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ABSTRACT

Multimodal imaging refers to the framework of capturing images that span differ-

ent physical domains such as space, spectrum, depth, time, polarization, and others. For

instance, spectral images are modeled as 3D cubes with two spatial and one spectral co-

ordinate. Three-dimensional cubes spanning just the space domain, are referred as depth

volumes. Imaging cubes varying in time, spectra or depth, are referred as 4D-images.

Nature itself spans different physical domains, thus imaging our real world demands cap-

turing information in at least 6 different domains simultaneously, giving turn to 3D-

spatial+spectral+polarized dynamic sequences. Conventional imaging devices, however,

can capture dynamic sequences with up-to 3 spectral channels, in real-time, by the use

of color sensors. Capturing multiple spectral channels require scanning methodologies,

which demand long time. In general, to-date multimodal imaging requires a sequence

of different imaging sensors, placed in tandem, to simultaneously capture the different

physical properties of a scene. Then, different fusion techniques are employed to mix all

the individual information into a single image. Therefore, new ways to efficiently capture

more than 3 spectral channels of 3D time-varying spatial information, in a single or few

sensors, are of high interest.

Compressive spectral imaging (CSI) is an imaging framework that seeks to opti-

mally capture spectral imagery (tens of spectral channels of 2D spatial information), using

fewer measurements than that required by traditional sensing procedures which follows

the Shannon-Nyquist sampling. Instead of capturing direct one-to-one representations of

natural scenes, CSI systems acquire linear random projections of the scene and then solve

an optimization algorithm to estimate the 3D spatio-spectral data cube by exploiting

the theory of compressive sensing (CS). To date, the coding procedure in CSI has been

realized through the use of “block-unblock” coded apertures, commonly implemented as

chrome-on-quartz photomasks. These apertures block or permit to pass the entire spec-

trum from the scene at given spatial locations, thus modulating the spatial characteristics
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of the scene. In the first part, this thesis aims to expand the framework of CSI by re-

placing the traditional block-unblock coded apertures by patterned optical filter arrays,

referred as “color” coded apertures. These apertures are formed by tiny pixelated opti-

cal filters, which in turn, allow the input image to be modulated not only spatially but

spectrally as well, entailing more powerful coding strategies. The proposed colored coded

apertures are either synthesized through linear combinations of low-pass, high-pass and

band-pass filters, paired with binary pattern ensembles realized by a digital-micromirror-

device (DMD), or experimentally realized through thin-film color-patterned filter arrays.

The optical forward model of the proposed CSI architectures will be presented along with

the design and proof-of-concept implementations, which achieve noticeable improvements

in the quality of the reconstructions compared with conventional block-unblock coded

aperture-based CSI architectures.

On another front, due to the rich information contained in the infrared spectrum

as well as the depth domain, this thesis aims to explore multimodal imaging by extending

the range sensitivity of current CSI systems to a dual-band visible+near-infrared spectral

domain, and also, it proposes, for the first time, a new imaging device that captures

simultaneously 4D data cubes (2D spatial+1D spectral+depth imaging) with as few as

a single snapshot. Due to the snapshot advantage of this camera, video sequences are

possible, thus enabling the joint capture of 5D imagery. It aims to create super-human

sensing that will enable the perception of our world in new and exciting ways. With this,

we intend to advance in the state of the art in compressive sensing systems to extract depth

while accurately capturing spatial and spectral material properties. The applications of

such a sensor are self-evident in fields such as computer/robotic vision because they would

allow an artificial intelligence to make informed decisions about not only the location of

objects within a scene but also their material properties.
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Chapter 1

INTRODUCTION

A spectral image is a three-dimensional (3D) image cube comprised of a collection

of two-dimensional (2D) images, where each 2D image is captured at a specific wavelength.

Imaging spectroscopy, commonly referred to as multispectral, hyperspectral or simple as

spectral imaging, is the process of sensing this kind of images. Spectral images permit

to analyze spectral information about each spatial point in a scene, and thus can be

valuable to identify different materials that appear in the scene [4]. Therefore, spectral

imaging has applications in different areas such as medical imaging [5, 6], remote sensing

[7, 8, 9, 10, 11], geology [12], and astronomy [13]. Conventional approaches to spectral

imaging scan adjacent zones of the underlying spectral scene and merge the results to

construct a spectral data cube. Examples of these spectral imagers include whisk-broom

scanners, push-broom scanners [7], and filter-based spectrometers [14]. In whisk-broom

scanners, a mirror reflects light onto a single line detector, so that one pixel of data

is collected at a time; in push-broom scanners, an image cube is captured with one

focal plane array (FPA) measurement per spatial line of the scene; and in filter-based

spectrometers, a set of optical bandpass filters are tuned in steps in order to scan the

scene band-per-band. The disadvantages of these techniques are that the data acquisition

takes a long time, because they require scanning a number of zones linearly in proportion

to the desired spatial and spectral resolution, and at the same time, large amounts of data

are acquired and must be stored, processed or transmitted. For instance, for a megapixel

camera (106 pixels) that captures a few hundred spectral bands (> 100 spectral channels)

at 8 or 16 bits per frame, conventional spectral imagers demand roughly 10 megabytes

per raw spectral image, and thus require space on the order of gigabytes for transmission

or storage, which exceeds existing streaming capabilities.

To address the limitations of conventional spectral imaging, non-scanning optical

devices were proposed and summarized in [15, 16]. Although some of them require bulky
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and fancy equipment, the schemes based on compressive sensing (CS) [17, 18, 19, 20, 21]

stand out [1, 22, 23]. The latter schemes have been called compressive spectral imagers

(CSI). CS dictates that one can recover spectral scenes from far fewer measurements than

that required by conventional linear scanning spectral sensors. To make this possible, CS

relies on two principles: sparsity, which characterizes the spectral scenes of interest, and

incoherence, which shapes the sensing structure [17, 19]. Sparsity indicates that spectral

images found in nature can be concisely represented in some basis with just a small

number of coefficients. This is indeed the case in spectral imaging where natural scenes

exhibit correlation among adjacent pixels and also across spectral bands [7]. Incoherence

refers to the structure of the sampling waveforms used in CS, which, unlike the signals of

interest, have a dense representation in the chosen basis [19]. The remarkable discovery

behind CS is that it is possible to design sensing protocols capable of capturing the

essential information content in sparse signals with just a small number of compressive

measurements. The signals of interest are then accurately reconstructed from the small

number of compressive measurements by numerical optimization [17, 19, 24, 25, 26, 27,

28, 29].

The remarkable advantage of CS-based spectral imagers is that the entire spectral

data cube is captured with few measurements and in some cases with as little as a single

snapshot. One of the first proposed CSI architectures is the coded aperture snapshot

spectral imager (CASSI). The CASSI instrument is a popular compressive spectral imager

that acquires image data from different wavelengths simultaneously. It was first developed

in [1] and it is shown in Fig. 1.1(a). The sensing physical phenomena in CASSI is strikingly

simple, yet it adheres to the principles required by CS. CASSI measurements are realized

optically by a coded aperture, a dispersive element and a focal plane array (FPA) detector

[1, 30]. The coding is applied to the (spatial-spectral) image source density by means of

a coded aperture as depicted in Fig. 1.1(b). The resulting coded field is subsequently

decomposed by a dispersive element before it impinges onto the sensor. The compressive

measurements across the sensor are realized by the integration of the coded and dispersed

field.

In particular, the CASSI sensing mechanism is illustrated by the discretized model

shown in Fig. 1.1(b), where the spectral data cube having L spectral bands and N ×M
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spatial pixels is first amplitude modulated by an N ×M coded aperture. In this case,

the coded aperture is a black-and-white coded aperture such that the energy along an

entire row of the data cube is “punched out” when a “black” coded aperture element is

encountered. As the coded field transverses the prism, it is then spatially sheared along

one spatial axis. In essence, each coded image plane is shifted along the x-axis where

the amount of shifting increases with the wavelength. Finally, the coded and dispersed

field is “collapsed” in the spectral dimension by the integration of the energy impinging

on each detector element over its spectral range sensitivity. The integrated field is then

measured by just N×M+L−1 sensor elements. Note that conventional spectral imagers

will collect the full NML measurements, that is, ∼ L times more data. Therefore, the

acquisition time, storage space, and required bandwidth for transmission are reduced by

CASSI.

To obtain an estimate of the spectral image from the compressed measurements is

challenging because reconstructing 3D image cubes requires high processing. Fortunately,

it is possible to reconstruct the 3D cube from the 2D measurements according to CS,

because the 2D images from different wavelengths are highly correlated, and thus, the 3D

image cube is sparse in an appropriate transform domain. The latter means that only

a small portion of the transform coefficients have large values, and recovering them is

enough to attain a good reconstructed image. Several numerical algorithms have been

proposed to solve the inverse problem entailed by CSI. These can be grouped into one

of six computational approaches: greedy pursuit iterative algorithms, such as Orthogonal

Matching Pursuit and CoSaMP [31]; convex optimization methods, such as l1-magic soft-

ware, SpaRSA [32], and GPSR [29]; Bayesian methods [26]; approximate message passing

(AMP) [33] and non-convex optimization algorithms which attempts to find the solution

by trying all possible support sets.

1.1 Motivation of the Thesis

Computational imaging systems comprise the new advent of imaging devices.

These new systems require the integration of optical devices, electronic interfaces, physical

and mathematical modeling, and computational algorithms for inverting complex sensing

models. Compressive spectral imaging is a specific case of computational imaging systems
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which seeks to efficiently capture spectral imagery. However, by applying proper coding

strategies, CSI can be further extended to multiplex additional spectral information in

the ultraviolet and infrared domain, as well as to provide new multidimensional capabil-

ities such as depth estimation. This thesis builds over these opportunities by developing

new optical coding strategies, including the modeling, simulation, implementation and

testing of new optical devices, that permit to optimally capture wide-band visible-and-

near-infrared spectral images, as well as provide new multidimensional sensing capabilities

such as spectral+depth imaging in a single imaging device.

1.2 Organization and Overview of the Thesis

This thesis contains six chapters, in addition to the introductory chapter. Each

chapter details the corresponding system design, proper coding strategy used, mathemati-

cal forward model for the sensing process and inverse model for the reconstruction, system

calibration, experimental setup, results, error analysis, conclusions and outcomes of each

proposed coding or imaging device.

Chapters 2 to 4 present a new family of coding devices to be used in CSI ar-

chitectures, called color coded apertures. These new color coded apertures replace the

traditional block-unblock coded apertures in CASSI. Color coded apertures are build as

2D arrays of pixelated optical filters. The use of these new apertures entails richer coding

strategies as not only spatial but also spectral coding is now performed in a single step,

thus leading to less ill-posed problems which in turn provide better spectral image estima-

tions. In particular, in Chapter 2 colored coded apertures are synthesized through linear

combinations of low-pass, high-pass and band-pass filters, paired with binary pattern en-

sembles realized by a digital-micromirror-device (DMD). The DMD-based implementation

rises as an important way to alleviate the costly fabrication of the color coded apertures.

In Chapter 3, a real color coded aperture is fabricated with lithographic thin-film-

based procedures, and the testbed developed in Chapter 2 is updated by incorporating

this new device. The color coded aperture, so-called patterned filter array, is designed

and fabricated at micrometer pitch size thin-films. In this chapter we also realize that

the number of different filters to be used and the filters spectral profile have to be care-

fully designed. We note that, the higher the number of different filters, the higher the
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fabrication cost. However, we observed in practice that the gains gradually decrease as

the number of filters increase, as it is shown in Chapter 2. In fact, only a few different

type of optical filters are typically needed to obtain significant improvement over imaging

methods that use conventional block-unblock coded apertures.

Given that simple random realizations of the entries of the color coded apertures

suffice to satisfy the CS requirements, but do not fully exploit the correlations withing

spectral images, in Chapter 4, an optimization strategy for the correct distribution of the

entries of a color coded apertures is presented. The proposed optimization seeks for a bet-

ter conditioned sensing matrix, so that it satisfies tightly the restricted isometry property

(RIP) required by CS. In that chapter we show that the selection of the spectral charac-

teristics of each pixel, as well as the spatial distribution of them within the 2D matrix,

control the quality of the captured compressive measurements, which in turn determine

the quality of the spectral image to be estimated. To do this, a higher-order discretization

model of the continuous phenomena within color coded aperture CSI systems is first pro-

posed. This model entails a better approximation of the real phenomena, which in turn

leads to a more precise, still structured, sparse sensing matrix. An iterative random-walk

optimization algorithm is then developed to carefully design the color coded apertures,

which minimizes the shifted cross-correlation between the columns of the, more precise,

sparse sensing matrix. Exploiting the fact that a color coded aperture can be modeled

as a 3D black-and-white coded aperture, the optimization algorithm thus seeks to spread

the translucent elements (band-pass filters of the color coded aperture) along the 3D cube

extent. The latter is achieved by 3D filtering the coded aperture with a 3D Euclidean

filter, in each iteration of the random-walk.

On the other hand, Chapter 5 proposes the use of RGB-patterned sensors as the

sensing device for CSI systems. In particular, in that chapter we expand the theoretical

framework of CASSI to include the spectral sensitivity of the image sensor pixels to ac-

count for color and then investigate the impact on image quality using either a traditional

color Bayer-patterned image sensor that spatially multiplexes red, green, and blue light

filters or a novel Foveon-X3 image sensor which stacks red, green, and blue pixels on

top of one another. We established both theoretical and experimental evaluations of how

using a readily available color sensor improves upon the so far published works that rely
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on monochrome image sensors.

In Chapter 6, we expand the range sensitivity of the CASSI system from the

visible electromagnetic spectrum to the near-infrared domain, due to the rich information

contained in the infrared spectrum. This novel architecture aims to cover a wider-band

of the electromagnetic spectrum in order to facilitate the identification, detection, and

classification of objects. Particularly, we mathematically model and demonstrate the

implementation of a broadband CASSI system covering the visible and the near infrared

spectra between 448 nm to 1436 nm. This system uses a VIS-NIR dichroic mirror to split

the underlying incoming coded energy into two imaging arms, each one accounting for an

independent compressive spectral imager.

Finally, Chapter 7 presents a new imaging device that extends the multimodal

sensing capabilities of CSI to jointly capture spectral+depth imagery. In particular, that

chapter presents the development of a compressive spectral + depth imaging camera

that employs a commodity 3D range time-of-flight (ToF) sensor as the sensing device of

a coded-aperture-based compressive spectral imager. The proposed system uses a single

aperture/single sensor, thus representing a significant improvement over existing RGB+D

cameras that integrate two separate image sensors, one for RGB and another for depth.

This new imaging device is made possible after the realization that ToF sensors can

exploit both ambient light and modulated light, in order to recover pixelated depth and

multispectral information.
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Chapter 2

DMD-BASED IMPLEMENTATION OF PATTERNED OPTICAL FILTER
ARRAYS FOR COMPRESSIVE SPECTRAL IMAGING

Compressive spectral imaging (CSI) systems acquire coded and dispersed random

projections of the scene rather than direct measurements of the voxels. To date, the

coding procedure in CSI has been realized through the use of “block-unblock” coded

apertures, commonly implemented as chrome-on-quartz photomasks. These apertures

block or permit to pass the entire spectrum from the scene at given spatial locations, thus

modulating the spatial characteristics of the scene. This chapter extends the framework

of CSI by replacing the traditional block-unblock photomasks by patterned optical filter

arrays, referred as “colored” coded apertures. These in turn, allow the source to be mod-

ulated not only spatially but spectrally as well entailing more powerful coding strategies.

The proposed colored coded apertures are synthesized through linear combinations of

low-pass, high-pass and band-pass filters, paired with binary pattern ensembles realized

by a digital-micromirror-device (DMD). The optical forward model of the proposed CSI

architecture is presented along with a proof-of-concept implementation which achieves

noticeable improvements in the quality of the reconstructions.

2.1 Introduction

Spectral imaging (SI) techniques sense the two-dimensional (x, y) spatial informa-

tion across a range of spectral wavelengths (λ) of a scene. Knowledge of the spectral

content at various spatial locations from a scene can be valuable in identifying the com-

position and structure of objects of interest in the scene. SI has therefore been widely used

in areas such as remote sensing [9], artwork conservation [34], and biomedical imaging [5].

Conventional SI sensors use temporal scanning either spectrally or spatially and merge

the results to construct a spatio-spectral datacube [10]. These techniques are suitable for
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Figure 2.1: Colored coded aperture-based compressive spectral imager (C-CASSI). The
3D spectral scene f0(x, y, λ) is 3D-coded by the CCA T (x, y, λ) and horizon-
tally sheared by the dispersive element with dispersion function S(λ), before
being integrated by the focal plane array (FPA) detector g(x, y). Notice the
3D coding scheme entailed by the CCA.

static scenes, however, it complicates and limits subsequent image processing and anal-

ysis of dynamic scenes due to the artifacts induced by the overlapping of the scanning

operation. Their principal disadvantage is that they require scanning a number of regions

that grows linearly in proportion to the desired spatial or spectral resolution. In contrast,

compressive spectral imaging (CSI) techniques [30], first capture 2D coded projections of

the underlying scene, and then, it recovers an estimate of the 3D datacube exploiting the

fact that spectral images are highly correlated and admit sparse representations.

The Coded Aperture Snapshot Spectral Imager (CASSI) has been proposed re-

cently as a CSI sensor [1, 35, 36], which utilizes a binary coded aperture and a dispersive

element to modulate the optical field from a scene. It encodes the 3D spectral infor-

mation into a 2D representation. Coded apertures in CASSI have been fabricated using

materials such as chrome-on-quartz, rendering coded aperture elements that are either

opaque or translucent to the whole wavelengths of interest. These coded apertures are

referred to as photomasks, binary, or “block-unblock” coded apertures (CAs). Recent

advances in micro-lithography and coating technologies [37, 38] have allowed the design

of patterned optical coatings which are used to create multi-patterned arrays of different

optical filters, here referred to as “colored” coded apertures (CCAs). CCAs have been
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used in applications such as deblurring and matting [39], multi-focusing and depth esti-

mation [40]. Further, their use in CSI has been recently introduced in [41]. The CCAs

entail richer coding strategies, as low-pass (L), high-pass (H), band-pass (B) or any kind

of filter allows modulating the scene not only spatially but spectrally as well. In this

chapter a colored-CASSI (C-CASSI) architecture is proposed, where the CA in CASSI is

replaced by a CCA. In consequence, every pixel from the aperture permit to pass just a

desired set of wavelengths, given by the filter wavelength transmission range. Incorporat-

ing a wavelength-dependent coding procedure produces a spectrally richer optical system.

The sensing richness can be mathematically understood as the increasing the diversity

of unknowns components (voxels) per equation (detector pixel). Figure 2.1 presents the

C-CASSI system, and its effect on an input spectral data cube.

Although the use of CCAs offers significant benefits, their fabrication requires

new lithographic and thin film technology. A CCA is fabricated by attaching different

optical patterned thin films, each one accounting for a different optical filter. Increasing

the number of different type of filters in a CCA entails richer spatio-spectral structures,

however, the associate cost increases as well. In order to exploit the advantages of the

CCA, without incurring in higher fabrication costs, this chapter describes a method to

synthesize a CCA, by use of a digital-micromirror-device (DMD) synchronized with a set

of conventional optical filters attached to a rotation wheel. As explained shortly, a CCA

can be modeled as the sum of several CA paired with different (L), (H) or (B) filters as

depicted in Fig. 2.2. Multiple coded-and-filtered projections will thus be multiplexed in

a single snapshot.

In C-CASSI, a snapshot measurement compresses a scene by 1
L

, where L is the

number of spectral bands. This compression ratio is high for certain applications, such

that multiple snapshots are employed to reduce the compression ratio to K
L

, where K is

the number of snapshots, and K < L. Each snapshot uses a different CCA, which remains

fixed during the integration time of the detector. Traditionally, multiple snapshots are

captured by moving a thin-film-based CCA back and forth using a piezo-electric device.

This nanopositioning action requires a high-precision realignment procedure. In contrast,

the DMD-based CCA has tilting capabilities up to frame rates, without requiring re-

alignment. Therefore, the DMD-based CCA offers a more robust and reliable multiple

10
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Figure 2.2: Synthesis of a 3-color CCA. The CCA is indistinctly modeled by 3 different
CA T 0(x, y) (filtered by a low-pass filter), T 1(x, y) (filtered by a band-pass
filter), and T 2(x, y) (filtered by a high-pass filter).

snapshot CSI system, as well as a reduced cost.

In the following, the proposed C-CASSI optical model is presented along with its

mathematical discretization. Afterwards, the system matrix model and the structure of

its transfer function are presented. Next, the multiple snapshot extension is introduced

along with its inverse problem formulation. The simulations section presents an analysis

of the impact of the number of snapshots, as well as, the number of colors in the CCA,

in the attained reconstructions. At the end, a proof-of-concept DMD-based C-CASSI

experiment is described and compared against the traditional block-unblock CASSI.

2.2 System Model

The C-CASSI, depicted in Fig. 2.1, is composed by five optical elements: an

objective lens that focuses the scene onto the CCA, which performs the coding, an imaging

lenses which relays the colored-coded scene onto the FPA image plane, a dispersive element

(usually a prism) that shears horizontally the coded field, and an FPA detector which

integrates the colored-coded and sheared spectral scene. The coding transfer function

exhibited by the CCA is denoted as

T (x, y, λ) =
∑
i,j,k

Ti,j,krect

(
x

∆c

− i, y
∆c

− j, λ
∆d

− k
)

(2.1)

where Ti,j,k ∈ {0, 1} represents the filtering performed on the (i, j, k)th data cube voxel;

i, j ∈ [0, . . . , N − 1], and k ∈ [0, . . . , L− 1] index the coordinates of an N×N×L spectral

11



data cube, and ∆c, ∆d account for the pixel sizes of the CCA and the FPA detector,

respectively. Notice that the spatial resolution of the resolvable scene is determined by

the resolution of the CCA (∆c), while the spectral resolution depends on the resolution

of the FPA (∆d) and the dispersion efficiency of the prism. Defining the kth 2D matrix

T k having entries T ki,j = Ti,j,k, and exploiting the properties of the rectangular function

(rect()), Eq. (3.2) can be alternatively expressed as,

T (x, y, λ) =
∑
i,j,k

T ki,jrect

(
x

∆c

− i, y
∆c

− j
)

rect

(
λ

∆d

− k
)

=
∑
k

Tk(x, y)βk(λ), (2.2)

where Tk(x, y) =
∑

i,j T
k
i,jrect( x

∆c
− i, y

∆c
− j) can be seen as a block-unblock CA with

entries defined by T ki,j, and βk(λ) = rect( λ
∆d
− k) can be seen as a single-band-pass filter

(B) with transmission in the wavelength range [λk−1, λk]. In this way, a CCA can be

implemented by synchronizing a set of L block-unblock CA {Tk(x, y)}L−1
k=0 , with a set of

L band-pass filters {βk(λ)}L−1
k=0 , during the integration time of the FPA detector.

The model in Eq. (2.2) can be further simplified when the set of single-band-pass

filters βk(λ) are grouped in a set of user-defined filters. In particular, a low-pass filter (L)

with cut-off wavelength λc can be represented by setting Lc(λ) =
∑c−1

k=0 βk(λ). A high-

pass filter (H) with cut-off wavelength λc can by represented as Hc(λ) =
∑L−1

k=c βk(λ).

Similarly, a band-pass filter with cut-off wavelengths λc1 and λc2 can be represented as

Bc1,c2(λ) =
∑c2−1

k=c1
βk(λ). Let the user-defined set of filters be {ξr(λ)}V−1

r=0 , where ξr(λ) ∈

{Lc(λ),Hc(λ),Bc1,c2(λ)}, and V ≤ L. Therefore, Eq. (2.2) can be re-written as,

T (x, y, λ) =
V−1∑
r=0

T r(x, y)ξr(λ), (2.3)

where T r(x, y) =
∑

i,j T
r
i,jrect( x

∆c
− i, y

∆c
− j), such that, T ri,j = T ki,j = . . . = T k

′
i,j, for

k, . . . , k′ ∈ ξr(λ). Therefore, the set of V block-unblock CA {T r(x, y)}V−1
r=0 can be imple-

mented using a DMD, and the set of corresponding V filters {ξr(λ)}V−1
r=0 can be changed

by means of a filter wheel, during the FPA integration time. The spatial-spectral coding

entailed by the CCA resulting in the spectral field f1(x, y, λ), is thus synthesized through
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Figure 2.3: Synthesis of the CCA effect on the y = qth slice of the data cube illustrated
in Fig. 1. (a) Input-output relationship of the CCA synthesis. (b) 2D coding
and filtering process. The slice is first coded by the qth row of the T 0(x, y)
CA, and then filtered by the ξ0(λ) optical filter; this process is realized for
every rth CA/filter pair, and the resulting spectra are combined.

multiple 2D block-unblock coding, paired with multiple spectral filtering as depicted in

Fig. 2.3. A CCA can thus be regarded as a 3D photomask of length V , where each 2D

block-unblock CA T r(x, y) is independently applied to a certain set of wavelengths given

by ξr(λ). Note that V ≤ L, that is, the number of filters used in the CCA are much less

than the number of recoverable spectral bands.

Define the ratio between the number of ones and the total number of elements in the

CCA as the transmittance (R), which is given byR =
∑

i,j,k Tijk/N
2L. The transmittance,

refers to the proportion of voxels from the scene that will propagate through the optical

system. This parameter is of key importance in the performance of CSI systems, since it

controls the ill-conditioning of the inverse problem. The 3D coding applied by the CCA

to the spatio-spectral density source f0(x, y, λ) results in the coded field f1(x, y, λ) =

T (x, y, λ)f0(x, y, λ). After the coding-and-filtering stage, the spectral field is sheared by

the prism, whose output can be expressed as f2(x, y, λ) =
∫∫

f1(x′, y′, λ) × h(x − x′ −

S(λ), y−y′)dx′dy′, where h(x−x′−S(λ), y−y′) accounts for the optical impulse response

of the system, and S(λ) represents the dispersion, which is restricted to occur just in the
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horizontal axis. Finally, the coded-filtered-and-sheared spectral density being integrated

by the detector can be expressed as g(x, y) =
∫
f2(x, y, λ)dλ, which may be rewritten as,

g(x, y) =

∫∫∫ ∑
r

T r(x
′, y′)ξr(λ)f0(x′, y′, λ)h(x− x′ − S(λ), y − y′)dx′dy′dλ. (2.4)

Assuming the optical impulse response is an ideal delta function, Eq. (2.4) can be suc-

cinctly expressed as,

g(x, y) =

∫ ∑
r

T r(x+ S(λ), y)ξr(λ)f0(x+ S(λ), y, λ)dλ. (2.5)

2.2.1 Discrete Model

The integration of the continuous field g(x, y) given in Eq. (2.5) in a single (n,m)th

detector pixel can be expressed as

Gn,m =

∫∫
g(x, y)rect

(
x

∆d

−m, y
∆d

− n
)
dydx+ ωn,m (2.6)

where ωn,m accounts for the noise of the capturing process, n = 0, . . . , N − 1 and m =

0, . . . , N + L− 2 index the pixels on the FPA, where N is the total number of rows and

N + L− 1 is the total number of columns. Replacing Eq. (2.5) in Eq. (2.6) leads to

Gn,m =

∫∫∫ ∑
r

T r(x+S(λ), y)ξr(λ)f0(x+S(λ), y, λ)rect

(
x

∆d

−m, y
∆d

−n
)
dλdydx+ωn,m.

