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ABSTRACT

With the popularity of and the advances in wireless networking technologies, wireless

multimedia traffic has grown dramatically in recent years. Despite having many advantages,

wireless multimedia services, particularly video services, still pose a number of challenges

due to the time-varying, error-prone and bandwidth-fluctuating channels in the wireless net-

works. Therefore, provisioning end-to-end Quality of Service and Quality of Experience

(QoS and QoE) of video transmission over wireless channels is of great importance.

Video transmission is often described to be bursty as video is basically a sequence of

frames transmitted at a particular frame rate. A video frame cannot be decoded or played out

at the receiver side until all or most of its transmitted constituent packets are received in time.

Depending on the application scenarios, video services may have different emphases in terms

of QoE and QoS. While video streaming (e.g., Netflix and YouTube) allows for modest delay

(on the order of a few seconds) at the beginning of the playout, video teleconferencing (e.g.,

FaceTime and WebRTC) is much more delay constrained (less than a few hundred millisec-

onds). This is because in real-time video systems, each frame must be delivered and decoded

by its playback time, and any packet that is retransmitted due to loss in the last transmission

or arriving late becomes useless when its stringent decoding and display deadline cannot be

met. In this dissertation, we propose several optimization algorithms to improve the QoE

and QoS for both video streaming (non real-time) and video teleconferencing (real-time)

over wireless networks.

In optimizing wireless video streaming, we focus on MPEG-DASH (ISO/IEC Stan-

dard 23009-1), the current standard for video streaming. We optimize video streaming by

leveraging a technique called User Adaptive Video (UAV), which exploits the perceptual

limits of the human visual system to modulate a video stream’s bit rate based on the view-

ing conditions, such as viewing distance and ambient illuminance, resulting in significant

xvii



bandwidth saving without perceived loss of quality to the user. UAV presents an opportu-

nity to significantly improve the efficiency of DASH by not requesting unnecessarily high

bit rate videos. We design UAV-enabled DASH (UDASH) and evaluate its performance in

Wi-Fi networks. Simulation results show that UDASH in a Wi-Fi network has the benefits

of not only significantly improving the video streaming performance such as reducing the

rebuffering probability, but also enhancing the performance of cross traffic.

In addition, the MPEG-DASH standard uses TCP as the underlying transport layer

protocol, and more importantly, TCP is one type of dominant traffic in the Internet. There-

fore, we investigate how to improve TCP performance in wireless networks. We identify two

issues of TCP performance degradation due to common channel errors via both analytical

study and simulations in a typical Wi-Fi network. Motivated by these issues, a MAC layer

optimization technique is proposed, which is based on the adaptation of the Retry Limit pa-

rameter after considering TCP traffic characteristics and throughput model. The evaluation

results confirm that the proposed technique achieves higher performance gain.

In optimizing video teleconferencing, we consider WebRTC, which is Google’s open

source real-time communication framework. In wireless networks such as those based on

IEEE 802.11, packet losses due to fading and interference are often misinterpreted as indi-

cations of congestion, causing unnecessary decrease in the data sending rate due to conges-

tion control by the RTCP protocol working beneath WebRTC and above RTP. For delay-

constrained applications such as video teleconferencing, packet losses may result in ex-

cessive artifacts or freeze in the decoded video. We propose a simple and yet effective

mechanism to detect and reduce channel-caused packet losses by dynamically adjusting the

retry limit parameter of the IEEE 802.11 protocol. Since the retry limit is left configurable

in the IEEE 802.11 standard, and does not require cross-layer coordination, the proposed

scheme can be easily implemented and incrementally deployed. We also propose to use a

delay constrained retry limit adaptation algorithm to control transmission delays so that de-

lay constraints required by different application scenarios can be met. Experimental results

of applying the proposed scheme to a WebRTC based real-time video communication proto-

type show significant performance gain compared to the case where retry limit is configured
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statically.

In addition to the optimization techniques proposed for the IEEE 802.11 protocol, we

also propose a cross-layer approach to optimize video teleconferencing, termed early packet

loss feedback (EPLF). In EPLF, if a packet loss is due to channel errors, the MAC layer

directly feeds back the loss information to the RTP layer with a spoofed RTCP packet that

carries a NACK message so that the RTP layer can retransmit the lost RTP packet. Since

the whole feedback process takes place in the same device (the video sender), the latency is

negligible in relation to the RTT, and hence the term ’early’ in EPLF. Theoretical analysis and

prototype-based experimental results show that EPLF almost completely eliminates channel-

caused video freezes in the decoded video while improving congestion control.

Furthermore, we also apply the technique of UAV to video teleconferencing to further

reduce bandwidth consumption, and build a prototype based on WebRTC and Licode (a video

teleconferencing hub platform) to validate the bandwidth savings.
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Chapter 1

INTRODUCTION

In this chapter we first describe the background and overall motivations of our re-

search. We then summarize the problems investigated in the dissertation along with the

specific motivation for each problem. We end this chapter with the organization of the dis-

sertation.

1.1 Background and Overall Motivations

Videos are undoubtedly the most important and effective carriers of information.

With the popularity of and the advances in wireless networking technologies, wireless video

traffic has grown dramatically in recent years. Recent statistics show that video traffic ac-

counts for the highest percentage of the traffic mix in the Internet. According to Cisco Visual

Networking Index [26], mobile video traffic will increase thirteen-fold and count for 66% of

the mobile traffic by the year 2019.

Video service is the most demanding among all multimedia services. It generates a

huge amount of data that need to be transmitted and processed in a timely manner, which

would be impossible/infeasible without highly efficient compression schemes. Standard

video compression technologies (such as H.264 and VP8) exploit the spatial and tempo-

ral redundancy in uncompressed video to achieve a high compression ratio, which, however,

makes compressed video vulnerable to transmission errors. A compressed/encoded video

frame cannot be decoded or played out at the receiver side until all or most of its transmitted

constituent packets are received in time. As a result, packet losses due to transmission errors

often lead to serious video quality degradation, like artifacts in the decoded video, which

affect not only the current frame, but also subsequent frames because of error propagation

resulting from the use of motion-compensated prediction from previous frames. Numerous
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error control mechanisms (e.g., error resilient video coding, error concealment, channel cod-

ing, retransmission) have been proposed to address the error-sensitivity issues, and various

schemes (e.g., buffering) have been designed for adapting to the time-varying video con-

tent characteristics and wireless channel conditions. However, most of the previous designs

suffer from various drawbacks. For example, most of the previous designs focus on video

streaming services that allow a relatively large end-to-end delay (i.e., several seconds) and

therefore may not be suitable for interactive video services that have stringent delay require-

ments (e.g., for video teleconferencing, the end-to-end delay is required to be below 100 ms

[9]). We elaborate various reasons in the following subsections.

1.1.1 Video Streaming vs. Video Teleconferencing

Depending on application scenarios, two main types of video traffic exist: interactive

video and streaming video. Each type of video has different emphases in terms of Quality

of Experience (QoE) and Quality of Service (QoS), among which the tolerable delay is the

important differential factor. While video streaming (e.g., Netflix and YouTube) allows for

modest delay (in the order of a few seconds) at the beginning of the playout, interactive

video such as video teleconferencing (e.g., Facetime [8] and WebRTC [92]) is much more

delay constrained (less than a few hundred milliseconds) because in real-time video systems,

each frame must be delivered and decoded by its playback time, and any packet that is

retransmitted due to loss in the last transmission or late arrival becomes useless if its stringent

decoding and display deadline cannot be met. In this dissertation, we investigate both types

of traffic and propose optimization algorithms accordingly.

1.1.2 QoS vs. QoE

Quality of Experience (QoE) is the perceptual Quality of Service (QoS) from the

users’ perspective. While monitoring and controlling QoS parameters (e.g., bitrate, delay,

jitter) of the video transmission system is important for achieving high video quality, it is

more crucial to evaluate video quality from the users’ perspective, which is perceived as

QoE or user-level QoS. For video service, the relationship between QoE and QoS (such as

coding parameters and network statistics) is complicated because users’ perceptual video
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quality is subjective and diversified in different environments. Traditionally, QoE is obtained

from subjective tests, where human viewers evaluate the quality of tested videos under a lab-

oratory environment. To avoid the high cost and offline nature of such tests, objective quality

models are developed. The major purpose is to identify the objective QoS parameters that

contribute to user perceptual quality, and map these parameters to user QoE [103]. Subjec-

tive test results are often used as ground truth to validate the performance of the objective

quality models. Most of the objective quality models are based on how the Human Visual

System (HVS) receives and processes the information of the video signals [103]. One of

the commonly used methods is to quantify the difference between the original video and the

distorted video, and then weigh the errors according to the spatial and temporal features of

the video. However, the need to access the original videos hinders online QoE monitoring.

In order to develop QoE prediction models that do not depend on original videos, network

statistics (such as packet loss) and spatiotemporal features extracted or estimated from the

distorted videos, are usually leveraged [103].

In this dissertation, different from aforementioned prior efforts, we propose a new

real-time QoE predication model. Specifically, we are motivated to design user adaptive

video streaming and video teleconferencing by a recently proposed and validated video cod-

ing technique called user adaptive video (UAV) [90][89]. UAV is a new technique that ex-

ploits the fact that the human visual system (HVS) cannot perceive spatial frequencies in an

image that are above a certain limit (or cutoff frequency), which is influenced by the view-

ing conditions such as the viewing distance, ambient luminance and display characteristics.

Frequency components above the limit can be removed to reduce the information in an im-

age before the conventional video compression is applied, resulting in significant increase of

image/video compression efficiency and reduction of bandwidth needed during transmission

without perceived loss of quality to the user. In other words, UAV presents an opportunity

to significantly improve the efficiency of video applications by not requesting unnecessarily

high bit rate video.
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1.1.3 Effectiveness vs. Efficiency

As mentioned earlier, numerous error control mechanisms (e.g., error resilient video

coding, error concealment, channel coding, retransmission) have been proposed to address

the error-sensitivity issue of compressed video traffic and various schemes (e.g., buffering)

have been designed for adapting to the time-varying video content characteristics and wire-

less channel conditions. However, effectiveness and efficiency of those designs are still open

issues.

Effectiveness means a method is adequate to accomplish a purpose. Back to those

aforementioned error control designs, some of them may not be effective all the time. For

example, some error concealment techniques can help stop error propagation, such as the

”frame copy” used in WebRTC where a frame that cannot be correctly decoded is replaced by

the last correctly decoded frame. Such techniques, however, may cause video freezes. Error

resilient video coding works well with light packet losses, but may not work with bursty

packet losses. In addition, application layer Forward Error Correction (FEC) is a commonly

used scheme for data protection. However, it introduces extra complexity, overhead and

delay, which are undesirable to applications with stringent delay constraints such as in the

case of video telephony and its use should be minimized.

Efficiency means a method performs or functions in the best possible manner with

the least waste of time and/or effort. Some of those aforementioned error control designs

may work effectively most of the time, but the efficiency may not be satisfactory. Again,

take the application layer FEC as an example. FEC can be performed either among the RTP

packets of a single frame or among the RTP packets of multiple frames. Considering the

case of single frame FEC which is used in WebRTC, the overhead is lower bounded by the

number of RTP packets in a frame. For a bit rate of 2 Mbps, an MTU of 1500 bytes, and

a frame rate of 15 frames per second (fps), a frame consists of less than 12 packets and the

minimum overhead of single-frame FEC is 1/12 = 8.33%. In practice, the overhead could be

much higher. For example, [80] shows that for single-frame FEC, the overhead varies from

40% to 20% as the video bit rate increases from 0.5Mbps to 1.2Mbps with a packet loss rate

of 5% and burst length of 2. In addition, the overhead (or redundancy) in application-layer
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FEC is often adaptive to the packet loss rate: the higher the loss rate, the higher the overhead.

According to our prototype-based real experiments (Chapter 4), FEC overhead can be up to

50%.

Lastly, it is worthy reviewing the efficiency requirement from the perspective of mo-

bile devices, which consume a significant portion of the global multimedia traffic. On one

hand, many mobile devices are already matching and surpassing HDTV in terms of graphics

capabilities. For instance, mobile devices often feature high-density ”retina” screens with

1280*720, 1920*1080, or even higher resolutions. They also come equipped with pow-

erful processors, making them possible to receive, decode and play HD-resolution videos.

On the other hand, network and battery resources in mobile devices remain limited. Wire-

less networks, including the latest 4G/LTE networks and Wi-Fi networks, are fundamentally

constrained by the capacities of their base stations/APs. Each base station’s or AP’s ca-

pacity is shared among its users, and it can be saturated by only a limited number of users

simultaneously watching high-quality videos [3]. High data rates used to transmit video also

cause high energy consumption, draining their batteries quickly. All these issues suggest that

efficiency in mobile video services is very important.

In this dissertation, We propose several adaptation algorithms that consider both ef-

fectiveness and efficiency. For instance, user adaptive DASH and user adaptive video tele-

conferencing are able to reduce bandwidth usage by up to 40% without perceived loss of

quality to the users, according to the experiment results collected from real-world imple-

mentations. Such significant amount of reduction in bandwidth usage not only dramatically

improves energy efficiency and video smoothness, but also helps other cross traffic (i.e., the

saved bandwidth can be used by other cross traffic) to create a win-win situation. We also

propose a real-time, light-weight and passive algorithm to effectively detect wireless network

congestion, and then propose two different algorithms to almost completely eliminate packet

losses in wireless networks. The evaluation results collected from our realistic WebRTC-

based testbed confirm that our approach can significantly improve the QoE of the received

video by dramatically reducing video freezes or increasing the video bit rate. Compared to

the application-layer FEC approach (the default error recovery mechanism in WebRTC), our
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approach can achieve the same goal with minimum cost. More importantly, our approach

could be used in conjunction with application-layer FEC to further improve QoE.

1.2 Problem Statement

1.2.1 User Adaptive Wireless Video Streaming

HTTP streaming has been widely adopted for multimedia delivery. Dynamic Adap-

tive Streaming over HTTP (DASH) is an emerging standard ([68]) for adaptive HTTP stream-

ing to enable interoperability in the industry. User Adaptive Video (UAV) is a new technique

that exploits the perceptual limits of the human visual system to modulate a video stream’s

bit rate based on the viewing conditions, such as viewing distance and ambient illuminance,

resulting in significant bandwidth reduction without perceived loss of quality to the user.

UAV presents an opportunity to significantly improve the efficiency of DASH by not re-

questing unnecessarily high bit rate video. Due to the random access nature of the Wi-Fi

MAC protocol and the intricate interaction among DASH traffic flows, it is not clear whether

UAV will manifest its benefits in Wi-Fi networks.

In this research, We design UAV-enabled DASH (UDASH) and evaluate its perfor-

mance in Wi-Fi networks. The performance of UDASH is demonstrated through simulations

and comparisons with other DASH clients not using UDASH.

Chapter 3 discusses this research in details, which has been published in [19].

1.2.2 Protocol Adaptive Wireless Video Teleconferencing

In wireless networks such as those based on IEEE 802.11, packet losses due to fad-

ing and interference are often misinterpreted as indications of congestion by the congestion

control protocol at the higher layers, causing unnecessary decrease in the data sending rate.

For delay-constrained applications such as video teleconferencing, packet losses may result

in excessive artifacts or freezes in the decoded video.

WebRTC utilizes both proactive and reactive packet loss mitigation methods [80].

The proactive method used by WebRTC is packet-level FEC. However, FEC adds redun-

dancy to mitigate packet losses at the cost of high overhead. Note that the overhead (or
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redundancy) in application-layer FEC is often adaptive to the packet loss rate: the higher

the loss rate, the higher the overhead. However, if not using FEC, the reactive packet loss

mitigation method alone is not sufficient to mitigate packet losses. This is because the re-

active approach is based on end-to-end packet-loss feedback. In one reactive method, the

video encoder encodes a future video frame as an I-frame upon receiving an I-frame request

or a frame-loss feedback. However, this may be undesirable in practice because generating

an I-frame for each lost frame may either suddenly and substantially increase the video bit

rate, causing network congestion, or lead to poor video quality given a fixed video bit rate,

since the coding efficiency of an I-frame is often much lower than that of a P-frame. Also,

all the frames after the lost frame and before the new I-frame will suffer from artifacts or

video freezes, which last about one round trip time (RTT). Alternatively, the RTP layer at

the sender can retransmit a lost RTP packet upon receiving a packet-loss feedback from the

receiver [49], and again the value of RTT is critical to the video quality.

In this research, we propose two solutions:

1. (Cross layer approach) The MAC layer of the video sender detects a packet loss by

not receiving a positive acknowledgement within the maximumly allowed number of

retransmissions. On behalf of the video receiver, inside the video sender the MAC

layer sends a spoofed negative acknowledgement (NACK) to the RTP layer to trigger

an RTP layer retransmission in time, which effectively reduces the RTT and makes the

receiver probably to be unaffected by the packet loss.

2. (MAC layer only approach) The MAC layer adaptation grants the packet which will

experience an imminent loss (i.e., the packet is about to be discarded and considered

as lost by a higher-layer protocol after reaching the retry limit) higher priority or more

opportunities to be transmitted to prevent the loss.

Details of this research are presented in Chapter 4, which have been published in [20, 64].
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1.2.3 User Adaptive Wireless Video Teleconferencing

The human visual system (HVS) cannot perceive spatial frequencies in an image that

are above a certain limit (termed cutoff frequency), which is influenced by viewing condi-

tions such as the viewing distance, ambient luminance and display characteristics. Frequency

components above the limit can be removed (or filtered) to reduce the information in an im-

age before the conventional video compression is applied, thereby improving the efficiency

of image/video compression. The filtering is referred to as perceptual pre-filtering, and the

whole process (filtering together with the conventional video encoding) is referred to as user

adaptive video coding.

Perceptual pre-filtering has been used to improve the video coding efficiency of

streaming video [90, 89, 88]. However, it has not been applied to video teleconferencing,

which is the focus of our research. In this research, we propose a network-based transcoding

scheme for video conferencing to improve the video coding efficiency using perceptual pre-

filtering. Specifically, we propose to implement perceptual pre-filtering in a network entity

such as a Multipoint Control Unit (MCU). By analyzing the video sent from a client, the

MCU infers the client’s viewing conditions, which are then used to adapt the encoding of

the video destined to the client. The scheme is implemented in a real-world video telecon-

ferencing system called Licode.

The detailed study is presented in Chapter 5, which has been published in [65].

1.2.4 MAC Layer Optimization to Improve TCP Performance over Wi-Fi

The current video streaming standard MPEG-DASH uses TCP as the underlying

transport layer protocol. In a DASH system, a video receiver is strictly based on TCP’s

performance to estimate the available bandwidth of a network and select suitable video qual-

ity dynamically. In addition, not only video streaming, about 90% of the DATA traffic in the

Internet today is carried by TCP [55], and a majority of that traffic may be preferably trans-

ferred via a path over Wi-Fi which is significantly faster and cheaper than a cellular connec-

tion. Therefore, a satisfactory performance of TCP over Wi-Fi networks is thus essential to

effectively design, deploy and manage a large number of applications in the Internet.
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In this research, we study the issues leading to TCP performance degradation in a

typical Wi-Fi network. Based on an analytical study and a set of simulations, we identify

two types of TCP performance degradation due to common channel errors (e.g., collisions or

interferences). Motivated by these analyses and simulation studies, we propose a MAC layer

technique which optimizes the Retry Limit parameter in Wi-Fi networks to avoid triggering

the costly TCP loss recovery process.

Details of the study are presented in Chapter 6.

1.2.5 Delay Constrained MAC Layer Adaptation to Improve Wireless Video Telecon-

ferencing

In IEEE 802.11 standard wireless networks, transmit delay in the MAC layer refers

to the aggregate time spent by a MPDU from the moment the MPDU reaches the head of the

sending queue to the moment the MPDU is removed from the sending queue due to either

its successful delivery (receiving an ACK from the destination MAC) or being discarded af-

ter reaching the retry limit. When network conditions (e.g., aggregate traffic load, available

bandwidth, etc) fluctuate, transmit delay of each MPDU may vary significantly under the

influence of several non-deterministic factors: number of retransmissions, values of random

backoff time, backoff time freeze (busy channel), and so on. Furthermore, due to the follow-

ing two reasons, transmit delay of a real-time video MPDU needs to be upper bounded:

• The video receiver imposes a video decoding deadline. The arrival of video packets at

the receiver that take a large transmit delay and after the deadline is a waste of network

resources.

• Due to unexpected backoff timer freeze after carrier sensing, random backoff duration

in a noisy channel or a heavily loaded channel can be quite different. A sudden increase

of transmit delay means the corresponding MPDU takes more time to be transmitted

and less time for other MPDUs to be transmitted within the same time period. This

leads to a sudden decrease in the received bit rate at the receiver which in turn induces a

reduction in the sending rate at the sender. This is because the receiver usually uses the
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average received bit rate to estimate available bandwidth and then report this receiver

estimated bandwidth to the sender.

For these reasons, we propose to use a delay-constrained retry limit to control the transmit

delays. The delay constraint should be assigned by the application layer according to the ap-

plications’ specific requirements for the transmitted media data, as different applications will

place different requirements on the performance even in the future 5G system [7]. Based on

the delay-contrained retry limit optimization, we propose a MAC layer adaptation algorithm

and implement it on a prototype testbed. Our real traffic based emulations confirm that the

proposed algorithm is able to bring significant performance improvement.

Details of this work are presented in Chapter 7, which have been published in [21].

1.3 Organization of The Dissertation

The remainder of this dissertation is organized as follows. We provide an overview

of this thesis work in Chapter 1. We review the limits of human vision system and introduce

the user adaptive video (UAV) encoding in Chapter 2. We propose an UAV-enabled DASH

client for wireless video streaming and analyze its benefits on improving QoE performance in

Chapter 3. In Chapter 4, based on WebRTC, we propose two different approaches to optimize

wireless video teleconferencing, and present extensive and realistic evaluation results for

each approach. In Chapter 5, we improve wireless video teleconferencing by proposing an

online UAV encoding method. In Chapter 6, we explore and analyze the potentials how those

optimization approaches proposed in Chapter 4 could help general TCP traffic in wireless

networks. In Chapter 7, we propose an delay-constrained MAC layer adaptation algorithm

to further optimize wireless video teleconferencing. Chapter 8 concludes the thesis with

future research directions. The overall structure of the dissertation is shown in Fig. 1.1.
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Chapter 2

REVIEW OF THE LIMIT OF HUMAN VISION SYSTEM

In this chapter, background information of human visual limits [50] will be reviewed.

