010 0 0 0 0 0 0 1 0 0 1 0 1288 1.36
00000100000 0 0 0 0 0 1 0 0 0 0 0 1043 1.10
00000001011 0 0 0 0 0 0 0 1 0 1 1 989 1.04
00000011100 0 0 0 0 0 0 1 1 1 0 0 762 0.80
00000001000 0 0 0 0 0 0 0 1 0 0 0 739 0.78
00000010111 0 0 0 0 0 0 1 0 1 1 1 667 0.70
00000110011 0 0 0 0 0 1 1 0 0 1 1 582 0.61
00000110101 0 0 0 0 0 1 1 0 1 0 1 570 0.60
00000011010 0 0 0 0 0 0 1 1 0 1 0 569 0.60
00000000111 0 0 0 0 0 0 0 0 1 1 1 561 0.59
00000011011 0 0 0 0 0 0 1 1 0 1 1 525 0.55
00000120010 0 0 0 0 0 1 2 0 0 1 0 513 0.54
00000100011 0 0 0 0 0 1 0 0 0 1 1 503 0.53
00000100101 0 0 0 0 0 1 0 0 1 0 1 475 0.50
00000220000 0 0 0 0 0 2 2 0 0 0 0 408 0.43
00000021010 0 0 0 0 0 0 2 1 0 1 0 402 0.42
00000020101 0 0 0 0 0 0 2 0 1 0 1 387 0.41
00000020010 0 0 0 0 0 0 2 0 0 1 0 383 0.40

V5/AcV5 Library



 261 

00000210000 0 0 0 0 0 2 1 0 0 0 0 380 0.40
00000011000 0 0 0 0 0 0 1 1 0 0 0 358 0.38
00000020110 0 0 0 0 0 0 2 0 1 1 0 321 0.34
00000110000 0 0 0 0 0 1 1 0 0 0 0 320 0.34
00000020001 0 0 0 0 0 0 2 0 0 0 1 301 0.32
00000120000 0 0 0 0 0 1 2 0 0 0 0 297 0.31
00000011101 0 0 0 0 0 0 1 1 1 0 1 295 0.31
00000001001 0 0 0 0 0 0 0 1 0 0 1 291 0.31
00000100001 0 0 0 0 0 1 0 0 0 0 1 253 0.27
00000110001 0 0 0 0 0 1 1 0 0 0 1 237 0.25
00000101100 0 0 0 0 0 1 0 1 1 0 0 189 0.20
00000200100 0 0 0 0 0 2 0 0 1 0 0 138 0.15
00000011110 0 0 0 0 0 0 1 1 1 1 0 134 0.14
00000111010 0 0 0 0 0 1 1 1 0 1 0 105 0.11
00000111100 0 0 0 0 0 1 1 1 1 0 0 103 0.11
00000021110 0 0 0 0 0 0 2 1 1 1 0 101 0.11
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Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000110 0 0 0 0 0 0 0 0 1 1 0 19351 13.10
00000010001 0 0 0 0 0 0 1 0 0 0 1 19328 13.09
00000000000 0 0 0 0 0 0 0 0 0 0 0 18618 12.61
00000000100 0 0 0 0 0 0 0 0 1 0 0 14504 9.82
00000100100 0 0 0 0 0 1 0 0 1 0 0 12660 8.57
00000000001 0 0 0 0 0 0 0 0 0 0 1 12574 8.51
00000100000 0 0 0 0 0 1 0 0 0 0 0 9969 6.75
00000010101 0 0 0 0 0 0 1 0 1 0 1 9295 6.29
00000101010 0 0 0 0 0 1 0 1 0 1 0 7229 4.89
00000000101 0 0 0 0 0 0 0 0 1 0 1 7101 4.81
00000020000 0 0 0 0 0 0 2 0 0 0 0 1618 1.10
00000020100 0 0 0 0 0 0 2 0 1 0 0 1546 1.05
00000201010 0 0 0 0 0 2 0 1 0 1 0 1357 0.92
00000000010 0 0 0 0 0 0 0 0 0 1 0 1321 0.89
00000120100 0 0 0 0 0 1 2 0 1 0 0 1277 0.86
00000010000 0 0 0 0 0 0 1 0 0 0 0 1015 0.69
00000001001 0 0 0 0 0 0 0 1 0 0 1 997 0.68
00000001000 0 0 0 0 0 0 0 1 0 0 0 993 0.67
00000010100 0 0 0 0 0 0 1 0 1 0 0 917 0.62
00000120000 0 0 0 0 0 1 2 0 0 0 0 865 0.59
00000110100 0 0 0 0 0 1 1 0 1 0 0 808 0.55
00000110011 0 0 0 0 0 1 1 0 0 1 1 805 0.55
00000001101 0 0 0 0 0 0 0 1 1 0 1 801 0.54
00000110000 0 0 0 0 0 1 1 0 0 0 0 590 0.40
00000010111 0 0 0 0 0 0 1 0 1 1 1 455 0.31
00000200011 0 0 0 0 0 2 0 0 0 1 1 320 0.22
00000110101 0 0 0 0 0 1 1 0 1 0 1 302 0.20
00000110001 0 0 0 0 0 1 1 0 0 0 1 249 0.17
00000001201 0 0 0 0 0 0 0 1 2 0 1 232 0.16
00000010011 0 0 0 0 0 0 1 0 0 1 1 208 0.14
00000001011 0 0 0 0 0 0 0 1 0 1 1 136 0.09
00000001111 0 0 0 0 0 0 0 1 1 1 1 106 0.07

