
SUBSETS OF GROUPS EXHIBITING REGULARITY IN DIFFERENCES

by

Patrick G. Cesarz

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematical
Sciences

Fall 2019

c© 2019 Patrick G. Cesarz
All Rights Reserved



SUBSETS OF GROUPS EXHIBITING REGULARITY IN DIFFERENCES

by

Patrick G. Cesarz

Approved:
Louis Rossi, Ph.D.
Chair of the Department of Mathematical Sciences

Approved:
John Pelesko, Ph.D.
Dean of the College of Arts & Sciences

Approved:
Douglas J. Doren, Ph.D.
Interim Vice Provost for Graduate and Professional Education and
Dean of the Graduate College



I certify that I have read this dissertation and that in my opinion it meets the aca-
demic and professional standard required by the University as a dissertation for the
degree of Doctor of Philosophy.

Signed:
Robert S. Coulter, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the aca-
demic and professional standard required by the University as a dissertation for the
degree of Doctor of Philosophy.

Signed:
Felix Lazebnik, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the aca-
demic and professional standard required by the University as a dissertation for the
degree of Doctor of Philosophy.

Signed:
Qing Xiang, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the aca-
demic and professional standard required by the University as a dissertation for the
degree of Doctor of Philosophy.

Signed:
Andrew Woldar, Ph.D.
Member of dissertation committee



ACKNOWLEDGEMENTS

It is said that it takes a village to raise a child. The same can be said of any student,

not the least of which a doctoral student of mathematics. It is absurd to attempt a fully-

comprehensive acknowledgement of all those who have led to the completion of this thesis,

but I will now make such an attempt.

I thank my advisor, Dr. Robert S. Coulter, for his limitless patience and support.

I have not been the easiest student to motivate over the past few years, and despite my

best efforts at self-sabotage, Robert has never stopped supporting me and believing in me,

especially when it would have been much easier to give up on me, as I have almost given up

on myself too many times to count.

To my undergraduate mentor, Dr. Andrew Woldar, who very quickly saw in me the

potential to be a mathematician, I give great thanks. The countless hours he spent in his

office and over Skype instilling and fostering in me a love for mathematics will never be

forgotten.

I am thankful for Dr. Felix Lazebnik, who was critically influential in my decision

to attend the University of Delaware. I greatly appreciate Felix’s personal concern for my

learning and well-being during the first few years of my time at the University of Delaware

and afterward.

Although Dr. Qing Xiang was working at the National Science Foundation during

my first few years at the University of Delaware, he has allowed me to sit-in on many of the

classes he has taught. Many techniques covered in those courses are used in this very thesis,

so clearly, I owe a great deal of thanks to Qing.

Finally, I would like to thank Mrs. Loretta Minear and Mr. Curtis Minich. It was

during middle school and high school that my love of mathematics and computer science

was discovered and cultivated by these individuals.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
A COMMENT ON NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Sets exhibiting a regularity of differences . . . . . . . . . . . . . . . . . . 1
1.2 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Orthogonality and its Consequences . . . . . . . . . . . . . . . . . . . . . 8

2 A NONEXISTENCE RESULT FOR CERTAIN PDS . . . . . . . . . . . . . . 11

3 NEO-DIFFERENCE SETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Results without restriction on n . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Results with restrictions on n . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Proof of Theorem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 PDS CONSTRUCTION SCHEME . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 CLASS I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Class I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 CLASS II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 Class II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 CLASS III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



8 EQUIVALENCES FOR CLASSES I, II, AND III . . . . . . . . . . . . . . . . 55

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Maiorana–McFarland Bent Functions, and Classes I and II . . . . . . . . . 56
8.3 Class I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.4 Class II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.5 Orthogonal Arrays and Class III . . . . . . . . . . . . . . . . . . . . . . . 59

9 AN ATTEMPT AT A FURTHER CONSTRUCTION . . . . . . . . . . . . . 61

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2 The q = 35 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.3 The q = 311 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

10 SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . 84

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Appendix

A TABLES OF PDS’S AND GDS’S . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.1 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.1.1 Brief comments on the characteristic 2 examples . . . . . . . . . . 88
A.1.2 Brief comments on the odd characteristic examples . . . . . . . . . 90

B COPYRIGHT INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.1 Copyright Information for Image sets with regularity of differences . . . . . 94
B.2 Copyright Information for A Wilbrink-Like Equation for Neo-Difference Sets 97

vi



LIST OF TABLES

A.1 q ∈ {16, 32, 64} with f (X) = Xi(Xd − 1) . . . . . . . . . . . . . . . . . . 89

A.2 q = 256 with f (X) = Xi(Xd − 1) . . . . . . . . . . . . . . . . . . . . . . 89

A.3 q ∈ {81, 243} with f (X) = Xi(Xd − 1) . . . . . . . . . . . . . . . . . . . . 90

A.4 q = 729 with f (X) = Xi(Xd − 1) . . . . . . . . . . . . . . . . . . . . . . 91

A.5 q = 625 with f (X) = Xi(Xd − 1) . . . . . . . . . . . . . . . . . . . . . . 92

vii



A COMMENT ON NOTATION

Before we start, a comment on notation is in order. This thesis contains a large variety

of mathematical objects. In an attempt to help keep track of these objects, we have put in

place some font-based notation. Specifically, unless there is a well-established precedent

for notation (such as in the notation for the parameters of PDS and DS), we will use the

following conventions:

� Fields are denoted as F,L,R, and so forth.

� Groups are denoted as G,H ,N , and so forth.

� To talk of the non-identity elements of a group G, we use G?. This convention extends

to the non-zero elements of a field, where we write F?, for example.

� Subsets of algebraic objects which we are not assured as having structure are denoted

as S,T, J, and so forth.

� Elements of fields that we wish to highlight as being part of a basis we denote as b, s,

and so forth.

� Greek letters are generally used to denote maps. There is one clear exception to this:

When we talk of a character χ of a field L, and we have a subfieldK of L, the restriction

of χ to K is denoted by X. We do this mainly to avoid issues with subscripts.

� We use w to denote a root of unity. On occasion, especially when dealing with char-

acter sums, we have to deal with complicated exponents of w. To improve readabil-

ity, in parallel to the common notation exp, we introduce the notation wexp to mean

wexp(x) = wx.
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ABSTRACT

This thesis is primarily concerned with subsets of groups that exhibit a regularity of

differences (if written additively). In it, both non-existence results and existence results shall

be established, along with the development of a general construction technique for general-

ized difference sets. Chapter 1 contains an introduction to the objects being considered as

well a brief background of character theory.

In Chapter 2 we prove certain integrality conditions regarding the parameters of

PDS’s. This leads to a particular nonexistence result.

Neo-difference sets have been used to study finite projective planes of Lenz-Barlotti

type I.4. Although a nonexistence proof remains elusive, several results exist regarding

conditions on orders of such projective planes. We generalize a group-ring equation used in

proving one of these conditions in Chapter 3.

In Chapters 4-7, we outline a method of constructing infinite families of PDS’s in

finite fields and provide examples of three such constructions which come from the image

sets of polynomials over said finite fields. These infinite families of PDS’s are not new, how-

ever, and Chapter 8 establishes the equivalence of these recent constructions with Maiorana-

McFarland bent functions and orthogonal arrays.

In Chapter 9, we provide examples of GDSs found in fields of characteristic 3 using

the methods put forth in Chapter 4. Although no families of GDS’s are found, there are some

possibilities worth investigating.

Finally, we outline the publication status of our results. Those of Chapter 2 were

subsumed by a more general result of De Winter etc., so has never been submitted to be

published. The results of Chapter 3 was published in the article A Wilbrink-like equation for

neo-difference sets. The results of Chapters 4 through 8 were published in the article Image

ix



Sets with Regularity of Differences. The results of Chapter 9 remain unsubmitted as they are

incomplete. We hope to establish an infinite class of GDS’s that contain our work.
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Chapter 1

INTRODUCTION

1.1 Sets exhibiting a regularity of differences

This thesis is primarily interested in sets exhibiting a regularity of differences. More

specifically, we will be mostly considering the following sets.

Definition 1. Let S,D be two subsets of a group G of order v, written additively, but not

necessarily Abelian. Set |D | = k, and | S | = s.

(i) If there exist non-negative integers λ and µ such that every element of S? can be written

in precisely λ ways as a difference in D, while every element of G? \S can be written in

precisely µ ways as a difference in D, then D is a (v, s, k, λ, µ) generalized difference

set (GDS) related to S.

(ii) If S = D, then D is a (v, k, λ, µ) partial difference set (PDS).

(iii) If S = D and λ = µ, then D is a (v, k, λ) difference set (DS).

Although these objects are defined for any finite group, we will primarily be con-

cerned with PDS’s over Abelian groups. In particular, we investigate PDS’s of the additive

group of finite fields. For information regarding finite fields, see Lidl and Niederreiter [17]

or Mullen and Panario [20].

While GDS appear to be a recent development, introduced in 2008 by Cao and Sun

[5], DS and PDS have been studied for many years. There is a famous construction from

1933 due to Paley [21]: Let Fq denote the finite field of order q, with q odd, and let D be the

set of all non-zero squares of Fq. Then

� If q ≡ 1 mod 4, then D is a (q, q−1
2 ,

q−5
4 ,

q−1
4 )-PDS in the additive group of Fq.
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� If q ≡ 3 mod 4, then D is a (q, q−1
2 ,

q−3
4 )-DS in the additive group of Fq. In this case, D

is necessarily skew, that is, D ∩ −D = ∅.

The DS examples of Paley are examples of what are known as skew Hadamard difference

sets (SHDS), where the group G is equal to the disjoint union of D, −D, and {0}. For many

years, these were the only known examples of SHDS, until 2006 when Ding and Yuan [9]

constructed new examples using planar functions.

There are some famous (historical) names involved in the early years of the study of

DS and PDS, such as Chowla [6], H.B. Mann [18], E. Lehmer [15], R.H. Bruck [4], and

Marshall Hall Jr. [12]. Much of the early work was concerned with when the kth powers of

F?p , p a prime, form a DS or PDS in the additive group of Fp. In more recent times, the work

of Ding and Yuan was put into a more general framework by Qiu et al [22], and the later

chapters of this thesis are motivated, in part, by these classical results and the work of Qiu et

al.

There is one further type of set exhibiting a regularity of differences that we shall be

interested in. Neo-difference sets have defining properties that are similar to those of partial

difference sets, though their applications are different.

Definition 2. Let n ∈ N, X be an Abelian group, | X | = n − 1, G = X × X, and D ⊂ G. Let

U1 = X×{1},U2 = {1}×X, andU3 = {(x, x) | x ∈ X}. If every element in G\(U1∪U2∪U3)

can be represented uniquely in the form d1d−1
2 with d1, d2 ∈ D and no nonidentity element in

U1 ∪U2 ∪U3 has such a representation, then D is a neo-difference set of order n.

The existence of a neo-difference set of order n is equivalent to the existence of an

order n projective plane of Lenz-Barlotti type I.3, I.4 or VII.2 – non-Abelian G corresponds

to type I.3, while the Abelian case can be either I.4 or VII.2. The only known examples of a

neo-difference set correspond to type VII.2, the Desarguesian plane. For Lenz-Barlotti types

I.3 and I.4, several results exist putting restrictions on the possible orders of such planes,

but whether they exist or not is still unknown. For background results on neo-difference

sets, see the papers Hughes [13], Kantor [14], and Ghinelli and Jungnickel [10], [11]. For
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information on projective planes and the Lenz-Barlotti classification system, see Dembowski

[8]. The classification was originally derived by Lenz [16], with refinements by Barlotti [1].

We require one result concerning the behavior of differences in a particular SHDS in

a finite field, Fq, but we must first discuss notation regarding the group-ring CG. Recall that

if G is written multiplicatively, then CG consists of all formal sums
∑

g∈G agg with ag ∈ C for

all g ∈ G. If we let A =
∑

g∈G agg and B =
∑

g∈G bgg, then we have the following definitions

of addition and multiplication of group-ring elements:

A + B =
∑
g∈G

(ag + bg)g

AB =
∑
g∈G

∑
h∈G

(agbh)(gh).

Through a slight abuse of notation, if S ⊆ G, then we will also use the symbol S to denote

the group-ring element
∑

s∈S s. Also, for all n ∈ Z, we define S(n) =
∑

s∈S sn. Finally, let

ϕ ∈ Aut(G). Since ϕ is defined on G, and G forms a basis for CG, we have that ϕ can be

extended to a unique automorphism of CG, also denoted by ϕ. In other words, in the above

notation, ϕ(A) =
∑

g∈G agϕ(g).

In the case in which G is written additively, we make use of different notation. The

elements of G will be denoted by xg rather than g. By convention, the element x0 will be

denoted by 1. Since elements of CG are linear combinations of elements of this form, we

have that elements of CG appear like functions of x. As such, function notation will be used

when appropriate. For example, by letting A(x) =
∑

g∈G agxg and B(x) =
∑

g∈G bgxg, we have

that the binary operations are defined as follows:

A(x) + B(x) =
∑
g∈G

(ag + bg)xg

A(x)B(x) =
∑
g∈G

∑
h∈G

(agbh)xg+h.

Note that with this notation, similarities between CG and any polynomial ring are more-

apparent. Instead of writing S(n) as above, we write S(xn). Also, if ϕ ∈ Aut(G), we write A(xϕ)

for ϕ(A). In the special case in which G is
(
Fq,+

)
, we have that the Frobenius automorphism

maps any group-ring element A(x) to A(xp).

3



Theorem 3. Let q ≡ 3 mod 4, N denote the SHDS of nonsquares in the finite field Fq, and

S = F?q \ N, the SHDS of nonzero squares in Fq. Then for all n ∈ N, the set N − n contains
q−3

4 nonsquares and q−3
4 nonzero squares. Also, for all s ∈ S, the set N − s, contains q−3

4

nonsquares and q+1
4 nonzero squares.

Proof. We compute the group-ring element N (x)Fq

(
x−1

)
in two different ways. Note that

for all s ∈ S, we have that N (xs) = N (x). This is due to the fact that the squares of F?q form

a multiplicative subgroup of F?q . Using the fact that Fq (x) = S (x) +N (x) + 1, we deduce the

following.

N (x)Fq

(
x−1

)
= N (x)

(
S
(
x−1

)
+ N

(
x−1

)
+ 1

)
= N (x) S

(
x−1

)
+ N (x)N

(
x−1

)
+ N (x)

by using the fact that N is a SHDS, we may continue to simplify this equation to obtain

N (x)Fq

(
x−1

)
= N (x) S

(
x−1

)
+

q + 1
4

+
q − 3

4
Fq (x) + N (x)

= N (x) S
(
x−1

)
+

q + 1
4

+
q − 3

4
(S (x) + N (x) + 1) + N (x)

= N (x) S
(
x−1

)
+

q − 1
2

+
q − 3

4
S (x) +

q + 1
4

N (x) .

It is clear that Fq

(
x−1

)
= Fq (x), and since |N | = q−1

2 , we can conclude that

N (x)Fq

(
x−1

)
=

q − 1
2
Fq (x) .

By combining these equations and continuing to simplify, we obtain

q − 1
2
Fq (x) = N (x) S

(
x−1

)
+

q − 1
2

+
q − 3

4
S (x) +

q + 1
4

N (x)

q − 1
2

(S (x) + N (x) + 1) = N (x) S
(
x−1

)
+

q − 1
2

+
q − 3

4
S (x) +

q + 1
4

N (x)

N (x) S
(
x−1

)
=

q + 1
4

S (x) +
q − 3

4
N (x) .

We now rewrite the term on the left-hand side of the above equation. Since the squares of F?q

form a group, we have N(x) = N(xs) for all nonzero squares s. Using this, we obtain

N (x) S
(
x−1

)
=

∑
s∈S

N (x) x−s

=
∑
s∈S

N (xs) x−s.

4



We readily see that each term in the above sum can be obtained by taking the group-ring

element N (x) and multiplying the exponents by a square of F?q . Thus, each term in this sum

contains a constant number of terms from S and a constant number of terms from N. We

thus have ∑
s∈S

N (xs) x−s =
q + 1

4
S (x) +

q − 3
4

N (x) .

There are q−1
2 terms on the left-hand side, and each nonzero square appears exactly q+1

4 times

on the right-hand side. Since there are q−1
2 nonzero squares in Fq, and each term on the left-

hand side contains the same of number of nonzero squares, we conclude that each term on

the left-hand side contains exactly q+1
4 unique nonzero squares. By a similar argument, we

also have that each term on the left-hand side contains q−3
4 unique nonsquares.

By the definition of SHDS, we have the equation

N (x)N
(
x−1

)
=

q + 1
4

+
q − 3

4
Fq (x) .

By expanding and simplifying, we obtain∑
n∈N

N (x) x−n =
q − 1

2
+

q − 3
4

S (x) +
q − 3

4
N (x) .

Now, let n ∈ N be fixed. Note that

N (x) = N(xs)

=
∑
s∈S

xsn.

Using this, we now have∑
s∈S

N (xs) x−sn =
q − 1

2
+

q − 3
4

S (x) +
q − 3

4
N (x) .

By using arguments similar to those employed in the first part of the proof, we have proven

the theorem. �

1.2 Characters

It initially seems that GDS’s have no inherent algebraic structure in that the definition

of GDS is more combinatorial than it is algebraic. For Abelian groups, however, the use of
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characters yields several results for these objects. We now define characters for finite Abelian

groups.

Definition 4. Let G be a finite Abelian group. Then a homomorphism χ : G → C∗ is a

character of G.

Although characters can be defined to map to any field and not necessarily C, we will

only consider complex characters, and they will be referred to as simply characters unless

otherwise noted.

Let the set of characters of G be denoted by Ĝ. Then Ĝ is a group under pointwise-

group multiplication. That is, if χ, ψ ∈ Ĝ, and g ∈ G, we define (χψ)(g) = χ(g)ψ(g). One can

easily check that this binary operation does, indeed, define a group. This group is called the

dual group of G. It can be verified that Ĝ � G, though we do not make much use of this fact.

When G is taken to be the additive group of a finite field, then the dual group has

much more structure. This is because finite fields have more structure than arbitrary finite

groups. The presence of a multiplication in a finite field provides a succinct way of defining

characters of the additive group of a finite field. Arbitrary Abelian groups do not have a

second binary operation to rely on in representing their characters.

In order to see how additive characters over finite fields can be defined, we must first

define the concept of trace.

Definition 5. Let q be a power of a prime p, m ∈ N, F = Fq, K = Fqm . Then the trace of the

field extension K/F is the function TrK/F : K→ F given by

TrK/F(x) =

m−1∑
i=0

xqi
.

It can be shown that TrK/F, indeed, maps K to the subfield F and that TrK/F is an F-

linear functional on K. In fact, if T is any F-linear functional on K, then there is a unique

a ∈ K such that for all x ∈ K, T (x) = TrK/F(ax).

With the trace now defined, we now have an alternate way to express additive char-

acters of finite fields.

6



Definition 6. Let q be a power of a prime p, F = Fp, K = Fq, and t ∈ K. Let w be a primitive

p-th root of unity. Then define χt ∈ K̂ by

χt(x) = wexp
(
TrK/F (tx)

)
.

The fact that χt is a character follows from F-linearity of TrK/F. From the above

definition, the following is clear.

