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Simulating Heterogeneous Farmer Behaviors under Different Policy Schemes:  

Integrating Economic Experiments and Agent-Based Modeling 

 

Shang Wu, Asim Zia, Mengyuan Ren, Kent Messer 

 

 

Abstract 

In this paper, we develop an agent-based model that scales up results from economic 

experiments on technology diffusion and abatement of non-point source water pollution under 

the conditions of an actual watershed. The results from the economic experiments provide the 

foundation for assumptions used in the agent-based model. Data from geographic information 

systems and the US Census of Agriculture initialize and parameterize the model. This integrated 

model enables the exploration of the effects of several policy interventions on technology 

diffusion and agricultural production and, hence, on agricultural non-point source pollution.  

Simulation results demonstrate that information ‘nudges’ based on social comparisons increase 

ambient based policy performance as well as efficiency, especially individual-level tailored 

information on what others like them have done in past similar situations. 
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1. Introduction and Literature Review 

Non-point source (NPS) pollution in water systems mainly comes from rainfall and snowmelt 

that move over and through the ground, bringing natural and human-made pollutants into 

waterbodies. NPS pollution, which comes mostly from nutrients and chemicals carried by 

agricultural runoff, is the primary cause of water pollution in the United States today. 

Unfortunately, regulation and remediation of NPS water pollution is a difficult task. It typically 

is hard and at times impossible to identify individual contributors to such pollution, and policies 

designed to address it must be designed to take polluters’ hidden actions and asymmetric 

information into account. The cost of this type of individual monitoring and enforcement is often 

prohibitive (Xepapadeas, 2011).  

Theoretical work (e.g., Segerson 1988, Xepapadeas, 1992) has shown that policies based 

on ambient levels of pollution can lead to reductions of NPS pollution to a regulator-specified 

target level. However, since no program has implemented an ambient-pollution-based policy on 

a large scale to provide empirical data, researchers have often turned to economic experiments in 

laboratory settings as test beds for such policies (Spraggon, 2002; Poe et al., 2004; Suter, Vossler 

and Poe, 2009, Miao et al., 2016). And since researchers must recruit and compensate 

participants in economic experiments, the experiments generally have been limited in scale and 

have restricted the ability to draw conclusions in contexts outside the lab. Thus, researchers have 

been interested in finding other ways to study the effects of these policies as part of efforts to 

improve their outcomes in terms of reducing NPS pollution. 

Agent-based modeling (ABM) can help fill this gap by providing a mechanism for scaling up 

the findings in experiments to contexts that are closer to reality. With ABM, researchers can use 

findings from an experiment, create model agents that behave according to patterns identified in 
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the experiment, and conduct simulations using an environment that better mimics a real-world 

setting.  ABM also allows the researcher to observe the results of those agent interactions, which 

are extremely difficult to capture using other methods. Furthermore, we compared to traditional 

top-bottom methods such as econometric techniques, ABM imposes less distributional 

restrictions or assumptions. 

ABM has been applied in various fields in recent years (Farmer and Foley, 2009), such as 

ecological modeling (Grimm and Railsback, 2005), population growth (Axtell et al., 2002), 

business strategies (Khouja, Hadzikadic, and Zaffar, 2008), land use policy (Tsai et al. 2015), 

transportation policy (Zia and Koliba 2015) and education (Johnson, Lemasters, and 

Bhattacharyya, 2017). In the context of agricultural and environmental applications, it has been 

used mainly for problems associated with changes in land cover to develop models that simulate 

land use decisions by farmers facing multiple constraints (Parker, 2014; Matthews et al., 2007; 

Veldkamp and Verburg, 2004), especially in studying coupled human and natural systems (An, 

2012).  In such systems, agent decisions generate environmental consequences, which could in 

turn affect human decisions and behavior.  Recently, Tesfatsion et al. (2017) developed the 

Water and Climate Change Watershed (WACCShed) platform that allows the systematic study 

of interactions of hydrology, human and climate in a watershed over time.  Ng et al. (2011) 

demonstrates an agent-based model of farmer decision making on water quality in the context of 

first and second generation biofuel crops and carbon trading.  The ABM integrates a SWAT 

based hydrologic-agronomic model. 

In the bottom-up construction of an ABM, modelers need to assign decision rules to agents 

under specific scenarios.  A major challenge lies in constructing credible decision rules for ABM 

(Zenobia et al., 2009).  Most of the previous work usually assumes perfect rationality, meaning 
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that the agents could perfectly solve for utility maximizing problems in various and sometimes 

complex scenarios. However, behavioral economics have repeatedly shown that human behavior 

is often, at best, rationally bounded and that individuals often use heuristics instead of 

optimization when making decisions. As noted by Hechbert, Baynes, and Reeson (2010), 

combining economic experiments with ABM offers researchers many new opportunities. 

Experimental economics can be used to guide calibration of ABM so that the agents’ behaviors 

and decisions reflect patterns identified by actions in experiments.  

Some researchers have used survey methods to develop decision rules for ABM (Dia, 2002). 

Compared to using survey-based approaches to calibrate decision-making in ABM, we can use 

data collected through experiments that capture the “interpersonal” and “interplayer” dynamics 

that arise in experimental games (and are overlooked by surveys). Furthermore, Duffy (2006) 

pointed out that ABM projects also could facilitate researchers’ ability to interpret the aggregate 

findings of an experiment involving human subjects. 

Not many studies have combined experimental economics and ABM.  Evans, Sun, and 

Kelley (2006) compared results from a spatially explicit lab experiment to outputs of a 

simulation from a land-use ABM involving utility-maximizing agents.  They concluded that the 

participants in the experiment deviated from revenue-maximizing actions and that it was thus 

valuable to use non-maximizing agents in ABM.  Heckbert (2009) also acknowledged the value 

of combining experiments and ABM, reporting a study in which a participant replaces the role of 

an agent and the participant’s behavior under several treatments can be used to recalibrate the 

ABM.  

A few studies have attempted to integrate economic experiments and ABM in NPS pollution 

management context.  Zia et al. (2016, in review) constructed agent-based models using an 
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economic experiment documented in Miao et al. (2016). The agents were categorized to pursue 

different behavioral strategies under alternate policy and sensor information regimes, and the 

agents’ type categories were predicted by a multi-level multinomial logistic regression model 

built from experimental data. Our research extends this idea by designing an experimental setting 

that includes technology adoption decisions and two layers of heterogeneity, meanwhile building 

a closer link between the experiment and the ABM. 

We also include two information treatments to examine the ability of information ‘nudges’ to 

induce desired outcomes from the participants.  Originating from the social comparison theory 

by Festinger (1954), it has been shown that information ‘nudges’ on social comparison and peer 

actions can promote environmental conservation behavior (e.g., Allcott, 2011; Ferraro and Price, 

2013; Goldstein, 2008).  These information ‘nudges’ are attractive from a policy design 

perspective since they are more cost-effective compared to traditional monetary based programs.  

However, not much research has considered incorporating information ‘nudges’ in NPS pollution 

management.  We are interested in if information ‘nudges’ based on social comparison and peer 

action could help the performance of ambient based policies.  In the first information treatment, 

participants are provided with information about what people “like them” have chosen in a 

similar situation in the past.  In the second treatment, participants are provided with information 

regarding average production and average rate of adoption of technology by their group in the 

preceding round. Participants’ responses to the policy and the information treatments given the 

heterogeneity of production types are used to guide the agent’s behavior in the models under 

various scenarios.  

In this study, we scale up findings from an economic experiment with ABM in a spatially 

explicit watershed setting to provide insight into the effects of different policy interventions 
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addressing NPS pollution. The models capture interactions among heterogeneous agents in terms 

of diffusion of technology adoption by farmers, which is difficult to model using other 

techniques. Specifically, we test how tax/subsidy policies based on ambient levels of water 

pollution work in scenarios involving heterogeneous production and pollution schemes and focus 

on cases in which the decision space of the agents is extended from making a single production 

decision to making a production and a technology decision. We also investigate how information 

influences people’s behavior and whether policies can be designed to incorporate information 

‘nudges’ to induce more-desired outcomes. 