V5/AcV5/E2 Library
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Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000010 0 0 0 0 0 0 0 0 0 1 0 16666 16.87
00000000000 0 0 0 0 0 0 0 0 0 0 0 13654 13.82
00000000110 0 0 0 0 0 0 0 0 1 1 0 11661 11.80
00000010001 0 0 0 0 0 0 1 0 0 0 1 6993 7.08
00000000001 0 0 0 0 0 0 0 0 0 0 1 5538 5.60
00000010101 0 0 0 0 0 0 1 0 1 0 1 5091 5.15
00000000100 0 0 0 0 0 0 0 0 1 0 0 4905 4.96
00000000101 0 0 0 0 0 0 0 0 1 0 1 3296 3.34
00000010011 0 0 0 0 0 0 1 0 0 1 1 3293 3.33
00000010000 0 0 0 0 0 0 1 0 0 0 0 2771 2.80
00000101010 0 0 0 0 0 1 0 1 0 1 0 2595 2.63
00000000011 0 0 0 0 0 0 0 0 0 1 1 2377 2.41
00000020000 0 0 0 0 0 0 2 0 0 0 0 1535 1.55
00000201010 0 0 0 0 0 2 0 1 0 1 0 1352 1.37
00000020011 0 0 0 0 0 0 2 0 0 1 1 1202 1.22
00000010100 0 0 0 0 0 0 1 0 1 0 0 1026 1.04
00000011111 0 0 0 0 0 0 1 1 1 1 1 1007 1.02
00000100000 0 0 0 0 0 1 0 0 0 0 0 988 1.00
00000001100 0 0 0 0 0 0 0 1 1 0 0 963 0.97
00000010010 0 0 0 0 0 0 1 0 0 1 0 942 0.95
00000200000 0 0 0 0 0 2 0 0 0 0 0 934 0.95
00000001101 0 0 0 0 0 0 0 1 1 0 1 866 0.88
00000010110 0 0 0 0 0 0 1 0 1 1 0 695 0.70
00000110101 0 0 0 0 0 1 1 0 1 0 1 694 0.70
00000021110 0 0 0 0 0 0 2 1 1 1 0 680 0.69
00000211010 0 0 0 0 0 2 1 1 0 1 0 647 0.65
00000020100 0 0 0 0 0 0 2 0 1 0 0 553 0.56
00000110001 0 0 0 0 0 1 1 0 0 0 1 523 0.53
00000011100 0 0 0 0 0 0 1 1 1 0 0 488 0.49
00000110000 0 0 0 0 0 1 1 0 0 0 0 418 0.42
00000100101 0 0 0 0 0 1 0 0 1 0 1 408 0.41
00000100001 0 0 0 0 0 1 0 0 0 0 1 400 0.40
00000001011 0 0 0 0 0 0 0 1 0 1 1 338 0.34
00000101110 0 0 0 0 0 1 0 1 1 1 0 337 0.34
00000020001 0 0 0 0 0 0 2 0 0 0 1 313 0.32
00000020101 0 0 0 0 0 0 2 0 1 0 1 271 0.27
00000001201 0 0 0 0 0 0 0 1 2 0 1 256 0.26
00000021210 0 0 0 0 0 0 2 1 2 1 0 255 0.26
00000121110 0 0 0 0 0 1 2 1 1 1 0 163 0.16
00000011101 0 0 0 0 0 0 1 1 1 0 1 150 0.15