Lemma 7. With the above notation, we have χt(a) = χ1(ta) = χta(1).

This fact will often be used implicitly in the proofs of the results in later chapters.

Another useful property of the trace function is its transitive nature which we now make

precise.

Theorem 8. Let, F, K, L be three finite fields such that F ≤ K ≤ L, then for all x ∈ L, we

have TrL/F(x) = TrK/F(TrL/K(x)).

Using this property, we can consider how characters on finite fields behave when

restricted to a subfield.

Lemma 9. Let χt ∈ L̂, and let X = χt|K. Then X ∈ K̂, and X = Xt′ , where t′ = TrL/K(t).

Proof. Let x ∈ K. We compute χt(x).

χt(x) = wexp
(
TrL/K (tx)

)
= wexp

(
TrL/K (tx)

)
= wexp

(
TrK/F

(
x TrL/K (t)

))
= wexp

(
TrK/F

(
t′x

))
= X′t′ (x) .

Above we used transitivity of the trace function and K-linearity of TrL/K. �
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1.3 Orthogonality and its Consequences

The most important reason why characters are useful is because of the orthogonality

relations. Here we state without proof one such relation as it relates to characters over finite

fields.

Theorem 10. LetG be an Abelian group with |G| = n and x ∈ G. Then we have the following:

1
n

∑
χ∈Ĝ

χ(x) =


1 if x = 0,

0 otherwise.

For the special case in which G is a finite field, this becomes the following:

Corollary 11. Let p be a prime, n ∈ N, q = pn, F = Fq, and x ∈ F. Then we have the

following:

1
q

∑
t∈F

χt(x) =


1 if a = 0,

0 otherwise.

Thus far, we have defined the domain of characters to be a finite Abelian group. We

can extend this definition so that characters can be evaluated on subsets of elements of finite

Abelian groups. Namely, if G is a finite Abelian group and S ⊆ G, then for all χ ∈ Ĝ, we

define

χ(S) =
∑
s∈S

χ(s). (1.1)

In the following chapters equations involving character sums over subsets will frequently be

used. As such, the following identities will be useful.

Theorem 12. Let G be an Abelian group written additively with |G| = n and identity 0, and

let S ⊆ G. The the following equation holds.

1
n

∑
χ∈Ĝ

χ(S) =


1 if 0 ∈ S,

0 otherwise.
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Proof. By using the definition of χ(S) and orthogonality, we have

1
n

∑
χ∈Ĝ

χ(S) =
1
n

∑
χ∈Ĝ

∑
s∈S

χ(s)

=
1
n

∑
s∈S

∑
χ∈Ĝ

χ(s).

In the above summation, if 0 < S, then all terms in the innermost sum are 0. If 0 ∈ S, then

all terms are 0 except for the term corresponding to s = 0, which is 1. This completes the

proof. �

It should be noted that in most applications of this theorem, the groupG is the additive

group of a finite field, and 0 < S.

Another type of quantity that often appears involves the moduli of character sums.

The next theorem provides a way to evaluate such sums.

Theorem 13. Let G be an Abelian group written additively with |G| = n, and let S ⊆ G. Then

the following equation holds:
1
n

∑
χ∈Ĝ

|χ(S)|2 = |S| .

Proof. Recall that if z ∈ C, then |z|2 = zz̄. This fact allows us to rewrite the above summation

as
1
n

∑
χ∈Ĝ

|χ(S)|2 =
1
n

∑
χ∈Ĝ

χ(S)χ(S).

We now expand the characters evaluated on S to obtain

1
n

∑
χ∈Ĝ

χ(S)χ(S) =
1
n

∑
χ∈Ĝ

∑
s∈S

χ(s)
∑
t∈S

χ(t)

 .
Since complex conjugation respects addition we simplify to get

1
n

∑
χ∈Ĝ

∑
s∈S

χ(s)
∑
t∈S

χ(t)

 =
1
n

∑
χ∈Ĝ

∑
s∈S

χ(s)
∑
t∈S

χ(t)

 .
Since for all z ∈ C we have z = |z|2z−1, and since character values are all roots of unity, which

have modulus 1, we conclude that χ(t) = (χ (t))−1 for all t ∈ S. Using this, we now have

1
n

∑
χ∈Ĝ

|χ(S)|2 =
1
n

∑
χ∈Ĝ

(∑
s∈S

χ(s)
∑
t∈S

(
χ(t)

)−1
)
.
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Because characters are group homomorphisms, it is clear that (χ(t))−1 = χ(−t). By using this

fact and rearranging terms, we obtain

1
n

∑
χ∈Ĝ

∑
s∈S

χ(s)
∑
t∈S

(
χ(t)

)−1

 =
1
n

∑
χ∈Ĝ

∑
s∈S

χ(s)
∑
t∈S

χ(−t)


=

1
n

∑
χ∈Ĝ

∑
s∈S

∑
t∈S

χ(s − t)

=
∑
s∈S

∑
t∈S

1
n

∑
χ∈Ĝ

χ(s − t)

 .
The innermost sum is 0 whenever s − t , 0, that is, when s , t, and the innermost sum is 1

whenever s = t. Thus, the only nonzero terms of this sum occur when s = t. We therefore

have ∑
s∈S

∑
t∈S

1
n

∑
χ∈Ĝ

χ(s − t)

 =
∑
s∈S

1
n

∑
χ∈Ĝ

χ(0)


=

∑
s∈S

1

= |S|.

This completes the proof. �

Fix D ⊆ F?q with D nonempty. We will be interested in counting, for any w ∈ F?q , the

number λw of ways in which we can write w = d1 − d2 with di ∈ D. A classical technique

for doing so follows from the orthogonality relations for characters. Indeed, we have

qλw =
∑
t∈Fq

∑
d1,d2∈D

χt (w − (d1 − d2))

=
∑
t∈Fq

χt(w)
∑
d1∈D

χt(d1)
∑
d2∈D

χt(d2)

=
∑
t∈Fq

χt(w) | χt(D) |2 , (1.2)

where χt(D) is understood to denote the partial sum of χt(d) as d ranges over all D. We shall

rely on this classical equation in our general approach to establishing whether a given set D

is a GDS, PDS or DS, see Chapter 4.
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Chapter 2

A NONEXISTENCE RESULT FOR CERTAIN PDS

Let G be an Abelian group written additively with | G | = v, and let D ⊆ G. Also, let

Ĝ denote the dual group of G. Then the following equation holds for all nonzero w ∈ G:

λw =
1
v

∑
χ∈Ĝ

χ(w) | χ(D) |2 ,

where λw is the number of representation of w as differences of two elements of D. In this

chapter, we shall prove the following theorem.

Theorem 14. Let D be a (v, k, λ, µ)-PDS contained in a finite Abelian group G. Let r, s ∈ Z

with r , s and suppose χ(D) ∈ {r, s} for each non-principal character χ of Ĝ. Then vλw+s2−k2

r2−s2

must be an integer for all w ∈ G?.

The motivation for this result stems from computation related to the method for

constructing PDS outlined in Chapter 4. Specifically, through computation we obtained a

(243,110,66,9,25)-GDS, which will be explored further in Chapter 9. These parameters are

remarkably close to a strongly regular graph parameter, (243,66,9,21), which was listed in

Brouwer’s webpage as open. After initial attempts to manipulate the GDS into a PDS, the

above theorem was established. While this proved that no Abelian (243,66,9,21)-PDS exists,

our theorem was preceded by six months by a paper posted on arXiv, which proves a more

general statement, see the paper of De Winter, Kamischke and Wang [7].

Now, suppose D is a (v, k, λ, µ)-PDS of G. Then if λ , µ, we have the following

character sum for all χ , χ0.

χ(D) =
(λ − µ) ±

√
(λ − µ)2 + 4(k − µ)

2
.
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This is obtained by manipulating the group-ring equation for PDS’s.

We now establish some facts regarding the uniformity of character values evaluated

on a fixed group element.

Lemma 15. Let w ∈ G be fixed and arbitrary, and let | G | = v. Then for all χ ∈ Ĝ, the values

of χ(w) all lie in 〈w〉, where w is a primitive d-th root of unity for some d|v. Moreover, as χ

varies over Ĝ, each value in 〈w〉 is attained exactly v
d times.

Proof. Define the following function:

Φ : Ĝ → C?

χ 7→ χ(w).

It is routine to show that this is a group homomorphism. This means that Im(Φ) ≤ C?, so

Im(Φ) = 〈w〉, where w is a d-th root of unity for some natural number d. By the homomor-

phism theorems, we have that d|v, and | ker(Φ) | = v
d , and the proof is complete. �

We now proceed to prove Theorem 14. From (1.2), we have

vλw =
∑
χ∈Ĝ

χ(w)|χ(D)|2.

We now examine the terms on the right-hand side. As χ ranges over all of Ĝ, χ(w) ranges

over all d-th roots of unity uniformly, for some d|n. We also have that | χ(D) |2 = r2 or s2 for

non-principal χ. Therefore, each term on the right-hand side can attain one of 2d possible

values for non-principal χ. We now consider the frequencies with which these values are

attained. In order to do this, we let Air =
∣∣∣ {χ ∈ Ĝ : χ(w) = wi and χ(D) = r}

∣∣∣, and Ais =∣∣∣ {χ ∈ Ĝ : χ(w) = wi and χ(D) = s}
∣∣∣ for i = 0, . . . , d − 1. We can use 15 above to rewrite the

sum on the right-hand side. Note that Air + Ais = v
d for all i , 0, and A0r + A0s = v

d − 1. The
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i = 0 case must be taken care of separately to account for the fact that χ0(D) = k and not r

or s. We have∑
χ∈Ĝ

χ(w) | χ(D) |2 =

d−1∑
i=0

(
r2Airw

i + s2Aisw
i
)

+ | χ0(D) |2

= r2A0r + s2A0s +

d−1∑
i=1

(
r2Airw

i + s2Aisw
i
)

+ k2

= r2A0r + s2
( v
d
− 1 − A0r

)
+

d−1∑
i=1

(
r2Airw

i + s2
( v
d
− Air

)
w

i
)

+ k2

=

d−1∑
i=0

(
(r2 − s2)Airw

i + s2 v
d
w

i
)
− s2 + k2.

Recall that the sum of the nth roots of unity is 0 for all n > 1. This causes the s2 v
dw

i term in

the summation to vanish.∑
χ∈Ĝ

χ(w) | χ(D) |2 =

d−1∑
i=0

(
(r2 − s2)Airw

i
)
− s2 + k2

= (r2 − s2)
d−1∑
i=0

Airw
i − s2 + k2.

Combining these equations yields the following:

vλw + s2 − k2

r2 − s2 =

d−1∑
i=0

Airw
i.

Note that the right-hand side is clearly an algebraic integer and the the left-hand side is

clearly a rational number. The only numbers that are both algebraic integers and rational

numbers are the rational integers. Therefore, the left-hand side is an integer. This completes

the proof of Theorem 14.
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Chapter 3

NEO-DIFFERENCE SETS

Just as the definition of a PDS of G can be expressed in terms of the group-ring ZG,

so too, can the definition of a neo-difference set of G. With the same notation as in 2, let

N = U1 +U2 +U3 ∈ ZG. Then D is a neo-difference set of G if the following group-ring

equation holds:

DD(−1) = n + G −N. (3.1)

In this chapter we shall establish the following generalization of a result of Ghinelli

and Jungnickel [11], who established it for p = 3.

Theorem 16. Let G be a finite Abelian group with neo-difference set D of order pm, with p

and odd prime and p - m. Then

Dp−1 + (D(−1))p−1 = 1 − 2G −N

in ZpG.

In the p = 3 case, this result was then used in [11] to prove that if n is the order of

a projective plane of Lenz-Barlotti type I.4 and 3 | n, then either n = 3 or 9 | n. This proof

relied on finding coefficients of group elements in the above equation. Since p is a small

prime, these coefficients are relatively tractable. For greater primes, p, however, there are

more terms to consider, and the process is much more difficult.

3.1 Results without restriction on n

The proof of Theorem 16 requires many computations. We now start with those

computations that do not impose any conditions on n. The results in the following lemma

are almost immediate.
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Lemma 17. Let A, B ∈ ZG. Then the following statements hold in ZG.

(i) (AB)(−1) = A(−1)B(−1).

(ii) (A + B)(−1) = A(−1) + B(−1).

(iii) For any k ∈ Z, (A(−1))k = (Ak)(−1).

For A =
∑

g∈G agg ∈ ZG, define [A] =
∑

g∈G ag. From this we have

Lemma 18. ForH ≤ G and A ∈ ZH ,HA = [A]H . In particular, GA = [A]G.

Proof. This is clear from the fact that for all h ∈ H , we have hH = H . Since A is a sum of

integer multiples of elements ofH , the proof is complete. �

We now apply this lemma to obtain some useful identities.

Corollary 19. The following statements hold in ZG.

(i) G2 = (n − 1)2G.

(ii) GN = 3(n − 1)G.

(iii) For anyH ≤ G and any A ∈ ZG, we haveHA = HA(−1).

(iv) N2 = 6G + (n − 1)N.

Proof. (i) Note that [G] = (n − 1)2.

(ii) Here, note that [N] = 3(n − 1)

(iii) Inverting elements of a group-ring element does not change the multi-set of coeffi-

cients. Thus, [A] = [A(−1)].
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(iv) Since N is not a subgroup of G, we expand N and compute, noting that [Ui] = n − 1

for i = 1, 2, 3.

N2 = (U1 +U2 +U3)(U1 +U2 +U3)

= U2
1 +U2

2 +U2
3 + 2U1U2 + 2U1U3 + 2U2U3

= (n − 1)U1 + (n − 1)U2 + (n − 1)U3 + 2G + 2G + 2G

= (n − 1)N + 6G,

�

Lemma 20. Let k ∈ N. In ZG, we have

ND2k = N − 3G
2k−1∑
i=0

(2 − n)i.

Furthermore, if n is even, then

NDk = (−1)k

N − 3G
k−1∑
i=0

(2 − n)i

 .
Proof. We have

ND = DU1 + DU2 + DU3

= (G −U1) + (G −U2) + (G −U3(1, θ))

= 3G −U1 −U2 −U3(1, θ),

and

ND2 = 3DG −DU1 −DU2 −DU3(1, θ)

= 3(n − 2)G − (G −U1) − (G −U2) − (1, θ)(G −U3(1, θ))

= 3(n − 2)G − 3G + (U1 +U2 + (1, θ)2U3)

= 3(n − 2)G − 3G + (U1 +U2 +U3)

= 3(n − 2)G − 3G + N,

where we have used θ2 = 1. Inducting on the identity for ND2 now proves the first claim.

If n is even, then θ = 1 and we actually have ND = 3G − N. Now induction will yield the

second claim. �
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Lemma 21. Let k ∈ N. In ZG, we have

(n + G −N)k

= nk + G

 k−1∑
i=0

(n − 2)2ink−1−i + (9 − 3n)
k−1∑
i=1

(n − 2)2(k−1−i)
(
ni − 1
n − 1

)
−N

(
nk − 1
n − 1

)
.

Proof. Let (n + G − N)k = akn + bkG − ckN, where ak, bk, ck ∈ Z. We use the following

recurrence:

ak + bkG − ckN = (n + G −N)k

= (n + G −N)k−1(n + G −N)

= (ak−1n + bk−1G − ck−1N)(n + G −N)

= ak−1nn + bk−1nG − ck−1nN

+ ak−1nG + bk−1G
2 − ck−1NG

− ak−1nN − bk−1NG + ck−1N
2

= (ak−1n)n + bk−1nG − ck−1nN

+ ak−1nG + bk−1(n − 1)2G − ck−13(n − 1)G

− ak−1nN − bk−13(n − 1)G + ck−1((n − 1)N + 6G)

= (ak−1n)n −N(ck−1n + ak−1n − ck−1(n − 1))

+ G(bk−1n + ak−1n + bk−1(n − 1)2

− ck−13(n − 1) − bk−13(n − 1) + 6ck−1).

So, with initial conditions a1 = b1 = c1 = 1, we find

ak = ak−1n,

bk = ak−1n + bk−1(n − 2)2 + ck−1(9 − 3n),

ck = ck−1 + ak−1n.

Immediately, we have ak = nk−1. Substituting into the recurrence for ck now yields

ck = ck−1 + nk−1 =
nk − 1
n − 1

.

17



Returning to bk, we have the identity

bk = nk−1 + bk−1(n − 2)2 + (9 − 3n)
(
nk−1 − 1

n − 1

)
,

from which an induction argument proves the claim. �

3.2 Results with restrictions on n

Following [11], central to our proof of Theorem 16 is the following result.

Lemma 22. Suppose p is an odd prime dividing n. Then

n(Dp−1 + (D(−1))p−1) ≡ (n + G −N)p + (n + G −N) − 2GDp−1 + 2NDp−1 mod p2. (3.2)

Proof. As p divides n, Theorem 5.3 of [10] shows that D(p) = D in ZG. Since we also have

Dp ≡ D(p) mod p, there must exist some A ∈ ZG satisfying pA = Dp − D. We also have

pA(−1) = (Dp)(−1) −D(−1). Thus

0 ≡ (pA)(pA(−1)) mod p2

≡ (DD(−1))p + DD(−1) −D(D(−1))p −DpD(−1) mod p2

≡ (DD(−1))p + DD(−1)(1 − (D(−1))p−1 −Dp−1) mod p2.

As D is a neo-difference set, we have DD(−1) = n + G −N, and by rearranging we find

n(Dp−1 + (D(−1))p−1)

≡ (n + G −N)p + (n + G −N) − (G −N)(Dp−1 + (D(−1))p−1) mod p2.

By Corollary 19 (iii), GDp−1 = G(D(−1))p−1, while NDp−1 = N(D(−1))p−1 follows from

Lemma 20. This establishes the claim. �

We now proceed to compute the parts of the equation of Lemma 22.

Lemma 23. The following statements hold in ZG.

(i) For any k ∈ N, GDk = (n − 2)kG. In particular, if p is an odd prime dividing n, then

GDp−1 ≡ 2p−2(2 + n)G mod p2.
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(ii) If p is an odd prime dividing n, then

NDp−1 ≡ N + 3(1 − 2p−1)G + 3nG(1 − 2p−23) mod p2.

Proof. The first claim is immediate from Lemma 18. For the remainder of (i) we have

GDp−1 = (n − 2)p−1G

≡
(
(−2)p−1 + (p − 1)n(−2)p−2

)
G mod p2

≡ (2p−1 + (−1)p−12p−2n)G mod p2

≡ 2p−2(2 + n)G mod p2,

as desired. Appealing to Lemma 20 yields

NDp−1 = N − 3G
p−2∑
i=0

(2 − n)i

≡ N − 3G
p−2∑
i=0

2i + 3nG
p−2∑
i=1

i2i−1 mod p2

≡ N + 3(1 − 2p−1)G + 3nG
p−2∑
i=1

i2i−1 mod p2,

where we have used nk ≡ 0 mod p2 for k ≥ 2 extensively. The above sum is part of a

well-known induction question for undergraduates satisfying

k∑
i=1

i2i−1 = 1 + (k − 1)2k.

Applying the identity now yields the claimed result. �

The only part of (3.2) that requires some care to compute is the (n +G−N)p compo-

nent.

