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1 Introduction

It is a well known fact that heating effects due to viscous dissipation could cause appreciable
deviation from isothermal theory in shear flow. If not properly accounted for, this could lead to
errors in viscometric applications [1, 2, 3, 4, 5]. Viscous heating has also been shown to significantly
alter the onset and nature of instabilities in shear flows [7, 8, 9].

Due to the strong coupling between the velocity and temperature fields, no exact solution of
the non-isothermal flow between finite coaxial parallel plates exist. Consequently, approximate
techniques have been used to reduce the equations to more tractable forms. For example, in [2]
Bird and Turian assumed a velocity profile of the form vθ = rg(z), which satisfies the momentum
equation only if the flow is isothermal. Regular perturbation methods have also been used. If
the aspect ratio α ≡ H/a, where a is the disk radius and H is the gap, an exact solution exists
for the limiting case α = 0 [3, 6, 10]. In this limit the problem reduces to that of plane Couette
flow. However, the plane Couette solution does not satisfy the boundary conditions at the fluid-
air interface since the problem is singular in the limit α → 0. In [3], Turian and Bird noted
that errors up to 15% existed between the theoretical results based on the plane Couette solution
and experiments. They suggested that this discrepancy could be due to edge effects among other
probable causes. In [11], Olagunju considered edge effects in non-isothermal parallel-plate flow
in the case when the Nahme-Griffith number Na is small. In the present study a finite element
method is used to solve the full coupled temperature and velocity equations in a bounded region
for a wide range of the aspect ratio and the Nahme-Griffith number. We then compare the results
with the approximate solutions obtained elsewhere.

2 Governing Equations

We consider steady, axisymmetric, non–isothermal creeping flow of an incompressible Newtonian
fluid. The analysis will be given in detail for flow between two coaxial disks of radius a, separation
H, and aspect ratio α ≡ H/a. Similar equations can be obtained for a cone-and-plate system with
gap angle α. The fluid is subjected to a shearing motion by rotating the top plate at a constant
angular speed ω.

In dimensional form, the equation governing the steady creeping flow of an incompressible
viscoelastic fluid are the continuity equation

∇ · v = 0, (2.1)

and the momentum equation
0 = −∇p +∇ · (µγ̇), (2.2)

where the rate of strain tensor is defined by γ̇ = ∇v + (∇v)T . The energy equation for the
temperature T is

ρcpv ·∇T = κ∇2T + µγ̇ : ∇v, (2.3)

where cp is the specific heat and κ is the thermal conductivity which is assumed to be constant. In
a cylindrical coordinate system (r, θ, z), we seek an axisymmetric steady solution of the form

v = (0,W, 0). (2.4)
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The equations for the azimuthal velocity W and a reduced temperature Θ are
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],

subject to the following boundary conditions

W = 0, Θ = ϑw, on z = 0, (2.7)
W0 = r, Θ0 = ϑw on z = 1, (2.8)

∂W

∂r
− W

r
= 0, Θ = ϑw, on r = 1, (2.9)

and
W = 0, |Θ| < ∞, at r = 0. (2.10)

The boundary conditions are no slip at the solid walls, the balance of stresses at the fluid-
air interface, and constant temperature at the boundary. In the equations above, we have non-
dimensionalized radial length by the plate radius a, and axial length by the gap H. The azimuthal
component of velocity has been made dimensionless by aω, pressure by µ0ω, and temperature by a
reference temperature T0. The quantity µ0 is the viscosity at the reference temperature while the
variable Θ is related to the dimensionless temperature T by

Θ = δ(T − 1).

Here δ is the dimensionless thermal sensitivity which is usually large so that even small variations
in T lead to O(1) changes in Θ. Due to viscous heating, the viscosity is strongly temperature
dependent and is modelled by a Nahme law as [5, 6]

µ = µ0e
−Θ.

The parameter in equation (2.6) is the Nahme-Griffith number at the reference temperature Na =
µ0δa

2ω2/(κT0).

3 Finite elements method

The domain Ω for numerical computation is 0 < z < 1 and 0 < r < 1, shown in Figure 1. In
order to apply the finite element method, we need to rewrite (2.5)–(2.6) in the weak, variational
form. We multiply equation (2.5) by rV (r, z), the test function with boundary conditions specified
in Figure 1, then we apply the integration by parts to obtain

∫

Ω

(∂W

∂z

∂V

∂z
+ α2 ∂W

∂r
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∂r
+ α2 WV

r2

)
rdrdz −

∫

r=1
α2WV dz

=
∫

Ω

(
−∂Θ

∂z

∂W

∂z
− α2 ∂Θ

∂r

(
∂W

∂r
− W

r

))
V rdrdz. (3.1)
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We do the same for equation (2.6) with a testing function rV (r, z), but of different boundary
conditions shown in Figure 1, to get

∫

Ω

(∂Θ
∂z
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∂z
+α2 ∂Θ

∂r
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)
rdrdz

= Na
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r

)2
)

V rdrdz. (3.2)

To get more accurate numerical solutions, we use the following decompositions

W = W b + W 0 = rz + W 0, (3.3)

Θ = Θb + Θ0 = ϑw + Θ0. (3.4)

We seek solutions W 0 and Θ0 instead, which have homogeneous boundary conditions depicted in
Figure 1, i.e., we will find finite element solutions W 0

h and Θ0
h where h stands for the grid size.

