
Boundary Element Methods – An Overview ∗

George C. Hsiao
Department of Mathematical Sciences

University of Delaware
Newark, Delaware 19716

e-mail: hsiao@math.udel.edu

Abstract

Variational methods for boundary integral equations deal with the
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merical point of view. It summaries the main results obtained by

the author and his collaborators over the last 30 years. Fundamental

theory and various applications will be illustrated through simple ex-
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mechanics will be included to demonstrate the efficiency of the meth-

ods.
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1 Introduction

Variational methods for boundary integral equations deal with the weak for-
mulations of boundary integral equations. Their numerical discretizations are
generally known as the boundary element methods (BEMs). As the classical
integral equation method for numerical solutions to elliptic boundary value
problems, central to the BEM is the reduction of boundary value problems to
the equivalent integral equations on the boundary. This boundary reduction
has the advantage of diminishing the number of space dimension by one and
of the capability to handle problems involving infinite domains. The former
leads to an appreciable reduction in the number of algebraic equations gen-
erated for the solutions, as well as much simplified data representation. On
the other hand, it is well known that elliptic boundary value problems may
have equivalent formulations in various forms of boundary integral equations.
This provides a great variety of versions for BEMs. However, irrespective of
the variants of the BEMs and the particular numerical implementation cho-
sen, there is a common mathematical framework into which all these BEMs
may be incorporated. This paper addresses to the fundamental issues of
this common mathematical framework and is devoted to the mathematical
foundation underlying the BEM techniques.

Specifically, this paper will give an expository introduction to the Galerkin-
BEM for elliptic boundary value problems from the mathematical point of
view. Emphases will be placed upon the variational formulations of the
boundary integral equations and the general error estimates for the approx-
imate solutions in appropriate Sobolev spaces. A classification of boundary
integral equations will be given based on the Sobolev index. The simple rela-
tions between the variational formulations of the boundary integral equations
and the corresponding partial differential equations under consideration will
be indicated. Basic concepts such as stability, consistency, convergence as
well as the condition numbers and ill-posedness will be discussed. Main re-
sults obtained by the author and his collaborators over the last 30 years will
be summarized. Some numerical experiments will be included to illustrate
the fundamental ideas.

BEMs may be considered as application of finite element methods (FEMs)
to the boundary integral equations (BIEs) on boundary manifolds. The ter-
minology of BEM originated from the practice of discretizing the boundary
manifold of the solution domain for the BIE into boundary elements, resem-
bling the term of finite elements in FEM. As in FEM, the use of the termi-
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nology boundary elements in two different contexts; the boundary manifolds
are decomposed into boundary elements which are geometric objects, while
the boundary elements for approximating solutions of BIEs are actually the
finite element functions defined on the boundaries. In fact, the term BEM,
nowadays denotes any efficient method for the approximate numerical solu-
tion of BIEs. Figure 1 is a sketch of the general procedure for approximating
the solutions of a boundary value problem via the BEMs. As mentioned
earlier, we will only concentrate on the Galerkin-BEMs. For the collocation
and least-squares BEMs, we refer to the fundamental papers [26] and [1].
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2 An Historic Development

In a celebrated paper [6] by Fichera, solutions of the Dirichlet problems for
a large class of elliptic equations of higher order with variable coefficients in
the plane were obtained by means of the potential of a simple layer. This
procedure, which we termed in [12] the method of Fichera, leads to singular
integral equations of the first kind. In contrast to the standard Fredholm
method, solutions of the Dirichlet problems are generally treated by means
of the potential of a double layer. The later leads to integral equations of the
second kind. Our work 30 years ago was motivated by Fichera’s method and
it has been a very rewarding experience. Needless to say, we certainly did
not expect that the simple idea in [15] has turned out to be of most fruitful
in the development of fundamental concepts in the BEMs.