After the review, the concept of user adaptive video coding is introduced.

2.1 Factors Affecting Human Perception of Visual Information

There are several factors that can affect a user’s ability to discern the visual informa-

tion rendered on an electronic screen. In Fig. 2.1, several important parameters of a viewing

setup is shown. These include viewing distance, display size, viewing angle, and ambient

light. The variation of ambient illuminance across several possible types of environments is

captured in Fig. 2.2. This shows a very broad (5 orders of magnitude) range of this charac-

teristic.

Fig. 2.3 illustrates some effects of ambient light on the visibility of information pre-

sented on a mobile screen when indoors and in direct sunlight conditions. The examples in

Fig. 2.3 show that the impact of the viewing setup and the environmental factors can be very

significant. A high-quality video becomes completely washed away under sunlight. View-

ing distance may also significantly impact the amount of information that will be delivered.

The further the viewer is from the screen, the more content in the video falls beyond the

resolution capability of human vision, making it invisible to the viewer.

2.2 Limits of Human Vision

2.2.1 Visual Acuity

Visual acuity (VA) is a quantitative measure of the ability to identify black symbols

on a white background at a standardized distance as the size of the symbols is varied. It is

the most common clinical measurement of visual function which represents the smallest size
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Figure 2.1: Characteristics of viewing setup [78]

Figure 2.2: Ambient illuminance in different environments [12]

Figure 2.3: Mobile video viewed with different surrounding light level. (a) indoors, (b)
direct sunlight, (c) contrast perceived as in (a), (d) contrast perceived as in (b)
[100]
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(a) (b)

Figure 2.4: (a) Snellens chart [95] (b) Visual acuity calculation [66]

that can be reliably identified. A visual acuity of 20/20 is described as meaning that a person

can see detail from 20 feet away the same as a person with normal eyesight would see from

20 feet.

Visual acuity often is referred to as ”Snellen” acuity [86]. The chart and the letters

are named for a 19th-century Dutch ophthalmologist Hermann Snellen (1834-1908) who

created them as a test of visual acuity. Snellen letters are constructed so that the size of the

critical detail (stroke width and gap width) subtends 1/5th of the overall height. To specify a

person’s visual acuity in terms of Snellen notation, a determination is made of the smallest

line of letters of the chart that he/she can correctly identify. Visual acuity (VA) in Snellen

notation is given by the relation:

VA = D′/D (2.1)

where D’ is the standard viewing distance (usually 6 metres or 20 feet) and D is the distance

at which each letter of this line subtends 5 minutes of arc.

2.2.2 Viewing Distance

The human visual system (HVS) uses two mechanisms to focus on objects: conver-

gence and accommodation. Convergence denotes the eyes moving inward when focusing on

nearby objects, and accommodation describes the focusing of objects of different distance
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Figure 2.5: Probability distribution of smartphone reading distances [78]

by means of physically deforming the lens of the eye. The default distance at which objects

appear sharp is called the resting point of accommodation (RPA). RPA is around 75 cm for

younger people and increases in distance with age [74]. The distance at which the eyes are

set to converge when there is no object to converge on is called the resting point of vergence

(RPV) [52]. RPV is 114 cm when looking straight ahead and drops to 89 cm when looking

30 degrees down [74].

Recently a study [101] has been conducted pertaining to the distances with which a

person with normal 20/20 vision can be comfortable in reading text on smart phones. The

result shows that viewing distances for a smartphone range from 7.5” to 23.6” with a mean

distance 12.7” and standard deviation of 3”. The approximate shape of such a distribution,

obtained by fitting Gaussian model, is shown in Fig. 2.5.

2.2.3 Spatial Frequency

The spatial frequency is a measure of how often sinusoidal components of a structure

repeat per unit of spatial distance. It is also often described as the frequency of change per

angular unit, capturing the relative position of a viewer to the image as being projected to

the screen (see Fig. 2.6(a)).

As shown in Fig. 2.6(b), spatial frequency, u, of a sinusoidal grating (see Fig. 2.6(a))
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(a) (b)

Figure 2.6: (a) Sinusoidal grating (b) Computation of spatial frequency

Figure 2.7: Finding highest spatial frequency limit for the HVS [66]

with a cycle length of n pixels can be computed (in cycles per degree) as

u =
1
β
, β =

π

360
arctan(

n
2dρ

) (2.2)

where ρ is the display pixel density (in pixels per inch), d is the distance between viewer and

the screen (in inches) and β is the angular span of one cycle of grating (in degrees).

The concept of visual acuity or 20/20 vision can also be understood as a limit in

spatial frequency space. To illustrate this, consider Snellens E grating conversion presented

in Fig. 2.7. It can be observed that for the 20/20 Snellen’s letter E, there are 2 minutes of

arc in one cycle. It is known that 60 minutes makes one degree and hence in a 20/20 letter,

there are 30 cycles per degree (cpd). This means that 20/20 acuity implies ability to resolve

frequencies of at least 30 cpd.
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2.2.4 Contrast and Contrast Sensitivity

Contrast is a fundamental characteristic of displays or other visual sources capturing

the dynamic range of luminance that they can reproduce. There are several alternative defi-

nitions of contrast used in the literature. The important ones for the work in this thesis will

be the Michelson contrast, the Contrast Sensitivity, and the Contrast Ratio.

Michelson Contrast (C): The Michelson definition of contrast is used very com-

monly in vision research. Michelson contrast C is defined in [44]:

C =
Lmax − Lmin

Lmax + Lmin
(2.3)

where Lmax and Lmin are luminances of darkest and brightest colors in an image or video

projected to a screen. If follows from definition, Michelson contrast C ranges from 0 to 1.

Contrast Sensitivity (S): Contrast sensitivity S is most commonly defined as an

inverse of the Michelson contrast:

S =
1
C

=
Lmax + Lmin

Lmax − Lmin
(2.4)

The range of contrast sensitivities is from 1 to infinity. In other words, contrast sensitivity

cannot be lower than 1.

Display contrast ratio (CR): Contrast ratio is the ratio between the luminances of the

brightest (typically white) Lwhite and the darkest (typically black) Lblack colors that a display

device can reproduce:
CR =

Lwhite

Lblack
(2.5)

This Contrast ratio (CR) is commonly used by the display industry to characterize contrasts

of TVs and monitors being produced. Such manufacturer-reported contrast ratios are typi-

cally measured in a dark room, and they can be very high (contrast ratios of 1000:1 or even

100000:1 are very common for modern displays). However, in the presence of ambient light

contrast ratios can be several orders of magnitude lower [12].
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Figure 2.8: Gabor patches with progressively reduced contrast

2.2.5 Contrast Sensitivity Function

Visual acuity is measured using high contrast letters (black symbols on white back-

ground). The contrast Sensitivity Function (CSF) is a more complete characteristic of human

vision, obtained by considering images of different contrasts.

Some example images, so-called Gabor patches as used in CSF measurements, are

shown in Fig. 2.8. Such patches are viewed from a distance limiting their angular span to a

certain angle χ (usually between 2◦ and 12◦). The maximum and minimum luminances, Lmax

and Lmin, of such patches are also controlled so as to achieve different levels of their contrast.

During each test, the contrast of the patch is progressively reduced until the point when a

viewer can no longer detect it. This test is repeated for patches with different frequencies. It

is also performed involving a fairly large (20 viewers +) panel of viewers.

The Michaels contrast level Cτ at which 50% of viewers say that they can see os-

cillations and the other 50% of viewers cannot is called the contrast visibility threshold Cτ.

The inverse of it, S = 1
Cτ

, is called the sensitivity threshold for Gabor patches with a certain

spatial frequency u.

The Contrast Sensitivity Function is the collection of sensitivity thresholds measured

across different spatial frequencies. An approximate shape of the CSF curve is illustrated in

Fig. 2.9.

The two important points on the CSF curve are: maximum point (corresponding to

about 3-5 [cpd]), and a point at which it approaches contrast sensitivity of 1. This farthest

right point coincides with the visual acuity limit.
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Figure 2.9: Illustration of shape of contrast sensitivity [88]

2.3 User Adaptive Video Coding

The human visual system (HVS) cannot perceive frequency components in an im-

age that are above a certain threshold (or cutoff frequency) under a given viewing condition,

which includes factors such as viewing distance, ambient luminance and display charac-

teristics. The frequency components above the cutoff frequency can be removed to reduce

the information in an image before the conventional video compression is applied, thereby

further improving the efficiency of image/video compression.

In this thesis, we use the same contrast sensitivity function (CSF) model used in

[18][67][10] to characterize this phenomenon. This model establishes a relationship be-

tween the spatial frequency (in cycles per degree or cpd) and the contrast sensitivity. The

spatial frequency characterizes the oscillation of a sinusoid in an image with respect to the

angular span of the sinusoid to the eyes. For a fixed sinusoid, as the viewing distance in-

creases, the angular span decreases and hence the spatial frequency increases. The contrast

sensitivity is the inverse of the Michelson contrast, and the higher it is, the lower the contrast

is. The contrast sensitivity is determined by the contrast of the image itself, and the viewing

conditions such as the ambient luminance and the reflection of the display. Therefore, as

the viewing condition changes, the frequency components in an image that are visible to the
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HVS also changes. Additionally, since the contrast sensitivity may vary significantly from

region to region in an image, applying different cutoff frequencies instead of the same one

to different regions of an image to filter the image prior to conventional video encoding may

dramatically improve the video compression efficiency [90][89]. The filtering is referred to

as perceptual pre-filtering, and the whole process (filtering together with the conventional

video encoding) is referred to as user adaptive video coding.
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Chapter 3

USER ADAPTIVE WIRELESS VIDEO STREAMING

3.1 Introduction and Related Work

HTTP streaming has been widely adopted for multimedia delivery. Dynamic Adap-

tive Streaming over HTTP (DASH) is an emerging standard for adaptive HTTP streaming to

enable interoperability in the industry. In a DASH system, the content is offered at the server

in different representations, which may provide different qualities (e.g., resolutions, quan-

tization parameters) usually with different bit rates. Each version of the content is divided

into small segments corresponding to relatively small time intervals, typically between two

and ten seconds. This allows clients to select the most suitable video version dynamically,

i.e., the version that matches the capabilities of their equipments and the currently available

bandwidth.

We are motivated to design UAV-enabled DASH (UDASH) by a recently proposed

and verified video coding technique called user adaptive video (UAV) [90][89], which ex-

ploits the perceptual limits of the human visual system to reduce the video bit rate without

affecting the perceived video quality. The perceptual limit is the highest spatial frequency

that can be perceived under a given viewing condition, which can be obtained by using the

front-facing camera of a device to estimate, for example, user distance, number of viewers,

and ambient illuminance. Any frequency component higher than the perceptual limit can be

removed from an image without affecting the perceived quality of the image. As demon-

strated in [90]and [89], UAV can result in bandwidth reduction of up to 70-80% without

perceived loss of quality to the user. The perceptual limit is a function of viewing condi-

tion, which may be different from one user to another or vary over time for the same user.

Thus, by making the DASH client aware of a user’s viewing condition, a DASH client can
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avoid requesting unnecessarily high bit rates, resulting in potentially significant bandwidth

savings.

We are particularly interested in the benefits of using UDASH in Wi-Fi networks for

two reasons. First, Wi-Fi has been widely used and there are many scenarios where net-

work congestion can happen, for example, on campus, at airport, and in densely populated

residential areas. Most Wi-Fi networks operate only in random access modes (e.g., DCF,

EDCA[1]), without a central controller that allocates network resource for fairness and min-

imum bandwidth guarantee. This is in drastic contrast to cellular networks where resource

allocation is centrally controlled so that the network resource saved due to UDASH may be

shifted to disadvantageous users to reduce their rebuffering probabilities [99]. It is not clear

whether UAV can provide a similar benefit in a Wi-Fi network, especially given the intricate

interaction among DASH traffic flows.

Second, most existing DASH bit rate selection algorithms, e.g., [32] [39] [37] are

designed for wired networks. However, due to interferences, path losses, competing wireless

traffic and user mobility, the network condition in a wireless network is dramatically more

dynamic than a wired network, making these algorithms ineffective for wireless networks.

Few algorithms, [34] [40] [33], are developed for wireless networks. The use of UAV with

DASH is a different approach that can potentially mitigate the deficiencies of existing rate

selection algorithms.

Our proposed UDASH can incorporate any rate selection algorithm. Additionally, in

[90] and [89], UAV is based on feedback and requires online cooperations between the client

and server. Our work is a client-side-only approach without requiring online feedback. In

[78], a-client-side-only approach is also proposed, but without any performance evaluation.

3.2 System Design

3.2.1 UDASH Client Architecture

A UDASH client has an additional UAV block compared to a DASH client. As shown

in Fig. 3.1, the UAV block uses a device’s sensor (e.g. front-facing camera) to estimate the

user’s distance and environmental factors, such as ambient light, to determine a human user’s
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Figure 3.1: The overall UDASH architecture.

Table 3.1: Simulation parameters

Parameters value
Number of seeds 200
Simulation time 100 seconds
Traffic start time uniform distribution from [10, 30] seconds
Physical Characteristics 802.11n (2.4GHz,TxOP enabled)
TCP receive buffer 65535 bytes

perceptual limit. The perceptual limit describes the highest spatial frequency that can be per-

ceived in an image. The video is converted to a reduced bit rate compared to the highest bit

rate representation of the content and results in a bit rate savings without perceivable loss in

quality which depends on a given video codec. For example, if the highest quality represen-

tation of content is 3.0 Mb/s, a perceptually equivalent representation may be produced at a

lower bit rate such as 2.3 Mb/s under specific viewing conditions. Thus UAV can be used to

produce visually identical representations at reduced bit rates. This property is explored in

the following analysis.

3.2.2 Example Scenarios Showing The Benefits of UDASH

We start exploring the benefits of UDASH by using a simplified scenario in which the

network is lightly loaded, and the encoded video only includes two bit rate representations.
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3.2.2.1 UAV Helps DASH Traffic

Simulated network. In OPNET 17.1A [71], we create a network consisting of two

IEEE 802.11n stations each running a DASH client and an access point connected to a DASH

server via the Internet which models a 30 ms one-way delay. The maximum achievable MAC

layer throughput for an active client is 5.5 Mb/s, and the value becomes 2.7 Mb/s when two

active clients equally share the network with the access point. We call the two identical

clients A and B, respectively. The key simulation parameters are in Table 3.1.

Video content, rate selection and perceptual limit. We assume that the set of avail-

able bit rates in MPD (Media Presentation Description) are 2.3 Mb/s, 3.0 Mb/s, and the

perceptual limit is 2.3 Mb/s. All video segments are 1 second long. The initial buffer size

is set to 2 seconds, and the full buffer size is 4 seconds. Each client immediately sends the

request for the next segment right after fully receiving the last segment unless the buffer is

full (attains 4s). For simplicity, we also assume that each client always requests the highest

bit rate with UAV disabled. In other words, a DASH client always requests the segment

with bit rate of 3.0 Mb/s, and a UDASH client always requests the segment with bit rate at

2.3 Mb/s. While in practice the viewing conditions will vary, this assumption will provide a

reference based on somewhat typical bandwidth savings due to UAV.

Performance metrics. The appearance of interruptions caused by rebuffering events

has a significant impact on the QoE in video streaming. It is widely accepted that video

interruptions are really annoying for users and the quality of experience can be significantly

improved by the lack of interruptions [38]. The presence of a rebuffering event in a simula-

tion trial follows a Bernoulli distribution. The Bernoulli variable takes a value 1 (rebuffering

occurred) with probability p and value 0 (no rebuffering occurred) with probability 1 − p.

In this work, we calculate the rebuffering probability p by counting the fraction of clients

who experience buffer starvation in each of the 200 simulation runs. We also calculate the

95% confidence interval according to [31, p 393]. In addition to the rebuffering probability,

we also use the average total buffering time to characterize the overall time duration during

which a video playback has to suspend. This average total buffering time includes both ini-

tial buffering time and rebuffering time. The initial buffering time is the one-time waiting
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Table 3.2: Simulation results
No UDASH UDASH A UDASH B Both UDASH

95% Confidence Interval for Rebuffering Probability
Client A [0.982,1.0] [0,0.018] [0.112,0.218] [0,0.018]
Client B [0.982, 1.0] [0.116,0.224] [0.0,0.018] [0,0.018]

Average Total Buffering Time (s)
Client A 8.89 1.97 2.36 1.87
Client B 8.83 2.31 1.92 1.82

time at the beginning of a video playback. The rebuffering time is the pause time during the

middle of a video playback due to buffer starvation.

Simulation results. As shown in Table 3.2, when either client A or B runs UDASH,

both of them see improved performance. When both clients use UDASH, the gain is even

more significant. Refer to Section 3.2.3 for detailed analysis.

3.2.2.2 UAV Helps Non-DASH TCP Traffic

Simulated network. Based on Section 3.2.2.1, we add one more client which runs

an FTP application. The DASH server also serves as the corresponding FTP server. Only

FTP download traffic is simulated. To make sure that the bandwidth saved by UAV is fully

utilized by the FTP client, we adjust the MAC layer data rate to achieve 10.0 Mb/s MAC

layer throughput when only one client is active, or 3.3 Mb/s per-client throughput in the case

of 3 active clients.

Video and perceptual limit. Same as Section 3.2.2.1.

Simulation results. The average TCP throughput of the FTP client over 200 random

seeds is increased by 36%. Note that there are only two UDASH clients. Higher gain is

expected if more UDASH clients use a network with enough capacity to trigger UAV.

3.2.3 Benefit Analysis of UDASH

Traditional DASH clients select the best-matching video bit rate based on the esti-

mated bandwidth and/or the buffer fullness. With UAV, as depicted in Fig. 3.1, UDASH

clients consider the user’s perceptual limit and may choose a lower bit rate to save band-

width. The best bit rate at time ti is given by
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S(ti) = min(zR(χ(ti), ν(ti)), ψR(ti)) (3.1)

where R denotes the vector of available video bit rates; zR(.) is the function finding the best

affordable video rate in R based on average throughput χ and buffer fullness ν at time ti; ψR

is the lowest video rate in R that is above or equal to the perceptual limit at time ti.

In an overly congested Wi-Fi network, at any time t, for any client, if zR(χ(t), ν(t)) 6 ψR(t),

UAV will not be triggered. In a lightly loaded Wi-Fi network, every DASH client can re-

ceive the highest video bit rate. In this case, UAV will not benefit the DASH traffic due to the

absence of network induced rebuffering and because DASH users will already be receiving

the highest quality representations. However, UAV will still benefit the non-DASH traffic, as

shown in Section 3.2.2.2.

However, in a network which is between the above two extremes, the situation is

more complicated. As shown in Fig. 3.1, the information whether a user is present and

paying attention is conveyed to the DASH rate selection logic. For example, if the user is not

paying attention, the buffer size may be extended such that the entire content may be stored

in the client. If sufficient time passes before the user continues to pay attention, the client

may stop downloading the video and save bandwidth. Some other alternative actions of the

client can be proposed, but this is not the focus of this work.

On the other hand, if an active user is detected, UAV starts to work and can offer

three direct benefits. The first benefit is to reduce the rebuffering probability. UDASH client

can build its own buffer faster, which in turn helps avoid buffer starvation in the future when

the network capacity or aggregated traffic load changes. Also, if conventional DASH clients

face buffer starvation because of either an aggressive decision (the request of a bit rate much

higher than the available bandwidth) or due to the available short-term bandwidth being

below the lowest available video bit rate, the saved bandwidth from UAV may compensate

for the resource shortfall. The second benefit is to improve the video quality. The saved

bandwidth from UAV may help other UDASH or DASH clients get video segments with

higher bit rate and hence generally better video quality. The third benefit is to help non-

DASH traffic that shares the network, such as the example in Section 3.2.2.2. Section 3.4.3

will confirm that the three benefits can be realized at the same time in a realistic scenario even
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though they compete with each other. However, as the network conditions and overall traffic

change from time to time, it is hard to analytically characterize how the saved bandwidth

will contribute to each of these benefits.

As UAV helps reduce the highest consumed video bit rate, some indirect benefits may

be obtained. For example, the decisions to increase quality/bitrate of future segments may

be less aggressive. Less quality oscillation and fewer abrupt quality transitions will happen

because the gap between the highest and lowest bit rate is smaller.

3.2.4 Conditions When UAV Helps

First of all, an active user must be detected to determine the perceptual limit. Sec-

ondly, a network needs to have clients whose available bandwidth may sometimes be higher

than the bit rate that corresponds to the perceptual limit so as to enable UAV. In a network

where UDASH clients see different and/or dynamic available bandwidth, some clients are

able to apply UAV and thereby save bandwidth, while others may use the saved bandwidth

to mitigate buffer starvation or enjoy higher bit rate video. If a network is stable and equally

shared by all users, UAV either is not triggered or only helps non-DASH TCP traffic (if it ex-

ists). Lastly, the full buffer size of a UDASH client may affect how the saved bandwidth will

be utilized. A DASH client usually continues requesting the next segment until its buffer is

full. The amount of UAV savings used to build the buffer likely increase with the full buffer

size.

The above conditions can be easily satisfied in a Wi-Fi network. Next, we describe

the implementation of UDASH and evaluate the benefits for a more realistic scenario.

3.3 System Implementation

Our implementation is done in OPNET 17.1A [71].

3.3.1 DASH Protocol

The video bit rate adaptation algorithm is the core component of DASH. Inside the

rate adaptation algorithm, an exponentially weighted moving average filter [37] [36] [35] is
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widely used for estimating the available bandwidth. The equation is given by

Te(i) =


(1 − δ)Te(i − 1) + δTs(i − 1) i > 1

Ts(i − 1) i = 1
(3.2)

where Ts(i− 1) is the measured bandwidth in downloading the last segment, Te(i− 1)

is the estimated bandwidth for the last iteration, Te(i) is the estimated bandwidth for the

current iteration and δ is the weight given to the last measurement.