To discretize (3.1) and (3.2), due to the special domain of the unit square, one may use spectral
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Figure 1: Boundary conditions for W = W b + W 0, Θ, and V (for W or Θ equation).

methods (cf. [12] and references therein) or tensor product methods (cf. [13]) to get a high order
approximation. Well, the former is a special case of the latter in a general sense. To handle the
nonlinearity of the coupled system, and to handle possible irregular domain in future, we use Qk

finite elements, continuous and piecewise polynomials of separate degree k or less, on uniform grids
Kh = {K | K = [ri, ri + h]× [zj , zj + h]} of Ω:

Qh :=



V ∈ C(Ω) | V |K =

∑

0≤i+j≤k

aijr
izj ,∀K ∈ Kh



 ⊂ H1(Ω).
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We use the following notations for the discrete spaces with homogeneous boundary conditions:

Qh,W := Qh ∩ {V = V (r, z) ∈ C(Ω) | V (0, z) = V (r, 0) = V (r, 1) = 0} , (3.5)
Qh,Θ := Qh ∩ {V = V (r, z) ∈ C(Ω) | V (1, z) = V (r, 0) = V (r, 1) = 0} . (3.6)

The finite element discretizations of (3.1)–(3.2) read: Find (W 0
h , Θ0

h) ∈ Qh,W ×Qh,Θ such that

a(W 0
h , V ) + (

α2

r2
W 0

h , V )r − c(α2W 0
h , V ) = (−∂Θ

∂z

∂W

∂z
− α2 ∂Θ

∂r

(
∂W

∂r
− W

r

)
, V )r

− a(W b, V )− (
α2

r2
W b, V )r + c(α2W b, V ) ∀V ∈ Qh,W , (3.7)

a(Θ0
h, V ) = (Nae−Θ

((
∂W

∂z

)2

+ α2

(
∂W

∂r
− W

r

)2
)

, V )r − a(Θb, V ) ∀V ∈ Qh,Θ, (3.8)

where the bilinear forms are defined by

a(U, V ) =
∫

Ω

(∂U

∂z

∂V

∂z
+ α2 ∂U

∂r

∂V

∂r

)
rdrdz, (3.9)

(U, V )r =
∫

Ω
UV rdrdz, (3.10)

c(U, V ) =
∫

r=1,0≤z≤1
UV dz. (3.11)

It is not obvious how to apply the (quasi-) Newton’s method to solve the nonlinear system
(3.7)–(3.8) of finite element equations. The main concern is the loss of symmetry and positivity
when inverting the Jacobian matrix in the Newton’s method. We would solve the system by a
straightforward Seidel iteration, where we solve (iteratively too) two linear systems of elliptic (see
two lemmas below) finite element equations in each iteration. That is, given initially some guesses
of W 0

h and Θ0
h (both are zero in real computation), we solve (3.7) to get a new W 0

h , where the old
W 0

h and Θ0
h are used to generate the right hand side vector only. Then the new W 0

h and the old Θ0
h

would be used to generate the right hand side vector in (3.8). We solve (3.8) to get a new Θ0
h. The

next two lemmas show that the linear systems at each step has a unique solution, because both the
coefficient matrices are symmetric and positive definite.

Lemma 3.1 For any V ∈ Qh,Θ and V 6= 0,

a(V, V ) > 0.

Proof. First, the bilinear form a(·, ·) is nonnegative. If a(V, V ) =
∫
Ω[(∂zV )2 + α2(∂rV )2]rdrdz = 0,

then ∂zV = 0 almost everywhere in Ω. Since V = 0 at z = 0, V = 0 in Ω.

Lemma 3.2 For any V ∈ Qh,W and V 6= 0,

a(V, V ) + (
α2

r2
V, V )r − c(α2V, V ) > 0.
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Proof. For any V ∈ Qh,W , using the integration by parts formula, we have
∫ 1

0

∂V

∂r
(r, t)V (r, t)dr = V (1, t)2 − V (0, t)2 −

∫ 1

0

∂V
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and, since V (0, t) = 0,

V (1, t)2 = 2
∫ 1

0
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∂r
(r, t)V (r, t)dr

Next, using Schwartz’s inequality we obtain
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rdr +
1
2

∫ 1

0
V (r, t)2

1
r
dr.