To illustrate the basic idea, we now consider a simple model problem in
R

2, the Dirichlet problem for the Laplacian. Let Γ be a smooth closed curve
in the plane and let Ω and Ωc denote its interior and exterior respectively.
We consider the boundary value problem:

−∆u = 0 in Ω (or Ωc) (1)

u|Γ = f on Γ, (2)

where f is the given data. In the case of the exterior region Ωc, we append
to (1) and (2) the condition at infinity in the form:

u = a log|x| + O(1), (3)

where a is a given constant. The method of Fichera is to seek a solution of
the boundary value problem in the form of a simple layer potential

u(x) =

∫

Γ

E(x, y)σ(y) dsy , x ∈ R
2 \ Γ,

where σ is the unknown density to be determined and E(x, y) is the funda-
mental solution for −∆,

E(x, y) = −
1

2π
log |x − y|.

From the boundary condition (2), we then obtain the BIE

V σ :=

∫

Γ

E(x, y)σ(y) dsy = f on Γ, (4)
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a BIE of the first kind with a weakly singular kernel. Differentiating (4) with
respect to the arc length yields

∫

Γ

∂E

∂sx

(x, y)σ(y) dsy =
∂

∂sx

f(x) on Γ,

which is a singular integral equation with a Cauchy kernel. This singular
equation forms the the theoretical basis of the Fichera’s method in [6]. We
remark that not only are Cauchy kernels hard to handle numerically but
they produce certain non-uniqueness which must be accounted for. In [12],
we modified the Fichera’s approach by seeking a solution in the form

u(x) =

∫

Γ

E(x, y)σ(y)dsy + ω , x ∈ R
2\Γ (5)

with an adding unknown constant ω and consider the modified system

V σ + ω = f on Γ
∫

Γ

σ ds = Λ,
(6)

where Λ is a given constant which is equal to −2 π a for the exterior problem
under condition (3). However, for the interior problem it can be chosen
arbitrarily and in particular it can be chosen to be zero. We remark that
in this way not only the Cauchy kernel has been eliminated and replaced
with a logarithmic one but at the same time the non-uniqueness will be
automatically accounted for. Indeed, the following existence and uniqueness
theorem of solution in the classical Höder function space C0,λ(Γ) has been
established in [12].

Theorem 2.1 Given (f, Λ) ∈ C1,λ(Γ) × R, the system (6) has a unique
solution pairs (σ, ω) ∈ C0,λ(Γ) × R.

The modified Fichera method has been also extended in [12] to a special class
of boundary value problems for the equations of the form

∆mu − s∆m−1u = 0 in Ω (or Ωc),m = 1 or 2.

The constant s is given and can be complex. It is in [15], we began our
investigation on the weak solutions of the corresponding systems of integral
equations for this special class of boundary value problems. In particular,
the following crucial result for the simple-layer boundary integral operator
V defined by (4) was presented for the first time.
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Theorem 2.2 Under the assumption

max
x, y ∈ Γ

|x − y| < 1, (7)

the integral operator V satisfies the inequalities

γ1 ||σ||
2
−1/2 6 γ2 ||V σ||21/2 6 〈σ, V σ〉 6 γ3 ||σ||

2
−1/2 (8)

for σ ∈ H−1/2(Γ), where γi’s are constants.

Here 〈·, ·〉 denotes the L2- duality pairing between the standard Sobolev
spaces H1/2(Γ) and its dual H−1/2(Γ), which is the energy space of the bound-
ary integral operator V . These inequalities in (8) provide us all the essential
properties for the weak solutions of (4). Similar to partial differential equa-
tions, the concept of a weak solution of BIEs may be introduced by multi-
plying the boundary equation (4) by a test function and integrating over Γ
leads to a variational form with one difference, that is, in most of the cases,
we may not be able to form the integration by parts as in the case of par-
tial differential equations. For the present concrete model, if the given data
f is in H1/2(Γ), then the unknown function σ ∈ H−1/2(Γ) is said to be a
weak solution of the boundary integral equation (4), provided it satisfies the
variational form

〈χ, V σ〉 = 〈χ, f〉 ∀ χ ∈ H−1/2(Γ). (9)

The existence and uniqueness of the weak solution of (9) follows from the
well-known Lax-Milgram Lemma, since V is H−1/2(Γ) − elliptic from (8)
under the assumption of (7).

