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ABSTRACT

Mathematical models based on ordinary differential equations (ODE) have had

significant impact on understanding HIV disease dynamics and optimizing patient

treatment. A model that characterizes the essential disease dynamics can be used

for prediction only if the model parameters are identifiable from clinical data. Most

previous studies involved in parameter identification for HIV have used sparse data

from the decay phase following the introduction of therapy. In this thesis, model pa-

rameters are identified from frequently sampled viral-load data taken from ten patients

enrolled in the previously published AutoVac HAART interruption study, providing be-

tween 69 and 114 viral load measurements from 3-5 phases of viral decay and rebound

for each patient. This dataset is considerablely larger than those used in previously

published parameter estimation studies. Furthermore, the measurements come from

two separate experimental conditions, which allows for the direct estimation of drug

efficacy and reservoir contribution rates, two parameters that cannot be identified from

decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the

model parameter values, with initial estimates obtained using nonlinear least-squares

methods. The posterior distributions of the parameter estimates are reported and

compared for all patients.
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Chapter 1

INTRODUCTION

1.1 HIV and Its Treatment

Human Immunodeficiency Virus (HIV) is a small, ∼ 10 kBp retrovirus that

infects human CD4+ T cells and macrophages. Chronic, untreated infection by HIV

results in a slow decline in functional CD4+ T cell counts. The depletion of these cells

eventually leave them unable to support effective immune responses, leaving the host

open to infection by any number of secondary infections. This state of severe induced

immunodeficiency is termed Acquired Immunodeficiency Syndrome (AIDS).

By the most recent estimates of the Centers for Disease Control, there are

approximately 1.1 million adults and adolescents in the United States infected with

HIV, with approximately 56,000 new infections per year [10].

Modern HIV therapy uses a cocktail of drugs known as HAART (highly ac-

tive antiretroviral therapy) to durably suppress viral replication. The components

of HAART fall into five distinct classes of drugs, each with unique action and non-

overlapping resistance mutation profiles.

The first class of drug is the Nucleoside/Nucleotide Analogue Reverse-Transcriptase

Inhibitors (NRTIs). These drugs mimic amino acids or their precursors and are prefer-

entially taken up by the viral enzyme reverse transcriptase, resulting in nonfunctional

transcripts. There are seven drugs of this class currently approved for HIV treatment.

Resistance mutations against this class tend to carry mixed levels of fitness cost, and

there is moderate incidence of cross-resistance [53]. Multiple accumulated mutations

are necessary to confer broad-class resistance against the NRTIs.

The second class of drugs are the non-Nucleoside Reverse Transcriptase In-

hibitors (NNRTIs). These drugs bind to the reverse transcriptase (RT) enzyme in a
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manner which allosterically deactivates the RT active site. There are four drugs in

this class approved for HIV treatment. Resistance mutations against this class tend to

carry very little fitness cost, and a single base-pair substitution mutation is capable of

conferring clinically significant resistance against the whole NNRTI class [14].

The third class of drugs are the Protease Inhibitors (PIs). HIV viral proteins

are unique in that they are first transcribed in a large, nonfunctional superprotein

that is cleaved into functional units by the viral enzyme protease. Protease Inhibitors

interfere with the action of this enzyme, resulting in the production of noninfectious

virus particles. There are nine drugs in this class currently approved for HIV treatment.

Resistance mutations against this class carry mixed levels of fitness cost [31], [30];

however, the drug resistance conferred against this class is rarely total [14]. Multiple-

site mutations are necessary for broad-class resistance.

The fourth class of drugs are the newly introduced Integrase Inhibitors (IIs).

These drugs inhibit the activity of integrase, an enzyme which facilitates the integration

of HIV DNA into the host genome. Only one drug in this class has been approved for

use in HIV therapy. This drug is only used as rescue therapy for patients who have

developed significant resistance to all available drugs in the first three classes [14].

The fifth class of drugs are the Fusion Inhibitors (FIs). These drugs interfere

with the fusion of the virus particle and the host cell by binding surface proteins on

the host cell. Two drugs are available in this class. Both are expensive, and one is

available through injection only. Both are used only as rescue therapy for patients with

significant resistant to all available drugs in the first three classes [14].

The development of multi-drug regimens for HIV therapy has resulted in HIV

infection becoming a chronic, manageable disease in first world countries [12] . The

widespread use of three-drug regimens, usually consisting of two nucleoside/nucleotide

analog reverse-transcriptase inhibitors (NRTIs) and either a non-nucleotide/nucleoside

analog reverse-transcriptase inhibitor (NNRTI) or a boosted protease inhibitor (PI)

usually provides adequate viral suppression and mutational barrier to maintain viral

load at or below the measurement threshold indefinitely. The necessity of a three-drug
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regimen, where each drug in the regimen targets separate viral epitopes, is due to

the extremely high replication and mutation rates characteristic of HIV infection [16].