(2.7)

Assume that the response of the dispersive element is linear over the spectral range of

the system, such that S(λk+1) − S(λk) = ∆d

∆c
. Assume also that ∆c = ∆d, and that

ideal optical elements are used. Therefore, the source density at the (n,m− k, k)th voxel

can be denoted as Fn,m−k,k =
∫∫∫

Ωn,m−k,k
f0(x, y, λ)dydxdλ, where Ωn,m−k,k represents the

boundaries of the data cube region being integrated in the (n,m)th FPA pixel. Similarly,

the discrete (n,m)th pixel from T r(x, y) can be expressed as T
r

n,m. Therefore, Eq. (2.7)

can be rewritten as

Gn,m =
∑
k

∑
r

T
r

n,m−k(ξr)kFn,m−k,k + ωn,m, (2.8)
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where (ξr)k ∈ [0, 1] is a discrete space-invariant value accounting for the effect of the rth

filter on the kth spectral band. Let denote the kth spectral band of the hyper-spectral

data cube and each rth coded aperture being implemented by the DMD, in vectorial form

as,

(fk)j = F(j−b j
N
cN),b j

N
c, k , (2.9)

(
tr
)
j

= T
r

(j−b j
N
cN),b j

N
c , (2.10)

for j = 0, . . . , N2 − 1, and k = 0, . . . , L− 1. The sensing process of the proposed optical

system can be represented in matrix form as,

g = Hf = PTf , (2.11)

where f = [fT0 fT1 . . . f
T
L−1]T is the complete data cube in vector form, and H is called

the system transfer function which accounts for the coding (T) and the dispersion (P)

processes. Let Q = N2L be the total number of data cube voxels, and U = N(N +L− 1)

be the total number of FPA pixels. Therefore, in Eq. (2.11), T is a Q×Q block-diagonal

matrix, where each N2×N2 diagonal matrix accounts for the effect of every rth CA/filter

pair on the kth spectral band. Similarly, the dispersion matrix P is a U ×Q rectangular

matrix, given by

P =


diag(1N2) 0N×N2 · · · 0N×N2

0N×N2 diag(1N2) · · · 0N×N2

...
...

. . .
...

0N×N2 0N×N2 · · · diag(1N2)


U×Q

, (2.12)

where 0N×N2 is a 0-valued N×N2 matrix, and diag(1N2) is an 1-valued N2×N2 diagonal

matrix. Notice that, the number of 0N×N2 matrices in each row or column of Eq. (3.5) is

L− 1, and the number of diag(1N2) matrices per row or column is 1.

Figure 2.4 compares the H matrices corresponding to the traditional CASSI and

to the C-CASSI, respectively, using V = L = 4 different optical filters, for an N =
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L = 4 spectral data cube. The colored diagonals correspond to each one of the block-

unblock coded apertures filtered by the corresponding optical filter, while the black entries

correspond to blocking elements. The red circles show that in the traditional CASSI the

diagonal elements remain fix along the wavebands, while, they vary in the C-CASSI as the

colored coding is wavelength dependent. This in turn, entails a richer coding strategy as

the distribution of the voxels being integrated by a single FPA pixel is now manageable.

N2 

N2 

1st band 2nd band 3rd band 4th band 

N 
2N 

3N 

U 

Q Block (0) Pass  (1) 

(a) Traditional CASSI

N2 

N2 

1st band 2nd band 3rd band 4th band 

N 
2N 

3N 

U 

Q 

Block (0) 
Pass  (λ1) 

Pass  (λ2) 

Pass  (λ3) 

Pass  (λ4) 

(b) Colored CASSI

Figure 2.4: H matrices for a 4 × 4 × 4 data cube. (a) Traditional CASSI, and (b) C-
CASSI. The diagonal entries correspond to the coding pattern, which remain
invariant with the wavelength in CASSI, but are wavelength dependent in
C-CASSI.

In the proposed architecture, multiple-snapshot sensing is also attainable, leading

to a less ill-posed inverse problem and consequently improved signal recovering [23, 42, 43].

In such a case, the colored coded aperture changes its coding pattern with every snap-

shot. Consequently, the system transfer function will contain U more rows per additional

measurement snapshot, while the number of columns remains unchanged. That is, the

matrix H will be of size KU × Q, where K represents the number of snapshots to be

captured. As a constraint, the number of snapshots K allowed to capture is such that

KU ≤ Q, being KU = Q the extreme case, where the inverse problem is no longer

under-determined. Particularly, denoting the `th FPA measurement as g` = H`f , with H`

representing the effects of the `th colored coded aperture, the set of K FPA measurements

is then assembled as ggg =
[
(g0)T , . . . , (gK−1)T

]T
, which can be expressed as,

ggg = HHHf , (2.13)
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where HHH = [HT
0 HT

1 . . .H
T
K−1]T .

2.2.2 Inverse Model

Due to the reduced number of pixels of the FPA compared with the number of

voxels from the data cube to be estimated, a direct inversion of the transfer function HHH

is not feasible. However, CSI theory has been proposed to solve this inverse problem.

Particularly, CSI supposes that the hyperspectral signal F ∈ RN×N×L, or its vector

representation f ∈ RQ, is S-sparse when projected over a dictionary or basis ΨΨΨ (supp(θθθ) =

{j : |θθθj| > 0} = S, such that f = ΨθΨθΨθ). In consequence, f can be approximated by a linear

combination of S columns from ΨΨΨ, with S � Q. Consequently, the measurements in the

proposed architecture can be alternatively expressed as ggg = HHHΨθΨθΨθ = Aθθθ, where A = HHHΨΨΨ

is known as the sensing matrix. Based on this assumption, f can be recovered from ggg if

A is carefully designed. CSI allows f to be recovered from compressive projections with

high probability. The spectral data cube f is estimated as,

f̂ = Ψ−1Ψ−1Ψ−1argminθθθ′‖ggg−Aθθθ′‖2
2 + τ‖θθθ′‖1, (2.14)

where τ > 0 is a regularization parameter, which penalizes the seeking of the sparsest

solution. The design of the sensing matrix A relies directly on the selection of the correct

dictionary ΨΨΨ along with the structure of HHH.

2.3 Simulations

In order to compare the traditional CASSI system against the C-CASSI, a set of

compressive measurements ggg are constructed employing two different spectral data cubes

depicted in Fig. 2.5. These data cubes were acquired using a wide-band Xenon lamp

as the illumination source, modulated by a visible monochromator spanning the spectral

range between 450nm and 650nm. The image intensity was captured using a grayscale

CCD camera, with pixel size ∆d = 9.9µm, and 8 bits of intensity levels. The resulting

test data cubes F have N ×N = 256× 256 pixels of spatial resolution and L = 8 spectral

bands.
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Figure 2.5: RGB targets along with their corresponding 8-band spectral data cubes.
(Left) A scene exhibiting green and blue colors (Database 1). (Right) A
scene exhibiting red and yellow colors (Database 2).

The impact of two important factors in the coding is analyzed. First, the transmit-

tance (R) of the CAs and CCAs (usually fixed to be 50% [23]), and second, the number of

different filters (V ) employed by the CCAs. To analyze the transmittance effect, the en-

tries of the block-unblock CA used in the traditional CASSI are generated by realizations

of Bernoulli random variables with parameter p matching with the transmittance R being

varied between 0.1 to 0.8. Transmittances above 0.8 are not analyzed due to they require

the solution of an extremely ill-posed inverse problem, and below 0.1 are discarded due

to the extremely low light efficiency. Similarly, the CCA entries are random realizations

of L, H or B optical filters, such that its transmittance is also varied between 0.1 and 0.8.

To analyze the effect of the number of different filters in the CCAs, 3 different

configurations are evaluated using either V = 2, 4 or 8 optical filters as shown in Fig.

2.6. In particular, we use a 2-color CCA with either L or H filter entries with cut-off

wavelength half of the spectrum under study (λc = 550 nm), as depicted in Fig. 2.6(b);

a 4-color CCA with two B filters with twice the bandwidth of the spectral bands of the

data cube, and a L and a H filters for the bands in the extremes, such that each one of

them covers two of the eight spectral bands, as seen in Fig. 2.6(c); finally an 8-color CCA

with entries being 6 different B filters, or a L and a H filter for the ending bands, with

bandwidths matching the bands from the spectral data cube, as depicted in Fig. 2.6(d).

The CAs and the CCAs are designed to exhibit 256×256 spatial pixels, matching with

the FPA resolution (∆c = ∆d).

The compressive-sensing-based GPSR reconstruction algorithm [42, 43] is used to

recover the underlying data cube f̂ by solving the problem stated in Eq. (4.27). The
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Figure 2.6: Spectral responses of the different filter configurations. (a) All-pass filter
for the traditional CASSI, and (b) V = 2, (c) V = 4, and (d) V = 8, for
C-CASSI.

basis representation ΨΨΨ is set to be the Kronecker product of the 2D-Wavelet Symmlet 8

basis and the 1D-DCT basis ΨΨΨ = ΨΨΨW2D

⊗
ΨΨΨDCT . Figure 2.7 presents a summary of the
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Figure 2.7: Impact of the transmittance (R) in the reconstruction PSNR as a function
of the number of snapshots (K).
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reconstruction results obtained from the analysis of the effect of R, at different number of

snapshots K = 1, . . . , 8, for the databases in Fig. 2.5, using the traditional CASSI and the

C-CASSI with V = 2, 4, 8 colors. The peak-signal-to-noise-ratio (PSNR) is used as the

measure of the reconstruction quality. It can be noticed in Fig. 2.7 that regardless of the

database used, the reconstructed PSNR exhibits a similar behaviour for a given R value,

as K increases. Further, the achieved PSNR using CCAs improves over that obtained

with the traditional CASSI. In addition, note that the transmittances R = 0.2, 0.3 achieve

the best reconstruction PSNRs overall. From the general behavior of the curves, it can

be seen that for a given number of snapshots K, the best results are achieved when the

transmittance R is selected to be roughly R ' 1
K

. Physically, this relationship entails the

sensing of each data cube voxel at least and only once [41].

To analyze the effect of the amount of different filters V in the CCAs, Fig. 2.8

depicts the improvements in PSNR as a function of the number of optical filters, fixing

R = 0.2, 0.3, respectively. It can be noticed that, although the PSNR increases as K

increases, the richness acquired by the increasing amount of different filters, converges up

to some point, being V = 4 colors enough to achieve similar PSNR results as with V = 8

colors. Note that, although richer coding is obtained with every new filter added, large

transmittances R become increasingly difficult to achieve, due to the fact that the spectral

responses of the filters do not overlap, as depicted in Fig. 2.6. Hence, when V filters are

used, the spectrum is divided into V evenly distributed sub-spectra; therefore, when the

N×N pixelated filters of the CCA are uniformly distributed, the total CCA transmittance

is 1/V at most. For instance, if V = 2 non-overlapping filters are used, up to R = 0.5

would be possible. Then, to achieve R > 0.5, some of the N × N pixelated filters, must

be replaced by “all-pass” filters. The resultant CCA coding becomes inefficient, due to,

as R continues increasing, this pattern approaches that of the traditional CASSI, where

just all-pass and all-block filters are employed

Figure 2.9 compares the best PSNR achieved by the two systems, as a function

of the number of snapshots for R = 0.2, 0.3, respectively. It can be observed that the

C-CASSI outperforms the traditional CASSI for any number V of colored filters and any

amount of snapshots K. In addition, it can be also noticed the rapid convergence of using

higher amounts of colored filters, as the V = 4 curve overlaps the V = 8 curve.
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Figure 2.8: Impact of the number of different colors in the reconstruction PSNR for
different number of snapshots and (Left) R = 0.2, (Right) R = 0.3.
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Figure 2.9: Comparison of the best achieved reconstruction PSNR between CASSI
and C-CASSI (with V = 2, 4, 8) as a function of the snapshots, for fixed
transmittances (Left) R = 0.2, (Right) R = 0.3.

The impact of R on the attained reconstructions is visualized in Fig. 2.10. It

depicts the reconstructed data cubes as seen by an RGB camera when K = 3 snapshots

are captured by both optical architectures, using R = 0.1, 0.2, 0.3. Notice that R = 0.1

is included just for a broad visual comparison, despite it does not achieve good PSNR.

It can be noticed that the C-CASSI results outperform the traditional CASSI, and that

the best attainable PSNR is achieved when R ≈ 0.3. Quantitatively, C-CASSI achieves

PSNR improvements up to 8 dBs for R = 0.1, 5.3 dBs for R = 0.2 and 2.7 dBs for

R = 0.3. On the other hand, Fig. 2.11 compares the effect of the number of snapshots at

a fixed transmittance. It shows the reconstruction results for K = 1, 4, 8, with R = 0.3.
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 R = 0.1  PSNR = 19.4  R = 0.2  PSNR = 24.5  R = 0.3  PSNR = 27.1

 R = 0.1  PSNR = 23.6  R = 0.2  PSNR = 27.4  R = 0.3  PSNR = 29

 R = 0.1  PSNR = 27.4  R = 0.2  PSNR = 29.8  R = 0.3  PSNR = 29.8

(a) Database 1. (First row) CASSI, (Second row)
C-CASSI with V = 2, (Third row) C-CASSI with
V = 8

 R = 0.1  PSNR = 17.7  R = 0.2  PSNR = 24.8  R = 0.3  PSNR = 26.1

 R = 0.1  PSNR = 24.1  R = 0.2  PSNR = 27.1  R = 0.3  PSNR = 27.7

 R = 0.1  PSNR = 27.3  R = 0.2  PSNR = 28.9  R = 0.3  PSNR = 28.5

(b) Database 2. (First row) CASSI, (Second row)
C-CASSI with V = 2, (Third row) C-CASSI with
V = 8

Figure 2.10: Impact of the transmittance in the reconstructions, using K = 3 and
varying R = 0.1, 0.2, 0.3 from left to right. (a) Database 1, (b) Database
2.

Remark, that the reconstruction quality increases as K increases, due to a different coding

pattern is employed with every new snapshot. To validate the spectral fidelity of the

reconstructions, 2 spatial points were randomly chosen from the two databases (P1 and

P2 in Fig. 2.5), and their spectral signatures plotted in Fig. 2.12. It can be seen how the

curves from the C-CASSI reconstructions best fit to the original signatures.

2.4 Experimental Setup

A proof-of-concept optical prototype was designed to experimentally verify the

proposed architecture and it is presented in Fig. 2.13. This prototype consists of (i) a

Leica COLORPLAN-P2 objective lens, (ii) a D1100 DMD (DLP), (iii) a AC254-100-A-

ML doublet (Thorlabs) as the imaging lens, (iv) a custom double Amici prism (Shanghai

Optics), (v) a monochrome charge-coupled device FPA detector (Stingray F-033B) and

(vi) a set of band-pass filters (Edmund Optics), mounted in a motorized filter wheel

(Thorlabs, FW103). A synchronization interface should be designed to control the rapid

varying DMD and filter wheel which will modulate the incoming scene in a single FPA

integration period.
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 K = 1  PSNR = 19.8  K = 4  PSNR = 28.3  K = 8  PSNR = 31.4

 K = 1  PSNR = 22.8  K = 4  PSNR = 30.3  K = 8  PSNR = 32.3

 K = 1  PSNR = 23.7  K = 4  PSNR = 31  K = 8  PSNR = 32.5

(a) Database 1. (First row) CASSI, (Second row)
C-CASSI with V = 2, (Third row) C-CASSI with
V = 8

 K = 1  PSNR = 20.5  K = 4  PSNR = 27  K = 8  PSNR = 29.4

 K = 1  PSNR = 22.9  K = 4  PSNR = 28.8  K = 8  PSNR = 30.2

 K = 1  PSNR = 23.6  K = 4  PSNR = 29.4  K = 8  PSNR = 30.2

(b) Database 2. (First row) CASSI, (Second row)
C-CASSI with V = 2, (Third row) C-CASSI with
V = 8

Figure 2.11: Impact of the number of snapshots in the reconstructions, fixing R = 0.3
and varying K = 1, 4, 8, from left to right. (a) Database 1, (b) Database
2.
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(a) Database 1. (Left) P1, (Right) P2
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Figure 2.12: Spectral signatures from P1 and P2 in Fig. 2.5, with R = 0.3, K = 3 and
V = 4. (a) Database 1. (b) Database 2.
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Figure 2.13: Optical scheme of the DMD/Filter-wheel-based C-CASSI. The first lens
focuses the scene onto the DMD image plane, which spatially modulates
the scene, and a second objective lens focus the coded scene into the image
plane of the FPA, which has been first filtered by the rotation wheel, and
sheared by the prism. The DMD and filter wheel change rates are faster
than the integration time from the FPA.

Based on the simulation results, the CCAs are set to exhibit 128×128 pixels,

with each entry being either a L or a H filter, with λc = 550 nm (CCAs with V = 2).

Additionally, the CCAs entries are spatially distributed by means of a random distribution

as stated in the simulations. Given that the Amici prism disperses the light up to 8

different FPA columns, the reconstruction algorithm will distinguish up to L = 8 spectral

bands: {448 – 460}, {461 - 475}, {476 - 494}, {495 - 516}, {517 - 540}, {541 - 572},

{573 - 615} and {616 - 662} nm. Notice that the widths of the intervals are not constant,

as a non-linear dispersive element is used. Notice also that, the maximum number of

snapshots allowed to capture is K = 8 (K ≤ L), thus, the experiments focused on the

evaluation of K = 1 and K = 4 sensing processes.

The CCA synthesis realized through the use of the DMD and the set of band pass

filters, is detailed as follows. (i) Each CCA is mapped to a set of block-unblock CA

paired with the corresponding band pass filters given by Eq. (2.3). (ii) The V band-pass

filters and block-unblock CA pairs are calibrated to determine the experimental impulse
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Figure 2.14: Snapshot synchronization control interface tasks using V = 2 filters. At t0,
the first DMD pattern/filter pair is set, and it is being measured between
t0 and t1. At t1, the control changes the DMD pattern, and rotates the
filter wheel to the second filter. The DMD sets an all-black pattern while
the filter wheel ends its rotation, to reduce distortion. At t2 the second
DMD pattern/filter pair is set, and it is measured during t3 − t2 ms. At
t3 the FPA ends its capturing process, and both the DMD and the filter
wheel restarts.

response of the system, using monochromatic light at the given Amici prism wavelengths

as the input, and a white plate as the target. A calibration data cube is then obtained per

each CCA. (iii) The compressive measurements are attained by replacing the white plate

by the real target, and using a broadband white light as the illumination source. Notice

that for the compressive measurements, the DMD switching time is ∼ 50µs, and the filter

wheel rotation time to the adjacent position is ∼ 50ms, while the FPA integration time is

fixed to be 200ms. In our case, the rotation wheel has V = 2 filters synchronized with 2

block-unblock DMD patterns, which rotates/tilts in a 200 ms period. Figure 2.14 details

the synchronization control tasks performed in every compressive measurement, for an

N = L = 4 datacube.

Figure 2.15 presents the K = 1 compressive measurements obtained with the tradi-

tional CASSI and C-CASSI, respectively. Remark that, both snapshot processes integrate

the same amount of intensity restricted by the transmittance of the CA, which was fixed to

be R = 0.3 (the best transmittance overall obtained from the simulations). There, it can

be noticed that the traditional measurement present certain clustered pixels whereas the
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(a) CASSI (b) C-CASSI

Figure 2.15: Comparison of the compressive measurements using (a) CASSI (b) C-
CASSI. In CASSI the intensity appears more clustered in neighboring pix-
els, rather than in C-CASSI where the intensity is more uniformly dis-
tributed.

C-CASSI measurement present a more uniform distribution of the intensity, which goes

along with the entailed richness of the CCAs. An estimation of the spatio-spectral dat-

acube is recovered by solving Eq. (4.27) using the GPSR algorithm. Figure 2.16 presents

the reconstructed data cubes obtained using the traditional CASSI and C-CASSI (with

V = 2), with K = 1 and K = 4, respectively, and mapped to an RGB profile. It can be

noticed that for a single snapshot process (K = 1) the reconstruction quality is not good

enough and additional snapshots are desirable. The C-CASSI outperforms the results

attained with the traditional CASSI, even for small K. In addition, the gain achieved

with C-CASSI can be observed in Fig. 2.17, where three of the eight monochromatic

reconstructed bands are depicted. The corresponding band/color discrimination can be

contrasted with the RGB reconstructions presented in Fig. 2.16. For instance, the blue

helmet is well characterized by the 485 nm wavelength when CCAs are employed with

K = 4. On the other hand, Fig. 2.18 depicts the spectral signatures of 2 different points

from the target scene, compared against a reference measured using a commercially avail-

able spectrometer (Ocean Optics USB2000+). The fit of the spectral signatures obtained

with C-CASSI overcomes the ones from the traditional CASSI. The improvement in spa-

tial/spectral quality achieved by the proposed procedure is then clearly noticeable.
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 K = 1  K = 1

(a) (Left) CASSI, (right) C-CASSI

 K = 4  K = 4

(b) (Left) CASSI, (right) C-CASSI

Figure 2.16: Reconstructed data cubes mapped to an RGB profile for: (a) K = 1, and
(b) K = 4.

485 nm  K = 1 485 nm  K = 1

529 nm  K = 1 529 nm  K = 1

594 nm  K = 1 594 nm  K = 1

(a) (First Column) CASSI, (Second Column) C-
CASSI

485 nm  K = 4 485 nm  K = 4

529 nm  K = 4 529 nm  K = 4

594 nm  K = 4 594 nm  K = 4

(b) (First Column) CASSI, (Second Column) C-
CASSI

Figure 2.17: Experimental reconstructions of the 3rd, 5th and 7th spectral bands. (a)
K = 1 (b) K = 4 .
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Figure 2.18: Spectral signatures of 2 different points using K = 1 and K = 4, respec-
tively. (Top row) Helmet blue point, (Bottom row) Arm orange point.

2.5 Conclusions

A proof-of-concept C-CASSI system has been implemented through a DMD and

traditional filters. The DMD-based implementation rises as an important way to alleviate

the costly implementation of the CCAs. The use of CCAs entails richer coding strategies

as not only spatial but also spectral coding is now performed in a single step, thus leading

to less ill-posed problems which in turn provide better spectral image reconstructions.
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Chapter 3

COMPRESSIVE SPECTRAL TESTBED IMAGING SYSTEM BASED ON
THIN-FILM COLOR-PATTERNED FILTER ARRAYS

Compressive spectral imaging systems have been demonstrated to be reliable in

capturing multispectral data using far fewer measurements than traditional scanning

techniques. In this chapter, a thin-film patterned filter array-based compressive spec-

tral imager is demonstrated, including its optical design and implementation. The use

of a patterned filter array entails a single-step 3D spatial-spectral coding on the input

data cube, thus providing higher flexibility on the selection of voxels being multiplexed

on the sensor. The patterned filter array is designed and fabricated at micrometer pitch

size thin-films, referred as pixelated filters, with three different cut-off wavelengths. The

performance of the system is evaluated in terms of references measured by a commercially

available spectrometer and the visual quality of the reconstructed images. Different distri-

butions of the pixelated filters, including random and optimized structures are explored.

3.1 Introduction

Compressive spectral imaging (CSI) techniques capture multiplexed-and-coded

projections of a scene, and then, the 3D underlying datacube is estimated by exploit-

ing the fact that spectral images are highly correlated and admit sparse representations

[30]. Different CSI architectures have been proposed to date [35, 23, 44, 45]. All of

these utilize block-unblock binary coded apertures and one or two dispersive elements to

modulate the optical field from the scene. These coded apertures have been fabricated

using materials such as chrome-on-quartz, rendering coded aperture elements which are

either opaque or translucent to the whole wavelengths of interest, as illustrated in Fig.

3.1(a). These coded apertures are referred to as photomasks. Recent coating technologies

have allowed the design of patterned arrays of pixelated optical filters [37, 46]. Since

each pixelated filter attains spatial and spectral coding in a single step, as presented in

29



Fig. 3.1(b), coding elements based on patterned optical coatings lead to more efficient

3D coding strategies and more compact imaging systems.

There exist various fabrication approaches to attain pixelated optical filters: color-

dye gels [47, 48], Fabry-Perot micro-sructures [38, 49], and thin-films [50, 51]. Dye gels

have been widely used on CCD cameras due to their low cost, while Fabry-Perot and

thin-films technology have emerged with much higher filter precision but at a higher cost,

initially, as compared to dye-gels. The principal difference between these technologies,

apart from its cost and fabrication procedures, is the extinction ratio. Dye-gels yield

broad transition bands, whereas Fabry-Perot and thin films provide a sharper transition,

which in turn, enable purer color filtering.

Recently, we have proposed and numerically demonstrated the use of patterned

filter arrays, also referred as colored coded apertures, in compressive spectral imaging

systems [41, 52]. In this chapter, we report on the development and fabrication of a thin-

film-based patterned filter array and its implementation on a CSI testbed architecture.

Moreover, an analysis on the impact of the distribution of the pixelated filters on the

quality of the reconstructed 3D spectral images is presented, comparing random against

optimized distributions. To evaluate the quality of the reconstructed images, the results

are presented in terms of monochromatic spectral images, and also mapped to RGB pro-

files for spatial resolution and visual inspection. To evaluate the spectral fidelity, spectral

profiles of selected representative points in the scenes are compared against references

measured by a spectrometer. The attained results show improved quality on the images

obtained by the optimized distribution of the pixelated filters over the ones with random

distributions.