Lemma 24. Suppose p is an odd prime dividing n. Then

(n + G −N)p ≡ (4p − 3)(1 + 2n)G − (1 + n)N mod p2.
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Proof. It is easily seen that
np − 1
n − 1

≡ n + 1 mod p2,

so the parts of (n + G −N)p that we need to consider are the coefficients of G in Lemma 21.

Firstly,
p−1∑
i=0

(n − 2)2inp−1−i ≡ (n − 2)2(p−1) + (n − 2)2(p−2)n mod p2

≡ (n − 2)2(p−2)
(
n2 − 4n + 4 + n

)
mod p2

≡ (n2 − 4n + 4)p−2(4 − 3n) mod p2

≡ 4p−2(4 − 3n)(1 − n)p−2 mod p2

≡ 4p−2(4 − 3n)(1 + 2n) mod p2

≡ 4p−2(4 + 5n) mod p2.

Next, we have

(9 − 3n)
p−1∑
i=1

(n − 2)2(p−1−i)
(
ni − 1
n − 1

)
≡ (9 − 3n)(n − 2)2(p−2) + (9 − 3n)(1 + n)

+ (9 − 3n)
p−2∑
i=2

(n − 2)2(p−1−i)(1 + n) mod p2

≡ (9 − 3n)(n2 − 4n + 4)p−2 + (9 + 6n)

+ (9 + 6n)
p−2∑
i=2

(n2 − 4n + 4)p−1−i mod p2

≡ 4p−2(9 − 3n)(1 − n)p−2 + (9 + 6n)

+ (9 + 6n)
p−2∑
i=2

4p−1−i(1 − n)p−1−i mod p2

≡ 4p−2(9 − 3n)(1 + 2n) + (9 + 6n) + (9 + 6n)
p−3∑
i=1

4i(1 − n)i mod p2

≡ 4p−2(9 + 15n) + (9 + 6n) + (9 + 6n)
p−3∑
i=1

4i(1 − in) mod p2
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≡ 4p−2(9 + 15n) + (9 + 6n) + (9 + 6n)
p−3∑
i=1

4i − 9n
p−3∑
i=1

i4i mod p2

≡ 4p−2(9 + 15n) + (9 + 6n) + (3 + 2n)4(4p−3 − 1) − 9n
p−3∑
i=1

i4i mod p2

≡ 4p−2(12 + 17n) − (3 + 2n) − 9n
p−3∑
i=1

i4i mod p2.

Noting that for all k ≥ 1,
k∑

i=1

i4i =
1
3

k4k+1 +
1
9

(4 − 4k+1),

we thus find that

(9 − 3n)
p−1∑
i=1

(n − 2)2(p−1−i)
(
ni − 1
n − 1

)

≡ 4p−2(12 + 17n) − (3 + 2n) − 9n
p−3∑
i=1

i4i mod p2

≡ 4p−2(12 + 17n) − (3 + 2n) − 3n(p − 3)4p−2 − n(4 − 4p−2) mod p2

≡ 4p−2(12 + 17n) − (3 + 2n) + 9n4p−2 − 4n + n4p−2 mod p2

≡ 4p−2(12 + 27n) − (3 + 6n) mod p2.

Summing the respective parts and simplifying now yields the claim. �
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3.3 Proof of Theorem 16

We are now in a position to prove Theorem 16. Suppose p is an odd prime and

n = pm with p6 |m. We appeal to (3.2) and simplify:

n(Dp−1+(D(−1))p−1)

≡ − (1 + n)N + (4p − 3)(1 + 2n)G + n + G − N − 2
(
2p−2(2 + n)G

)
+ 2

(
N + 3(1 − 2p−1)G + 3nG − 2p−29nG

)
mod p2

≡G(4p − 3 + 2n4p − 6n + 1 − 2p − 2p−1n + 6 − 2p3 + 6n − 2p−19n)

+ n − nN mod p2

≡ n − nN + G(4p + 4 − 4 · 2p + n(2 · 4p − 10 · 2p−1)) mod p2

≡ n − nN + G((2p − 2)2 + n(2 · 4p − 5 · 2p)) mod p2

≡ n − nN + nG(2 · 4p − 5 · 2p) mod p2.

As p6 |m, we may cancel the multiple of n and work modulo p. This yields

Dp−1 + (D(−1))p−1 ≡ 1 − N + G(2 · 4p − 5 · 2p) mod p

≡ 1 − N + G(2 · 4 − 5 · 2) mod p

≡ 1 − 2G − N mod p,

which establishes Theorem 16.

While Theorem 16 gives an affirmative answer to the first part of Remark 2 of [11],

there still remains the task of finding a suitable argument which generalizes the main theorem

of [11] – i.e. to produce a general proof showing that if G is an Abelian neo-difference set of

order pn, with p a prime, then n = 1 or p|n. The main stumbling block in doing so concerns

obtaining suitably tight statements concerning Dp−1 and (D(−1))p−1 modulo the prime p.
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Chapter 4

PDS CONSTRUCTION SCHEME

We now move to outline a general approach for finding subsets with regularity of

differences by using polynomials having regularity of images, though we only rely on the

latter towards the end of the approach.

Let p be a prime, e ∈ N, v = pe, a, b ∈ N with ab = v − 1. Let L = Fv, with L? = 〈g〉,

and let C = 〈ga〉. We first suppose the potential GDS D in L is a union of cosets of C. By

doing this for infinitely many choices of e, we hope to obtain an infinite class of GDS’s,

PDS’s, or DS’s for finite fields of different orders. We now make some definitions regarding

polynomials over L and their images.

Definition 25. Let f (X) ∈ L[X], and let z, r, s ∈ N. Denote by Im(f ) the set {f (x) : x ∈ Fq}.

The polynomial f (X) is (r, s)-biregular on F?q if f has z roots in Fq and for any y ∈ Im(f )\{0},

the equation f (x) = y has either r or s solutions x ∈ Fq. The polynomial f (X) is r-regular on

F?q if f is (r, r)-biregular. The polynomial f (X) is r-to-1 on Fq if f is r-regular with z = 1.

We then incorporate the general assumption that D = Im(f ) \ {0} for some r-regular

polynomial f . What follows is a general approach for such classes of PDS’s.

4.1 General Approach

Let D ⊆ L, |D | = k > 0, such that D =
⋃
g∈I

gC for some I ⊆ L?. In other words, D is

a union of cosets of C in L?. Finally, let w ∈ L. In order to determine whether D is a PDS,

we must count the number λw of times w can be represented as the difference of elements of

D. We have from (1.2) that

λw =
1
v

∑
t∈L

χt(w) | χt(D) |2 .
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We now wish to rewrite this sum in terms of the group C. To this end, we first isolate

from the sum the term corresponding to t = 0. In this term, χt = χ0, the principal character.

Since χ0(x) = 1 for all x ∈ L and |D | = k, we obtain

vλw = k2 +
∑
t∈L?

χt(w) | χt(D) |2

= k2 +
∑
t∈L?

χ1(tw) | χ1(tD) |2 , (4.1)

where in the last step we have used the identity χt(w) = χ1(tw) for all t,w ∈ L.

Next, let T = {g0, g1, . . . , ga−1} be a transversal of C in L?. Thus, L? = ∪a−1
i=0 giC,

and every t ∈ L? can be written uniquely as t = gic with i ∈ Za, and c ∈ C. Because of

this representation, the above sum can be written to range over all possible values of i and c

instead of values of t:

vλw − k2 =

a−1∑
i=0

∑
c∈C

χ1(gicw) | χ1(gicD) |2

Since D is a union of cosets of C, we have that cD = D for all c ∈ C. Using this fact

allows us to further simplify the sum to

vλw − k2 =

a−1∑
i=0

∑
c∈C

χ1(gicw) | χ1(giD) |2

=

a−1∑
i=0

| χ1(giD) |2
(∑

c∈C

χ1(gicw)
)

=

a−1∑
i=0

| χ1(giD) |2 χ1(giwC).

We now let w = gwcw, with gw ∈ T and cw ∈ C. Proceeding in a similar way as above,

substituting and using the fact cC = C holds for all c ∈ C, we obtain

vλw − k2 =

a−1∑
i=0

| χ1(giD) |2 χ1(gigwC). (4.2)

Note that (4.2) is independent of the value of cw. This means that λw depends solely on which

coset of C contains w.
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In the special case where gi = gi for i ∈ Za, we introduce additional notation. In order

to do this, let w = gmcw. If we define X j = χ1(g jC) and Y j = χ1(g jD) for all j ∈ Za, then

vλw − k2 =

a−1∑
i=0

∣∣∣ χ1(giD)
∣∣∣2 χ1(gigmC) (4.3)

=

a−1∑
i=0

|Yi |
2
Xm+i. (4.4)

By the above formula, it is evident that the values of Xi need to be calculated for all i,

as do the values of Yi. It is in computing these values that different classes require different

methods of calculation, though there are some commonalities. Since D is a union of cosets of

C, Yi is a sum ofX j-terms for various j. Depending on the various cases, additional structure

in D may help in determining what X j terms are in this sum. Finally, the interaction of the

Yi terms with the Xm+i terms must be such that the sum in the above equation can attain at

most two values, and these values depend solely on w’s membership in D.

Let f ∈ L[X] such that
∣∣∣ f −1(0)

∣∣∣ = z and for all y ∈ L?,
∣∣∣ f −1(y)

∣∣∣ = 0 or r. In other

words, f is r-regular on F?v with z zeros. Set D = Im(f ) \ {0}. Let Wt(f ) =
∑

x∈L χt(f (x)),

called the Weil sum with argument f (X). Due to the behavior of f , we immediately have

Wt(f ) = rχt(D) + z. (4.5)

Rewritten, this is

χt(D) =
1
r

(
Wt(f ) − z

)
.

As a result, the computation of λw is directly connected to determining the Weil sumWt(f ),

which is no longer a partial sum but a full character sum over Fv. Specifically, we have

vλw − k2 =
1
r2

a−1∑
i=0

∣∣∣Wgi(f ) − z
∣∣∣2Xm+i. (4.6)

It is often the case that partial sums are more intricate than Weil sums, especially when the

polynomial involved generally behaves in a distinctive way. Given that the polynomial f

is assumed to be r-regular, it is reasonable to have expectations that Weil sums involving f

could be evaluated. As shall be seen, in practice these expectations are borne out.
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Chapter 5

CLASS I

5.1 Class I

We now employ the construction scheme previously mentioned to obtain an infinite

family of PDS’s. For this class, we work in fields of characteristic 2. So with the notation

established in Chapter 4, let p = 2, e = 2n with n ∈ N. Set q = pn, so that L = Fq2 . Let

a = q − 1, so b = q + 1. It will also help to define intermediate fields; we let K = Fq and

F = F2. Also, letH1 = {y2 − y : y ∈ K} be the subgroup of (L,+) containing all elements of

K with absolute trace equal to 0. Note that this is a hyperplane of the F-vector space K, and

that all hyperplanes of K can be expressed uniquely in the form gH1, with g ∈ K?.

Now let f (X) = X2(NL/K(X) + 1) ∈ L[X] and D = Im(f ) \ {0}. We will prove that D

is a PDS.

Theorem 26. Let p = 2 and q = pn with n ∈ N. Set a = q − 1 and b = q + 1. Let K = Fq

and L = Fq2 . Define f ∈ L[X] by f (X) = X2(NL/K(X) + 1). Let D = Im( f ) \ {0}. Then D is a

(q2, 1
2 (q + 1)(q − 2), 1

4 (q + 2)(q − 1), 1
4q(q − 2))-PDS.

We first show that f is regular.

Theorem 27. With the above notation, f (X) is 2-regular with q + 2 roots.

Proof. First, the set of roots of f (X) over L consists of 0 and the q + 1 distinct elements of

norm 1, so we need only deal with the regularity claim. To this end, suppose f (x) = f (y) , 0

for x, y ∈ L. This means that x2(NL/K(x) + 1) = y2(NL/K(y) + 1), and xy , 0. By rearranging

terms we obtain (y
x

)2
=

NL/K(x) + 1
NL/K(y) + 1

.
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It is clear that the right-hand side is an element of K?, so ( y
x )2 ∈ K?. As L is characteristic 2,

we also have y
x ∈ K

?. Let y = ax with a ∈ K?. We then have

x2(NL/K(x) + 1) = (ax)2(NL/K(ax) + 1).

Since NL/K is multiplicative and a ∈ K? we obtain

x2(NL/K(x) + 1) = a2x2(a2 NL/K(x) + 1).

By assumption, x , 0, so we may divide both sides by x2 to get

NL/K(x) + 1 = a2(a2 NL/K(x) + 1)

The above is a quadratic equation in a2. We now rearrange terms to conclude

NL/K(x)a4 + a2 + (1 + NL/K(x)) = 0

a4 + (NL/K(x))−1a2 + (1 + NL/K(x))(NL/K(x))−1 = 0

From this equation, we conclude a = 1 or (1 + NL/K(x))(NL/K(x))−1. Since

(1 + NL/K(x))(NL/K(x))−1 , 1,

we have that a2, and hence a, attains exactly two values, and the proof is complete. �

Lemma 28. As multiplicative groups, L? � K? × C.

Proof. Note that
∣∣∣K? ∣∣∣ = q − 1 and | C | = q + 1. Since L? is cyclic, we have that

∣∣∣K? ∩ C ∣∣∣ =

gcd(
∣∣∣K? ∣∣∣ , | C |) = 1. We also have

∣∣∣K?C ∣∣∣ =

∣∣∣K? ∣∣∣ | C |
|K? ∩ C |

=
(q − 1)(q + 1)

1

= q2 − 1

=
∣∣∣L? ∣∣∣ .

This means that L? = K?C. Since L? is Abelian, it is clear that both K? and C are normal in

L?, and the proof is complete. �
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Application of (4.6) with Lemma 28 now gives

4(vλw − k2) =
∑
g∈K?

∣∣∣Wg(f ) − q − 2
∣∣∣2 χg(gwC), (5.1)

where w = gwcw for some gw ∈ K
? and cw ∈ C. We now evaluate Wg(f ) with g ∈ K? with

g ∈ K?. By definition,

Wg(f ) =
∑
x∈L

χg

(
x2(NL/K(x) + 1)

)
= 1 +

∑
x∈L?

χg

(
x2(NL/K(x) + 1)

)
.

Through Lemma 28 again, by letting x = yc with y ∈ K? and c ∈ C, we obtain

Wg(f ) = 1 +
∑
c∈C

∑
y∈K?

χg

(
(yc)2 (

NL/K(yc) − 1
))
.

Since NL/K is multiplicative and NL/K(c) = 1, this equation simplifies to

Wg(f ) = 1 +
∑
c∈C

∑
y∈K?

χg

(
y2c2(y2 − 1)

)
= 1 +

∑
c∈C

∑
y∈K?

χg

(
c2y4 − c2y2

)
= 1 +

∑
c∈C

∑
y∈K?

χgc2

(
y4 − y2

)
.

Since y4 − y2 ∈ K, we may restrict χgc2 to K. This becomes the character Xr, where r =

TrL/K(gc2). With this restriction, the equation now becomes

Wg(f ) = 1 +
∑
c∈C

∑
y∈K?
Xr(y4 − y2).

Since Xr is a homomorphism and its values are real numbers, we obtain

Wg(f ) = 1 +
∑
c∈C

∑
y∈K?
Xr(y4)Xr(y2).

Note that Xr is the principal character on K if and only if r = 0. By definition, this occurs

if and only if TrL/K(gc2) = 0. Since TrL/K is K-linear, we have TrL/K(gc2) = g TrL/K(c2) and

so this is equivalent to TrL/K(c2) = 0. Since |L : K | = 2, we have TrL/K(c2) = 0 if and only
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if c2 ∈ K?. Since we also have that c2 ∈ C and K? ∩ C = {1}, we conclude that Xr is the

principal character on K if and only if c = 1. For c ∈ C?, Xr will be non-principal. We isolate

the terms in which c = 1 from the sum to obtain

Wg(f ) = q +
∑
c∈C?

∑
y∈K?
Xr(y4)Xr(y2).

The character values in the above sum are ±1. In order to evaluate the sum, we must deter-

mine those values of y for which Xr(y4) = Xr(y2) = 1. Note that as y ranges over all of K?,

so too do y2 and y4, so both Xr(y4) and Xr(y2) attain the value 1 for exactly 1
2q− 1 values of y

and the value −1 for exactly 1
2q values of y.

We need an additional lemma.

Lemma 29. The trace function TrL/K is 2-to-1 on C?. In other words, for all y ∈ K,

TrL/K(c) = y has either no solution or exactly two solutions for c ∈ C?.

Proof. By definition of trace, we have

TrL/K(c) = c + cq,

and multiplying both sides by c, we obtain

c TrL/K(c) = c2 + cq+1.

But by definition of norm, cq+1 = NL/K(c) = 1. Thus,

c TrL/K(c) = c2 + 1.

Now suppose y ∈ K with TrL/K(c) = y for some c ∈ C?. We wish to find all x ∈ C? such that

TrL/K(x) = y. We have

xy = x TrL/K(x)

= x2 + 1,

so that x2 + yx + 1 = 0. This quadratic has at most two roots, and by assumption x = c is

a root. It is also clear that x = c−1 is also a root. These are distinct since otherwise c2 = 1,

which would mean c = 1, a contradiction. Therefore, TrL/K(c) = TrL/K(c−1) = y, and the

proof is complete. �
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Theorem 30. With the above notation,

Wg(f ) =


0 if TrL/K(gc2) , 1 for all c ∈ C?,

2q otherwise.

Proof. In general, for any x ∈ K, we have Xr(x) = 1 if and only if TrK/F(rx) = 0. This is true

precisely when rx ∈ H1, or equivalently, x ∈ r−1H1.

Let G = Gal(K/F) = 〈σ〉, where xσ = x2 for all x ∈ K. Since TrK/F(xσ) = TrK/F(x)

for all x ∈ K, we conclude that Hσ
1 = H1. From this, we can also conclude that (xH1)σ =

xσH1 = x2H1. As a consequence, (xH1)σ = xH1 if and only if x2 = x, which occurs

precisely when x = 1.

Let U = r−1H1. We have that Xr(y4) = Xr(y2) = 1 if and only if y4, y2 ∈ U. It is

clear that y2 ∈ U if and only if (y2)σ ∈ Uσ. This is equivalent to y4 ∈ Uσ. Therefore,

Xr(y4) = Xr(y2) = 1 if and only if y4 ∈ U ∩Uσ.

We now wish to determine | U ∩Uσ | for all hyperplanes U of K. If U = Uσ, then

clearly | U ∩Uσ | = 1
2q. From elementary linear algebra, we know

dim(U +Uσ) = dim(U) + dim(Uσ) − dim(U ∩Uσ).

IfU , Uσ, thenU+Uσ = K. This implies dim(U∩Uσ) = n−2, which means | U ∩Uσ | =

1
4q.

From above, we have U = Uσ if and only if r = 1. Since r = g TrL/K(c2), we have

that this occurs if and only if TrL/K(c2) = g−1. We have from Lemma 29 that TrL/K |C? is

2-to-1, so this equation has a solution for exactly 1
2q values of g. In other words, for a fixed

g ∈ K?, there are either two values or no values of c ∈ C? such that TrL/K(gc2) = 1.