Note that UDASH can essentially work with any rate adaptation algorithm. We

choose two rate adaptation algorithms using Eq. 3.2 for the purpose of illustration: fixed

weight and variable weight.

Fixed weight: δ = 0.2 in our simulation.

Variable weight: δ = 1
1+e−k(ρ−P0) , where ρ =

|Ts(i−1)−Te(i−1)|
Te(i−1) .

The variable weight algorithm uses the logistic function to map the normalized in-

stantaneous estimation error, ρ, to the filter weight, δ, where k and P0 are parameters of the

logistic function. We set k = 21 and P0 = 0.2 as in [37].

3.3.2 User-adaptive Video (UAV)

In [90] and [89], UAV is done on the server side. Given the viewing conditions of

the receiver, the server uses a pre-processing filter to remove spatial frequencies that are

invisible under such conditions. By removing such frequencies the filter reduces the amount

of information in the video, therefore leading to more efficient encoding (lower bit rate)

without causing any visible alterations of the content. In contrast, in our implementation,

we do not use pre-processing filter so everything is done at the client side. Specifically, the

parameters on viewing conditions collected by a client will not be sent to the server, but are

used to calculate the target video bit rate, which is also called perceptual limit. For example,

before calculating the perception limit, the client is about to request the next video segment

with quality at 7 which is 3 Mb/s in TABLE 3.3. With UAV, the client determines that the

perception limit is 2.3 Mb/s so as to request the segment with quality at 5 in TABLE 3.3.
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Table 3.3: Set of available bit rate in MPD
Quality level Bitrate (Kbps) Resolution (width x height)

1 400 428x240 (240P)
2 900 640x360 (360P)
3 1400 854x480 (480P)
4 2000 1280x720 (720P A141)
5 2300 1280x720 (720P A16)
6 2700 1280x720 (720P A28)
7 3000 1280x720 (720P)

In this case, the saving of bandwidth is 0.7 Mb/s. In [78], the author does not mention the

implementation details on the server side.

The MPD profile used in the simulation is listed in Table 3.3. Assuming a median

viewing distance and typical viewing conditions (viewing angles is 16 ◦ as defined in Fig. 1

of [78].) and for the purpose of easier evaluation, the perceptual limit is always set to 2.3

Mb/s. Each video segment is 2 seconds. The initial buffering before playback begins is 4

seconds, and the full buffer size is 20 seconds.

3.3.3 MAC Layer Protocol

Currently, most commercial Wi-Fi products have enabled data rate adaptation (or

MCS adaption) at the MAC layer. Data rate adaptation algorithms usually use data rate

probes to improve network throughput when the channel quality becomes better. This leads

to inevitable packet losses because the probed data rate may be higher than what the true

current channel conditions allow. To capture this in our simulation, we implement a MAC

layer data rate adaptation algorithm [96] in the Wi-Fi model of OPNET 17.1A.

3.4 Evaluation

3.4.1 Simulation Setup

As shown in Fig. 3.2, we simulate a randomly distributed WLAN network within a

500x500 m2 area, with 2 FTP clients and a variable number of UDASH clients. With the

1
A14, A16 and A28 stand for 14 ◦ ,16 ◦ and 28 ◦ viewing angles as defined in Fig. 1 of [78].
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Figure 3.2: Network path with last mile Wi-Fi network.

MAC layer MCS adaptation algorithm implemented, default OPNET 802.11n PHY/MAC

layer parameters allow a transmission range of 837 meters. The Internet is simulated be-

tween the DASH/FTP server and the Wi-Fi network with a 30ms one-way delay. The other

parameters are the same as those in Table 3.1.

3.4.2 Performance Metrics

First, we reuse the concept of the rebuffering probability as defined in Section 3.2.2.1.

To show that UDASH may improve user perceived video quality as explained in

Section 3.2.3, we also collect the total time during which playback is effectively HD video

(720P) or better, that is, the quality level is 4 or above in Table 3.3.

Lastly, we calculate the average TCP throughput for the two FTP clients to show that

UAV can also help TCP cross traffic.

3.4.3 Simulation Results

With the setup introduced in Section 3.4.1, we run extensive simulations and present

the results here. In general, we see UDASH has significant and consistent improvement over

DASH when either rate adaptation algorithm is used. In a lightly loaded Wi-Fi network,
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Figure 3.3: Rebuffering probability

with 5 or 6 clients, where every DASH client can afford the highest video bit rate most of the

time, UAV works, but only improves the cross traffic as shown in Fig. 3.5. As the number

of clients increases, multiple benefits start appearing in Figures 3.3, 3.4 and 3.5, but they

have different behaviors. Firstly, the aggregate UAV savings in each simulation run first

increases because more clients do UAV, but then decreases because the savings from each

client becomes less due to limited overall capacity. Secondly, the demand (used for reducing

rebuffering probability or supporting better video quality) from UDASH clients for the UAV

savings increases all the way, because more UDASH clients need help. Since UDASH traffic

(assigned to the 802.11e Video Access Category) has priority over FTP traffic (assigned to

the Best Effort Access Category), the proportion of the UAV savings consumed by UDASH

traffic increases. Thirdly, the UAV savings consumed by FTP clients increases first (the

aggregate UAV savings increases but UDASH clients do not need much), then decreases (the

aggregate UAV savings is predominantly consumed by UDASH clients). Remember that

UDASH clients not only produce but also consume UAV savings at different times.

In terms of rebuffering probability, as shown in Fig. 3.3, the biggest relative reduction

is achieved in the case of 8 clients, which is 5x and 6.5x for the algorithms with fixed and

variable weights, respectively. In addition, we observe that the rebuffering probability of

UDASH clients climbs more slowly than DASH clients as the total of number of clients

increases, which shows that UDASH clients enable better scalability.
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Figure 3.4: Total playing time when the playback is HD quality

Besides rebuffering probability, as Section 3.2.3 explains, the bandwidth saved by

UAV offers several other benefits. One of the benefits, improving video quality, is subject to

many dynamic factors. For example, the bandwidth saved by UAV may be used by another

client to prevent buffer starvation rather than to allow a different client to request a higher

quality segment. Fig. 3.4 shows the total time the playback is of HD quality. Due to those

dynamic factors, the gain of UDASH over DASH client can be from 0.3% to 15%, where the

highest gain is achieved in the case of 12 clients using the algorithm with a variable weight.

Fig. 3.5 presents the throughput improvement of the TCP cross traffic when UDASH

is used. According to the earlier explanation in this section, the gain increases first and then

decreases as the total number of clients increases. The biggest gain 2.5x is achieved in the

case of 8 clients which is the turning point.
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Figure 3.5: Average TCP throughput for cross FTP traffic

3.5 Summary

In this chapter, we leverage a new user-aware video coding technique called UAV to

improve the performance of DASH systems and non-DASH TCP traffic in a Wi-Fi network.

UAV is an effective enhancement that can be applied to any DASH rate adaptation algorithm.

We design a general architecture termed UDASH to make use of UAV in DASH clients,

and explore the conditions when and how UDASH can provide benefits. The simulation

results of UDASH show significant improvement over DASH, by considerably reducing the

rebuffering probability, increasing the fraction of time of HD or better quality video, and

improving the throughput of TCP cross traffic.
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Chapter 4

PROTOCOL ADAPTIVE WIRELESS VIDEO TELECONFERENCING

4.1 Introduction and Related Work

Wi-Fi (IEEE 802.11) networks have been widely deployed and the adoption is still

fast growing. However, in real-time video applications, such as video teleconferencing

over time-varying, error-prone and bandwidth-fluctuating channels, Wi-Fi networks still face

many challenges. A typical real-time video system may have Wi-Fi link(s) (shared with mul-

tiple competing peers) on the edge and Internet in the core as shown in Fig. 4.1, where the

video sender transmits encoded video data to the video receiver for decoding and playback.

Standard video codecs (such as H.264 and VP8) exploit the spatial and temporal redundancy

in uncompressed video to achieve a high compression ratio, which, however, makes com-

pressed video very sensitive to transmission errors. Packet losses due to transmission errors

often lead to serious video quality degradation, like artifacts in the decoded video, which af-

fects not only the current frame, but also subsequent frames because of error propagation re-

sulted from the use of prediction from previous frames. Some error concealment techniques

can help stop error propagation, for example frame copy that is used in WebRTC [92] where

a frame that cannot be correctly decoded is replaced by the last correctly decoded frame.

This however causes video freezes. Application layer Forward Error Correction (FEC) is a

commonly used scheme for error protection. However, it introduces extra complexity, over-

head and delay, which is undesirable to applications with stringent delay constraints like

video teleconferencing. In Section 6.2, we will investigate the efficiency problem when FEC

is used in our WebRTC-based testbench. One straightforward and preferable solution is to

develop a lightweight mechanism to reduce packet losses caused by channel errors, which is

the focus of this work.
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Figure 4.1: A typical real-time video system

In wireless networks, path loss, shadowing, fading and interference cause packet

losses. Packet losses due to these reasons are classified as channel-caused losses. Note that

such packet losses, which occur when the distance between a wireless station and an Access

Point (AP) increases or when obstacles move temporarily between the station and the AP,

are very frequent in Wi-Fi networks. When the channel is heavily loaded with traffic from

multiple contending stations, and the available bandwidth shared by all stations is not enough

to accommodate all incoming traffic, the network is congested. If congestion persists, packet

losses due to buffer overflow will occur. In a congested network with many active contending

stations, collision induced packet losses may also increase significantly. Packet losses due to

these reasons are classified as congestion-caused losses.

In this work, we exploit the fact that packet losses on a Wi-Fi link can be inferred

by not receiving a positive acknowledgement (ACK) packet after reaching the retry limit.

We propose that if the packet loss is channel-caused, the MAC layer grants more transmit

opportunities by temporarily increasing the retry limit. If the packet loss is congestion-

caused, the MAC layer does nothing in order not to conceal the packet loss from higher

layer’s congestion control algorithms. Our approach implicitly assist existing congestion

control mechanisms at higher layers. The dominant transport layer protocols are TCP and

UDP. TCP is known for using congestion control. Video traffic accounts for a significant

share of UDP traffic and congestion control at the RTP layer is recommended [41] and gen-

erally implemented in the newer video telephony systems such as WebRTC. For widely
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used higher-layer congestion control mechanisms, packet losses are interpreted as indica-

tions of congestion which is not always correct especially in a wireless environment, and

this may lead to unnecessary reduction in the data sending rate. To mitigate this problem, it

is important to reduce channel-caused losses, which requires reliable differentiation between

channel-caused losses and congestion-caused losses which in turn necessitates another task

of this work: congestion detection in a Wi-Fi network.

Congestion detection in wireless networks has been extensively studied [60]. How-

ever, most of the proposed protocols make use of the detection results in order to perform

congestion control [45, 87, 77, 5] or rate adaptation [54, 4] at the MAC layer. In [97], con-

gestion status is part of the objective function for optimizing Packet-level FEC (PFEC) and

packet scheduling. In [104], the TCP sender generates and sends a special Resource Discov-

ery (RD) packet which travels a round trip and brings back information on the end-to-end

capacity to help the sender adjust the sending window size accordingly. In [15], the authors

propose to adapt the backoff window size to the current network contention level. In [56], a

joint adaptation of link rate and backoff contention window is proposed to improve the per-

formance of 802.11 multi-rate network. In contrast to the aforementioned prior work, in this

work we leave the job of congestion control up to upper layers, like the transport layer or the

RTP layer, and make use of the detection results in a very different way, which is adapting

the retry limit to the congestion level in the wireless channel to indirectly assist congestion

control mechanisms at higher layers.

The retry limit optimization has also been extensively studied in the literature. Rep-

resentative work includes [46, 16, 81, 17, 69]. In [81], the authors propose adjusting the retry

limit according to the MAC layer data rate. However, in Wi-Fi a higher data rate does not

necessarily indicate better channel quality which often implies low likelihood of channel-

caused losses because hidden terminal interference may still exist or the MAC layer rate

adaptation algorithm may try a higher data rate that the current channel condition cannot

sustain in order to potentially improve the overall throughput. Even though these mecha-

nisms are shown to be effective since they require either major modifications in the already

well-established IEEE 802.11 standard or cross-layer signaling, their applicability is limited.
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Moreover, most of those prior work uses simulation to validate the proposed solutions. Our

solution is implemented in a real testbench that allows for a more realistic evaluation and

demonstration.

Note that even though the example networks evaluated in this dissertation are infras-

tructure based Wi-Fi networks, any other wireless networks [25] [98] [94] [93] that rely on

retransmissions may also be applicable.

4.2 Problem Analysis and Motivation

We develop a testbench shown in Fig. 4.2 to perform experiments and identify the

problems that we are about to solve.

4.2.1 Testbench Setup

As shown in Fig. 4.2, the testbench consists of three directly connected laptops via

Ethernet cable, where Laptop A and Laptop B run WebRTC (version 6475) [92] based video

teleconferencing while the third laptop called the OPNET Laptop runs OPNET with system-

in-the-loop (SITL) [72] functionality. SITL allows real WebRTC packets (including RTP

packets and RTCP packets) to enter the OPNET Laptop from Laptop A and Laptop B. In this

way, we can emulate the delivery of these packets through various communication networks

with high fidelity. Fig. 4.3 shows the screenshot of the emulated OPNET scenario.

Inside the OPNET Laptop of Fig. 4.2, a typical and realistic network scenario is

created, which represents an important lossy communication network that consists of the

Internet in the core and Wi-Fi links on the edge. Real WebRTC traffic from Laptop A and

B via Ethernet interfaces arrives at SITL 1 and SITL 2 then STA A and STA B. We can

consider STA A and STA B as virtual mapping nodes of Laptop A and B, respectively.

Between STA A and STA B, a Wi-FI network and the Internet are simulated. A detailed

description about the testbench is summarized shortly. Without loss of generality, this work

only investigates packet losses that happen when STA A sends WebRTC video packets to

AP, and implement our algorithms in STA A to improve the overall performance of the
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video flow from Laptop A to Laptop B. Simply put, our approach improves the video sender

who has a lossy Wi-Fi link.

Summary of the testbench:

PHY and MAC layer: HT PHY at 2.4 GHz with IEEE 802.11n. PHY Data Rate is

65 Mbps. All other parameters use default values in OPNET 17.1.A. Since WebRTC video

traffic uses Best Effort Access Category by default, we let all other traffic (cross traffic and

hidden terminal traffic) in the Testbench use Best Effort as well.

Communication path: Laptop A via Ethernet↔ SITL 1↔ STA A↔AP↔ Internet

↔ STA B↔ SITL 2↔ Laptop B via Ethernet.

Main Wi-Fi network: Consists of STA A, AP and 8 CMP STA with 802.11n 2.4G

Hz. The AP is at a fixed position, while STA A and CMP STA are randomly placed (But the

distance constraints required to create a hidden terminal network are satisfied).

Congestion: Adjust the cross traffic between CMP STA and AP to create different

levels of congestion.

Hidden terminal Wi-Fi network: It consists of INT STA and INT AP with fixed

locations. INT STA and STA A cannot hear each other, but AP is within interference range

of INT STA. Since INT AP cannot be interfered by anyone in the Main Wi-Fi network,

INT STA servers as a hidden terminal to STA A but not vice versa.

Traffic definition: All three types of traffic (WebRTC, cross traffic and hidden ter-

minal traffic) are UDP-based video traffic, but some differences are there. Hidden terminal

traffic uses constant bit rate after it gets started. Cross traffic also uses constant bit rate for

easier control but the rates are different in different time periods in order to create different

levels of congestion. WebRTC starts from a minimum target bit rate (50 kbps) and then grad-

ually evolves as explained in Section 4.2.2. The default maximum target bit rate is around

4 Mbps. The target bit rate goes into the video encoder which generates a final video bit

rate generally not higher than the target bit rate. Another difference is that cross traffic and

hidden terminal traffic do not perform congestion control but WebRTC uses GCC (refer to

Section 4.2.2 for more detail) for congestion control.
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4.2.2 Background of WebRTC

WebRTC uses the Google Congestion Control (GCC) algorithm [61] to perform con-

gestion control, which is composed of two parts: the receiver-side controller computes the

rate Ar and sends it to the sender; the sender-side controller computes the target sending bit

rate As that cannot exceed Ar. Specifically the sender-side controller updates the maximum

allowable sending rate As(tk) every time tk the k-th RTCP report message carrying a fraction

of lost packets fl(tk) arrives at the sender. Usually but not always, the RTCP report message

also includes a Receiver Estimated Maximum Bitrate (REMB) message carrying an REMB

value Ar. Note that the fraction of lost packets fl(tk) is calculated before FEC recovery is

applied (if FEC is turned on). As described in [82], the RTCP reports include the fraction

of lost packets fl(tk) observed by the receiver, while REMB is based on the average delay

jitter calculated by the receiver. The sender uses fl(tk) to compute the sending rate As(tk),

measured in kbps, according to the following equation:

As(tk) =


max { X(tk), As(tk−1)(1 − 0.5 fl(tk)) } fl(tk) > 0.1

1.08 mint∈(tk−∆,tk) As(t) + 1kbps fl(tk) < 0.02

As(tk−1) otherwise

(4.1)

where X(tk) is the TCP friendly rate control (TFRC) rate [42]. The logic behind Eq. 4.1 is:

1) when the fraction of lost packets is considered low (0.02 ≤ fl(tk) ≤ 0.1), the data sending

rate is kept constant, 2) if the fraction of lost packets is considered high ( fl(tk) > 0.1),

the data sending rate is multiplicatively decreased (it is configured that the rate will not be

decreased more than once in the last (0.3 + RTT) seconds, where RTT is the round trip

time reported by the receiver), but not below X(tk), 3) when the fraction lost is considered

negligible ( fl(tk) < 0.02), the rate is adjusted to be 108% of the minimal value of As in the

last ∆ second (∆ is pre-configured as 1 by default). After As(tk) is computed from Eq. 4.1,

the value of As(tk) is further updated as As(tk) ← min(As(tk), the last received Ar), to ensure

that As(tk) never exceeds the last received value of Ar carried in the REMB message.

WebRTC utilizes both proactive and reactive packet loss mitigation methods [80].

The proactive method used by WebRTC is packet-level FEC. FEC adds redundancy to achieve
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packet loss mitigation. In Section 4.2.4, we will explain the efficiency problem caused by the

use of FEC. However, if not using FEC, the reactive packet loss mitigation method alone is

not sufficient to mitigate packet losses. In Section 4.2.5, we will explain what is the reactive

packet loss mitigation method used in WebRTC and why it is not good enough. Next we

introduce the motivation of our proposed scheme as a better solution in Section 4.2.6.

4.2.3 Experimental Setup

We combine different network conditions (hidden terminal traffic, competing traffic

with both high and medium load) and carry out a large number of experiments, each lasting

400 seconds. The hidden terminal traffic starts at the beginning (0 second) until the end of

each experiment. Competing traffic is active within two time periods, [180 sec, 210 sec] and

[240 sec, 250 sec], where the former time period has competing traffic of medium load and

the latter has competing traffic of high load.

In this chapter, all experimental results are collected by running emulations with the

testbench and experimental setup described in Section 4.2.1 and 4.2.3 and are the average of

10 emulation runs so that we can do a fair comparison on the experimental results before and

after using our proposed scheme.

4.2.4 Lower Received Video Bit Rate due to Packet Losses

In WebRTC, the application-layer FEC adapts the redundancy to the packet loss rate.

Given the same target sending bit rate As calculated in Section 4.2.2, the higher the fraction

of lost packets fl(tk) reported, the higher the portion of As will be assigned to transmit FEC
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Figure 4.5: When FEC is turned On and OFF: (a) Target sending rate As at Laptop A (b)

Received video bit rate at Laptop B

redundant packets, leaving a smaller portion of As for sending native video packets and

consequently a lower received video bit rate, hence a lower video quality. As shown in

Fig. 4.4, we define the received video bit rate as the arrival bit rate to the video decoder,

which equals to the total size of complete compressed video frames received by the decoder

per second. Due to packet losses in the end-to-end network, the video receiver relies on FEC

to recover missing native video packets and fill the gap in the Jitter buffer. When all packets

of a video frame arrive at the Jitter buffer, the video frame is sent to the decoder.

By following Section 4.2.3, we do experiments with FEC turned on or off, and get

results in Fig. 4.5, where (a) shows the target bit rate As calculated at the video sender and

(b) shows the received video bit rate at the video receiver. From Fig. 4.5, we observe that:

a. The maximum value of As is around 3.5 Mbps, while the maximum value of received

video bit rate is only around 2Mbps, even when FEC is turned off. This is because

WebRTC sets a upper limit which is 2 Mbps for the video encoder, no matter how big

As is.

b. At the time of 240 seconds when congestion happens, congestion control algorithms

works well and As drops to 0.6 Mbps in both curves.

c. Except the two transient time periods, [0 sec, 100 sec] and [240 sec, 350 sec], although

the sending rate As are almost the same, the received video bit rate when FEC is turned

off is 70% higher than the case when FEC is turned on, showing significant overhead
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Figure 4.6: Video freeze duration on Laptop B: (a) FEC is turned off (b) FEC is turned on

of FEC.

Due to the efficiency problem explained above, plus extra complexity and delay from

FEC, in some commercialized WebRTC products, like Chrome browser, FEC in WebRTC

is disabled. In Section 4.2.5, we will show that however, turning off FEC will bring about

another problem.

4.2.5 Video Freezes due to Packet Losses

As explained in Section 4.2.2, WebRTC uses both proactive and reactive packet loss

mitigation methods. The proactive method is application-level FEC. The reactive approach is

based on an end-to-end feedback to request RTP layer retransmissions from the video sender,

which is ineffective in the case of large round-trip-time (RTT). In our testbench setup where

there is a 300 ms Internet delay, when packet loss happens on the Wi-Fi link from STA A to

AP, the receiver has to wait 600 ms (RTT may range from 50 ms up to 700 ms [23]) before

a retransmission from the sender can be received, and this will make the playout buffer

delay insufficient to conceal the packet loss. As a result, with the default error concealment

technique of WebRTC, a type of frame copy where the video freezes at the last perfectly

recovered frame until the lost frame is recovered, excessive video freezes will appear in the

decoded video.
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Fig. 4.6 shows the video freezes in a single experiment when FEC is turned off or on,

where the freeze duration is calculated by subtracting the time when the next frame is actually

displayed from the original scheduled time of the next frame. A significant percentage of the

video freezes are close to 600 ms (not exactly 600 ms due to the dynamic value of the

playout buffer delay) as shown in Fig. 4.6 because application layer retransmissions (the

reactive approach described above) rely on end-to-end feedback which takes about an RTT

(600ms in the experiment). If application layer retransmissions also get lost, the actual video

freezes can be multiple times of one RTT. Although the use of FEC can significantly reduce

the video freezes, as shown earlier, it can significantly reduce the received video bit rate.