Integrating both sides for 0 ≤ z ≤ 1, it follows that
∫

r=1,0≤z≤1
V 2dz ≤ 1

2

∫

Ω

(
∂V

∂r

)2

rdrdz +
1
2

∫

Ω

V 2

r
drdz.

Therefore, by (3.9)–(3.11)

a(V, V ) + (
α2

r2
V, V )r − c(α2V, V ) ≥

∫

Ω

(
(∂zV )2 +

α2

2
(∂rV )2 +

1
2

V 2

r2

)
rdrdz.

Repeating the proof of Lemma 3.1, the positivity of the combined bilinear form is shown.
We remark that one may move the negative term −c(α2W 0

h , V ) in the equation (3.7) to the
right hand side and compute it by previous W 0

h in the iterative procedure. However, we believe
that this may cause instability as the newly computed solution W 0

h fails to satisfy the boundary
condition at r = 1:

∂W 0
h

∂r
− W 0

h

r
= 0 weakly.

We remark that, different from the finite elements in polar coordinates discretizing the 2D
Laplace operator (cf. [14]), the 3D axisymmetric finite element equations for the Laplace operator
is regular, measured by weighted L2

r(Ω) (with inner product (·, ·)r defined in (3.10) ) and weighted
Hk

r (Ω) (cf. [15]). Therefore, if we apply the multigrid method to solve (3.8), the number of
arithmetic operations to solve the linear system of equations up to the order of truncation error
is proportional to the number of unknowns in the system, i.e., solving a system of N unknowns
requires CN operations when N → ∞. When N is large, no method can beat the optimal order
multigrid method (cf. [16]). When N is moderately large, say, a few hundreds or a few thousands of
unknowns, the conjugate gradient iteration is usually the fastest. We adopt the conjugate gradient
method for solving both (3.7) and (3.8). The other reason is that, unlike (3.8), there is a (weekly)
singular 1/r in the integral in (3.7). It is not known yet how to improve the fine-level smoothing
iteration in the multigrid method to handle large entries of the coefficient matrix near the line
r = 0, so that the multigrid method retains its uniform contraction property.
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4 Numerical solution

To simplify notations further, we introduce the following bilinear form and functionals (cf. (3.9–
(3.11)).

A(U, V ) = a(U, V ) + α2(
U

r
,
V

r
)r − α2c(U, V ), (4.1)

FW,Θ(V ) = (−∂Θ
∂z

∂W

∂z
− α2 ∂Θ

∂r

(
∂W

∂r
− W

r

)
, V )r, (4.2)

GW,Θ(V ) = Na

(
e−Θ

[(
∂W

∂z

)2

+ α2

(
∂W

∂r
− W

r

)2
]

, V

)

r

. (4.3)

With new notations, we rewrite (3.7)–(3.8) as

A(W 0
h , V ) = FW,Θ(V )−A(W b, V ) ∀V ∈ Qh,W , (4.4)

a(Θ0
h, V ) = GW,Θ(V )− a(Θb, V ) ∀V ∈ Qh,Θ. (4.5)

Algorithm 4.1 The coupled nonlinear system (4.4)–(4.5) is solved by the Seidel iteration with
the given initial guess W 0

h,0 = 0 and W 0
Θ,0 = 0. For j = 1, 2, . . . ,

W 0
h,j = W 0

h,j−1 + e,

where e solves the equation
A(e, V ) = FWj−1,Θj−1(V )−A(W b, V )−A(W 0

h,j−1, V ) ∀V ∈ Qh,W , (4.6)
and Θ0

h,j is defined by the equation

a(Θ0
h,j , V ) = GWj ,Θj−1(V )− a(Θb, V ) ∀V ∈ Qh,Θ. (4.7)

Here Wj = W b + W 0
h,j and Θj = Θb + Θ0

h,j for j = 0, 1, 2, . . . .
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Figure 2: Numerical solutions for W 0
h (left) and Θh (right), α = 1.

In Figure 2, we plotted the numerical solutions for W (left) and Θ (right) with parameters

α = 1, Na = 1, and a0 = 1.

Here the computation ends when the nodal differences between Wj and Wj−1, and between Θj and
Θj−1, are less than 10−5. The grid size h = 1/4 (the unit square is refined to level 3) and the
polynomial degree k = 6. There are 16 elements, and 49 degrees of freedom each element. The
total number of unknowns in the discrete system of equations is 2401. The number of unknowns
is relatively small as we used higher order finite elements. This is part of the reason that the
conjugate gradient method outperforms the multigrid method. The Seidel iteration finished with 4
steps in this case. For relative large α, the iteration converges fast. Figure 3 shows the case when
α = 0.1 where we have boundary layers near the line r = 1. There the number of Seidel iterations
is 7.
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Figure 3: Numerical solutions for W 0
h (top) and Θh (bottom), α = 0.1.