AU5/AcV5 Library

00000021200 0 0 0 0 0 0 2 1 2 0 0 139 0.14
00000021100 0 0 0 0 0 0 2 1 1 0 0 131 0.13
00000021011 0 0 0 0 0 0 2 1 0 1 1 111 0.11
00000220000 0 0 0 0 0 2 2 0 0 0 0 107 0.11
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Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Number points Abundance
00000000000 0 0 0 0 0 0 0 0 0 0 0 56769 51.02
00000000010 0 0 0 0 0 0 0 0 0 1 0 8352 7.51
00000000011 0 0 0 0 0 0 0 0 0 1 1 7183 6.46
00000000100 0 0 0 0 0 0 0 0 1 0 0 4397 3.95
00000000101 0 0 0 0 0 0 0 0 1 0 1 4276 3.84
00000010000 0 0 0 0 0 0 1 0 0 0 0 3921 3.52
00000000001 0 0 0 0 0 0 0 0 0 0 1 3029 2.72
00000110101 0 0 0 0 0 1 1 0 1 0 1 2628 2.36
00000000110 0 0 0 0 0 0 0 0 1 1 0 2319 2.08
00000020000 0 0 0 0 0 0 2 0 0 0 0 1850 1.66
00000010010 0 0 0 0 0 0 1 0 0 1 0 1757 1.58
00000110001 0 0 0 0 0 1 1 0 0 0 1 1517 1.36
00000210001 0 0 0 0 0 2 1 0 0 0 1 1455 1.31
00000100000 0 0 0 0 0 1 0 0 0 0 0 1383 1.24
00000100001 0 0 0 0 0 1 0 0 0 0 1 1253 1.13
00000101010 0 0 0 0 0 1 0 1 0 1 0 1141 1.03
00000001001 0 0 0 0 0 0 0 1 0 0 1 1135 1.02
00000120101 0 0 0 0 0 1 2 0 1 0 1 817 0.73
00000010011 0 0 0 0 0 0 1 0 0 1 1 505 0.45
00000010110 0 0 0 0 0 0 1 0 1 1 0 495 0.44
00000120001 0 0 0 0 0 1 2 0 0 0 1 464 0.42
00000000111 0 0 0 0 0 0 0 0 1 1 1 452 0.41
00000100011 0 0 0 0 0 1 0 0 0 1 1 417 0.37
00000220001 0 0 0 0 0 2 2 0 0 0 1 402 0.36
00000011000 0 0 0 0 0 0 1 1 0 0 0 401 0.36
00000001000 0 0 0 0 0 0 0 1 0 0 0 398 0.36
00000010100 0 0 0 0 0 0 1 0 1 0 0 384 0.35
00000101011 0 0 0 0 0 1 0 1 0 1 1 345 0.31
00000111010 0 0 0 0 0 1 1 1 0 1 0 333 0.30
00000011011 0 0 0 0 0 0 1 1 0 1 1 209 0.19
00000020100 0 0 0 0 0 0 2 0 1 0 0 179 0.16
00000101110 0 0 0 0 0 1 0 1 1 1 0 158 0.14
00000201010 0 0 0 0 0 2 0 1 0 1 0 140 0.13
00000011100 0 0 0 0 0 0 1 1 1 0 0 130 0.12
00000001100 0 0 0 0 0 0 0 1 1 0 0 111 0.10

T7/AcV5 Library
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BARCODED YEAST GFP FUSION PROTEINS STUDIED AND 
PERTURBATION CONDITIONS USED  

Table I.1: Barcoded yeast GFP fusion clones used in this study 

 
 

GFP Clone ORF GFP Clone Name Barcode T7 V5 AU5 AcV5 E2 HA HSV HIS AU1 GLU FLAG Description
YBL023C MCM2 10011000000 1 0 0 1 1 0 0 0 0 0 0 Protein involved in DNA replication
YBL024W NCL1 01011000000 0 1 0 1 1 0 0 0 0 0 0 S-adenosyl-L-methionine-dependent tRNA: m5C-methyltransferase
YBR067C TIP1 10011200000 1 0 0 1 1 2 0 0 0 0 0 Major cell wall mannoprotein with possible lipase activity
YBR072W HSP26 10011010000 1 0 0 1 1 0 1 0 0 0 0 Small heat shock protein (sHSP) with chaperone activity
YBR208C DUR1,2 00010000000 0 0 0 1 0 0 0 0 0 0 0 Urea amidolyase
YCR016W 01100100000 0 1 1 0 0 1 0 0 0 0 0 Putative protein of unknown function