3.2 Compressive optical sensing image model

We focus on the single-disperser coded aperture snapshot spectral imager (SD-

CASSI), which typically uses a photomask to encode the input data. A dispersive element

is then used to decompose the coded spectrum and a monochrome sensor captures the

multiplexed data [30, 23]. In contrast, a 3D patterned filter array is used as the cod-

ing element in the proposed optical system, replacing the commonly used photomask as
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Figure 3.1: Comparison of the coding strategies. (a) Photomask coding. (b) Patterned
filter array coding. The filter array enables 3D coding due to the spectral
response of the pixelated filters, whereas the photomask performs 2D coding
over the data cube.

depicted in Fig. 3.1. The 3D coding is enabled by the 2D array of micro-optical pixe-

lated filters, each of which may be a low-pass, high-pass, band-pass, stop-band or dichroic

filter; the dispersive element can be a reflective element, such as a grating, or a transmis-

sive element, such as a prism; the detection element can be a grayscale 2D detector, a

line-detector, or even, a single-pixel detector. In particular, the optical system described

hereafter uses a custom double Amici prism and a 2D grayscale focal plane array (FPA).

The compressive coded projections of the spectral components of the scene are

captured as follows. Denote the continuous spatio-spectral scene as f0(x, y, λ), the pat-

terned filter transfer function as T (x, y, λ), and the Amici prism dispersion function as

S(λ). Coding is realized at the image plane of the field focused by an imaging lens, thus

creating the 3D-coded field f1(x, y, λ) = T (x, y, λ)f0(x, y, λ). After coding, a relay lens,

transmits the coded scene through the Amici prism, dispersing the field along the hori-

zontal axis, forming the image on the FPA detector. The integrated coded and sheared

spectral field along the spectral range sensitivity of the detector (Λ) can be expressed as,

g(x, y) =

∫
Λ

T (x, y, λ)f0(x, y, λ)h(x− x′ − S(λ), y − y′)dλ, (3.1)
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where h(x−x′−S(λ), y− y′) accounts for the optical impulse response of the system and

the shifting entailed by the prism along the x-axis. The coding transfer function of the

patterned filter array can be modeled as,

T (x, y, λ) =
∑
i,j,k

Ti,j,krect

(
x

∆c

− i− 1

2
,
y

∆c

− j − 1

2
,
λ

∆d

− k − 1

2

)
(3.2)

where Ti,j,k ∈ [0, 1] represents the filtering operation to be performed on the (i, j, k)th

data cube voxel; i, j ∈ {0, . . . , N − 1}, and k ∈ {0, . . . , L− 1} index the coordinates of an

N×N×L spectral data cube, and ∆c, ∆d account for the pixel sizes of the pixelated filters

and the FPA detector, respectively. Notice that the spatial resolution of the resolvable

scene is determined by the pitch size of the pixelated filters (∆c), while the spectral

resolution depends on the pitch size of the FPA pixels (∆d) and the dispersion efficiency

of the prism S(λ) [41].

Let each voxel of the spectral scene be expressed as Fi,j,k =
∫∫∫

Ωi,j,k
f0(x, y, λ)dxdydλ =

wijkf0(xi, yj, λk), where Ωi,j,k represents the (i, j, k)th voxel boundaries, and wi,j,k the voxel

mass center weight. Assuming that the response of the dispersive element is linear over

the spectral range of the system, and that ideal optical elements are used, the measure-

ment attained on the (n,m)th pixel of the proposed system is given in discrete form by,

gnm =
∑
k

Fn,m−k,kTn,m−k,k, (3.3)

where n ∈ {0, . . . , N − 1} and m ∈ {0, . . . , N + L− 1}, index the pixels on the rows and

columns of the detector, respectively.

3.2.1 Multiple-snapshot matrix model

A single snapshot may not be enough to attain a certain required quality in the

reconstructed data cubes. The proposed system is then extended to include multiple

snapshots. Multiple-snapshot sensing leads to less ill-posed inverse problems and conse-

quently improved signal recovering [30]. In such a case, the patterned filter array must

change its coding pattern with every new snapshot. As will be described later, we use a

wafer with numerous patterned filter arrays, contiguously placed to each other, so that,
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a new coding pattern is attained by mechanically shifting the wafer. Multiple-snapshot

sensing can be modeled by g`n,m =
∑

k Fn,m−k,kT
`
n,m−k,k, where ` = 0, . . . , K − 1 accounts

for K snapshots, attained by K spatial translations of the patterned filter array wafer.

Denote the kth spectral band of the input spectral data cube as fk ∈ RN2
, and

let each `th patterned filter array in vectorial form as t`k ∈ RN2
, such that (fk)z =

F(z−b z
N
cN),b z

N
c, k, and

(
t`k
)
z

= T `(z−b z
N
cN),b z

N
c, k, respectively, for z = 0, 1, . . . , N2. Also,

let g` be a column vector holding all of the recorded pixel values, g`n,m. Given the lateral

dispersion of light, the length of each compressive measurement g` is N(N +L− 1) such

that all light is accounted for on the sensor. Thus, while the patterned filter array is an

N ×N pixel array, the sensor has an extra set of L pixel columns. Assuming that f stays

constant over the K snapshots, we can relate g` to f in matrix form as

g` = H`f = PT`f (3.4)

where f = [fT0 fT1 . . . f
T
L−1]T , and H` is the system transfer function of the `th snapshot,

which accounts for the coding pattern T` and the dispersion function of the prism P,

which remain constant for all the snapshots. Let Q = N2L be the total number of data

cube voxels, and U = N(N + L − 1) be the total number of FPA pixels. Therefore,

H` ∈ RU×Q, P is an U × Q rectangular matrix accounting for the shearing of the prism

and the integration performed by the FPA. The structure of the matrix P is given by

P =


diag(1N2) 0N×N2 · · · 0N×N2

0N×N2 diag(1N2) · · · 0N×N2

...
...

. . .
...

0N×N2 0N×N2 · · · diag(1N2)


U×Q

, (3.5)

where 0N×N2 is a 0-valued N ×N2 matrix, and diag(1N2) is a 1-valued N2×N2 diagonal

matrix. Notice that, the number of 0N×N2 sub-matrices in each row or column of Eq.

(3.5) is L − 1, and there is just one diag(1N2) sub-matrix per row or column. Similarly,

T` is a Q×Q block-diagonal matrix, where each N2 ×N2 diagonal sub-matrix accounts
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for the effect of the `th patterned filter array on the kth data cube spectral band, as

T` =


diag(t`0) 0N2×N2 · · · 0N2×N2

0N2×N2 diag(t`1) · · · 0N2×N2

...
...

. . .
...

0N2×N2 0N2×N2 · · · diag(t`L−1)


Q×Q

, (3.6)

where diag(t`k) is an N ×N diagonal matrix, with diagonal elements t`k.

The complete set of K snapshots in (3.4) can be assembled into a single vec-

tor by concatenating each g` vector, end to end, to create the KU × 1 vector g =[
(g0)T , . . . , (gK−1)T

]T
, such that g = Hf , where H =

[
(H0)T , . . . , (HK−1)T

]T
is a KU×Q

matrix. Figure 3.2 shows an sketch of the H matrix for an N ×N = 4× 4 spectral data

cube with L bands, using K = 2 snapshots, and a patterned filter array with L optical

filters. The colored diagonals correspond to the filter array applied to each kth waveband,

while the black entries correspond to blocking elements. The yellow circles in the figure

highlight the variation of the coding elements along the spectral bands, satisfying the

wavelength dependency of the filters within the coded pattern. Note that the 2 snapshots

are vertically stacked, each one with size U , and the dispersion function is modeled by

off-setting the diagonal structure of the patterned filters as the wavelength increases from

left to right.

3.2.2 Input data cube reconstruction

Compressive sensing (CS) states that the sensing process can be alternatively ex-

pressed as g = Hf = HΨθΨθΨθ = Aθθθ, such that A is called the compressive sensing matrix,

and θθθ = ΨΨΨT f is a vector coordinate of f in a Q dimensional space ΨΨΨ. This transformation

assumes f to be S-sparse on ΨΨΨ, so that, only a small subset, S � Q, of the basis vectors

ΨΨΨ can accurately reconstruct f with little or no distortion. Formally, f is S-sparse or

has sparsity S in a basis ΨΨΨ if ‖θθθ‖0 = S, where ‖ · ‖0 denotes the `0-norm, which simply

counts the number of nonzero entries in the vector. In this way, an estimation of the
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Figure 3.2: Sketch of transfer function matrix H for a 4×4×L spectral data cube, using
K = 2 snapshots, and a patterned filter array with L filters. Q = N2L is the
total number of data cube voxels, and U = N(N+L−1) is the total number
of FPA pixels. Note that the coding pattern is wavelength-dependent, and
a different distribution of its entries is used in each snapshot.

spatio-spectral input data cube can be attained by solving the regularization problem,

f̂ = ΨΨΨ

(
argmin

θθθ′
‖g −Aθθθ′‖2

2 + τ‖θθθ′‖1

)
, (3.7)

where θθθ′ is the estimation of the vector coordinate of f̂ in ΨΨΨ, ‖ · ‖2
2 represents the `2 norm,

‖ · ‖1 the `1 norm, and τ is a regularization parameter which penalizes the fact of θθθ′

being sparse, while reducing the error between the estimated Aθθθ′, and the captured set

of compressive measurements g. To solve the optimization problem in (7.16), different

algorithms have been proposed, including the gradient projection for sparse reconstruction

(GPSR) [29], the GPSR-based but faster block-processing approach proposed in [43],

the two-step iterative shrinkage/thresholding (TwIST) using the total-variation (TV) as

the regularization function [53], gaussian mixture models (GMM) [54] or hyperspectral

denosing algorithms based on approximate message passing (AMP) [33]. This chapter

uses the method in [29] although any of the other methods could be used as well.
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Random distribution Boolean distribution Optimized distribution

Figure 3.3: 3-color patterned filter array design using 3 different spatial distributions.
The blue pixels are low-pass filters, the green are high-pass filters, and the
black are all-stop filters.

3.3 Design and fabrication of a patterned filter array wafer

3.3.1 Patterned filter array design

The number of different filters to be used, the filters spectral profile, and the

way these filters are spatially distributed have to be carefully designed. First, if the

filter array has N × N pixels of spatial resolution, then, it is possible to have at most a

different optical filter per pixel, that is, up to N2 pixelated filters with different cut-off

wavelength. The higher the number of different filters, however, the higher the fabrication

cost. Furthermore, we have observed in practice that the gains gradually decrease as the

number of filters increase [52]. In fact, only a few different type of optical filters are

typically needed to obtain significant improvement over imaging that uses conventional

photomask technology. As an example [52], only 3 filters are sufficient to improve image

reconstruction quality by 4 dBs, of an 8 spectral band data cube, in terms of peak-

signal-to-noise-ratio (PSNR). It is expected, however, that the number of filters used, for

improved performance, should be larger with increases of the spectral bands. Based on

these results, and taking into account the fabrication costs, we used 3 filters: a low-pass

(denoted by L(λ)) and a high-pass (denoted by H(λ)) complementary filters, with cut-off

wavelength λc = 550nm, and a blocking (all-stop, denoted by B(λ)) filter, represented in

Fig. 3.3 with colors blue, green and black, respectively.
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510 nm 550 nm 578 nm

LP Filter

HP Filter
LP FilterHP Filter

150 mm wafer with 
210 patterns

Each pattern has a different 
distribution of its entries

Each distribution has realizations of 
low-pass, high-pass and opaque filters

Pixelated filter pitch 
of ~ 20 um

(a) Zoomed versions of the wafer are shown from left to right.

(b) The HP and LP filters appear in the transition band of 550 nm.

Figure 3.4: Fabricated wafer of thin-film patterned filter arrays. (a) A microscope was
used to capture zoomed versions of the wafer shown from left to right. (b)
Analysis of the transition band of the filters. Due to the cut-off wavelength
of the filters (λc = 550 nm), both HP and LP filters show-up attenuated
when the patterned filter is illuminated at that wavelength.

Second, the pixelated filters, or coded aperture entries in previous photomasks im-

plementations, have been usually placed in an N × N grid using simply random spatial

distributions. However, we have shown in previous publications that the spatial distri-

bution of the entries in a coded aperture plays an important role in the quality of the

reconstructions [30, 55, 36]. Therefore, in addition to the random distribution of the fil-

ters, in this chapter, we also test and analyze the performance of another two distributions

called Boolean, and optimized [41] distributions, as explained below.

3.3.1.1 Random distributed filters

Random distributions of block-unblock filters have been widely used in CASSI.

These are justified if high incoherence is attained with the signal representation basis ΨΨΨ
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such as Fourier, Wavelet or Cosine [19]. The entries of a coded aperture with random

distributions can be modeled as,

T `i,j =


B(λ), p ≤ 1

3

L(λ), 1
3
< p ≤ 2

3

H(λ), p > 2
3

, (3.8)

where p is a random variable with distribution function U [0, 1]. Notice that T `1i,j and T `2i,j

(`1 6= `2) are independently generated from each other.

3.3.1.2 Boolean distributed filters

Boolean distributions keep the properties of random distributions for a single snap-

shot. However, they have the characteristic that in multiple-shot sensing, each realization

is mutually-complementary to the previous realizations, thus guaranteeing that each voxel

of the datacube is captured only once by the FPA. Note that, such characteristic is not

guaranteed by random distributions, where each realization is generated independently

of the others; therefore, a single voxel could be sensed more than once, or even worse, a

single voxel may be always filtered-out. Boolean distributions can be modeled as in (3.8),

but satisfying the mutually-complementary constraint
∑K−1

`=0 T `i,j = A(λ), where A(λ) is

an all-pass filter, representing the full spectrum of interest. For instance, in a K = 3

snapshot sensing, if the (i, j)th filter in the first snapshot is a low-pass (T 0
i,j = L(λ)), then

to satisfy the constraint, the second snapshot must use a high pass filter and the third

snapshot a blocking filter, or vice versa (T 1
i,j = H(λ) and T 2

i,j = B(λ); or T 1
i,j = B(λ) and

T 2
i,j = H(λ)).

3.3.1.3 Optimized spatial distribution of the filters

We recently proposed and demonstrated an optimization of the distribution of the

entries of a patterned filter array [41]. This optimization extracts the benefits of Boolean

distributions, but in addition, it exploits the correlations created by the structure of the

CS matrix A, such that the Restricted Isometry Property (RIP) is better satisfied. In
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Figure 3.5: Thin-film-based compressive spectral imaging testbed. The objective lens
images the captured scene onto the thin-film patterned filter wafer; then
the relay lens transmit the coded light through the Amici prism before it
is integrated by the CCD sensor. The X-Y motion system moves the wafer
precisely to access different coding patterns.

particular, the optimization of the distribution of the entries can be expressed as,

argmin
T `i,0,T

`
i,1...,T

`
i,L−1

L∑
k=1

ckγk + τ1U

subject to
K−1∑
`=0

T `i,j = A(λ), (3.9)

for i = 1, . . . , N , where, ck are the entries of a penalty cost vector, τ1 is a regulariza-

tion constant, γk forces to reduce the correlations along the spectral domain, U attempts

to reduce the correlations along the spatial domain, and the constraint guarantees the

mutual-complementariness along the K multiple-snapshots. Intuitively, the optimization

problem seeks to spread as far as possible the passing bands of the pixelated filters along

the spectral and the spatial domains, exploiting the correlations entailed by the sensing

structure of the optical system. For further detailed information, the reader is referred to

[41].
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Figure 3.3 shows a single realization of the 3 spatial distributions as seen in the final

design of the wafer, developed using AutoCAD. Notice, that the random and the Boolean

realizations present a pure random distribution of the entries, whereas the optimized

realization exhibit a pseudo-random structure since just a single L-long section is designed

per row and then horizontally replicated.

3.3.2 Thin-film-based patterned filter array fabrication

The fabrication process was realized by Pixelteq Inc., and it mainly consisted on

deposition and lithographic patterning cycles of the 3 filters, in a random, Boolean or

optimized fashion [37]. The low-pass filter has an average transmittance of 93% between

350-540 nm, and of 0.25% between 560-750 nm; and the high-pass filter has an average

transmittance of 0.04% between 350-540 nm, and of 96% between 560-750 nm, as shown in

Fig. 3.4(b). The blocking pixel has a 0.04% transmittance in the entire domain between

350-750 nm. The array was fabricated on a 150 mm diameter wafer of Eagle XG substrate,

with 1.1 mm thickness . Each patterned filter array in the wafer was designed to exhibit

N×N = 256×256 pixels of spatial resolution, where each pixelated filter has a pixel-pitch

size of ∆c = 20µm. Due to the micrometer size of the pixelated filters, they are created

by multilayer stacks of high- and low-index materials via plasma-assisted deposition or

magnetron sputtering [37].

The final product is shown in Fig. 3.4(a). It contains 210 patterned filter arrays,

and zoomed versions show the fine details within the full wafer. The 210 patterned arrays

are different realizations of the spatial distributions, for different number of snapshots.

Note that the pixelated filters exhibit sloped edges, since the lift off fabrication process

requires the lithography to be removed and the coating in the pixel to remain. These

sloped edges cause areas of non-uniformity in the transmission properties of the coatings.

In consequence, fine striped chrome areas are used around the pixelated filters, allowing

to aperture the pixel, so that, only the uniform portion is projected. If these opaque

areas are not used, the effective pixel performance will suffer. In order to analyze the

transition-band of the pixelated filters, Fig. 3.4(b) shows three images of a portion from a

single patterned filter array illuminated with three different wavelengths (510 nm, 550 nm,

and 578 nm). It can be seen that when the pattern is illuminated with monochromatic
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light at 510 nm, just the low-pass pixelated filters let the light pass; similarly, when it is

illuminated with monochromatic light at 578 nm, just the high-pass pixelated filters let the

light to propagate. Note that when the patterned array is illuminated with monochrome

light at the cut-off wavelength of the filters (λc = 550 nm), both high- and low-pass filters

let light go through the system, but its intensity is attenuated around 40%, agreeing with

the given transition characteristics.

3.4 Optical testbed implementation and experiments

To test the performance of the patterned filter array wafer, the CSI testbed setup

presented in Fig. 7.5 was assembled in our laboratory. A colorful target object was

attached to a black surface and illuminated by a broadband Xenon lamp playing the role

of ambient light. The wafer of patterned filter arrays was placed at the image plane of

the objective lens Canon EF 50mm f/1.8 II. Two Thorlabs LTS300 linear translation

stages with integrated stepper motor controller were used to precisely move the wafer

along the x-y axis, in order to capture different patterned filter arrays. Each independent

linear stage exhibits a velocity of 50 mm/s, on-axis accuracy of 5 µm, and a bidirectional

repeatability of 2 µm. A matched achromatic doublet pair lens with 100 mm focal length

was used to relay the 3D coded field through the custom designed double Amici prism,

which horizontally spreads a single voxel of the data cube into 42 different columns of the

FPA. The FPA sensor is a Bobcat B2021 CCD GigE Vision (with PoE), exhibiting a pixel

pitch of ∆d = 7.4µm and a resolution of 2048×2048. A 3×3 macro-pixel windowing was

realized on the FPA, in order to have an one-to-one correspondence with each pixelated

filter, that is, ∆d ≈ 3∆c. Therefore, the attainable resolution in the reconstructions is

N ×N = 256× 256 pixels in space, and L = 14 spectral bands.

To obtain the estimations of the input data cubes, the gradient projection for

sparse reconstruction (GPSR) algorithm [29] was used to solve the optimization problem

in (7.16). It is important to notice, however, that there exist different strategies to do this

estimation, as mentioned in Section 2.2. GPSR has been broadly used with traditional

basis functions ΨΨΨ such as the wavelet (ΨΨΨW2D) and discrete cosine transforms (ΨΨΨDCT ) as

well as pre-trained dictionaries [30, 43, 54]. However, it is also possible to simultaneously

exploit the sparsity properties of the input data cube along each of its dimensions to
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provide a new representation for their structure. Doing so, a single sparsity transform

for the entire data cube is obtained as the Kronecker product of the bases used for each

of its dimensions [45, 52, 56]. Particularly, we used the basis expressed as the Kronecker

product between ΨΨΨW2D and ΨΨΨDCT where ΨΨΨDCT is used to sparsify the spectral axis while

ΨΨΨW2D sparsifies the spatial coordinates.

A single reconstruction with GPSR takes around 90 seconds to run 300 iterations

for K = 1, and up to 210 seconds for K = 8 snapshots, when the data is processed in

Matlab R2015b on an Intel Xeon CPU E5-1660 v3 at 3.00GHz and 80GB of RAM. Figures

3.6–3.11 summarize the reconstruction results. In these figures, reconstruction results for

K = 2 (compression ratio of 1/7) and K = 8 (compression ratio of 4/7) snapshots are

shown, for the random, Boolean and optimized spatial filter distributions.

First, in Figs. 3.6 and 3.7 the quality of the spatial reconstructions is evaluated

by mapping the set of 14 reconstructed spectral bands to an RGB profile. It can be

noticed that the Boolean distribution of the filters attain better quality than the random

generated filters, and the optimized reconstructions exhibit the best quality between the

three, for both K = 2, and K = 8 snapshots.

Second, to evaluate the reconstruction results at each wavelength level, Figs. 3.8

and 3.9 present the spectral footprint of 6 different points of the target scene, denoted as

P1, P2, P3, P4, P5 and P6 in Fig. 7.5, which are compared against a reference spectrum

measured with an Ocean Optics USB2000+ spectrometer, assumed to be the ground

truth. All spectra are averaged in a 5 × 5 window corresponding to the same color and

normalized to the maximum value in their respective curves. The root-mean-square errors

(RMSE) between the reconstructed and the reference spectra are included in each subplot

for ease of interpretation. It can be noticed that the curves attained with the optimal

(Opt) distribution presents a better fit to the reference spectrum than the Boolean (Bool)

and random (Rand) reconstructions; even more, when the number of captured snapshots

increases.

Lastly, Figs. 3.10 and 3.11 show 7 out of the 14 reconstructed spectral bands,

false-colored with the respective wavelength, for K = 2 and K = 8, respectively. Notice

in these figures that with only two snapshots the reconstructions lack of details, and

when 8 snapshots are captured the quality of the reconstruction is quite improved, even

42



Figure 3.6: Full data cube reconstructions when random, Boolean and optimized pat-
terned filter arrays are used, and K = 2 snapshots are captured. The
14-bands data cubes are mapped to false-colored RGB profile to visually
compare the color fidelity with the original target scene.

43



Figure 3.7: Full data cube reconstructions when random, Boolean and optimized pat-
terned filter arrays are used, and K = 8 snapshots are captured.The 14-
bands data cubes are mapped to false-colored RGB profile to visually com-
pare the color fidelity with the original target scene.
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Figure 3.8: Comparison of the spectrum reconstructions when K = 2 snapshots are
captured. Six different points (P1, P2, P3, P4, P5 and P6) from the target
scene (Fig. 7.5) were measured by a spectrometer and compared against
the reconstructed data cubes.
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Figure 3.9: Comparison of the spectrum reconstructions when K = 8 snapshots are
captured. Six different points (P1, P2, P3, P4, P5 and P6) from the target
scene (Fig. 7.5) were measured by a spectrometer and compared against
the reconstructed data cubes.

45



Figure 3.10: Comparison of the reconstructions at monochrome level. The 2th, 4th, 6th,
8th, 10th, 12th, and 14th spectral bands for the 3 different distributions are
shown for K = 2 snapshots. (First column) Random, (Second column)
Boolean, (Third column) Optimized distribution.
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Figure 3.11: Comparison of the reconstructions at monochrome level. The 2th, 4th, 6th,
8th, 10th, 12th, and 14th spectral bands for the 3 different distributions are
shown for K = 8 snapshots. (First column) Random, (Second column)
Boolean, (Third column) Optimized distribution.
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more when either the Boolean or the optimized distribution of the pixelated filters is

employed. The corresponding band/color discrimination of the monochrome wavelengths

can be contrasted with the RGB target scene on Fig. 7.5, where the red cloak of the top

toy is well characterized by the 662 nm wavelength, the blue fish fins are well resolved at

486 nm, and the green body of the right toy is well reconstructed at 525 nm.

3.5 Discussion

This chapter focuses on the implementation and analysis of patterned filter arrays

into a compressive spectral imaging architecture. We did not include comparisons against

the use of photomasks in our setup since in our previous results we already demonstrated

that the use of patterned filter arrays entail better reconstruction results even just from

simply randomly generated pixelated filter patterns [41, 52]. In addition, we preferred

to compare different distributions of the pixelated filters to evaluate their impact on the

reconstruction quality. It was shown that either Boolean or the optimized distributions

attained better reconstruction results, than simply using random distributions. Note that

further optimization on the distribution of the entries can be still performed, as well as a

higher-order precision model of the continouos sensing model [42] can be used to achieve

even better quality results.

It is shown that thin-film technology opens a door to higher-quality and higher

compression sensing methodologies. In this path, our group has recently demonstrated

the use of patterned filter arrays attached to FPAs [57]. Although this approach entails

a more-compact architecture, in terms of size-weight-and-power, it only permits single

snapshot sensing since the filter array is glued to the FPA surface. However, it can be

assumed as a first step towards the use of conventional dyed-gels-based technology which

has demonstrated to be low-cost, and widely used [58].

As future work, it would be useful to perform a comparison on the use of dyed-

gels filters, which are less costly but exhibit a wider extinction ratio, and the impact

of their use in coded apertures in compressive spectral imaging. We expect that dyed-

gels-based filter arrays will cause a rougher filtering due to the wide response of the gels,

and in consequence the spectral results will not be as good (sharp) as the ones shown

in this manuscript. That is, the wider the response of the filter, the closer the behavior
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to black and white (photomasks) coded apertures. However, the use of dyed-gels could

promote the expansion of the use of this technology due to cheaper costs. An alternative

solution is to use spatial light modulators (SLMs) such as the liquid-crystal-based, which

can be exploited to perform spatio-spectral coding by tuning each mirror with a different

voltage, thus permitting to attain infinite patterns of higher number of filters just by

tuning different voltages [44]. This will entail a compromise between no moving parts and

the power required to manipulate the SLM.

3.6 Conclusions

This chapter experimentally demonstrated and analyzed a thin-film-based pat-

terned filter array compressive spectral imaging system. The use of a patterned filter

array entailed a higher flexibility in the coding step of the imaging system, allowing to

independently encode the space and the spectrum of the input data cube. This flexibility

entailed higher degrees of freedom in the design of the sensing operator H, which in turn

permitted to better satisfy the conditions of the compressive sensing theory, such as the

RIP, therefore attaining higher quality in the reconstructions.

The spatial distribution of the thin-film filters impact the quality of the attained

reconstructions, since the optimized distribution outperformed the simply random and

Boolean distributions. The experimental results support the promising imaging capabil-

ities introduced in our previous work [41, 52], where the imaging conditions, such as the

variability of the cut-off wavelengths of the color filters, and the measurement noise, have

been also discussed.
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Chapter 4

OPTIMIZATION OF COLOR CODED APERTURES FOR
COMPRESSIVE SPECTRAL IMAGING VIA 3D SPREADING

A spectral image can be regarded as a three-dimensional cube where each pixel is

not a single value but a vector of intensities representing a spectral reflectance signature.