These make the evolution of viral strains resistant to a single drug inevitable. Three

drugs, however, present a mutational barrier high enough to make such an evolutionary

occurrence unlikely [41,42]. While these three- drug regimens, known as highly active

antiretroviral therapy, or HAART, are highly effective at suppressing the virus in the

long term, some patients nevertheless experience viral load rebound, driven by the

emergence of a viral mutant resistant to all three components of their HAART regimen.

1.2 Mathematical Model for HIV Dynamics

Beginning in the 1990’s, researchers have analyzed the dynamics of human im-

munodeficiency virus (HIV) using nonlinear ordinary differential equation (ODE) mod-

els [2, 15, 33, 38, 54]. Using various mathematical models, they sought to simulate the

dynamics of the virus or to help design a treatment. Many of these studies have

attempted to identify model parameters from patient data, but the sparsity of mea-

surements resulted in very large confidence intervals, especially in those cases in which

only the viral load is measured. Furthermore, the experiment data that they used only

included the period of viral decay following the introduction of therapy. Identification

of the HIV model parameters under these conditions require an assumption that the

drug efficacy is known, which in turn affect the estimates of the remaining parameters.

There are two problems for model identification without full-state information.

The first is that the nonlinear ordinary differential equations used to model the dy-

namics of HIV virus have no closed-form solutions and the second is that the amount

of data normally available is sparse. Typically, a patient during therapy routinely has

his viral load tested every every 3 or 4 months, a rate too slow to accurately capture

the dynamic characteristics.

In this thesis, the data used to identify model parameters are from the AutoVac

study at IrsiCaixa HIV research foundation in Barcelona [46]. In the AutoVac study,

12 patients underwent a series of about 30-day treatment interruptions, followed by
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resumption of suppressive therapy, and viral load measurements were taken at 3-day

intervals during the interruption. This resulted in between 69 and 114 viral load

measurements per patient, with between 38 and 77 data points per patient above

the limit of detection. Therefore, data gathered from this particular experiment are

sufficiently rich for model identification. Patients enrolled in the AutoVac study had

all maintained undetectable viral loads on therapy for at least two years prior to the

study, and all patients had baseline CD4+ T-Cell counts over 700. Patient nine and

twelve both had interruptions without viral load rebound, and were excluded from this

study due to insufficient usable data.

For HIV models, Stafford et al [52] have studied the identifiability of a 3 state

model. Xia and Moog [58] analyzed the theoretical identifiability of a 4 state model

and determined the minimal number of state measurements needed for estimating all

model parameters. Frequently, only viral load data are available and in this case, not

all parameters can be identified independently [52] [56]. Recently, Miao et al [32] also

investigated some identifiability issues for viral dynamics.

For identifying the parameters of a viral dynamics model, two major methods

are commonly used: nonlinear least squares [21] and Bayesian estimation [17, 18, 20,

39, 55]. In this thesis, we employ a Bayesian Markov-Chain Monte Carlo technique

as in [39, 55], with nonlinear least-squares used to generate initial conditions for the

MCMC technique. The primary difference between this work and previous works is

the quality of the data used for estimation. The data used in [39] consists of 10

measurements from 12 patients taken at 5 time points. The data used in [55] consists

of seven measurements from 42 patients taken at seven time points. The data used

in [20] consists of 9 viral load measurements from 42 patients taken at nine time points,

plus a single baseline measurement of phenotypic drug susceptibility and survey data

on patient adherence. The data used in [28] used 18 measurements of viral load from

18 time points. All four of these studies only included data from a single virus decay

phase following treatment initiation. As a result of the sparse data, these previous

studies had to make a number of simplifying assumptions about parameter values in
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order to preserve identifiability. By contrast, the AutoVac patient study provides us

with between 69 and 114 viral load measurements from 10 patients from between 3

to 5 treatment interruptions cycles per patient. The high quality of the data used

in this study allows reliable estimation of parameter values without resorting to the

simplifying assumptions used in previous studies.