First, suppose there does not exist a c ∈ C? such that TrL/K(gc2) = 1. Then Xr(y4) =
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Xr(y2) = 1 for exactly 1
4q − 1 values of y ∈ K? for all c ∈ C?, which means

Wg(f ) = q +
∑
c∈C?

∑
y∈K?
Xr(y4)Xr(y2)

= q +
∑
c∈C?

((
1
4

q − 1
)

(1)(1) +
1
4

q(1)(−1) +
1
4

q(−1)(1) +
1
4

q(−1)(−1)
)

= q +
∑
c∈C?

(−1)

= 0.

Finally, suppose that TrL/K(g(c1)2) = TrL/K(g(c2)2) = 1. Then

Wg(f ) = q +
∑
c∈C?

∑
y∈K?
Xr(y4)Xr(y2)

= q + 2
((

1
2

q − 1
)

(1)(1) +
1
2

q(−1)(−1)
)

+
∑

c∈C?\{c1,c2}

((
1
4

q − 1
)

(1)(1) +
1
4

q(1)(−1) +
1
4

q(−1)(1) +
1
4

q(−1)(−1)
)

= q + 2q − 2 +
∑

c∈C?\{c1,c2}

(−1)

= 3q − 2 − (q − 2)

= 2q.

The proof is complete. �

We now partition K? into two sets. Let

R = {g ∈ K? : Wg(f ) = 0}, and

S = {g ∈ K? : Wg(f ) = 2q}.

With these sets defined, from (5.1) we now have

4(vλw − k2) =
∑
g∈K?

∣∣∣Wg(f ) − q − 2
∣∣∣2 χg(gwC)

=
∑
g∈R

| 0 − q − 2 |2 χg(gwC) +
∑
g∈S

| 2q − q − 2 |2 χg(gwC)

=
∑
g∈R

(q + 2)2χg(gwC) +
∑
g∈S

(q − 2)2χg(gwC).
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By expanding the squared terms and combining like terms, we obtain

4(vλw − k2) =
∑
g∈R

(q2 + 4q + 4)χg(gwC) +
∑
g∈S

(q2 − 4q + 4)χg(gwC)

= (q2 + 4)
∑
g∈K?

χg(gwC) + 4q

∑
g∈R

χg(gwC) −
∑
g∈S

χg(gwC)


= −(q2 + 4) + 4q

∑
g∈R

χg(gwC) −
∑
g∈S

χg(gwC)

 ,
where the last step follows from orthogonality. We now rewrite the character sums by letting

c range over C to obtain

4(vλw − k2) = −(q2 + 4) + 4q

∑
g∈R

∑
c∈C

χg(gwc) −
∑
g∈S

∑
c∈C

χg(gwc)

 . (5.2)

Motivated by 5.2, we define the following sets:

R0 = {(g, c) ∈ R × C : χg(gwc) = 1},

R1 = {(g, c) ∈ R × C : χg(gwc) = −1},

S0 = {(g, c) ∈ S × C : χg(gwc) = 1},

S1 = {(g, c) ∈ S × C : χg(gwc) = −1},

and set ri = |Ri |, si = | Si |, i = 1, 2. With these sets and values defined, we now have

4(vλw − k2) = (q2 + 4) + 4q(r0 − r1 + s0 − s1) (5.3)

We now derive relations among the sizes of these four sets. This will allow us to rewrite 5.3

so that fewer quantities must be computed.

Lemma 31. For the sets defined above, r0 + s0 = 1
2q2 − 1, and r1 + s1 = 1

2q2.

Proof. By the orthogonality relations, −1 =
∑

t∈L? χ1(gwt). Since the values of characters of

L are from the set {1,−1}, this happens if and only if χ1(gwt) = 1 for 1
2q2 − 1 values of t and

χ1(gwt) = −1 for 1
2q2 values of t. �

This lemma establishes that χ1 is almost equidistributive on L?. This is because TrL/F

is equidistributive on L, which leads to χ1 being equidistributive on L. The next result follows

immediately from the observation that S × C = S0 ∪ S1.
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Lemma 32. For the sets defined above, s0 + s1 = 1
2q2 + 1

2q.

In summary, we have the following:

s1 =
1
2

q2 +
1
2

q − s0,

r0 =
1
2

q2 − 1 − s0,

r1 = r0 −
1
2

q.

We now make these substitutions in (5.3) and simplify, obtaining

vλw − k2 +
1
4

q2 + 1 = q(q2 + q − 1 − 4s0). (5.4)

Therefore, we only have to compute s0.

Recall that for all x ∈ L, χ1(x) = (−1)TrL/F(x). Thus, χ1(gwc) = 1 if and only if

TrL/F(gwc) = 0. Since TrL/F is a nonzero F-linear transformation, its kernel is a proper

subgroup of L. Let H2 = {x ∈ L : TrL/F(x) = 0} be this kernel. Then as additive groups,

|L : H2 | = 2.

Lemma 33. As additive groups, K ≤ H2, and | H2 : K | = 1
2q.

Proof. Suppose x ∈ K. Then TrL/K(x) = x + xq = x + x = 0. The transitivity of trace now

yields

TrL/F(x) = TrK/F(TrL/K(x)) = TrK/F(0) = 0.

Therefore, x ∈ H2, and the proof is complete. �

We now partitionH2 into cosets of K. Let {t1, t2, . . . , tq/2} be a transversal of K inH2.

That is, choose t1, t2, . . . , tq/2 such that

H2 =

q/2⋃
i=1

(K + ti).

One more lemma is required for us to determine s0.

Lemma 34. Let g ∈ K. Then there exists i ∈ N with i ≤ q
2 such that g = TrL/K(ti) if and only

if g ∈ H1.
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Proof. Note that if TrL/K(ti) = TrL/K(t j), then by the K-linearity of TrL/K, we have TrL/K(ti −

t j) = 0. This means that ti− t j ∈ K, implying K+ ti = K+ t j. We conclude ti = t j. This means

that TrL/K(ti) attains q
2 different values as i ranges from 1 to q

2 .

We now compute TrK/F(TrL/K(ti)). By the transitivity of trace, TrK/F(TrL/K(ti)) =

TrL/F(ti). But by definition, TrL/F(ti) = 0. Since | H1 | =
q
2 , we conclude that

H1 =

{
TrL/K(ti) : i = 1, . . . ,

q
2

}
.

From this, the statement is clear. �

With this lemma established, we may finally compute s0.

Theorem 35. With s0 defined as above,

s0 =


1
4q2 + 1

2q if w ∈ D,

1
4q2 if w < D.

Proof. An element g ∈ K? satisfies g ∈ S if and only if TrL/K(gu) = 1 for some u ∈ C. So

(g, c) ∈ S0 if and only if TrL/K(gu) = 1 for some u ∈ C and χ1(ggwc) = 1, i.e. ggwc ∈ H2,

which is to say ggwc = m + tl for some m ∈ K and some 1 ≤ l ≤ 1
2q. By rearranging terms,

we deduce (g, c) ∈ S0 if and only if g = (m + tl)(gwc)−1 and TrL/K(gu) = 1 for some u ∈ C.

By substitution, we obtain

1 = TrL/K

(
(m + tl)u

gwc

)
. (5.5)

Let y = uc−1. Then (5.5) becomes

1 = TrL/K

(
m + tl

gw
y
)
.

For fixed tl and y , 1, we may solve uniquely for m, and the pair (g, c). Moreover,

TrL/K(gcy) = 1, so that (g, c) ∈ S0. However, by Lemma 29, two distinct choices of y

must produce the same pair (g, c). As y has q possible values and there are 1
2q choices for tl,

with the double counting involved, we obtain 1
4q2 different elements of S0.

What remains to be considered is the case y = 1. In this case (5.5) becomes

gw = TrL/K(tl). (5.6)
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This relates to Lemma 34, and as we now show is dependent on w’s membership in D.

Suppose w ∈ D, so that w = f (x) for some x. We thus have f (x) = gwcw. Note that

NL/K(w) = gw. We have

gw = NL/K(w) = NL/K( f (x))

= NL/K(x2(NL/K(x) + 1))

= NL/K(x)2 NL/K(NL/K(x) + 1)

= NL/K(x)2(NL/K(x) + 1)2

= NL/K(x)2(NL/K(x)2 + 1)

= NL/K(x)4 − NL/K(x)2 ∈ H1.

Thus this final case hinges on whether or not w ∈ D.

There is at most one value of l that satisfies (5.6), for suppose gw = TrL/K(tl) =

TrL/K(t j). Then TrL/K(tl − t j) = 0, so tl − t j ∈ K, and as tl and t j are coset representatives, we

conclude tl = t j. Clearly, if w < D, S0 contains no further elements. If w ∈ D, then we must

have a unique choice of tl. Fix a g ∈ S. Then for (g, c) ∈ S0, TrL/K(gc) = 1 is now forced.

By Lemma 29, an additional choice u ∈ C for which TrL/K(gu) = 1 also exists. However,

this second choice would not satisfy the y = 1 hypothesis, so the pair (g, c) ∈ S0 is uniquely

determined by the choice of g ∈ S. Hence, for w ∈ D, there are an additional | S | = 1
2q

elements of S0, and we are done. �

With s0 determined, we may finally compute the values of λw, and complete the proof

of Theorem 26. For ease of notation, let ε = 1
2q if w ∈ D and 0 otherwise. Then we may

write s0 = 1
4q2 + ε and the equation (5.4) becomes

vλw − k2 +
1
4

q2 + 1 = q(q2 + q − 1 − 4s0)

= q
(
q2 + q − 1 − 4

(
1
4

q2 + ε

))
= q(q − 1 − 4ε)

= q2 − q − 4qε.
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We now make the substitutions v = q2 and k = 1
2 (q−2)(q+1) in order to rewrite the left-hand

side:

vλw − k2 +
1
4

q2 + 1 = q2λw −

(
1
2

(q − 2)(q + 1)
)2

+
1
4

q2 + 1

= q2λw −

(
1
4

q4 −
1
2

q3 −
3
4

q2 + q + 1
)

+
1
4

q2 + 1

= q2λw −
1
4

q4 +
1
2

q3 + q2 − q.

Combining these results and solving for λw yields the equation

q2λw −
1
4

q4 +
1
2

q3 + q2 − q = q2 − q − 4qε

⇔ q2λw =
1
4

q4 −
1
2

q3 − 4qε

⇔ λw =
1
4

q2 −
1
2

q −
4
q
ε.

Substituting the appropriate value of ε now produces

λw =


1
4q2 − 1

2q − 2 if w ∈ D,

1
4q2 − 1

2q if w < D.

These are the claimed parameters, and Theorem 26 is established.

36



Chapter 6

CLASS II

6.1 Class II

We now use the same construction scheme with a different polynomial. After the

biregularity of the new polynomial is established, this proof is vastly different from the proof

of Theorem 26.

Theorem 36. Let p = 2 and q = pn with n ∈ N. Set a = q− 1 and b = q + 1. Let K = Fq and

L = Fq2 . Define f ∈ L[X] by f (X) = Xb + X. Then f (X) is (2, 1)-biregular. More specifically,

for all y ∈ L,
∣∣∣ f −1(y)

∣∣∣ = 0 or 2 if TrL/K(y) , 1, and
∣∣∣ f −1(y)

∣∣∣ = 1 if TrL/K(y) = 1.

Proof. We note that for all x ∈ L, f (x) = NL/K(x) + x. Suppose f (x) = f (y). This means that

y + x = NL/K(y) + NL/K(x).

Since NL/K(y) + NL/K(x) ∈ K, we have that y + x ∈ K. Let y + x = w ∈ K so that y = x + w.

We now have the equation

w = NL/K(x + w) + NL/K(x).

We now compute NL/K(x + w):

NL/K(x + w) = (x + w)(x + w)q

= (x + w)(xq + w)

= xq+1 + wx + wxq + w2

= NL/K(x) + w TrL/K(x) + w2.

Substituting this back into the original equation gives us

w = NL/K(x) + w TrL/K(x) + w2 + NL/K(x)

= w TrL/K(x) + w2,
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so that w2 + (TrL/K(x) + 1)w = w(w + 1 + TrL/K(x)) = 0. Hence w = 0 or w = TrL/K(x) + 1.

Since y = x + w, this means that y = x or y = x + TrL/K(x) + 1. These possibilities are

distinct unless TrL/K(x) = 1. In other words, the two possible values of y are distinct unless

TrL/K(x) = 1. �

As in Class I, let p = 2, e = 2n with n ∈ N. Let q = pn, so that L = Fq2 . Let a = q−1,

so that b = q + 1. We again define the intermediate fields K = Fq and F = F2. Also, let s ∈ L

be a fixed element such that TrL/K(s) = 1. This means that {1, s} forms a K-basis for L.

Let f ∈ L[X] with f (X) = Xb + X, and set D = Im(f ) \ {0}. As shown in Theorem 36,

this polynomial is (2, 1)-biregular. Because of this, we have the following variant of (4.5) to

deal with:

Wt(f ) = 2χt(D) − χt (K + s) + 2. (6.1)

Solving for χt(D) yields

χt(D) =
1
2

(
Wt(f ) + χt (K + s) − 2

)
.

Our version of (4.1) is

vλw − k2 =
∑
t∈L?
| χt(D) |2 χt(w)

=
∑
t∈L?

∣∣∣∣∣ 1
2

(
Wt(f ) + χt(K + s) − 2

) ∣∣∣∣∣2 χt(w)

=
1
4

∑
t∈L?
|Wt( f ) + χt(K + s) − 2 |2 χt(w). (6.2)

We now evaluate χt(K + s).

Theorem 37. With the notation above,

χt(K + s) =


q χt(s) if t ∈ K,

0 otherwise.

Proof. By definition,

χt(K + s) =
∑
x∈K

χt(x + s).
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Since χt is an additive character, we obtain∑
x∈K

χt(x + s) =
∑
x∈K

χt(x)χt(s)

= χt(s)
∑
x∈K

χt(x).

As in Class I, we can restrict the character χt to K to obtain the character Xr in K̂, where

r = TrL/K(t). Using this restriction gives us

χt(s)
∑
x∈K

χt(x) = χt(s)
∑
x∈K

Xr(x)

= χt(s)Xr(K).

From the orthogonality relations we know that

Xr(K) =


q if r = 0,

0 otherwise.

We also know that TrL/K(t) = 0 if and only if t ∈ K, and this establishes the statement. �

This equality will be useful in partitioning the equation for λw into smaller, more

manageable parts.

We now rewrite f in terms of linearized polynomials. If we let x = u + vs with

u, v ∈ K, then we can express NL/K(x) in terms of u, v, and s:

NL/K(x) = NL/K(u + vs)

= (u + vs)(u + vs)q

= (u + vs)(u + vsq)

= u2 + uvs + uvsq + v2sq+1.

By definition, NL/K(s) = sq+1, and TrL/K(s) = s + sq = 1. We therefore have

NL/K(x) = u2 + uv + v2 NL/K(s).
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By calculating NL/K(u + vs), we may now rewrite f (x) in terms of u, v, and s:

f (x) = f (u + vs)

= NL/K(u + vs) + (u + vs)

= u2 + uv + v2 NL/K(s) + u + vs

=
(
u2 + (v + 1)u

)
+

(
NL/K(s)v2 + vs

)
.

For the degree 2 extension L/K, NL/K(x) can be rewritten in terms of TrL/K(x) in a convenient

way. Indeed, for all x ∈ L, we have

x TrL/K(x) = x2 + NL/K(x).

This means that

NL/K(s) = s TrL/K(s) − s2 = s − s2,

and substituting this into the equation for f (x) gives us

f (x) =
(
u2 + (v + 1)u

)
+

(
(s2 + s)v2 + vs

)
.

Set h(X) = (s2 + s)X2 + sX ∈ L[X].

Lemma 38. With h defined as above, h is a 2-polynomial. Let φ : L → L be the evaluation

map of h on L. Then φ|K is a group homomorphism from K into L. Moreover, | ker(φ) | = 2,

and | ker(φ|K) | = 1.

Proof. That h is a 2-polynomial is clear, and this is equivalent to φ being a group homomor-

phism on L, which implies the claim regarding the restriction of φ to K.

Factoring h shows ker(φ) = {0, (1 + s)−1}, and since 1 + s ∈ L \ K, the remaining

claims are established. �

Now

f (u + vs) =
(
u2 + (v + 1)u

)
+ h(v).
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Note that the first part of f (u + vs), that is, u2 + (v + 1)u, is a 2-polynomial in u for all fixed

v ∈ K. We now use this rewritten form of f (x) to evaluateWt(f ). By letting x = u + vs with

u, v ∈ K, we may write

Wt(f ) =
∑
x∈L

χt(f (x))

=
∑
u∈K

∑
v∈K

χt(f (u + vs))

=
∑
u∈K

∑
v∈K

χt

((
u2 + (v + 1)u

)
+ h(v)

)
=

∑
u∈K

∑
v∈K

χt

(
u2 + (v + 1)u

)
χt (h(v))

=
∑
v∈K

χt (h(v))
∑
u∈K

χt

(
u2 + (v + 1)u

)
.

We now evaluate the inner sum. Since the mapping u 7→ u2 + (v + 1)u is a group homomor-

phism defined on K, its image is an F-subspace of K. This also means that the image is a

subgroup of the additive group of K. Let Hv denote this group. In order to compute | Hv |,

we compute the order of this mapping’s kernel, which is straightforward. We have

|K : Hv | =


1 if v = 1,

2 otherwise.

Note that H1 = K. By restricting the character χt to K, we obtain a character of K, which

we’ll denote Xr, where r = TrL/K(t). We thus have∑
u∈K

χt

(
u2 + (v + 1)u

)
=

∑
u∈K

Xr

(
u2 + (v + 1)u

)
.

Lemma 39. With the notation above,

∑
u∈K

χt

(
u2 + (v + 1)u

)
=


2χt(Hv) if v , 1,

χt(K) if v = 1.

Proof. Note that as u ranges over K, the expression u2 + (v+1)u ranges overHv twice except

for when v = 1. �
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We next prove that distinct values of v give rise to distinct subgroupsHv.

Lemma 40. Let v, w ∈ K. ThenHv = Hw if and only if v = w.

Proof. Suppose Hv = Hw. Note that since | Hv | = q if and only if v = 1, we may assume

that v , 1 and w , 1. By the way in which Hv and Hw were defined, we have that for all

y ∈ K, y2 + (v + 1)y ∈ Hv and y2 + (w + 1)y ∈ Hw. Since Hv = Hw, we also have that

y2 + (w + 1)y ∈ Hv. SinceHv is a subgroup of K, we have that(
y2 + (v + 1)y

)
−

(
y2 + (w + 1)y

)
∈ Hv,

so that (v + w)y ∈ Hv. This holds for all y ∈ K. If v , w, then this would imply K ≤ Hv, a

contradiction. Therefore, the proof is complete. �

Recall that every index 2 subgroup of K is the kernel of a unique character in K̂. By

the previous lemma, the set of index 2 subgroups of K is precisely {Hv : (v ∈ K) ∧ (v , 1)}.

Thus, for all r ∈ K?, there exists a unique vr ∈ K such that

∑
u∈K

Xr

(
u2 + (v + 1)u

)
=


q if v = vr,

0 otherwise.

LetH = h(K). Then we have the following theorem.

Theorem 41. WithWt(f ) defined as above,

Wt(f ) =


q χt(H) if t ∈ K,

q χt (h(vr)) otherwise.