Knowledge of the spectral reflectance of an object permits to know its components, which

in turn can be used to detect or classify the elements in a certain image. Compressive spec-

tral imaging (CSI) is a sensing and reconstruction framework, based on the fundamentals

of the compressive sensing (CS) theory, which focuses on capturing spectral images effi-

ciently. CSI exploits the highly correlated information contained in the spectral images,

by encoding its spectral characteristics with a coded aperture. A coded aperture is a 2D

matrix, with each pixel being either a black or translucent element in the conventional

setting, or a tiny optical filter in recent developments. The selection of the spectral char-

acteristics of each pixel, as well as the spatial distribution of them within the 2D matrix,

control the quality of the captured compressive measurements, which in turn determine

the quality of the spectral image to be estimated. State of the art methods have used ran-

dom distributions of the entries, as suggested by CS, and some optimization procedures

have focused on the design of the coded apertures per rows. However, these approaches

do not fully exploit the spatial and spectral correlations entitled by CSI imagers. To that

end, in this chapter, it is proposed a high-dimensional optimization procedure to design

coded apertures for CSI systems, which exploits not only the spectral correlations but

the spatial correlations as well. The high-dimensional nature of the optimization refers

to the design and selection of each element in the coded aperture, including the cut-off

frequencies of the optical filter-based coded apertures, as well as the minimization of the

correlation between rows, columns and depth spectral planes of the scene. Simulations

analyzing the conditioning of the sensing matrices, as well as the reconstruction quality

of the attained spectral images show the improvement entailed by the proposed method.
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4.1 Introduction

4.1.1 Motivation

Spectral imaging techniques capture sequences of two-dimensional images along

the electromagnetic spectrum, where each pixel is a vector of intensities representing a

spectral signature. Information of the spectral properties of an object permits to know its

components, which in turn can be used to detect or classify the elements in a certain image.

These techniques have been massively used during the last century, mainly in areas such as

remote sensing [7] and medical imaging [59]. As a result of the appearance of compressive

sensing (CS) [19], new methodologies were proposed to effectively capture spectral images,

such as compressive spectral imaging (CSI) [30, 60]. CSI is an imaging framework that

focuses on capturing spectral images efficiently, by encoding their spectral characteristics

along their spatial extent. CSI systems are modeled based on the principles of a traditional

spectrophotometer which records all wavelengths simultaneously. In particular, a ray of

light from the scene propagates through a series of optical elements, including apertures,

gratings or prisms, which spectrally decompose the ray over before it impinges onto a

sensor array. Given the nature of the aperture, it can be designed to allow multiple rays

of light to simultaneously impact onto the sensor, meaning that a single pixel will collect

light from multiple spatial locations of the underlying object. In other words, CSI systems

capture multiplexed measurements, which are then processed by a CS-based estimation

algorithm to decouple the spectral profiles within each sensor pixel. An arrangement of

2D spatially located apertures, is widely known as a coded aperture, where each pixel

is a black, or translucent element in the conventional setting [23], or a tiny optical filter

in recent developments [41]. Both the selection of the spectral characteristics of each

pixel, as well as the spatial distribution of them within the 2D arrangement determine

the quality of the spectral image to be estimated. Regarding the spectral characteristics,

the use of optical filter-based coded apertures, so-called color coded apertures [41, 61, 52],

entails a single-step three-dimensional coding on the input data cube, a richer coding

strategy compared to black-and-white coded apertures, which only perform 2D spatial

coding. Thus, the color coded aperture provides higher flexibility on the selection of

which voxels from the scene are going to be integrated on the sensor. On the other hand,
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regarding the spatial distribution of the entries, coded apertures have been conventionally

generated randomly, since they suffice to satisfy the CS requirements [19]. However, better

encoding strategies can be obtained by optimizing their spectral characteristics and spatial

distribution.

4.1.2 Related work

Optimization of black-and-white coded apertures has been demonstrated in the

past. In particular in [55] the authors use a filter-bank strategy to design the coded

apertures for agile CSI. In a more recent work [36] they propose a rank minimization

strategy to perform selective spectral sensing. Application-free strategies have been also

reported in [62], where the optimization of coded apertures is carried-out by exploiting

blue-noise halftone ideas. Other works have focused on the minimization of the restricted

isometry constant [63, 64], and the minimization of the mutual coherence constant using

dictionary learning strategies [65, 66]. Regarding color coded apertures, and given its

recent proposal, just a single work has reported their optimization [41]. In that work,

a row per row optimization (row-wise) approach based on concentration of measure was

proposed. This approach, however, does not fully exploit the spatial correlations of the

spectral image as it individualizes the optimization from the spatial extent.

4.1.3 Contributions

In this chapter, we propose an optimization procedure to design color coded aper-

tures for CSI systems, which exploits not only the spectral but the spatial correlations

within an spectral image. The optimization refers to the design and selection of each ele-

ment in the coded aperture, including the cut-off frequencies of the optical filters, as well

as the exploitation of the correlation between rows, columns and spectral planes of the

scene. The proposed optimization method seeks for a better conditioned sensing matrix,

so that it satisfies tightly the restricted isometry property. To do this, a higher-order

discretization model of the continuous phenomena within color coded aperture CSI sys-

tems is first proposed. This model entails a better approximation of the real phenomena,

which in turn leads to a more precise, still structured, sparse sensing matrix. An itera-

tive random-walk optimization algorithm is then developed to carefully design the color
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coded apertures, which minimizes the shifted cross-correlation between the columns of

the, more precise, sparse sensing matrix. Exploiting the fact that a color coded aperture

can be modeled as a 3D black-and-white coded aperture, the optimization algorithm thus

seeks to spread the translucent elements (band-pass filters of the color coded aperture)

along the 3D cube extent. The latter is achieved by 3D filtering the coded aperture with

a 3D Euclidean filter, in each iteration of the random-walk.

The performance of the proposed 3D optimized color coded apertures are then

compared against the random, and the row-wise optimized, showing the benefits in terms

of the conditioning of the sensing matrix, and in terms of the peak-signal-to-noise-ratio

(PSNR) and structural similarity index (SSIM) metrics in 6 different spectral scenes.

4.2 Higher-order Compressive Spectral Imaging Model with Colored Coded

Apertures

Different CSI architectures have been proposed to date, most of them using black-

and-white coded apertures or spatial light modulators (SLMs) [23, 66], and just recent

works use color coded apertures to perform the coding [41, 57, 61]. Prisms and gratings

are conventionally used to disperse the optical field from the scene, and monochrome

sensors are preferred over RGB sensors to integrate the modulated field, although the

latter can provide better spectral estimations [58]. For the scope of this chapter, we focus

on the single-disperser coded aperture snapshot spectral imager, which uses a prism,

a monochrome camera, and has been demonstrated using black-and-white (CASSI) [1,

23] and color coded apertures (C-CASSI) [41, 52, 61]. Figure 4.1 shows an sketch of

both architectures. There, the (colored-) coded aperture is placed in the image plane of

the objective lens. Then, a set of relay lenses transmits the encoded scene through the

dispersive element and onto the sensor, where multiplexing occurs. Note that, color coded

apertures have demonstrated improved results compared with black-and-white apertures

due to the richer coding entailed by the pixelated optical filters [41]. Therefore we focus

on the optimization of the C-CASSI, although an ease extension can be done for CASSI

as well, given the high similarities between both architectures.

In this section, we will first show the continuous model of the C-CASSI; then the

higher order discretization is detailed, as well as the matrix representation.

53



CASSI C-CASSI
Sensor

Coded 
Aperture

Objective 
Lens

Relay 
Lens

Dispersive 
Element

Relay 
Lens

( )l,, yxt( )yxt ,

( )l,,0 yxf ( )l,,0 yxf

( )ls ( )ls

( )yxg , ( )yxg ,

Figure 4.1: CSI systems of interest. (Left) Coded aperture snapshot spectral imager
(CASSI). (Right) CASSI with color-coded apertures (C-CASSI)

4.2.1 C-CASSI Continuous Model

Let denote the input spectral scene as the 3D function f0(x, y, λ), and the color

coded aperture as the 3D function t(x, y, λ), where x, y represent the spatial coordinates

and λ the spectral domain. The coded field just after the color coded aperture is given

by

f1(x, y, λ) = t(x, y, λ)f0(x, y, λ). (4.1)

The relay lens projects the coded field through the prism exhibiting a dispersion function

s(λ); therefore, the dispersed field just after the prism is given by,

f2(x, y, λ)=

∫∫
f1(x′, y′, λ)h(x− x′ − s(λ), y − y′, λ)dx′dy′

=

∫∫
t(x′, y′, λ)f0(x′, y′, λ)h(x− x′ − s(λ), y − y′, λ)dx′dy′. (4.2)
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Finally, the coded and dispersed field is integrated on the sensor, along its sensitive

spectrum (Λ) as,

g(x, y) =

∫
Λ

f2(x, y, λ)dλ

=

∫∫∫
t(x′, y′, λ)f0(x′, y′, λ)h(x− x′ − s(λ), y − y′, λ)dx′dy′dλ. (4.3)

Equation (4.3) can be simplified by assuming an ideal space-invariant optical impulse

response, so that h(x, y, λ) = δ(x, y, λ). Note that δ(x′ − x− s(λ), y′ − y, λ) = 1 ⇔ x′ =

x+ s(λ) and y′ = y. Thus, Eq. (4.3) becomes,

g(x, y) =

∫
Λ

t(x+ s(λ), y, λ)f0(x+ s(λ), y, λ)dλ. (4.4)

4.2.2 C-CASSI Higher-Order Discrete Model

The continuous measurement g(x, y) can be discretized by means of the pixelated

detector array described by

p(m,n;x, y) = rect

(
x

∆d

−m, y
∆d

− n
)
, (4.5)

where rect represents the rectangular function, and ∆d is the detector pixel size. Note

that we assume the rectangular function is not centered to facilitate the notation, that is,

rect
(
x
∆

)
= rect

(
x′

∆
− 1

2

)
. Then, the discrete measurement at the (m,n)th sensor pixel is

given by,

gn,m =

∫∫
g(x, y)p(m,n;x, y)dxdy

=

∫∫∫
t(x+ s(λ), y, λ)f0(x+ s(λ), y, λ)rect

(
x

∆d

−m, y
∆d

− n
)
dλdxdy.(4.6)

Similarly, the patterned filter array is discretized as,

t(x, y, λ) =
∑

n′,m′,k′

tn′,m′,k′rect

(
x

∆c

−m′, y
∆c

− n′, λ
∆L

− k′
)
, (4.7)
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where tn′,m′,k′ ∈ [0, 1] represents the filtering on the (n′,m′, k′)th voxel of the scene, ∆c

is the coded aperture pixel size, and ∆L represents the bandwidth of the optical filters.

Therefore, Eq. (4.6) can be rewritten as,

gn,m =
∑

n′,m′,k′

tn′,m′,k′

∫∫∫
f0(x+ s(λ), y, λ)rect

(
x+ s(λ)

∆c

−m′, y
∆c

− n′, λ
∆L

− k′
)

×rect

(
x

∆d

−m, y
∆d

− n
)
dxdydλ. (4.8)

The spatial resolution of the system is given by the pixel size of the coded aperture (∆c),

and the spectral resolution depends on the ratio between the dispersion function (s(λ))

and the pixel size of the sensor (∆d). In particular,

f0(x, y, λ) =
∑
n′,m′,k

fn′,m′,krect

(
x

∆c

−m′, y
∆c

− n′, λ
∆d

− k
)
, (4.9)

where fn′,m′,k ∈ [0, 1] represents the normalized scene intensity at the (n′,m′, k′)th voxel.

Therefore, Eq. (4.8) becomes,

gn,m =
∑

n′,m′,k′,k

tn′,m′,k′fn′,m′,k∫∫∫
rect

(
x+ s(λ)

∆c

−m′, y
∆c

− n′, λ
∆d

− k
)

(4.10)

×rect

(
x+ s(λ)

∆c

−m′, y
∆c

− n′, λ
∆L

− k′
)

rect

(
x

∆d

−m, y
∆d

− n
)
dxdydλ.

For ease of calculations, let assume that ∆ = ∆c = ∆d, and that the number of optical

filters in the color coded aperture, indexed by k′, can be discretized to match with the

wavelengths of the datacube indexed by k (that is, ∆d = ∆L). Also, given that the

dispersion occurs only along the x-axis, then n = n′, that is, the number of rows in the

datacube and in the sensor remains the same, and thus they can be similarly indexed.

Therefore Eq. (4.10) becomes,

gn,m =
∑
m′,k

tn,m′,kfn,m′,k (4.11)∫∫∫
rect

(
x+ s(λ)

∆
−m′, y

∆
− n, λ

∆
− k
)

rect
( x

∆
−m, y

∆
− n

)
dxdydλ.

56



thmn ),(

thmn )1,( +

Δ

Δλk λk+1

)(ls

D+¢ )1(m

thmn ),(Δ

Δλk λk+1

D¢m

D+ )1(m

Dm

D+ )2(m

÷
ø
ö

ç
è
æ

DD
λ,xrect ÷

ø
ö

ç
è
æ

D
+ λ,
Δ

)s(xrect l

1
, )( kmnw

Voxel: Dispersed 
Voxel:

Detector:

2
, )( kmnw

÷
ø
ö

ç
è
æ
D
xrect

Figure 4.2: Propagation of a single voxel through the CSI system

To evaluate the triple-integral in Eq. (4.11), let us define the dispersion function as,

s(λk) − s(λk+1) = ∆; that is, the bandwidth of each spectral band of the datacube is

given by how much of the dispersion spread impinges onto a single pixel of the sensor ∆.

Figure 4.2 shows the propagation of a single voxel of the datacube through the dispersive

element, seen from atop. Note that the single voxel (n,m, k) spreads onto more than a

single sensor pixel (n,m) and (n,m + 1), due to the continuous nature of the dispersion

function [42]. Mathematically, the portion of the (n,m′, k)th voxel that impinges onto the

(n,m)th sensor pixel can be written as,

(wn,m)m−k−m
′

k =

(n+1)∆;(m+1)∆;λk+1∫∫∫
n∆;m∆;λk

rect

(
x+ s(λ)

∆
−m′, y

∆
−n, λ

∆
−k
)

rect
(x
∆
−m, y

∆
−n
)
dxdydλ,

(4.12)

therefore, Eq. (4.11) can be rewritten as,

gn,m =
∑
m′,k

tn,m′,kfn,m′,k (wn,m)m−k−m
′

k . (4.13)

Letting r = m− k −m′, index the number of sensor pixels a single voxel impinges onto,

r = 0, . . . , R − 1 with R being the maximum number of pixels affected, the succinctly
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version of the discrete measurement is given by

gn,m =
∑
r,k

tn,m−k−r,kfn,m−k−r,k (wn,m)rk . (4.14)

4.2.3 C-CASSI Matrix Representation

Let assume the underlying datacube is of size N×N×L, with N×N spatial pixels

and L spectral bands. Then, denote Q = N2L as the number of voxels of the datacube,

V = N(N +L+R−2) as the number of sensor pixels, and K as the number of snapshots

to be captured. The discrete values of the color coded aperture tn′,m′,k′ , the datacube

fn′,m′,k′ , and the dispersion weights (wn,m)rk can be transformed to vector form by,

(f)q = f(q−b qN cN),(b qN c−b
q

N2 cN),b q

N2 c
, (4.15)

(
t`k
)
p

= t`(p−b pN cN),b pN c,k
, (4.16)

(wr
k)p = (w(p−b pN cN),b pN c

)rk (4.17)

for p = 0, 1, . . . , N2 − 1, q = 0, 1, . . . , Q − 1 and ` = 0, 1, . . . , K − 1. Then, it is possible

to denote the compressive measurements given in Eq. (4.14) as the linear system,

g` = H`f = PT`f , (4.18)

where the sensing matrix H` can be decomposed in the effect of the color coded aperture

(matrix T` ∈ RQ×Q), and that of the dispersive element (matrix P ∈ RV×Q), such that,

T` =


diag(t`0) 0N2×N2 · · · 0N2×N2

0N2×N2 diag(t`1) · · · 0N2×N2

...
...

. . .
...

0N2×N2 0N2×N2 · · · diag(t`L−1)

 (4.19)
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and P =
∑R−1

r=0 P̃r, with,

P̃r =



0rN×Q

diag(wr
0) 0N×N2 · · · 0N×N2

0N×N2 diag(wr
1) · · · 0N×N2

...
...

. . .
...

0N×N2 0N×N2 · · · diag(wr
L−1)

0(R−1−r)N×Q


, (4.20)

where 0a×a represents an a× a all-zero matrix, and diag(v) an N2×N2 matrix, with the

vector v in the diagonal. Figure 4.3 presents an sketch of the higher-order sensing matrix

H in Eq. (4.18), for a 16× 16× 4 datacube, with R = 2 and K = 1.

4.3 Sensing Matrix Analysis

The sensing process in Eq. (4.18) models the sensing operator as a “black-box”

process with f as the input, and g` as the output. In order to recover an estimation of

the datacube f from the measurements g`, the inverse of the sensing operator H` must

be found. However, note that this linear system is under-determined, and exhibits a

compression ratio of R = V/Q, thus direct inversion is not possible. Therefore, we need

to force the sensing operator to exhibit a close to well-conditioning behavior in order to

obtain a good inversion. Particularly, let first focus on the entries of the sensing matrix

H, and their dependency on the color coded aperture. The goal is to express the sensing

matrix in terms of the entries of the coded aperture, such that a correct design of the

later entails a well conditioning of the former.

4.3.1 Transfer Function (Matrix H) Entries

Matrices in Eqs. (4.19) and (4.20) can be denoted also as T` = [̃t`0, t̃
`
1, . . . , t̃

`
Q−1]

and P = [p0,p1, . . . ,pQ−1], respectively, where t̃q ∈ IRQ and pq ∈ IRV . Therefore, the

entries of the matrix H` =
[
h`0,h

`
1, . . . ,h

`
Q−1

]
are given by,

(h`q)v =

Q−1∑
q′=0

(pq′)v (̃t
`
q)q′ , (4.21)
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Figure 4.3: Sketch of the higher-order sensing matrix H` for a datacube of size 16 ×
16 × 4. The diagonals refer to the wavelength-dependent coding pattern(
t`k
)

weighted by the corresponding dispersion distribution (wr
k). The N

off-set between the diagonals correspond to the column-wise representation
of the dispersion.

where,

(̃t`q)q′ =


(
t`b q

N2 c

)
q′−b q′

N2 cN2
, if q = q′

0, otherwise

(4.22)

(pq′)v =


(

wr⌊
q′
N2

⌋)
q′−b q′

N2 cN2

, if v = q′ − q′′r

0, otherwise

(4.23)

with q′′r =
⌊
q′

N2

⌋
N2 + rN , for v = 0, 1, . . . , V − 1. Expanding Eq. (4.21) in terms of Eqs.

(4.22) and (4.23), and noting that Eq. (4.22) is a block-diagonal matrix, it is obtained,

(h`q)v=


(
wr

b q

N2 c

)
q−b q

N2 cN2

(
t`b q

N2 c

)
q−b q

N2 cN2
, if v = gr

0, o.w.

(4.24)

where gr = q−
⌊
q
N2

⌋
N2+rN . In order to obtain a reconstruction from a under-determined

linear system of equations, certain conditions must be imposed such that the recovery

becomes feasible. The theory of compressive sensing (CS) has emerged to solve this kind

of problems in a reliable way. One of the general conditions CS imposes is over the input
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data. It says that, the input data should follow a compact (sparse) representation when

projected over an orthonormal basis domain. This can be mathematically modeled as,

g = Hf = HΨθ = Aθ (4.25)

where H =
[
(H0)T , (H1)T , . . . , (HK−1)T

]T
and θθθ ∈ IRQ is a compact (or sparse) version of

the signal f , in the basis Ψ ∈ IRQ×Q. The vector θ is said to be a compact representation

of f because all the information of the latter is concentrated in just few coefficients of the

former. That is, ‖supp(θ)‖ = ‖{j : |θj| > 0}‖ = S, with S << Q. The entries of the

multiple-shot matrix H ∈ IRKV×Q in Eq. (4.25) are given by,

(hq)i′=


(
wr

b q

N2 c

)
q−b q

N2 cN2

(
t
b i
′
V
c

b q

N2 c

)
q−b q

N2 cN2

, if i′ = g′r

0, o.w.

(4.26)

where g′r = gr−b i
′

V
cV , for i′ = 0, 1, . . . , KV −1. Note that the entries of H depend indeed

on the entries of the color coded aperture and the dispersion weight distribution.

4.3.2 Analysis of the Compressive Sensing Matrix A

By multiplying the transfer function H with the representation basis Ψ, the com-

pressive sensing matrix A ∈ IRKV×Q is obtained, as shown in Eq. (4.25). Based on

the sparse assumption, CS permits to recover an estimation of the data cube f̂ from the

compressive measurements g by solving

f̂ = Ψ−1
(
argminθ′‖g −Aθ′‖2

2 + τ‖θ′‖1

)
, (4.27)

with τ > 0 being a regularization parameter, which penalizes the seeking of the sparsest

solution. Apart from the sparsity assumption over the input data, CS also requires that

the matrix A satisfy certain condition, such as the restricted isometry property (RIP),

or similarly, that the matrices H and Ψ be mutually incoherent [19]. Satisfying these

conditions guarantee, with high probability, the correct estimation of the input signal. In

particular, the RIP for the matrix A of order S is defined as the smallest constant δS such
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that,

(1− δS) ‖θ‖2
2 ≤ ‖Aθ‖2

2 ≤ (1 + δS) ‖θ‖2
2, (4.28)

where,

δS = max
ρ⊂[Q],|ρ|≤S

‖AT
|ρ|A|ρ| − I‖2

2, (4.29)

with A|ρ| being a KV × |ρ| matrix whose columns are equal to |ρ| columns of A indexed

by the set ρ, and I is an identity matrix [41]. Note that, to satisfy the RIP condition,

the matrix A must be carefully designed, such that a small δS is obtained. The design of

the sensing matrix A relies directly on the selection of a suitable representation matrix

Ψ along with the structure of the sensing matrix H. In our case, H directly depends on

the entries of the color coded apertures t`k and the dispersion function weights wr
k. In

particular, the entries of A = HΨ = [a0, a1, . . . , aQ−1], where Ψ =
[
ψ0 ψ1 . . .ψQ−1

]
, are

given by,

(aj′)i′=

Q−1∑
q=0

(hq)i′
(
ψj′

)
q

=
∑

{q|i′=g′r}

(
wr

b q

N2 c

)
q−b q

N2 cN2

(
t
b i
′
V
c

b q

N2 c

)
q−b q

N2 cN2

(
ψj′

)
q

=
R−1∑
r=0

L−1∑
k=0

(wr
k)i′−(k+r)N−b i′V cV

(
t
b i
′
V
c

k

)
i′−(k+r)N−b i′V cV

(
ψj′

)
i′−(k+r)N−b i′V cV+kN2(4.30)

where the last equation is obtained after some math explained in Appendix 4.7. In

consequence, the matrix A|ρ| is given by,

(
A|ρ|

)
i′,l

=(aΩl)i′ ,

=
R−1∑
r=0

L−1∑
k=0

(wr
k)i′−(k+r)N−b i′V cV

(
t
b i
′
V
c

k

)
i′−(k+r)N−b i′V cV

(
ψΩl

)
i′−(k+r)N−b i′V cV+kN2(4.31)

for l = 0, . . . , |ρ| − 1 and Ωl ∈ {0, . . . , Q− 1}.

4.3.3 Grammian Matrix Analysis

Following Eq. (4.29), let define the Gram matrix of
(
A|ρ|

)
as G|ρ||ρ| = AT

|ρ|A|ρ|.

Therefore, the constant δS can be rewritten as, δS = maxρ⊂[Q],|ρ|≤S ‖G|ρ||ρ| − I‖2
2, where
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the entries of G|ρ||ρ| are given by,
(
G|ρ||ρ|

)
l1,l2

=

=
KV−1∑
i′=0

(
AT
|ρ|
)
l1,i′

(
A|ρ|

)
i′,l2

=
KV−1∑
i′=0

[
R−1∑
r=0

L−1∑
k=0

(wr
k)i′−(k+r)N−b i′V cV

(
t
b i
′
V
c

k

)
i′−(k+r)N−b i′V cV

(
ψl1

)
i′−(k+r)N−b i′V cV+kN2

]

×

R−1∑
r̃=0

L−1∑
k̃=0

(
wr̃
k̃

)
i′−(k̃+r̃)N−b i′V cV

(
t
b i
′
V
c

k̃

)
i′−(k̃+r̃)N−b i′V cV

(
ψl2

)
i′−(k̃+r̃)N−b i′V cV+k̃N2

(4.32)

where l1, l2 = 0, . . . , |ρ|− 1. Equation (4.32) can be rewritten succinctly as,
(
G|ρ||ρ|

)
l1,l2

=

K−1∑
`=0

V−1∑
i=0

R−1∑
r=0

L−1∑
k=0

R−1∑
r̃=0

L−1∑
k̃=0

(wr
k)i−(k+r)N

(
wr̃
k̃

)
i−(k̃+r̃)N

×
(
t`k
)
i−(k+r)N

(
t`
k̃

)
i−(k̃+r̃)N

(
ψl1

)
i−(k+r)N+kN2

(
ψl2

)
i−(k̃+r̃)N+k̃N2 . (4.33)

Note that minimizing δS requires minimizing the maximum off-diagonal element

of the matrix G|ρ||ρ|− I. Therefore, minimizing δS requires minimizing the cross-products

in Eq. (4.33), or in other words, the shifted-cross correlation of the Grammian matrix.

4.4 Higher order color coded aperture optimization

Given that the weights wr
k and the basis Ψ are fixed and bounded, the first depends

on the dispersive element, and the second on a-priori selection, the entries of G|ρ||ρ| in Eq.

(4.33) can be bounded by the variable,

β =
K−1∑
`=0

V−1∑
i=0

R−1∑
r=0

L−1∑
k=0

R−1∑
r̃=0

L−1∑
k̃=0

(
t`k
)
i−(k+r)N

(
t`
k̃

)
i−(k̃+r̃)N

(4.34)

whose minimization yields to an upper bound of the parameter δs, and so, to better satisfy

the RIP. Remark that keeping the basis vectors (ψ) yield to a joint design of the sensing

matrix and the representation basis, which was deeply discussed in [65] for a general

sensing matrix. Note however, that designing both matrices implies a high computational

burden, as well as it leads to an ad-hoc basis design.