The assumption of (7) is of course rather restricted at a first glance.
However, we may rewrite V in the form

V σ(x) := −
1

2 π

∫

Γ

log|x − y| σ(y)dsy

= −
1

2 π

∫

Γ

log

(

|x − y|

2d

)

σ(y)dsy

− c

∫

Γ

σ(y)dsy

with c = 1
2π

log(2d) and d = maxx, y∈Γ |x−y|. This shows that for the general
Γ without the assumption (7), V satisfies a G̊arding inequality in the form

〈σ, V σ〉 ≧ c0 ||σ||
2
−1/2 − c1 ||σ||

2
−1/2−ǫ (10)
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for all σ ∈ H−1/2(Γ); ǫ > 0, a constant. As a consequence, the following
corresponding result for the modified system (6) has been established in [15]:

Theorem 2.3 . Given (f, Λ) ∈ H1/2(Γ) × R, there exists a unique solution
pair (σ, ω) ∈ H−1/2(Γ) × R of the system

〈χ, V σ〉 + ω〈χ, 1〉 = 〈χ, f〉,

〈σ, 1〉κ = Λκ

for all (χ, κ) ∈ H−1/2(Γ) × R.

Here the bilinear form (or sesquilinear form rather) of the modified system
satisfies the G̊arding inequality:
〈

(

χ
κ

)

, A

(

χ
κ

)

〉

≥ c0

{

||χ||2H−1/2(Γ) + |κ|2

}

− c1

{

||χ||2H−1/2−ǫ(Γ) + |κ|2

}

,

where A is the matrix of operators defined by A :=

(

V 1
〈·, 1〉 0

)

.

It is worthy noting that there is an intimated relation between the G̊arding
inequality (10) for the boundary integral operator V and that of the bilinear
form associated with a related transmission problem for the corresponding
partial differential operator P (= −∆ in the present case). In fact this simple
relation for the −∆ has been systematically extended in [3] to a general class
of boundary integral operators associated with strongly elliptic boundary
value problems. For such class of boundary integral operators, G̊arding’s
inequality is a consequence of strong ellipticity of the corresponding boundary
value problem for the partial differential equation. In the present special
case, P := −∆, the transmission problem then reads to find a function
v ∈ H1(Ω, P )

⋂

H1
loc(Ω

c, P ) satisfying

Pv = 0 in R
2 \ Γ

together with the transmission conditions

[γ0v]Γ = 0, and [γ1v]Γ = σ ∈ H−1/2(Γ),

where we have adapted the notation [ · ]Γ for the jump of traces of the function
v across the boundary Γ. For any σ ∈ H−1/2(Γ), the solution can then be
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represented in the form a simple-layer potential

v(x) :=

∫

Γ

E(x, y)σ(y)dsy, x ∈ R
2 \ Γ.

From the generalized Green’s formula, it follows that

〈σ, V σ〉 +

∫

Ωc

(P ṽ)ṽdx = aΩ(v, v) + aΩc(ṽ, ṽ), (11)

which relates the boundary bilinear form 〈·, ·〉 for V on Γ to the domain
bilinear forms aΩ(·, ·) and aΩc(·, ·) for P over Ω and Ωc, respectively. Here a
cut-off function φ has been employed in the neighborhood of the boundary Γ
such that ṽ := φv in order to ensure the existence of the quadratic form over
the exterior domain Ωc, without introducing the weighted Sobolev spaces
as in the French school [23],[24] and [20]. It is this simple relation (11)
which connects G̊arding’s inequalities for the partial differential operators to
those for the associated boundary integral operators (see [15] and [3]) for the
details).

3 Mathematical Foundation

As is well known, G̊arding’s inequality plays a fundamental role not only
for the existence of the variational solutions to the BIEs but also for error
estimates of the Galerkin-BEMs. The basic approach presented in [15] has led
to the development of fundamental results for the boundary element analysis
and has laid down some of the mathematical foundations for the BEMs. In
this section we collect the basic mathematical ingredients for the method, and
summarize some of the fundamental results obtained by the author together
with his collaborators over the last 30 years. The presentation here follows
the recent book chapter [18] and details of proofs can be found in [18] as well
as in the forthcoming book monograph [19].