Proof. From before,

Wt(f ) =
∑
v∈K

χt(h(v))
∑
u∈K

Xr

(
u2 + (v + 1)u

) .
We now consider two cases. First, suppose t ∈ K. Then r = 0, and by the orthogonality of

characters, the innermost sum is q. This means

Wt(f ) =
∑
v∈K

qχt(h(v))

= q χt(H).

42



Now, suppose t < K. Then r , 0, but there exists a unique vr ∈ K such that ker(Xr) = Hvr .

Therefore, the innermost sum is 0 unless v = vr, in which case the innermost sum is q.

Therefore,Wt(f ) = q χt (h(vr)) in this case. �

WithWt(f ) rewritten, we return to (6.2) and obtain

4(vλw − k2) =
∑
t∈K?

(q χt (H) + q χt (v) − 2)2 χt (w) +
∑

t∈L\K

(q χt (h(vr)) − 2)2 χt(w). (6.3)

We now require a lemma relating TrL/K and h(x).

Lemma 42. For all v ∈ K, we have TrL/K (h(v)) = v.

Proof. Note that h(v) = (s2 + s)v2 + vs. By using the K-linearity of TrL/K, we obtain

TrL/K (h(v)) = TrL/K
(
(s2 + s)v2 + vs

)
= v2

(
TrL/K(s2) + TrL/K(s)

)
+ v TrL/K(s).

Recall that s ∈ L was chosen such that TrL/K(s) = 1. Also note that TrL/K(u2) =
(
TrL/K(u)

)2

for all u ∈ L. From this we conclude

TrL/K (h(v)) = v2
(
12 + 1

)
+ (1)v = v.

�

This lemma is useful in computing χt (h(v)) when t ∈ K.

Lemma 43. If t ∈ K, then χt (h(v)) = Xt(v).

Proof. Let w = −1, the primitive second root of unity. By definition,

χt (h(v)) = wexp
(
TrL/F (th(v))

)
.

We now use transitivity of trace and the K-linearity of TrL/K to obtain

χt (h(v)) = wexp
(
TrK/F

(
TrL/K (th(v))

))
= wexp

(
TrK/F

(
t TrL/K (h(v))

))
.
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By the last lemma, we have

χt (h(v)) = wexp
(
TrK/F(tv)

)
.

By definition, the right-hand side is Xt(v). Therefore we have

χt (h(v)) = Xt(v).

�

We may now compute χt(H). By definition, we have

χt(H) =
∑
v∈K

χt (h(v)) ,

and by the last lemma

χt(H) =
∑
v∈K

Xt(v).

The orthogonality relations now show

Lemma 44. Let t ∈ K. Then

χt(H) =


q if t = 0,

0 otherwise.

With these character sums computed, we may again rewrite the equation for λw, last

given in (6.3). First, note that χt(H) = 0 for all t ∈ K?. Hence

4(vλw − k2) =
∑
t∈K?

(q χt(H) + q χt(v) − 2)2 χt(w) +
∑

t∈L\K

(q χt (h(vr)) − 2)2 χt(w)

=
∑
t∈K?

(q χt(s) − 2)2 χt(w) +
∑

t∈L\K

(q χt (h(vr)) − 2)2 χt(w).

We now expand the squared terms to obtain

4(vλw − k2) =
∑
t∈K?

(
q2 (χt(s))2

− 4q χt(s) + 4
)
χt(w)

+
∑

t∈L\K

(
q2 (χt (h(vr)))2

− 4q χt (h(vr)) + 4
)
χt(w).
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Note that χt(x) = ±1 for all x ∈ L, and so χt(x)2 = 1 for all x ∈ L. Using this fact, we can

simplify the above to obtain

4(vλw − k2) =
∑
t∈K?

(
q2 − 4q χt(s) + 4

)
χt(w)

+
∑

t∈L\K

(
q2 − 4q χt (h(vr)) + 4

)
χt(w).

We now rearrange and combine like terms:

4(vλw − k2) = (q2 + 4)
∑
t∈K?

χt(w) − 4q
∑
t∈K?

χt(s) χt(w)

+ (q2 + 4)
∑

t∈L\K

χt(w) − 4q
∑

t∈L\K

χt (h(vr)) χt(w)

= (q2 + 4)
∑
t∈L?

χt(w) − 4q

∑
t∈K?

χt(s + w) +
∑

t∈L\K

χt (h(vr) + w)

 .
From the orthogonality relations, we know

∑
t∈L? χt(w) = −1. Thus, we arrive at

4(vλw − k2) = −(q2 + 4) − 4q

∑
t∈K?

χt(s + w) +
∑

t∈L\K

χt (h(vr) + w)

 . (6.4)

We next evaluate the two character sums in this equation.

Lemma 45. With the notation above,

∑
t∈K?

χt(s + w) =


q − 1 if TrL/K(w) = 1,

−1 otherwise.

Proof. We first rewrite χt(s + w) as χs+w(t). Since t ranges through K?, we restrict the char-

acter χs+w to obtain the character Xz ∈ K̂, where z = TrL/K(s + w). The character sum now

becomes ∑
t∈K?

χt(s + w) =
∑
t∈K?
Xz(t).

By the orthogonality relations we obtain

∑
t∈K?
Xz(t) =


q − 1 if z = 0,

−1 if z , 0.
(6.5)

Note that z = 0 if and only if s + w ∈ K. This occurs if and only if w ∈ K + s. But

K + s = {x ∈ L : TrL/K(x) = 1}, which establishes the result. �
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Moving to the second sum, we first write t as t = c + ds with c, d ∈ K, d , 0, and

letting c and d range. Note that under this substitution, r = d. We have∑
t∈L\K

χt (h(vr) + w) =
∑
d∈K?

∑
c∈K

χc+ds (h(vr) + w)


=

∑
d∈K?

∑
c∈K

χc (h(vd) + w) χds (h(vd) + w)

 .
Since the second character in the above product is independent of c, we may factor it out,

resulting in ∑
t∈L\K

χt (h(vd) + w) =
∑
d∈K?

χds (h(vd) + w)
∑
c∈K

χc (h(vd) + w)

 . (6.6)

We now compute the innermost character sum.

Lemma 46. With the notation above,

∑
c∈K

χc (h(vd) + w) =


q if TrL/K(w) = vd,

0 otherwise.

Proof. Note that χc (h(vd) + w) = χh(vd)+w(c). By using this and restricting the resulting

character X j to K, with j = TrL/K(h(vd) + w), we obtain∑
c∈K

χc (h(vd) + w) =
∑
c∈K

χh(vd)+w(c)

=
∑
c∈K

X j(c)

=


q if j = 0,

0 otherwise.

We have that TrL/K (h(vd)) = vd, and so

TrL/K (h(vd) + w) = TrL/K (h(vd)) + TrL/K(w)

= vd + TrL/K(w).

This means j = TrL/K (h(vd) + w) = 0 if and only if TrL/K(w) = vd. �
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Since vd , 0 for any d, we have that if TrL/K(w) = 1, then∑
t∈L\K

χt (h(vr) + w) = 0.

At this point, we may compute λw in the case where TrL/K(w) = 1. Note that we have v = q2

and k = 1
2 (q − 1)(q + 2), so that

4v
(
λw − k2

)
= 4q2λw − 4

(
1
2

(q − 1)(q + 2)
)2

= 4q2λw − (q4 + 2q3 − 3q2 − 4q + 4)

Therefore, when TrL/K(w) = 1, we obtain from (6.4), (6.6) and the above calculations the

identity

4q2λw − (q4 + 2q3 − 3q2 − 4q + 4) = −(q2 + 4) − 4q

∑
t∈K?

χt(s + w) +
∑

t∈L\K

χt (h(vr) + w)


= −(q2 + 4) − 4q(q − 1 + 0)

= −5q2 + 4q − 4.

From here, we solve for λw to obtain

λw =
1
4

q2 +
1
2

q − 2. (6.7)

It remains to deal with the case where TrL/K(w) , 1. If TrL/K(w) , 1, then there exists

a unique d ∈ K such that TrL/K(w) = vd. For this unique d, we have

∑
t∈L\K

χt (h(vd) + w) =
∑
d∈K?

χds (h(vd) + w)
∑
c∈K

χc (h(vd) + w)


= q

∑
d∈K?

χds (h(vd) + w) .

We now compute this character sum.

Lemma 47. With the notation above,∑
t∈L\K

χt (h(vd) + w) = qXd (h(vd) + w) .
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Proof. We first apply the definition of a character to χds (h(vd) + w) to obtain

χds (h(vd) + w) = wexp
(
TrL/F (ds (h(vd) + w))

)
.

By using transitivity of trace, this becomes

χds (h(vd) + w) = wexp
(
TrK/F

(
TrL/K (ds (h(vd) + w))

))
.

By the K-linearity of TrL/K, and since h(vd) + w ∈ K we obtain

χds (h(vd) + w) = wexp
(
TrK/F

(
d (h(vd) + w) TrL/K(s)

))
= wexp

(
TrK/F (d (h(vd) + w))

)
.

The above quantity can now be viewed as a character of K. By definition,

wexp
(
TrK/F (d (h(vd) + w))

)
= Xd (h(vd) + w) .

Therefore, we finally obtain∑
t∈L\K

χt (h(vd) + w) = qXd (h(vd) + w) .

�

We have one more character to evaluate after we simplify:

4q2λw − (q4 + 2q3 − 3q2 − 4q + 4) = −(q2 + 4) − 4q (−1 + qXd (h(vd) + w))

⇔ 4q2λw = (q4 + 2q3 − 3q2 − 4q + 4) − q2 − 4 + 4q − 4q2
Xd (h(vd) + w)

⇔ 4q2λw = q4 + 2q3 − 4q2 − 4q2
Xd (h(vd) + w)

⇔ λw =
1
4

q2 +
1
2

q − 1 − Xd (h(vd) + w) .

Once we compute Xd (h(vd) + w), we will have established that D is a PDS.

Lemma 48. With the notation above,

Xd (h(vd) + w) =


1 if w ∈ D and TrL/K(w) , 1,

−1 if w < D and w , 0.
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Proof. Recall that if w ∈ D and TrL/K(w) , 1, then there exists a unique d ∈ K such that

TrL/K(w) = vd. For this d, we have w − h(vd) ∈ K. Therefore, there exists a unique aw ∈ K

such that w = aw + h(vd). This means

w = aw +
(
(−s2 + s)v2

d + svd

)
.

Hence, if TrL/K(w) , 1, then w ∈ D if and only if aw ∈ Hvd . We now compute Xd (h(vd) + w).

We have

χd (h(vd) + w) = Xd(aw)

=


1 if aw ∈ Hvd ,

−1 otherwise.

This is equivalent to the statement in the lemma. �

We have now all but established the following theorem.

Theorem 49. With the notation above, D is a
(
q2, 1

2 (q − 1)(q + 2), 1
4q2 + 1

2q − 2, 1
4q2 + 1

2q
)
-

PDS.

Proof. Note that if TrL/K(w) = 1, then w ∈ D. In this case, we have concluded λw =

1
4q2 + 1

2q − 2. For the case in which TrL/K(w) , 1, we have also derived the equation

λw =
1
4

q2 +
1
2

q − 1 − Xd (h(vd) + w) .

By the last lemma, we finally have

λw =


1
4q2 + 1

2q − 2 if w ∈ D,

1
4q2 + 1

2q if w < D and w , 0.

�
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Chapter 7

CLASS III

In Chapter 6, we formed the PDS D by taking the union of particular multiplicative

cosets of a subfield (with 0 removed). As it turns out if [L : K] = 2, any union of cosets

of K in L can be taken to be a PDS. This construction applies to any finite field of any

characteristic, not just 2 as in the previous classes.

Let p be a prime number, n ∈ N, q = pn, a = q − 1, b = q + 1. Let L = Fq2 with

L? = 〈g〉, and let K = Fq. Finally, let C = K?, and let J be a nonempty subset of Za � L
?/C

with | J | = m, and define

D =
⋃
j∈J

g
jC.

In this chapter we prove the following:

Theorem 50. With the notation above, D is a
(
q2,m (q − 1) , q + m (m − 3) ,m (m − 1)

)
-PDS.

Since C = K?, we may exploit the extra structure in C inherited from all of K. Recall

the formula for counting difference representations.

vλw =

a−1∑
i=0

∣∣∣ χ1(giD)
∣∣∣2 χ1(gm+iC).

By substituting the expression for D, we obtain

vλw =

a−1∑
i=0

∣∣∣∣∣∑
j∈J

χ1(gi+ jC)
∣∣∣∣∣2χ1(gm+iC).
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Since C = K?, by letting t′ = TrL/K(gi+ j), we have

χ1(gi+ jC) = χgi+ j(C)

= Xt′(C)

=


q − 1 if t′ = 0,

−1 otherwise.

Let U = ker(TrL/K). Then U is a K-vector subspace of L. Since dimK(L) = 2 and

rank(TrL/K)) = 1, we have that dimK(U) = 1. Therefore, U = s∗K? for some s∗ ∈ L?.

Without loss of generality, we may take s∗ = gi
∗

with i∗ ∈ Za. We therefore have the follow-

ing:

Theorem 51. With the notation above, we have

χ1(giD) =


q − m if i + j = i∗ for some i, j ∈ Za,

−m otherwise.

Proof. We begin by expanding the character sum in question to character sums of cosets of

C.

χ1(giD) =
∑
j∈J

χ1(gi+ jC).

Note that as j ranges over J, all elements of the form i + j are distinct elements of Za.

Therefore, all terms in the above sum are evaluated over distinct cosets of C, which are 1-

dimensional K - subspaces of L with 0 removed. For a fixed i, there is at most one value of

j ∈ J such that i + j = i∗. If there is no such j, then all terms of this sum are −1, and there

are m such terms, so the sum equals −m. If there exists such a j, then one term of the sum is

q − 1, and the other m − 1 terms are −1, thus establishing the claim. �

With the possible values of χ1(giD) computed, we must now compute the frequency

with which χ1(giD) attains these values.

Theorem 52. The character sum χ1(giD) attains the value q − m for m values of i ∈ Za and

the value −m for q + 1 − m values of i ∈ Za.
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Proof. Recall that by the orthogonality relations of characters, we have

−1 =

a−1∑
l=0

χ1(glC).

By writing the character sum χ1(giD) in terms of character sums of cosets of C, we obtain

χ1(giD) =
∑
j∈J

χ1(gi+ jC).

By summing this equation over all i ∈ Za and using orthogonality, we conclude

a−1∑
i=0

χ1(giD) =

a−1∑
i=0

∑
j∈J

χ1(gi+ jC)

=
∑
j∈J

a−1∑
i=0

χ1(gi+ jC)

=
∑
j∈J

−1

= −m.

Let A denote the number of values of i ∈ Za for which χ1(giD) = q −m. Then the number of

values of i ∈ Za for which χ1(giD) = −m is q + 1 − A. From this, we conclude

−m = A(q − m) + (q + 1 − A)(−m)

−m = Aq − m − mq

A = m.

The result follows. �

We know that χ1(gi+mC) can attain one of two possible values, namely, q − 1 and −1.

We must now consider how these character sums relate to the sums χ1(giD), which also can

attain one of two possible values.

Theorem 53. With the above notation, D is a (q2,mb, q + m(m − 3),m(m − 1))-PDS.
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Proof. There is a unique i ∈ Za such that i + m = i∗, namely, i∗ − m. We can thus simplify

the equation used to compute λw in the following way:

vλw − k2 = |χ1(gi
∗−rD)χ1(gi

∗

C) +
∑

i,i∗−r

|χ1(giD)χ1(giC)

= (q − 1)
∣∣∣ χ1(gi

∗−rD)
∣∣∣2 − ∑

i,i∗−r

∣∣∣ χ1(giD)
∣∣∣2

= q
∣∣∣ χ1(gi

∗−rD)
∣∣∣2 − a−1∑

i=0

∣∣∣ χ1(giD)
∣∣∣2

The last equation above was obtained by using (13). By substituting this value and the values

v = q2, and k = mb, we obtain

q2λw − (mb)2 = q
∣∣∣ χ1(gi

∗−rD)
∣∣∣2 − mq2 + m2b

q2λw = q
∣∣∣ χ1(gi

∗−rD)
∣∣∣2 + mq2 + m2b + m2b2

= q
∣∣∣ χ1(gi

∗−rD)
∣∣∣2 − mq2 + m2b(b + 1)

= q
∣∣∣ χ1(gi

∗−rD)
∣∣∣2 − mq2 + m2q(q − 1)

= q
∣∣∣ χ1(gi

∗−rD)
∣∣∣2 − mq2 + m2q2 − m2q

λw =
1
q

( ∣∣∣ χ1(gi
∗−rD)

∣∣∣2 − m2
)

+ m2 − m.

The above sum can attain one of two values. These correspond to the cases in which

χ1(gi
∗−rD) equals q − m or −m. We know that χ1(gi

∗−rD) = q − m if and only if there

exists j ∈ J such that i∗ − r + j = i∗. This occurs if and only if r ∈ J. The condition that

m ∈ J is equivalent to the condition that w ∈ D. We therefore conclude that λw depends

solely on w’s membership in D. In other words, D is a PDS. We now need only compute its

parameters.

In order to compute λ, we first assume w ∈ D. This means χ1(gi
∗−mD) = q − m. By
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substitution we obtain

λ =
1
q

(
(q − m)2 − m2

)
+ m2 − m

=
1
q
(
q2 − 2qm

)
+ m2 − m

= q + m(m + 3).

We now assume w < D in order to compute µ.

mu =
1
q

(
(−m)2 − m2

)
+ m2 − m

= m2 − m

= m(m − 1).

�

In general, when
∣∣∣F?q : C

∣∣∣ = a and there exists an i ∈ N such that pi ≡ −1 mod a,

we are said to be in the semiprimitive case. In [3], it is shown that for any choice of J, the

corresponding set D is a PDS in the semiprimitive case. Note that in class III, a = q + 1, and

pn ≡ −1 mod a, so we are in the semiprimitive case.

It should be noted that in [2], it is proven that the semiprimitive case is equivalent to

case in which χ1(giC) attains the same value for all i except one.
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Chapter 8

EQUIVALENCES FOR CLASSES I, II, AND III

8.1 Introduction

We now relate the notion of difference sets to that of bent functions. This relation can

only be made, however, in the case in which the field in question has characteristic 2.

In order to define what a bent function is, we must first introduce the notions of

Boolean functions, Hamming weight, and Hamming distance.

Definition 54. A Boolean function is a function h : Fn
2 → F2. The support of h is the set

supp(h) = {x ∈ Fn
2 | f (x) , 0}.

There is an intuitive way to define weights for Boolean functions which naturally

gives rise to a notion of distance between two Boolean functions.

Definition 55. Let h be a Boolean function on Fn
2. Then the Hamming weight of h is wH(h) =

|{x ∈ (F2)n | h(x) , 0}|. If k is another Boolean function on Fn
2, then the Hamming distance

between h and k is dH(h, k) = |{x | h(x) , k(x)}|.

We use this Hamming distance in the definition of a bent function. First, we must

define a particular class of Boolean functions.

Definition 56. Let h be a Boolean function on Fn
2 with x = (x1, x2, . . . , xn) ∈ Fn

2. If h(x) =

a0 + a1x1 + a2x2 + · · · + anxn with a1, . . . , an ∈ F2, then h is an affine function.