Note that β can be minimized by minimizing the products of the entries of the
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color coded aperture (t`k)i−(k+r)N × (t`
k̃
)i−(k̃+r̃)N . For ease of interpretation let express Eq.

(4.34) in terms of the actual entries of the color coded aperture by using the 1D-to-3D

transformation introduced in Eq. (4.16). Thus,

β =
K−1∑
`=0

N−1∑
i=0

V
N
−1∑

j=0

R−1∑
r=0

L−1∑
k=0

R−1∑
r̃=0

L−1∑
k̃=0

t`i,j−(k+r),kt
`
i,j−(k̃+r̃),k̃

. (4.35)

Analyzing the range of variability of the subindices i, j, r, k, r̃ and k̃, minimizing β requires

separating the translucent elements (band-pass filters) of the coded aperture, R+L pixels

apart horizontally, along all the L spectral bands. That is, this problem can be cast as

the minimization of the products of the entries of the coded aperture within a window

of size 2(R + L) × L along the (x − λ) axis, centered at each pixel (i, j, k), for every `th

snapshot being captured. In addition, even though we do not consider the basis vectors ψ

in the minimization of β, its a-priori selection gives us clues about its structure. Common

selections of this basis for CSI include L-long Kronecker products between Wavelets and

Cosines; thus, high correlations in the basis will occur every L steps. Therefore, we aim to

spread the band-pass elements of each color coded aperture in every of the sub-windows

of size 2L× 2(R + L)× L along all its rows, columns and slices.

In order to avoid reaching the trivial solution (all-zero entries), the color coded

aperture entries have to satisfy the minimum light throughput constraint
∑K−1

`=0 t`k =

1, for k = 0, . . . , L − 1, and K ≥ 2. That is, each voxel of the data cube must be sensed

at least and only once. Consequently, for a single snapshot sensing (K = 1), the light

throughput will be 50%. Formally, this can be written as the optimization problem

argmin
{t`0,...,t`L−1}

K−1

`=0

β

subject to
K−1∑
`=0

t`k = 1, for k = 0, . . . , L− 1. (4.36)

4.4.1 Optimization Algorithm

To solve the optimization problem proposed in Eq. (4.36), we developed an itera-

tive algorithm which randomly walks along all the pixels of a set of randomly generated
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color coded apertures satisfying the complementarity constraint. In every step, the al-

gorithm filters the subwindow of size 2L × 2(R + L) × L centered at the current pixel

with an specially designed 3D-Euclidean filter, and evaluates the objective function of

the problem for every `th snapshot. The snapshot pixel that gives the lowest objective

value is set to 1 (band-pass pixel), and the rest of the snapshots at the same position are

set to 0 (blocking pixel). This way, the algorithm satisfies the complementary constraint

at the same time that the objective function is minimized. The algorithm iterates on

the updated coded apertures until the objective function stops decreasing, or until β lies

within a certain threshold.

Algorithm 1 details the steps followed by the optimization algorithm. It requires

the size of the datacube N×N×L, the number of snapshots K, the higher-order dispersion

pixels R and the 3D filter Ξ. Lines 2-7 perform the initialization of the complementary

coded apertures by using Algorithm 2 (see Appendix 4.8). Lines 8-19 detail the main loop

of the algorithm. Line 9 returns the triplets of the random walk to be performed along

the 3D coded aperture, detailed in Algorithm 3 (see Appendix 4.8). For each one of the

triplets, a subwindow of size 2L× 2(R+L)×L centered at the triplet pixel is selected for

every snapshot in Line 13, as performed in Algorithm 4 (see Appendix 4.8), and filtered

in Line 14, where β is also evaluated. Line 16 returns the snapshot that gives the smaller

β, and Line 17 assigns the band-pass element to that snapshot. Lines 8-19 are repeated

until the cost function stop decreasing, or the maximum number of iterations is achieved.

4.4.2 Euclidean Filter Design

The filtering step is critical for the minimization of β, and even more critical the

filter being used. We follow the intuition on the goal of spreading the translucent elements

along a 3D cube of size 2L × 2(R + L) × L, and so we decided to design, what we have

called, a 3D spreading Euclidean filter. This filter is of size 2L− 1× 2(R+L)− 1×L− 1

and the weights are calculated inversely proportional to the Euclidean distance between

the points in a 3D mesh, with respect to the central pixel. That is, the entries of the filter

are given by

Ξa,b,c =
(√

(a− a0)2 + (b− b0)2 + (c− c0)2
)−1

, (4.37)
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Algorithm 1 CCA Optimization Algorithm

1: procedure CCA-Opt(N,L,K,R,Ξ)
2: for k ← 0, L− 1 do . Initialization of CCAs
3: Tk ← BooleanCCA(N,K)
4: for `← 0, K − 1 do
5: t`k ← vec

(
Tk(:, :, `)

)
6: end for
7: end for
8: repeat . Main iterative loop
9: M← 3DMeshRandWalk(N,L)

10: for each triplet (i, j, k) ∈M do
11: for `← 0, K − 1 do
12: t`i,j,k ← 0

13: T̂` ←Window(T`, (i, j, k), L,R)
14: β` ← sum(vec(T̂` ◦Ξ))
15: end for
16: ˆ̀← MinIdx(β0, . . . , βL−1)

17: t
ˆ̀
i,j,k ← 1

18: end for
19: until Stopping criteria is met (Iter, Tol, No change)

20: return
{
t`0, . . . , t

`
L−1

}K−1

`=0
. K optimized CCAs

21: end procedure

for each triplet (a, b, c) within the filter. Note that a0 = b0 = c0 = 0, when the origin of

the filter is assumed to be the central pixel. In addition, the entries of the filter along the

central column, central row, and central slice are set to the maximum value of the filter.

This is done after realizing that these central coordinates contribute the most correlations

to β. Figure 4.4 shows an sketch of the spreading filter.

4.5 Simulation Results

To evaluate the outcome of the proposed method, we perform a comparison against

random, boolean, and the coded apertures resulting of the row-wise optimization proposed

in [41]. We first evaluate the conditioning of the sensing matrix using each of these coded

apertures, and then we compare their performance with actual sensing and reconstruction

of 6 different spectral datacubes in terms of PSNR and SSIM.
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Figure 4.4: Sketch of the 3D spreading Euclidean filter Ξ.

4.5.1 Coded Aperture Optimization Comparison

A widely used method to compare different measurement strategies is the singular

value spread analysis of the sensing matrices A from each method [67]. This analysis

does not depend on prior information about the scene, but directly on the sensing matrix.

In particular, it calculates the condition number (κ) of the matrix, defined as the ratio

between the greatest singular value and the smallest nonzero singular value, to measure

how ill-conditioned is the problem. The closer the condition number to 1, the better

conditioned the matrix, being 1 the ideal scenario. Figure 4.5 shows the SVD curves of

the 4 methods being compared for a color coded aperture with N = 256, L = 8, using

K = 2 (Fig. 5(a)) and K = 4 (Fig. 5(b)) snapshots. It can be seen that the proposed

method attain the best condition number for the first 1000 components, κ = 1.0168

(for K = 2), and κ = 1.034 (for K = 4), and a slower-decaying behavior of the SVD

coefficients, which mean, that the sensing matrix is prone to capture more orthogonal

components of the scene, and thus to attain a better recovery [67].

Subsections of the previously compared color-coded apertures, along with zoomed

versions, are depicted in Fig. 4.6. The boolean realization is not shown because of its

similarity to the random. Recall that a color-coded aperture can be regarded as a 3D

cube of black-and-white elements; thus, a front view (along x − y axis) and a top view

(along x−λ axis) are shown. There, it can be seen that the row-wise optimization exhibits

a structured pseudo-random behavior due to its row-wise optimization nature, and the

spread is done just spatially. In contrast, the random and our proposed method spread

the non-zero values along the 3 dimensions. Note however, that the spread attained by
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Figure 4.5: Analysis of the singular value spread of the sensing matrices A for the
3 different color coded apertures, with N2 = 2562 spatial pixels, L = 8
spectral bands, and (a)K = 2 snapshots, (b) K = 4 snapshots.

the proposed method is more uniform spatially and spectrally than the random, where

clusters of translucent elements are present.

Table 4.1: PSNR and SSIM results for the 6 spectral images with L = 8

Database Lego Beads Feathers Flowers Pompons Thread-spools

Shots Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

K=2

Rand 29.64 0.64 22.23 0.51 28.45 0.49 28.68 0.41 29.84 0.65 30.66 0.54
Bool 30.08 0.65 22.38 0.52 28.75 0.50 28.79 0.42 30.50 0.66 31.07 0.55

Row-wise 30.21 0.65 22.68 0.52 28.90 0.50 29.05 0.43 30.52 0.66 31.20 0.56
Proposed 30.37 0.65 23.25 0.53 29.25 0.51 29.49 0.43 30.60 0.66 31.55 0.57

K=4

Rand 35.36 0.73 27.49 0.71 33.09 0.59 33.08 0.49 34.72 0.75 36.15 0.63
Bool 37.71 0.79 28.10 0.74 34.60 0.68 34.96 0.58 37.71 0.82 38.21 0.70

Row-wise 37.99 0.84 28.98 0.77 35.58 0.74 35.59 0.63 38.67 0.84 39.42 0.78
Proposed 40.24 0.85 29.81 0.79 36.41 0.76 37.09 0.64 39.73 0.86 40.52 0.80

K=6

Rand 37.28 0.76 29.08 0.76 33.46 0.65 35.53 0.57 35.57 0.80 37.47 0.73
Bool 41.10 0.84 31.19 0.82 37.87 0.76 38.54 0.65 40.85 0.88 42.31 0.81

Row-wise 46.69 0.90 36.11 0.92 42.49 0.87 42.68 0.75 46.04 0.94 47.99 0.88
Proposed 48.37 0.91 36.03 0.92 42.61 0.88 43.70 0.75 46.21 0.94 48.31 0.89

K=8

Rand 38.31 0.76 29.84 0.79 35.93 0.70 36.56 0.60 37.07 0.84 38.79 0.74
Bool 44.35 0.88 33.28 0.87 40.10 0.83 40.91 0.71 42.73 0.91 44.57 0.85

Row-wise 55.06 0.97 44.23 0.97 50.29 0.96 51.14 0.88 53.01 0.98 55.84 0.95
Proposed 57.60 0.97 45.65 0.98 52.21 0.98 53.79 0.91 55.76 0.99 58.79 0.96

4.5.2 Testing the CCAs in the CSI system

To test the impact of the proposed coded aperture optimization algorithm in the

quality of the reconstruction of spectral images, we evaluate the performance in 6 different

spectral scenes with N×N = 256×256 pixels of spatial resolution, and L = 8 and L = 24

spectral bands equally spaced along the visible spectrum between 400 and 700 nm. We

tested several scenarios using different amounts of snapshots K = 2, 4, . . . , L, and four
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(b) Each pixel is the average color of the filters in the zoomed version.

Figure 4.6: Comparison of color coded apertures with L = 24 and N = 128. (a) Front
and top-view of the 3D black-and-white representation to easily identify the
3D spreading. (b) Single realization for K = 2, 4 and 8 snapshots.
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Figure 4.7: Comparison of the reconstructions in terms of PSNR (first row) and SSIM
(second row) for different snapshots using the four kinds of coded apertures
for the 6 databases with L = 24 bands.

types of coded apertures: Random, Boolean, Row-wise optimized and the Proposed. The

Boolean coded apertures are similar to the Random ones, but they satisfy the complemen-

tary constraint in Eq. (4.36). To solve the CS inverse problem in Eq. (4.27), we employed

the gradient projection for sparse reconstruction (GPSR) algorithm [29], using the Kro-

necker product between the 2D Wavelet Symlet 8 transform and the 1D discrete cosine

transform, as the representation basis function Ψ. This configuration and this algorithm

have shown to be reliable and relatively fast to attain good reconstructions, although a

large variety of solvers exist including, the constrained-split augmented lagrangian shrink-

age algorithm (C-SALSA) [68], the two-step iterative shrinkage/thresholding (TwIST)

[53], Gaussian mixture models (GMM) [54], and denosing algorithms based on approxi-

mate message passing (AMP) [33]. The penalization parameter τ in Eq. (4.27) was found

by try and error within the range τ ∈ [2e− 6, 3e− 4], and the one that attained the max-

imum PSNR and SSIM was selected for each case. Ten realizations of this experiment

were executed and the final results, described next, were averaged.

Table 4.1 and Fig. 4.7 summarize the reconstruction results in terms of the peak

signal to noise ratio (PSNR) and the structural similarity index (SSIM), for the databases

with L = 8 and L = 24, respectively. Remark that the larger the PSNR the better the

reconstruction, and similarly, the closest the SSIM index to 1, the better the reconstruc-

tion. It can be noticed in this table and figure, that the proposed optimization algorithm

generates better color coded apertures for the CSI system, as its PSNR and SSIM over-

comes the ones attained with the row-wise optimization and the random/boolean coded
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apertures. It worth pointing out that the proposed algorithm perform better for larger

number of snapshots since the number of non-zero values, per snapshot, decreases to sat-

isfy the complementary constraint in Eq. (4.36), thus having more room to freely spread

the non-zero values.

Figure 4.8 shows a comparison of the estimated spectral images when K = 4 snap-

shots are captured by the CSI system. There, it can be noticed the better quality attained

by the proposed coded apertures over the other methods, for the 6 different databases.

Two zoomed versions of each reconstruction are shown to facilitate the comparison. Fi-

nally, Figs. 4.9 - 4.11 shows 6 out of the 24 spectral bands of the zoomed versions for the

Lego, Beads and Feathers databases, to evaluate the improvement at wavelength level.

Note that the images in the down-most row of each subfigure preserves better the edges,

and they are more artifact-free.

4.6 Conclusions

A higher order discrete sensing matrix of the optical phenomena in color-coded

aperture based CSI systems has been reported. Also, an optimization algorithm exploiting

this higher order discrete matrix was developed for the correct design of colored coded

apertures by means of a 3D Eucledian spreading filter. The proposed method entail

better conditioned sensing matrices, reflected in the condition numbers κ = 1.0168 (for

K = 2), and κ = 1.034 (for K = 4), for the first 1000 components of the singular

value spread. Furthermore, the proposed optimal color coded apertures overcomes the

reconstruction quality attained with up-to-date proposed coded aperture optimization

procedures. In particular, ours entail an improvement of up to 13 dBs in terms of PSNR

against random/boolean distributions and up to 3 dBs against the row-wise optimization

proposed in [41] for spectral scenes with L = 8 bands. When the spectral scenes exhibited

more spectral bands (L = 24), the proposed coded apertures entailed an improvement of

up to 20 dBs against random/boolean, and up to 7 dBs against the row-wise optimized.
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 Random  PSNR = 17.99  K = 4

 Boolean  PSNR = 19.14  K = 4

 Row-wise  PSNR = 30.02  K = 4

Figure 4.8: Reconstructed datacubes mapped to RGB profile when K = 4 snapshots
(≈ 16% of the data) are captured. From left to right there is shown the
6 databases: First, the Lego database, which was captured in our lab, and
then, the other 5 (beads, feathers, flowers, pompoms and thread-spools),
respectively, downloaded from [2]. The insets show 2 zoomed regions of
each scene for easy comparison. From top to bottom we have the ground-
truth image, and then the results attained with Random, Boolean, Row-wise
and the Proposed color coded apertures.
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426 nm Ground-truth 478 nm Ground-truth 530 nm Ground-truth 583 nm Ground-truth 635 nm Ground-truth 687 nm Ground-truth

426 nm Boolean 478 nm Boolean 530 nm Boolean 583 nm Boolean 635 nm Boolean 687 nm Boolean

426 nm Row-wise 478 nm Row-wise 530 nm Row-wise 583 nm Row-wise 635 nm Row-wise 687 nm Row-wise

426 nm Proposed 478 nm Proposed 530 nm Proposed 583 nm Proposed 635 nm Proposed 687 nm Proposed

Figure 4.9: Zoomed version of the 3rd, 7th, 11th, 15th, 19th and 23th reconstructed spectral
bands of the L = 24 Lego database, using K = 4 snapshots (≈ 16% of the
data). (First row) Ground truth, (Second row) Boolean, (Third row) Row-
wise optimization, and (Fourth row) Proposed optimization.

4.7 How to obtain Eq. (4.30)

The entries of the matrix A = HΨ are given by,

(aj′)i′=

Q−1∑
q=0

(hq)i′
(
ψj′

)
q

=
∑

{q|i′=g′r}

(
wr

b q

N2 c

)
q−b q

N2 cN2

(
t
b i
′
V
c

b q

N2 c

)
q−b q

N2 cN2

(
ψj′

)
q

Recall Fig. 4.3. Note that each matrix H` is an L-long horizontal concatenation of
R vertically N -times shifted N2 ×N2 diagonal matrices with the coding pattern in each
diagonal. Therefore we can perform an analysis of the entries of the A matrix per rows
as follows.

1) For 0 ≤ i′ ≤ N − 1:
(aj′)i′ = (hi′)i′(ψj′)i′

2) For N ≤ i′ ≤ 2N − 1:

(aj′)i′ = (hi′−N)i′(ψj′)i′−N + (hi′)i′(ψj′)i′ + (hN2+i′−N)i′(ψj′)N2+i′−N (4.38)
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426 nm Ground-truth 478 nm Ground-truth 530 nm Ground-truth 583 nm Ground-truth 635 nm Ground-truth 687 nm Ground-truth

426 nm Boolean 478 nm Boolean 530 nm Boolean 583 nm Boolean 635 nm Boolean 687 nm Boolean

426 nm Row-wise 478 nm Row-wise 530 nm Row-wise 583 nm Row-wise 635 nm Row-wise 687 nm Row-wise

426 nm Proposed 478 nm Proposed 530 nm Proposed 583 nm Proposed 635 nm Proposed 687 nm Proposed

Figure 4.10: Zoomed version of the 3rd, 7th, 11th, 15th, 19th and 23th reconstructed spec-
tral bands of the L = 24 Beads database, using K = 4 snapshots (≈ 16%
of the data). (First row) Ground truth, (Second row) Boolean, (Third
row) Row-wise optimization, and (Fourth row) Proposed optimization.

3) For 2N ≤ i′ ≤ 3N − 1:

(aj′)i′ = (hi′−2N)i′(ψj′)i′−2N + (hi′−N)i′(ψj′)i′−N

+(hi′)i′(ψj′)i′ + (hN2+i′−2N)i′(ψj′)N2+i′−2N

+(hN2+i′−N)i′(ψj′)N2+i′−N

In general, from these 3 cases we can generalize (aj′)i′ =

R−1∑
r=0

L−1∑
k=0

(
h
i′−(k+r)N−b i′V cV+kN2

)
i′

(
ψj′

)
i′−(k+r)N−b i′V cV+kN2 .

Replacing the entries of h given in Eq. (4.26), we get

(aj′)i′ =
R−1∑
r=0

L−1∑
k=0

(wr
k)i′−(k+r)N−b i′V cV

(
t
b i
′
V
c

k

)
i′−(k+r)N−b i′V cV

(
ψj′

)
i′−(k+r)N−b i′V cV+kN2 .

4.8 Algorithm subroutines
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Algorithm 2 Subroutine BooleanCCA
1: procedure BooleanCCA(N,K)
2: T← 0 ∈ RN×N×K . All-zero initialization
3: for each spatial position (i, j) do
4: ˆ̀← rand(1,K)
5: ti,j,ˆ̀← 1
6: end for
7: return T
8: end procedure

Algorithm 3 Subroutine 3DMeshRandWalk
1: procedure 3DMeshRandWalk(N,L)
2: X ← randperm(N)
3: Y ← randperm(N)
4: Z ← randperm(L)
5: for i← 1, N do
6: for j ← 1, N do
7: for k ← 1, L do
8: [M [i],M [j],M [k]]← [X[i], Y [j], Z[k]]
9: end for

10: end for
11: end for
12: return M
13: end procedure

Algorithm 4 Subroutine Window

1: procedure Window(T`, (i, j, k), L,R)
2: for i← 1, 2L− 1 do
3: for j ← 1, 2(L+R)− 1 do
4: for k ← 1, L− 1 do
5: t̂i,j,k = t`(i−L),(j−L−R),(k−L/2)
6: end for
7: end for
8: end for
9: return T̂

10: end procedure
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426 nm Ground-truth 478 nm Ground-truth 530 nm Ground-truth 583 nm Ground-truth 635 nm Ground-truth 687 nm Ground-truth

426 nm Boolean 478 nm Boolean 530 nm Boolean 583 nm Boolean 635 nm Boolean 687 nm Boolean

426 nm Row-wise 478 nm Row-wise 530 nm Row-wise 583 nm Row-wise 635 nm Row-wise 687 nm Row-wise

426 nm Proposed 478 nm Proposed 530 nm Proposed 583 nm Proposed 635 nm Proposed 687 nm Proposed

Figure 4.11: Zoomed version of the 3rd, 7th, 11th, 15th, 19th and 23th reconstructed spec-
tral bands of the L = 24 Feathers database, using K = 4 snapshots (≈ 16%
of the data). (First row) Ground truth, (Second row) Boolean, (Third row)
Row-wise optimization, and (Fourth row) Proposed optimization.
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Chapter 5

MULTI-SPECTRAL COMPRESSIVE SNAPSHOT IMAGING USING
RGB IMAGE SENSORS

Compressive sensing is a powerful sensing and reconstruction framework for re-

covering high dimensional signals with only a handful of observations and for spectral

imaging, compressive sensing offers a novel method of multispectral imaging. Specifically,

the coded aperture snapshot spectral imager (CASSI) system has been demonstrated

to produce multi-spectral data cubes color images from a single snapshot taken by a

monochrome image sensor. In this chapter, we expand the theoretical framework of

CASSI to include the spectral sensitivity of the image sensor pixels to account for color

and then investigate the impact on image quality using either a traditional color image

sensor that spatially multiplexes red, green, and blue light filters or a novel Foveon image

sensor which stacks red, green, and blue pixels on top of one another.

5.1 Introduction

Multispectral imaging in the visible light spectrum refers to color cameras that

record more than three primaries [69]. Composed of a monochrome image sensor taking

a series of pictures through an array of narrowband interference filters, these cameras are

especially common in the fine arts since full spectral recordings avoid issues associated with

metamerism – the apparent change in color of an object caused by changes in ambient

light. A more recent approach to multispectral imaging, the coded aperture snapshot

spectral imager (CASSI) system [30], is modeled after a traditional spectrophotometer

and records all wavelengths simultaneously. Here a ray of light emanating from the scene

is passed through a series of optical elements culminating in a prism that spreads that

single ray of light over a lateral sequence of sensor pixels, in a wavelength dependent

manner, just like a spectrophotometer would spread light across a linear CCD array.

Allowing for multiple rays of light simultaneously incident upon the sensor means that
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the camera can resolve a two dimensional image; however, because the spreading of light

rays across lateral sequences of pixels means a single pixel will collect light from multiple

sources, compressive sensing techniques must be employed to decouple the spectral profiles

of neighboring pixels [23, 42].

Perhaps simplifying the problem somewhat, color sensors may be employed such

that each pixel will only record those wavelengths of light falling within the range of its

corresponding color filter, either red, green, or blue, but such sensors lose spatial resolution

since only one quarter of the pixels are red, one quarter of the pixels blue, and the rest

green [70]. Noting that photons of light penetrate the silicon in a wavelength dependent

manner before being absorbed by the crystal lattice, Foveon manufactures a color image

sensor that effectively layers red, green, and blue pixels on top of one another such that a 1

megapixel sensor records 1 million unique red, 1 million unique blue, and 1 million unique

green values [71, 72]. Such a stacked color image sensor, like Foveon’s, could provide

a significant performance improvement for spectral recordings using CASSI, and in this

chapter, we investigate that improvement in both theoretical and experimental venues.

Specifically, we will introduce a new sensing model that incorporates the spectral response

of the image sensor, we will present and analyze its forward sensing operator, and we will

show simulated and experimental data to validate the findings. In particular, the Foveon-

based system attains around a 4 dB improvement over the traditional monochrome system,

and the color CCDs that employs a Bayer filter array attains up to 3 dB improvement,

regardless of the number of snapshots.

5.2 Camera model

In the CASSI system, the front end lens system effectively creates a light field in

front of the image sensor where all light rays travel in parallel to the Z-axis as depicted

in Fig. 5.1(a) such that f(x, y, λ) represents the light incident upon the sensor at 2-D

coordinate (x, y) and having wavelength λ. Accumulating all of the light incident upon a

discrete pixel of the sensor with row and column coordinate [m,n] results in the discrete-

space, continuous-frequency signal fm,n(λ). If we now define χm,n(λ) as the spectral

sensitivity of the sensor for that same discrete pixel, then we can define the gray or
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Figure 5.1: Illustration of the multispectral imaging principles used by CASSI.

monochrome pixel, g[m,n], of the resulting digital image according to

g[m,n] =

∫
λ

χm,n(λ)fm,n(λ)dλ. (5.1)

One would expect χm,n(λ) to be either constant for all pixels and absorb light in the

visible light range from 450 to 670 nm or selectively absorb red, green, or blue light in a

traditional Bayer pattern as illustrated in Fig. 5.1(b).

As light approaches the sensor, CASSI employs a coded aperture or diaphragm to

block all but a single ray of light from reaching the sensor as indicated in Fig. 5.1(c). We

can account for this aperture in our model by means of the binary modulation function

Tm,n ∈ [0, 1]. In order to separate the individual wavelengths of the incoming signal,

the CASSI system places a dispersive element in front of the image sensor such that

fm,n(λ) is divided into discrete bands spread across K consecutive pixels along the lateral

or n dimension in a wavelength dependent manner, indicated by S(λ). We depict this

discrete-space behavior in Fig. 5.1(d) such that,

g[m,n] =
∑
k

χm,n,kTm,n+kfm,n+k,k, (5.2)

where k = −K
2
, . . . , 0, . . . , +K

2
indexes the pixels affected by the spreading of fm,n(λ) as a
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result of S(λ). At this point, we note, as indicated in Fig. 5.1(e), that we could use the

coded aperture to allow light rays sufficiently far apart so that there is no overlap of the

corresponding light spectrums; however, doing so means only a fraction of the incoming

light field can be recorded. We could, therefore, take a series of snapshots where the open

pixels in the coded aperture sweep across the focal plane such that, in this case, we would

need to take exactly K snapshots in order to capture the K available spectral bands.

Compressive sensing (CS) [73, 17, 27, 74] tells us that, perhaps, we may take a much

smaller set of L snapshots and yet produce a spectral image very close to that produced

by the K snapshots by randomly enabling/disabling pixels through the coded aperture

as depicted in Fig. 5.1(f). Moreover, L can be further reduced when the distribution of

the enabled pixels is optimized [36].