Our study makes two significant contributions to the literature.  In environmental and 

resource economics, our experiment investigates the effect of information ‘nudges’ in an 

experimental setting that simultaneously incorporates an extended participant decision space and 

multiple layers of heterogeneity.  Moreover, we use an ABM that features heterogeneous agents 

in a spatially explicit context to understand implications of the complex actions and interactions 

created based on experimental data. In the field of ABM, despite rising interest in using non-

fully rational agents, not much work has actually done so. We are one of the first to introduce 

bounded rational agents into an ABM based on an economic experiment.  The ABM agent 

decision rules are closely linked with human decisions in the economic experiment using an 

underlying game-theoretical model.  Our research demonstrates that economic experiments can 

be useful to capture bounded rationality and guide ABM development.  This study provides an 

example to incorporate human-based decision rules and a possible framework to integrate 

experiments and ABM in future research.   

 

2. Experimental Design and Theoretical Foundation 
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In this part, we discuss the experimental design of our economic experiment.  We first lay out the 

theoretical model, and describe the treatments in the experiment.  

 

2.1 Theoretical Model 

We build upon and extend the classic model framework in the environmental economics 

literature. Consider a group of agricultural producers indexed by i = 1 … N operate farms or 

ranches adjunct to a common watershed. The farmers’ operations generate pollution as 

byproduct. A regulator monitors water quality by a sensor at the downstream of the watershed. 

The farms may differ both in their capacity and their distance to the sensor. The farmers may 

choose to adopt a pollution abatement technology (e.g., buffer, cover crop) at a cost (𝜏) 

proportional to farm size. Each year, the farmers make two decisions: a production decision 𝑥𝑖 

and a decision on whether to adopt an abatement technology 𝑎𝑖. 
𝜕𝑃𝐸𝑖(𝑥𝑖,𝑎𝑖)

𝜕𝑥𝑖
> 0, 

𝜕𝑃𝐸𝑖(𝑥𝑖,𝑎𝑖)

𝜕𝑎𝑖
< 0, 

indicating lower production and the adoption of the technology are associated with lower private 

earnings through 𝑃𝐸𝑖(𝑥𝑖 , 𝑎𝑖).  

The environmental damage generated by each farm is 𝐷𝑖(𝑥𝑖 , 𝑎𝑖) = 𝛼𝛽𝑖𝑥𝑖𝑎𝑖 + 𝛽𝑖𝑥𝑖(1 −

𝑎𝑖), where 
𝜕𝑃𝐸𝑖(𝑥𝑖,𝑎𝑖)

𝜕𝑥𝑖
> 0, 

𝜕𝑃𝐸𝑖(𝑥𝑖,𝑎𝑖)

𝜕𝑎𝑖
< 0, and 𝛽𝑖 depends on the location of the farm relative to 

the sensor and 𝛼 denotes the effect of the technology. We assume that the total environmental 

damage is 𝑇𝐷 =  ∑ 𝐷𝑖(𝑥𝑖 , 𝑎𝑖)𝑁
1 .  Without any regulation, a profit maximizing farm will produce 

at their capacity level and not adopt the technology. The social planner’s problem is to maximize 

social benefits (denoted as SP), where 𝑆𝑃 =  ∑ 𝑃𝐸𝑖(𝑥𝑖 , 𝑎𝑖)
𝑁
𝑖=1 − ∑ 𝐷𝑖(𝑥𝑖, 𝑎𝑖)

𝑁
𝑖=1 .  Suppose the 

regulator hopes to achieve a pollution standard 𝐷 and imposes a tax/subsidy policy, where the 

tax/subsidy equals to the environmental damage minus the target level of pollution, 𝑡(𝑇𝐷) =

(𝑇𝐷 − 𝐷̅). Following the literature, suppose 𝑃𝐸𝑖(𝑥𝑖 , 𝑎𝑖) takes a quadratic form 𝛾0 −



8 
 

 𝛾1(𝛾2𝑖 − 𝑥𝑖)
2 − 𝜏𝛾2𝑖𝑎𝑖, where 𝜏𝛾2𝑖𝑎𝑖 takes into account whether the firm adopted the 

technology. Now the individual payoff function under the tax/subsidy scheme becomes: 𝜋𝑖 =

𝑃𝐸𝑖(𝑥𝑖 , 𝑎𝑖) − (𝑇𝐷 − 𝐷̅).  

We find the Nash strategy by backward induction. Consider firm i, given the pollution 

level of others in the group 𝐷−𝑖, its profit function from producing 𝑥𝑖 and adopting the 

technology is: 𝜋𝑖
𝐴 = 𝛾0 −

(𝛽𝑖𝛼)2

4𝛾1
− (𝐷−𝑖 − 𝐷̅ + 𝛽𝑖𝛼𝛾2𝑖 −

𝛽𝑖
2𝛼2

2𝛾1
) − 𝜏𝛾2𝑖 , taking first order 

condition, the maximum is reached at 𝑥𝑖
𝐴 = 𝛾2𝑖 −

𝛽𝑖𝛼

2𝛾1
. The profit for not adopting the technology 

is 𝜋𝑖
𝑁 = 𝛾0 −

𝛽𝑖
2

4𝛾1
− (𝐷−𝑖 − 𝐷̅ + 𝛽𝑖𝛾2𝑖 −

𝛽𝑖
2

2𝛾1
), and the maximum can be reached by producing 

𝑥𝑖
𝑁 = 𝛾2𝑖 −

𝛽𝑖

2𝛾1
.  The condition for a farmer to prefer to adopt compared with not adopt is 

therefore 𝐶 = 𝜋𝑖
𝑁 − 𝜋𝑖

𝐴 =
𝛽𝑖

2

4𝛾1
(1 − 𝛼2) − 𝛽𝑖𝛾2𝑖(1 − 𝛼) + 𝜏𝛾2𝑖 < 0.  Thus, a unique dominant 

Nash strategy for a farm is defined as {𝐶 < 0: 𝑥𝑖 = 𝛾2𝑖 −
𝛽𝑖𝛼

2𝛾1
, 𝑎𝑖 = 1;  𝐶 ≥ 0: 𝑥𝑖 = 𝛾2𝑖 −

𝛽𝑖

2𝛾1
, 𝑎𝑖 = 0}.  This dominant Nash strategy is also the same as the social planner’s optimal 

strategy. 

 

2.2 Treatments 

We consider two dimensions of treatments. On the within-subject level, we varied whether the 

tax/subsidy policy is in place and also the complexity of heterogeneity that is in the experiment. 

For each of the policy treatment, we conducted four heterogeneity treatments, namely,  

(1) A homogeneous treatment where the locational impact on water quality and size of 

each farm is the same (Homo);  
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(2) A first heterogeneous treatment where the locational impact on water quality vary, 

but the size of each farm is the same (Hetero1)  

(3) A second heterogeneous treatment where the size of the farms vary, but locational 

impact on water quality is the same (Hetero2);  

(4) A third heterogeneous treatment where both size and locational impact on water 

quality of farms vary (Hetero3).  

 

To control for potential order effects, we randomly varied the order of the within-subject 

treatments that are presented. On the between-subject level, we provided participants with three 

information treatments. No Info serves as the baseline. In the Info1 treatment, we provide 

testimonial information on what production and technology adoption decisions people “like 

them” have made in the past.  The information comes from the “no information” treatments.  We 

find true decisions participants made that are closest to the Nash optimal strategies conditioning 

on their size and location.  Therefore, this information differs by the location and the size of the 

firm and approximates the actual Nash optimal strategies.  This resembles some policy 

recommendation on what people should consider doing based on their location and size.   

In the information treatment 2, we give participants information on the technology 

adoption rate and average production in their group in the last decision.  This is similar to a 

policy that provides information on what others in the neighborhood are doing and has a self-

evolving nature.  Since each decision is independent and each participant has a unique dominant 

Nash strategy, theoretically the information treatments should not change participants’ decisions.  