Let An denote the set of all affine functions on Fn
2. For an arbitrary Boolean function,

h, we would like to measure in some sense how far h is from being an affine function. With

the use of Hamming distance, we can make this measurement precise.
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Definition 57. Let h be a Boolean function on Fn
2. Then the nonlinearity of h is nl(h) =

minl∈An dH(h, l).

It is known that if h is a Boolean function on F2n
2 , then nl(h) ≤ 22n−1 − 2n−1. We are

finally in a position to define bent functions.

Definition 58. Let h be a Boolean function on F2n
2 . Then h is a bent function if nl(h) =

22n−1 − 2n−1.

Loosely speaking, bent functions are as far from being affine or “straight” as possi-

ble, hence the name. There are many equivalent formulations of bent functions. One such

formulation can be stated in terms of difference sets.

Theorem 59. Let h be a Boolean function on F2n
2 . Then h is a bent function if supp(h) is a

nontrivial difference set.

Since the complement of a PDS is also a PDS, we also have that the nonzero roots of

a bent function form a (v, k, λ, µ)-PDS with µ − λ = 2.

8.2 Maiorana–McFarland Bent Functions, and Classes I and II

Since F2n
2 can be identified with Fn

2 × F
n
2 in a natural way, we may consider bent

functions on F2n
2 as bivariate functions on Fn

2. With this alternate form, an infinite family of

bent functions can be expressed. For this, let “·” denote the standard dot product in Fn
2, and

let Sym(Fn
2) denote the symmetric group on Fn

2.

Theorem 60. Let n ∈ N, π ∈ S ym(Fn
2), k : Fn

2 → F2. Then the bivariate function on Fn
2,

h(x, y) = x · π(y) + k(y), is a bent function.

This class of bent functions is called the Maiorana-McFarland class. In this chapter

we prove the following.

Theorem 61. The PDS’s of classes I and II are equivalent to complements of DS’s arising

from Maiorana-McFarland bent functions.
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Let F = F2. When we regard the fields K and L as F-vector spaces, we shall express

them as Fn and F2n, respectively. Thus, if a PDS in Fn × Fn is found, then it gives rise to a

corresponding PDS in L.

Let T (x, y) = TrK/F(xy). Then T is clearly bilinear over F. Since q is even, there exists

a self-dual basis {e1, . . . , en} of K/F. This was proven by Seroussi and Lempel in [23]. By

definition, this means that T (ei, e j) = δi j. Let e1, . . . , en be the standard basis of Fn, and let

ϕ : K → Fn be the linear transformation given by ϕ(ei) = ei for i = 1, . . . , n, and extending

by F-linearity. Denote ϕ(v) = v. Since T (ei, e j) = ei · e j = δi j, the dot product contained in

the definition of the Maiorana-McFarland class is closely related to the field structure of K.

8.3 Class I

Recall that in class I, D = H1C\{0}. D is also the set of nonzero roots of TrK/F(NL/K(x)).

Let {1,b} be a basis for K/F, and let x + yb ∈ L with x, y ∈ K. We now relate the value of

TrK/F(NL/K(x + yb)) with computations in Fn corresponding to elements of K.

TrK/F(NL/K(x + yb)) = TrK/F(x2 + xy + NL/K(b)y2)

= TrK/F(x + xy) + TrK/F(NL/K(b)y2)

= TrK/F(x(y + 1)) + TrK/F(NL/K(b)y2)

= x · y + 1 + NL/K(b) · y2.

Here we use bar notation to denote elements of the vector space Fn
2. Let π(y) = y + 1,

and let k(y) = NL/K(b) · y2. Then we finally arrive at the following:

Lemma 62. Let x + yb ∈ L with x, y ∈ K. Then

TrK/F(NL/K(x + yb)) = x · π(y) + k(y).

This proves (61) for class I.

8.4 Class II

Recall that D = {u2 + uv + NL/K(s)v2 − u − vs | u, v ∈ K} \ {0}. Let {e1, . . . , en} be a

self-dual basis of the extension K/F, and let {e1, . . . , en} be the standard basis of Fn over F.
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Rewrite D as D = {(u2 + (v − 1)u) + (NL/K(s)v2 − sv) | u, v ∈ K}. Note that for fixed

v, u2 + (v − 1)u is a 2-polynomial in u. This means that the image of this polynomial is an

F-subspace of of K. Since this polynomial is quadratic in u, the corresponding subspace

is either all of K (when v = 1), or is index two in K. In other words, these subgroups are

hyperplanes in K.

LetHv = im(u2 + (v − 1)u). By the previous remarks made in the proof of 49, allHγ

are distinct for distinct γ. Since every hyperplane of K is the kernel of some linear functional

on K and every linear functional is of the form Tγ(x) = TrL/K(γx), we conclude that for

each hyperplane Hv, v , 1, there exists v ∈ K such that ker(Tv) = Hv. In other words,

Hv = {c ∈ K | T (c, v)} = 0. Note that T (c, v) = 0 in K if and only if c · v = 0 in Fn. This

means thatHv = 〈v〉⊥.

We are now in a position to test for when an arbitrary element of L, x + ys, x, y ∈ K

is an element of D. If x + ys ∈ D, then there exists u, v ∈ K such that x + ys = u2 + (v− 1)u +

NL/K(s)v2 − vs. Since {1, s} is a K-basis of L, we have x + ys ∈ D if and only if there exists

u, v ∈ K such that the following hold:

x = u2 + (v − 1)u + NL/K(s)v2

y = −v

Thus, the v in question is easily determined from the given element. Using the fact that the

condition for x contains the aforementioned 2-polynomial, the condition can be rewritten as

x − NL/K(s)y2 ∈ Hy

When passing from K to Fn, this condition is equivalent to

x − NL/K(s)y2 · vy = 0

Written another way, this is

x · vy + NL/K(s)y2 · vy = 0

Letting π(y) = vy and k(y) = NL/K(s)y2 · vy, we see that Class II is the complement of a

difference set coming from a bent function from the Maiorana-McFarland class. Therefore,

(61) is proven for class II.
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8.5 Orthogonal Arrays and Class III

Class III consists of PDS’s in finite fields of any prime characteristic, not just 2. As

the Maiorana-McFarland class of bent functions is defined only over fields of characteristic

2, class III cannot possibly arise from bent functions in the same way that classes I and

II do. Class III PDS’s, however, arise naturally from the combinatorial objects known as

orthogonal arrays.

Definition 63. Let X be a set with |X| = v. Then a t-(v,m, λ) orthogonal array is a λvt × m

array such that for every t-subset of the columns of the array, each t-tuple of elements of X

appears λ times.

We will primarily be concerned with the case in which t = 2 and λ = 1. In this case, a

2-(v,m, 1) orthogonal array is a v2×m array such that for every pair of columns, each ordered

pair in X × X appears exactly once.

From the last chapter, we may view L as a two-dimensional K-vector space with K-

basis {1, s}. Using the notation from Chapter 7, let |I| = m, and let A be a q2 × m array with

rows indexed by K2 and columns indexed by I. Let π : L → K be the K-linear functional

given by π(a + bs) = b for all a, b ∈ K. It is clear that ker(π) = K. Let the ((a, b), i)-th entry

of A be π(gi(a + bs)). With the entries of A defined, we have the following:

Theorem 64. With the notation above, A is a 2-(q,m, 1) orthogonal array.

Proof. In order to show that A is an orthogonal array, we must show that for any i, j ∈ I,

i , j, each ordered pair (x, y) ∈ K2 appears exactly once in the i-th and j-th column of A.

Suppose (x, y) appears at least twice in the i-th and j-th column and the (a, b)-th and (c, d)-th

row with (a, b) , (c, d). This leads to the following equations.

π(gi(a + bs)) = x,

π(gi(c + ds)) = x,

π(g j(a + bs)) = y,

π(g j(c + ds)) = y.
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From the first two equations, we obtain

0 = π(gi(a + bs − c − ds)),

0 = π(gi(a − c + (b − d)s)).

Therefore, we have gi(a − c + (b − d)s) ∈ K. By a similar argument,

0 = π(g j(a − c + (b − d)s))

And so g j(a− c + (b− d)s) ∈ K. If a− c + (b− d)s , 0, then we divide these two elements of

K to conclude that gi− j ∈ K∗. This occurs if and only if i = j, a contradiction. Therefore, we

have a− c + (b− d)s = 0. Since {1, s} is a K-basis of L, we have that a− c = 0, and b− d = 0,

which means (a, b) = (c, d), a contradiction. We thus have that (x, y) appears at most once

in the i-th and j-th column of A. A simple counting argument then yields that (x, y) appears

exactly once in the i-th and j-th column of A. �
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Chapter 9

AN ATTEMPT AT A FURTHER CONSTRUCTION

9.1 Introduction

Through computation we have observed GDS’s in F35 and F311 that are composed

of cosets of particular subgroups of their multiplicative subgroups. We have attempted to

generalize their construction to form an infinite class of such GDS’s. The theory we develop

here is based on our analysis of the two computed examples. To that end, we first find

conditions that certain parameters must satisfy in order to generate this class.

Let p = 3, and let u and e be prime numbers such that e ≡ 5 mod 6 and u = 2e + 1 ≡

11 mod 12. Let q = 3e, and let L = Fq with L? = 〈g〉. Let H = Gal
(
L/Fp

)
= 〈σ〉, where

σ (x) = x3 for all x ∈ L. Let a = 2u, and let q − 1 = ab. Let C = 〈ga〉 ≤ L?, thus |C| = b and

|L? : C| = a. We wish to construct a GDS, D, that is a union of cosets of C that is invariant

underH , that is, ψ (D) = D for all ψ ∈ H .

Note that each element in L/C can be uniquely expressed in the form giC with 0 ≤

i < a. Also note that C char L?, that is, ψ (C) = C for all ψ ∈ H . Because of this, an action of

H can be defined on L/C by way of ψ
(
giC

)
= ψ

(
gi
)
C for all ψ ∈ H . One can easily verify

that this definition satisfies the axioms of a group action. In order to simplify notation, we

can also define H to act on Za. To do this, let ψ ∈ H , and let i ∈ Za. Then if ψ
(
giC

)
= g jC,

define ψ (i) = j.

Recall that H is generated by the Frobenius automorphism σ, where σ (u) = up for

all u ∈ L and that |H| = e. This means that σ (i) = 3 · i for all i ∈ Za. Using this fact, the

orbits ofH acting on Za can be easily computed.

Theorem 65. Let H act on Za as defined above. Then this action has 2 fixed points and 4

orbits of length e.
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Proof. We will use the Orbit-Stabilizer theorem to compute the orbit sizes in Za. It is clear

that 0 is a fixed point of H . Let i ∈ Z∗a. We now wish to find all ψ ∈ H such that ψ (i) = i.

Since H = 〈σ〉, it suffices to find all j ∈ Z such that 0 ≤ j < e and σ j (i) = i. It is clear

that j = 0 is always a solution to this equation, so we now assume that j , 0. Note that

σ j (i) = 3 ji. Thus i is a fixed point of σ j if and only if 3 ji ≡ i mod a, or
(
3 j − 1

)
i ≡ 0

mod a. This occurs precisely when a |
(
3 j − 1

)
i. We may now introduce gcd (a, i) into this

divisibility relation:
a

gcd (a, i)

∣∣∣∣∣∣ (3 j − 1
) i

gcd (a, i)
.

Since the fractions above are coprime natural numbers, we now have the following:

a
gcd (a, i)

∣∣∣∣∣∣3 j − 1.

By definition, a
∣∣∣∣3e − 1, so a

gcd(a,i)

∣∣∣∣3e − 1 as well. This means that

a
gcd (a, i)

∣∣∣∣∣∣ gcd
(
3 j − 1, 3e − 1

)
It is well-known that for all prime numbers p, gcd

(
pa − 1, pb − 1

)
= pgcd(a,b) − 1. Since e is

prime and 0 ≤ j < e, we conclude that gcd ( j, e) = 1. This means that

gcd
(
3 j − 1, 3e − 1

)
= 3gcd( j,e)

− 1

= 31 − 1

= 2.

Consequently,
a

gcd (a, i)

∣∣∣∣∣2.
So a

gcd(a,i) = 1 or 2, meaning gcd (a, i) = a or a
2 . Since 0 < i < a, we have that 1 < gcd (a, i) <

a. We conclude that i = a
2 . In this case, there are no restrictions on a. This means that a

2 ∈ Za

is a fixed point ofH . In other words, a
2 is in an orbit of size 1.

For all other values of i, the only element of H that fixes i is the identity automor-

phism. That is, |Hi| = 1. By Orbit-Stabilizer theorem, we have that |iH | = |H : Hi| =
|H|

1 =

|H| = e = u−1
2 .
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In summary, when H acts on Za, there are 2 fixed points: 0 and a
2 . The remaining

a−2 elements are contained in orbits of size u−1
2 . Since a = 2u, we have that a−2 = 2 (u − 1).

From here, it is clear that there are 4 orbits of length u−1
2 , and the proof is complete. �

We now wish to find algebraic properties of cosets in L?/C that remain constant

on all cosets in the same orbit in the action of H on L?/C. In this way we can attribute

properties to these orbits that would otherwise be attributed to individual elements of Za or

individual cosets in L?/C.

Lemma 66. For all i ∈ Za and ψ ∈ H , we have χ1

(
ψ

(
giC

))
= χ1

(
giC

)
.

Proof. It suffices to prove that the lemma holds for ψ = σ since H = 〈σ〉. That is, we must

show that for all i ∈ Za, we have χ1

(
g3iC

)
= χ1

(
giC

)
.

We first expand the sum χ1

(
giC

)
and apply the definition of the character χ1 to obtain

χ1

(
g

iC
)

=
∑
c∈C

χ1

(
g

ic
)

=
∑
c∈C

wexp
(
TrL/F

(
g

ic
))
.

Since TrL/F
(
x3

)
= TrL/F (x) for all x ∈ L, we have∑

c∈C

wexp
(
TrL/F

(
g

ic
))

=
∑
c∈C

wexp
(
TrL/F

(
g

3ic3
))
.

As c ranges over all of C, so too does c3. Thus we obtain∑
c∈C

wexp
(
TrL/F

(
g

3ic3
))

=
∑
c∈C

wexp
(
TrL/F

(
g

3ic
))

= χ1

(
g

3iC
)

= χ1

(
σ

(
g

iC
))
.

Thus the result is proved. �

We now relate the values of χ1

(
giC

)
and χ1

(
−giC

)
.

Lemma 67. For all i ∈ Za, we have χ1

(
−giC

)
= χ1

(
gi+uC

)
= χ1 (giC).
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Proof. Note that −1 = g(q−1)/2 = gbu. Since q − 1 ≡ 2 mod 4 and a is even, we have that b

is odd, so let b = 2l + 1, l ∈ N. We then obtain

bu = (2l + 1)u

= 2ul + u

= al + u.

Since C = 〈ga〉, we conclude −1C = guC. This means −giC = gi+uC, and so χ1

(
−giC

)
=

χ1

(
gi+uC

)
. Next, we compute χ1

(
−giC

)
by expanding the sum and using F-linearity of TrL/F:

χ1

(
−giC

)
=

∑
c∈C

χ1

(
−gic

)
=

∑
c∈C

wexp
(
TrL/F

(
−gic

))
=

∑
c∈C

wexp
(
−TrL/F

(
g

ic
))

=
∑
c∈C

wexp
(
TrL/F (gic)

)
= χ1 (giC).

This completes the proof. �

Since a = 2u and u is odd, by the Chinese Remainder Theorem, we have that

Za � Z2 × Zu. This isomorphism is given by Φ : j 7→ ( j mod 2, j mod u) for all j ∈ Za.

This isomorphism allows us to define an action of H on Za � Z2 × Zu by letting ψ(i, j) =

Φ(ψ(Φ−1(i, j))). This new action is permutation-isomorphic to the action of H on Za. As

such, this action has six orbits consisting of two fixed elements and four orbits of size e. We

now characterize these orbits.
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Theorem 68. The orbits ofH acting on Z2 × Zu consists of the following six sets:

{(0, 0)}

{(1, 0)}

{(0, s) : s ∈ �∗u}

{(1, s) : s ∈ �∗u}

{(0, n) : n ∈ lu}

{(1, n) : n ∈ lu}

Moreover, the size of each of the last four orbits is e.

Proof. Note that for all (i, j) ∈ Z2 × Zu, we have σ(i, j) = (3i, 3 j). Since |H| = e is prime,

we conclude that orbits of this action have sizes either 1 or e, which correspond to the cases

in which the order of stabilizers of elements in the orbits are e or 1, respectively. In order to

computeH(i, j), we need only check if σ(i, j) = (i, j).

First, we find that σ(0, 0) = (3 · 0, 3 · 0) = (0, 0). Therefore, |H(0,0)| = e, and it

follows that (0, 0) is a fixed element of this action, so its orbit size is 1. Similarly, σ(1, 0) =

(3 · 1, 3 · 0) = (1, 0), so (1, 0) is also a fixed point of this action.

Next, we observe that since u ≡ 11 modulo 12, we conclude that u ≡ 2 mod 3, and

u ≡ 3 mod 4. Using these congruences and the laws of quadratic reciprocity, we compute(
3
u

)
= −

(u
3

)
= −

(
2
3

)
= − (−1)

= 1.

We conclude that 3 is a quadratic residue modulo u. Since u | q − 1 = 3e − 1, we have that

3e ≡ 1 modulo u. Since e is prime, we conclude that o(3) = e mod u. Because e = u−1
2 ,

we know that 3 generates the subgroup of non-zero squares in Zu. Using this fact, we can

now classify the remaining four orbits. By definition, for all (i, j) ∈ Z2 × Zu, we have that
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σ(i, j) = (i, 3 j). If j , 0, then (i, j) , (i, 3 j), for otherwise we would have that j ≡ 3 j modulo

u, which would imply that u|2 j, meaning j = 0, a contradiction. Therefore, if j , 0, then the

element (i, j) is in an orbit of size e. Noting that the first coordinate of elements in Z2 × Zu

is fixed by σ, we deduce that the first coordinates of elements in the same orbit are equal.

Since 3 is a non-zero square modulo u, we may also conclude that the second coordinates

of the elements in a size-e orbit are either all squares or all nonsquares modulo u. Thus the

theorem is proven. �

With these orbits established, we immediately have the following corollary.

Corollary 69. Let O(x,y) be the orbit containing (x, y) in the action of H on Z2 × Zu. Then

the totality of orbits is as follows.

O(0,0) = {0},

O(1,0) = {u},

O(0,s) = { j : j ≡ 0 mod 2 and j ∈ �∗u},

O(1,s) = { j : j ≡ 1 mod 2 and j ∈ �∗u},

O(0,n) = { j : j ≡ 0 mod 2 and j ∈ lu},

O(1,n) = { j : j ≡ 1 mod 2 and j ∈ lu}.

We now apply our relations between different character sums to these orbits to obtain

some rather unexpected results.