5.3 Compressive sensing model

In order to establish a matrix representation of CASSI consistent with CS, f is

defined as a column vector containing fm,n,k for all spectral components k and all pixels

m and n ordered first by row, then column, and finally by wavelength. Assuming we have

a coded aperture with M × N pixels, f will be MNK in length. We now define g` as

a column vector holding all of the recorded pixel values, g[m,n], from the monochrome

image sensor for the `th image in our sequence of L images. Noting the laterally dispersion

of light, the length of g` is M(N+K−1) such that all light is accounted for on the sensor.

So while the coded aperture has an M ×N pixel array, the sensor has an extra set of K

pixel columns. Assuming that f stays constant over the L snapshots, we can relate g` to

f according to,

g` = XPT`f = H`f , (5.3)

where H` represents the combined effects of the sensor’s pixel-wise spectral sensitivity in

matrix form (X), the dispersion effect in matrix form (P), and the `th coded aperture

(T`).

As an illustration of the system transfer function, Fig. 5.2 depicts the non-zero en-

tries for single H` for an M = N = 4 camera sensor used to record a K = 6 multi-spectral

image where the matrix width Q = MNK is the total number of scalar measurements
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Figure 5.2: Structure of the system transfer functions H for a 4 × 4 × 6 data cube,
using a monochromatic sensor, where (top) shows the transfer function for a
typical monochrome camera, (center) shows the same camera but with the
incoming light divided into spectral bins, and (bottom) models the effects
of the dispersive element by offsetting the diagonal structure from band to
band. Note that the non-zero diagonals correspond to the entries of the
M ×N coded aperture set to be all ones.

(K values per pixel) while V = M(N + K − 1) is the total number of observed pixels.

In the case of Fig. 5.2 (top), the system transfer function is for a typical camera where

none of the incoming pixels are blocked by the coded aperture nor is there any disper-

sion. Hence, there is no need to decompose the incoming light into spectral bins. For

Fig. 5.2 (center), the system transfer function divides the incoming light into K spectral

bins, but without any dispersion, the resulting observation g` is the same as Fig. 5.2 (top).

In Fig. 5.2 (bottom), the depicted transfer function models dispersion by off-setting the

diagonal structure of the previous matrices vertically.

Because we have arranged vector f in row-major order, a lateral shift of light
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one pixel to the right on the sensor corresponds to a vertical shift of M pixels. As we

progress through all K pixels on the sensor, we end up with a transform matrix that

has M(K − 1) additional rows compared to Fig. 5.2 (center). Now having modeled the

collection of incoming light rays on a per frame basis, we can now assemble the complete

set of all L snapshots into a single transform by concatenating each g` vector end to end

to create the LM(N+K−1)×1 vector g =
[
(g0)T , . . . , (gL−1)T

]T
, which can be modeled

in Eq. (5.3) by similarly concatenating the matrices H` on top of one another to form the

single matrix H =
[
(H0)T , . . . , (HL−1)T

]T
and the transformation g = Hf .

Having now modeled the spectral imaging system as a single vector to single vector

transform, CS requires us to find a linear transform of f from its current spatial-spectral

(m,n, k) space into some other MNK-dimensional space with basis ΨΨΨ such that θθθ = ΨΨΨT f

is the vector coordinate of f in the new space. For this process to be worth-while, f

needs to be S-sparse where only a small subset, S � (M ·N ·K), of the basis vectors ΨΨΨ

can largely reconstruct f with little or no distortion [24]. Formally, f is S-sparse or has

sparsity S in a basis ΨΨΨ if ‖θθθ‖0 = S, where ‖θθθ‖0 denotes the `0-norm, which simply counts

the number of nonzero entries in the vector.

Traditional basis functions encompass the wavelet (ΨΨΨW2D) and discrete cosine

transforms (ΨΨΨDCT ) as well as pre-trained dictionaries [36, 43, 75], but it is also possi-

ble to simultaneously exploit the sparsity properties of a multidimensional signal along

each of its dimensions to provide a new representation for their structure. Doing so,

we obtain a single sparsity basis for the entire multidimensional signal as the Kronecker

product of the bases used for each of its dimensions [56, 45, 52]. Particularly for spectral

images, we will use the basis expressed as the Kronecker product between ΨΨΨW2D and

ΨΨΨDCT where ΨΨΨDCT is used to make sparse the k-axis while ΨΨΨW2D makes sparse the (m,n)

coordinates.

Having our ΨΨΨ, CS allows f to be recovered from a single g` vector since the length

of g`, V , is greater than S log(M ·N ·K) which is much smaller than M ·N ·K [36]. Having

multiple g` will, therefore, only improve the result since it corresponds to increasing the

dimensionality, S, of the sub-space, in which we are projecting f . To finally estimate f ,
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we need to solve the minimization problem,

f̃ = ΨΨΨT

(
argmin

θθθ′
||g −HΨΨΨθθθ′||2 + τ ||θθθ′||1

)
, (5.4)

where θθθ′ is an S-sparse representation of f on the basis ΨΨΨ, and τ is a regularization

constant. To solve Eq. (5.4), different methodologies and frameworks have been proposed

in the literature [53, 68, 29]. In particular, the gradient projection for sparse reconstruction

(GPSR) algorithm has been proposed in [29]. GPSR finds a sparse solution to the non-

linear, unconstrained minimization problem, where the first term minimizes the euclidean

or `2 distance between the detector measurements, g, and the contribution from the

estimate θθθ′; while the second term is a penalty term that encourages sparsity of the

reconstruction in the basis domain and controls the extent to which piecewise smooth

estimates are favored. In this formulation, τ is a tuning parameter for the penalty term

and higher values yield sparser estimates. An estimate for the data cube, f̃ , for a chosen

value of τ , is found by an iterative optimization procedure. This method searches for a

data cube estimate with a sparse representation in the chosen basis, i.e. the coefficients

in θθθ′ are mostly zeros numerically.
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Figure 5.3: FPA detector architectures along with their traditional spectral responses.
(left) Monochromatic (Source: Stingray F-033B), (center) RGB-Bayer
(Source: TMC) and (right) Foveon (Source: Foveon Quattro sensor).
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5.4 Color sensing model

As a means of extending the CS reconstruction to allow for color sensitive sen-

sors, we note that all prior works assumed a monochrome sensor model [30] where

χm,n(λ) = γ(λ) was constant for all (m,n)th pixels, as depicted in Fig. 5.3(left). In

this chapter, we intend to employ two color sensitive sensors: a traditional filter-based

RGB Bayer sensor [70] shown in Fig. 5.3(center), and an absorption-based stacked color

sensor developed by Foveon [71], presented in Fig. 5.3(right). Color sensors are employed

such that each sensor pixel records those wavelengths falling within small spectral ranges

corresponding to either the blue, green or red spectra. Figure 5.3 summarizes the 3 differ-

ent sensors along with their structure and spectral sensitivity curve in the visible window

of the electromagnetic spectrum.

Formally, each (m,n) pixel from an RGB-Bayer, or Foveon sensor exhibits a filter

function given by,

Bayer: χn,m(λ) =


bB(λ), ∀n,m ∈ Ωb

gB(λ), ∀n,m ∈ Ωg

rB(λ), ∀n,m ∈ Ωr,

,Foveon: χn,m(λ) =


bF (λ), ∀n,m

gF (λ), ∀n,m

rF (λ), ∀n,m,

(5.5)

where Ωb,Ωg and Ωr represent the sets of blue, green and red pixels of the Bayer color

pattern. Notice that the Foveon sensor entails the absorption of the total light incident in

every pixel, whereas the Bayer sensor filters out wavelengths lying outside the spectral-

sensitivity of the pixel. Remark that the relative response of the three layers of the Foveon

sensor bF (λ), gF (λ), rF (λ) exhibit a broader sensitivity compared to the corresponding

RGB filters bB(λ), gB(λ), rB(λ) from the Bayer sensor. Due to the blue on-top-of green

on-top-of red layer stack of the Foveon sensor, the blue layer absorbs part of the green

and red spectrum, and the green layer will absorb part of the red spectrum as well.

In order to modify our transform functions H`, to include variations in X, we

will essentially stack three monochrome transforms, as depicted in Fig. 5.4, on top of

one another with the first transform weighted for blue, the second weighted for green,

and the third weighted for red, according to bF (λ), gF (λ), rF (λ), for the Foveon, and

bB(λ), gB(λ), rB(λ) for the Bayer sensor. Due to the stacking process, and in order to
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be fair in the comparison between the color sensors and the monochrome sensor, 3-

monochrome snapshots will be compared against 1-color snapshot. Therefore the com-

pression ratio of the system will be K : 3L. Fig. 5.4 shows our proposed color transform

models for both Fig 5.4 (left) a spatially multiplexed Bayer sensor, versus Fig 5.4 (right)

the stacked-color Foveon sensor. It can be observed that both matrices have the same

size, but the Bayer sensor entails completely blanked rows due to the black holes on each

Bayer layer compared to the Foveon sensor, which absorbs all the blue, green, and red

spectrum in every (m,n) sensor pixel. Further, the Bayer pixel sensitivities can be seen

as, bB(λ) filters out the last portion (4 out of 6 bands) of the spectrum, gB(λ) filters out

the first (1 out of 6 bands) and the last portion (1 out of 6 bands) of the spectrum, and

rB(λ) filters out the first portion (4 out of 6 bands) of the spectrum. Similarly, the Foveon

pixel absorption is modeled as, bF (λ) absorbs the first 3/4 of the spectrum in average,

due to the broader spectral sensitivity, gF (λ) absorbs the central portion of the spectrum

and part of the last portion, and rF (λ) just the last portion of the spectrum. Aside from

this change in H`, deriving f from g is largely unchanged from the CS process used for

monochrome sensors.

Blue 
Layer 

Green 
Layer 

Red 
Layer 

Blue 
Layer 

Green 
Layer 

Red 
Layer 

Figure 5.4: Non-zero elements of the system transfer functions, H`, for a 4×4×6 data
cube, using (left) RGB-Bayer and (right) Foveon sensors.
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5.5 Simulations and experiments

In this section, we will first evaluate the proposed method through the simulation

of the process using the two color-checker patterns shown in Fig. 5.5(a) and Fig. 5.6(a),

using discrete versions of the FPA spectral responses described in Fig. 5.3. Afterward,

we will collect real data with the DMD-based CASSI imaging system built in our lab

[35] using the input target depicted in Fig.5.10(a), and commercially available RGB color

filters.

5.5.1 Simulations

In order to study the effect of the different filtering functions entailed by the color

sensors under study, a set of compressive measurements is first simulated using the forward

model in Eq. (5.3), varying the X function for a monochrome, an RGB Bayer, and a Foveon

sensor according to Fig. 5.3. These measurements are constructed employing two test

spectral data cubes acquired by illuminating the color-checker target shown in Fig. 5.5(a)

using a broadband Xenon lamp as the light source, and a visible monochromator spanning

the spectral range between 450nm and 670nm. The test data cubes, F, have 256 × 256

pixels of spatial resolution and K = 24 spectral bands. Although the coded apertures

are a key optical element in the compressive spectral imaging systems, and their design

has a great impact on the attained reconstructions quality [30, 36, 52, 41], in this chapter

we will use simple random realizations of a Bernoulli random variable with parameter

p = 0.5; that is, 50% of the coded aperture entries will be 0 and the rest will be 1. The

latter is justified because this chapter wants to focus on the impact of color sensors on

the quality of the reconstructions, but independently of the effect of the coded apertures.

The proper design of the coded apertures will improve even more the results presented in

this chapter. Although the color sensors are simulated through the use of a monochrome

sensor, they take into account the aliasing effects resulting of demosaicing in the Bayer

sensor, and the real absorption/transmission curves of the Foveon sensor. Moreover, the

three compressive spectral imaging systems compared in the manuscript are assumed to

be ideal in terms of noise, due to the different sources producing it: exposure time, kind

of sensor, photon count, quantization, heat, etc. Analysis of the noise characteristics of

the sensors lies out of the scope of this chapter.
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Figure 5.5(b) shows the reconstructions PSNR of the first test data cube, averaged

over all wavebands, as function of the compression ratio (R = L/K). Notice that R =

3/24 = 1/8 represents a single snapshot for the color sensors, and 3 for the monochrome

sensor. In Fig. 5.5(b) it can be seen that the PSNR attained in the reconstructions with

the RGB-Bayer sensor improves up to 3dB over the monochrome sensor overall. Similarly,

the Foveon sensor improves an extra dB over the RGB-Bayer. For a visual comparison,

Fig 5.5(c) depicts the K = 24 reconstructed data cube by the three sensors mapped to a

pseudo-color map when R = 1/8 and R = 1/2. The improvement in the spatial quality

(b) PSNR vs. Compression Ratio 

(c) (First column) Monochromatic, (Second column) RGB-Bayer, (Third column) Foveon. 

(a) Target scene 
 R = 1/8 PSNR = 22.32

 R = 1/2 PSNR = 24.6
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 R = 1/2 PSNR = 27.81
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Figure 5.5: Simulation results with first target scene. (a) Target scene for the simula-
tions. (b) Averaged PSNR of the reconstructed data cubes as function of
the compression ratio (R). (c) Reconstructed datacubes, using (first row)
R = 1/8 and (second row) R = 1/2.
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(b) PSNR vs. Compression Ratio 

(c) (First column) Monochromatic, (Second column) RGB-Bayer, (Third column) Foveon. 
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Figure 5.6: Simulation results with second target scene. (a) Target scene for the sim-
ulations. (b) Averaged PSNR of the reconstructed data cubes as function
of the compression ratio (R). (c) Reconstructed datacubes, using (first row)
R = 1/8 and (second row) R = 1/2. Note the color aliasing in the zoomed
version of the RGB-Bayer reconstruction.

can easily be observed as L increases (from top to bottom) or as the sensor changes from

monochrome to Bayer to Foveon (from left to right).

The second test data cube shown in Fig. 5.6 consisted of a modified version of
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the first data cube, where white diagonal lines were added to the top region of the color-

checker and equally spaced white bars were added to the bottom region. Notice that the

left portion of the bottom bars are two pixels wide, whereas the right portion correspond

to one pixel width bars. This test wanted to show the reliability of the reconstructions for

high-frequency changes, as well as the impact of the demosaicing task perfomed by the

Bayer reconstruction. Figure 5.6(b) presents the averaged PSNR of the reconstructions,

where the Bayer sensor overcomes the monochrome sensor by about 1.5 dB, and the

Foveon maintains an advantage of about 0.5 dB over the Bayer sensor reconstructions

overall. Remark that the PSNR is dramatically affected (about 10 dB less) for the three

sensors compared with Fig. 5.5(b), when the scene presents high-frequencies changes.

This issue arises in most of the algorithms that solve Eq. (5.4). It can be noticed in Fig.

5.6(c) that the diagonals in the top of the scene along with the bars in the bottom left

are recovered somehow, but the bars in the bottom right are barely reconstructed. The

zoomed versions show large color aliasing artifacts in the reconstruction attained with

Bayer sensor unlike Foveon sensor, which presents artifacts, but not color aliasing.

To analyze the reconstruction results at wavelength level, Fig. 5.7 presents the ab-

solute error of the 4th, 8th, 12th, 16th, 20th and 24th reconstructed spectral wavebands when
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Figure 5.7: Absolute errors of the reconstructions of the 4th, 8th, 12th, 16th, 20th, 24th

spectral bands, for R = 1/8, using (First row) Monochrome sensor, (Second
row) Bayer sensor, (Third row) Foveon sensor. Notice that the Foveon sensor
attains the best reconstructions between the three sensors, despite the high
frequencies (borders) are almost unrecoverable.
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a single snapshot is captured (R = 1/8). It can be observed that the error of the recon-

structions attained with the color sensors is less than that attained with the monochrome

sensor along the whole reconstructed spectrum. Remark that the major errors are con-

centrated along the high-frequencies of the scene, thus confirming the downside of the

estimation algorithms.

5.5.2 Experiments

The testbed proposed in [35] formed by an imaging arm and an integration arm,

is used to obtain the experimental results in this chapter. In this system, the imaging

arm is composed of an objective lens and a DLP spatial light modulator (DMD); the

integration arm is composed of a relay lens, a dispersive element, and a CCD camera,

as shown in Fig. 7.5. To follow the mathematical model, a target scene is illuminated

with its reflected light captured by the objective lens and focused onto the mirrors of the

spatial light modulator image plane, which plays the role of the coded aperture. When

properly aligned, the mirrors of the modulator reflect light into the integration arm, which

relays light through a second lens and then through the prism, such that the dispersed

field focuses in the CCD image plane, which imposes its spectral filtering and integration

based on its wavelength sensitivity. The DMD coded aperture patterns are the same as

described in the simulations section, random realizations of 256 × 256 pixels with 50%

transmittance. The prism used in the testbed is a non-linear double Amici prism, which

disperses the visible spectrum between 450 - 670 nm onto 24 sensor pixels. The 24 spectral

channels have central wavelengths 455, 460, 465, 470, 476, 482, 488, 494, 500, 506, 512,

519, 527, 536, 545, 555, 565, 576, 587, 599, 612, 626, 643, and 660 nanometers. Notice

that the bandwidth of the spectral channels is non-uniform due to the non-linearity of the

prism. The spectral resolution of the testbed is 5 nm for the short wavelengths, and about

15 nm for the long wavelengths. Therefore, the attained reconstructions with the testbed

will exhibit 256 × 256 pixels of spatial resolution and 24 spectral channels of spectral

resolution.

The three CCD sensors under study are emulated based on their system transfer

functions, depicted in Figs. 5.2 and 5.4, while using of a single, monochromatic sensor

(Stingray F-033B) with pixel size of ∆d = 9.9µm and 8 bits of dynamic range. The
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emulation of the monochrome sensor is straightforward, but taking 3-times more snapshots

per each snapshot of the color sensors. To emulate the Bayer sensor, the monochrome

sensor captures 3 snapshots imaged through either a red, green, or blue glass plate and

then selecting the (m,n) positions corresponding to Ωb,Ωg,Ωr in Eq. (5.5), and blocking

the remaining. Similarly, the Foveon sensor is emulated as in the Bayer case, but the

selection procedure is not required since every pixel captures all the red, green, and blue

channels. Figure 5.9 depicts the emulated compressive measurements attained by each

sensor, and their corresponding zoomed versions in order to appreciate their differences.

To evaluate the CS capabilities of each sensor, the target scene depicted in Fig.

5.10(a) is imaged through the system. Fig. 5.10(b) depicts the reconstructed data cubes

mapped to a pseudo-color profile when R = 1/8 and R = 1/2. Without a perfect im-

age to compare for calculating PSNR, visual evaluations confirm that the color sensors

improve upon the monochrome, with the Foveon and Bayer sensors, exceptionally so.

Target Illumination 

Objective 
Lens 

DMD 

Relay 
Lens 

Amici 
Prism 

CCD 
Array 

Figure 5.8: DMD-based CASSI testbed setup used in the experiments. The illuminated
target scene is imaged onto the image plane of the DMD which plays the
role of the coded aperture. Subsequently, the relay lens transmits the coded
light through the Amici prism which disperses it onto the image plane of
the CCD array.
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Bayer - Blue Bayer - Green Bayer - Red 

Foveon - Blue Foveon - Green Foveon - Red 

Figure 5.9: Real measurements for a single snapshot of the monochrome, the Bayer
and the Foveon sensor. Zoomed versions highlight the sensors differences.

As a means of quantitatively evaluating the various sensors, the spectral signatures of

two different spatial points, taken from the target scene (a point from the green chest,

and a red point from the helmet), are plotted in Fig. 5.10(c) against a reference signa-

ture measured using a commercially available spectrometer assumed as the ground truth.

Compared to a traditional monochrome sensor, both the Bayer and Foveon spectra offer

substantial improvement, the Foveon sensor especially so at the longer wavelengths. Note

that the strong background attained in the reconstructions of the monochrome sensor is

the result of the broadband spectral responsivity of the sensor. The strong background

reduces its intensity in the color reconstructions signatures due to the spectral filtering

and separability imposed by the RGB pixel-wise spectral sensitivity.

5.6 Discussion

Although the color sensors are simulated and emulated through the use of a

monochrome sensor, they take into account the aliasing effects resulting of demosaic-

ing in the Bayer sensor, and the real absorption/transmission curves of commercially

available Foveon/RGB sensors. Regarding the noise characteristics, they were not taken

into account in the manuscript. Several papers have studied the noise characteristics of

monochrome, Bayer and previous Foveon sensors [76, 77, 78, 79]. It is important to point
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(b) (First column) Monochrome, (Second column) RGB-Bayer, (Third column) Foveon. 

(a) Target scene 

(c) Spectral signatures comparison for R=1/8 (left) Green chest point. (right) Red helmet point. 
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Figure 5.10: Experimental reconstruction results. (a) Target scene for the experi-
ments. (b) Real reconstructed datacubes using R = 1/8 and R = 1/2. (c)
Spectral signatures of two reference points measured from the R = 1/8
reconstructions.

out that, although the Foveon sensors have been labeled as noisy sensors, recent versions

of Foveon, such as the Quattro sensor has reported an alleviation of this issue [80]. To

the best of our knowledge a full characterization of the noise characteristics in the Foveon

Quattro sensor has not been released nor published yet. Furthermore, the simulations and

experimental results assumed single sensor sensing, although the Quattro sensor provides

finer resolution due to the top (blue) layer partitions pixels in 4 subpixels that can be

sensed independently. Analysis of the noise characteristics as well as the higher resolution

capabilities of newer Foveon sensors, such as the Quattro, will be considered and analyzed
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in a future work.

In terms of the quality of the reconstructions, a 1 dB improvement is attained in

average by the Foveon sensor over the Bayer sensor. However, when compared against the

monochrome sensor, the color sensors overcome the monochrome sensor by about 2-4 dBs.

In addition, and most importantly, the color sensors have the advantage of just requiring

a single exposure as opposed to the three-times snapshots required by the monochrome

sensor to attain the same amount of compressive measurement

Recent research works have proposed different approaches to recover high resolution

spectral images from compressive measurements, such as the use of side information in

hybrid camera architectures [81, 82]. These hybrid cameras usually rely on a second

image sensor (usually an RGB sensor) to capture the side information of a scene. Although

improved results are attained by these recent approaches, the architecture proposed in this

manuscript mainly differs in that a single sensor is used. Remark that a number of issues

arises that need to be accounted for, in a thorough comparison of these 2 distinct sensing

and reconstruction methods. These issues include the registration post-processing and

double alignment issues (due to the beam-splitter), and the extra sensor/lens requirement

for the side information method.

5.7 Conclusions

Compressive sensing is a powerful signal processing sensing and reconstruction

framework to extract clean signals in noisy environments, and for spectral imaging, cre-

ates many new opportunities for research. But because of its novelty, few works have

been performed to understand how the CS process will merge with existing methods of

collecting spectral images. In this chapter, we established both theoretical and experi-

mental evaluations of how using a readily available color sensor improves upon the so far

published works that rely on monochrome image sensors. And as more work is done to

expand the stacked-color image sensor first pioneered by Foveon to using more colors or

a wider range of wavelengths, the CS method described here will take those systems ever

higher in spectral resolution.

In closing, let us present Fig. 5.11 as a final evaluation of color sensor abilities to

reconstruct multispectral images where we show the 6th, 12th, 18th and 24th wavebands
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482 nm  R = 1/8 519 nm  R = 1/8 576 nm  R = 1/8 660 nm  R = 1/8

482 nm  R = 1/8 519 nm  R = 1/8 576 nm  R = 1/8 660 nm  R = 1/8

Figure 5.11: Real reconstruction of the 6th, 12th, 18th and 24th spectral bands using
just a single snapshot of the (First row) Monochrome sensor, (Second row)
Bayer sensor, (Third row) Foveon sensor.

attained with as few as a single snapshot. Here, it can be noticed that the Bayer and

Foveon detectors attain better artifact-free reconstructions in their respective wavebands

compared with the monochrome sensor, and in particular, Fig. 5.11 shows that using just

a single snapshot with the Foveon sensor produces spectral bands with greater fidelity

than the monochrome and the Bayer sensor.
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Chapter 6

DUAL-ARM VIS/NIR COMPRESSIVE SPECTRAL IMAGER

Compressive spectral imaging (CSI) has demonstrated to be a feasible technique for

capturing the 3D spatio spectral information of a scene through less measurements than

the Nyquist rate. The coded aperture snapshot spectral imaging (CASSI) is an example

of a CSI optical architecture, which has been proposed to work on the visible electromag-

netic spectrum. Due to the rich information contained in the infrared spectrum, in this

chapter, we mathematically model and demonstrate the implementation of a broadband

CASSI system covering the visible and the near infrared spectra between 448 nm to 1436

nm. Particularly, we developed a Digital Micromirror Device-based CSI system, which

implements dual-band CS measurement processes of 3D spatio-spectral scenes.

6.1 Introduction

Spectral imaging involves the sensing of a large amount of spatial information

across a multitude of wavelengths. Conventional approaches to hyperspectral sensing

scan adjacent zones of the underlying spectral scene and merge the results to construct a

spectral data cube. Push broom spectral imaging sensors, for instance, capture a spectral

cube with one focal plane array (FPA) measurement per spatial line of the scene [67, 7].

Spectrometers based on optical band-pass filters sequentially scan the scene by tuning

the band-pass filters in steps. The disadvantage of these techniques is that they require

scanning a number of zones linearly in proportion to the desired spatial and spectral

resolution. Compressive coded aperture spectral imagers, also known as coded aperture

snapshot spectral imagers (CASSI) [30, 1, 36, 67] comprise the new generation of spectral

imagers. These naturally embody the principles of compressive sensing (CS) [73, 17]. The

remarkable advantage of CASSI imagers is that the entire data cube is sensed with just

a few FPA measurements and in some cases with as little as a single FPA shot.
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CS dictates that one can recover spectral scenes from far fewer measurements than

that required by conventional linear scanning spectral sensors. To make this possible, CS

relies on two principles: sparsity, which characterizes the spectral scenes of interest, and

incoherence, which shapes the sensing structure [19, 17]. Sparsity indicates that spectral

images found in nature can be concisely represented in some basis ΨΨΨ with just a small

number of coefficients. This is indeed the case in spectral imaging where natural scenes

exhibit correlation among adjacent pixels and also across spectral bands [7]. Incoherence

refers to the structure of the sampling waveforms used in CS, which, unlike the signals

of interest, have a dense representation in the basis ΨΨΨ [19]. The remarkable discovery

behind CS is that it is possible to design sensing protocols capable of capturing the

essential information content in sparse signals with just a small number of compressive

measurements. The sensing modality simply correlates incoming signals with a small

number of fixed waveforms that satisfy the incoherence principle. The signals of interest

are then accurately reconstructed from the small number of compressive measurements

by numerical optimization [29, 73, 17, 27, 26, 83].