We consider the following mathematical model characterizing the viral dynamics

for a patient:

ẋ(t) = λ− dx(t)− β(1− ηu)x(t)v(t)

ẏ(t) = β(1− ηu)x(t)v(t)− ay(t) + λy(t)

v̇(t) = γy(t)− ωv(t)

(1.1)

There are three states: x, the concentration of target CD4+ T cells; y, the concentra-

tion of actively infected CD4+ T cells; v, the viral load. λ is the proliferation rate and

d is the death rate of target CD4+ T cells; β is the infection rate; η is the drug efficacy;

a is the death rate of actively infected cells; λy(t) is the contribution of the reservoir to

actively infected CD4+ T cells; γ is the rate of free virus production by infected cells; ω

is the clearance rate for the free virus. The drug application u is 0 during interruptions

and 1 during treatment. This is a variation of a model first proposed in [36], with the

addition of the λy(t) term describing the additional contribution of infected cells from

all viral reservoir processes. This model is essentially the same as the model identified

against patient data in the previous studies [17,18,20,21,55].

Highly active antiretroviral therapy (HAART) has proven effective to reduce

the active viral load [13,37] and is standard care for HIV patients. However, it cannot

eradicate the virus completely [6, 35]. Although scientists suspect that the existence

of long-term latent reservoirs in patients is the main reason for viral persistence [5, 9],

there is little quantitative understanding of their contribution, mainly because of the

difficulty measuring the virus reservoir directly. Some HIV investigators have proposed

mathematical models to describe the dynamics of long-term latent reservoirs [24,44,45].

Little research has been done to estimate the parameters of these models quantitatively

based on clinical data. In this study, the total contribution of the reservoir processes
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to the actively infected CD4+T cells is estimated from standard viral-load time-series

data. We analyze the identifiability for each parameter in Model 1.1 using differential

algebra tools. The implementation of Bayesian estimation method is presented, and the

results of the Bayesian estimation method are reported. This work has been published

in PloS One and a shorter version of this work can be found in [26].
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Chapter 2

METHODS

2.1 Experimental Methods

The previously published clinical study [46] was carried out in accordance with

a human subjects protocol approved by the institutional ethics review committee at

the University Hospital Germans Trias i Pujol in Barcelona, Spain. Written informed

consent was obtained from all study participants. De-identified patient data was shared

in accordance with a protocol approved by the University of Delaware Institutional

Review Board.

This research described here uses data from a previously published study. The

measurements which are the focus of this work have been previously described in [46].

Briefly, a randomized prospective Structured Treatment Interruption study enrolled

26 HIV-1 positive asymptomatic adults with no detectable virus for at least two years

prior to entering the study (limit of detection 50 virions per ml). Fourteen were ran-

domized to a control group, continuing their previous HAART regimens. Twelve were

randomized to the experimental group, and underwent between three and five cycles

of interrupted antiviral therapy, remaining off therapy until two consecutive viral load

measurements above 3000 virions/ mL were reached, or for a maximum of 30 days,

then re-initiating the original HAART regimen for 90 days before the next interrup-

tion cycle began. HIV-1 RNA PCR quantitative analysis was performed on samples

collected three times weekly following treatment interruption, and then weekly for the

two months following re-initiation of treatment.
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2.2 Modeling Persistence of Latent Reservoirs

Although highly active antiretroviral therapy (HAART) efficiently suppress viral

load under undetectable level, current regimens can not eradicate the virus completely

[7, 11, 34, 45, 51]. One possible reason is the persistent replication of HIV at a very

low level, even under HAART conditions [1, 45, 49]. Another possible reason is the

existence of stable reservoirs of latently infected cells [3, 4, 45]. These two possibilities

are not mutually exclusive, and it is likely that a combination of persistent viremia

and reservoir activation combine to maintain the reservoirs [45].

Rong and Perelson proposed models to describe the dynamics of the latent

reservoir [45]. However, in order to make the model identifiable from viral-load data,

the model must be simplified. Siliciano et al. [50] found that the average half-life of

the latent reservoir in resting CD4+T cells is 44 months, which means it is extremely

stable. There is no strong evidence that the activation rate of the reservoir is constant,

however, and a combination of various factors may contribute to the maintenance of

a residual virus load during effective antiviral suppression. Therefore, in Equation 1.1

λy(t) represents the total average contribution of reservoir dynamics to the active

infected cell compartment y during the treatment period. The time between ceasing

antiviral therapy and the viral load reaching measurable levels (the rebound time) is

very sensitive to the value of λy(t), and consequently the goodness of fit for the entire

model is also very sensitive to λy. Surprisingly, a single constant value for λy provided

an excellent fit for all ten patients for all interruption cycles, implying that the average

contribution of reservoir dynamics to the active infected cell compartment is relatively

constant between several interruption cycles.