However, as noted before, human decisions often demonstrate bounded rationality and may 

follow simple heuristics or ad hoc rules.  
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2.3 Experiment procedure 

The economic experiment consisted of twelve sessions conducted in late 2016, involving a total 

of 192 participants recruited at a large public university in the northeastern United States.  

 

3. Agent-Based Model Setup 

In this part, we discuss the ABM setup and initialization.  We design the ABM to capture key 

elements of the economic experiment and an actual watershed while avoiding including 

unnecessary assumptions and processes. We first set the ABM to a spatially explicit context 

based on the Murderkill1 watershed located in the southeast part of Kent County, Delaware 

(Figure 1).  The Murderkill watershed is chosen mainly because it consists of primarily 

agricultural land use and it is a typical coastal plain.  Besides, it has promulgated TMDL 

regulations and has research efforts on the estuarine portion of the watershed.  Moreover, the 

watershed is comprised of 68,000 acres of land, which is large enough to generate meaningful 

conclusions, but not too large to create computational obstacles. 

[Figure 1 here] 

 

3.1 GIS Environment Setup 

In our model, the agents are farmers operating farms in the watershed.  However, since farm 

level data is not publicly available, we develop a method to simulate farm level agents from 

                                                      
1 Note that the origin of the name, Murderkill, has a Dutch origin as “moeder” means mother and “kill” means 
river or creek in Dutch.  Thus, the rough translation of the name is “Mother River”, and not a reference to a 
bloody past. 
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parcel level data.  We obtain three sources of geographic information system (GIS) data for the 

Murderkill River watershed: (1) Parcel level size and location data for Delaware; (2) Watershed 

boundary data for Murderkill watershed; and (3) National Land Cover Database (NLCD, 2011). 

We combine these three data sources together to generate an estimate of the agricultural land for 

each parcel in the watershed. 

 

3.2 Agent Initialization 

By combining parcel-level GIS information with data on land cover for this watershed, we can 

estimate the amount of land used for agriculture within each parcel and the X-Y coordinates of 

the parcels. Since farms often consist of a constellation of parcels and we do not have data on the 

actual allocation of parcels to specific landowners, we initialize the size of each farm based on 

the probability density function from data from the 2012 Census of Agriculture (U.S. 

Department of Agriculture, 2012) for Kent County, Delaware. Using that information and the 

GIS information, we match a simulated landowner agent to various numbers of parcels. In this 

process, we first calculate a “distance matrix” that contains information on the geographic 

distance between the individual parcels and every other parcel in the watershed. We then create 

landowner agents by grouping the nearest neighboring parcels until they meet criteria identified 

by the probability density and average size of each category of farms in the Census of 

Agriculture. The result is that our agents constructed from neighboring parcels closely mimic the 

census data on farm size distributions. Figure 2 displays the farm size distribution of Kent 

County, Delaware, and Figure 3 shows our simulated farm size distribution. 

[Figure 2 and Figure 3 here] 
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3.3 Network and Layout 

An agent is assumed to operate a farm that consists of a number of parcels. The agents are placed 

at the center points of their farms, which are determined using GIS data. Each agent is connected 

to a number of neighbors based on geographic proximity and influences those neighbors. The 

number of agents in one neighbor group is determined by the modeler at the beginning of each 

simulation. 

 

3.4 ABM Model Framework 

In the ABM, we adopt the modification of the classic model in environmental and resource 

economics as documented in our previous section.  Each agent operates a farm and generates 

income by producing an agricultural product (e.g., corn) and simultaneously generate byproducts 

that cause NPS pollution.  The agents may choose to adopt a technology at a cost proportional to 

its size that could reduce byproducts.  As explained before, an underlying dominant Nash 

strategy could be solved for every agent in the watershed.  Since the dominant Nash strategy is 

the same as the optimal strategy for the social planner’s problem, we can treat the Nash strategy 

as the “Theoretical Target” level of participants’ response.  A pollution monitor (i.e., sensor) is 

placed at the downstream end of the watershed, and amount of pollution contributed by each 

farm is based on the farm’s distance from the monitoring point (our experiment measured 

individual contributions of pollution in the same way). Different policy and regulatory scenarios 

influence the agents’ production and technology-adoption decisions based on results drawn from 

the experiment. Table 1 summarizes the variables used in the ABM. 

[Table 1 here] 
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3.5 ABM Model Process Flow 

Figure 4 demonstrates the process flow of our ABM.  Each agent makes two decisions, a 

production decision and a technology decision.  Both decisions influence the income received 

and the pollution generated by the agent.  Combined with pollution generated by other agents, 

the total pollution is calculated.  Depending on whether an ambient based policy is in place, the 

agent’s income may be affected by a tax or subsidy based on the target level and the total 

environmental damage.  This influence on income further affects agent decisions in the next 

year.  An agent’s production and adoption decisions are modeled based on the production and 

adoption deviations from the target levels.  These deviations are modeled in two phases as 

demonstrated in the next section. 

[Figure 4 here] 

4. Experimental Data Analysis 

We conducted statistical data analysis on data from the experiment as documented in Wu, Palm-

Forster, and Messer (2017).  The analysis was done in two phases.  First, we are interested in 

classifying people into different behavior groups.  The idea is to capture the inherent behavioral 

difference among people (e.g., some people are more environmentally friendly, some are more 

self-oriented, etc.)  Second, after we classify participants into behavior groups, we estimate how 

agent production and adoption decisions are influenced by their location, size, information 

treatment and type.  We use the results to calibrate agent decision rules in the ABM model.  

 

4.1 Cluster Analysis 

Since we do not have any pre-defined knowledge or want to impose any assumption on how 

many groups participant behavior should be clustered into, the goal of this analysis is to identify 
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the number of behavior types and cluster agents into that number of groups.  With no pre-

determined grouping structure, meaning that we do not observe the response variables, cluster 

analysis is suitable for this purpose. As a popular unsupervised statistical learning method, 

cluster analysis could generate grouping structures based on patterns in predictors.  The first key 

question is to determine how many clusters the agents should be grouped into.   

 

4.1.1 Clustering Metric 

To account for the fixed effects of different treatments, the difference between an agent’s actual 

pollution level and the Nash optimal strategy level in that treatment was considered as a measure 

of the agent’s behavior at each round.  Therefore, clustering analysis was implemented based on 

five variables (diff1, diff2, diff3, diff4, diff5), the agents’ differences to Nash over five rounds.  

These variables are defined as: 

Diffijt = Pollutionijt – TargetPollutionijt . 

Where Diffijt denotes the difference of participant i’s pollution level to the target 

pollution level in treatment j, round t. 

There are a number of clustering methods available, the most popular ones include K-

means clustering, hierarchical clustering and Gaussian mixture models.  There is no definite right 

or wrong for each of the clustering methods.  We selected to use K-means clustering because it 

generated the most informative grouping structure.   

For K-means clustering, the most important task is to determine how many groups to 

cluster into.  This depends on both statistical criterion and knowledge on what a sensible 

grouping structure is.  We perform various statistical procedures to determine the number of 

clusters. 
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4.1.2 The Elbow Method 

The most intuitive way to determine the number of groups is the “Elbow Method”.  Figure 5 

depicts the within groups sum of squares versus the number of clusters.  We can see that there is 

a sharp turn when the number of cluster is equal to three.  Therefore, three appeared to be a 

reasonable number of clusters to divide the agent types into. 

[Figure 5 here] 

 

4.1.3 Calinski Criterion  

Another popular method for this purpose is the Calinski Criterion (also known as the Pseudo F 

statistics).  Figure 6 shows the results of applying Calinski Criterion to our data.  The Calinski 

Criterion suggests that we should also use three clusters. 