YDL133C-A RPL41B 00000220100 0 0 0 0 0 2 2 0 1 0 0 Ribosomal 60S subunit protein L41B
YDL168W SFA1 01000220000 0 1 0 0 0 2 2 0 0 0 0 Bifunctional alcohol dehydrogenase and formaldehyde dehydrogenase
YDR023W SES1 10000200011 1 0 0 0 0 2 0 0 0 1 1 Cytosolic seryl-tRNA synthetase
YDR070C FMP16 00000220000 0 0 0 0 0 2 2 0 0 0 0 Protein of unknown function
YEL001C IRC22 00110000000 0 0 1 1 0 0 0 0 0 0 0 Protein of unknown function
YER027C GAL83 00001000010 0 0 0 0 1 0 0 0 0 1 0 One of three possible beta-subunits of the Snf1 kinase complex
YER178W PDA1 00001100000 0 0 0 0 1 1 0 0 0 0 0 E1 alpha subunit of the pyruvate dehydrogenase (PDH) complex
YFL036W RPO41 00100000000 0 0 1 0 0 0 0 0 0 0 0 Mitochondrial RNA polymerase
YGL035C MIG1 00100100000 0 0 1 0 0 1 0 0 0 0 0 Transcription factor involved in glucose repression
YGL048C RPT6 01000010000 0 1 0 0 0 0 1 0 0 0 0 ATPase of the 19S regulatory particle of the 26S proteasome
YGL135W RPL1B 10011020000 1 0 0 1 1 0 2 0 0 0 0 Ribosomal 60S subunit protein L1B
YGL147C RPL9A 01001020000 0 1 0 0 1 0 2 0 0 0 0 Ribosomal 60S subunit protein L9A
YGL207W SPT16 10000000000 1 0 0 0 0 0 0 0 0 0 0 Subunit of the heterodimeric FACT complex (Spt16p-Pob3p)
YGL234W ADE5,7 01010000000 0 1 0 1 0 0 0 0 0 0 0 Enzyme of the 'de novo' purine nucleotide biosynthetic pathway
YGR012W MCY1 10000000010 1 0 0 0 0 0 0 0 0 1 0 Putative cysteine synthase
YGR019W UGA1 10000010000 1 0 0 0 0 0 1 0 0 0 0 Gamma-aminobutyrate (GABA) transaminase
YHL017W 00000020000 0 0 0 0 0 0 2 0 0 0 0 Putative protein of unknown function
YIL127C RRT14 10011100000 1 0 0 1 1 1 0 0 0 0 0 Putative protein of unknown function
YIL137C TMA108 01000000000 0 1 0 0 0 0 0 0 0 0 0 Ribosome-associated, nascent chain binding factor
YJR003C MRX12 11100000000 1 1 1 0 0 0 0 0 0 0 0 Protein that associates with mitochondrial ribosome
YKL096W CWP1 11000020000 1 1 0 0 0 0 2 0 0 0 0 Cell wall mannoprotein that localizes to birth scars of daughter cells