2.3 Identifiability Analysis

Equation 1.1 is a special case of the following general nonlinear model:

Ẋ(P, t) = F (X(P, t), P ) (2.1)
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where, in our case, X(P, t) is the state vector [x, y, v]′ in our study, P is the parameter

vector

[λ, d, β, u, a, λy, γ, ω]′, F is the function which describes system dynamics.

We adapt the concepts of identifiability from [47] [22].

Definition 1. Equation 2.1 is said to be globally identifiable from the given

states if the equation F (X(P, t), P ) = F (X(P ∗, t), P ∗) has only one solution P = P ∗.

Definition 2. Equation 2.1 is said to be locally identifiable from the given states

if in some open neighborhood, Up∗ , around the true parameter vector, the equation

F (X(P, t), P ) = F (X(P ∗, t), P ∗) has only one solution P = P ∗ and P ∗ ∈ Up∗ .

The identifiability of HIV dynamic models has been analyzed previously [32] [57];

however, these previous works assumed more than one state could be measured. Here,

only the viral load data are assumed to be available. Differential algebra is used to

analyze the identifiability issue of Model 1.1. Details of differential algebra are found

in [43] [48] [47]. The steps in this analysis are as follows:

i) For Equation 1.1, in order to generate the differential polynomial, we choose

the following order relation: v < v̇ < v̈ <
...
v .

ii) Based on the above order, the normalized characteristic polynomial of v is calculated:

A = v
...
v − v̇v̈ + β(1− ηu)(v)2v̈ + (a+ d+ ω)vv̈ − (a+ ω)(v̇)2+

(aβ(1− ηu) + βω(1− ηu))(v)2v̇ + (ad+ dω)vv̇ + λyv̇+

aβω(1− ηu)(v)3 + (adω − βλy(1− ηu)− βγλ(1− ηu))(v)2 − dλyv

= 0

(2.2)

Equation 2.2 is generated by a) solving for y from the last equation of Equation 1.1, b)

substitute for y in the middle equation of Equation 1.1, c) solve for x from that equation

and d) substitute for x in the first equation of Equation 1.1. Knowledge of v allows

one to estimate the coefficients in Equation 2.2. This characteristic polynomial does

not contain the states x, y and their derivatives, but still describe the viral dynamics

of Equation 1.1.
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iii) By extracting the coefficients in the above polynomial and setting them as the

estimated values, we obtain:

β(1− ηu) = a1

a+ d+ ω = a2

a+ ω = a3

aβ(1− ηu) + βω(1− ηu) = a4

ad+ dω = a5

λy = a6

aβω(1− ηu) = a7

adω − βλy(1− ηu)− βγλ(1− ηu) = a8

dλy = a9

(2.3)

iv) The identifiability of each parameter can be checked by checking the injectivity of

the the map defined in Equation 2.3. All parameters except γ and λ are uniquely

identifiable; the product γλ is uniquely identifiable. Since the patients enrolled in the

AutoVac study had all maintained undetectable viral loads on therapy for at least

two years prior to the study, it is reasonable to assume that the initial conditions of

this study are the steady states in Equation 1.1. Therefore, the steady state of x in

Equation 1.1, λ
d
, is set as the number of target cells at the time of beginning this study.

Under this assumption, the value of λ is able to be determined as the product of the

initial number of target cells x(0) and the estimated decay rate of target cell d.

Although theoretically ω is uniquely identifiable, the current best estimate of

ω is between 9 and 36 1
day

[40]. Estimation of ω would require very high frequency

measurements (several measurements per hour, much faster than our data). Therefore

the value of ω is set as 18.8 day−1, the mean of 1/2 life of virus estimated from [40],

and the virus dynamics are treated as a singular perturbation to the system. The data

from AutoVac study are gathered in two phase: treatment interruption and therapy

resumption. During the treatment interruptions, the drug application u is equal to 0.

In the nonliear least-square method, the data gathered during treatment interruptions

is used for estimating the globally identifiable parameters, λ, d, β, a, λy, γ. Similarly,

10



drug efficacy, η, is also globally identifiable and can be estimated from the data gathered

during treatment resumption. During resumption of treatment, λ, d, β, a, λy, γ, ω are

fixed as the values that were estimated during interruption and only the drug efficacy,

η, is identified.

2.4 Bayesian Estimation

During the AutoVac study treatment for each patient was interrupted and after

a period of time, restarted. This cycle of interruption and reinstating the treatment

is repeated 3 to 5 times. Shown in Fig.2.1 is a plot of the logarithm of the viral load

for a particular patient versus time in days. In order to generate an initial value for

the MCMC method, a two-step least-squares method was used, using data from the

first three interruption cycles. The data from the period in which the treatment is

interrupted, region 1, is used to estimate the 5 parameters, λ, d, β, a and γ using a

constrained nonlinear least squares method. The data from region 2, where treatment

is reinstated, contains information about the drug efficacy. With the value of the six

parameters fixed to those values found by least squares in region 1, the data of region

2 is used to estimate the drug efficacy.