We begin with a general boundary integral equation of the form

Aσ = f on Γ. (12)

Here f ∈ Hs−α(Γ), s ∈ R, is the given data, and 2α is a fixed constant.
(It is assumed that the boundary manifold Γ is sufficiently smooth for the
corresponding s and α to be specified.) We first define the order of the
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boundary integral operator A; we say that the order of the boundary integral
equation operator A is 2α if the mapping

A : Hs+α(Γ) 7→ Hs−α(Γ)

for any s ∈ R with |s| ≤ s0 is continuous where s0 is some fixed positive
constant. We now classify the boundary integral equation (12) according to
the order of A. The boundary integral equation (12) is said to be a first kind
boundary integral equation if the order of A is negative (i.e., 2α < 0). In
case the order is zero (2α = 0), and the operator A is of the form aI + K,
where K is either a Cauchy-singular integral operator or K is compact and
a 6= 0. The latter defines a Fredholm integral equation of the second kind while
the former defines a Cauchy singular integral equation. In case the order is
positive (2α > 0), and A = L+K, where L is a differential operator and K a
possibly hypersingular integral operator. Then (12) is an integro-differential
equation, if the order of L is equal to 2α while it is called a hypersingular
integral equation, if the order of L is less than 2α.

In the example for the Laplace equation (1), there are four basic boundary
integral operators, namely

V σ(x) :=

∫

Γ

E(x, y)σ(y)dsy (simple-layer integral operator)

Kµ(x) :=

∫

Γ

∂

∂ny

E(x, y)µ(y)dsy (double-layer integral operator)

K ′σ(x) :=

∫

Γ

∂

∂nx

E(x, y)σ(y)dsy (the transpose of K)

Dµ(x) := −
∂

∂nx

∫

Γ

∂

∂ny

E(x, y)µ(y)dsy (hypersingular integral operator)

Hence according to the above classification, for solving interior and exterior
Dirichlet and Neumann problems, we may arrive at both first and second
kind boundary integral equations (12). Here the operator A is defined in
terms of the four basic boundary integral operators

2α = −1, A = V

2α = 0, A =
1

2
I ± K , A =

1

2
I ∓ K ′

2α = +1, A = D.

Here I stands for the identity operator.
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Weak formulations for the boundary integral equations are generally dif-
ferent for the first and second kind equations. In the former, the boundary
sesquilinear forms are connected with domain sesquilinear forms for the par-
tial differential equations in the interior as well as in the exterior domain,
while in the latter, it connects only with the sesquilinear form either for the
interior or for the exterior domain, but not both, depending on the direct or
indirect approach. For the second kind boundary integral equations, a pre-
multiplied operator as in [7] is needed in order to give the appropriate duality
pairing in the variational formulations for the boundary integral equations.
As we have seen from the model problems, for the boundary integral equation
(12) whose sesquilinear form coincides with the variational sesquilinear form
of the boundary value problem, the strong ellipticity of boundary integral
operators introduced in [26], in the form of G̊arding inequalities for the cor-
responding boundary integral operators in the trace space on the boundary
manifold, will be a consequence of strong ellipticity of the original boundary
value problems (see [3]).

To formulate the Galerkin-BEM for the equation (12), let H = Hα(Γ)
denote the solution space and Hh ⊂ H be a one-parameter family of finite-
dimensional subspaces of H. Then given f = Aσ ∈ H′ (with σ ∈ H), we may
formulate the Galerkin method as to find an element σh ∈ Hh satisfying the
Galerkin equation

aΓ(σh, χh) := 〈Aσh, χh〉 = 〈Aσ, χh〉 (13)

for all χh ∈ Hh. For the convergence of the Galerkin solutions, we need
the basic concepts of consistency, stability and convergence as in standard
numerical approximating schemes. The well-known general principle known
as the Lax equivalence theorem states that

consistency + stability ⇒ convergence

which applies to the BEMs without any exception. In fact, Céa’s lemma
for the BEM below is a classical convergence theorem based on the com-
plementary concepts of consistency and stability. To be more definite, let
us state in the following the definitions of consistency and stability for the
Galerkin-BEM (13) of the BIE (12).