YKL096W-A CWP2 00000200010 0 0 0 0 0 2 0 0 0 1 0 Covalently linked cell wall mannoprotein
YKL142W MRP8 01001010000 0 1 0 0 1 0 1 0 0 0 0 Protein of unknown function
YKL183W LOT5 01000220000 0 1 0 0 0 2 2 0 0 0 0 Protein of unknown function
YLR064W PER33 11001010000 1 1 0 0 1 0 1 0 0 0 0 Protein that localizes to the endoplasmic reticulum
YLR438W CAR2 00001000100 0 0 0 0 1 0 0 0 1 0 0 L-ornithine transaminase (OTAse)
YML100W TSL1 00001000000 0 0 0 0 1 0 0 0 0 0 0 Large subunit of trehalose 6-phosphate synthase/phosphatase complex
YMR099C 11000010000 1 1 0 0 0 0 1 0 0 0 0 Glucose-6-phosphate 1-epimerase (hexose-6-phosphate mutarotase)
YMR120C ADE17 10010000000 1 0 0 1 0 0 0 0 0 0 0 Enzyme of 'de novo' purine biosynthesis
YNL181W PBR1 00100000010 0 0 1 0 0 0 0 0 0 1 0 Putative oxidoreductase
YNL212W VID27 00000020011 0 0 0 0 0 0 2 0 0 1 1 Cytoplasmic protein of unknown function
YOL143C RIB4 01001000000 0 1 0 0 1 0 0 0 0 0 0 Lumazine synthase (DMRL synthase)
YOL144W NOP8 00100220000 0 0 1 0 0 2 2 0 0 0 0 Nucleolar protein required for 60S ribosomal subunit biogenesis
YOL151W GRE2 11001110000 1 1 0 0 1 1 1 0 0 0 0 3-methylbutanal reductase and NADPH-dependent methylglyoxal reductase
YOR083W WHI5 11000100000 1 1 0 0 0 1 0 0 0 0 0 Repressor of G1 transcription
YOR182C RPS30B 01001000011 0 1 0 0 1 0 0 0 0 1 1 Protein component of the small (40S) ribosomal subunit
YOR216C RUD3 10000000100 1 0 0 0 0 0 0 0 1 0 0 Golgi matrix protein
YOR312C RPL20B 11001100000 1 1 0 0 1 1 0 0 0 0 0 Ribosomal 60S subunit protein L20B
YPL079W RPL21B 11001000000 1 1 0 0 1 0 0 0 0 0 0 Ribosomal 60S subunit protein L21B
YPR160W GPH1 11000000000 1 1 0 0 0 0 0 0 0 0 0 Glycogen phosphorylase required for the mobilization of glycogen

Appendix I 
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Table I.2: Stress perturbations, responses, effective concentrations, and positive 
control proteins.  
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PYTHON SCRIPT USED TO ANALYZE GFP FLUORESCENCE 
DISTRIBUTIONS  

from collections import defaultdict 
import matplotlib.pyplot as plt 
import matplotlib as mpl 
import numpy as np 
import os 
import scipy.stats as stats 
import matplotlib.mlab as mlab 
import json 
 
protein_fname = '/Users/Stefanie/Desktop/Protein_Names.txt' 
condition_fname = '/Users/Stefanie/Desktop/Condition_Names.txt' 
data_directory = '/Users/Stefanie/Desktop/07112017_GFPBAR_EXPORTS' 
 
print 'loading data' 
#read protein names and append to list 
proteins_list = [] 
with open(protein_fname,'rU') as f: 
    p_list = f.readlines() 
    for line in p_list: 
        line = line.strip('\n') 
        proteins_list.append(line) 
#print proteins_list 
print '# proteins',len(proteins_list) 
 
#read condition names and append to list 
conditions_list = [] 
with open(condition_fname,'rU') as f: 
    c_list = f.readlines() 
    for line in c_list: 
        line = line.strip('\n') 
        conditions_list.append(line) 
#print conditions_list 
#print len(conditions_list) 
 
 
#read data file names and append to list 
data_names_list = [] 
for file in os.listdir(data_directory): 
    if file.endswith('.csv') and file != 'BY4741.csv': 
        data_names_list.append(file) 
print '# data files',len(data_names_list) 
#print data_names_list[1:10] 
 
#load BY4741 background data 

Appendix J 



 268 

background_fname = data_directory+'/BY4741.csv' 
BY4741_data = [] 
with open(background_fname,'rU') as f: 
    back_data = f.readlines()[1:] 
    for row in back_data: 
        row.strip('\n') 
        dpoint = float(row) 
        if dpoint >1: 
            BY4741_data.append(dpoint) 
BY4741_data = np.log10(BY4741_data) 
 
linear_BY4741_data = np.power(BY4741_data,10) 
median_BY4741 = np.median(linear_BY4741_data) 
std_BY4741 = np.std(linear_BY4741_data) 
#print BY4741_data 
 
 
print 'storing data in dictionary' 
data_dict = defaultdict(lambda: defaultdict(list)) 
 