From the steady-state values of Equation 1.1, the relationship between d and λ

can be written as:

d = x(0)
λ

(2.4)

.

Where x(0) is the initial measurement of CD4+ T cells taken for each patient

at the beginning of the study (as in [39]). Therefore, in this method, the parameter

set [λ, β, a, γ, λy, η]T are estimated. η is calculated for each iteration by least-squares

subject to the values of the other five parameters. The MCMC approach taken here is

based on the Metropolis-Hasting algorithm [18]. Assume that the ith subject, we have

11



mi measurements of viral load. We denote the parameters as:

µ = [log(λ), log(β), log(a), log(γ), log(λy)]
T

θi = [log(λi), log(βi), log(ai), log(γi), log(λyi)]
T

V = {Vij(θi, tj), i = 1, · · · , n; j = 1, · · · ,mi}

Y = {yij, i = 1, · · · , n; j = 1, · · · ,mi}

The logarithm is used to ensure that all estimates of the parameters are positive. The

vectors, µ and θi are the logarithm of the parameters for the population level and the

logarithm of the parameters for the ith individual respectively. The initial values of µ

and θi are set as the results of Patient 2 from the nonlinear least-square method, which

are [3.5877,−12.6082,−1.7614, 8.3551,−10.1926]T . The matrix Y is the matrix of the

logarithm of available measurements to base 10 for all the patients. Let V (t) denote

the solution of the differential equation and Vij(θi, tj) is the value of V (t) for the ith

patient using parameters θi at time tj.

Following the iterative MCMC algorithm of [18] [19], the implementation steps

can be written as:

1.Initialize the chain with initial values (σ−2(0), µ(0),Ξ−1(0), θ
(0)
i ).

2.Use Gibbs sampling steps to update σ−2,µ, and Ξ−1 and use Metropolis-Hastings

algorithm to update θi:

(a) σ−2(k) ∼ Ga
(
a+ mi

2
, A−1(k)|{θ(k−1)i ,Ξ−1(k−1), Y }

)
;

µk ∼ N
(
B−1(k)Ck, B−1(k)|{Ξ−1(k−1), σ−2(k), Y }

)
Ξ−1(k) ∼ Wi

(
Dk − 1, 1 + ν|{σ−2(k), µk, Y }

)
where Ak = b−1 + 1

2

mi∑
j=1

|yij − log10 (Vij (θi, tj))|
2

, Bk = Ξ−1(k) + Λ−1,

Ck = Ξ−1(k−1)θ
(k−1)
i + Λ−1η and D = Ω−1 +

(
θ
(k−1)
i − µk−1

)(
θ
(k−1)
i − µk−1

)T
.

Ga is the gamma distribution and Wi is the Wishart prior distribution.
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All the hyper-parameters, a, b, η,Λ,Ω and ν are known as follows:

a = 4.5;

b = 9;

η = [3.5877,−12.6082,−1.7614, 8.3551,−10.1926]T;

Λ = diag([100, 0.2, 0.4, 1000, 0.3]);

Ω = diag([2.5, 2, 2, 2.5, 2]);

υ = 8

the hyper-prior values for the initial variance of θi, Λ, are sufficiently large that this

may be considered a non-informative prior distribution. For comparison, the analysis

in [39] had initial variance for λ and γ of 0.12 and 0.0594 respectively, heavily biasing

the posteriors to the priors, and the analysis in [20] had initial variance for the pa-

rameters λ, d, β, a, γ, ω of 0.005, also significantly biasing the posterior distributions of

these parameter estimates to the prior distributions.

(b) Generate a new value φ for θ
(j)
i from the proposal prior distribution from

θ
(j−1)
i

(
θ
(j)
i ∼ N

(
θ
(j−1)
i ,Λ

))
. Evaluate the acceptance probability of this move by

applying Metropolis-Hastings algorithm. If this move is accepted, θ
(j)
i = φ. If not,

θ
(j)
i = θ

(j−1)
i .

3. Repeat step 2 until the chain converges.

To obtain reasonable results from the MCMC method, good initial estimates

of θi are needed. The constrained least squares approach described previously is used

to get an initial estimate. The parameters are constrained so that basic reproduction

ratio during treatment interruptions, R0 = λβγ
daω

is greater than 1. If it were less than

1, the virus would eventually be eliminated.