(I) Consistency: Let Ah : Hh ⊂ H → H′ ⊂ H′
h be a family of continuous

mappings approximating the operator A. The operators Ah is said to
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be consistent with A if for every υ ∈ H there holds

lim
h→0

||AhPhυ − P ∗
hAυ||H′

h
= 0,

where Ph is the projection and P ∗
h its dual.

(II) A-prior bound: For 0 < h < h0, there exists a constant c0 = c0(h0)
independent of σ and h such that

||σh||H ≤ c0||σ||H.

In addition, we need some kind of approximation property for the family of
the finite-dimensional subspaces Hh of H, namely,

(III) Ap property: The family of the finite-dimensional subspaces Hh of H is
said to have the Ap property, if for every υ ∈ H, there exists a sequence
υh ∈ Hh ⊂ H such that

||υ − υh||H → 0 as h → 0+ .

We remark that for the Galerkin-BEM (13), consistency condition (I) is a
consequence of the Ap property (III) of the approximate sequences and that
(II) is a stability condition for the family of approximate solutions. From
condition (II), we see that if σ = 0, then σh = 0. This means that the
corresponding homogeneous equation

〈Aσh, χh〉 = 0 for all χh ∈ Hh (14)

has only the trivial solution. Since (14) is equivalent to a quadratic system of
linear equations in terms of a basis of Hh, this implies the unique solvability
of the inhomogeneous equation (13) for every h with 0 < h ≤ h0. Condition
(II) also implies that there is a mapping

Gh : H ∋ σ 7−→ σh ∈ Hh ⊂ H

such that Gh is uniformly bounded, that is,

‖|Gh|‖ ≤ c0 (15)

independent of h. Moreover, we see that G2
hσ = Ghσh = σh = Ghσ, the

second equality following from the unique solvability of (13). Hence Gh is a
projection, the so-called Galerkin projection.
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Now from (15), we see that

A−1
h := Gh(P

∗
hA)−1

is uniformly bounded, provided A−1 is bounded. Consequently, with the AP
property (III),

‖σ−σh‖H ≤ c‖AhPhσ−AhPhσh‖H′

h
= c‖AhPhσ−P ∗

hAσ‖H′

h
→ 0 as h → 0+

as expected under Condition (I). Hence as usual, the stability condition (II)
plays a fundamental role in the abstract error estimates.

The stability condition (II) for the Galerkin method can be replaced
by the well-known Ladyzenskaya-Babuška-Brezzi condition (BBL-condition),
also called inf-sup condition, a condition which plays a fundamental role in
the study of elliptic boundary-value problems with constraints as well as in
the analysis of convergence and stability of FEMs and is most familiar to the
researchers in the FEM analysis (see [22] and [2]).

We recall that a sesquilinear form B(·, ·) : H1×H2 → C on Hilbert spaces
H1 and H2 is said to satisfy the BBL-condition or inf-sup condition if there
exists a constant γ0 > 0 such that

inf
06=u∈H1

sup
06=v∈H2

|B(u, v)|

‖u‖H1
‖v‖H2

≥ γ0 .

For our purpose, we consider the special discrete form of the BBL-condition
with both H1 and H2 replaced by H and the sesquilinear B(·, ·) form by the
boundary sesquilinear form aΓ(·, ·). That is, it is based on the definition

(IV) The BBL-condition: There exists a constant γ0 > 0 such that

sup
06=χh∈Hh

|aΓ(υh, χh)|

||χh||H
≥ γ0 ||υh||H ∀ υh ∈ Hh.

As in case of the FEM, under the BBI-condition, the following Céa’s lemma
can be establided.