Due to the rich information contained in both the visible (VIS) and the near

infrared (NIR) spectrum [35, 84, 85], a dual-arm VIS-NIR compressive spectral imager

is presented in this chapter. Figure 6.1 depicts the optical design of the system being

proposed. This architecture aims to cover a wider-band of the electromagnetic spectrum in

order to identify, classify and detect objects in the VIS and the NIR domains. Particularly,

the proposed system covers the spectrum ranging between 450 nm to 1450 nm. This

system uses a VIS-NIR dichroic mirror to split the underlying incoming coded energy

into two imaging arms, each one accounting for an independent compressive spectral

imager.

6.2 System Model

6.2.1 Optical Model

The sensing physical phenomena in CASSI is strikingly simple, yet it adheres to the

incoherence principles required in CS. The proposed dual-arm CASSI measurements are

realized optically by a coded aperture, a dispersive element such as a prism, and a focal

plane array detector [1, 67]. The coding is applied to the (spatial-spectral) image source
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Figure 6.1: Dual-Arm optical design

density f0(x, y, λ) by means of a coded aperture T (x, y) as depicted in Fig. 6.1, where

(x, y) are the spatial coordinates and λ is the wavelength [1]. The resulting coded field

f1(x, y, λ) = T (x, y)f0(x, y, λ) is subsequently split by means of a VIS-NIR dichroic mirror

into the two imaging arms, the visible arm and the near infrared arm. Notice that inside

each arm, the coded and split information is subsequently modified by a dispersive element

before it impinges onto the corresponding FPA detector. The compressive measurements

g(x, y) across the FPA are realized by the integration of the coded, split and dispersed

field. Mathematically, let SV (λ) and SN(λ) represent the dispersion function of the VIS

and NIR prism, respectively. Similarly, let ΛV and ΛN represent the spectral range of

the visible (450 nm - 750 nm) and the near infrared (750 nm - 1450 nm), respectively.

Therefore the compressive measurements for the VIS imaging arm gV (x, y), and for the

NIR arm gN(x, y), are given by:

gV (x, y) =

∫∫∫
ΛV

T (x′, y′)f0(x′, y′, λ)hV (x′ − x− SV (λ), y′ − y)dλdx′dy′ (6.1)
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gN(x, y) =

∫∫∫
ΛN

T (x′, y′)f0(x′, y′, λ)hN(x′ − x− SN(λ), y′ − y)dλdx′dy′, (6.2)

where hV (x′ − x− SV (λ), y′ − y), and hN(x′ − x− SN(λ), y′ − y) are the system impulse

responses of the imaging arms, which account for the relay lenses and the dispersion

function. Notice that the dispersion is assumed to occur just along the x-axis.

6.2.2 Discrete Model

The sensing mechanism of each of the two VIS-NIR-CASSI arms is illustrated by

the discretized model shown in Fig. 6.2, where the spectral data cubeFFF having L spectral

bands and N×M spatial pixels is first amplitude modulated by a pixelated N×M coded

aperture T [36]. In this case, T is a “block” or “unblock” coded aperture such that

the energy along an entire slice of the data cube is punched out when a block coded

aperture element is encountered. As the coded field transverses the prism, it is then

spatially sheared along one spatial axis. In essence, each coded image plane is shifted

along the x-axis where the amount of shifting increases with the wavelength coordinate

index. Finally, the coded and dispersed field is collapsed in the spectral dimension by

the integration of the energy impinging on each detector element over its spectral range

sensitivity. The integrated field is then measured by the FPAs detector elements. It can

be shown that if the spectral range of the instrument lies between λV1 and λV2 for the

visible arm, and between λN1 and λN2 for the NIR arm, then the number of resolvable

spectral bands is limited by L = LV +LN = α(λV2 −λV1)/∆V +α(λN2 −λN1)/∆N , where

αλ is the dispersion induced by any of the prisms and ∆V and ∆N are the pixel pitches

of the visible and NIR FPA detector, respectively.

Let T (x, y) =
∑

i,j ti,jrect
(

x
∆c
− i, y

∆c
− j
)

, where ∆c is the pixel size of the

coded aperture, and f0(x, y, λ) =
∑

i,j,k fi,j,krect
(

x
∆c
− i, y

∆c
− j, λ

∆d
− k
)

, where ∆d =

{∆V ,∆N}, and fi,j,k represents the (i, j, k)th discretized source voxel. Note that i =

0, . . . , N − 1, and j = 0, . . . ,M − 1 index the x and y spatial coordinates, whereas

k = 0, . . . , L − 1 indexes the wavelength. Assuming that the system impulse responses

are ideal an space invariant, and that ∆c = ∆d, Eqs. (6.1) and (6.2) can be rewritten in
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Figure 6.2: Sensing phenomenon performed in each imaging arm

discrete form as,

gV m,n =
∑
k

tm,n+kfV m,n+k,k (6.3)

gNm,n =
∑
k

tm,n+kfNm,n+k,k, (6.4)

where n = 0, . . .M + L − 1, and m = 0, . . . , N − 1 index the columns and rows of the

FPA detectors; k index the FPA pixels affected by the spreading of f0(x, y, λ) by means

of SV (λ) and SN(λ).

Using Eqs. (6.3) and (6.4), the projections in the dual VIS-NIR-CASSI system can

be expressed in matrix form as gV = HV fffV , and gN = HNfffN , where HV and HN are

matrices of size N(M+LV −1)×(N ·M ·LV ) and N(M+LN−1)×(N ·M ·LN), respectively,

whose structure is determined by the coded aperture entries and the dispersive element

effect, and fffV and fffN and are the visible and near infrared spectral bands of the scene

in vector form.

6.2.3 Image Reconstruction

For spectrally rich or very detailed spatial scenes, a single-shot of the dual VIS-

NIR-CASSI may not provide a sufficient number of compressive measurements. Thus,

increasing the number of measurement shots, each with a distinct coded aperture pattern

that remains fixed during the integration time of the detector, will rapidly increase the
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quality of image reconstruction [23, 42, 43]. Notice, that each new measurement shot adds

simultaneously N(M+L−1) compressive projections; thus, the total number of available

projections with K shots is m = KN(M + L − 1). The time-varying coded apertures

are realized by a digital micro-mirror device (DMD) [42, 43]. The DMD is considered a

versatile system since the micro-mirrors can tilt at video rates, thus leading to a multi-

frame compressive imaging system. Particularly, denoting the `th FPA measurements as

g`V = H`
V fffV and g`N = H`

NfffN , where H`
V and H`

N represent the effects of the `th coded

aperture pattern, the sets of the K dual FPA measurements are then assembled as,

gV =
[
(g0

V )T , . . . , (gK−1
V )T

]T
, (6.5)

gN =
[
(g0

N)T , . . . , (gK−1
N )T

]T
. (6.6)

In order to recover an estimation of the input 3D spectral scene, CS supposes that

the hyperspectral signal FFF ∈ RN×M×L, or its vector representation fff ∈ RN ·M ·L, is S-

sparse on some basis ΨΨΨ, such that fff = ΨΨΨθθθ can be approximated by a linear combination

of S vectors from ΨΨΨ with S � (N · M · L). Consequently, the projections in CASSI

can be alternatively expressed as gV = HVΨΨΨθθθV = AV θθθV , and, gN = HNΨΨΨθθθN = ANθθθN ,

where the matrices AV and AN are called the visible and the near-infrared compressive

sensing matrices. Based on this assumption, CSI allows fffV and fffN to be recovered from

m random projections with high probability when m & S log(N ·M · L) � (N ·M · L).

In this regard, the underlying input 3D spectral data cubes are separately recovered by

solving the minimization problems,

f̃ffV = ΨΨΨ−1

(
argmin

θθθV

||gV −HVΨΨΨθθθV ||2 + τ ||θθθV ||1
)
, (6.7)

˜fffN = ΨΨΨ−1

(
argmin

θθθN

||gN −HNΨΨΨθθθN ||2 + τ ||θθθN ||1
)
, (6.8)

where HV =
[
(H0

V )T , . . . , (HK−1
V )T

]T
, and, HN =

[
(H0

N)T , . . . , (HK−1
N )T

]T
; and τ is

a regularization constant. Notice that the final estimation of the input scene can be
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obtained by f̃ff = [(f̃ffV )T , ( ˜fffN)T ]T .

6.2.4 Joint Image Reconstruction

Instead of solving Eqs. (6.7) and (6.8) separately, a joint minimization problem

can be solved, in order to achieve better image reconstructions. In consequence, the set

of measurements given in Eqs. (6.5) and (6.6) are now concatenated in a single column

vector g = [gTV ,g
T
N ]T , and the minimization problem to solve is now given by,

f̃ff = ΨΨΨ−1

(
argmin

θθθ

||g −HΨΨΨθθθ||2 + τ ||θθθ||1
)
, (6.9)

where H =

HV 0

0 HN

.

6.3 Experimental Setup

A proof-of-concept optical prototype was constructed to experimentally verify

the proposed architecture. This prototype shown in Fig. 6.3 consist of (i) a Leica

COLORPLAN-P2 objective lens, (ii) a digital micro-mirror device (DMD) XGA format

aluminium mirror array with ∼ 92 % reflectivity in the VIS-NIR spectrum, 13.68µm

pitch size, and +/- 12-degree tilt angle about the diagonal hinge in the center of the

micro-mirrors. (iii) an 875 nm single-edge VIS-NIR dichroic beamsplitter, (iv) the visible

imaging arm, and (v) the NIR imaging arm. Each imaging arm is composed by a relay

lens, a custom Amici prism, and a monochrome FPA detector.

The visible arm has a double Amici prism which disperses the 448 nm - 662 nm

visible light onto 15 different FPA detector pixels, thus entailing the identification of

LV = 15 spectral bands. The visible arm FPA detector is a Stingray F-033B camera with

pixel size ∆V = 9.9µm. On the other hand, the NIR imaging arm, has a double Amici

prism, which disperses the 946 nm - 1436 nm NIR light onto 12 different FPA detector

columns, thus entailing the identification of LN = 12 spectral bands. The NIR detector

is a XEVA-2508, with pixel size ∆N = 20µm.

To obtain the dual-arm compressive measurements, a fluorescent broadband spec-

tral light source is used to illuminate the target scene shown in Fig. 6.4(a). The DMD
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(a)

(b)

Figure 6.3: Dual-arm implementation. (a) Full optical prototype with the two imaging
arms. (b) Zoomed version.
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is set to exhibit random coding patterns with 50% of translucent elements. A calibration

data cube is captured per each different coding pattern, illuminating a completely white

target with a visible-to-NIR monochromator spanning the spectral range between 448nm

to 1436nm. The Gradient Projection for Sparse Reconstruction (GPSR) algorithm [29]

is used to solve the problem in Eq. 6.9. The representation space ΨΨΨ is set to be the

Kronecker product of the 2D-Wavelet Symmlet 8 basis and the 1D-DCT basis, due to its

sparsifing properties both in the spatial and in the spectral domains.

Figure 6.5 shows the reconstructed spatial/spectral image cube of the target scene.

In Fig. 6.5(a) the visible wavelengths are shown, where the Lego target can be easily

seen. On the other hand, in Fig. 6.5(b), we can see that LED 1 was reconstructed with

strong intensities in spectral channels from 1030 nm to 1110 nm, LED 2 was reconstructed

with strong intensities in spectral channels from 1150 nm to 1230 nm, and LED 3 was

reconstructed with strong intensities in spectral channels from 1230 nm to 1310 nm. It

is important to notice that the reconstructions where attained by capturing just K = 6

compressive measurements, that is, less than 50% of the input data information. Note

that the FPA measurements are contaminated by optical aberrations, as well as noise

and misalignment between the FPAs and the coded apertures, which may be improved in

future and extensive experiments.

6.4 Conclusions

In this chapter we have presented the optical model and experimental demonstra-

tion of a dual-arm compressive sensing spectral imaging system in the broadband visible

and near-infrared regime. We have shown that suitable quality estimations of spectral

scenes can be attained with far less measurements than the required by the widely-known

Nyquist theorem, in both the visible and the near infrared spectrum. Future work will

focus on the improvement in the quality of the reconstructions through the design of

proper coding patterns.
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(a) Original scene

(b) Visible reconstruction (c) NIR reconstruction

Figure 6.4: Original scene and reconstructed data cubes. (a) Lego toy with 3 LEDs
with peak emission wavelengths at 1050 nm, 1200 nm, and 1300 nm. (b)
Visible data cube reconstruction, and (c) NIR data cube reconstruction.
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(a) Visible spectral bands

(b) NIR spectral bands

Figure 6.5: Monochome reconstructed spectral bands. (a) Visible spectral bands. (b)
NIR spectral bands
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Chapter 7

SINGLE APERTURE SPECTRAL+TOF COMPRESSIVE CAMERA:
TOWARDS HYPERSPECTRAL+DEPTH IMAGERY

Compressive spectral imaging (CSI) has allowed to estimate spectral images with

as few as a single coded snapshot. On a different front, 3D ranging imaging often involves

scanning along one of the spatial dimensions to estimate the depth of an scene using struc-

tured light, or the use of two cameras as required by stereo-imaging techniques. Recently,

Time-of-Flight (ToF) snapshot imaging has gained considerable attention, due to its ac-

curacy and speed. To date, however, these imaging modalities (CSI and ToF) have been

realized and implemented by separate independent imaging sensors. This chapter presents

the development of a single aperture compressive spectral + depth imaging camera that

employs a commodity 3D range ToF sensor as the sensing device of a coded-aperture-

based compressive spectral imager. The proposed system uses a single aperture/single

sensor, thus representing a significant improvement over existing RGB+D cameras that

integrate two separate image sensors, one for RGB and another for depth. In addition,

the observable wavelength range of the CSI device is expanded from the visible to the

near-infrared, resolving up to as many as 16 independent channels. The proposed system

allows the addition of side-information by placing a grayscale or RGB camera in the same

path of the single-aperture system, such that the quality of the spectral estimation is im-

proved, while maintaining high-frame rates. We demonstrate the proposed ideas through

real experimentation conducted on an assembled CSI+ToF testbed camera system.

7.1 Introduction

Imaging spectroscopy, commonly referred to as multispectral or hyperspectral

imaging is the process of sensing large amounts of spatial information across a multi-

tude of wavelengths [30]. Compressive spectral imaging (CSI) systems comprise the new

generation of spectral imagers, since they record all wavelengths of a scene in a single
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snapshot, simultaneously [30]. In CSI systems, a ray of light emanating from the scene

is passed through a series of optical elements that spread the single ray of light over a

lateral sequence of sensor pixels, in a wavelength dependent manner, just like a spec-

trophotometer would spread light across a linear array. Allowing multiple rays of light

onto the sensor means that the camera can resolve a two dimensional image; however,

because the spreading of light rays across lateral sequences of pixels means that a single

pixel will collect light from multiple sources, compressive sensing techniques are used to

decouple the spectral profiles of neighboring pixels [23, 42].

On the other hand, 3-D range imaging, refers to the process of recording a 2-D

image of a scene where each pixel is a measure of the distance from the camera sensor

to the target surface. There exist two main modalities to estimate 3D imagery: passive

illumination such as stereo [86] and light field imaging [87, 88], and active illumination

such as structured light imaging (SLI) [89, 90] and time-of-flight (ToF) imaging [91, 92].

One of the big disadvantages of passive systems is that they cannot derive depth without

depth cues created by texture; this is known as the depth stereo problem. Passive methods

and SLI, rely on triangulation to interpolate depth values in the spaces between edges.

The problem with triangulation is the difficulty to work over long ranges since the size

of the triangle has to grow proportionally. They also have to deal with problems of

occlusion where target surfaces are visible to the camera but not to the projector. ToF

range cameras, in contrast, indirectly measure the round-trip propagation delay of the

light pulse by strategically triggering each pixel’s exposure time such that it captures a

portion of the projected pulse. ToF sensors do not suffer of occlusion problems, since the

projector and camera have the same line of sight. Moreover, ToF sensors can reach longer

ranges by just changing the frequency and amplitude of the modulated light, they are

lightweight, power efficient, and can collect full frame images with a single laser pulse.

Sensors from Mesa Imaging, Microsoft, SoftKinetic, PMD Tech, among others, rely on

custom imaging chips that combine traditional CCD and CMOS light detectors with

custom application specific integrated circuits (ASICs). While effective, these techniques

tend to produce camera sensors with low pixel counts.

In some cases, the information in both imaging modalities can be combined as in

RGB+Depth imaging to infer qualitative features in a scene [93, 94]. To date, however,
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these imaging modalities have been realized and implemented by separate independent

imaging sensors.

7.1.1 Related work

The importance of spectral+3D imaging has been reported recently. Conventional

joint spectral and depth imaging usually requires scanning the 4-D scene either spatially

or spectrally. Latorre-Carmona, et. al. [95] proposed to combine a lenslet-based integral

imaging with a liquid crystal tunable filter that scans each spectral band for spectral

integral imaging. Spectral scanning can be avoided through combining a lenslet array with

a pixel-wise color filter [96, 97]; however, the spectral resolution is limited by the number of

colors in the pixel-wise filter. To overcome scanning and the spectral resolution limitation,

compressive spectral integral imagers have been developed employing a liquid crystal or a

dispersive element for spectral modulation [98, 99]. These compressive imagers only apply

compressive sensing to acquire spectral elemental images. Thus, a second-step integral

imaging reconstruction must be followed. Recently, snapshot spectral integral imagers

based on lenslet arrays were introduced, where spectro-volumetric images are directly

reconstructed from compressed projections [100, 101]. A different approach obtains the

spectral and depth information of a scene by adding a grayscale camera on the side of a

multi-spectral imager [102], such that a passive stereo system is attained.

In spite of the above 4-D imagers employing passive range finding techniques, active

ranging such as laser scanning methods were also applied in spectral imaging. M. Kim,

et. al. [103] combines a coded aperture snapshot spectral imager with a conventional

laser scanner in their spectral imager design. This imaging system, however, involves a

scanning illumination source and two independent detectors. As a replacement of the

laser scanning based ranging, ToF cameras acquire the depth information simultaneously

on the sensor array. Compressive sensing has been applied with ToF techniques for high

resolution depth map reconstructions [104, 105].

7.1.2 Contribution

To our knowledge, spectral imaging based on ToF sensors has been limited to

combining a ToF camera with a separate spectral imager or an RGB camera [106]. This
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chapter introduces a new spectral+TOF imaging camera that measures and reconstructs

multispectral and 3D imagery at once. It aims to create super-human sensing that will

enable the perception of our world in new and exciting ways. We intend to advance

in the state of the art in compressive sensing systems to extract depth while accurately

capturing spectral material properties. The applications of such a sensor are self-evident

in fields such as computer/robotic vision because they would allow an artificial intelligence

to make informed decisions about not only the location of objects within a scene but also

their material properties. These goals are made possible after the realization that ToF

sensors can exploit both ambient light and modulated light, in order to recover pixelated

depth and multispectral information. In particular, we build on this opportunity and

integrate the capabilities of a CMOS ToF sensor into a CSI snapshot camera. So unlike

a Kinect 2.0 or Prime Sense RGB+D camera, the proposed system uses a single aperture

image sensor to capture multispectral+depth (MS+D) images. Moreover, by changing the

dispersive element, used in the proposed system, by a diffraction grating, we can move

towards hyperspectral+depth (HS+D) imagery, as it will be described shortly.

7.2 Snapshot Single Aperture Compressive ToF+Multispectral Camera

The ability to switch measurement modes to capture both ambient light and ToF

depth images in the same sensor array enables a dual-shot single aperture imaging system,

where spectral and 3D range depth images are reconstructed from the same ToF sensor.

Figure 7.1 depicts a sketch of the proposed single aperture system. It uses a set of lenses

for image formation, an LED laser diode illumination board for ToF depth excitation, a

digital micromirror device (DMD) to emulate the coded apertures, a dispersive element

to spread the ambient illumination, and a ToF sensor to integrate the incoming light field,

which can operate in ToF or ambient light mode. The depth image is obtained through

processing four discrete pulsed frames measured in the ToF mode, as will be explained

next, by turning on all the mirrors of the DMD, while the spectral images will be recovered

from compressed projections at the ambient grayscale mode.
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Figure 7.1: Optical design sketch of the single aperture snapshot ToF+Spectral camera.
The LED laser diode illumination board is attached to the front lens of
the camera which images the 4D scene onto the DMD. Depending on the
mode, the DMD will emulate an all-on or a random coded aperture, for
the ToF and ambient light capture, respectively. The relay lens transmits
the DMD coded and modulated light through a dispersive element, so that
monochrome coded, modulated and sheared light is integrated on the ToF
sensor.
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7.2.1 Time-of-Flight Imaging (ToF)

Time-of-flight imaging aims at acquiring the depth image or depth map of the

underlying scene using an array of modulated infrared laser diodes as an illumination

source. The time delay of the returned light for each spatial location is measured on a

two-dimensional (2D) ToF sensor array. According to the laser modulation, there are

typically two ways of measuring this time delay [91, 92]. One of them directly measures

the round-trip traveling time of the shinned laser light pulses by detection of the first

arriving laser photons. Thus the depth value is calculated by d = c t
2
, where c is the

speed of light constant. In this method, the depth measurement accuracy depends on

the time measurement resolution. Another ToF imaging method employs a continuous

sinusoidal or square-wave laser modulation. Instead of directly measuring the time delay,

this method relates the depth information to the phase difference between the emitted and

reflected light. In this method, the depth accuracy is determined by the phase measuring

capability at a given modulation frequency. Note that the modulation frequency used

entails a trade off between depth measurement capability and accuracy; lower frequencies

can measure depth at longer distances but with reduced accuracy.

This work uses an Espros EPC660 ToF imaging sensor, where continuous sinusoidal

laser modulation is used by default [107]. In phase-based ToF sensors like the Microsoft

Canesta [108] or Espros EPC660, distance is measured indirectly as the round-trip phase

delay between a modulated light source and synchronized array of gated pixels. To derive

a mathematical model for these ToF sensors, we begin by defining gm,n as a single pixel of

a traditional M ×N sensor array with discrete row and column coordinate, (m,n), such

that that amount of light accumulated over an exposure, τ , is defined according to:

gm,n =
L−1∑
l=0

1

τ

∫ τ

t=0

Afm,n,ldt =
L−1∑
l=0

Afm,n,l (7.1)

where A represents the amount of ambient light present inside the field of view, and fm,n,l

is the reflectance of that light from the target surface, as a function of wavelength l.
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Figure 7.2: Light propagation of the qth slice through the proposed system. (a) In
ToF mode, the reflected NIR modulated light is captured after ambient
light is subtracted. The single red spectral band represents the reflected
NIR light of the LED illumination. The DMD emulates an all-transmissive
pattern, such that, no coding is performed. Therefore, propagation through
the system causes no multiplexing but shifting in the captured image. (b)
In ambient light mode (CSI mode), the incoming light is encoded by the
coded aperture pattern T (x, y), then the dispersive element decomposes the
light in the corresponding wavelengths, and multiplexing takes place at the
sensor.

113



Adding a modulated light source B cos(2πft), the captured pixel becomes:

gm,n =
L−1∑
l=0

1

τ

∫ τ

t=0

(Afm,n,l +Bfm,n,l0 cos(2πft+ θ)) dt, (7.2)

where θ is the phase delay introduced by the round-trip travel time of the modulated light

from source to target and back, and fm,n,l0 is the surface reflectance at the wavelength

of the modulated light source (l0). In our single aperture system shown in Fig. 7.1, the

laser illumination board will illuminate the 4D scene with the modulated light, and the

reflected signal from the scene will propagate through the optical path of the imaging

system as shown in Fig. 7.2(a). Note that all the mirrors of the DMD will be set to on,

such that all reflected light from the scene propagates to the sensor.

To represent the gating of pixels, we define the gating function, r(t), as a square

wave in the range, [0, 1], with a frequency, f , matched to the modulated light source and

with a duty cycle D such that:

gm,n=
L−1∑
l=0

1

τ

∫ τ

t=0

(Afm,n,l+Bfm,n,l0cos(2πft+θ)) r(t)dt. (7.3)

Denoting the total exposure time as K times the period of one wavelength w (in

seconds) of the square wave, then τ = K ∗ w. Given that, f = 1/w, then f = Kτ−1,

such that there are an integer, K, periods of cos(2πft) and r(t) inside of τ . Therefore,

by integrating over one period instead of all of τ , we simplify Eq. (7.3) to:

gm,n=
L−1∑
l=0

K

τ

∫ Dτ
K

t=0

(Afm,n,l+Bfm,n,l0cos(2πft+θ)) dt. (7.4)

Assuming a small D, gm,n can be approximated as:

gm,n ≈
L−1∑
l=0

DAfm,n,l +DBfm,n,l0 cos(θ). (7.5)

By itself, there is no way to extract θ separate from B, but if, as demonstrated in

Fig. 7.3, we collect a sequence of 4 images indexed by ` with a phase shift between the
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Figure 7.3: ToF sensor raw data g0 to g3 are captured in every single (m,n)th pixel.
The corresponding phase delays θ0 to θ3 are then calculated to obtain the
depth map.

modulated light source and camera images such that

(g`)m,n ≈
L−1∑
l=0

DAfm,n,l +DBfm,n,l0 cos

(
π`

2
+ θ

)
, (7.6)

then we can define the difference of complements, g0,2 and g3,1, according to:

(g0,2)m,n = (g0)m,n − (g2)m,n,

= 2DBfm,n,l0 cos θ (7.7)

and

(g1,3)m,n = (g1)m,n − (g3)m,n,

= 2DBfm,n,l0 sin θ (7.8)

and, finally, extract θ by treating (g0,2)m,n and (g1,3)m,n as quadrature components such
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that:

θ = tan−1

(
(g1,3)m,n
(g0,2)m,n

)
,

= tan−1

(
2DBfm,n,l0 sin θ

2DBfm,n,l0 cos θ

)
,

= tan−1

(
sin θ

cos θ

)
. (7.9)

The depth value, at every (m,n)th sensor pixel, dm,n, is then calculated as

dm,n =
c

2

θ

2πf
, (7.10)

where, for the case of the Espros EPC660 sensor, the laser modulation frequency, f , can

be selected from 0.625 MHz to 24 MHz, resulting in an unambiguous distance ranging of

up to dm,n = 6.25 meters for f = 24 MHz and up to dm,n = 240 meters for f = 0.625

MHz.