#store data in dictionary with keys protein name, condition name, value list 
of GFP fluorescence values 
for name in data_names_list: 
    #print name 
    for protein in proteins_list: 
        #print protein 
        for condition in conditions_list: 
            #print condition 
            if protein in name and condition in name: 
                data_list = [] 
                with open(data_directory+'/'+str(name),'rU') as f: 
                    data = f.readlines()[1:] 
                    for row in data: 
                        row.strip('\n') 
                        dpoint = float(row) 
                        if dpoint > 1: 
                            data_list.append(dpoint) 
                data_list_log = np.log10(data_list) 
                data_dict[protein][condition] = data_list_log 
 
 
#print data_dict['YMR099C']['37C'][0:10] 
#print 'banana' 
#print data_dict['SES1']['37C'][0:10] 
#plot data 
plot_var = 'no' 
if plot_var == 'yes': 
    print 'plotting data' 
    colors = 
['gray','silver','g','b','m','y','orange','dodgerblue','aqua','lime','maroon'
,'hotpink','darkviolet'] 
    p_counter = 1 
    for protein in data_dict.keys(): 
        print 'protein is:',protein 
        graph = 1 
        #plt.figure() 
        f,ax = 
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plt.subplots(len(conditions_list)+1,1,sharex=True,sharey=True,figsize=(4,10)) 
 
        #plot background histogram 
        
ax[0].hist(BY4741_data,bins=500,normed=True,fc='k',histtype='stepfilled') 
        ax[0].get_yaxis().set_visible(False) 
        if p_counter ==1: 
            ax[0].legend(['Background'],fontsize='medium',loc=7) 
 
        #plot condition histograms 
        for condition in data_dict[protein]: 
            if condition == 'None_0h': 
                r = 1 
            elif condition == 'None_2h': 
                r = 2 
            else: 
                r = 2+graph 
            #print condition 
            curr_data = data_dict[protein][condition] 
            #print 'r is:',r 
 
            est_data_len = int(np.log10(len(curr_data))) 
            #print 'approx log10 length data:',est_data_len 
 
            #estimate number bins based on data set size 
            if est_data_len == 2: 
                b = 50 
            elif est_data_len == 3: 
                b = 500 
            elif est_data_len >= 4: 
                b = 1000 
            elif est_data_len == 1: 
                b = 50 
            elif est_data_len == 0: 
                b = 1 
 
            #plot histogram GFP data 
            [n,bins,patches] = 
ax[r].hist(curr_data,bins=b,normed=True,fc=colors[r-1],histtype='stepfilled') 
            #ax[r].set_yticks(np.arange(0,2,1)) 
            ax[r].get_yaxis().set_visible(False) 
            plt.xlim((2,5)) 
            plt.ylim(0,2) 
            if p_counter == 1: 
                ax[r].legend([condition],fontsize='medium',loc=7) 
 
            #plot best fit normal curve 
            [mu,sigma] = stats.norm.fit(curr_data) 
            #[a,l,b] = stats.gamma.fit(curr_data) 
            y = mlab.normpdf(bins,mu,sigma) 
            ax[r].plot(bins, y, 'r--', linewidth=2) 
            #ax[r].plot(stats.gamma.pdf(bins,a,l,b)) 
 
            if condition not in ['None_0h','None_2h']: 
                graph+=1 
 
        p_counter+=1 
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        f.suptitle(protein,fontsize=20) 
        plt.ylabel('Normalized Count') 
        plt.xlabel('Log10 GFP Fluorescence (afu)') 
        #plt.show() 
        save_file = '/Users/Stefanie/PycharmProjects/GFPplots/pdffits/' 
        plt.savefig(save_file+protein+'.png',dpi=300) 
 
 
print 'calculating statistics' 
#calculate median and CV for each protein and condition, store in stats_dict 
#calcuate 95% CI for control conditions, store in control_stats_dict 
stats_dict = defaultdict(lambda: defaultdict( lambda:defaultdict(float))) 
control_stats_dict = defaultdict(lambda: defaultdict(float)) 
 
for protein in data_dict.keys(): 
    for condition in data_dict[protein]: 
        #print condition 
        #linear transformation 
        curr_data = np.power(data_dict[protein][condition],10) 
        curr_med = np.median(curr_data) 
        curr_sd = np.std(curr_data) 
        curr_cv = float(curr_sd)/float(curr_med) 
        #print curr_med,curr_sd,curr_cv 
 
        stats_dict[protein][condition]['median'] = curr_med 
        stats_dict[protein][condition]['sd'] = curr_sd 
        stats_dict[protein][condition]['cv'] = curr_cv 
 
    control_med_r1 = stats_dict[protein]['None_0h']['median'] 
    control_med_r2 = stats_dict[protein]['None_2h']['median'] 
 
    control_cv_r1 = stats_dict[protein]['None_0h']['cv'] 
    control_cv_r2 = stats_dict[protein]['None_2h']['cv'] 
 
    control_sd_r1 = stats_dict[protein]['None_0h']['sd'] 
    control_sd_r2 = stats_dict[protein]['None_2h']['sd'] 
 