The above procedure was applied to the data for 10 patients with sufficient data.

The MCMC procedure produced 200,000 possible sets of parameters for each patient

that are consistent with the patients’ data. For the purposes of analysis, the first 50,000

iterations were discarded to allow the chain to converge, leaving 150,000 parameter sets
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per patient for the final analysis. From this result, the marginal probability densities

for of the six parameters can be established.
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Figure 2.1: The viral load data for Patient 1
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Chapter 3

RESULTS

3.1 Nonlinear Least Squares Estimation

Parameter estimates were generated for each of 10 patients using the nonlinear

least squares method. Of the 12 patients in the study, 2 had no detectable virus after

an interruption, leaving insufficient data above the measurement threshold to identify

model parameters. Although the nonlinear least-square method can not guarantee to

give globally optimal results, it can provide us good estimates for the prior distribution

of the MCMC method. The results of Patient 2 by using this identification method

are shown in Fig. 3.1.

3.2 Bayesian Estimation

The MCMC model fitting procedure was run for each of 10 patients with suffi-

cient data. Histograms of the marginal posterior distributions for the six parameters

for each of the 10 patients are shown in Fig.3.2.

Note that the parameters are not independent, and the parameter vectors should

be considered as complete sets. Table.3.1 shows the average correlation coefficient

among each different pair of parameters; it is clear that most pairs of parameters

would be considered highly correlated. In addition to this first-order correlation be-

tween parameters, there are also higher order nonlinear correlations. Fig. 3.3 shows the

high level of correlation between the product of the parameters which form the numer-

ator and denominator of R0 = λβγ
daω

, further emphasizing the need to consider parameter

vectors rather than individual parameters. Values chosen independently from each pa-

rameter’s distribution can easily generate a parameter set which is a particularly poor

representation of the data. Consequently, we also report as tables in the supplementary
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material the entire posterior distribution for each of the 10 patients (shown in supple-

mentary tables S1-S10). The posterior distribution generated by this MCMC method

provides a database for testing the robustness of treatment optimization strategies,

such as those described in [23–25,27].

Table 3.1: The average correlation coefficients between parameters for all ten patients.

log10(λ) log10(β) log10(a) log10(γ)
log10(λ) 1 0.0953 0.6632 0.4278
log10(β) 0.0953 1 0.1228 -0.6421
log10(a) 0.6632 0.1228 1 0.5817
log10(γ) -0.6421 0.5817 0.6632 1

The histograms shown in Fig.3.2 demonstrate the range of values of each pa-

rameter, and Table 3.2 gives the maximum likelihood estimate for each parameter.

This can be subtly misleading, because the parameters are correlated in some rela-

tionship, however, and the joint distributions of the parameters are represented by the

data contained in the supplementary material. From the histograms it is clear that the

distributions for the parameters β,a,and γ vary little between patients, indicating that

the infection rate and burst size of the virus and the death rate of infected cells may

not vary much by patient. By contrast, the parameters λ, λy, and η vary significantly

between patients, indicating that the regeneration rate of CD4+ T cells, the reservoir

contribution rate, and the drug efficacy may vary significantly by patient.

Table.3.3 gives a summary of the estimated population parameters (the average

value of the 10 identified patients), compared with those from previously published

papers. R0pre is the R0 without treatment. R0post is the R0 with treatment. The

values for parameters λ,d,β,a, and γ are consistent with the previously published best

estimates for these parameters. In particular, the maximum likelihood estimates for the

death rate of target cells d ranged from 0.045−0.45 1
day

, slightly faster than the 0.01 1
day

rate used in [45] but in perfect agreement with the estimates obtained from patient

data in [18,20] 0.09−0.41 1
day

and 0.07−0.09 1
day

respectively). Our maximum likelihood
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estimates for the death rate of infected cells a ranged from 0.18− 2.3 1
day

, in agreement

with the current best estimate of 0.7−1.3
day

[28, 45]. Our maximum likelihood estimate

of the density-dependent infection rate β ranged from 2 × 10−6 − 6 × 10−6 mL
virion×day ,

compared to 1.6 × 10−5 − 1.8 × 10−5 mL
virion×day [18] and (1 × 10−7 − 3 × 10−7 mL

virion×day

[39]. Our maximum likelihood estimates of the target cell recruitment rate λ ranged

from 35 − 760 cells
µL×day , higher than the comparable range of 86 − 111 cells

µL×day reported

in [20]; however, this is expected, as the inclusion criteria for our experiment resulted in

patients with much healthier immune systems overall compared to the patients in [20].