[Figure 6 here] 

 

4.1.4 Majority Rule 

Third, we applied 26 other indices on the same problem and use the majority rule to select the 

number of clusters.  We consider up to ten clusters as the possible number of clusters that we 

could group into.  As shown in Figure 7, the Y-axis means the frequency that a number is 

selected as the best number of clusters chosen by the indices, and the X-axis is the possible best 

number of clusters.  Eleven out of the 26 indices selected three as the best number of clusters.  

Therefore, according to the majority rule, we will assume three is the number of clusters we 

should use in the K-means clustering. 

[Figure 7 here] 
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4.1.5 Separation Examination 

We examine if the three clusters generated by K-means clustering provide reasonable separation 

for the data.  We perform K means clustering, assigning three as the number of clusters, and 

setting the seed to 20 to ensure reproducibility.   

[Table 2 about here] 

 The results of the K-means clustering are summarized in Table 2.  As we can see, the 

median values for Group 3 in all five rounds are equal to zero, meaning that group 3 is the group 

that tend to behave in accordance with the theoretical prediction.  Group 1 and Group 2 have 

median values that are lower and higher than the target pollution, respectively.  This means that 

Group 1 is the group that tend to generate less pollution than theoretically predicted and Group 2 

is the group that tend to generate more pollution than theoretically predicted.  We do not see 

obvious skewness or scarcity of any groups and the magnitude of the separation seems 

reasonable.  Next, we assign agents in the ABM into behavior groups using a multinomial logit 

model. 

 

4.1.6 Mixed-effects Multinomial Logit model to assign group probabilities 

Based on cluster analysis, agents’ behavior could be clustered into three categories.  Cluster 3 

corresponds to agents that tend to agree with theoretical predictions, and cluster 1 and 2 

correspond to agents that tend to under and over pollute, respectively.  In this part, we use a 

mixed effects multinomial logit model to estimate the cluster distributions among agents 

conditioning on the policy, heterogeneity and information treatments. 

 The multinomial logit model could be formulated as follows: 



17 
 

log (
𝑃𝑟(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 1)

𝑃𝑟(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 3)
)| (𝑃𝑜𝑙𝑖𝑐𝑦 = 𝑗)

= 𝑓(𝑢1,𝑖 , 𝐻𝑒𝑡𝑒𝑟𝑜𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠, 𝐼𝑛𝑓𝑜𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠, 𝐻𝑒𝑡𝑒𝑟𝑜𝐼𝑛𝑓𝑜_𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠)

= 𝑋𝑖𝐵1𝑖 

 

log (
𝑃𝑟(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 2)

𝑃𝑟(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 3)
)| (𝑃𝑜𝑙𝑖𝑐𝑦 = 𝑗)

= 𝑓(𝑢2,𝑖 , 𝐻𝑒𝑡𝑒𝑟𝑜𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠, 𝐼𝑛𝑓𝑜𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠, 𝐻𝑒𝑡𝑒𝑟𝑜𝐼𝑛𝑓𝑜_𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠)

= 𝑋𝑖𝐵2𝑖 

where 𝑢1,𝑖 , 𝑢2,𝑖 are the random effects on the intercept and are assumed to follow a normal 

distribution.  J equals 1 or 0 and denotes whether the policy treatment is in place or not, 

respectively. 

Therefore, the predicted probabilities for the three clusters could be calculated as: 

Pr(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 = 1) =  
exp(𝑋𝑖𝐵1𝑖)

1 + exp(𝑋𝑖𝐵1𝑖) + exp(𝑋𝑖𝐵2𝑖)
 

Pr(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 = 2) =  
exp(𝑋𝑖𝐵2𝑖)

1 + exp(𝑋𝑖𝐵1𝑖) + exp(𝑋𝑖𝐵2𝑖)
 

Pr(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 = 3) =  
1

1 + exp(𝑋𝑖𝐵1𝑖) + exp(𝑋𝑖𝐵2𝑖)
 

 The results of the mixed effects multinomial logit model for both policy and no policy 

treatments are presented in Table 3.   

[Table 3 here] 

 In the no policy treatments, it is always in the agents’ best interest to produce at the 

maximum and not adopt the technology, therefore, the theoretical optimal strategy is the upper 

bound of the pollution level.  As a result, only two clusters exist in the no policy treatments, as 
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reflected by having one intercept value in Table 3.  Based on the above regressions, we calculate 

the cluster probabilities for each of the treatment cases to initialize the model. 

 

4.2 Modeling agent production and adoption behavior. 

For production decisions, we calculate the percentage deviations from the target production 

decisions, taking into account the size of the farm.  The metric is defined as: 

𝑃𝑒𝑟𝑃𝑟𝑜𝑑𝐷𝑖𝑓𝑓 =
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛−𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑟𝑜𝑑

𝑆𝑖𝑧𝑒
 . 

 In this case, we run a random-effects OLS model for each policy and information 

segment of data with standard errors clustered at the individual level.   

[Table 4 here] 

For adoption decisions, we calculate the probability that an agent deviates from its target 

adoption decision, which means the probability that an agent changes its adoption decision away 

from the theoretical prediction.  The metric is defined as the absolute difference of the actual 

adoption decision and the target adoption decision: 

𝐴𝑑𝑜𝑝𝑡𝐶ℎ𝑎𝑛𝑔𝑒 = |𝐴𝑐𝑡𝑢𝑎𝑙𝐴𝑑𝑜𝑝𝑡 − 𝑇𝑎𝑟𝑔𝑒𝑡𝐴𝑑𝑜𝑝𝑡| 

 Since the variable AdoptChange is binary, we run a random effects logit model for each 

policy and information treatment segments with individual clustered standard errors.  The result 

of the model is shown below: 

[Table 5 here] 

Based on the above regressions, we parameterize the agent’s actual production and 

adoption decisions relative to their Nash optimal strategy levels.     

 

5. Calibration 
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5.1 Prices 

Agents are assumed to produce an agricultural good (corn) and act as price-takers. Given the 

constant fluctuation of corn prices in the US, we conduct an OLS regression for the mean corn 

price from 1996 to 2016 on logarithm of year to capture the general price trend, and use a 

triangular distribution with maximum and minimum defined by the predicted mean and standard 

deviation of the prices to reflect the fluctuation. 

 

5.2 Yield 

In order to determine how much agricultural product (corn) is produced by each agent, we 

calculate the average yield of each unit of land. Similarly, we conduct an OLS regression for 

mean corn yield from 1996 to 2016 on logarithm of year to capture the general trend in corn 

production, and use a triangular distribution to reflect the fluctuation, with maximum and 

minimum defined by the standard deviation of the average yield. 

 

5.3 Pollution 

Following Zia et al. (2016a), we provide an estimate for the average Phosphorus leakage of corn 

fields based on the maximum and minimum Phosphorus loss estimates.  During each simulation, 

the modeler has the option to modify the mean and standard deviation of average Phosphorus 

leakage.  However, this value affects all simulation cases equally and therefore does not 

influence any relative comparison conclusions we draw.  
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6. Simulation Results 

We present the results of the simulation experiment, and discuss the sensitivity of the results. 

 

6.1 The Effect of Information Treatments 

We compare how different information treatments would affect the performance of the ambient 

based policy.  Both location and size heterogeneity are included in this simulation.  In Figure 8, 

the red line indicates the target level of pollution, and the blue line indicates the experiment 

simulation results.  From left to right, the three subfigures indicate the results for the no 

information case, individual level information case, and group level information case.  As shown 

in Figure 8, a gap exists between the simulated pollution level (blue line) and the target pollution 

level (red line) in the no information case; however, the gap is much smaller in either of the 

information treatments.  This suggests that under this simulation scenario, both information 

treatments decrease the deviation between the target pollution level and the simulated level, 

which indicates that the effect of policy is stronger when ambient based policy is coupled with 

information ‘nudges’. 

[Figure 8 here] 
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6.2 Comparing Individual Decisions 

In this section, we break up pollution by production decisions, adoption decisions and size of the 

farms. We look at each information treatment separately. 