    #calculate average median and CV 
    #calculate standard deviation between two replicates for median and CV 
    control_median_avg = np.mean([control_med_r1,control_med_r2]) 
    control_median_sd = np.std([control_med_r1,control_med_r2]) 
    control_cv_avg = np.mean([control_cv_r1,control_cv_r2]) 
    control_cv_sd = np.std([control_cv_r1,control_cv_r2]) 
 
    control_median_CI_upper = control_median_avg+3*control_median_sd 
    control_median_CI_lower = control_median_avg-3*control_median_sd 
 
    control_cv_CI_upper = control_cv_avg+3*control_cv_sd 
    control_cv_CI_lower = control_cv_avg-3*control_cv_sd 
 
    control_stats_dict[protein]['avg_median'] = control_median_avg 
    control_stats_dict[protein]['avg_cv'] = control_cv_avg 
    control_stats_dict[protein]['99CI_median_upper'] = 
control_median_CI_upper 
    control_stats_dict[protein]['99CI_median_lower'] = 
control_median_CI_lower 
    control_stats_dict[protein]['99CI_cv_upper'] = control_cv_CI_upper 
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    control_stats_dict[protein]['99CI_cv_lower'] = control_cv_CI_lower 
 
fold_change_dict = defaultdict(lambda: defaultdict( 
lambda:defaultdict(float))) 
significant_changes_dict = defaultdict(lambda: defaultdict( 
lambda:defaultdict(lambda: defaultdict(float)))) 
number_significant_median = 0 
number_significant_cv = 0 
#for each protein, check if any medians or CVs fall outside of normal 95% CI 
for protein in stats_dict: 
    median_upper_CI = control_stats_dict[protein]['99CI_median_upper'] 
    median_lower_CI = control_stats_dict[protein]['99CI_median_lower'] 
    cv_upper_CI = control_stats_dict[protein]['99CI_cv_upper'] 
    cv_lower_CI = control_stats_dict[protein]['99CI_cv_lower'] 
    control_median = control_stats_dict[protein]['avg_median'] 
    control_cv = control_stats_dict[protein]['avg_cv'] 
 
    for condition in stats_dict[protein]: 
        condition_median = stats_dict[protein][condition]['median'] 
        condition_cv = stats_dict[protein][condition]['cv'] 
 
        #calculate log2 fold change between non-stress and stress condition 
        fold_median = np.log2(float(condition_median)/float(control_median)) 
        fold_cv = np.log2(float(condition_cv)/float(control_cv)) 
        fold_change_dict[protein][condition]['median'] = fold_median 
        fold_change_dict[protein][condition]['cv'] = fold_cv 
 
        #if distribution is above background/noise 
        if condition_median > median_BY4741+std_BY4741: 
            #if condition_median < median_lower_CI or condition_median > 
median_upper_CI: 
            if fold_median > 0.58 or fold_median < -0.58: 
                #print 'median outside 95% CI:',protein, condition 
                #print 'median before,after 
is:',control_median,condition_median 
                #print 'fold change median is:',fold_median 
                #print '---' 
                
significant_changes_dict[protein][condition]['median']['before'] = 
control_median 
                
significant_changes_dict[protein][condition]['median']['after'] = 
condition_median 
                
significant_changes_dict[protein][condition]['median']['fold'] = fold_median 
                number_significant_median+=1 
            #if condition_cv < cv_lower_CI or condition_cv > cv_upper_CI: 
            if fold_cv > 0.58 or fold_cv < -0.58: 
                #print 'CV outside 95% CI:',protein,condition 
                #print 'CV before,after is:',control_cv,condition_cv 
                #print 'fold change CV is:',fold_cv 
                #print '---' 
                significant_changes_dict[protein][condition]['cv']['before'] 
= control_cv 
                significant_changes_dict[protein][condition]['cv']['after'] = 
condition_cv 
                significant_changes_dict[protein][condition]['cv']['fold'] = 
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fold_cv 
                number_significant_cv+=1 
 
 
print 
json.dumps(significant_changes_dict,sort_keys=True,indent=4,separators=(',','
:')) 
print 'number significant median changes:',number_significant_median 
print 'number significant CV changes:',number_significant_cv 
 
 
print 'making 2D array fold change' 
#make graphical heat-map representation of fold changes 
#make 2D array of rows = proteins, columns = conditions, value = fold-change 
 