4.2.6 Motivation

In summary, channel-caused packet losses on an edge Wi-Fi link at the video sender

(such as the link from STA A to AP in Fig. 4.2) poses a dilemma to WebRTC. If FEC is

turned on, the almost 70% overhead can lead to lower video quality at the video receiver; if

FEC is turned off, like some commercial products do, excessive video freezes would happen

at the video receiver if the RTT is not negligible.

Supposing the differentiation between channel-caused losses and congestion-caused

losses has already been perfectly done (we will present an imperfect but effective algorithm

in Section 4.3), there are two candidate solutions based on our analysis:

1. (Cross layer approach) The MAC layer of the video sender detects a packet loss by

not successfully receiving a positive acknowledgement within the maximum allowed

number of retransmissions. On behalf of the video receiver, inside the video sender

the MAC layer sends a spoofed negative acknowledgement(NACK) to RTP layer to

trigger an RTP layer retransmission in time, which effectively reduces the RTT and

makes the receiver possibly unaffected by the packet loss.

2. (MAC layer only approach) The MAC layer adaptation grants the packet which will

experience an imminent loss (i.e., the packet is about to be discarded and considered

as lost by a higher-layer protocol after reaching the retry limit) higher priority or more

opportunities to prevent the loss.

44



The first solution relies on deep packet inspection of the lost packet in order to find

the associated sequence number so that the spoofed NACK can include the sequence number

and tell the video sender which packet gets lost. In cases when Real-time Transport Protocol

(SRTP) and Transport Layer Security (TLS) are used, there are some encryption problems

that have to be taken care of. For more details of this approach, please refer to Section 4.4.

The second solution, unlike EDCA in 802.11e, which depends on the type of the

packets (e.g., voice vs. video) and grant different priorities to different Access Categories,

ignores the type of the packets and treats every packet equally to avoid relying on cross layer

assistance. The rationale is that in the case of non-congestion, network resource anyway

is under-utilized, granting more transmission opportunities only utilizes otherwise wasted

network bandwidth. There are still some challenges, like how to guarantee fairness in con-

tention, how to avoid incurring congestion if granting too many opportunities, and how to

make sure higher priority or more opportunities indeed prevent loss. We will answer these

questions partly as follows and partly in Section 4.5.1. For more details of this approach,

please refer to Section 4.5.

Basically, we have two paramters to do MAC layer adaptation: Retry limit and con-

tention window (CW). The duration of CW is used for resolving contention when several

stations are competing to access the same channel. So a change in the CW of a STA means a

change in the medium access priority, which affects fairness and is undesirable for other sta-

tions that do not use our mechanism. In contrast, changing the retry limit does not affect each

single contention and we can still maintain equal channel access success probabilities. In a

lightly loaded network, increased retransmissions can better utilize the network resources;

in a heavily loaded network, the packet loss is classified as contention-caused loss, and retry

limit will not be increased. Regarding change in the retry limit, there are open challenges,

which will be discussed in Section 4.5.1.

For comparisons between these two approaches, please see Section 4.6.

45



4.3 Congestion Detection

4.3.1 Congestion Metric

For each Wi-Fi station, a single queue is typically used for traffic with the same

priority (called an access category in 802.11e), and the queue length at any time instant t0 is

given by:

Qlen(t0) =

∫ t0

0
(Ar(t) − Deliv(t) − Disc(t)) dt (4.2)

where Ar(t) is the data arrival rate from the IP layer at time t; Deliv(t) is the delivery rate

(number of successfully delivered bits per unit time), determined by the available shared

bandwidth; Disc(t) is the discard rate (due to reaching the retry limit), determined by the

retry limit, the random back-off time and the channel occupancy by contending peers.

From a quantitative perspective, a congested network is defined as one of which the

aggregate data arrival rate is persistently higher than the network capacity. Similarly, a con-

gested Wi-Fi station can be defined as one of which the data arrival rate is more than the

share of bandwidth available to that station, i.e.,
∫ t0

0
(Ar(t) − Deliv(t))dt is greater than a

positive threshold. From Eq. 4.2, we note that the queue length does not fully characterize

congestion, as a successfully delivered packet is treated the same way as a discarded packet.

Now we consider how to get the average transmit delay of a discarded MPDU, say,

T D, and then use its reciprocal 1/T D to obtain an upper bound on Disc(t). Here the transmit

delay is defined to be the time interval from the time the MPDU reaching the head of its

MAC queue for transmission, to the time an acknowledgement for this packet is received or

discarded upon reaching its retry limit. In other words, the queueing delay due to waiting

for the service of previous packets to be completed is not included. As specified in the

802.11 standard, upon a packet loss, the Wi-Fi station randomly chooses a backoff time and

retransmits the packet after the backoff time expires. However, other contending stations

may occupy the channel during the backoff time and force the backoff timer to freeze until

the channel is sensed idle again after a DIFS/AIFS period. Therefore, the actual length

of the backoff period can be much longer than the original randomly picked backoff time.

Borrowing the concept of conditional collision probability and the equation from [14] and
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[62], and assuming that the channel is occupied by other contending stations with a constant

and independent probability p at each time slot, it can be shown that the average transmit

delay of a discarded MPDU is:

T D(R, L) =

R∑
i=1

(min(2i−1 · (CWmin + 1) − 1,CWmax)
2

×(p · T (L) + aS lotT ime) + T (L)
)

(4.3)

where T (Li) = TDAT A(Li) + aS IFS Time + TACK + aDIFS Time is the transmission time for

sending an L-byte long packet. p is the conditional collision probability [14]. R is the retry

limit with a default value 7 (including the first transmission and maximum 6 retransmis-

sions). L is the length of a packet. Assume that the PHY data rate = 65 Mbps, L = 1224

bytes, ACK = 76 bytes, PLCP overhead = 40 us, aSlotTime = 9 us, aSIFSTime = 16 us, and

aDIFSTime = 34 us. Then T(1224) = 0.09 ms + 0.16 ms = 0.25 ms.

In a legacy network with CWmin = 15 and CWmax = 1023, assuming p = 0.1, we

have T D(7, 1224) = 36.175ms. In an EDCA network, for the video AC with CWmin = 7 and

CWmax = 15, assuming p = 0.1, we have T D(7, 1224) = 3.399ms.

Apparently, a packet of the video access category in an EDCA netowrk (3.399ms)

takes much less time before being discarded than the time (36.175ms) taken by a packet

in legacy network. As a result, by the upper bound Disc(t) ≤ 1/T D(R, L) (assuming each

discarded packet takes the same average delay), the Disc(t) in Eq. 4.2 could take a larger

value that is non-negligible in an EDCA network. The observation inspired us to find a

better congestion metric other than the queue length to make our mechanism work in a broad

range of networks. To accommodate this purpose, we define the excess data rate as follows:

EDRw
τ (t)← [Arw

τ (t) − Delivw
τ (t)]+/(wτ) (4.4)

where [x]+ = max(x, 0). Arw
τ (t) is the total amount of arrival data (aggregate size of arrival

MSDUs) in bits and Delivw
τ (t)is the total amount of successfully delivered data (aggregate

size of successful MPDUs) in bits during the time period [t−wτ, t). τ is the sampling interval.

To reduce short-term fluctuation, a sliding window w is introduced, which represents the
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Figure 4.7: Realtime calculations of Eq. 4.6 in WebRTC-based video teleconferencing ex-
periments

number of time intervals (each of τ long) so that all statistics falling in and only in the time

period [t − wτ, t) contribute to the calculation in the Eq. 4.4. In other words, τ determines

the update granularity, and w determines the update smoothness. For example, if τ = 0.1,

w = 10, EDR10
0.1(t) stands for the average excessive data rate (measured in bits per second)

during the most recent 0.1 × 10 = 1 second.

Given the same excess data rate, different networks may experience different levels

of congestion because the available bandwidth may be different. To manifest the severity

of congestion, we divide excess data rate by the estimated MAC layer capacity to get the

congestion level

CL(t) = EDRw
τ (t)

/
MCw

τ (t) (4.5)

where the estimated MAC layer capacity MCw
τ (t) is given by

MCw
τ (t) = Delivw

τ (t)
/ N∑

i=1

T D(ri, Li) (4.6)
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Where T D(ri, Li) is the actually measured transmit delay for the i-th transmitted packet. i

stands for the i-th packet and ri is the number of transmissions (including the first trans-

mission and the subsequent retransmissions) that the i-th packet performes. Li is the packet

length of the i-th packet. The rationale behind Eq. 4.6 is: assuming during the most recent

time window (t − wτ, t), a station transmits N fresh (excluding retransmissions) packets, the

available MAC layer capacity for this station is estimated as the total successfully delivered

data (measured in bits) divided by the total amount of transmit delay experienced.

4.3.2 Evaluation of the congestion metric

We propose to calculate the value of Eq. 4.5 in realtime to detect the congestion

level in the network. As shown in Eq. 4.5, the ratio of EDRw
τ (t) to MCw

τ (t) determines the

congestion metric. We start to analyze the estimated MAC layer capacity in Eq. 4.6, which

is used in Eq. 4.5.

Fig. 4.7, from top to bottom, shows the curves for Ar10
0.1(t), Deliv10

0.1(t),
∑N

i=1 T D(ri, Li)

and MC10
0.1(t) respectively. Two interesting observations of the curve of MC10

0.1(t) can be

noticed:

a. Large fluctuations of MC10
0.1(t) at the very beginning.

b. MC10
0.1(t), although fluctuating over small time scales, follows a trend of increasing when

the traffic arrival rate increases in the time interval [0, 140 sec] during which there is

no cross traffic.

The reason for observation a is that the sample size is too small(small number of

packets, and very short time duration) at the beginning, and we will explain later that this

will not affect the correctness of Eq. 4.5. We explain observation b using the theorem shown

below. Since an RTP layer video packet is typically much bigger than the Maximum Trans-

mission Unit (MTU) size of the Ethernet, it is usually fragmented into multiple IP packets,

all of which have approximately the same size as the MTU size, except the last one which

carries the remainder. Thus, in the theorem below we assume that every packet at the MAC

layer has the same length.
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Theorem 1. (MAC layer capacity estimation)

Given that every packet has the same length, i.e., Li = L, for all i, T D(R, L) > τb,

where R is the retry limit and τb is the busy time interval of the hidden terminal traffic as

shown in Fig. 4.8, in a Wi-Fi network with no competing traffic, we have:

(i) MCw
τ (t) monotonically increasing with Ar(t) but slower than Ar(t);

(ii) MCw
τ (t) is bounded as follows:

(
Ar(t)/(Ar(t) + ρC)

)
C 6 MCw

τ (t) 6 C (4.7)

where ρ is the channel utilization of the hidden terminal, and C is the MAC layer capacity if

there is no hidden terminal traffic.

(iii) if further assuming that Ar(t) follows the Poisson traffic model [13], then

MCw
τ (t) =

(
λL/

(
λL + ρC(λτb + e−λτb − 1)/λτb

))
C (4.8)

where λ is the packet arrival rate in the Poisson traffic model.

Proof. Part (i): Since there is no cross traffic, collision with hidden terminal traffic is the

only reason for transmission failure. The assumption that T D(R, L) > τb means that the

transmit delay of one packet is so big that all subsequent packets are forced to be transmitted

in an idle time interval as shown in Fig. 4.8. Therefore there is at most one packet that

will be transmitted during a busy time interval of the hidden terminal within each hidden

terminal traffic arrival time interval Thtt (in Fig. 4.8). Assuming M(M > 1) fresh MPDUs
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(excluding retransmissions) are transmitted over the network within one Thtt, the aggregate

transmit delay is given by
M∑

i=1

T D(ri, L) =

M∑
i=2

T D(1, L) + T D(r1, L) (4.9)

where T D(r1, L) means that the first fresh MPDU is possibly transmitted during a busy time

interval, and the number of retry count is r1 (r1 ∈ [1, 7], assume retry limit is 7.) which

depends on at which time instant the packet arrives in a busy time period. Each of the other

(M − 1) packets which must arrive during an idle time period, only needs to be transmitted

once (T D(1, L)), where 1 stands for only one transmission will be taken for each one of the

(M−1) packets. Since T D(r1, L) is usually much bigger than T D(1, L) due to the exponential

growth of the contention window (CW) of successive retransmissions,
∑M

i=1 T D(ri, L) would

increase as M increases but at a pace slower than M. Now going back to Eq. 4.6, as all M

packets gets delivered (the first one may be delayed but finally falls within an idle interval and

also goes through), the total delivered bits Deliv(t) grow at the same speed of M. By Eq. 4.6,

the MCw
τ (t) monotonically increases but at a pace (in percentage per unit time) slower than

Ar(t) does, where Ar(t) is the total amount of data in the M packets.

Part (ii): Considering a time interval (t−wτ, t) longer than a single Thtt at any time t,

if there are N fresh MPDUs of data traffic and Q hidden terminal traffic arrival time intervals

(Q×Thtt), where Q = wτ
Thtt

and is an average value, then there will be at most Q fresh MPDUs

colliding with the hidden terminal traffic and each will experience a transmit delay not longer

than τb. The total transmit delay
∑N

i=1 T D(ri, L) satisfies

N∑
i=1

T D(1, L) 6
N∑

i=1

T D(ri, L) 6
N∑

i=Q+1

T D(1, L) + Qτb (4.10)

Since
∑N

i=1 T D(1, L) = Arw
τ (t)/C and ρ = τb/Thtt, Eq. 4.10 can be relaxed and simpli-

fied to

Arw
τ (t)/C 6

N∑
i=1

T D(ri, L) 6 Arw
τ (t)/C + wτρ (4.11)

Considering Eq. 4.11 and Eq. 4.6, and noting that Arw
τ (t) = Delivw

τ (t) when there is

no loss, we can get (
Arw

τ (t)/(Arw
τ (t) + wτρC)

)
C 6 MCw

τ (t) 6 C (4.12)
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Figure 4.9: Segmented network resource occupation of hidden terminal traffic

Inside Eq. 4.12, Arw
τ (t) is the total number of bits arriving during time duration (t −

wτ, t) at an average arriving rate Ar(t), so by replacing Arw
τ (t) with wτAr(t), we get Eq. 4.7.

When the arrival rate is very small(Ar(t) � ρC), we get the lower bound Ar(t)/ρ, and when

the arrival rate is large (Ar(t) � ρC), the upper bound gets closer to C and the range in

Eq. 4.7 becomes tighter.

Part (iii): As we explained earlier, within each hidden terminal traffic arrival time

interval Thtt, only the transmit delay of the first packet possibly gets affected, so we calculate

the expected delay of each first packet. As shown in Fig. 4.9, the busy time interval is divided

into K small intervals, each of equal length τb/K. If there is at least 1 packet arriving during

the first time interval, then the delay will be approximately (1− 1/K)τb while the probability

that this event happens is Prob(N1 > 1), where the random variable N1 means the number

of packets that arrive in the first small interval. If there is at least 1 packet arriving in the

second time interval but there is no packet arriving before the second time interval, then

the delay will be approximately (1 − 2/K)τb while the probability that this event happens is

Prob(N2 > 1)Prob(N1 = 0). Similarly, if there is at least 1 packet arriving in the i-th interval

but there is no packet arriving before the i-th interval, then the delay will be approximately

(1 − i/K)τb while the probability that this event happens is given by

Prob(Ni > 1)Prob(
i−1∑
j=1

N j = 0) (4.13)
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The average delay of these first packets is given by

Delayτb
K =

K−1∑
i=1

(
(1 − i/K)τbProb(Ni > 1) × Prob(

i−1∑
j=1

N j = 0)
)

=

K−1∑
i=1

(
(1 − i/K)τb(1 − e−λτb/K)e−(i−1)λτb/K

)
= (1 − 1/K)τb − τbe−λτb/K(1 − e−λτb(K−1)/K)

/(
K(1 − e−λτb/K)

)
(4.14)

where λ is the packet arrival rate in the Poisson traffic model. If there is no packet arriving

before the K-th interval, then the delay (1 − K/K)τb will be zero. And this is why the

summation excludes K in Eq. 4.14. As K → ∞, our approximation becomes arbitrarily

accurate, and by the L’Hopital’s Rule we get the actual average transmit delay,

Delayτb = lim
K→∞

Delayτb
K = τb − (1 − e−λτb)/λ (4.15)

Considering
∑N

i=1 T D(1, L) = Arw
τ (t)/C, ρ = τb/Thtt and Q = wτ

Thtt
, now we can rewrite

the total transmit delay
∑N

i=1 T D(ri, L) as

N∑
i=1

T D(ri, L) =

N∑
i=1

T D(1, L) + QDelayτb

= Arw
τ (t)/C + wτρ(λτb + e−λτb − 1)/λτb (4.16)

Substituting Eq. 4.16 into Eq. 4.6 and noting Arw
τ (t) = wτAr(t) = wτλL (since Ar(t) =

λL), we get Eq. 4.8. � �

In the above proof, we use the technique of subdividing a time interval into K smaller

ones, and then taking the limit K → ∞. Similar techniques have been used elsewhere, for

example, [43, p. 7].

We now look at whether our experimental results match the above theorem. In the

experiment, the hidden terminal traffic consists of only UDP-based video packets, each of the

same length (1224 bytes) at the MAC layer, with constant frame rate and constant frame size.

So the Thtt and τb in Fig. 4.9 are constant and take values 0.033s and 0.01075s, respectively.

According to Eq. 4.3, a packet discarded after the retry limit takes T D(7, 1224) = 10.894ms

(R = 7 and L = 1224), where p = 0 is used because the interference from the hidden
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terminal traffic cannot be heard and the backoff timer will not freeze. Since τb = 0.01075s <

10.894ms, the condition in Theorem 1, T D(R, L) > τb, is satisfied. However, packets from

WebRTC do not have the same length because audio packets usually are much shorter than

video packets, which does not meet the assumption that every packet has the same length

L in Theorem 1. So we use the average packet size as the value for L. As the sending rate

As gradually increases according to Eq. 4.1, the average packet size is expected to increase

as well because video packets account for an increasing portion of the total packets. Since

MAC layer capacity C in the theorem refers to the MSDU throughput, i.e., (L/(L/DataRate+

ACK/DataRate + PLCPoverhead + aS IFS Time + aDIFS Time)), where the DataRate is the

PHY data rate and the other parameters are fixed and use the same value as in Section 4.3.1,

the value of C dynamically changes with the value of average packet size L.

The explanation above allows us to draw the theoretically estimated MAC layer ca-

pacity as a function of arrival rate according to Eq. 4.8, and compare the theoretical results

with the experimental results in Fig. 4.10, where we only take the data falling in the time

window [0, 140 sec] of Fig. 4.7 because there is no competing traffic during this time win-

dow. As Fig. 4.10 shows, the two results match well, even though WebRTC traffic is not

memoryless and does not follow the Poisson traffic model. Note that for the same value of

the arrival rate, the estimated MAC layer capacity may be different because the total number

of packets and averaged packet size may be different.

Fig. 4.11 shows the congestion level CL(t) as a function of time t, which is the ratio

of the EDR10
0.1(t) shown in Fig. 4.11 to the estimate of the MAC layer capacity MC10

0.1(t) also

shown in Fig. 4.11. Before congestion happens and the network is lightly loaded, the esti-

mate of MAC layer capacity does not accurately manifest the true MAC layer capacity. But

this inaccuracy does not lead to inaccurate congestion detection because the excess data rate

EDR10
0.1(t) is zero most of the time, and the congestion level CL(t) is close to zero regardless

of the value of the estimate of the MAC layer capacity. At time 240 seconds, when con-

gestion happens, the estimate of the MAC layer capacity sharply decreases and the excess

data rate increases dramatically, resulting in a clear jump in the value of congestion level

CL(t). This significant jump allows a proper threshold value to be easily set for congestion
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detection.

Note that in Fig. 4.11, the value of the congestion level CL(t) is around 0.55. This

is because the threshold value we set for the experiments is 0.35. Based on our analysis,

the chosen threshold value is important but not critical. Specifically, if the threshold value

of the congestion level CL(t) is set to a smaller value, it makes the detection more sensitive

to network load and reacting fast when congestion really happens. But the cost is higher

false alarm rate. On the other hand, if the threshold value of the congestion level CL(t) is

set to a higher value, it makes the congestion detection process reacting more slowly when

congestion really happens. And if a network congestion persists (e.g., excessive network

traffic is not reduced by itself), the congestion will still be detected. Using the Fig. 4.11 as

an example, if we use a threshold value at 0.8, instead of 0.35, the proposed algorithm still

works. This is because before congestion is detected, MAC layer keeps retransmitting an

otherwise lost MPDU and the excess data rate EDR10
0.1(t) would continue to be increased,

leading to a higher jump of the value of congestion level CL(t) than the value shown in

Fig. 4.11. As a result, congestion will still get detected. In this thesis, we propose this new

congestion algorithm and claim that this new algorithm is able to detect network congestion

properly. However, finding an optimal threshold value for the congestion level CL(t) is not

our focus (left for future work).

4.4 Cross Layer Approach

The cross layer approach we propose is a new reactive method called early packet

loss feedback (EPLF). We exploit the fact that a Wi-Fi link is a likely place where packet

loss occurs and the fact that a loss can be detected by the MAC layer of the video sender

(not receiving a positive acknowledgement (ACK) packet after reaching the retry limit). If

the packet loss is due to channel errors (e.g., collisions, deep fading, etc), the MAC layer

directly feeds back the loss information to the RTP layer with a spoofed RTCP packet that

carries a NACK message so that the RTP layer can retransmit the lost RTP packet. Since the

whole feedback process occurs in the same device (the video sender), the latency is negligible

in relation to the RTT, and hence the term ’early’ in EPLF. On the other hand, if the packet
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loss is due to congestion, the MAC layer does nothing in order to not conceal the packet loss

from the congestion control algorithm running at the RTP layer. Theoretical analysis and

prototype-based experimental results show that EPLF almost completely eliminates channel-

caused video freezes in the decoded video while improving congestion control.