 

6.2.1 No Information 

Recall that under no information baseline, the aggregate simulated pollution level is mostly over 

the target level, but the deviation does not appear to be large.  However, when we break up 

pollution into production and adoption decisions by farm size, we observe huge deviations in 

these decisions (Figure 9).  The small farms are significantly over adopting the technology (blue 

lines), and the large farms are widely under adopting, even though it is not in their best interest to 

do so (as depicted by the blue lines).  Similarly, the small farms are also over producing and 

large farms are under producing. 

[Figure 9 here] 

 

6.2.2 Individual Level Information 

When we provide participants with individual level information on what people like them have 

done in the past, we observe that the deviations from participants' behavior to the target levels 

are much smaller (Figure 10).  This clearly demonstrates that the individual level information 

induces participants to make better decisions, and improves policy efficiency. 

[Figure 10 here] 

 

6.2.3 Group Level Information 
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When participants are informed with group level information on average adoption and 

production decisions in their group in the last round, we find that this information helps 

participants make better decisions than the no information baseline, but the policy efficiency is 

lower compared to individual level information scenario (Figure 11).  Furthermore, small farms 

tend to over adopt and over produce, and the large farms tend to under adopt and under produce. 

However, compared to the target levels, the deviations between the target and the simulated 

results are smaller compared to the no information scenario, but larger than when people were 

given individual level information.  Therefore, group level information helps the policy 

performance and efficiency on an aggregate level, but the policy efficiency is lower than if 

people were given individual level information. 

 

6.2.4 Possible Explanations 

Finally, we want to provide some discussion of the potential reasons for the patterns that were 

demonstrated in the simulation results.  Under the no information treatment, the adoption of the 

technology is largely negatively related to the size of the farm.  A possible explanation for this 

observation is that since the cost of adopting the technology is proportionally related to the size 

of the farm, participants may follow some heuristic decision rules that attribute significant 

weight to the cost of adopting in the processes.  This clearly demonstrates that as opposed to 

always following profit maximizing decision rules, human behavior is often limited in their 

calculating ability and may be affected by various cognitive reasons and therefore demonstrate 

bounded rationality in terms of forming some rather heuristic decision rules.  Furthermore, both 

information treatments seem to provide anchors for the participants.  Knowing what people like 

them have done in the past and what others in their group have done provide people with a 
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reference point in their decision process.  Since individual level information provides people 

with tailored information, it helps people make better decisions compared to the myopic baseline 

case.  Under the group level information where a group average is provided, we can observe that 

the absolute adoption and production decisions for farms with different sizes tend to be very 

close.  This suggests that people might be anchored to the group level averages, or peer actions, 

even though it might not be in their best interest to do so. 

 

7. Sensitivity Analysis 

In this section, we discuss how our results would be affected by uncertain parameters in our 

ABM.  Ideally, the result of an ABM should come from complex agent interactions and 

adaptions in a concise model rather than from complex assumptions about individual behavior 

and free parameters (Axelrod, 1997).  Most of the parameters that influence the observed results 

in the ABM are calibrated and validated based on experimental data.  Therefore, the uncertainty 

only results from realization of the randomness in each simulation experiment, which is 

stochastic in nature and should not generate any systematic biases.  Meanwhile, if an uncertain 

variable affects each scenario of the simulation in an equal magnitude, the relative comparisons 

between the scenarios will not be affected.  Therefore, one uncertain parameter that would 

possibly affect the result is how many farms the participants consider part of their group.  This 

parameter affects the grouping structure and the group level information that is shown to the 

participants.  In our baseline scenario presented before, we assume five people are considered to 

be in one group.  We increase this parameter to ten, fifteen and twenty in this part and the result 

is shown in Figure 12. 

[Figure 12 here] 
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As shown in Figure 12, as the number of people that the participants consider themselves 

to be in the same group with increase, the deviation from the target pollution level and the 

simulated pollution level is not largely affected under individual level information treatment, but 

increases under the group level information treatment.  This suggests that individual level 

information not only generates highest policy efficiency, but also is more robust to participant 

perceptions on their group size. 

 

8. Conclusions and Discussions 

Our study is one of the first that integrates economic experiments with agent based modeling in a 

nonpoint source pollution setting.  The ABM extends and scales up the findings from the 

economic experiment by providing a spatially explicit simulation environment based on an actual 

watershed.  Instead of assuming full rationality, the economic experiment calibrates and validates 

the ABM by defining human-based bounded rational decision rules for the agents.  We apply a 

modification of a classic game theoretical model from the environmental economics literature to 

the ABM and the experiment as the core underlying model in both scenarios.  We define the 

target level (fully rational theoretical level) by solving for unique dominant Nash strategy.  Using 

experimental data, we first identify the number of behavioral groups using exploratory cluster 

analysis and then group agents into the three identified groups by multinomial logistic model; 

second, we define agent decision rules by estimating adoption and production deviations from 

the target levels based on the information treatment, type, size and location of each agent.   

The result of our simulation experiment demonstrates that both information ‘nudges’ help 

the performance of the ambient-based policy.  Individual level information induces higher policy 

efficiency compared to group level information, where the individual decisions tend to be 
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anchored to the group averages, even though it may not be in their best interest.  Our results 

show in a spatially explicit watershed setting that ambient-based policies, coupled with 

information ‘nudges’ to provide guidance to people’s behavior, have the ability to induce group 

level compliance, and the policy efficiency is higher when individual level information is being 

provided.  Therefore, it is important to use informational ‘nudges’ to help people make better 

decisions, especially under complex heterogeneous scenarios. 

 There are a number of limitations and directions of future work based on our research.  

First, a more complicated hydrological model may be developed and incorporated in the ABM 

and the experiment.  Examples of such models include the WWACShed model by Tesfation 

(2017) and the SWAT model used in Ng et al., (2011).  However, if one attempts to also include 

bounded rationality in the agent decision processes and use economic experiments to capture 

these irrationalities, it is crucial to ensure that the conclusions from the experiment could be 

safely carried over to the ABM.  In our experiment, this link was built by adopting the same 

underlying model and therefore the same incentives around the dominant Nash strategies.  If a 

more complicated model is in place, it would be hard to solve for a perfect rational utility 

maximization prediction, and therefore would be difficult to have a baseline to compare with 

actual human behavior.  Additionally, the more complicated a model is, the more information 

burden is introduced to the participants and the harder for the participants to generate informed 

decisions.  

Second, another extension of this research is to use farmer sample instead of a sample 

from university students in the experiment, aiming to increase externality validity of the 

experiment.  The majority of research comparing samples from students and professionals 

generally find the two samples demonstrate similar responses in both agricultural (e.g., 
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Cummings, Holt, and Laury, 2004; Messer et al. 2008; Fooks et al. 2016) and non-agricultural 

(Vossler et al., 2009) contexts, it may still be a valid extension since the decision process of 

farmers is likely different from that of students.  However, one also needs to note that the 

farmers may treat the experiment as a pre-policy evaluation and therefore behave strategically in 

hopes to potentially influence policy makers (Suter and Vossler, 2013). 