#dictionary of condition:column number 
conditions_dict = {'Rapamycin':0,'H2O2':1,'Clotrimidazole':2,'MG-
132':3,'Cycoheximide':4, 
                   
'MMS':5,'Diamide':6,'ETOH':7,'HydroxyUrea':8,'37C':9,'DTT':10} 
row = 0 
fold_change_median_array = 
np.zeros((len(fold_change_dict.keys()),len(conditions_dict.keys()))) 
fold_change_cv_array = 
np.zeros((len(fold_change_dict.keys()),len(conditions_dict.keys()))) 
 
pro_list = [] 
cond_list = ['Rapamycin','H2O2','Clotrimidazole','MG-
132','Cycloheximide','MMS','Diamide','ETOH','Hydroxyurea','37C','DTT'] 
for protein in fold_change_dict: 
    pro_list.append(protein) 
    for condition in conditions_dict.keys(): 
        column = conditions_dict[condition] 
        #print condition,column 
 
        curr_fc_med = fold_change_dict[protein][condition]['median'] 
        curr_fc_cv = fold_change_dict[protein][condition]['cv'] 
 
        fold_change_median_array[row,column] = curr_fc_med 
        fold_change_cv_array[row,column] = curr_fc_cv 
    row+=1 
 
#plot median fold changes 
 
print cond_list 
print pro_list 
 
plt.figure(figsize=(12,12)) 
ax = plt.gca() 
cmap = 
mpl.colors.ListedColormap(['maroon','red','lightyellow','lightgreen','green']
) 
bounds=[-4,-1,-0.5,0.5,1,4] 
norm = mpl.colors.BoundaryNorm(bounds,cmap.N) 
plt.imshow(fold_change_median_array,cmap=cmap,norm=norm,aspect='auto',interpo
lation='nearest') 
plt.xticks(np.arange(0,len(conditions_dict.keys()),1),cond_list,rotation='ver
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tical',fontsize=10) 
ax.set_xticks(np.arange(0.5,len(conditions_dict.keys())+0.5,1),minor=True) 
plt.yticks(np.arange(0,len(fold_change_dict.keys())),pro_list,fontsize=10) 
ax.set_yticks(np.arange(0.5,len(fold_change_dict.keys())+0.5,1),minor=True) 
plt.title('Protein Abundance',fontsize=18) 
cb = plt.colorbar() 
cb.set_label(label='Log2 Fold Change',fontsize=18) 
plt.grid(True,which='minor',color='k',linestyle='solid',linewidth=2) 
plt.savefig('/Users/Stefanie/PycharmProjects/GFPplots/median_fold_change.png'
,dpi=300) 
 
#plot CV fold change 
plt.figure(figsize=(12,12)) 
ax = plt.gca() 
cmap = 
mpl.colors.ListedColormap(['maroon','red','lightyellow','lightgreen','green']
) 
bounds=[-4,-1,-0.5,0.5,1,4] 
norm = mpl.colors.BoundaryNorm(bounds,cmap.N) 
plt.imshow(fold_change_cv_array,cmap=cmap,norm=norm,aspect='auto',interpolati
on='nearest') 
plt.xticks(np.arange(0,len(conditions_dict.keys()),1),cond_list,rotation='ver
tical',fontsize=10) 
ax.set_xticks(np.arange(0.5,len(conditions_dict.keys())+0.5,1),minor=True) 
plt.yticks(np.arange(0,len(fold_change_dict.keys())),pro_list,fontsize=10) 
ax.set_yticks(np.arange(0.5,len(fold_change_dict.keys())+0.5,1),minor=True) 
plt.title('Protein CV',fontsize=18) 
cb = plt.colorbar() 
cb.set_label(label='Log2 Fold Change',fontsize=18) 
plt.grid(True,which='minor',color='k',linestyle='solid',linewidth=2) 
plt.savefig('/Users/Stefanie/PycharmProjects/GFPplots/cv_fold_change.png',dpi
=300) 

 
 