4.4.1 Approach Description

Our proposed method is illustrated in Fig. 4.12, where the packet flow of spoofed

RTCP packets (generated by the MAC layer locally) is indicated by blue solid lines, the

packet flow of the normal RTCP packets (generated by the video receiver remotely and re-

ceived from the network) is indicated by red dashed lines and the mixed flow is indicated by

purple solid lines. Our method consists of the following steps:

1. The video sender (e.g., the Wi-Fi station (STA) in Fig. 4.1) collects information neces-

sary for generating a spoofed NACK by inspecting packets going in the opposite direction

(toward the video sender): it identifies an IP packet that carries a UDP packet that in turn

carries an RTCP packet, and records the source IP address and the destination IP address in

the IP packet header, the source port number and the destination port number in the UDP

packet header, and the Synchronization Source (SSRC) in the RTCP packet header. This 5-

tuple is recorded for each RTCP packet flow. Note that such information is accessible even if

the RTP/RTCP packets are encrypted by the widely used Secure RTP (SRTP) protocol [11],

which encrypts only the RTP/RTCP payload, leaving the RTP/RTCP header in clear text.

2. Next the cause of a transmission failure (which occurs if no ACK is received after the

maximum number of retransmissions or retry limit [48, p. 2134] is reached) is determined.

If the result from congestion detection(4.3) is positive, we say that the cause is congestion;

otherwise, we say that the cause is channel error.

3. If the cause of a transmission failure is determined to be channel errors, the sender creates

a spoofed NACK packet at the MAC layer and sends it to its own RTP layer. Specifically,

the MAC layer first figures out which RTP packets are lost via deep packet inspection. The

MAC layer inspects the payload of the MPDU, which is an IP packet, and checks if the IP

packet carries a UDP packet which in turn carries an RTP packet whose Payload Type (PT)
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field is video. If so, the MAC layer gets the source IP address, the destination IP address

and the RTP sequence number. Then the MAC layer looks up the 5-tuple recorded in step 1

that has the matching IP addresses (with sender and receiver IP addresses reversed) and gets

the port numbers and the SSRC from the 5-tuple. Finally the MAC layer builds a NACK

packet with the 5-bit feedback message type (FMT) field [73] in the RTCP packet header

set to 6 (i.e., FMT=6) and with the payload type (PT) field set to 205 (indicating a transport

layer feedback message), and sends it to the sender’s own IP layer, which then passes it to

the transport layer and RTP layer. The choice of FMT=6 for a spoofed NACK differentiates

a spoofed NACK from a normal NACK (generated by the video receiver) in which the FMT

field is set to 1, and we assign the value 6 to FMT as the value 6 is not assigned in the RTCP

standard [73]. Note that the payload of the spoofed NACK is not encrypted as the MAC

layer may not have access to the encryption key shared by the RTP sender and receiver. In

contrast, with SRTP, the payload of a normal NACK is encrypted. On the other hand, if the

cause of a transmission failure is determined to be congestion, no action is taken.

4. The RTP layer lets a spoofed NACK (with FMT=6 and PT=205) described in Step 3 by-

pass the decryption module. Without the bypass, the spoofed NACK, which is un-encrypted,

will undergo decryption, resulting in garbage output. In comparison, the normal NACK (sent

by the video receiver) will be decrypted.

5. The video sender retransmits the lost RTP packet upon receiving the spoofed NACK

packet.

Alternatively, a callback can be used. The RTP layer registers a callback at the

MAC layer for a MAC layer transmission failure. If the MAC layer records a channel-

caused failure, it passes the relevant information (SSRC and RTP sequence number) to the

RTP layer via the callback. The callback approach offers the same performance benefit as

the spoofed NACK approach. The callback approach eliminates the need for generating a

spoofed NACK, but it still needs to perform deep packet inspection and pass the same infor-

mation (i.e., SSRC and RTP sequence number) from the MAC layer to the RTP layer.
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Figure 4.12: In the cross layer approach, the packet flow of the spoofed RTCP packets
is indicated by blue solid lines, the packet flow of the normal RTCP packets
(generated by the video decoder and received from the network) is indicated
by red dashed lines, and the mixed flow is indicated by purple solid lines.

4.4.2 Analytic Model

To gain insight while maintaining tractability, we consider the simple case of isolated

packet losses which are far apart such that the next loss happens only after the previous loss

is recovered. The default error concealment technique of WebRTC is a type of frame copy:

the video freezes at the previous frame if the current frame cannot be perfectly reconstructed

before the scheduled display deadline [19]. The video freeze duration is the extra amount of

time for which the previous frame is displayed.

The duration of an individual video freeze can be calculated if we know the time that

it takes each RTP packet to travel from the sender to the receiver, the feedback delay for

each RTP packet loss, the playout delay, the video decoding delay, and the video rendering

delay. Following a common definition in the literature, here the playout delay is defined

as the difference between the time at which a video frame is generated at the video sender
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Table 4.1: Notations for the Analytic Model

Notations Meaning
Tplayout playout delay
Toneway delay for an RTP packet to travel from the sender to the receiver
Tfeedback packet loss feedback delay

f frame rate
d per-frame decoding delay
r per-frame rendering delay
I time interval for analyzing video freeze durations
δ some positive constant (in seconds)

and the time by which the video frame must be displayed at the video receiver. To capture

the dynamic behavior of the video freeze duration while making the analysis tractable, we

partition time into disjoint intervals of duration I, and assume that those parameters remain

constant in each time interval.

For each time interval of duration I, we analyze the freeze duration. We use the

notations listed in Table 4.1. To make the analysis non-trivial, we require Tplayout > Toneway +

d + r + δ, where δ is some positive constant.

A freeze consists of two parts: a deadline missing delay, and a catchup delay in

decoding the backlogged video frames, denoted as τ1 and τ2, respectively. The deadline

missing delay τ1 is the difference between the arrival time of the retransmitted RTP packet

and the time when the video decoder needs to start decoding the corresponding frame in

order to meet the display deadline. Thus,

τ1 = max(Toneway + Tfeedback − (Tplayout − d − r), 0). (4.17)

If τ1 = 0, no video freeze will occur. Otherwise, a video freeze will occur, and the freeze

further includes a decoding-catchup delay τ2 because upon receiving the retransmitted RTP

packet, the video decoder has to decode the video frame (to which the retransmitted RTP

packet belongs) and the subsequent frames until decoding catches up with displaying. The

inter-frame arrival time is Tframe = 1/ f . The number of frames received during τ1 is τ1/Tframe,
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and these frames need to be decoded. The additional number of frames that need to be

decoded is τ2/Tframe. We have

(τ1/Tframe)d + (τ2/Tframe)d = τ2, (4.18)

which yields

τ2 = τ1d/(Tframe − d), (4.19)

which together with τ = τ1 + τ2 and Eq. 4.17 gives

τ =


0, if Toneway + Tfeedback + d + r ≤ Tplayout;

(Toneway + Tfeedback + d + r − Tplayout)

× (1 + d/(1/ f − d)), otherwise.

(4.20)

The video freeze duration as a function of the feedback delay Tfeedback is shown in

Fig. 4.13. We clearly see a turning point at Tfeedback = Tplayout − Toneway − d − r, below which

there is no video freeze.

Slope = 1 + d/(1/f - d)

T
feedback

T
playout 

- T
oneway

 - d - r

 

Figure 4.13: The freeze duration τ as a function of the feedback delay Tfeedback.

Remarks: (i) Note that for a non-trivial analysis we require Tplayout > Toneway + d + r + δ. It

follows from Eq. 4.20 that video freeze will be avoided if Tfeedback < δ, which typically holds

for EPLF because the spoofed NACK is sent within the same device. (ii) Without EPLF, if

a NACK-triggered RTP packet fails again at the MAC layer, Tfeedback will increase by RTT ,

while with EPLF the increment will be only tlocal � RTT , where again tlocal is the feedback

delay of a single round of EPLF.
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4.4.3 Performance Evaluation

We show that EPLF can significantly reduce the video freeze duration and that our

analytic model agrees well with the experimental results. The video codec is VP8 (part

of WebRTC) with the default setting. The video sequences resulting from the experiments

are available at [63]. The reader is encouraged to watch them to experience the improved

smoothness in the video playout due to the use of EPLF.

4.4.3.1 Controlled Scenario

We drop an MPDU from the 802.11n MAC layer once per second. By dropping an

MPDU, we completely discard the MPDU and do not allow attempts to retransmit it. The

RTT is 250ms. The freeze duration (blue solid line) for the case where EPLF is off is shown

in Fig. 4.14(a), where the high freeze durations at the beginning are largely due to the small

initial playout delays. For the analytic model, we take the partition time interval I = 1.0

second. We plug into the analytic model the measurements of Tplayout, the average value of d

and value of f (updated only once per 1 second) and r = 10 ms. The freeze duration given

by the analytic model is represented by the red dots. For the purpose of clarity, we only plot

the analytic predictions for the frames that experience a freeze. Fig. 4.14(b) plots the results

for the case where EPLF is on. The amount of video freeze is almost completely eliminated,

and the few spikes after frame 500 are due to the large variation in the inter-frame delays,

which is not captured by the analytic model.
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Figure 4.14: The video freeze duration resulting from controlled packet losses at 1 packet

per second (a) when EPLF is off, and (b) when EPLF is on.
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4.4.3.2 Realistic Scenario

In this scenario, packet losses are determined by the network condition and protocols.

Laptop A, which runs EPLF and starts a video call at time 0 seconds, corresponds to a virtual

station in a WLAN with an AP and 15 competing STAs, which start generating cross traffic at

time 100 seconds. There is another WLAN consisting of an AP and a STA which is a hidden

terminal to the video sender. The hidden terminal starts transmitting at time 120 seconds

and causes packet losses. The experimental results are shown in Fig. 4.15. The spikes in

Fig. 4.15(a) that are much higher than RTT are due to the loss of retransmitted RTP packets.

With EPLF, video freezes are almost completely eliminated, except for frames near frames

1700, 2500 and 2900, where the WLAN is experiencing congestion and EPLF does not send

a spoofed NACK to avoid disrupting congestion control. Because the majority of the losses

are channel-caused, EPLF is able to eliminate most packet losses and video freezes.
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Figure 4.15: The video freeze duration with realistic packet losses for (a) the case where

EPLF is off and (b) the case where EPLF is on.

4.5 MAC Layer Only Approach

4.5.1 Challenges in Adjusting The Retry Limit

It is important to find a good compromise for value of the the retry limit, because:

1. The random backoff period in a noisy channel or a heavily loaded channel can be

quite different (due to backoff timer freeze), so excessive retransmissions in heavily

loaded channel make performance worse. According to Eq. 4.3, in a lightly loaded

channel, assuming p = 0, we have T D(7, 1224) = 10.894ms; in a heavily loaded
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channel,assuming p = 0.9, we have T D(7, 1224)

= 1.75ms + 236.93ms = 238.68ms. If a packet takes 238.68 ms to transmit, then the

transmit time for a video frame (which usually includes multiple packets) can be hun-

dreds of milliseconds, which is much longer than a typical inter-frame interval. Even

worse, delay in transmitting the current packets will introduce delays to subsequent

packets, causing more and more delay, that is, the delay is cumulative.

2. Excessive retransmissions also reduce the drainage speed of the MAC layer buffer and

increase the probability of buffer overflow.

3. Excessive retransmissions also make a packet’s delay larger such that the packet may

miss the decoding deadline at the receiver, making all retransmissions of that packet a

waste of network resources.

4. Insufficient retransmissions not just add extra traffic at the MAC layer but also leave

the packet loss problem unresolved.

In our design, the retry limit is not increased in the case of congestion, so problem 1

does not happen. Our approach checks the value of CL(t) in Eq. 4.5 before performing each

extra retransmission. If the buffer gradually builds up, this means that the value of excess

data rate in Eq. 4.4 is consistently positive while the output of Eq. 4.5 remains below the

predefined threshold. In this case, our algorithm checks the available buffer size to avoid

buffer overflow so problem 2 does not happen. Regarding 3 and 4, we will show in Section

4.5.3 that they rarely happen.

4.5.2 Algorithm

We now present the details of the algorithms discussed earlier. Algorithm 1 runs pe-

riodically in the background to collect the total amount of arrived data, the total amount of

delivered data and the total transmit delay within the most recent time interval τ. Algorithm

1 also makes sure that the three lists in Eq. 4.5 contain the newest data within the time win-

dow wτ. Algorithm 2 calculates the current congestion level CL(t) and is called as needed.

Algorithm 3 determines whether the retry limit will be increased or not, and it is called be-

fore each retransmission. If the MPDU is a retransmission and has reached the default retry
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limit, the algorithm will check if any of the three conditions is satisfied: the network is con-

gested, the available buffer size is too small or the predefined extended retry limit is about to

be exceeded. If yes, this retransmission will be given up; if not, this retransmission will be

performed. Note that the predefined extended retry limit is configurable.

Algorithm 1: UpdatePacketsStatistics()
// This function runs periodically every τ seconds. Default

value for τ is 0.1.
Input: TotalBitsFromIP, TotalBitsS ucess and TotalT XDelay
Output: Updated lists: ListAr{}, ListS erv{}, ListT XDelay{}
// w is the window size. Default value of w is 10. Replace

the oldest element with the new one

1 if ListAr.size() > w then
2 ListAr.pop back() ; // Delete the oldest element
3 ListS erv.pop back() ;
4 ListT XDelay.pop back();

5 ListAr.push f ront(TotalBitsFromIP) ; // Insert an element at the
beginning

6 ListS erv.push f ront(TotalBitsS ucess);
7 ListT XDelay.push f ront(TotalTotalT XDelay);
8 TotalBitsFromIP = 0 ; // Reset these value to collect new
statistics for the next τ interval

9 TotalBitsS ucess = 0 ;
10 TotalT XDelay = 0 ;

Algorithm 2: CalculateCongestionLevel()
Input: ListAr{}, ListS erv{}, ListT XDelay{}
Output: CL(t)

1 Arw
τ (t) = Sum of all elements in list ListAr{};

2 Delivw
τ (t) = Sum of all elements in list ListS erv{};

3
∑N

i=1 T D(ri, L) = Sum of all elements in list ListT XDelay{}
4 EDRw

τ (t) = max{Arw
τ (t) − Delivw

τ (t), 0}
/
(wτ) ;

5 CL(t) = EDRw
τ (t)

∑N
i=1 T D(ri, L)

/
Delivw

τ (t) ;
6 return CL(t) ;
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Algorithm 3: MACLayerTransmitMPDU()
1 . . .
2 if this is a retransmition then

// r is retry count with initial value 0. R is the
default retry limit.

3 if r > R then
// CLth is the threshold for determining congestion

status. BFth is the buffer size threshold. Rex is

retry limit extension.

4 if CalculateCongestionLevel() > CLth OR
5 Current Buffer size > BFth OR
6 r > (R + Rex) then
7 Delete(MPDU) ; // Network is congested, or the

available buffer size is too low, or the extended

Retry Limit will be exceeded.

8 return ;
9 else

10 r = r + 1 ; // update retry count value.
11 if r == (R + 1) then
12 reset CW ; // Reset the contention window so that

subsequent extended retransmissions would be

like belonging to a new fresh MPDU.

13 Transmit this MPDU ;
14 . . .
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Figure 4.16: Received video bit rate on Laptop B: (a) FEC is turned off (b) FEC is turned
on. Rex stands for retry limit extension in Algorithm 3. Rex = 0 means that
our adaptation algorithm is not used. This definition applies to all following
figures.

4.5.3 Performance Evaluation

4.5.3.1 Improved Video Bit Rate

As explained in Section 4.2.2, the video sender of WebRTC uses loss-based FEC. If

we could reduce the number of packet losses, we expect to see fewer FEC redundant packets

being sent out, which results in a higher video bit rate from the video sender. In Fig. 4.16 (b)

where FEC is turned on, we are able to confirm the expected improvement which is around

40%. In Fig. 4.16 (a) where FEC is turned off, we can still see some gain because the target

bit rate As is higher if our approach is used, which is shown in Fig. 4.17 (a).

4.5.3.2 Improved Target Sending Rate

Our approach reduces packet losses so that the fraction of lost packets fl(tk) reported

is smaller. According to Eq. 4.1, target bit rate As will be smooth and increase steadily,

and this can be seen In Fig. 4.17 (a) and Fig. 4.17 (b). When the network is congested,

our approach is able to detect the congestion and does not increase the retry limit, so that

the fraction of loss fl(tk) increases, allowing WebRTC’s congestion control algorithm to be

aware of the congestion status and properly reduce the value of As to mitigate the congestion,

as shown in both Fig. 4.17 (a) and Fig. 4.17 (b) at time 240 sec.
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Figure 4.17: Target sending rate of Laptop A: (a) FEC is turned off (b) FEC is turned on.

4.5.3.3 Reduced Video Freezes

Fig. 4.18 shows that the total amount of video freezes is significantly reduced by

using our approach when FEC is turned off. When the value of Rex increases, more trans-

mission opportunities are granted for each packet and consequently more channel-caused

packet losses can be reduced, which in turn results in less video freezes at the video receiver.

The use of FEC can also significantly reduce video freezes but at the cost of sending a lower

video bit rate and generally lower quality video due to its high overhead, and FEC typically is

disabled in commercial WebRTC product as explained in Section 4.2.5. Comparing Fig. 4.18

(d) with Fig. 4.6 (b), we see that when a higher value of Rex is used, our approach performs as

well as FEC in terms of reducing video freezes, but does not have the high overhead problem

which is explained in Section 4.2.4.

Note that while the results shown in Fig. 4.18 (d) and Fig. 4.6 (b) provide a visual

comparison between the FEC approach and our proposed MAC adaptation approach in terms

of the reduced number of video freezes, we also perform a statistical level comparison. Based

on 5 times of experiments, when the FEC approach is enabled and our proposed approach is

disabled, the average number of freezed video frames is 21.8, and average freeze duration for
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Figure 4.18: Video freeze duration on Laptop B (FEC is turned off): (a) Rex = 0, (b) Rex =

3,(c) Rex = 5 and (d) Rex = 7.
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each individual freezed video frame is about 687 ms. On the other hand, when the FEC ap-

proach is disabled and our proposed approach is enabled, based on 10 times of experiments,

the average number of freezed video frames is 7.8, and the average freeze duration for each

individual freezed video frame is about 983 ms. The difference on the average number of

freezed video frames is because our approach makes the transmit delay (see corresponding

definition and analysis of the Eq. 4.3 in Section 4.3.1) of each MPDU longer and the initial

playout delay (see corresponding definition in Section 4.4.2) increasing more fast so that

there is almost no video freezes at the beginning of each experiment. The difference on the

averaged freeze duration is because when our approach is enabled, most video freezes oc-

cur at the time when network is congested ( around the time moment 240 seconds), where

the increased transmit delay of each MPDU makes the packet loss feedback delay (see corre-

sponding definition in Section 4.4.2) even longer. With this statistical level comparison, even

though we can observe clear differences between the two approaches in terms of mitigating

video freezes due to packet losses, we can still claim that these two approaches perform

same well because in the baseline case (without using either approach), the average number

of freezed video frames is about 789.7, and the average freeze duration for each individual

freezed video frame is about 837 ms. Compared to the base line case, both approaches are

able to significantly reduce the average number of freezed video frames.

During the experiments, the traffic generated and simulated within OPNET (e.g. the

hidden terminal traffic) is controlled by the simulation seed and could be reproducible if

the simulation seed is known. However, the WebRTC traffic is generated and controlled by

real machines (see Fig. 4.2). In addition, the WebRTC traffic is not memoryless and does

not follow any pre-configured or known traffic generation model. As a result, the traffic

pattern (e.g., video frame rate, number of fragmented video MPDUs, frame type, etc) of

the WebRTC traffic flow at the same simulation/emulation time instance among different

experiments may be different. For this reason, in the four subfigures of the Fig. 4.18, we

just show the results from one experiment for each subfigure, in stead of the averaged results

from multiple experiments. For a better understanding from the statistical perspective, we

still have some quantitative results. Based on 10 times of experiments, the average number of
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Figure 4.19: Aggregate throughput of competing traffic, when FEC in WebRTC is: (a)
turned off; (b) turned on.

freezed video frames when Rex = 0, Rex = 3, Rex = 5, or Rex = 7, is 789.7, 471.3, 143.4 and

7.8, respectively. And the average freeze duration for each individual freezed video frame

is about 837 ms, 614 ms, 595 ms and 983 ms, respectively. Again, the high freeze duration

when Rex = 7 is because the total number of freezed video frames is very small and most

video freezes occur when network is congested.

4.5.3.4 Impact on Competing Traffic

So far, we have shown that our proposed scheme indeed improves WebRTC-based

video telephony over Wi-Fi. In this section, we investigate whether our scheme would affect

the performance of competing traffic that does not use our approach.

Fig. 4.19 shows the aggregate throughput of the 8 competing stations named CMP STA

in Fig. 4.2. Since WebRTC behaves differently when FEC is turned off or on, we evaluate

our scheme in both cases and present the results in Fig. 4.19 (a) and (b), respectively. As

shown in Fig. 4.19, the aggregate throughput of the 8 competing stations does not change

appreciably when our approach is used or not, even with different values of the parameter

Rex. This result agrees with our expectation. Changing the retry limit does not change the
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success probability for each single contention so that the fairness in contention among differ-

ent stations is maintained. When the network is not congested, more retransmissions lead to

the use of otherwise wasted network resources, and the cross traffic is not being hurt because

network capacity is enough to accommodate all traffic. When the network is congested, our

scheme can detect congestion and does not increase the default retry limit in order to not

conceal the packet losses so that the high-layer congestion control algorithm could properly

reduce the target sending rate to relieve the network congestion.

4.6 Comparisons between The Two Approaches

In the MAC layer only approach, we proposed to increase the retry limit from a pre-

configured value at the Wi-Fi MAC layer if and only if the transmission failure (after the

initial retry limit is reached) is caused by channel errors. Since retry limit is left configurable

in the IEEE 802.11 standard, and does not require cross-layer coordination, our scheme can

be easily implemented and incrementally deployed.