Separate from range, we can extract the surface reflectance from the modulated

light, fm,n,l0 , by looking at the magnitude of the quadrature components such that:

fm,n,l0 =

√
(g1,3)2

m,n + (g0,2)2
m,n

2DB
, (7.11)

given that 2DB is known a priori. Alternatively, to extract the surface reflectance under

ambient light illumination, we can either use (g0)m,n and (g2)m,n which are 180o out-of-

phase, as are (g1)m,n and (g3)m,n, by evaluating their sum,

(g0)m,n + (g2)m,n = 2
L−1∑
l=0

DAfm,n,l (7.12)

such that:
L−1∑
l=0

Afm,n,l =
(g0)m,n + (g2)m,n

2D
. (7.13)

This last equation demonstrates that phase-based ToF sensors like the Espros

EPC660 have an inherent ability to separately measure both ambient (DC) and modulated

(AC) light images, and given this inherent ability, the integration of ToF sensors into a
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Figure 7.4: Ambient image is recorded in grayscale mode. Four successive frames
g0, g1, g2 and g3 are captured for the depth map and point cloud estimation.

CSI system becomes almost compulsory since the unused DC image can now be used for

multispectral imaging while the modulated image reserved for ToF.

To illustrate the entire process, Fig. 7.4 shows the 9 different images provided by

the ToF sensor. The original ambient light image of Eq. (7.2) is included as the (top-left)

grayscale image. The amplitude of the quadrature components in Eq. (7.11) is illustrated

as a (top-center) grayscale and (top-right) pseudo-color image. The sequence of phase

shifted images of Eq. (7.6) are illustrated as signed grayscale images as the sequence from

(middle-left) to (bottom-left). Finally, the depth estimation is illustrated as a (bottom-

center) pseudo-color and (bottom-right) point cloud.

7.2.2 Compressive Spectral Imaging

Compressive spectral imaging (CSI) encompass techniques which sense the spatio-

spectral information of a scene by using 2D coded projections, and as few as a single coded

projection. The underlying spectral 3D data cube is then recovered using compressive

sensing (CS) reconstruction algorithms which assume that the hyperspectral images are
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sparse in some representation basis. The advantage of CSI is that the required number

of measurements needed for reconstruction is far less than that required by traditional

scanning methods [1, 58, 109]. In the CSI literature different strategies to attain the

coded projections have been proposed. The review articles in [30, 60, 15, 16] provide a

number of architectures that attain coded projections. One of the main families in the

state-of-the-art CSI architectures are those based on coded apertures. These use a set

of lenses, a coded aperture as coding element, a dispersive element and a 2D focal plane

array (FPA) sensor, to capture compressive multiplexed random projections of the scene.

As depicted in Fig. 7.2(b) the front-end lens in these architectures effectively

creates a light field in front of the coded aperture plane, such that f0(x, y, λ) represents the

light ray incident upon the coded aperture at 2-D coordinate (x, y) and having wavelength

λ. As light approaches the sensor, the coded aperture blocks or allows the rays of light

from reaching the sensor. This aperture effect can be accounted in our model by means of

the binary modulation function T (x, y) =
∑

m,n Tm,nrect
(

x
∆c
− n, y

∆c
−m

)
, where Tm,n ∈

[0, 1]. In order to separate the individual wavelengths of the incoming signal, the system

places a dispersive element in front of the image sensor such that f1(x, y, λ) is split into

discrete bands spread across L consecutive pixels along the lateral or n dimension in a

wavelength dependent manner, indicated by the dispersion function S(λ). Accumulating

all of the light incident upon a discrete pixel of the sensor with row and column coordinate

[m,n] and defining χm,n,l as the spectral sensitivity of the sensor for that same discrete

pixel, the monochrome pixel, gm,n, of the resulting digital image is given by:

gm,n =
∑
l

χm,n,lTm,n−lfm,n−l,l + ωm,n (7.14)

where l = 0, . . . , L−1 indexes the pixels affected by the spreading of f1(x, y, λ) as a result

of S(λ). One would expect χm,n,l to be either constant for all pixels and absorb light in

the visible light range from 350 to 750nm or selectively absorb red, green, or blue light in

a traditional Bayer pattern.

In order to establish a matrix representation consistent with CS, we define f as a

column vector containing fm,n,l for all spectral components l and all pixelsm and n ordered

first by row, then column, and finally by wavelength. Assuming we have a coded aperture
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with M ×N pixels (T ∈ RM×N), f will be MNL in length (f ∈ RMNL). Then, we define

gk as a column vector holding all of the recorded pixel values, gm,n, from the monochrome

image sensor for the kth image in our sequence of K ≤ L snapshots. Multiple snapshots

allow to obtain different information from the same scene as different coded patterns can

be used. Noting the lateral dispersion of light, the length of gk is M(N + L − 1), such

that all light is accounted for on the sensor. So while the coded aperture has an M ×N

pixel array, the sensor has an extra set of L − 1 pixel columns. Assuming that f stays

constant over the K snapshots, we can relate gk to f according to:

gk = PXTkf = Hkf , (7.15)

where Hk represents the combined effects of the dispersion effect
(
P ∈ RM(N+L−1)×MNL

)
,

the sensor pixel-wise spectral sensitivity in matrix form
(
X ∈ RMNL×MNL

)
, and the block-

diagonal representation of the kth coded aperture
(
Tk ∈ RMNL×MNL

)
.

Alternatively, the sensing process can be expressed as g = Hf = HΨθΨθΨθ = Aθθθ, such

that g =
[
(g0)T , . . . , (gK−1)T

]T
, H =

[
(H0)T , . . . , (HK−1)T

]T
, A = HΨΨΨ is the compres-

sive sensing matrix, and θθθ = ΨΨΨT f is a vector coordinate of f in an orthogonal basis ΨΨΨ.

Conventional basis functions include the Wavelet (ΨΨΨW2D) and discrete cosine transforms,

(ΨΨΨDCT ) as well as pre-trained dictionaries [75], and bases which simultaneously exploit

the sparsity properties along a multidimensional space by doing the Kronecker product

of bases used for each of its dimensions [45, 52, 24]. The basis transformation assumes f

to be sparse on ΨΨΨ, so that, a small subset of the basis vectors can accurately reconstruct

f with small distortions. An estimation of the spectral input data cube can be attained

by solving the regularization problem,

f̂ = ΨΨΨ

(
argmin

θθθ′
‖g −Aθθθ′‖2

2 + τ‖θθθ′‖1

)
, (7.16)

where θθθ′ is the estimation of the sparse coefficients, ‖ · ‖2
2 represents the `2 norm, ‖ · ‖1 the

`1 norm, and τ is a regularization parameter which penalizes the fact of θθθ′ being sparse,

while reducing the error between the estimated Aθθθ′, and the captured set of compressive

measurements g. A large variety of solvers for problem Eq. (7.16) has been proposed,
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including, the two-step iterative shrinkage/thresholding (TwIST) using the total-variation

(TV) as the regularization function [53], the gradient projection for sparse reconstruction

(GPSR) [29], Gaussian mixture models (GMM) [54], and denosing algorithms based on

approximate message passing (AMP) [33].

7.2.3 Joint Compressive Spectral+ToF Imaging

The previous subsections described the reconstruction of spectral and 3D ranging

imagery, performed separately and independently. However, the correlations between

the spectral bands and the ToF quadrature components g0 to g3, encourages the joint

reconstruction of spectral+depth imagery. In addition, side information can be used to

improve the reconstruction quality as demonstrated in [3, 102, 82]. The collection of side

information usually involves mounting an additional grayscale [3, 102] or RGB camera

[82], either side-by-side or along the same path of the multi-spectral system by means

of a beam-splitter. The reconstruction algorithm then exploits the correlation between

the multi-spectral measurement and the grayscale, or RGB side image. In the proposed

single-aperture system, and as a first approach, side information can be extracted from

the ToF quadrature components with no additional camera needed. In particular, the

surface reflectance of the target scene at the LED modulation wavelength (l0) can be

calculated according to Eq. (7.11). The extracted monochrome image can then be viewed

as the ground truth of the scene at l0-nanometers. Mathematically, we assume that the

spectrum of the collected surface reflectance falls into the range of the last reconstructed

spectral band. Denote fr as the vector form of the collected image band containing the

side information. Then the joint sensing process for spectral imaging can be reformulated

as, g

fr

 =

H

Hb

 f , (7.17)

where Hb = [0, I], such that 0 is an MN×MN(L− 1) zero matrix and I is an MN×MN

identity matrix.

In addition, since compressive sensing reconstruction algorithms tend to converge

to smoothed estimations, the edge information from the ToF amplitude image can also be

incorporated as side information across the spectrum, since each spectral band preserves
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most of the borders in the reflectance image. To this end, an edge detector is first applied

to the modulated surface reflectance image to extract a binary edge image E. Then, by

noting that the grayscale values of the edge pixels vary with the spectrum wavelengths,

the edge image needs to be scaled by means of a calibration data cube captured at each

specific wavelength C`. This calibration data cube needs to be captured only once, and

off-line, so that it does not affect the frame-rate of the proposed system. Mathematically,

the side-information from the edge image can be incorporated in the sensing process, by

rewriting Eq. (7.17) as, [gT , fTe ]T = [HT ,HT
e ]T f , where He = [HE, I], with HE being the

concatenation of L−1, MN ×MN diagonal matrices, with elements being the vectorized

point-wise multiplication between the edge image E and the corresponding calibrated

image C`; fe is the estimated grayscale image with the scaled border information.

Side information via a grayscale or an RGB camera can be incorporated at the

input of the single-aperture proposed system by use of a beam-splitter. The beam-

splitter allows the same path to be shared by the two cameras, so that, registration

between the 2 images can be easily achievable. Note that by including this additional

camera to the proposed single-aperture ToF architecture, higher flexibility is attained

since CSI+ToF+side information can now be jointly captured. Mathematically, this ap-

proach to side-information sensing, can be written as [gT ,gTs ]T = [HT ,HT
s ]T f , where

gs ∈ {gg,gc}, such that gg ∈ RMN×1 is the captured grayscale side image in vector form,

and gc ∈ R3MN×1 is the RGB side image in vector form. In addition, Hs ∈ {Hg,Hc},

where Hg is the concatenation of L, MN×MN all-one diagonal matrices representing the

grayscale side sensing matrix, and Hc represents the RGB side-information sensing ma-

trix, which concatenates L, 3MN×MN diagonal matrices. The entries of Hc correspond

to the discrete response of the filters from the Bayer pattern of the RGB camera.

Side information can also be used to improve the depth map estimation. Typical

denoising techniques can be used to smooth the depth imagery, but filtering tends to

generate smooth images with blurred target borders. Note however that object borders

can be easily obtained either from the quadrature components, the grayscale or RGB side

information. With this prior border information, a center weighted median filter (CWMF)

[110] can then be applied to the initial depth map. The advantage of using CWMF is

that a median filter is applied only on surfaces inside the borders, while the values on the
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borders are unmodified. This, in turn, guarantees a smoother depth estimation without

blurring edges.

Other possible approaches to process the ToF surface reflectance image as side

information in spectral imaging include extracting a sparse spatial basis through dictio-

nary learning, as described in [102]. Joint reconstruction of compressive spectral and

depth imagery is a promising topic which requires more future research for significant

improvements on the reconstruction quality in both spectral and depth dimensions.

7.3 Compressive ToF+Multispectral Testbed Imaging System

The proof-of-concept optical prototype presented in Fig. 7.5 was assembled in our

lab. In this system, the imaging arm is composed of an 8-LED laser diode board attached

to a VIS-NIR matched achromatic doublet objective lens, and a digital micromirror device;

a beam-splitter can be used to enable side information from a secondary sensor as proposed

in [3]. The integration arm is composed of a VIS-NIR doublet as the relay lens, a custom

VIS-NIR double Amici prism as the dispersive element, and an Espros EPC660 ToF

sensor. A target scene is illuminated with a broadband illumination lamp source, and

with the modulated LED light with frequencies ranging between f = 0.625 MHz and

f = 24 MHz. The reflected light from the scene is captured by the objective lens and

focused onto the mirrors of the DMD image plane, which plays the role of the coded

aperture, and onto the secondary sensor, if the beam-splitter is present. When properly

aligned, the mirrors of the DMD reflect light into the integration arm, which relays light

through a second lens and then through the prism. The dispersed field focuses in the ToF

image plane, which imposes its spectral filtering and integration based on its wavelength

sensitivity that spans the range between 450 and 1000 nm.

The DMD pixel size is 13.68um, and the size of the ToF sensor pixels is 20um.

A 3 × 3 macro-pixel windowing is done in the DMD, and a 2×2 macro-pixel windowing

is realized on the ToF sensor, such that an approximately one-to-one correspondence

between the two elements (DMD macro-pitch = 41.04um, and ToF macro-pitch = 40um)

is attained. In order to have dyadic dimensions to perform Wavelet-based representation

recovery, and given the DMD and ToF sensor resolution, the coded aperture patterns
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Figure 7.5: Compressive single-aperture ToF+CSI testbed. An objective lens with an
attached LED illumination board images the light field of the target scene
onto the DMD. After the DMD, a VIS-NIR relay lens transports the coded
light through the dispersive element, which decomposes the light field in
the corresponding wavelengths being integrated in the ToF sensor device.
Side information can be obtained by incorporating a beam-splitter and a
secondary sensor as proposed in [3].
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exhibit a resolution of 128× 128 pixels (384× 384 DMD pixels, and 256× 256 ToF sensor

pixels). More on resolution improvements will be discussed in Section IV.

The prism used in the testbed is a custom designed non-linear double Amici prism,

which disperses the wavelength spectrum between 486 - 766 nm onto 16 sensor pixels. If

a photomask or a DMD with the same pixel size as that of the sensor is used instead, we

would be able to recover 16 spectral band datacubes. However, we are able to recover up

to 8 spectral channels, due to the 2× 2 macro-pixel windowing. The cut-off wavelengths

of these 8 channels are 486, 508, 532, 550, 580, 636, 676, and 766 nanometers. The

bandwidth of the spectral channels is non-uniform due to the non-linearity of the prism.

The attained reconstruction with the testbed will therefore exhibit N × N = 256 × 256

pixels of spatial resolution and L = 8 spectral channels of spectral resolution. Note that,

the spectral resolution can be increased significantly by the use of a diffraction grating.

7.3.1 Calibration of the System

To test the multispectral capabilities of our system, we use the grayscale mode

of the ToF sensor in order to capture the raw ambient light data. Each coded aperture

used, should be calibrated to determine the experimental impulse response of the system

at each wavelength. The calibration is done using a high-reflective white plate as the

target scene, illuminating it with monochromatic light at the cut-off wavelengths of the

dispersive element. The monochromatic light is obtained from a Tunable Xenon Arc Light

source, which provides nanometer resolution. A calibration data cube is thus captured for

each coded aperture. Since the testbed setup can reconstruct up to 8 spectral channels, we

can capture up to 8 snapshots to estimate the underlying input scene, while still satisfying

compression. Therefore, we analyzed the use of K = 1, K = 2, and K = 4 snapshots

for the spectral reconstructions, each one using a different realization of a random coded

aperture with 50% of transmittance (50% of the elements are 1, and the other are 0). The

calibration data cube for 1 of the 4 coded apertures used in the experiments is shown in

Fig. 7.6; each image represents the PSF attained on the ToF sensor at the corresponding

monochromatic illumination wavelength. These calibrated coded apertures are then used

in the reconstruction algorithm as the H matrix.
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Figure 7.6: Coded aperture calibration patterns as seen by the ToF sensor when illumi-
nated with monochrome light at the given wavelengths. The coded aperture
is the result of a binary random variable with 50% transmittance.

7.3.2 Capturing Compressive CSI and ToF Measurements

Compressive measurements of a real target use a broadband white illumination

source instead of the monochromatic light used in the calibration. To test the efficiency

of the images attained with the testbed, we evaluate 2 target scenes, depicted in Fig. 7.7,

placed at around 40 and 50 centimeters away from the front-end lens, respectively. The

first target scene exhibits 3 depth planes within a range of 13 centimeters, whereas the

second scene exhibits 4 depth planes within a range of 20 centimeters.

Figure 7.8 shows an example of the compressive measurements attained with the

testbed setup, under the ambient light reading mode, for the two target scenes. Note that

the different snapshots integrate approximately the same amount of intensity, restricted

by the transmittance of the coded aperture, which was fixed to be 50%. Also note that,

the higher the number of snapshots, the higher quality in the reconstruction is expected.

Similarly, in the ToF reading mode, we turn on all the mirrors of the DMD, the

LED laser diode illumination board shines the sinusoidal function as explained in Section

II. A., the broadband illumination source remain on, and the system then captures the

four consecutive frames g0, g1, g2 and g3 in a single period of exposure time. Figure 7.9

shows the 4 frames captured using a modulation frequency of f = 12 MHz, for the 2

target scenes. In this figure, it can be noticed the reciprocity between g0 and g2, and g1

and g3.
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(a) Target scene 1
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(b) Target scene 2

Figure 7.7: Target scenes used in the experiments. The first scene is placed around
40 centimeters away from the objective lens, and the second scene is placed
around 50 centimeters away. Spectral signatures of the four highlighted
points (P1-P4) will be compared in Figs. 7.14 and 7.15.
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Measurement Scene 1 Measurement Scene 2

Figure 7.8: Compressive measurements as seen by the ToF sensor when the target
scenes are illuminated with broadband fluorescent white light and the DMD
exhibit a random coded pattern.

𝑔" 𝑔#

𝑔$ 𝑔%

(a) Scene 1

𝑔" 𝑔#

𝑔$ 𝑔%

(b) Scene 2

Figure 7.9: Sequence of four images g0, g1, g2, g3 captured with the testbed, in ToF
mode using f = 12 MHz, for (a) Scene 1, and (b) Scene 2.
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7.3.3 Reconstruction Results for CSI

To reconstruct the spectral data cubes from the coded projections, the compressive-

sensing-based gradient projection for sparse reconstruction (GPSR) algorithm [29] was

used to solve the optimization problem in Eq. 7.16, with and without the use of side

information. In our experiments, we set ΨΨΨ = ΨΨΨW2D ⊗ΨΨΨDCT to be the Kronecker product

of the 2D Symlet 8 Wavelet transform and the 1D DCT. The grayscale or RGB side

information images are emulated by following the same procedure used in the calibration,

replacing the white plate with the corresponding scene, and the DMD exhibiting a full-

transmissive pattern. We then register and map the attained data cube to the spectral

responses χm,n,l of the Stingray F033B and F033C cameras, to generate the 256 × 256

grayscale, and 256× 256× 3 color side images.

Figures 7.10 and 7.11 presents the reconstructed data cubes, for the two target

scenes in Fig. 7.7, using K = 1, 2 and 4 snapshots, mapped to an RGB profile, to test the

spatial fidelity. It can be noticed that the reconstruction quality improves with additional

snapshots from the single-aperture system, or by incorporating side-information. Note

that although the ToF side information impacts the final results, the grayscale and RGB

side information have a higher impact with as low as a single snapshot.

The performance gain achieved with the use of side information is illustrated in

Figs. 7.12 and 7.13, where 4 out of the 8 reconstructed spectral channels are shown, when

K = 1 is used. The corresponding band/color discrimination can be contrasted with the

RGB reconstructions presented in Figs. 7.10 and 7.11. For instance, for scene 1, the green

chest of the target on the right is well characterized at the 532 nm wavelength, whereas

its red helmet clearly appears at the 676 nm wavelength. For scene 2, the yellow eraser

at the bottom is well reconstructed at 580 nm, the red octopus is discriminated by the

676 nm wavelength, and the green chest of the Lego toy is again well characterized at the

532 nm wavelength. Here, it can be confirmed the boost in quality entailed by the use of

side information.

To evaluate the spectral reconstruction results, Figs. 7.14 and 7.15 present the

spectral footprint of 4 different points of the 2 target scenes, respectively, denoted as P1,

P2, P3 and P4 in Fig. 7.7, which are compared against reference spectra measured with
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Figure 7.10: Reconstructed data cubes mapped to RGB, when K = 1, 2 and 4 CSI
snapshots are captured, using none, grayscale or RGB side information for
Scene 1.
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Figure 7.11: Reconstructed data cubes mapped to RGB, when K = 1, 2 and 4 CSI
snapshots are captured, using none, grayscale or RGB side information for
Scene 2.
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RGB Selected Monochrome Bands

Figure 7.12: Reconstruction results of 4 out of the 8 spectral bands, for a single snap-
shot, using none, grayscale or RGB side information for Scene 1.
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Selected Monochrome BandsRGB

Figure 7.13: Reconstruction results of 4 out of the 8 spectral bands, for a single snap-
shot, using none, grayscale or RGB side information for Scene 2.
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Figure 7.14: Comparison of the spectrum reconstructions when K = 1 snapshots are
captured with no side information, and with side information from ToF,
grayscale or RGB camera. Four different points (P1 to P4) from the first
target scene in Fig. 7.7(a) were measured by an spectrometer and com-
pared against the reconstructed data cubes.

an spectrometer (Ocean Optics USB2000+). All the spectral curves are averaged in a

5 × 5 window, and normalized to the maximum value in their respective curves. The

root-mean-square error (RMSE) between the reconstructed and the reference spectra are

included in each subplot for ease of interpretation. It can be noticed that the curves from

the use of RGB side information attain the best fit to the reference spectrum, followed

by the curves from the reconstructions that use a grayscale side image, and these closely

followed by the ones that use ToF, and the ones that do not use any, side information.
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Figure 7.15: Comparison of the spectrum reconstructions when K = 1 snapshots are
captured with no side information, and with side information from ToF,
grayscale or RGB camera. Four different points (P1 to P4) from the sec-
ond target scene in Fig. 7.7(b) were measured by an spectrometer and
compared against the reconstructed data cubes.
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7.3.4 Reconstruction Results for ToF

To evaluate the 3D ranging estimation of the proposed testbed camera, the depth

map is estimated using Eq. (7.10), and the sequence of 4 frames g0 to g3 captured in the

ToF mode, shown in Fig. 7.9. Given the reduced range in which the toys are placed within

the 2 scenes, we use different frequencies f for the modulation LED laser diode light, in

order to evaluate the precision of the system. Recall that the target scenes are placed

at around 40 and 50 cm away from the objective lens, respectively. Figure 7.16 depicts

the estimated depth maps using three modulation frequencies, f = 6 MHz, f = 12 MHz

and f = 24 MHz, for the 2 target scenes, comparing the use of the CWMF described in

Section II.C. Note that lower frequencies can reach longer ranges, but the depth precision

will diminish. In Fig. 7.16(a) it can be seen that objects in the target scene 1 can be

distinguished at 3 different depth planes, but f = 24 MHz attains a cleaner depth map

than the other frequencies. Similarly in Fig. 7.16(b) the objects from the target scene 2

can be distinguished along 4 different depth planes, and again f = 24 MHz attains the

most precise depth map. By comparing first against second column within Figs. 7.16(a)

and 7.16(b), it can be noticed the boost in quality entailed by the use of the CWMF,

since cleaner, and more precise, depth maps are achieved.

7.4 Comparison with alternative solutions and limitations of the current sys-

tem

Passive and active illumination 3D ranging systems have, indeed, their own pros

and cons. Current off-the-shelf ToF sensors have low pixel count. However, these sensors

are still in its early stages, and improving rapidly, as the technology becomes more popular

for consumer applications. The proposed methods in this manuscript are general and will

be applicable on ToF sensors as they continue to improve. Compared with stereo or

structured light based depth cameras, ToF cameras exhibit several advantages. A big

disadvantage of passive systems is that they cannot derive depth without depth cues

created by texture; this is known as the depth stereo problem. Passive ranging methods,

such as stereo imaging, and structured light imaging, rely on triangulation to interpolate

depth values in the spaces between edges. The problem with triangulation is that it is very

difficult to work over long ranges since the size of the triangle has to grow proportionally.
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Figure 7.16: Estimated depth maps using frequencies f = 6 MHz, f = 12 MHz, and
f = 24 MHz. (a) Scene 1. (b) Scene 2. Units are in centimeters.
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They also have to deal with problems of occlusion where target surfaces are visible to

the camera but not to the projector. ToF sensors, in contrast, do not suffer of occlusion

problems, since the projector can wrap around the lens, thus the projector and camera

have basically the same line of sight; and also do not require any texture or clue to

estimate the depth. Moreover, ToF sensors can reach longer ranges by just changing the

frequency and amplitude of the modulated light, they are lightweight, power efficient,

and can collect full frame images with a single laser pulse, thus admitting very high

frame-rates, and requiring no moving parts.

Regarding the single-aperture/single-sensor architecture, we expect that multi-

mode (spectral + range) image sensors, such as the ToF used in our manuscript, will enable

smaller form factors, lower power consumption and lighter weight imaging systems. This

will lead to miniaturization and, in turn, to promote their use in commercial platforms.

While the benefits of the system in this chapter are limited by the low pixel count

of the ToF sensor, it does not, in reality, suffer from frame-rate reduction since the ambi-

ent light image and the modulated light amplitude can be jointly estimated from the same

ToF quadrature components, using Eqs. (7.7) - (7.13). Note however, that although we

can estimate the 2 images from the quadrature components, we require at least 2 snap-

shots with complementary coded apertures, such that a pure (non-codified) modulated

amplitude can be attained, in order to estimate the depth map per pixel. Note also that

complementary snapshots will also boost the reconstruction quality of the spectral data

cube estimation.

7.5 Conclusions and Future work

A single aperture compressive snapshot multispectral+3D ToF ranging camera is

proposed using a commodity ToF sensor, such as the Espros EPC660. The ambient light

and modulated light dual-mode reading capability of the ToF sensor is exploited to jointly

extract the characteristics of a target scene along the depth, space and spectral dimensions.

It was shown that increasing the number of snapshots or by jointly reconstructing spectral

and 3D ranging using side information, greatly improves the quality of reconstruction.

Given the pixel count of the current ToF sensor, multispectral+depth (MS+D)

datacubes with 256 × 256 pixels of spatial resolution, 8 spectral channels and depth
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estimation at centimeter level, were recovered using compressive snapshots such that no

scanning processes were required. The spatial resolution of the system can be further

improved by using super-resolution techniques and high-resolution coded apertures [30,

111]. The spectral resolution can be enhanced by changing the dispersive element by

a diffraction grating, so that hyperspectral+depth (HS+D) imagery could be attained.

Further improvements along the spatial, spectral and depth dimensions can be achieved

by optimizing the entries of the coded apertures [36], or by using fusion techniques that

further exploit the side information.
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Appendix A

DISCLAIMER

Some target objects used in this dissertation were not endorsed by the trademark

owners and they are used here as fair use to illustrate the quality of reconstruction of com-

pressive spectral image measurements. LEGO is a trademark of the LEGO Group, which

does not sponsor, authorize or endorse the images in this dissertation. The LEGO Group.

All Rights Reserved. http://aboutus.lego.com/en-us/legal-notice/fair-play/.
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