Our estimates of the virus production rate γ range from 2.4× 103− 9.8× 103 virions×µL
cells×mL ,

higher than the 1× 102 − 1× 103 virions×µL
cells×mL range reported in [20]; however, this is due

to the estimate in [20] of ω ≈ 3 1
day

, as opposed to our fixed estimate of ω = 18.8 1
day

.

The maximum likelihood values of the reservoir contribution rate ranged over

three orders of magnitude, from 2× 10−6 cells
µL×day for Patient 1 to 1× 10−3 cells

µL×day for Pa-

tients 3 and 10. This suggests that the replenishment of the active compartment by the

viral reservoirs is very heterogenous between patients. However, it is noteworthy that

a single constant value of λy was able to accurately predict rebound time across mul-

tiple interruption cycles for the same patient despite variation in interruption length,

indicating that the replenishment rate for a given patient is relatively constant over

the course of the experiment.

The efficacy of the antiviral drugs is estimated directly from the viral load

data. To our knowledge, this is the first time this has been done. Previous estimates

of model parameters have typically inferred drug efficacy from PK/PD (Pharmacoki-

netic/Pharmacodynamic) data in the plasma, resulting in estimates of η ≈ 0.95 [20], or

relied heavily on the assumption that the first measurement was at steady-state [39],

resulting in estimates between 0.64 ≤ η ≤ 0.84. By contrast, our direct estimate of η

from the viral load data give us maximum likelihood estimates ranging from η = 0.67

to η = 0.88. This indicates that the estimates based on plasma pharmacokinetic data

may overestimate the true drug efficacy, though the estimates which relied exclusively

on the first measurement were consistent with our results.
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Fig.3.4 shows the histograms of the coefficient of determination R2 for each of

the 10 patients. The statistical significance threshold for the fit relative to an average

measurement model was calculated using the F-test (P < 0.05 is considered statistically

significant); this shows that, for all patients except Patient 6, all 150,000 parameter

sets in the posterior distribution would be considered a statistically significant fit to

the data if considered in isolation.

The viral load fitted by the model using the maximum likelihood estimates of

the parameters and simulation results for Patient 1 are shown in Fig.3.5.

19



Figure 3.1: Model fitting for identified patients. Red star: experimental data
(detection limit: 50 copies/mL); solid line: estimate.
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Figure 3.2: The marginal posterior distribution of each parameter for ten
different patients
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Figure 3.3: Typical scatter plot of R0 correlation The heavy correlation between
the elements in the numerator and denominator of R0 demonstrates the
strong higher-order correlation between parameters.
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Table 3.2: Parameter identification results for each patient, reported as
mean(standard deviation).

Parameter Unit Patient 1 Patient 2

log10(λ) log10(
cells

µL×day ) 2.77(0.07) 1.54(0.12)

log10(d) log10(
1
day ) −0.68(0.07) -1.33(0.12)

log10(β) log10(
mL

copies×day ) -5.26(0.09) -5.48(0.06)

log10(a) log10(
1
day ) 0.23(0.08) -0.76(0.07)

log10(γ) log10(
copies×µL

cells×mL×day ) 3.45(0.12) 3.69(0.05)

log10(η) −− -0.14(0.18) -0.10(0.28)

log10(λy) log10(
cells

µL×day ) -5.67(0.30) -4.43(0.17)

Parameter Unit Patient 3 Patient 4

log10(λ) log10(
cells

µL×day ) 2.88(0.04) 2.45(0.27)

log10(d) log10(
1
day ) -0.34(0.04) -0.61(0.27)

log10(β) log10(
mL

copies×day ) -5.35(0.01) -5.23(0.15)

log10(a) log10(
1
day ) 0.37(0.04) 0.19(0.24)

log10(γ) log10(
copies×µL

cells×mL×day ) 3.84(0.03) 3.82(0.22)

log10(η) −− -0.05(0.03) -0.17(0.43)

log10(λy) log10(
cells

µL×day ) -2.94(0.20) -3.45(0.38)

Parameter Unit Patient 5 Patient 6

log10(λ) log10(
cells

µL×day ) 2.43(0.27) 1.64(0.29)

log10(d) log10(
1
day ) -0.64(0.27) -1.28(0.29)

log10(β) log10(
mL

copies×day ) -5.36(0.16) -5.42(0.18)

log10(a) log10(
1
day ) 0.26(0.28) -0.32(0.21)

log10(γ) log10(
copies×µL

cells×mL×day ) 3.90(0.25) 3.70(0.17)

log10(η) −− -0.17(0.37) -0.15(0.38)

log10(λy) log10(
cells

µL×day ) -3.18(0.51) -4.33(0.43)