 There has been very few articles in the literature trying to integrate experiments and 

agent-based modeling even though the integration would benefit both fields.  This could 

probably largely be attributed to the interdisciplinary nature of the field, and the challenge to 

build a credible link between the two.  In our exploratory work, we hope to have established a 

framework on how these two fields could be combined and helped motivate future research in 

this area. 
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Figure 1. Murderkill River Watershed, Delaware, United States. Figure source: 

delawarewatersheds.org  
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Figure 2. 2012 Ag Census Farm Size Distribution of Kent County, Delaware, United States  
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Figure 3. Simulated Farm Size Distribution  
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Figure 4. ABM Model Process Flow. 
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Figure 5. Within Groups Sum of Squares Versus the Number of Clusters. 
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Figure 6. Calinski Criterion Results. 
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Figure 7.  Results of Using a Majority Rule with 26 Grouping Indices. 
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Figure 8. Effects of Information on Pollution Level. The red lines indicate target levels and the blue lines indicate experiment 

simulated results. 
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Panel a. Adoption Decisions 

 

 

Panel b. Production Decisions 

 

Figure 9. Adoption and Production Decisions by Size under No Information Treatment. The red lines indicate 

target levels and the blue lines indicate experiment simulated results. 
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Panel a. Adoption Decisions 

 

Panel b. Production Decisions 

 

Figure 10. Adoption and Production Decisions by Size under Individual Level Information. The red lines 

indicate target levels and the blue lines indicate experiment simulated results. 
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Panel a. Adoption Decisions 

 

Panel b.  Production Decisions 

 

Figure 11. Adoption and Production Decisions by Size under Group Level Information. The red lines 

indicate target levels and the blue lines indicate experiment simulated results. 
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N = 5 

 

N = 10 
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N = 15 

 

N = 20 

 

Figure 12. Sensitivity Test on Group Size. The red lines indicate target levels and the blue lines indicate experiment simulated results.
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Table 1. Summary of Fixed, Variable, and Uncertain Parameters 
Parameter Name Value Description 

Fixed Parameters  

Number_of_agents About 174, depending on each 

realization 

Number of agents in simulation 

Simulation_horizon 25 Length of each simulation in years 

Probability_of_farm_type Based on cluster analysis and 

multinomial logistic regression 

The probability that each agent will fall 

into each behavioral type 

Target_adoption_rate Depends on farm grouping 

results 

The target probability that each agent 

will adopt the technology 

Target_production_rate Depends on farm grouping 

results  

The target production rate for each 

agent 

Number_of_connections User defined Number of neighbors of each agent 

Factor_technology 0.5 Percent of pollution relative to original 

level if technology is adopted 

Variable Parameters 

Unit_corn_production User defined Weight of corn produced on one unit of 

farm size 

Unit_pollution_generated User defined Average phosphorus generated by one 

unit of production 

Uncertain Parameters 

Percent_prod_deviation Depends on experiment data Adjusts amount of corn produced per 

unit of land based on agent type 

Adoption_change_prob Depends on experiment data Adjusts amount of pollution per unit of 

production based on agent type 

Adopted Binary, value depends on each 

realization 

Indicates whether the farm adopted the 

technology 

Agent Type One of several types 

depending on the cluster 

analysis of the experiment data 

Different types of agents determine 

different production, pollution, and 

adoption probabilities 
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Table 2. Group Frequencies and Median Value by Grouping Variables and Groups. 

Cluster Frequency Diff1 Diff2 Diff3 Diff4 Diff5 

1 171 -7.500 -5.60 -6.00 -6.16 -5.44 

2 150 6.615 5.28 5.11 5.94 5.25 

3 1215 0.000 0.00 0.00 0.00 0.00 
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Table 3. Mixed Effects Multinomial Logit Model to Assign Agent Behavioral Types. 

 Policy No Policy 

 Coefficient Std. Err. Coefficient Std. Err. 

intercept 1 -2.0416*** 0.1119 -10.5036*** 1.3820 

intercept 2 -0.8200*** 0.1127   

hetero1 0.3183* 0.1691 0.5156 0.4567 

hetero2 0.5703*** 0.1562 0.5156 0.4567 

hetero3 0.4495*** 0.1688 -0.5666 0.4796 

info1 -1.2637*** 0.2073 0.8735 1.3800 

info2 -1.1185*** 0.2123 -1.3688 1.4154 

info1_hetero1 0.7143*** 0.2746 -1.5310*** 0.6499 

info1_hetero2 0.6048** 0.2647 -4.2738*** 0.8099 

info1_hetero3 1.2097*** 0.2745 -4.4023*** 0.9440 

info2_hetero1 0.3696 0.2631 0.1780 0.7027 

info2_hetero2 1.3090*** 0.2661 0.7511 0.6957 

info2_hetero3 1.4883*** 0.2566 2.8191*** 0.7137 

Number of 

Observations 
3840  3840  

Number of groups 192  192  

***, **, * denote significant as 1%, 5% and 10% level.  All standard errors are clustered as 

individual level. 
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Table 4. Deviations from Target Production Levels 

 With Policy Without Policy 

 No Info Info1 Info2 No Info Info1 Info2 

constant 
1.32*** 

(0.11) 

0.16  

(0.16) 

1.41*** 

(0.13) 

0.0015 

(0.051) 

-0.0039 

(0.015) 

-0.11 

(0.14) 

size 
-0.0095*** 

(0.00067) 

-0.00086 

(0.0031) 

-0.0089*** 

(0.00081) 

-0.00019 

(0.00016) 

-0.000073 

(0.000074) 

0.000083 

(0.00012) 

region 
-1.19*** 

(0.30) 

0.25  

(0.42) 

-1.41*** 

(0.30) 

0.032 

(0.15) 

0.023 

(0.038) 

-0.015 

(0.026) 

cluster1 
-0.20*** 

(0.040) 

-0.19*** 

(0.04) 

-0.13*** 

(0.038) 

-0.12*** 

(0.042) 

-0.068** 

(0.032) 

-0.057** 

(0.024) 

cluster2 
0.26*** 

(0.031) 

0.21*** 

(0.039) 

0.19*** 

(0.036) 
   

info1_adopt  
-0.21** 

(0.085) 
    

info1_prod  
-0.000028 

(0.0029) 
    

info2_adopt   
0.064 

(0.063) 
  

0.00040 

(0.013) 

info2_prod   
-0.0020* 

(0.0011) 
  

0.00098 

(0.0014) 

***, **, * denote significant as 1%, 5% and 10% level.  All standard errors are clustered as 

individual level. 
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Table 5. Deviations from Target Adoption Decisions 

 With Policy Without Policy 

 No Info Info1 Info2 No Info Info1 Info2 

constant 
6.76*** 

(2.17) 

5.69** 

(2.33) 

9.67 *** 

(2.50) 

-2.86 

(2.05) 

-5.17*** 

(1.09) 

-14.96 

(10.73) 

size 
-0.051*** 

(0.012) 

-0.018 

(0.042) 

-0.050*** 

(0.013) 

-.0096 

(0.012) 

-0.0041 

(0.011) 

-0.016 

(0.017) 

region 
-7.09 

(4.66) 

-18.09*** 

(6.73) 

-18.44*** 

(5.85) 

-6.90 

(5.96) 

3.48  

(3.35) 

11.01* 

(6.61) 

cluster1 
-0.39 

(0.44) 

0.63  

(0.57) 

-0.27 

(0.59) 

2.13** 

(0.91) 

3.48*** 

(0.54) 

3.79*** 

(0.71) 

cluster2 
0.74** 

(0.33) 

1.22*** 

(0.44) 

1.10*** 

(0.38) 
   

info1_adopt  
-2.29* 

(1.23) 
    

info1_prod  
0.013 

(0.040) 
    

info2_adopt   
-0.59 

(0.90) 
  

4.48** 

(2.07) 

info2_prod   
-0.0012 

(0.018) 
  

0.079 

(0.11) 

***, **, * denote significant as 1%, 5% and 10% level.  All standard errors are clustered as 

individual level. 
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Appendix A: Economic Experiment Instructions 

 

 

 

 

 

 

 

 

Thank you for participating! 

 

Please return the signed consent form to the administrator. 

 

Please read and follow the instructions carefully and do not 

communicate with others during the experiment. 
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INTRODUCTION 

 

This is an experiment about the economics of decision making. You will earn money during this 

experiment if you follow these instructions carefully and make informed decisions; otherwise, 

you may end up losing money. Any money earned during this experiment will initially be 

recorded as experimental dollars. At the end of this experiment, we will convert your 

experimental dollars into actual US dollars that will be handed to you as you leave. The more 

experimental dollars you earn the more actual US dollars you will receive. At the end of the 

experiment, your earnings will be converted at a rate of $1 US dollar for 50 experimental dollars. 

Please read these instructions carefully and do not communicate with any other participants 

during the experiment. 

 

General Instructions: Today’s experiment has several parts. Each part will have five rounds. 