However, the cross layer approach (EPLF) has some advantages over the MAC-layer-

only approach. First, the EPLF approach is exclusively applied to real-time video packets,

while the MAC-layer-only approach is applied to all types of traffic. A retry limit optimized

for video traffic may cause excessive delay for voice traffic, which typically has a much

stringent delay requirement than video traffic does. Second, even if one enhances the MAC-

layer-only approach to adopt different retry limits for different access categories, the retry

limit for traffic flows within the same access category would still be the same assuming a

constant congestion level. In contrast, the EPLF approach leaves the retransmission decision

to the upper layer, i.e., the RTP layer at the video sender, which may make different decisions

for different video traffic flows.

The price to pay for EPLF is to perform deep packet inspection at the MAC layer,

generate a spoofed NACK packet, and add additional logic in the RTP layer to let the spoofed

NACK packet bypass the encryption module. Also, in terms of applicability, the MAC layer

adaptation approach provides benefits not only to the local wireless link, but also to the
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remote wireless link (the one connecting the video receiver if the video receiver is also on a

wireless link).

4.7 Summary

In this chapter, we present two methods to improve video teleconferencing over Wi-

Fi. Inspired by the fact that the bottleneck of an end-to-end connection usually happens on

the ’last-mile’ wireless link, we investigate possible negative impacts when packet losses

occur on the video sender’s local Wi-Fi link. We develop a WebRTC-based video teleconfer-

encing testbench which allows us to do more realistic investigations than simulation based

evaluation. We confirm that packet losses on an edge Wi-Fi link may cause serious degrada-

tion to the receiver’s quality of experience.

The first method is a cross-layer approach, which is called early packet loss feed-

back (EPLF). If and only if transmission failure is caused by channel errors, EPLF lets the

MAC layer of the video sender send a spoofed NACK packet to application layer which does

immediate retransmissions without waiting for a feedback from the video receiver. Theoret-

ical analysis and experimental results show that EPLF almost completely eliminates video

freezes while improving congestion control. EPLF can be used together with other tech-

niques such as application-layer FEC to mitigate the impact of packet losses that occur not

only on the local wireless link, but also somewhere else in the network.

The second method is a MAC-layer adaptation algorithm which is to directly reduce

the channel-caused packet losses at MAC layer. We also propose a lightweight and passive

congestion detection algorithm to distinguish channel-caused and congestion-caused packet

losses. As most current applications (such as TCP or RTCP based applications) rely on

the packet loss rate to do congestion control, our proposed MAC layer adaptation algorithm

helps a higher-layer congestion control algorithm avoid unnecessary reduction in the data

sending rate, but leaves congestion-caused losses intact. Experimental results confirm that

our approach significantly and accurately reduces channel-caused losses so as to improve the

video quality, and does not adversely impact the performance of competing traffic.
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Chapter 5

USER ADAPTIVE WIRELESS VIDEO TELECONFERENCING

5.1 Related Work and Motivations

The human visual system (HVS) cannot perceive spatial frequencies in an image that

are above a certain limit (or cutoff frequency), which is influenced by viewing conditions

such as the viewing distance, ambient luminance and display characteristics (see chapter 2).

Frequency components above the limit can be removed to reduce the information in an image

before the conventional video compression is applied, thereby improving the efficiency of

image/video compression.

In this work, we use the contrast sensitivity function (CSF) model[18][67][10] to

characterize this phenomenon. This model establishes a relationship between the spatial

frequency (in cycles per degree or cpd) and the contrast sensitivity. The CSF model charac-

terizes the visibility of a sinusoid as a function of spatial frequency and contrast sensitivity.

At a given spatial frequency, there is a contrast sensitivity above which the sinusoid becomes

invisible. Pairs of such spatial frequency and the contrast sensitivity form a function, which

is called the CSF function, and the function is concave with a peak at a moderate spatial

frequency. To get the cutoff frequency, we need to solve for the spatial frequency given the

contrast sensitivity, i.e., we need to get the inverse CSF function. Since the CSF function

is not monotonic, a monotonic portion of the CSF function is used to obtain the inverse

function. Because different regions of an image may have different contrast sensitivity, the

cutoff frequency is calculated on a per-region basis. The cutoff frequencies in cpd are then

converted to cycles per pixels to low-pass filter different regions of the image before the con-

ventional video encoding is applied. With perceptual pre-filtering, it is reported in [90] that

the x264 video encoder can achieve up to 70% improvement in compression efficiency under

certain viewing conditions.
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This work differs from previous studies [30][90][89][19] in several aspects. First, all

prior schemes require explicit feedback for communicating the viewing condition from the

user to the video encoder or server. In our scheme, the network entity (MCU) estimates the

viewing condition by analyzing the passing video in the opposite direction, which is feasi-

ble due to the bidirectional nature of video teleconferencing traffic, and thus eliminates the

need for such feedback. Second, these prior studies focus on video streaming, whereas our

scheme focuses on video teleconferencing, which differs significantly from video streaming

in quality of service requirements and the underlying transport protocols. Third, in the prior

studies the perceptual pre-filtering is applied to the uncompressed video, while in our scheme

it is applied to a video which has undergone compression once at a client. Since the original

compression process has not been adapted to viewing conditions, the proposed filtering and

transcoding process still leads to bit rate savings. Fourth, unlike prior studies which focus

only on video codecs, we design and prototype the complete system based on the latest video

teleconferencing platform WebRTC [92] and a real-world MCU platform Licode [59].

5.2 System Design

We first describe the overall architecture of our proposed system, and then discuss

specific implementation techniques.

5.2.1 System Architecture

The system architecture is shown in Fig. 5.1, where two clients are shown to commu-

nicate via video teleconferencing with the assistance of an MCU which resides in the Inter-

net. Each client implements WebRTC [92], an open-source real-time video communication

application. The MCU runs Licode [59], an open-source platform that implements some

basic functions of a typical MCU. Although Licode manages the call setup, for delivering

the video (and audio) content, it serves the function of a router only, without any video (or

audio) processing capability. To enable user adaptive video coding in the MCU, we imple-

ment additional functions including video decoding, video encoding, video analysis, viewing
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condition inference. The implementation of WebRTC on the clients is not changed. By uti-

lizing those implemented functions in MCU, we are able to calculate the viewing distance

and pixel density of display screen, and then follow the procedures proposed in [90][89] to

perform user-adaptive video encoding. Specifically, the perceptual pre-filtering proposed in

[89] could be implemented and released as a stand-alone library, and the determined viewing

distance and pixel density by us can be given as input parameters when use the library. For

design details, please refer to Section 5.2.2, 5.2.3 and 5.2.4.

Decoder

Face Detection

Device Detection

Encoder

Decoder

Face Detection

Device Detection

Encoder

MCUVideo Frames

Client 1

WebRTC WebRTC

Client 2

Internet

Percep. Pre-filter Percep. Pre-filter

Cut-off freq. Cut-off freq.

Figure 5.1: System architecture with two clients and an MCU.

Both clients benefit from user adaptive video coding. For clarity, we describe the

process that leads to benefiting Client 1. The MCU first analyzes the video frames (i.e., does

face detection on the video frames) sent from Client 1 to Client 2 to infer the viewing distance

of Client 1. The MCU also extracts the control signaling (i.e., does device detection) from

the data sent from Client 1 to determine the pixel density of the display watched by Client

1. The MCU then determines the contrast sensitivity of each region of a video frame of the

video flow in the opposite direction sent by Client 2 and consequently the cutoff frequencies

and performs perceptual pre-filtering, followed by conventional video encoding. In theory,

the conventional video encoder can use the same quantization parameter configuration as
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the one used to encode the video arriving at the MCU. In practice, a target video bit rate

can be first calculated via a heuristic formula that maps the incoming video bit rate and the

viewing conditions to a target video bit rate for video teleconferencing type of content and

then passed to the conventional video encoder. Lastly, the MCU sends the encoded video

frame to Client 1.

5.2.2 Inferring the Viewing Distance

A well known approach to estimating the viewing distance is to estimate the depth

information, which can be done by using dedicated sensors such as infra-red and ultrasonic

sensors. Exemplary schemes include Microsoft Kinect [53] and those in [47][27]. However,

the existence of such dedicated sensors on the clients may not be guaranteed in practice.

In addition, these sensors may collect information other than the viewing distance, raising

concerns about privacy. Therefore, this approach may not be the best to the wide deployment

of user adaptive video coding.

A less known but more attractive approach is to analyze an image without using any

custom sensor, as explained in Fig. 5.2 with a top-down view of the setup. The viewing

distance, i.e., the distance between the eyes and the lens, is denoted as s1. We use the face

detection capability of the open source computer vision (OpenCV) [70] library to detect the

face and identify the pupils on an image, and then measure the inter-pupil distance d on the

image in pixels. The field of view (FOV) or viewing angle of the camera is β. The distance

between the lens and the image sensor is s2. The width of the image is w (in pixels). The

real-world inter-pupil distance is D. The viewing angle of the eyes is α. It is easy to get the

viewing distance

s1 =
D

2 tan(α/2)
, (5.1)

where

α = 2 arctan
(
tan

(
β

2

) d
w

)
. (5.2)

It is shown that the value of D for most adults varies in the range from 50 to 75mm [28]. A

population average 63mm is used in our estimation. The accuracy will improve if D can be

calibrated.

77



d

Left eye

Right eye

w
 

s
1

s
2

 

Lens

D

Figure 5.2: The calculation of the viewing angle.

A similar but less accurate method is proposed in [29]. The only difference is that the

approximations tan(x) ≈ x and arctan(x) ≈ x are used in [29]. As a result, instead of having

(5.2), which is exact, [29] has α = βd/w. The approximation is inaccurate for large β.

5.2.3 Determining The Pixel Density

Without explicit signaling from the clients to the MCU to inform the latter of the pixel

density of the display, the MCU has to extract such information from the control messages

sent by the clients. The control message we exploit is the HTTP request messages, where the

UserAgent field often contains the device information and the operating system information.

As an example, Android devices provide detailed information about the device type, and the

MCU can look up a device table to find the pixel density and the reflectivity of the display

on that device. The device table lists the pixel density and the reflectivity of the display for

all major devices and is updated when a new device becomes available in the market.

5.2.4 User-adaptive Video Encoding

Once the viewing distance and the pixel density are determined, we can follow the

procedures in [90][89] to perform user-adaptive video encoding. Specifically, the contrast

sensitivity is determined for each location in a video frame. The contrast sensitivity takes

into account factors such as the contrast of each location in the video frame, the ambient

luminance, and the reflectivity of the display. Then a cutoff frequency (in cycles per degree)
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is determined for each location. The viewing distance and the display pixel density are then

used to convert the cutoff frequency from cycles per degree to cycles per pixel. Next, these

cutoff frequencies are used to low-pass filter different locations of the video frame, and the

output is passed to a conventional video encoder. Finally, the MCU transmits the encoded

video frame to the client expecting it.

5.3 System Implementation

Our scheme is implemented in Licode (version 0.1.0) [59], an open source MCU

platform designed for WebRTC. Licode sets up video teleconferencing sessions, and routes

the media and control traffic among endpoints (clients). The delivery of the media follows

a publishing/subscribing process: each client publishes its own video, which is sent to the

MCU, and the other clients get the video by subscribing to the video via the MCU. As

mentioned in Section 5.2, since using user adaptive video coding requires video decoding

and encoding, functions which the original Licode does not provide, we integrate the VP8

video codec with Licode, where VP8 is used in WebRTC.

As described in Section 5.2, the MCU needs both the inter-pupil distance d and the

pixel density of the display in order to infer the viewing distance. To get d, we write a face

detection module which makes use of the OpenCV library APIs. The pixel density of the

display is obtained as follows. When a client connects to the MCU, it automatically down-

loads a Javascript program, which inspects the UserAgent field of the outgoing HTTP request

messages to extract the device type information, which is then sent across the network to the

MCU for table lookup. The table is locally maintained on the MCU, and it lists device types

along with the respective display pixel densities.

The enriched Licode runs on a Linux Ubuntu 12.04 computer which serves as the

MCU. The clients are Chrome web browsers, each running on a MacBook laptop. To capture

the effect of Internet latency, we add artificial delays on each client using the Linux tc utility.
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5.4 Evaluation

The one-way delay from each client to the MCU is set to 50ms, which results in an

RTT of 200 ms between the two clients. In the experiment, there are two subjects, each

looking at a laptop, which is connected via a simulated network to the MCU.

We look at the video bit rate savings resulted from user adaptive transcoding. In

the experiment, the viewing distance is fixed at 25 inches. Fig. 5.3(a) shows the arrival bit

rate (blue solid line) and the departure bit rate (red dashed line) as functions of time for the

case where user adaptive transcoding is used in the MCU. Let the average arrival bit rate

be ra, and the average departure bit rate be rd. The bit rate savings, i.e., η := (ra − rd)/ra,

is 36.7%. As comparison, we also plot the bit rates in Fig. 5.3(b) for the case where user

adaptive transcoding is not used, with the average arrival bit rate denoted as Ra and the

average departure bit rate as Rd. The reduction in the bit rates (Ra−Rd)/Ra is only 2.7%. Since

the contents of the videos are similar in the two cases, we can compare the two departure bit

rates. The reduction in the average departure bit rates, i.e., (Rd − rd)/Rd, is 26.9%. We do the

experiment 10 times, and the average bit rate savings is 25%. The more severe fluctuation

in the arrival video bit rate in Fig. 5.3(a) is due to the impact of not implementing Google

Congestion Control (GCC) [92] in the MCU, and the difference in the arrival video bit rate

between Fig. 5.3(a) and Fig. 5.3(b) will go away if GCC is implemented in the MCU.

To confirm that our scheme does not lead to significant degradation in subjective

video quality as predicted by the theory, we carry out subjective testing. There are 20 sub-

jects, and we use 3 viewing distances: 20 inches, 25 inches and 30 inches. We ask each

subject to evaluate the quality of the video captured and delivered across the network in real

time during a video teleconferencing, and the evaluation method is a 5-grade scale where 1

is for bad, 2 for poor, 3 for fair, 4 for good, and 5 for excellent. The results are shown in

Fig. 5.4. We see that with 95% confidence interval, the use of user adaptive video coding

does not result in degradation in subjective video quality.
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Figure 5.3: The arrival video bit rate (blue solid line) v.s. the departure video bit rate (red

dashed line), for the cases of user adaptive transcoding (a) being turned on, and
(b) being turned off.

5.5 Conclusion

In this chapter, we propose a user adaptive network-based transcoding scheme for

video conferencing to improve the video coding efficiency using perceptual pre-filtering.

By analyzing the video sent from a client, the MCU infers that client’s viewing conditions,

which are then used to adapt the encoding of the video destined to the client. The scheme is

implemented in a real-world video teleconferencing system. Experimental results show that

our approach can significantly save the bandwidth without affecting subjective video quality.
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Chapter 6

MAC LAYER ADAPTATION TO IMPROVE TCP PERFORMANCE OVER WI-FI

6.1 Introduction and Related Work

Wi-Fi has gained growing popularity as the last-mile Internet access technology. At

the same time, HTTP based video streaming has been widely adopted for multimedia deliv-

ery. As mentioned in Section 3.1, DASH is an emerging standard for adaptive HTTP stream-

ing to enable interoperability in the industry. In a DASH system, a video receiver is strictly

based on the performance statistics of the underlying Transmission Control Protocol (TCP)

to estimate the available bandwidth of networks in order to select the most suitable video

quality dynamically. In addition, not only video streaming, about 90% of the data traffic

in the Internet today is carried by TCP [55], and a majority of that traffic may be prefer-

ably transferred via a path with Wi-Fi which may be significantly faster and cheaper than a

cellular connection. Therefore, a satisfactory performance of TCP over Wi-Fi networks is

thus essential to effectively design, deploy and manage a large number of applications on the

Internet.

As explained in Section 4.1, there may be channel-caused or congestion-caused packet

losses in wireless networks. Packet losses due to path loss, shadowing, fading and interfer-

ence are classified as channel-caused losses. When the channel is heavily loaded with traffic

from multiple contending stations, and the available bandwidth shared by all stations is not

enough to accommodate all incoming traffic, the network is congested. If congestion per-

sists, packet losses due to buffer overflow will occur. In a congested network with many

active contending stations, collision induced packet losses may also increase significantly.

Packet losses due to these reasons are classified as congestion-caused losses.

To overcome the channel-caused losses in Wi-Fi networks, MAC frames containing

payload are protected with Forward Error Correction (FEC) that can recover payload data
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from up to a certain number of bit-level errors. However, the protection provided by FEC

is not enough. In wireless channels, in addition to background noises, fading and path loss,

there are many other uncertainties. For example, interference comes from the same network

or other networks. Due to these unpredictable uncertainties, it is hard to find optimal values

for FEC coding rate and redundancy factor. Lower redundancy than necessary is not enough

to protect from bit errors. But higher redundance than necessary leads to high error recovery

overhead and low effective data coding rate (throughput).

In today’s Internet, several variants of TCP are deployed. These variants differ in

their congestion control and segment loss recovery techniques. The basic congestion control

algorithms, namely slow start, congestion avoidance, and fast retransmit, were introduced in

TCP Tahoe[91]. In TCP Reno, the fast recovery algorithm was added. This algorithm uses

duplicate acknowledgements (ACKs) to trigger the transmission of new segments during

the recovery phase, so that the network ”pipe” does not become empty following a fast

retransmit. TCP NewReno[79] introduced an improved fast recovery algorithm that can

recover from multiple losses in a single window of data, avoiding many of the retransmission

timeout events that Reno experiences. In this work, we focus on TCP NewReno. This is

suggested by previous studies that TCP NewReno is widely deployed on the Internet [2].

Furthermore, [2] indicates that NewReno is preferable to Reno, as NewReno provides better

support for TCP peers without Selective Acknowledgment (SACK). In OPNET 17.1.A [71],

the simulator we used in this work, Reno and NewReno are the only two TCP algorithms

implemented. If Reno is used, fast recovery as defined in [91] will be executed when the

TCP sender receives triple duplicate ACKs1. TCP will perform congestion avoidance, but

not slow start. If NewReno is used, fast recovery as defined in [79] will be executed, where

two modifications are made on top of Reno algorithm: 1> fast retransmit will be executed

1 For the typical implementation of the TCP Fast Recovery algorithm described in
[RFC2581], the TCP data sender only retransmits a packet after a retransmit timeout has
occurred, or after three duplicate acknowledgements have arrived triggering the Fast Re-
transmit algorithm. A single retransmit timeout might result in the retransmission of several
data packets, but each invocation of the Reno Fast Retransmit algorithm leads to the retrans-
mission of only a single data packet.
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only once within one window of data; 2> if a partial acknowledgement (ACKs which cover

new data, but not all the data outstanding when loss was detected) is received, then TCP

will immediately retransmit the next unacknowledged segment. For these reasons, when

multiple segments are dropped from the same window of data, Reno may enter and leave fast

recovery process several times, causing multiple reductions of the congestion window. While

NewReno recovers from multiple segment losses in the same window by retransmitting one

lost segment per RTT, remaining in fast recovery until a full ACK is received, and this makes

NewReno having better performance than Reno when recovering from multiple segment

losses within the same window.

MAC layer optimization for TCP performance improvement in wireless networks has

been extensively studied. In [84] the authors present a framework to model TCPs Congestion

Avoidance dynamics and evaluated adaptive power control measures for TCP throughput en-

hancement over wireless channels. They show that TCP-dynamics-aware power adaptation

measures lead to substantial enhancement of TCP throughput. The approach in [85] is based

upon selecting the best transmission modes depending on the optimal success probability for

TCP segments given by dynamic programming (DP)solutions.

The Retry Limit optimization has also been extensively studied in the literature. In

[81], the authors propose adjusting the Retry Limit according to the MAC layer data rate. In

[57], the author proposes an approach which is motivated by the observation that the Retry

Limit settings in the MAC layer can be optimized in such a way that the overall packet losses

which are caused by either link erasure or buffer overflow are minimized. In [83], the authors

propose joint MAC Real-Time retry limit and link layer adaptation through PHY layer mode

selection.

In this work, our proposed idea is different from aforementioned prior work. We

differentiate MAC layer packet losses from different reasons by performing congestion de-

tection. If the packet loss is channel-caused, the MAC layer grants more transmit oppor-

tunities by temporarily increasing the Retry Limit. If the packet loss is congestion-caused,

the MAC layer does nothing in order not to conceal the packet loss from TCP’s conges-

tion control algorithm. The work in Section 4.3 also considers reduction of channel caused
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Figure 6.1: TCP performance degradation due to large channel error duration

packet losses, but it is for real-time video traffic. In Section 4.3, we have given details on

a light-weight congestion detection algorithm, which was used to adapt the retry limit for

the Wi-Fi MAC layer protocol for Wi-Fi stations that carry real-time video traffic. Here, we

implement that function for all Wi-Fi stations. Even though the evaluation results in Section

4.5.3 have already shown that our proposed algorithm substantially improves system perfor-

mance, we want to investigate how the proposed algorithm would help TCP traffic. Note

that real-time video traffic uses User Datagram Protocol (UDP), relies on application layer

congestion control and has different characteristics (i.e, delay sensitivity, traffic burstiness,

decoding deadline and error propagation, etc), compared to TCP.

6.2 Problem Analysis

6.2.1 TCP performance degradation

Depending on the duration of bad channel conditions, the resulting packet losses may

cause two types of TCP performance degradation explained as below.

Large channel error duration: Large channel error duration, i.g, more than 50 ms,

may occur when moving obstacles and serious interference between a wireless station and an
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Figure 6.2: TCP performance degradation due to small channel error duration

AP continue to be existed, or a wireless station moves out of the coverage of an AP. During

a large channel error duration, noted as Terr in Fig. 6.1, MAC layer keeps sending MPDUs

corresponding to the TCP segments with sequence number specified by the sending window.