Theorem 3.1 If the BBL-condition (IV) holds, then the Galerkin equations
(13) are uniquely solvable for each σ ∈ H, and we have the quasi-optimal
error estimate

||σ − σh||H ≤ c inf
χh∈Hh

||σ − χh||H,

where the constant c is independent of σ and h.
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As in the case of partial differential equations, this simple, yet crucial, es-
timate in the Céa’s lemma shows that the problem of estimating the error
between the solution σ and its Galerkin approximations σh is reduced to a
problem in the approximation theory.

Our final theorem in this section draws the relations between the BBL-
condition (I) and the G̊arding inequality, namely

G̊arding’s inequality + uniqueness + Ap property ⇒ BBL-condition

To this end we need the definition of the G̊arding inequality for the boundary
integral operator A of (12) in the form:

(V) The G̊arding inequality: The boundary integral operator A is said to
satisfy a G̊arding inequality, if there exist a compact operator C : H →
H′ (the dual of H) and positive constant γ such that the inequality

Re
{

aΓ(υ, υ) + 〈Cυ, υ〉Γ

}

≥ γ||υ||2H

holds for all υ ∈ H.

Theorem 3.2 Suppose that the boundary sesquilinear form aΓ(·, ·) satisfies
G̊arding’s inequality and

Ker(aΓ) := {σ0 ∈ H | aΓ(σ0, χ) = 0 ∀χ ∈ H} = {0}.

Then aΓ satisfies the BBL-condition, provided Hh satisfies the Ap property.

A proof of this theorem is available in [28] and [18].

4 Error Estimates and Ill-posedness

Céa’s lemma can be used for obtaining an optimal order of convergence of the
Galerkin solutions in the energy norm if further approximation property of
the approximate subspaces are provided. If in addition the approximate sub-
spaces Hh possesses an inverse property below, one may obtain convergence
results in stronger norms. On the other hand, the Aubin-Nitsche lemma (see,
[16]) is used for determining the accuracy in weaker norms.

In the following, we collect some general results concerning the error
estimates for the approximate solutions of (12) by the Galerkin-BEM. In
what follows, we assume the following assumptions hold:
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(A1) The boundary integral operator

A : Hs+α(Γ) 7→ Hs−α(Γ)

is a continuous isomorphism for any s ∈ R with |s| ≤ s0.

(A2) The operator A satisfies a G̊arding’s inequality with H = Hα(Γ) being
the energy space for the operator A.

(A3) Let Hh = Sℓ,m
h ⊂ H with ℓ,m ∈ N0 and m ≤ ℓ−1, a regular boundary

element space in the sense of [2], that is, it has the properties:

(i) Approximation property: Let t ≤ s ≤ ℓ and t < m + 1
2

for n = 2 or
t ≤ m for n = 3. Then there exists a constant c such that for any
υ ∈ Hs(Γ), a sequence χh ∈ Sℓ,m

h exists and satisfies the estimate

||υ − χh||Ht(Γ) ≤ chs−t||υ||Hs(Γ).

(ii) Inverse property: For t ≤ s < m + 1
2

for n = 2 or t ≤ s ≤ m for

n = 3, there exists a constant M such that for all χh ∈ Sℓ,m
h ,

||χh||Hs(Γ) ≤ Mht−s||χh||Ht(Γ).

The following results have been established in [15],[16], [17] and [8].

Theorem 4.1 (Asymptotic error estimates) Under the above assump-
tions, let m > α − 1/2 for n = 2 or m ≥ α for n = 3, and s0 ≥
max{ℓ, |2α − ℓ|}. Then we have the asymptotic error estimate of optimal
order

||σ − σh||Ht(Γ) ≤ chs−t||σ||Hs(Γ)

for 2 α − ℓ ≤ t ≤ s ≤ ℓ, t ≤ m + 1/2 for n = 2 or t ≤ m for n = 3, and
α ≤ s. Moreover, the condition number of the Galerkin equation (13) is of
O(h−2|α|).