We note that for such a high order of finite elements, the numerical quadratures for the integrals
need to be accurate. We used the product Gauss-Legendre quadratures of high enough orders for
all integrals except the singularly weighted integral

∫
Ω(UV/r)drdz. The latter is computed by the

Gauss quadratures for integrals with rational function weights (cf. [17] and [18]).

5 Results and Discussion

Figures 4-6 show a comparison between the numerical and analytical solutions. The latter is valid
for Na ¿ 1 obtained in [11]. Plots of Θ along the horizontal line z = 0.5 for Na = 1 are shown
in Figure 4. We can see the numerical solution is a little bigger at the boundary layer. The same
curves are plotted in Figure 5 for Na = 0.1. This time the two solutions are very close. Figure
6 compares the numerical solution with the analytical solution on r = 1/2 when α = 0.1 and
Na = 1.0. The discrepancy in the plots is however not surprising since the analytical results are
valid only when Na << 1. The surprise is that the analytical solution is quite good even for Na = 1.
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Figure 4: Comparison between numerical and analytical results for the non-isothermal temperature
profile Θ at z = .5, for α = 0.1 and Na = 1
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Figure 5: Comparison between numerical and analytical results for the non-isothermal temperature
profile Θ at z = .5, for α = 0.1 and Na = 0.1
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Figure 6: Comparison between numerical and analytical results for the non-isothermal temperature
profile Θ at r = .5, for α = 0.1 and Na = 1

In viscometry, the flow confined to the gap between parallel plates is used to determine the
viscosity of a fluid by measuring the torque exerted by the fluid on the stationary plate. If T̃ is the
torque then a dimensionless torque is given by the integral:

T =
T̃

(2πa4ηω/h)
=

∫ 1

0
r2 ∂W

∂z
|z=0dr.

We plot the data T with various α (one for each curve) and Na in Figure 7. For each α the torque
decreases with Na while for a fixed Na the torque increases with aspect ratio α.
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Figure 7: Numerically computed T against Na
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Finite Element Olagunju[11] Plane
Couette

Na α = 0.1 α = 1.0 α = 0.1 α = 1.0
0 0.25000000 0.25000000 0.25000 0.25000 0.25000

0.1 0.24886073 0.24968609 0.24885 0.24912 0.24862
0.25 0.24717781 0.24921769 0.24713 0.24852 0.24659
0.5 0.24444050 0.24844326 0.24427 0.24703 0.24330
0.75 0.24178359 0.24767633 0.24140 0.24555 0.24013
1.0 0.23920380 0.24691622 0.23854 0.24407 0.23707
2.0 0.22958016 0.24394855 0.22707 0.24369 0.22578
5.0 0.20596198 0.23567247 0.19268 0.23421 0.19892
10.0 0.17787838 0.22362300 0.13537 0.21843 0.16829
15.0 0.15799009 0.21329308 0.07085 0.20264 0.14730
20.0 0.14298140 0.20429849 0.02074 0.18685 0.13179

Table 1: Dimensionless torque on the bottom plate for α = 0.1, α = 1.0, and selected values of Na.

In Table 1, we give values of the dimensionless torque for α = 0.1, α = 1.0, and selected values
of Na obtained from our numerical computation, and the analytical results in [11]. For comparison
we have also included results for plane Couette flow [3]. All three results show good agreement for
Na ≤ 1. For Na > 1 the agreement between the finite element and plane Couette solutions remain
quite good with a maximum error of about 8% when Na = 20.

Table 1 also gives the calculated torque from the finite element solution and the solution of
Olagunju [11] for α = 1.0. Again the agreement is quite good for Na ≤ 1. For large Na the
agreement is not so good. The error for Na = 20 is about 8% but that is hardly surprising since
the latter solution is only a linear approximation in Na. Although the plane Couette solution is
valid for all values of Na the agreement with the finite element solution is poor with a difference of
about 4% when Na = 1.0 to as much as 35% when Na = 20. Again this is not surprising since the
plane Couette solution is valid only when α = 0.

6 Conclusion

The effect of viscous heating on the flow of a viscous fluid between two finite coaxial disks has
been studied. By employing a finite element method we were able to solve the problem over a
wide range of aspect ratio α and Nahme-Griffith number Na. These results have been compared
to analytical solutions from asymptotic analyses. For small values of α and Na the agreement with
asymptotic results are excellent. However, for α = O(1) and Na large the asymptotic results deviate
significantly from the numerical solution. Asymptotic results showed a difference of as much as
35% in the torque on the stationary plate when α = 1 and Na = 20. This may be very important
in certain applications such as viscometry.
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