For each MPDU, MAC layer will retransmit it until a predefined limit (called Retry Limit)

is reached. This overall time duration during which the MAC layer keeps sending MPDUs

in the MAC layer sending queue until all MPDUs get removed after reaching Retry Limit

is noted as Ttx in the Fig. 6.1. Since Terr is large enough and Ttx < Terr is satisfied, MAC

layer has no data for this TCP connection to be sent even if the channel is recovered after

the duration Terr. According to [91] and [79], below actions will be performed at the TCP

sender:

• TCP sender will not receive any duplicate ACKs from the TCP receiver, fast retransmit

and fast recovery process will not be executed.

• TCP sender will not detect TCP segment losses until the retransmit timer out is trig-

gered, leaving to a wasted time period, noted as Tws in Fig. 6.1.

• Half of the current congestion window size is saved as the slow start threshold.

• Reduce the congestion window to 1 maximum segment size (MSS).
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• Changes to the slow start phase.

Small channel error duration: Small channel error duration, i.g, less than 50 ms, may occur

when temporary interference happens and/or obstacles moves between a wireless station and

an AP, or a inappropriate modulation scheme and coding rate used at physical layer of a

wireless station due to mobility caused change of channel fading and/or path loss. Note that

small channel error duration typically happens much often than large channel error duration.

During a small channel error duration, Ttx > Terr is likely to be satisfied, so that MAC layer

still have data for the TCP connection to be sent when channel is recovered. According to

[91] and [79], below actions will be performed at the TCP sender:

• TCP sender will receive duplicate ACKs from the TCP receiver, fast retransmit and

fast recovery process will be executed (no retransmit timer out is triggered).

• Change the slow start threshold ssthresh to max(FlightS ize/2, 2 ∗ S MS S ), where

FlightS ize is the amount of data that has been sent but not yet acknowledged, and

S MS S is the sender maximum segment size.

• Change the current congestion window size to ssthresh + 3 ∗ S MS S .

• Changes to fast recovery phase instead of slow start.

The details of the fast recovery and fast retransmit algorithms are not the focus of this

work, but at least from both above two cases, we can see that TCP sender considers packet

losses as indications of congestion and reduce the size of the congestion window accordingly,

leading to false alarms of network congestions and performance degradations.

6.2.2 Unnecessarily Reduced and Fluctuated TCP Performance

In this section, a set of simulations are performed in order to verify that the analytic

study in Section 6.2 is valid. We use the simulation testbench described in Section 6.4.1.

For easier tractability, competing traffic is disabled. Hidden terminal traffic is kept to create

random collisions and packet loses at the station STA A. The FTP traffic from STA A to

STA B is the TCP traffic under evaluations. Internet delay in the Fig. 6.5 is configurable for

deep analysis of TCP behaviors in the next few sections, but is set to a constant value of 100
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Figure 6.3: TCP performance degradations: (a) Congestion window at the TCP sender (b)
Average TCP traffic received at the TCP receiver.

ms in this section. Packet loss rate in the Fig. 6.5 is set to be 0% so that packet losses of the

end-to-end FTP flow only happen at the Wi-Fi link between STA A and AP.

Fig. 6.3 shows the growth of congestion window at the TCP sender (the STA A in

Fig. 6.5) and the Average received TCP traffic at the TCP receiver (the STA B in Fig. 6.5).

Due to the random packet losses caused by the hidden terminal traffic, the TCP sender de-

tects loss by duplicate ACKs, retransmits unacknowledged TCP segments, and reduces the

congestion window as explained in Section 6.2.1. This produces seesaw oscillations in both

the congestion window size and received TCP traffic. These oscillations greatly increase

not only delay, but also delay variance for the applications, especially for TCP based HTTP

streaming, where fluctuated underlying TCP bandwidth may significantly reduces the user’s

quality of experience [19].

6.3 System Design and Implementation

Motivated by the issues identified in the previous section, a simple and yet effective

MAC layer adaptation scheme is proposed. In this section, we discuss the design principles

and implementation details.
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6.3.1 Principles

Our proposed MAC layer adaptation scheme relies on the dynamic adjustment of the

Retry Limit parameter defined in the IEEE 802.11 standard. The reasons for using the Retry

Limit parameter are listed as below:

• Fairness of channel access.

• Practicality.

• TCP traffic is generally not delay sensitive.

• Able to resolve or at least significantly mitigate the TCP performance issues identified

in Section 6.2.

Fairness of channel access. To overcome the packet losses as well as the TCP transmis-

sion interruptions explained in Section 6.2.1, two parameters in MAC layer are available to

be adapted: Retry Limit (RL) and contention window (CW). The duration of CW is used

for resolving contentions when several stations are competing for channel access. Changes

made to CW simply change medium access priorities, which affects fairness and is unde-

sirable for other stations that do not use our proposed scheme. In contrast, changing the

retry limit does not affect each single contention and equal success probabilities can be

maintained. In a lightly loaded network, increased retransmissions can better utilize the

network resources; while in a heavily loaded/congested network, packet losses are classified

as congestion-caused losses (will be explained in Section 6.3.3), and retry limit will not be

increased.

Practicality. Note that Retry Limit is left configurable in the IEEE 802.11 standard,

and Retry Limit adaptation in our algorithm (be explained in Section 6.3.3) does not require

cross layer information or coordinations, our proposed scheme can be easily implemented

and incrementally deployed.

TCP traffic is generally not delay sensitive. Due to the integrated retransmission

and congestion control algorithms, TCP offers benefits of error detections/corrections, ro-

bustness and adaptive use of network resources. However, those benefits are at the cost of

increased delay and overhead, compared to UDP. Therefore, applications relying on TCP are

generally not delay sensitive, such as web browsing and http video streaming, where up to
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several seconds of buffering/cache delay are allowed at the beginning in the web browser

or video player [19]. Otherwise, UDP should be used in order to meet requirements of low

delay and overhead, such as cloud gaming, real-time video or telephony applications, where

the protocol layers above UDP may provide error correction and rate control functions [20].

Resolve the issues of TCP performance degradation. In the case of small channel

error duration, the MAC layer grants more transmit opportunities for each MPDU by tem-

porarily increasing the retry limit. Channel-caused packet losses are likely to be completely

avoided as the channel error duration is small and channel quickly gets recovered. In the

case of large channel error duration, as shown in Fig. 6.1, a straightforward solution increase

the Ttx to make it larger than the channel error duration Terr. Thus, at least one segment can

be correctly delivered towards the TCP receiver and the TCP flow will not be completely

interrupted, allowing the fast retransmission and recovery mechanism to be triggered instead

of waiting for the expiration of TCP retransmit timer Trto. To this end, it is time to formulate

the expression of Ttx as below:

Ttx =

cwnd∑
j=1

T D j(R j, L j) (6.1)

and

T D(R, L) =

R∑
i=1

(min(2i−1 · (CWmin + 1) − 1,CWmax)
2

×(p · T (L) + aS lotT ime) + T (L)
)

(6.2)

Where R j ≤ Retry Limit, L j stands for an L-byte long MPDU with payload as the TCP

segment j in the current TCP sending window not beyond congestion window cwnd. Eq. 6.2

is the transmit delay defined in [20]. The value of T D(R, L) is to represent the time interval

from the time the MPDU reaching the head of its MAC queue for transmission, to the time an

acknowledgement for this packet is received or discarded upon reaching its retry limit. Note

that the queueing delay due to waiting for the service of previous packets to be completed is

not included. To increase the Ttx duration, we may enlarge cwnd, Retry Limit or CW values

according to the Eq. 6.1 and Eq. 6.2. Change of cwnd and CW are not desirable as it requires

modifications of current TCP and MAC standard. Therefore, Retry Limit is selected.
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Although the increase of retry limit may bring aforementioned benefits, there may be

some adverse impacts which are summarized as below:

• Increased RTT leads to lower TCP throughput.

• Increased queuing delay of subsequent MPDUs potentially leads to lower drainage

speed of MAC layer buffer and higher probability of buffer overflows.

• Increased retransmissions are essentially adding more traffic to the network, poten-

tially leading to network congestions.

In the following subsections, we will address the three concerns.

6.3.2 Retry Limit Impact on RTT and TCP Performance

In order to capture the impacts on TCP performance when adjusting Retry Limit, we

need first review TCP throughput model. Ignoring the initial slow start phase, it follows from

the arguments given in [75] that the evolution of the congestion window can be viewed as

a concatenation of statistically identical cycles, where each cycle consists of a congestion

avoidance period, followed by detection of segment loss and a fast recovery period. Each

of these cycles is called a congestion avoidance/fast recovery (CAFR) period. Based on this

CAFR concept, in [76], the authors develop a convincing stochastic model for the steady-

state throughput of TCP NewReno. If assuming typical realistic channel conditions, where

loss events are usually identified by triple duplicate ACKs so that no timeouts occur, a model

called Model Without Timeout (NoTO) can be developed here to calculate the steady-state

throughput of TCP NewReno as below:

TNoTO =

1
p +

W2q
1+Wq

(w
2 + Wq + 5

2 )R
(6.3)

where the window value W is computed as:

W ≈
10pq − 5p +

√
p(24 + 32q + 49p)

p(3 + 4q)
(6.4)

Where R is average round trip time, p is loss event rate, q is segment loss rate within a loss

event and W is average value of the peak congestion window size. The parameters used in

Eq. 6.3 and Eq. 6.4 are based on a two-parameter segment loss model [76] that captures both
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the frequency of loss events and the burstiness of segment losses within a loss event. [76]

defines a loss event (LE) to begin with the first segment loss in a round that eventually causes

TCP to transition from the congestion avoidance phase to either the fast recovery phase or

the timeout phase. Note that an LE can start at any segment, but once it starts, it spans at most

one RTT R in Eq. 6.3. The loss events are assumed to occur independently with probability

p in Eq. 6.4. Segments transmitted during an LE (except the first) are assumed to be lost

independently with probability q in Eq. 6.4 (i.e., parameter captures the ”burstiness” of the

segment losses within an LE). The two parameters can be set separately, to model either

homogenous (p = q) or nonhomogeneous (p , q) loss processes [102].

After the review of TCP throughput model, now we come back to Retry Limit. In a

typical communication system , end-to-end round trip time RTT consists of two way (for-

ward route for TCP data and the reverse route for TCP ACK) queueing delay, processing

delay and transmit delay at each network node, and propagation delay at each link. As

shown in the Fig. 6.5, if we assume all the other network nodes and links between STA A

and STA B stay as the same status (i.e. same propagation delay, transmit delay, queueing

delay, etc), we can focus our analysis on STA A, which is the TCP sender, to see how retry

limit would affect TCP round trip time.

As defined in Eq. 6.2, transmit delay at the STA A is a function of exponential growth

of contention window, Retry Limit and the conditional collision probability p (assuming

other parameters remains constant). Since the exponential growth of contention window is

upper bounded by CWmax, transmit delay is essentially a function of only the Retry Limit

and conditional collision probability p. As specified in the 802.11 standard, upon a packet

loss, a Wi-Fi station randomly chooses a backoff time from the growing contention window

and retransmits the packet after the backoff time expires. However, other contending stations

may occupy the channel during the backoff time and force the backoff timer to freeze until

the channel is sensed idle again after a DIFS/AIFS period. Therefore, the actual length

of the backoff period can be much longer than the original randomly picked backoff time,

and this effect can be reflected by the value of the conditional collision probability p. For

example, the random backoff period in a noisy channel, where p is very small, or a heavily
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loaded channel, where p is bigger, can be quite different (due to backoff timer freeze). For a

more concrete example, According to Eq. 6.2, in a lightly loaded channel, assuming p = 0,

we get T D(7, 1224) = 10.894ms; in a heavily loaded channel,assuming p = 0.9, we have

T D(7, 1224) = 1.75ms + 236.93ms = 238.68ms.

We perform a set of simulations (each with 150 seconds simulation time) based on the

testbench Fig. 6.5 to verify our analytic study on how Retry Limit could affect the round trip

time and TCP throughput, and present the simulation results in Fig. 6.4. In these simulations,

Internet delay is set to be 20ms. Hidden terminal traffic begins at the beginning of each

simulation and runs to the end. Competing traffic begins at the 30 seconds and runs to the

end. The evaluated FTP/TCP traffic starts at around 10 seconds and runs to the end. Three

cases, where Retry Limit uses the default value 7, default value plus 5 and default value plus

10, are simulated respectively and the results are drawn in the same Fig. 6.5 for better side

by side comparisons.

In Fig. 6.4 (a), before the 30 seconds when competing traffic begins, round trip time

values at the TCP sender are almost the same (ignoring those very large initial RTT values

which are set by OPNET). This is because the interference from the hidden terminal traffic

cannot be heard and the backoff timer will not freeze, so that p ≈ 0 in the Eq. 6.2. When

competing traffic starts at the 30 seconds, the difference between different values of Retry

Limit appears. The round trip time value is highest when Retry Limit uses the highest value

(default value plus 10) among the three curves.

In Fig. 6.4 (b), TCP throughput of all three curves is reduced after the 30 seconds,

but the reasons are different. For the curve using default Retry Limit, round trip delay is

the same after the 30 seconds (see subfigure (a) in the same figure), and the decrease of

throughput is reduced a little bit due to bandwidth shared by the competing traffic. However,

for the other two cases where Retry Limit is extended beyond the default value, throughput

reduction is significant as the round trip time is obviously increased. Note that, when Retry

Limit uses the highest value (default value plus 10) leading to the highest increase of round

trip time, packet losses in the MAC layer are completely eliminated after enough number

of retransmission and the throughput is the highest and also stable. For the other two cases,
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Figure 6.4: How the value of Retry Limit affects TCP performance (Internet delay = 30ms):
(a) Round trip time calculated at the TCP sender (b) Average TCP traffic re-
ceived at the TCP receiver.

packet losses at the MAC layer lead to TCP sender enters the costly fast recovery phase and

reduces congestion window size multiple times according to the explanation in Section 6.2.1.

6.3.3 Retry Limit Adaptation Algorithm

According to the analysis in Section 6.3.1, the value of Retry Limit is preferred to be

as large as possible, in order to mitigate or solve the issues due to channel error durations.

Required value of Retry Limit depends on actual network conditions (e.g. overall traffic load

in the network, interference level, etc) and channel error durations (i.e. 10ms, 100ms, or even

several seconds, etc). However, there may be some cases where small value of Retry Limit

is preferred, as listed at the end of Section 6.3.1. One of the case, where increased RTT leads

to lower TCP throughput, has been discussed in Section 6.3.2. The conclusion is that the

reduced throughout due to the large value of Retry Limit and increase of RTT is still much

better than the situation using default Retry Limit, because packet losses are minimized and

decrease of congestion window size is avoided. Therefore, a large value of Retry Limit is

still preferred. Next, we will address the other two concerns.

Transmit delay defined in Eq. 6.2 refers to the aggregate time spent by an MPDU

during the transmission, starting from the time when the MPDU reaches the head of the
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sending queue until the MPDU is removed from the sending queue due to successful delivery

(receiving an ACK from the destination MAC) or being discarded due to reaching the retry

limit. When network conditions fluctuate, the actual transmit delay may vary significantly

under the influence of several non-deterministic factors: number of retransmissions, value of

random backoff time, backoff time freeze (see the example used in Section 6.3.2 where busy

channel and idle channel are considered), and so on. For these reasons, Retry Limit should

not be constrained by a specified value.

Inspired by all those analytical studies discussed so far, we propose our Retry Limit

adaptation scheme to improve TCP performance as shown in Algorithm 4.

In Algorithm 4, an unacknowledged MPDU is retransmitted repeatedly until ac-

knowledgement is received or any one of below conditions is satisfied:

• Congestion is detected. Follow the procedures in to perform congestion detection.

• Available Buffer size is below certain threshold. This is to avoid buffer overflow.

• Number of retransmissions have reach a large number. Note that this number is typ-

ically a big value, for example, 100, which is hardly to be exceeded during normal

retransmissions. As explained before, Retry Limit should not be constrained by a

specified value. The reason for defining this number is to provide certain level of flex-

ibility (i.e. sanity check or debug purpose) and also avoid endless retransmissions and

occupying the channel forever in case of software bugs.

• Transmit delay is beyond the maximum allowable round trip time. This is an optional

check, in case the maximum RTT information is available at the MAC layer and this

help to avoid occupying the channel for a long time. For some TCP applications,

certain level of delay constraint may be required. For example, HTTP video streaming

may tolerate delay only up to several seconds with the help of buffering.

• Radio Link failure is detected. Operating system usually provides radio link status

check functions. When the radio link is failed, it does not make sense to continue

doing retransmissions.
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Algorithm 4: MACLayerTransmitMPDUOptimizedForTCP()
1 . . .
2 if this is a retransmition then
3 if r > R then

// r is retransmission count with initial value 0. R
is the default retry limit. Rmax is a big number

that should not be exceeded. Delaymax is to control

transmit delay not exceeding the maximum RTT.

4 if CalculateCongestionLevel() > CLth OR
5 Current Buffer size > BFth OR
6 r > (R + Rmax) OR
7 T D(r, L) > Delaymax OR
8 RadioLinkS tatusCheck() OR
9 EnergyE f f iciencyCheck() then

10 Delete(MPDU) ; // Network is congested, or the
available buffer size is too low, or transmit delay

constraint is reached, or the maximum allowed Retry

Limit will be exceeded, or radio link failure is

detected, or battery constrained devices have been

configured energy concerns.

11 return ;
12 else
13 r = r + 1 ; // update retry count value.
14 if r%(R + 1) == 0 then
15 reset CW ; // Let subsequent extended

retransmissions would be like belonging to a

brand new MPDU.

16 Transmit this MPDU ;
17 . . .
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• Energy wise concerns. For mobile devices with battery constraint, number of retrans-

missions may be under control. For example, when battery life is below certain thresh-

old, Retry Limit should use default value.

When one of these events occurs, retransmission of a MPDU is terminated and Retry Limit

is reset to its default value. The rational behind Algorithm 4 is that when network is not

congested, more retransmissions lead to the use of otherwise wasted network resources, and

the competing traffic is not being hurt because network capacity is enough to accommodate

all traffic. When the network is congested, our scheme can detect congestion and does not

increase the default retry limit in order to not conceal the packet losses so that the high-

layer congestion control algorithm could properly reduce the target sending rate to relieve

the network congestion.

6.4 Evaluation

In order to analyze the TCP performance improvements by using our proposed Al-

gorithm 4, a set of simulations are carried out and simulation results are presented in this

section.

6.4.1 Simulation Testbench

As shown in Fig. 6.5, a typical and realistic network scenario is created, which repre-

sents an important lossy communication network that consists of the Internet in the core and

Wi-Fi links on the edge. A detailed description about the testbench is summarized shortly.

Without loss of generality, this work only investigates packet losses that happen on the link

from STA A to AP, and implement Algorithm 4 in STA A to improve the overall perfor-

mance of the TCP traffic from STA A to STA B. Simply put, our approach improves the

TCP sender who has a lossy Wi-Fi link.

Summary of the testbench:

PHY and MAC layer: HT PHY at 2.4 GHz with IEEE 802.11n. PHY Data Rate is 65

Mbps. All other parameters use default values in OPNET 17.1.A. All the simulated network

traffic uses Best Effort Access Category [24] by default.
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Figure 6.5: A typical lossy communication network simulated in OPNET

TCP traffic path: STA A↔ AP↔ Internet↔ STA B.

Main Wi-Fi network: Consists of STA A, AP and 8 CMP STA with 802.11n 2.4G

Hz. The AP is at a fixed position, while STA A and CMP STA are randomly placed (But the

distance constraints required to create a hidden terminal network are satisfied).

Congestion: Adjust the cross traffic between CMP STA and AP to create different

levels of congestion.

Hidden terminal Wi-Fi network: It consists of INT STA and INT AP with fixed

locations. INT STA and STA A cannot hear each other, but AP is within interference range

of INT STA. Since INT AP cannot be interfered by anyone in the Main Wi-Fi network,

INT STA servers as a hidden terminal to STA A but not vice versa.

Traffic definition: There are three types of traffic in the network. Main traffic between

STA A and AP (finally towards STA B) is TCP traffic. Cross traffic between CMP STA and

AP, and hidden terminal traffic between INT STA and INT AP, are UDP-based video traffic.

Hidden terminal traffic uses constant bit rate after it gets started. Cross traffic also uses

constant bit rate for easier control but the rates are different in different time periods in order

to create different levels of network traffic load.
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Figure 6.6: Aggregate throughput of competing traffic, when Internet delay is: (a) 30 ms;
(b) 60 ms.
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Figure 6.7: Round trip time calculated at TCP sender, when Internet delay is: (a) 30 ms; (b)
60 ms.
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Figure 6.8: Congestion window size at TCP sender, when Internet delay is: (a) 30 ms; (b)
60 ms.
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Figure 6.9: Zoom in details (extended figure of the Fig. 6.8) of congestion window size at
TCP sender, when Internet delay is: (a) 30 ms; (b) 60 ms.
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6.4.2 Impact on Competing Traffic

Fig. 6.6 shows the aggregate UDP throughput from the 8 competing stations CMP STA.

There are two traffic durations in each sub-figure, representing different levels of traffic load

in the Wi-Fi network. As shown in Fig. 6.6, competing traffic throughput does not change

appreciably when the proposed adaptation algorithm is used or not, even with different value

of Internet delay. This result agrees with our expectation. When the network is not congested

such as in the first traffic duration, more retransmissions lead to the use of otherwise wasted

network resources, and the competing traffic is not being hurt because network capacity is

enough to accommodate all traffic. When the network is congested such as in the second

traffic duration, our scheme can detect congestion and does not increase the default retry

limit. The decrease of TCP throughput in the case of congested network is presented in the

next subsection.

6.4.3 Improved TCP Performance

This section is to present experiment results of the evaluated TCP traffic from three

aspects (round trip time, congestion window size and TCP throughput), when the proposed

adaptation algorithm is used. In the Fig. 6.7(a), when competing traffic is active during the

time durations [30 sec, 70 sec] and [100 sec, 120 sec], the round trip time is significantly

higher when the proposed adaptive retry limit is used. This result is within our expectations.