Theorem 4.2 ( Ill-posedness) If the datum f is replaced by its L2-perturbation
fǫ, and σǫ

h is the corresponding Galerkin solution, then for α < 0, we have
the modified error estimate

||σ − σǫ
h||Ht(Γ) ≤ c{hs−t||σ||Hs(Γ) + h−(t+|2α|)||f − fǫ||H0(Γ)}.
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Consequently if ||f − fǫ||H0(Γ) ≤ ǫ, then the choice of h given by

hopt = ǫµ with µ :=
1

s + |2α|
,

yields an optimal rate of convergence:

||σ − σǫ
h||Ht(Γ) = O(ǫ(s+t)/(s+|2α|)) as ǫ → 0+.

We note that in Theorem 4.2, of particular interest is the L2-estimate,
when t = 2. In this case, our result coincides with those obtained by the
Tikhonov regularization method [27] and [21].

In closing this section, we now include some numerical experiments by
the author and his collaborators in order to illustrate the applicability of
the BEMs from computational point of view. We present the examples in
chronological order which in a way it may also indicate the progress of the
development of BEMs over the past 30 years.

We begin with a typical exterior boundary value model problem which
can be solved by using the BEM. Here the exterior Dirichlet problem for the
biharmonic equation is modelled for the viscous flow past an obstacle. The
boundary value problem is reduced to system of integral equations of the
first kind by the modified Fichera method. In Figure 2, the streamlines of
the flow past an ellipse is plotted from the Stokes expansion up to including
O(logRe)−1 for the Reynolds number Re = 0.0025. In Figure 3, we plot the
absolute errors of the unknown constant ω (in the modified Fichera method)
against the number (N +1) of points for various eccentricities ǫ of the ellipse.
Details are given in [10] and [11], which summaries our early work for the
period from 1980 to 1985.

The asymptotic error estimates in Theorem 4.1 shows that the condition
number of the boundary integral operators is of O(h−2α), where 2α denotes
the order of the boundary integral operator. The simple-layer boundary
integral operator V (for the Laplace equation as well as for the Helmholtz
equation) is a continuous operator from H−1/2(Γ) into H1/2(Γ) and has the
order −1; as a consequence, its condition number will be unbounded. For
iterative schemes, a good preconditioner must be employed in order to speed-
up the convergence. To find a good preconditioner, it has been one of the
most active research topics in recent years. Figure 4 summaries our study on
various effects of the condition numbers of the simple-layer operator V for
the two-dimensional Helmholtz equation for the period from 1995 to 2001.
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Figure 2: Viscous flow past an obstacle

Figure 3: Absolute error estimates
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For interested readers, we refer the details to our paper in the special issue
of Advances in Computational Mathematics [4].

Hybrid methods based on the coupling procedure of boundary element
and finite element methods have been proven to be one of the most popular
and efficient methods in applied mechanics and engineering. Figure5 shows
a plate under uniform symmetric tension in the vertical direction. In the
center of the plate, an elliptic cutout is located as the notch configuration.
Two macro-elements are placed in the center near the elliptic cutout. A
BEM is used in the macro-elements with fine grids on the boundaries of the
macro-elements, while a global FEM is employed outside the macro-elements
with a coarse grid. The mesh points of the macro-elements can be chosen
independently of the nodes of the finite element structure so that various
independent meshes can be easily connected via mortar-like elements on the
skeleton. Our method here can also serve as a basic algorithm for coupled
preconditioned iterative solution schemes in domain decomposition. Figure5
gives a visualization of normal stress distribution in the direction of the
loading for the whole plate. In the far field of the notch we have a constant
stress field, while the high stress gradients in the near field of the notch are
very accurately approximated within each of the macro-elements by using
the BEM. This project took more or less ten years beginning in the early
1990 and ended in 2000. Details of the numerical procedures and theoretical
analysis are summarized in [13] and [14].