Each round is independent, meaning that decisions during a round do not affect future rounds in 

any way. The only value that gets carried over across rounds is the cumulative amount of money 

you earn, which will be used to calculate your cash earnings at the end of the experiment. 

 

Your role: You own and operate a firm. You will make decisions that affect the amount of 

money your firm earns. This money will be called your Firm Profit. 

 

Groups: Throughout the experiment, you will be in a group of eight people, each will play the 

role of a firm. Think of your firm and the seven other firms as being located near a river. Groups 

are randomly reassigned after each part of the experiment and you will not know who is assigned 

to each group.  

 

Production and Production Income: Each business owner produces output that creates 

Production Income. Production income only depends on how much is produced. The more a 

firm produces, the more production income the firm will get. 

 

Pollution: Production also generates pollution that goes into the river. In general, the higher the 

output being produced, the more pollution is being generated. Some concentration of this 

pollution is harmless. However, if the concentration is too large, the pollution has negative 

effects to the environment. 

 

Total Pollution: This is measured by a sensor downstream and is the sum of pollution for 

everyone in the same group.Capacity: The firms may have a different production capacity, which 

is the maximum amount your firm can produce. Each firm’s capacity will be shown on the 

calculator in the corresponding part for that firm.  There are three types of capacities: Large 

firms with a capacity of 125; medium firms with a capacity of 100; small firms with a capacity of 

75. 

 

Technology: At the beginning of each round, the firms may choose to adopt a technology at a 

cost proportional to your firm capacity. When adopted, the technology will reduce the firm’s 

pollution to a certain percentage of the original level for that round. 
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Location: The firms may either be located in the same location or at different locations along a 

river. As shown in Figure 1, when the region is separated by lines, it means the region is being 

divided into Region 1 to Region 4. In this case, Region 1 is the most upstream and Region 4 is 

the most downstream. The further downstream your firm is the more pollution per unit of 

production will be recorded by the sensor.  As shown in Figure 2, when there are no lines 

separating the region, it means all of the firms are placed in the same region. The actual capacity 

and location of the firm that you operate will be shown on your computer screen.  

  
Figure 1. Different Locations Figure 2. Same Location 

 

Decisions: In each round, you will make two decisions: 

(1) Production Decision –     You will decide your firm’s production level, between 0 and 

your firm’s capacity. 

(2) Technology Decision –    You will choose whether to adopt a technology at a certain 

cost, labeled “Not Adopt” or “Adopt”.  

 

Pollution Table: To help you better understand the relationship of production, technology, 

location and pollution, you are given a Pollution Table that has pollution levels of a firm 

corresponding to different production decisions, technology decisions and location. Use this 

table to understand how your production would affect pollution based on your location and 

technology decision. 

 

Firm Profit: Your firm profit is calculated based on your production decision and technology 

decision and will be explained to you in further details in each part of the experiment.  

 

Decision Calculator: A Decision Calculator is provided to test different scenarios to see how the 

decisions of other firms in your group could affect Total Pollution and your Firm Profit. Follow 

the instructions on how to use this calculator provided on the next page. 

 

In summary: 

• In each part of the experiment, you will be given additional instructions and all 

calculations will be described. 

• Your earnings from the experiment depend on your cumulative firm profit. 

• Use the decision calculator to test out different scenarios and determine your own 

production and technology decision. 

• Choose your own production and technology decision and click “Confirm”. 
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• Your production income is affected by your production decision, technology decision, 

and firm capacity. 

• Your pollution depends on your production decision, technology decision and firm 

location. 

• A round of the experiment is complete when all eight players have made their production 

and technology decisions. 

• After each part, participants will be randomly reassigned to a new group.  
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HOW TO USE THE DECISION CALCULATOR AND MAKE DECISIONS 

 

In each round, you will be provided with a decision calculator like the one in the attached handout.  

 

The layout of all firms and their corresponding capacity in your group is shown in the calculator. 

 

Your firm is labeled “Your Firm” and marked with a black box. 

 

Step 1. On the left part of the page, assume what everyone in your group will be doing by choosing 

a production and technology decision for every firm. To choose a production decision, move the 

slider or type in the amount that you think other firms will be producing; to choose a technology 

decision, simply choose between the “Not Adopt” and “Adopt” options. Note that your firm is 

labeled in the black box and you do not have to choose technology decision for your firm. 

 

Step 2. On the top right part of the page, click “Calculate” and your pollution, total pollution and 

your profit of “Not adopt” and “Adopt” will be shown to you in the table right under the 

“Calculate” button. 

 

Keep in mind that the decisions you make in the decision calculator are for informational purposes 

only and other firms can make their own decisions regardless of what you choose for them.  

 

After you decide what your decision will be, make your actual decision in Step 3. 

 

Step 3. On the bottom right part of the page, choose your actual production decision with the slider, 

and pick your actual technology decision. When you are done, click “Confirm”.  Once you have 

clicked this button, the button will turn gray and it is no longer possible to change your decisions 

for that round. 

 

Results – While you are waiting for the other players to make their decisions, you can review the 

results of past rounds, which will be shown on your screen. After all eight players have clicked the 

Confirm button, the results of the current round will appear, including Your Pollution, the Total 

Pollution from all members of your group, your Production Income, and Your Firm Profit. 
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DECISION CALCULATOR 

 

The image below are examples of the interactive Decision Calculator that you will use on your computer. 
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Pollution Table 

This Pollution Table helps you to better understand how your firm’s production decision, 

technology decision and location affect your pollution. Use this table along with the Decision 

Calculator to help you make more informed decisions. 

How to read this table? 

1.  The first column (Production) indicates how much is being produced. 

2.  Find where your firm is located from the Decision Calculator. If every firm is in the same 

region, use the last two columns (marked as “Same Region”). 

3.  Your firm’s pollution for each level of production under “Not Adopt” and “Adopt” are listed 

in the columns corresponding to your region. 
 Your Firm Pollution 

Production Region 1 Region 2 Region 3 Region 4 Same Region 

 
Not 

Adopt 
Adopt 

Not 

Adopt 
Adopt 

Not 

Adopt 
Adopt 

Not 

Adopt 
Adopt 

Not 

Adopt 
Adopt 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 1.20 0.60 1.40 0.70 1.60 0.80 1.80 0.90 1.50 0.75 

10 2.40 1.20 2.80 1.40 3.20 1.60 3.60 1.80 3.00 1.50 

15 3.60 1.80 4.20 2.10 4.80 2.40 5.40 2.70 4.50 2.25 

20 4.80 2.40 5.60 2.80 6.40 3.20 7.20 3.60 6.00 3.00 

25 6.00 3.00 7.00 3.50 8.00 4.00 9.00 4.50 7.50 3.75 

30 7.20 3.60 8.40 4.20 9.60 4.80 10.80 5.40 9.00 4.50 

35 8.40 4.20 9.80 4.90 11.20 5.60 12.60 6.30 10.50 5.25 

40 9.60 4.80 11.20 5.60 12.80 6.40 14.40 7.20 12.00 6.00 

45 10.80 5.40 12.60 6.30 14.40 7.20 16.20 8.10 13.50 6.75 

50 12.00 6.00 14.00 7.00 16.00 8.00 18.00 9.00 15.00 7.50 

55 13.20 6.60 15.40 7.70 17.60 8.80 19.80 9.90 16.50 8.25 

60 14.40 7.20 16.80 8.40 19.20 9.60 21.60 10.80 18.00 9.00 

65 15.60 7.80 18.20 9.10 20.80 10.40 23.40 11.70 19.50 9.75 

70 16.80 8.40 19.60 9.80 22.40 11.20 25.20 12.60 21.00 10.50 

75 18.00 9.00 21.00 10.50 24.00 12.00 27.00 13.50 22.50 11.25 

80 19.20 9.60 22.40 11.20 25.60 12.80 28.80 14.40 24.00 12.00 

85 20.40 10.20 23.80 11.90 27.20 13.60 30.60 15.30 25.50 12.75 

90 21.60 10.80 25.20 12.60 28.80 14.40 32.40 16.20 27.00 13.50 

95 22.80 11.40 26.60 13.30 30.40 15.20 34.20 17.10 28.50 14.25 

100 24.00 12.00 28.00 14.00 32.00 16.00 36.00 18.00 30.00 15.00 

105 25.20 12.60 29.40 14.70 33.60 16.80 37.80 18.90 31.50 15.75 

110 26.40 13.20 30.80 15.40 35.20 17.60 39.60 19.80 33.00 16.50 

115 27.60 13.80 32.20 16.10 36.80 18.40 41.40 20.70 34.50 17.25 

120 28.80 14.40 33.60 16.80 38.40 19.20 43.20 21.60 36.00 18.00 

125 30.00 15.00 35.00 17.50 40.00 20.00 45.00 22.50 37.50 18.75 

For Example:  