As captured in the Eq. 6.2, competing traffic causes higher value of p, so that transmit delay

would increase accordingly. In addition, in the time duration [100 sec, 120 sec] of Fig. 6.7(a),

where network is congested and packet losses are intentionally not reduced, the TCP sender

occasionally reduces data sending rate and this causes frequent fluctuations of aggregate

traffic in the network and also fluctuations of round trip time of the TCP traffic. When

Internet delay is increased to 60 ms, as shown in Fig. 6.7(b), changes of transmit delay in the

Wi-Fi link do not bring noticeable increase of overall round trip time when competing traffic

is moderate. When the network is congested in the time duration [100 sec, 120 sec] and

transmit delay is dramatically increased, we then see obvious increase of round trip time.
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Fig. 6.8 (Fig. 6.9 shows zoom-in details of Fig. 6.8) illustrates that when the pro-

posed algorithm is used, the curve of TCP congestion window size is smooth and increases

steadily because channel-caused packet losses have been completely eliminated. When the

network congestion starts at around the 100 second, the proposed algorithm is able to detect

the congestion and does not increase the default retry limit. In this way, packet losses are

not reduced so that the TCP congestion control algorithm could properly reduce the target

sending rate to relieve the congested network. And we can see that congestion window size

fluctuates after the 100 seconds. On the other hand, when default retry limit is used, packet

losses happen from time to time, and the congestion window size fluctuates all the time.

Fig. 6.10 shows the average throughput received at the TCP receiver, when our algo-

rithm is used and not, and when Internet delay is 30 ms and 60 ms. In both subfigure (a)

and (b) of the Fig. 6.10, we can see that TCP throughput is always significantly improved

when our algorithm is used. During the time durations [30 sec, 70 sec] and [100 sec, 120

sec], TCP throughput becomes lower than other time durations. This is due to exactly the

same reason as round trip time. As explained above for Fig. 6.7, competing traffic enlarges

the transmit delay and round trip time according to Eq. 6.2, and this finally leads to lower

expected throughout according to Eq. 6.3. When network begins to be congested at around

100 seconds, the proposed algorithm detects congestion and intentionally let the TCP sender

reducing the sending rate to relieve the network congestion. Another important observation

from Fig. 6.10 is the fluctuations in the throughput, in the case when the adaptation algorithm

is not used. These oscillations in TCP throughput obviously increase not only delay, but also

delay variance for the applications, especially for TCP based HTTP streaming, where fluc-

tuated underlying TCP bandwidth may significantly reduces the user’s quality of experience

[19].

6.5 Summary

In this chapter, we study TCP performance in a typical lossy Wi-Fi network. Based

on an analytic study and a set of simulations, we identify two types of issues when TCP

performance may degrade due to channel errors. An optimization scheme is thus proposed
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Figure 6.10: Average TCP traffic received at the TCP receiver, when Internet delay is: (a)
30 ms; (b) 60 ms.

to solve or at least mitigate the issues. This scheme relies on Retry Limit optimization at

MAC layer. We study the relationship between Retry Limit and TCP round trip time calcu-

lation, and then propose mathematical expressions to quantitatively analyze TCP throughput

in relation to the change of Retry Limit. Simulation results show that the proposed scheme

is able to reduce channel-caused packet losses and significantly improve TCP throughput by

helping TCP to avoid entering the costly loss recovery process. When network is congested,

the proposed algorithm detects congestion and intentionally let the TCP sender reducing the

sending rate to relieve the network congestion.
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Chapter 7

DELAY CONSTRAINED MAC LAYER ADAPTATION TO IMPROVE WIRELESS
VIDEO TELECONFERENCING

In Chapter 4, one of the proposed schemes exploits the benefits of Retry Limit opti-

mization and performs MAC layer adaptation to help improve the performance and efficiency

of wireless video teleconferencing. However, the scheme does not relate the setting of the

Retry Limit to the delay constraint imposed by an application’s QoS requirements. In this

chapter, we investigate the interactions and propose new algorithms.

7.1 Related Work and Motivations

In IEEE 802.11 based wireless networks, transmit delay in the MAC layer refers to

the aggregate time spent by an MPDU from the moment the MPDU reaches the head of

the sending queue to the moment the MPDU is removed from the sending queue due to its

successful delivery (receiving an ACK from the destination MAC) or being discarded when

reaching the retry limit. In Eq. 4.6, accumulated transmit delay
∑N

i=1 T D(ri, Li) is used to

estimate average MAC layer capacity MCw
τ (t) within a certain time period in order to detect

network congestion. However, we ignore the direct relation between transmit delay and retry

limit, and how the value of transmit delay would ultimately affect system performance.

As network conditions fluctuate, the actual transmit delay may vary significantly un-

der the influence of several non-deterministic factors: number of retransmissions, value of

random backoff time, backoff time freeze (busy channel), etc. Therefore, for the following

reasons, the transmit delay needs to be upper bounded:

1. Video receiver imposes a video decoding deadline. The arrival of video packets expe-

riencing a large transmit delay and after the deadline is a waste of network resources.
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2. The random backoff period in a noisy channel or a heavily loaded channel can be quite

different (see Section 4.5.1 reason 1 for detailed explanation). A sudden increase of

transmit delay means the corresponding MPDU takes more time to be transmitted and

hence fewer other MPDUs can be transmitted within the same time period, which leads

to a dramatic decrease in the received bit rate at the receiver which in turn induces a

reduction in the sending rate due to the reporting of a lower Receiver Estimated Max

Bitrate (REMB) to the sender. Specifically, according to Section 4.2.2, the sender-side

controller computes the target sending bit rate As (see Eq. 4.1) that is forced not to

exceed Ar. Since the value of Ar is reported by the receiver and is upper bounded by

the received bit rate, a dramatic increase in the transmit delay eventually leads to a

smaller value of As.

Retry Limit adaptation considering video traffic QoS requirements has been studied

extensively. In [58], video layers of different importance receive appropriate priority delivery

and unequal protection depending on channel conditions. The priority delivery is performed

by the proposed priority queuing discipline, while unequal protection is achieved through a

retry limit vector with unequal elements that are maintained by the MAC for different video

layers. This method requires frequent cross-layer collaborations so that information of the

video layers is accessible at the MAC layer. In [16], back off time for each video MPDU

retransmission is analyzed, so as to find a set of retry limits for packets in a GOP to minimize

the total error-propagation of the GOP according to the delay constraint of packets for pre-

sentation at the receiver. This approach still requires the content information of each video

packet (e.g., belongs to which video sequence) at the MAC layer so that the error propagation

effect of each packet is estimated to guide the determination of its retry limit. [22] proposes

an adaptive retransmission mechanism using jamming noises to resolve the contention be-

tween real-time traffic and separate the contention of real-time traffic from non-real-time

traffic. Since this approach prioritize the contention window size of optimized traffic, it

modifies the random access behavior of the current MAC layer protocol and also causes un-

fairness to cross traffic. In [51], the authors proposes a hybrid retransmission deadline and

retry limit to save unnecessary packet waiting time, and a single-video multi-level queue to
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prioritize I/P/B slice (packet) delivery. Again, this work also considers the differentiations of

different video packets and does require frequent cross-layer collaborations between the ap-

plication layer and the MAC layer. The proposed scheme in this thesis is different from those

prior efforts. We intentionally do not consider unequal protections for different video packets

to avoid dependence on application layer’s cooperations. This makes our scheme easy to be

adopted (not modifying current protocol), and also easy to be deployed (maintaining fairness

when competing network resources with cross traffic).

7.2 Delay Constrained MAC Layer Adaptation Algorithm

This section presents the details of the algorithms. Algorithm 5 runs periodically

in the background to collect the total amount of arrived data, the total amount of delivered

data and the total transmit delay within the most recent time interval τ. Algorithm 5 also

makes sure that the three lists in Eq. 4.5 contain the newest data within the time window wτ.

Algorithm 6 calculates the current congestion level CL(t) and is called as needed. Algorithm

7 determines whether the retry limit will be extended or not, and it is called before each

retransmission. If an MPDU is a retransmission and has reached the default retry limit, the

algorithm will check if any of the three conditions is satisfied: the network is congested,

the available buffer size is too small or the predefined extended retry limit Rex is about to be

exceeded. If so, this retransmission will be terminated; otherwise, this retransmission will

be performed. In algorithm 8, the delay constraint T Ddeadline is checked. If transmit delay of

the current MPDU exceeds the tolerable delay constraint T Ddeadline, no more retransmission

will be allowed; otherwise, the MPDU will be retransmitted again. Note that both Rex and

T Ddeadline are configurable.

7.3 Performance Evaluation

7.3.1 Testbench and Experiments Setup

We use the same testbench and experiments setup as defined in Sections 4.2.1 and

4.2.3.
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Algorithm 5: UpdatePacketsStatistics()
// This function runs periodically every τ seconds. Default

value for τ is 0.1.
Input: TotalBitsFromIP, TotalBitsS ucess and TotalT XDelay
Output: Updated lists: ListAr{}, ListS erv{}, ListT XDelay{}
// w is the window size. Default value of w is 10. Replace

the oldest with new one

1 if ListAr.size() > w then
2 ListAr.pop back() ; // Delete the oldest element
3 ListS erv.pop back() ;
4 ListT XDelay.pop back();

5 ListAr.push f ront(TotalBitsFromIP) ; // Insert an element at the
beginning

6 ListS erv.push f ront(TotalBitsS ucess);
7 ListT XDelay.push f ront(TotalTotalT XDelay);
8 TotalBitsFromIP = 0 ; // Reset statistics value
9 TotalBitsS ucess = 0 ;

10 TotalT XDelay = 0 ;

Algorithm 6: CalculateCongestionLevel()
Input: ListAr{}, ListS erv{}, ListT XDelay{}
Output: CL(t)

1 Arw
τ (t) = Sum of all elements in list ListAr{};

2 Delivw
τ (t) = Sum of all elements in list ListS erv{};

3
∑N

i=1 T D(ri, L) = Sum of all elements in list ListT XDelay{}
4 EDRw

τ (t) = max{Arw
τ (t) − Delivw

τ (t), 0}
/
(wτ) ;

5 CL(t) = EDRw
τ (t)

∑N
i=1 T D(ri, L)

/
Delivw

τ (t) ;
6 return CL(t) ;
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Algorithm 7: MACLayerTransmitMPDUWithFixedRL()
1 . . .
2 if this is a retransmition then

// r is retry count with initial value 0. R is the
default retry limit.

3 if r > R then
// CLth is the threshold for determining congestion

status. BFth is the buffer size threshold. Rex is

the configurable retry limit extension.

4 if CalculateCongestionLevel() > CLth OR
5 Current Buffer size > BFth OR
6 r > (R + Rex) then
7 Delete(MPDU) ; // Network is congested, or the

available buffer size is too low, or the extended

Retry Limit will be exceeded.

8 return ;
9 else

10 r = r + 1 ; // update retry count value.
11 if r%(R + 1) == 0 then
12 reset CW ; // Reset the contention window so that

subsequent extended retransmissions would be

like belonging to a brand new MPDU.

13 Transmit this MPDU ;
14 . . .
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Algorithm 8: MACLayerTransmitMPDUWithDelayConstrainedRL()
1 . . .
2 if this is a retransmition then
3 if r > R then

// r is retry count with initial value 0. R is the
default retry limit. Rmax is a big number that

should not be exceeded. T Ddeadline is the configurable

delay constraint.

4 if CalculateCongestionLevel() > CLth OR
5 Current Buffer size > BFth OR
6 r > (R + Rmax) OR
7 T D(ri, L) > T Ddeadline then
8 Delete(MPDU) ; // Network is congested, or the

available buffer size is too low, or transmit delay

constraint is reached, or the maximum allowed Retry

Limit will be exceeded.

9 return ;
10 else
11 r = r + 1 ; // update retry count value.
12 if r%(R + 1) == 0 then
13 reset CW ; // Let subsequent extended

retransmissions would be like belonging to a

brand new MPDU.

14 Transmit this MPDU ;
15 . . .
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Figure 7.1: Difference in the transmit delay with different values of Rex.

7.3.2 Experiments Results

As explained in Section 7.1, the random backoff period (including the random value

of backoff timer and the defer duration of the backoff timer) is quite different when network

conditions fluctuate. As a result, the transmit delay may vary significantly as well. This can

be seen from Fig. 7.1, where the case with higher retry limit (Rex = 7) has larger transmit

delay, especially in the time periods [180 sec, 210 sec] and [240 sec, 250 sec] when the

channel is busy. Similarly, based on the analysis in Section 7.1, when the transmit delay

increases, it is expected that the target sending rate As would decrease accordingly since the

Receiver Estimated Maximum Bitrate (REMB) is decreasing. And the same trend can also

be observed from Fig. 7.2(a).

In terms of video freeze, we can compare Fig. 7.2(b) with Fig. 4.18(d). Both schemes

are able to significantly reduce video freeze that would be present without retry limit adapta-

tion (see Fig. 4.18(a)), but the delay constrained scheme performs even better. In Fig. 4.18(d),

we can clearly see the sharp pulse-like freeze around the time of 270 seconds where there
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Figure 7.2: (a) target sending rate comparison when using fixed value of retry limit (Rex = 7)
and transmit delay constrained retry limit (b) Video freeze duration on Laptop
B (FEC is turned off) when using transmit delay constrained retry limit.

is no network congestion and video freeze is supposed to be absent. However, Algorithm

3 based scheme does not take transmit delay into account but simply follows the retry limit

rule. As a result, a MPDU may experience a large transmit delay due to excessive retransmis-

sions, making this MPDU finally gets delivered but unable to meet corresponding decoding

deadline. Note that there is an such MPDU in Fig. 7.2(b), where a sharp pulse-like freeze

can be observed. From this example, we can see that excessive transmit delay not only

wastes network resources but also makes video freeze even worse. On the contrary, this will

not happen if we use the delay constrained scheme. For example, around the time of 360

seconds in Fig. 7.2(a), there is a short and negligible pulse. Regarding the video freezes hap-

pened within time period [240 sec, 250 sec], both schemes can detect network congestion

and hence do not increase the default retry limit in order not to conceal the packet losses

so that the high-layer congestion control algorithm could properly reduce the target sending

rate to relieve the network congestion.

7.4 Joint Discussions on The Two Adaptation Algorithms

In Chapter 6 and this chapter, we propose two MAC layer adaptation algorithms to

improve the system performance of wireless video teleconferencing and TCP traffic, respec-

tively. In both algorithms, we point out that retry limit should not be a specific value, but be
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adaptive. The difference is that, in the two algorithms, different factors have been considered

to make retry limit adaptive.

In wireless video teleconferencing, each video frame must be delivered and decoded

by its playback time, making it delay constrained (the end-to-end delay is typically less than

100 ms [9]). For this reason, the retry limit has to be upper bounded such that aggregate

transmit delay of a MPDU does not exceed a delay constraint. In TCP traffic, as explained

by the analytic study and simulation results presented in Chapter 6, retry limit is preferable

to be unlimited until one or more of the conditions defined in the Algorithm 4 are met.

This is because the existing packet loss recovery process in TCP algorithm is rather costly

in terms of overhead and delay, and TCP traffic is generally not delay sensitive (otherwise

UDP is used). And the overall performance of TCP traffic after performing a large number

of retransmissions in the MAC layer is still much better than the case use default number of

retransmissions.

The two adaptation algorithms are based on a prerequisite that the type of an appli-

cation is able to be distinguished, so that different factors can be considered and derived to

fulfil the logics of an adaptation algorithm. Ideally, performance requirements (e.g., delay

constraint, minimum bandwidth, minimum packet loss rate, etc) and the type of an applica-

tion should be assigned by the application layer according to the application’s specific re-

quirements for the transmitted data, as diverse applications will place different requirements

on the performance especially in the future 5G system [7]. One approach to achieve this is to

rely on collaboration between the application layer and MAC layer [62]. Another approach

is to leverage software defined networking (SDN) based Application-Layer Traffic Optimiza-

tion (ALTO) [6], where the programmable Data Plane may contain the required application

level information. However, the first approach requires cross-layer cooperation, which may

be difficult to meet or deploy. In addition, strictly imposing an application’s performance

requirements on a device’s MAC layer may not be appropriate. Taking the delay constraint

as an example, network delay may happen elsewhere on the network path from the source to

the destination if the source and the destination hosts are not directly connected. Using the

SDN approach, the SDN controller can examine at the overall delay requirement of a traffic
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flow, and allocate an appropriate delay bound for each segment of the path, where a wireless

link may be one of the segments. Standard APIs may be created at the Wi-Fi MAC layer to

receive from the SDN controller the configurations of the MAC layer parameters such as the

transmit delay constraint of a particular traffic flow.

7.5 Summary

In this chapter, we take QoS requirements into account when propose MAC layer

adaptation algorithms to help improve the performance and efficiency of wireless video tele-

conferencing. The basic Retry Limit optimization algorithm may cause large packet delay

since transmit delay of an MPDU may vary significantly under different network condi-

tions. We relate the setting of the retry limit to the delay constraint imposed by the QoS

requirements, and propose that retry limit should not be specified as a constant value, but be

aggregate delay constrained. Motivated by this idea, we propose a delay constrained MAC

layer adaptation algorithm. Experiments performed on a real traffic based prototype platform

confirm that the algorithm proposed in this chapter can further improve the performance of

wireless video teleconferencing.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The work presented in this dissertation addresses several issues in the field of wire-

less video communications. Mobile receivers are troubled by time-varying, error-prone and

bandwidth-fluctuating wireless channels, making it difficult to achieve satisfactory QoE and

QoS in video applications. Depending on the application scenarios, video services may have

different emphases in terms of QoE and QoS. We therefore propose several innovative adap-

tation techniques to address the challenges in two main categories: wireless video streaming

(non real-time) and wireless video teleconferencing (real-time).

By understanding the limits of human visual system and by analyzing the character-

istics of human viewing environments, video transmission to mobile devices can be adap-

tive to user’s viewing perception capability. Motivated by this observation, we integrate a

technique called User Adaptive Video into our research. Our prototype platforms for video

streaming and video teleconferencing, respectively, enable the design of intelligent video

communication systems adapting not only to network conditions but also to factors affecting

human perception of visual information. Experiments results show that such adaptation not

only results in significant bandwidth saving without perceived loss of quality to the user for

improved QoE, but also helps cross traffic to create a win-win situation.

In wireless networks, packet losses due to fading and interference are common. Those

packet losses often lead to serious video quality degradation, like artifacts in the decoded

video, which affects not only the current video frame, but also subsequent frames because

of error propagation resulted from the use of prediction from previous video frames. In

addition, packet losses are often interpreted as indications of congestion by the congestion
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control protocol at the higher layers, causing decrease of data sending rate and thus lower

video quality. We propose several adaptation techniques to different layers of the protocol

stack to minimize packet loesses. We design a lightweight and effective congestion detection

algorithm to help determine whether a packet loss is due to network congestion or not. A

retry limit optimization algorithm is then used to minimize packet losses in the case of no

congestion being detected. By taking QoS requirements into account, we analyze specific

issues in the applications of video teleconferencing, and this analysis motivates us to further

optimize the retry limit algorithm by imposing a delay constraint. We also consider cross

layer adaptations. In one proposed cross layer approach, the MAC layer of a video sender

sends feedback information to its application layer so that retransmission of a lost packet

can be immediately triggered, without waiting for the costly and time-consuming feedback

from the corresponding video receiver. In addition to application layer and MAC layer, we

also analyze the behaviors of transport layer. Specifically, we investigate how to improve

TCP performance in wireless networks. We identify issues of TCP performance degradation

due to common channel errors via both analytical studies and simulations in a typical Wi-

Fi network. We then analyze TCP traffic characteristics and throughput model to propose

MAC layer adaptations. In all these proposed protocol adaptations, we perform extensive

evaluations to validate our design and compare performance improvements against the cases

without using our designs.

To demonstrate the impacts of our research work, we have chosen two widely ac-

cepted and deployed industry standards, MPEG-DASH and WebRTC, as the basis to build

our own prototype platforms. Using these standards, we are able to identify issues that are

likely to happen in realistic situations. Also, based on these realistic issues, we are able to

contribute with practical solutions. When design our solutions, we try to not only minimize

or even avoid modifications to the current protocol stack but also make sure our solutions are

transparent to existing applications that do not use our solutions. These considerations add

another benefit to our work, which is easy to be adopted and incrementally deployed.
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8.2 Future Work

While we have developed a rich set of fully functional adaptation techniques that

demonstrate significant performance improvements for wireless video streaming and wire-

less video teleconferencing, several parts of the system may still need further improvements

and there exist open issues that must be addressed before those techniques are made available

to the public.

In our congestion detection algorithm, although measurements are performed on real

traffic, the traffic comes from a single machine. If multiple machines inject WebRTC traffic

(or multiple WebRTC sessions are generated from one machine), and those traffic are active

in different stages (e.g., multiple WebRTC traffic come and go before reaching a steady

stage), measurements may interfere with each other. In our prototype, we do not consider

this case.

In the chapter discussing TCP performance, we are particularly interested in the case

where the application data above TCP is video streaming data. However, we did not consider

web browsing. On a typical webpage, there may be different types of elements embedded,

such as text, pictures and videos, and multiple TCP connections are established to retrieve

those different objects simultaneously. Our proposed adaptation algorithm does not consider

multiplexing of TCP connections with different life cycles (e.g., short lived TCP connections

terminate before reaching a steady stage), and neither does it consider the overall responsive-

ness of web browsing when downloading and rendering those objects in a web browser.

The proposed adaptation algorithms in this dissertation are for unicast use cases.

Further extension may be necessary for multicast scenarios, where multiple wireless capable

devices are actively receiving video from the same video gateways. In the multicast case,

adaptations of video relay or caching methods need to be considered. For example, system

performance can be improved if users connect to peers that are geographically close to them

(i.e., device to device communications).

Furthermore, the user adaptation technique proposed for MPEG-DASH relies on the

fact that a DASH server maintains a video with many different resolutions. When considering

different viewing conditions, multiple versions of the same resolution may be also needed.
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The storage burden of having multiple streams of the same content may be addressed by

using a technique called Scalable Video Coding. In addition, human visual system has many

other limits, including but not limited to oblique effect, horizontal effect, contrast constancy,

etc. Further research involving these factors would add additional benefits when performing

user adaptive video encoding. Moreover, as the sensors in a mobile device are used to deter-

mine human viewing environment, they can also be used to collect data on individual user’s

preferences of different video contents. User attentiveness while the content is being played

can be another area of research which will help the video/advertisement makers to provide

specific contents (i.e., marketing strategies for specific movies and advertisements) to target

people.
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