Corollary 70. If i, j ∈ Za are in the same orbit of the action of H on Za, then χ1

(
giC

)
=

χ1

(
g jC

)
Proof. If i and j are in the same orbit, then j = ψ (i) for some ψ ∈ H . We have already

shown that in this case, we have χ1

(
giC

)
= χ1

(
g jC

)
, so the proof is complete. �

This result allows us to refer to the character sum of an orbit rather than the character

sum of a particular coset. This greatly reduces the number of character sums that need to be

computed in order to test if a given set is a GDS. Namely, since there are six orbits in this
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action, there are six different character sums that need to be computed. Let these character

sums be X0, Xu, X(0,s), X(1,s), X(0,n), and X(1,n), respectively. As it turns out, however, this

number can essentially be reduced to three as the next theorem will show.

Theorem 71. With the notation established above, we have thatXu = X0, X(1,s) = X(0,s), and

X(1,n) = X0,n).

Proof. Note that if i ∈ O(0,s), then i + u ∈ O(1,s). Similarly, if i ∈ O(0,n), then i + u ∈ O(1,n). This

follows from the Chinese Remainder Theorem, since if Φ(l) = (i, j), then Φ(l+u) = (i+1, j).

The result follows. �

With this result established, we conclude that we need only compute three character

sums in order to test if a set is a GDS. Let Xs = X(0,s), and Xn = X(0,n). Thus, our goal is now

to compute X0, Xs, and Xn. Using identities derived from orthogonality relations as well as

Gauss sums, we can derive several equations that these character sums must satisfy. For ease

of notation, let X0 = R0 + I0i, Xs = Rs + Isi, and X0 = Rn + Ini with R0, Rs, Rn, I0, Is, In ∈ R.

The first equation is a consequence of orthogonality of characters.

Theorem 72. With the established notation, we have −1 = 2R0 + (u − 1)(Rs + Rn).

Proof. As χ1 is a non-principal character, we immediately have

0 =
1
q

∑
a∈L

χ1 (a) .

Since the cosets of C partition L?, we may rewrite the sum as

0 =
1
q

χ1(0) +

a−1∑
j=0

χ1(g jC)

 ,
From which we have

−1 =

a−1∑
j=0

χ1(g jC).

We may now make use of the orbit structure of the action ofH on L?/C to rewrite this sum

as the following:

−1 = X0 +X0 + e(Xs +Xs) + e(Xn +Xn).
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Using simple properties of complex numbers, this sum becomes

−1 = 2R0 + 2e(Rs + Rn).

Since e = u−1
2 , we finally arrive at

−1 = 2R0 + (u − 1)(Rs + Rn).

which was what we wished to show. �

We now apply Theorem 12 to derive two quadratic equations.

Theorem 73. With the established notation, we have the identity

q − b = 2 |X0|
2 + (u − 1)

(
|Xs|

2 + |Xn|
2
)
.

Proof. Since |C| = b, we have

b =
1
q

∑
x∈L

|χx(C)|2 .

By rearranging terms and separating the a = 0 term from the summation, we obtain

qb = |χ0(C)|2 +
∑
x∈L?
|χ1(xC)|2

qb − b2 =
∑
x∈L?
|χ1(xC)|2 .

Since
∣∣∣L? : C

∣∣∣ = a, we have that in the above summation, all a cosets of C are added b times.

We thus have

q − b =

a−1∑
j=0

∣∣∣∣χ1

(
g

jC
)∣∣∣∣2 .

We may now once again make use of the orbit structure of the action ofH on L?/C to rewrite

this sum as

q − b = |X0|
2 +

∣∣∣∣X0

∣∣∣∣2 + e |Xs|
2 + e

∣∣∣∣Xs

∣∣∣∣2 + e |Xn|
2 + e

∣∣∣∣Xn

∣∣∣∣2
= 2 |X0|

2 + 2e
(
|Xs|

2 + |Xn|
2
)
.

Noting that e = u−1
2 , we finally arrive at

q − b = 2 |X0|
2 + (u − 1)

(
|Xs|

2 + |Xn|
2
)
,

which was what we wished to show. �
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We may also prove a similar identity by using a different subgroup of L?. Let E =

〈C,−1〉. Since −1 < C, we have that E = C ∪ −1C, and so |E| = 2b.

Theorem 74. With the established notation, we have the identity

q − 2b
2

= 2R2
0 + (u − 1)

(
R2

s + R2
n

)
.

Proof. We immediately have

2b =
1
q

∑
x∈L

|χx(E)|2 .

As before, we can rearrange terms and separate the x = 0 term from the summation to obtain

2qb = (2b)2 +
∑
x∈L

|χx(E)|2

Since
∣∣∣L? : E

∣∣∣ = u, we may rewrite the above sum as

2qb = (2b)2 + 2b
u−1∑
j=0

∣∣∣∣χ1

(
g

jE
)∣∣∣∣2 .

By canceling and rearranging terms, we obtain

q − 2b =

u−1∑
j=0

∣∣∣∣χ1

(
g

jE
)∣∣∣∣2 .

Note that for all 0 ≤ j ≤ u − 1, we can conclude

g
jE = g jC ∪ g− jC

= g jC ∪ g j+uC.

Because of this, we have the following equality concerning character sums:

χ1(g jE) = χ1(g jC) + χ1(g j+uC)

= χ1(g jC) + χ1(g jC).
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The two terms in the last equality are one of X0 and X0, Xs and Xs, or Xn and Xn, not

necessarily in that order. Since Zu contains e nonzero squares and e nonsquares, we may

rewrite the original character sum as

q − 2b =
∣∣∣∣X0 +X0

∣∣∣∣2 + e
∣∣∣∣Xs +Xs

∣∣∣∣2 + e
∣∣∣∣Xn +Xn

∣∣∣∣2
q − 2b = |2R0|

2 + e |2Rs|
2 + e |2Rn|

2

q − 2b
2

= 2R2
0 + (u − 1)

(
R2

s + R2
n

)
.

This completes the proof. �

By using the last two equalities, the following is a direct consequence.

Corollary 75. With the established notation, we have

q
2

= 2I2
0 + (u − 1)

(
I2

s + I2
n

)
.

Proof. Recall that for any z ∈ C, we have that |z|2 = <(z)2 + =(z)2. In our case, this would

mean that |X0|
2 = R2

0 + I2
0 , |Xs|

2 = R2
s + I2

s , and |Xn|
2 = R2

n + I2
n . By subtracting the equation

in Theorem 74 from the equation in Theorem 73, we obtain the desired equation. �

We have derived a linear equation in R0, Rs, Rn (Theorem 72), a quadratic equation

in R0, Rs, Rn (Theorem 74), and a quadratic equation in I0, Is, In (Corollary 75). We now

wish to derive a linear equation in I0, Is, In. In order to do this, we use the following result

concerning quadratic Gauss sums.

Theorem 76. Let p be an odd prime, s ∈ N, and q = ps. Let η be the quadratic character of

Fq. We then have

G (χ1, η) =


(−1)s−1 √q if p ≡ 1 mod 4.

(−1)s−1 is√q if p ≡ 3 mod 4.

This was first established for the case s = 1 by Gauss. For a proof of the general

statement, see [17], theorem 5.15. With this stated, we may now prove the following result.

Theorem 77. With the established notation, we have (−1)(e−1)/2 √q = 2I0 + (u − 1) (Is + In).
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Proof. We compute the Gauss sum G (χ1, η) in L. By definition, we have

G (χ1, η) =
∑
x∈L?

η (x) χ1 (x) .

Since C = 〈ga〉 and a is even, we have that C must be a subgroup of the group of squares of

L?. Because of this, we can write 〈g2〉, the set of nonzero squares, as a union of cosets of C.

〈g2〉 =

u⋃
j=0

g
2 jC.

We can use this to rewrite L? as well:

L? =

u−1⋃
j=0

g
2 jC

⋃
u−1⋃

j=0

g
2 j+1C

 .
With this partition of L?, we can rewrite the quadratic Gauss sum:

G (χ1, η) =
∑

x∈〈g2〉

η (x) χ1 (x) +
∑

x∈L?\〈g2〉

η (x) χ1 (x)

=
∑

x∈〈g2〉

χ1 (x) −
∑

x∈L?\〈g2〉

χ1 (x) .

The last step above was obtained by evaluating the character η on all elements of L?. We

now use the cosets of C to partition this sum in the following way:

G (χ1, η) =

u−1∑
j=0

χ1

(
g

2 jC
)
−

u−1∑
j=0

χ1

(
g

2 j+1C
)
.

In the first sum, as j ranges from 0 to u − 1, we have that 2 j ranges over the even squares

modulo a, the even nonsquares mod a, and 0. Similarly in the second sum, as j ranges from

0 to u − 1, we have that 2 j + 1 ranges over the odd squares mod a, the odd nonsquares mod

a, and u. Using this fact, we now have

G (χ1, η) = (X0 + e (Xs +Xn)) −
(
X0 + e

(
Xs +Xn

))
.

Using basic properties of complex numbers, this becomes

G (χ1, η) = 2iI0 + e (2iIs + 2iIn)

= i (2I0 + e (2Is + 2In))

= i (2I0 + (u − 1) (Is + In)) .
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We also know, however, that

G (χ1, η) = (−1)e−1 ie√q.

Since e is an odd prime, we simplify to obtain G (χ1, η) = ie√q. We now equate the two

expressions for the values of G (χ1, η) and rearrange terms:

ie−1√q = 2I0 + (u − 1) (Is + In)

We may rewrite ie−1 as (−1)(e−1)/2 to obtain

(−1)(e−1)/2 √q = 2I0 + (u − 1) (Is + In) .

This completes the proof. �

In summary, we will use the following four identities:

−1 = 2R0 + (u − 1)(Rs + Rn),

(−1)(e−1)/2 √q = 2I0 + (u − 1) (Is + In) ,

q − 2b
2

= 2R2
0 + (u − 1)

(
R2

s + R2
n

)
,

q
2

= 2I2
0 + (u − 1)

(
I2

s + I2
n

)
.

We finally have one more equation relating the trace of elements in cosets of C in L.

Theorem 78. For all j, we have ∑
c∈C

TrL/F(g jc) = 0.

Proof. Since C = 〈h〉, we have

∑
c∈C

TrL/F
(
g

jc
)

=

b−1∑
l=0

TrL/F
(
g

j
h

l
)
.

By F-linearity of trace, this becomes

b−1∑
l=0

TrL/F
(
g

j
h

l
)

= TrL/F

 b−1∑
l=0

g
j
h

l

 .
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The sum on the right-hand side is one of a geometric sequence.
b−1∑
l=0

g
j
h

l = g j 1 − h
b

1 − h

= g j 1 − 1
1 − h

= 0.

Taking traces of both sides completes the proof. �

9.2 The q = 35 Case

Throughout this section, let e = 5. This means that q = 243, u = 11, a = 22, and

b = 11. We also have that C = 〈g22〉. For convenience, let h = g22 so that C = 〈h〉. From the

previous section, we immediately have the following equations:

−1 = 2R0 + 10(Rs + Rn), (9.1)
√

243 = 2I0 + 10 (Is + In) , (9.2)

221
2

= 2R2
0 + 10

(
R2

s + R2
n

)
, (9.3)

243
2

= 2I2
0 + 10

(
I2

s + I2
n

)
. (9.4)

We first compute the possible values of X0. In what follows, put w = exp(2πi/3) =

−1
2 +

√
3

2 i.

Theorem 79. With the above notation, X0 = 2 − 3
√

3i or −11+9
√

3i
2 .

Proof. By definition, we have

X0 =

10∑
j=0

χ1

(
h

j
)
.

Note thatH acts onC, and this action has three orbits: {1}, {h1, h3, h4, h5, h9}, and {h2, h6, h7, h8, h10}.

Since χ1(x) = χ1(ψ(x)) for all ψ ∈ H , we may rewrite X0 as follows:

X0 = χ1 (1) + 5χ1

(
h

1
)

+ 5χ1

(
h

2
)
.

By the definition of χ1, this becomes

X0 = wexp (1) + 5wexp
(
h

1
)

+ 5wexp
(
h

5
)
.
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Since e ≡ 2 mod 3, we have that TrL/F(1) = 2, and so χ1(1) = w2. By (78), we have

0 =
∑
c∈C

TrL/F (c)

= TrL/F(1) + 5 · TrL/F
(
h

1
)

+ 5 · TrL/F
(
h

2
)

= 2 + 2 TrL/F
(
h

1
)

+ 2 TrL/F
(
h

2
)
.

By rearranging terms we obtain the equation

2 = TrL/F
(
h

1
)

+ TrL/F
(
h

2
)
.

From this, we conclude that either TrL/F
(
h1

)
= TrL/F

(
h2

)
= 1, or

{
TrL/F

(
h1

)
,TrL/F

(
h2

)}
=

{0, 2}. The former implies

X0 = wexp (1) + 5wexp
(
h

1
)

+ 5wexp
(
h

5
)

= w2 + 5w + 5w

=
−1 −

√
3i

2
+ 10

−1 +
√

3i
2


=
−11 + 9

√
3i

2
.

The latter implies

X0 = wexp (1) + 5wexp
(
h

1
)

+ 5wexp
(
h

5
)

= w2 + 5(1) + 5w2

= 5 + 6
−1 −

√
3i

2


= 2 − 3

√
3i.

This completes the proof. �

Theorem 80. With the above notation, X0 = 2 − 3
√

3i.

Proof. Note that C is the set of roots of X11 − 1 = Φ1(X)Φ11(X) ∈ L[X]. Since |L : F| = 5,

we conclude that the irreducible factors of Φ11(X) are of degree 5, and therefore Φ11(X) =
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f (X)g(X) where f (X) and g(x) are irreducible quintic polynomials over F[X]. Let h be a

root of f (X), which means that all the conjugates of h are roots of f (X), and let h2 and its

conjugates be the roots of g(X). Note that the reciprocals of the roots of f (X) are precisely

the roots of g(X). This means that g(X) is a constant multiple of the reciprocal polynomial

of f (X). The constant multiple ensures that g(X) is monic.

Let

f (X) = X5 + a4X4 + a3X3 + a2X2 + a1X + a0.

This means that

g(X) = a−1
0 X5 f (X−1)

= a−1
0 X5

(
X−5 + a4X−4 + a3X−3 + a2X−2 + a1X + a0

)
= X5 + a1a−1

0 X4 + a2a−1
0 X3 + a3a−1

0 X2 + a4a−1
0 X + a−1

0 .

We now compute a0. Recall that the coefficient of the Xi term of a monic, degree-n polyno-

mial is (−1)n−i times the (n − i)-th elementary symmetric polynomial of its roots. For f (X),

this means that a0 = −NL/F(h) = h(243−1)/(3−1) = −h121 = −1. This means that

g(X) = X5 − a1X4 − a2X3 − a3X2 − a4X − 1,

and therefore,

Φ11(X) =
(
X5 + a4X4 + a3X3 + a2X2 + a1X − 1

) (
X5 − a1X4 − a2X3 − a3X2 − a4X − 1

)
We also have that Φ11(X) =

∑10
i=0 Xi. By equating the coefficients of X9, X8, and X5 in these

equations for Φ11(X), we obtain the following three equations:

1 = a4 − a1 (9.5)

1 = a3 − a1a4 − a2 (9.6)

1 = −2 − a2
1 − a2

2 − a2
3 − a2

4 (9.7)

In order to prove the theorem, it suffices to show that TrL/F (h) , 1, for otherwise we would

have X0 = −11+9
√

3i
2 . To this end, we assume by way of contradiction that TrL/F (h) = 1. Since
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f (X) = mh(X), we have that −a4 = TrL/F (h). This together with (9.5) implies a1 = 1 and

a4 = 2. Substituting these values into (9.6) implies a2 = a3. By substituting these values into

(9.7), we deduce

1 = −2 − 12 − a2
2 − a2

2 − 22,

which simplifies to

2 = a2
2

This is a contradiction since 2 is not a square in F. The result follows. �

With this theorem proven, we have established that R0 = 2 and I0 = −3
√

3. By

substituting these values into (9.1), (9.2), (9.3), and (9.4), and rearranging terms, we obtain

−
1
2

= Rs + Rn, (9.8)

3
√

3
2

= Is + In, (9.9)

41
4

= R2
s + R2

n (9.10)

27
4

= I2
s + I2

n . (9.11)

With these new equations, we can deduce the following:

Theorem 81. With the notation above, we have

{Xs,Xn} =

2,
−5 + 3

√
3i

2

 .
Proof. Recall that Xs and Xn are both sums of eleven cube roots of unity. This imposes

severe limitations on the possible values of Rs, Rn, Is, and In. In general, let

X = a + bw + cw2

be a sum of eleven cube roots of unity, where a, b, c ∈ Z with a, b, c ≥ 0 and a + b + c = 11.

By substituting the value of w and simplifying, we obtain

X = a + b
−1 +

√
3i

2
+ c
−1 −

√
3i

2

= a −
1
2

(b + c) +

√
3

2
(b − c) i.
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Using the fact that a + b + c = 11, we have

X = a −
1
2

(11 − a) +

√
3

2
(b − c) i

=
1
2

(3a − 11) +

√
3

2
(b − c) i.

This means that

Rs,Rn ∈

{
1
2

(3a − 11) : a = 0, 1, . . . 11
}
,

Is, In ∈


√

3
2

b : b = −11,−10, . . . 11

 .
We may now use (9.11) and (9.9) to solve for Is and In. Let Is =

√
3

2 bs, and In =
√

3
2 bn with

bs, bn = −11,−10, . . . , 11. From (9.11) we have

27
4

=
3
4

b2
s +

3
4

b2
n,

that is,

9 = b2
s + b2

n

This implies
{
b2

s , b
2
n

}
= {0, 9}. From (9.9), we can conclude that {bs, bn} = {0, 3}, and so

{Is, In} =

0,
3
√

3
2

 .
.

Next, let Rs = 1
2 (3as − 11) and Rn = 1

2 (3an − 11) with as, an = 0, 1, . . . , 11. Then

from (9.10) we have
41
4

=
1
4

(3as − 11)2 +
1
4

(3an − 11)2 ,

which simplifies to

41 = (3as − 11)2 + (3an − 11)2 .

Note that 41 can be written as the sum of two integer squares in a unique way: 41 = 16 + 25.

We therefore have {
(3as − 11)2 , (3an − 11)2

}
= {16, 25} .
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Also note that 3as − 11, 3an − 11 ≡ 1 mod 3, and so we can conclude

{3as − 11, 3an − 11} = {4,−5} .

From here it is clear that

{as, an} = {5, 2} ,

{Rs,Rn} =

{
2,−

5
2

}
.

Since Xs and Xn are algebraic integers, the result follows. �

We were able to determine by computer that Xs = 2 and Xn = −5+3
√

3i
2 , however at

the present time, a computer-free proof of this eludes us.

We now let I = {0, 7, 13, 17, 19, 21} and D = ∪ j∈Ig
jC. Note that the nonzero elements

of J are the odd nonsquares of Z22 and that |D| = 6 · 11 = 66. We now compute the values of

Yi.

Theorem 82. With the above notation, we have

Yr =



−21
2 −

21
√

3
2 i if r = 0

−21
2 + 21

√
3

2 i if r = 11

3 if
(

r
11

)
= 1

−3
2 + 3

√
3

2 i if
(

r
11

)
= −1 and r is odd

−3
2 −

3
√

3
2 i if

(
r

11

)
= −1 and r is even.

Proof. Recall that D =
⋃
j∈I
giC, where I contains 0 and the odd nonsquares of Z22. This

means that

Y0 = X0 + 5Xn

=
(
2 − 3

√
3i

)
+ 5

−5 − 3
√

3i
2


= −

21
2
−

21
√

3
2

i.
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By (67), we can also deduce Y11 = −21
2 + 21

√
3

2 i.