1.  A firm in Region 1, producing 75 units. Firm Pollution for not adopt: 18; adopt: 9. 

2.  A firm in Region 4, producing 75 units. Firm Pollution for not adopt: 27, adopt: 13.5. 

3.  A firm in Same Region, producing 100 units. Firm Pollution for not adopt: 30; adopt: 15. 

  



 56 

  



 57 

ID# _________ 

 

UNDERSTANDING THE EXPERIMENT 

 

This short exercise is designed to help you understand how the experiment works. The profit you 

earn in this section does not affect your real earnings. 

 

Please use the decision calculator on the computer in front of you to figure out what your firm 

profit will be under the following scenarios: 

 

You will be guided through Scenario A, and you will complete scenario B by yourself. 

 

Scenario A:  

Please fill in your profit for the following hypothetical decisions. The steps listed below will 

guide you through scenario A. 
Everyone else You 

Technology Production Your Production Your Technology Your Profit 

Not Adopt 80 50 Not Adopt  

Not Adopt 80 50 Adopt  

 

Step 1: On the left part of the page, select “Not Adopt” for everyone else except your firm. 

Step 2: Use the slider or type in the boxes to change everyone else’s production to 80 units. 

Step 3: Still on the left part of the page, find the box that lists “Your Firm”, change the 

production decision to 50 units. 

Step 4: Click “Calculate”.  Your pollution, total pollution and your firm profit should be shown 

to you. 

Step 5: Find “Your Firm Profit” for “Not Adopt”, which should be “33.75” in this case.  Type in 

“33.75” in the first row under profit for scenario A. 

Step 6: Find “Your Firm Profit” for “Adopt”, which should be “25.55” in this case.  Type in 

“25.55” in the second row under profit for scenario A. 

Step 7: Click “Check answer for scenario A” when you are done.  If the program asks you to try 

again, please check answers for the highlighted parts. 

 

 

  



 58 

Now please complete scenario B on your own, please raise your hand if you have any questions. 

 

Scenario B: 

Please fill in your profit for the following hypothetical decisions on the computer screen.  
Everyone else 

Technology 

Every else 

Production 

Your 

Production 

Your 

Technology 

Your Profit 

Not Adopt 80 50 Not Adopt  

Not Adopt 80 50 Adopt  

Not Adopt 80 80 Not Adopt  

Not Adopt 80 80 Adopt  

Everyone else You 

Technology Production Your Production Your 

Technology 

Your Profit 

Adopt 100 100 Not Adopt  

Adopt 100 100 Adopt  

 

You may refer to instructions for Scenario A to help you complete Scenario B. 

 

Input your firm profit for Scenario B on the computer program and check if it is correct by 

clicking “check answers”.  When the program asks you to “try again”, it means your answer is 

not correct and will be highlighted.  In that case, please use the calculator to recalculate the 

answer.   

 

When you get both scenarios correct, you may click the continue button to move on to the next 

part. 
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INSTRUCTIONS FOR PRACTICE 

 

You will now play five practice rounds to learn how the experiment works. The outcomes of 

these rounds will not affect your cash earnings. 

 

In each round of this part, you will make your Production Decision and your Technology 

Decision.  Use the Decision Calculator to see how your decision and others’ decisions affect 

your earnings.  

 

In this practice part, pollution does not affect firm profits.  The more you produce, the more your 

firm profit will be. 

 

After everyone makes their decisions, you will see the results screen that will display your  

Firm Profit and Pollution. In this part, your Firm Profit will be calculated as follows: 

  

Firm Profit = Production Income. 

 

 

 

 

 

 

 

 

 

 

  



 60 

  



 61 

MOVING on to PART 1 through PART 8 

 

After you have finished the practice rounds, you will participate in Part 1 through Part 8 of the 

experiment. In these parts, the experimental dollars you earn from your firm’s profits in each 

round will affect your cash earnings.  

 

In each round of Part 1 through Part 8, you will make a Production Decision and a  

Technology Decision. Groups will be randomly reassigned after each part. 
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INSTRUCTIONS FOR PART 1-4 

 

1. In these parts, your Firm Profit only depends on your production and technology decisions; the 

production and pollution generated by other firms do not affect your Firm Profit.  

 

2. Note that the location and capacity of firms may or may not be different. The capacity of each 

firm is shown on the calculator. When firms have different locations, the region will be divided 

in 4 sub-regions by solid lines; when firms have the same location, the region will not be 

divided. Refer to the Pollution Table to see how location influences pollution. We will indicate 

each scenario at the beginning of each part. 

 

3. Use the Decision Calculator to make more informed decisions. Although the results are for 

informational purposes only, the location and capacity of each firm is the same as the real 

decisions. 

 

4. To make your actual decision for this round, choose a Production Decision and a Technology 

Decision. Once done, click “Confirm”.  

 

5. In these parts, pollution does not affect firm profits.  The more you produce, the more your 

firm profit will be. 

 

In these parts: Firm Profit = Production Income 
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INSTRUCTIONS FOR PART 5-8 

 

In these parts, an environmental regulator has set a target total pollution level.  There will be 

a tax or subsidy based on the total pollution of your firm compared with the target level.  The 

target will change between parts and the specific value will be shown to you. 

 

Your profit will be adjusted by a tax or subsidy (from here on referred to as tax/subsidy). This 

tax/subsidy can be either negative (a tax) or positive (a subsidy) and is determined based on how 

much pollution is in the river relative to the Target determined by the regulator. The pollution 

level in the river is the aggregation of pollution from all firms. There will be a subsidy for zero 

concentration, but the amount of subsidy gets smaller as concentration increases. If the measured 

concentration level is exactly the same as the target, there will be neither a tax nor a subsidy. As 

concentration increases beyond the target, the tax gets larger.  

 

Pollution in one round does not affect pollution in other rounds. However, at the end of the 

experiment, your earnings will be the sum of the profits you earned from all of the rounds. 

 

In each round, you will make a Production Decision and a Technology Decision. Total Pollution 

in your group affects the profits of firms in your group. 

 

The Tax Payment for each firm in your group is calculated as follows: 

Total Pollution ≤ Target  Subsidy Received = Target – Total Pollution 

Total Pollution > Target Tax Payment = Total Pollution – Target 

 

For example, if the target is set at 60, then  

• If the Total Pollution in your group is less than or equal to 60, each firm in your group 

receives 1 experimental dollar in subsidy for every unit of total pollution under 60 units. 

• If the Total Pollution in your group is greater than 60, each firm pays 1 experimental dollar 

in taxes for every unit of total pollution above 60 units. 

 

The amount of the Tax/Subsidy Payment is determined by decisions of everyone in your group. 

Your Firm Profit in these parts will be calculated as: 

 

If Total Pollution ≤ Target, 

Firm Profit = Production Income + Subsidy Payment  

 

If Total Pollution > Target, 

Firm Profit = Production Income – Tax Payment 

 

Use the Decision Calculator to help you make more informed decisions, otherwise, you may lose 

money.  Note that in these parts, it is not true that the more you produce, the more profit you will 

get. 
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