Figure 6 contains the bistatic radar cross section plots in 3D electromag-
netic scattering. The solutions of the Maxwell equations are obtained by
solving the well-known magnetic field integral equation (MFIE) for the sur-
face current; MFIE is an integral equation of the second kind with a weakly
singular kernel. An efficient numerical algorithm is developed based on the
collocation scheme. We approximate the unit sphere by triangular patches.
These triangular patches are generated by iterations. Each triangular patch
is then divided into four smaller triangles by connecting the midpoints of
each sides. The results are in excellent agreement with theoretical results
based on the Mie series. This represents part of our activities in electromag-
netic scattering for the period from 1995 to 2001. Details are available in the
publication [9].
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Figure 4: Condition numbers of V with and without a pre-conditioner
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Figure 5: Stress isolines in the macro-elements

5 Concluding Remarks

Over the past 30 years, needless to say, it has been developed so fast in the
areas of boundary element research from both computational and mathemat-
ical point of views. In the following, we give a quick overview on some of the
interesting developments and leave out the detail of references. These are in
the areas such as

• Adaptive methods and error estimators: Rank 1986, Yu and Wendland 1989,

Göhner 1989, Stephan and Suri 1989;

• Multigrid methods: Hackbush 1981, Rank 1987, Schippers 1987, Petersdorff

and Stephan 1989;

• Multipole and cluster techniques: Greengard and Rokhlin 1987, 1997, Hack-

bush and Nowak 1989, Sauter 1992, Nédélec 2001, Of, Steinbach and Wend-

land 2001, Darrigrand 2002, Cakoni, Darrigrand and Hsiao 2004;

• Wavelets: Dahmen, Prössdorf and Schneider 1993, 1994, Schwab and Peters-

dorff 1996, 1997, Petersdorff, Schneider and Schwab 1997, Levin, Schneider

and Spasojevic 1996, 1997, Micchelli, Xu and Zhao 1977, Schneider 1998,
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Lage and Schwab 1999, Tran, Stephan and Zaprianov 1998, Hsiao and Raths-

feld 2002, Eppler and Harbrecht 2004, Kaehler 2004, Dahmen, Harbrecht and

Schneider 2004;

• Coupling with FEM: Johnson and Nedelec 1980, MacCamy and Marin 1980,

Feng, K 1983, Wendland 1986, 1988, 1989, Costablel 1988, Costabel and

Stephan 1988, 1990, Han 1988, Gatica and Hsiao 1989, 1990, Hsiao 1990,

Porter and Hsiao 1990, Hsiao and Gatica 1992, 1995, Gatica and Wendland

1994, Barrenechea, Gatica and Hsiao 1998, Gatica, Hsiao and Mellado 2001,

Gatica and Heuer 2000, 2002, Gatica, Heuer and Stephan 2001, Gatica, Har-

brecht and Schneider 2001, Gatica, Gatica, L. F. and Stephan 2003, Gatica,

Maischak and Stephan 2003, Stephan 2004, Barrientos, Gatica, Rodriguez

and Torrejon 2003, Gonz alez and Meddahi 2004, Gatica and Meddahi 2004

• Domain/Boundary decomposition and parallelization: Hsiao and Wendland

1991, 1992, Hsiao, Schnack and Wendland 1999, Hsiao, Heuer, Stephan and

Tran 1998, Steinbach, and Wendland 2000, Hsiao, Khoromskij and Wend-

land 2001;

• Nonlinear problems: Ruotsalainen and Wendland 1988, Ruotsalainen and

Sarannen 1989, Eggermount and Sarannen 1990, Hsiao 1990, 1996.

• Time-dependent problems: Bamberger and Duoung 1986, Costabel, Onishi

and Wendland 1987, Arnold and Noon 1988, Hebeker and Hsiao 1989, Hsiao

and Saranen 1989, 1990, 1993, Costabel 1990, Li and Yinnian 2003, Celorrio,

Hohage and Sayas 2004,

to name a few. As for the future research direction for the BEMs, we believe
that the following topics will be most challenging and demanding. These are

(1) Fast BEM algorithms for 3-D problems

(2) Efficient BEM algorithms for problems in acoustic and electromagnetic
scattering with high frequency.

With respect to these topics, we refer the readers to some of the most recent
contributions [25] and [5].
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