Next, we compute Yr when r ∈ Z22 is an odd square. By definition, we have

Yr =
∑
j∈I+r

X j.

We must, therefore, determine what elements are in J + r = J − (−r). Note that since r is

an odd square, we have that −r is an odd nonsquare. Using (3), we can conclude that J + r

contains one odd square, the element 0, two even nonzero squares and two even nonsquares.

We thus have

Yr = X0 + 2Xs + 2Xn +Xs

=
(
2 − 3

√
3i

)
+ 2 (2) + 2

−5 + 3
√

3i
2

 + 2

= 3

By (67), we also have Yr = 3 for r an even nonzero square as well.

We now apply the same argument to the case in which r is an odd nonsquare. By

using (3) again, we can conclude that I + r contains one odd nonsquare, three even nonzero

squares, and two even nonsquares. We thus have

Yr = Xn + 3Xs + 2Xn

=

−5 − 3
√

3i
2

 + 3 (2) + 2
−5 + 3

√
3i

2


= −

3
2

+
3
√

3
2

i.

Finally, by (67), we also have Xr = −3
2 −

3
√

3
2 i if r is an even nonsquare. �

By taking moduli, we immediately have

Corollary 83. With the above notation, we have

|Yr |
2 =


441 if

(
r

11

)
= 0,

9 otherwise.
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With these character sums computed, we may now prove the following:

Theorem 84. With the above notation, D is a GDS.

Proof. We use (4.2) to obtain

243λw − 662 =

21∑
j=0

∣∣∣Y j

∣∣∣2Xm+ j =

21∑
j=0

∣∣∣Y− j

∣∣∣2Xm− j.

By applying (83) to this equation, we obtain

243λw − 662 = 441Xm + 441Xm−11 + 9
∑

r,0,11

Xm− j.

By combining terms and using orthogonality, we deduce

243λw − 662 = 432 (Xm +Xm−11) + 9
21∑
j=0

Xm− j

= 432 (Xm +Xm−11) + 9 (−1) .

By using (67) and rearranging terms, we obtain

243λw − 662 + 9 = 432
(
2< (Xm)

)
λw =

864< (Xm) − 9 + 662

243

λw =
32< (Xm) + 161

9
.

From the values of X0, Xs, and Xn, we have that

< (Xm) =


2 if

(
m
11

)
, −1,

−5
2 otherwise.

By substituting these values, we finally conclude that λw can attain exactly two different

values for nonzero w ∈ Fq:

λw =


25 if

(
m
11

)
, −1,

9 otherwise.

What remains is to distinguish between when these cases occur. The first case occurs when

m is a square in Z11, i.e. when m is one of the 12 squares Z22. �
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9.3 The q = 311 Case

For this case, let e = 11. This implies that q = 311 = 177147, u = 23, a = 46, and

b = 3851. From the previous section, we immediately have the following equations:

−1 = 2R0 + 22(Rs + Rn) (9.12)

−243
√

3 = 2I0 + 22 (Is + In) (9.13)

311 − 46
2

= 2R2
0 + 22

(
R2

s + R2
n

)
(9.14)

311

2
= 2I2

0 + 22
(
I2

s + I2
n

)
. (9.15)

As these numbers are relatively small, we may still readily determine possible values for the

variables above through elementary, number-theoretic means.

Theorem 85. With the notation above, Is = In = 0, and I0 = −243
√

3
2 .

Proof. Recall that X0, Xs, and Xn are all sums of 3851 cube roots of unity. This means that

each of these sums is of the form X = 1
2 (3a − 11) +

√
3

2 (b − c) i, where, a, b, c ∈ Z∪ {0}, and

a + b + c = 3851. By letting I0 =
√

3
2 r, Is =

√
3

2 s, and In =
√

3
2 t and substituting into (9.13)

and (9.15), we obtain

−243 = r + 11 (s + t) (9.16)

310 = r2 + 11
(
s2 + t2

)
(9.17)

As a result of (78), we have that 3 | r, s, t, so let r = 3x, s = 3y, and t = 3z, where

x, y, z ∈ N ∪ {0}. Substitution into (9.16) and (9.17) and simplification yields the following:

−81 = x + 11 (y + z) (9.18)

38 = x2 + 11
(
y2 + z2

)
(9.19)

By isolating x in (9.18) and squaring, we obtain

x2 = 38 + 112 (y + z)2 + 2 · 11 · 81 (y + z) (9.20)
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By substituting this into (9.19) and simplifying, we get

38 = 38 + 112 (y + z)2 + 2 · 11 · 81 (y + z) + 11
(
y2 + z2

)
−162 (y + z) = 11 (y + z)2 +

(
y2 + z2

)
.

By noting that all terms on the right-hand side are non-negative, we can conclude that −3 ≤

x + y ≤ 0. By reducing this equation modulo 4, we obtain

2 (y + z) ≡ y2 + z2 − (y + z)2 mod 4. (9.21)

From this congruence, we immediately see that x + y is even. If x + y = −2, then we would

have

−162 (−2) = 11 (4) + x2 + y2

280 = x2 + y2.

This equation has no integer solutions since 280 = 23 · 5 · 7, 7 ≡ 3 mod 4, and the power

of 7 in the factorization of 280 is odd. Therefore, we conclude that x + y = 0. This forces

x = y = 0, and therefore, Is = In = 0. The result follows. �

We thus have that Xs,Xn ∈ Q (w) ∩ R = Q. Since Xs and Xn are algebraic integers,

we also have that Xs,Xn ∈ Z. By direct computation, we have the following:

Theorem 86. With the above notation, we have Rs = 44, Rn = −37, and R0 = −155
2 . Thus,

X0 = −155−243i
√

3
2 , Xs = 44, and Xn = −37.

With these character sums computed, we may directly compute which subsets D form

GDS’s of L.

Theorem 87. For each J ⊆ Za, let DJ = ∪ j∈Jg
jC. Then DJ is a GDS for the following

subsets J:

� O(0,n)

� O(1,n)
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� O(0,0) ∪ O(0,s) ∪ O(0,n)

� O(0,0) ∪ O(0,s) ∪ O(1,n)

� O(0,0) ∪ O(1,s) ∪ O(0,n)

� O(1,0) ∪ O(1,s) ∪ O(1,n)

� O(1,0) ∪ O(0,s) ∪ O(0,n)

� O(1,0) ∪ O(0,s) ∪ O(1,n)

� O(1,0) ∪ O(1,s) ∪ O(0,n)

� O(1,0) ∪ O(1,s) ∪ O(1,n)

� O(0,0) ∪ O(1,0) ∪ O(0,s) ∪ O(1,s) ∪ O(0,n)

� O(0,0) ∪ O(1,0) ∪ O(0,s) ∪ O(1,s) ∪ O(1,n).

Moreover, for those values of J in the above list that are the union of three orbits, the corre-

sponding GDS is actually a SHDS.

It is unknown if these GDS’s are part of an infinite class found over larger finite fields.

It is also unclear which orbits are to be taken in order to obtain potential infinite classes.
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Chapter 10

SUMMARY AND FUTURE WORK

In Chapter 2, we proved an integrality condition concerning the parameters of a PDS.

In Chapter 3, we proved a group-ring equation that holds over any prime characteristic as

opposed to just characteristic 3. As previously stated, it was proven in [11] that if a finite

projective plane of Lenz-Barlotti type I.4 has order n with 3 | n, then 9 | n or n = 3. The

major step in the proof of this result is derivation of the equation found in (16) in the case

in which p = 3. Unfortunately, the techniques used in finishing the proof do not generalize

very well to other primes. As p increases, the number of group-ring elements to account for

become unwieldy very quickly. If an analogous result is to be proven, one suspects different

methods would need to be employed. The use of characters might prove useful in this regard.

In Chapters 4-7 we provided a method of constructing infinite classes of PDS’s as

well as three examples of such classes. In the search for infinite families of GDS’s among

image sets of polynomials, only binomials were considered in creating classes I-III. This

was primarily for ease of computation. Perhaps more complicated families of polynomials

can be considered for future investigation. It might also be the case that an infinite family of

GDS’s can be found through a completely different method, and this family could be repro-

duced as the image set of a well-known collection of polynomials. The appendix features

tables of PDS’s and DS’s in small fields found by binomials. In Chapter 8 we show that

these classes are equivalent to those coming from Maiorana-Mcfarland bent functions and

orthogonal arrays.

Finally, in Chapter 9 we attempted to construct a new family of GDS’s in fields of

characteristic 3. The motivation for finding class III was investigating the image set of the

polynomial Xi(Xd − 1), where rs = q + 1, d = r(q − 1), i = rk, gcd(k, q − 1) = 1 and

k . 1
(
mod q2−1

d

)
. In this case |D| = (s − 1)(q − 1). Empirical data seems to suggest another
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infinite family of PDS’s achieved through different polynomials. Using the above nota-

tion, the parameters are
(
q2, (q − 1)(s − 1), s(r + 1) + (s − 1)(s − 5), (s − 1)(s − 2)

)
. Whether

these are the parameters of an infinite class of PDS’s remains to be seen, and whether a

binomial generates these PDS’s is also unknown.

Although we found some GDS’s in F35 and F311 , it is still unclear if GDS’s always

exist in F3e , where e is a prime. This answer seemingly rests on the solution set of equations

(9.1), (9.2), (9.3), and (9.4). If either of Is and In is 0, then the corresponding character sum

Xs or Xn is real. Because of the nature of (4.3), these character sums being real restricts

the number of potential values of λw, which may result in the corresponding subset being a

GDS. If the character sums in these fields satisfy some pattern, then it should be possible to

find infinite families of GDS’s. Once these GDS’s are found, the next question to address

would be which of these GDS’s are actually PDS’s or DS’s. In F311 , for example, there were

eight GDS’s found out of 10 that were actually SHDS’s.
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Appendix A

TABLES OF PDS’S AND GDS’S

A.1 Computational results

We now wish to detail a small number of computational results for binomials of the

form Xi(Xd − 1) with d|(q − 1). We have much more data than is presented here, but as seen

below, there are many examples of PDS or DS arising even in this simple case, and so we

have chosen to simply present tables for various fields to underline that the phenomena is

widespread and not characteristic dependent. It should be mentioned that the phenomenon

is not due to a small characteristic property (law of small numbers): for example, for q =

472 = 2209, one obtains 13 distinct parameters (plus their complements) for a PDS. To

avoid extending an already long thesis any further, we choose only to give a few select

field sizes to emphasize how much there is here to do. Anyone with the inclination could

replicate what is presented here and more. In cases where we write, for example (64,21,8,6)c

in the comments for the parameters (64,42,26,30), we mean that the PDS generated with

the parameters (64,42,26,30) is the complement in F?64 of the PDS generated in the entry

(64,21,8,6); of course, the latter will have a similar comment.

A.1.1 Brief comments on the characteristic 2 examples

Computational results for when Xi(Xd − 1) yields an image set in Fq that exhibits a

regularity of differences in characteristic 2 are given for 16 ≤ q ≤ 256 in Tables A.1and A.2.

In this characteristic, it is known that all DS arising must be connected to bent functions, so

we make little further comment on these examples. For q = 32, we get two different sets D

from the two lines. Both are divisible difference sets, with exceptional subgroup N = {0, 1}

– all of Fq \ N occurs as a difference in D 12 times, while 1 ∈ N occurs 20 times.
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Table A.1: q ∈ {16, 32, 64} with f (X) = Xi(Xd − 1)

Parameters d i Type Comments

(16,10,6) 1 {2, 6, 8, 12} DS (3, 1)-biregular

5 {1, 3, 4, 6, 7, 9} DS

(16,12,8,12) 3 {2,4,5,7,8,10} PDS D = Fq \ F4

(16,9,4,6) 1 {4,10} PDS (2, 1)-biregular

(32,20,12,20) 1 {2, 14, 16, 28}

1 {4, 8, 22, 26}

(64,36,20) 9 ±{1, 4, 8, 11, 22, 25} mod 54 DS (3, 1)-biregular

(64,56,48,56) 7 32 in range 2 ≤ i ≤ 54 PDS D = Fq \ F8

(64,42,26,30) 21 gcd(i, 21) = 1 PDS (64,21,8,6)c

(64,35,18,20) 1 {8, 54} PDS (2, 1)-regular

(64,27,10,12) 9 ±{2, 10, 16, 17, 23} mod 54 PDS 2-regular

(64,21,8,6) 7 ±{4, 13, 16, 22, 25, 31} mod 65 PDS (64,42,26,30)c

(3, 2)-regular

(64,14,6,2) 21 3k with k . 1 mod 3 PDS 3-regular

Table A.2: q = 256 with f (X) = Xi(Xd − 1)

Parameters d i Type Comments

(256,240,224,240) 15 many PDS D = Fq \ F16

(256,204,164,156) 51 many PDS (256,51,2,12)c

(256,170,114,110) 5 many PDS (2, 1)-biregular

85 many PDS (256,85,24,30)c

(256,135,70,72) 1 {16,238} PDS (2, 1)-biregular

(256,119,54,56) 17 30 in range 2 ≤ i ≤ 236 PDS 2-regular

(256,85,24,30) 85 PDS 2-regular, (256,170,114,110)c

(256,68,12,20) 51 26, all of form 3k PDS 3-regular

(256,51,2,12) 51 many PDS 4-regular, (256,204,164,156)c
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No PDS or DS are generated from binomials for q = 128. For q = 256, the entries

for (256,170,114,110) are the first examples of binomials yielding inequivalent PDS with the

same parameters.

Table A.3: q ∈ {81, 243} with f (X) = Xi(Xd − 1)

Parameters d i Type Comments

(81,64.49,56) 16 i = 2k + 1 . 7 mod 10 PDS D = F?q \ 〈g
5〉, (81,16,7,2)c

(81,60,45,42) 20 gcd(i, 10) = 1 PDS D = F?q \ 〈g
4〉

(81,48,27,30) 4 i = 10k + 3, 0 ≤ k ≤ 7 PDS (81,32,13,12)c

(81,40,19,20) 8 i = 2k + 1 . 1 mod 10 PDS Paley SHDS

40 gcd(i, 10) = 1 PDS Paley SHDS

(81,32,13,12) 16 {6, 10, 14, 18} mod 20 PDS 2-regular

(81,20,1,6) 20 {6, 14, 22, 38} mod 40 PDS (4, 2)-biregular, (81, 60, 45, 42)c

40 {2, 6, 14, 18} mod 20 PDS 2-regular

(81,16,7,2) 8 {6,26,46,66} PDS (81, 64, 49, 56)c

16 {7,17,27,37,47,57} PDS 4-regular, (81, 64, 49, 56)c

(243,121,60) 11 {12, 21} mod 22 DS (2, 1)-biregular

121 gcd(i, 11) = 1 DS

(243,220,199,220) 22 ±{7, 9} mod 22 PDS

(243,110,37,60) 22 ±{5, 6} mod 22 PDS 2-regular

A.1.2 Brief comments on the odd characteristic examples

All DS and SHDS found in odd characteristics can be explained by Theorem 50.

The q = 243 case requires several comments.

� The DS generated for d = 11: Set D12 and D21 to be the DS generated for i ≡ 12 or

21 mod 22, respectively. Then D12 = −D21.

� The DS generated for d = 121: Set Dodd and Deven to be the DS generated from i being

odd or even, respectively. Then Deven = −Dodd, and Deven is the Paley DS.
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Table A.4: q = 729 with f (X) = Xi(Xd − 1)

Parameters d i Type Comments

(729,676,625,650) 52 many PDS D = F?q \ 〈g
14〉, (729,52,25,2)c

(729,624,531,552) 104 many PDS D = F?q \ 〈g
7〉, (729,104,31,12)c

(729,364,181,182) 26 3 mod 4 & more PDS (2, 1)-biregular, Paley SHDS

182 1 mod 4 & more PDS (2, 1)-biregular, Paley SHDS

364 as for d = 26 PDS Paley SHDS

(729,312,135,132) 104 2 mod 4 & more PDS 2-regular

(729,182,55,42) 26 1 mod 4 & more PDS (4, 3)-biregular

52 2 mod 4 & more PDS (4, 2)-biregular

182 3 mod 4 & more PDS 3-regular

364 2 mod 4 & more PDS 2-regular

(729,156,45,30) 104 4 mod 8 & more PDS 4-regular

(729,104,31,12) 26 8 mod 14 & more PDS (729,624,531,552)c

52 9 mod 14 & more PDS (7, 6)-biregular, (729,624,531,552)c

104 11 mod 14 & more PDS 6-regular, (729,624,531,552)c

(729,52,25,2) 26 15 mod 28 & more PDS (14, 13)-biregular, (729,676,625,650)c

52 16 mod 28 & more PDS (729,676,625,650)c

104 18 mod 28 & more PDS 12-regular, (729,676,625,650)c

182 21 mod 28 & more PDS (14, 7)-biregular, (729,676,625,650)c

364 7 mod 14 & more PDS 7-regular, (729,676,625,650)c
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Table A.5: q = 625 with f (X) = Xi(Xd − 1)

Parameters d i Type Comments

(625,576,529,552) 48 2k + 1, k . 1 mod 3 D = F?q \ 〈g
13〉

& i , 26t + 15, t ≡ 1, 2 mod 3 PDS (625, 48, 23, 2)c

(625,520,435,420) 104 2k + 1, k . 2 mod 3 D = F?q \ 〈g
6〉

& i , 26t + 13, t ≡ 0, 1 mod 3 PDS (625, 104, 3, 20)c

(625,416,279,272) 208 2k + 1, k . 0 mod 3 D = F?q \ 〈g
3〉

& i , 26t + 13, t ≡ 1, 2 mod 3 PDS (625, 208, 63, 72)c
1

(625,336,179,182) 12 26k + 7, k . 1 mod 3 PDS

(625,312,155,156) 24 gcd(i, 6) = 1, i . 1 mod 26 PDS (2, 1)-biregular, (Paley SHDS)c

312 gcd(i, 78) = 1 PDS (Paley SHDS)c

(625,288,133,132) 48 4k + 2, k . 1 mod 3 2-regular

& i , 52t + 2, t ≡ 0, 2 mod 3 PDS this is not (625, 336, 179, 182)c

(625,208,63,72) 104 gcd(6k + 5, 13) = 1 PDS (3, 2)-biregular, (625,416,279,272)c

208 gcd(6k + 1, 13) = 1 PDS 2-regular, (625,416,279,272)c

208 gcd(4k + 2, 13) = 1, k . 2 mod 3 PDS 2-regular

(625,192,65,56) 48 {3, 27} mod 78 PDS 3-regular

(625,104,3,20) 208 12k + 10, k . 10 mod 13 PDS 4-regular, (625, 520, 435, 520)c

312 gcd(6k + 3, 13) = 1 PDS 3-regular, equivalent to above

(625,48,23,2) 24 52k + 14, k . 1 mod 3 PDS

48 26k + 15 PDS 12-regular
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� The (243,110,37,60)-PDS is a known example which, despite much effort, remains not

part of a known infinite family, see the discussion between Theorems 4.10 and 4.11 of

[19].

For q = 625, we note that there are two inequivalent (625,208,63,72)-PDS, the third row

being inequivalent to the first two rows (which generate the same D).
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