Parameter Unit Patient 7 Patient 8

log10(λ) log10(
cells

µL×day ) 1.79(0.31) 2.83(0.11)

log10(d) log10(
1
day ) -1.33(0.31) -0.44(0.11)

log10(β) log10(
mL

copies×day ) -5.54(0.18) -5.36(0.12)

log10(a) log10(
1
day ) -0.18(0.15) 0.42(0.14)

log10(γ) log10(
copies×µL

cells×mL×day ) 3.66(0.16) 3.91(0.21)

log10(η) −− -0.17(0.42) -0.22(0.36)

log10(λy) log10(
cells

µL×day ) -3.46(0.36) -3.90(0.31)

Parameter Unit Patient 10 Patient 11

log10(λ) log10(
cells

µL×day ) 2.21(0.37) 1.65(0.10)

log10(d) log10(
1
day ) -0.96(0.37) -1.35(0.10)

log10(β) log10(
mL

copies×day ) -5.78(0.17) -5.54(0.04)

log10(a) log10(
1
day ) 0.00(0.21) -0.74(0.07)

log10(γ) log10(
copies×µL

cells×mL×day ) 4.00(0.17) 3.39(0.01)

log10(η) −− -0.11(0.34) -0.13(0.06)

log10(λy) log10(
cells

µL×day ) -3.00(0.24) -4.65(0.09)
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Table 3.3: The result comparisons between this thesis and those from literature

This thesis Huang et al [20] Putter et al [39]
Average MLE Posterior mean Posterior median

(Interpatient Range) (95% CI) (Interpatient Range)

log10(λ) log10(
cells

µL×day )
2.47 1.97 0.11

(1.54, 2.88) (1.93,2.05) (-0.24,0.21)

log10(d) log10(
1
day )

-0.74 -0.96 -2
(-1.35,0.34) ( -1.01,-0.40) (NA)

log10(β) log10(
mL

copies×day )
-5.41 -4 -6.80

(-5.78,-5.23) ( -4.00,-3.15) (-6.94,-6.53)

log10(a) log10(
1
day )

0.01 -0.42 -0.50
(-0.76,0.42) (-0.49,-0.22) (-0.62,0.26)

log10(γ) log10(
copies×µL

cells×mL×day )
3.77 2.51 4.87

(3.39,4.00) (NA) (4.83,4.89)

η −− 0.73 NA 0.71
(0.60,0.89) (NA) (0.63,0.84)

R0pre NA
1.93 NA 3.90

(1.16,3.68) (NA) (1.72,4.86)

R0post −− 0.56 NA 0.34
(0.13,0.76) (NA) (0.05,0.60)

# of patients 10 42 12
# of measurements per patient 98 9 5
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Figure 3.4: The histogram of coefficient of determination R2 Cutoff values:
The value of R2 corresponding to P = 0.05.
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Figure 3.5: Typical Bayesian Posterior Mean Results:(A)The fitted viral load
curve and viral load data for patient 1; (B)Target cell simulation using
fitted parameters; (C)Infected cell simulation using fitted parameters
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Chapter 4

CONCLUSION AND DISCUSSION

As shown in this study, the parameters in the HIV dynamics model are heavily

correlated. The strong correlation between parameters in this model mean that only

the distribution of complete parameter sets (as opposed to independent distributions

of each parameter) can be considered to accurately represent the fit of the model to

the data. The quality and extent of the data available in this study was considerablely

higher than any previously published parameter estimation study, allowing for the

accurate estimation of the model parameters without using the simplifying assumptions

necessitated by the sparsity of data in previous studies. Furthermore, the level of

excitation of the dynamics provided by the multiple interruption schedules allowed us

to directly identify two parameters not previously identifiable from patient data. The

results agree for the most part with previously published data, but the results are more

reliable and significant given the dramatic increase in the amount of data available for

identification.

This thesis presents the posterior distribution of parameters for a commonly

used HIV infection model identified against measured patient data. Analysis of this

distribution shows good representation of the data. As shown in the histograms of Fig.

3.4, estimates for all patients except some of patient 6 would be considered statistically

significant by the standard F Test (P < 0.05), implying that the reported posterior

distribution describes the range of feasible parameter values based on the measured

data well. Inspection of the data from patient 6 show the data available above the

limit of detection are limited compared to the other patients, which can explain the

high value of R2 corresponding to a F-test P value of 0.05 for that patient. However,

even for this patient, more than half of the estimates are still statistically significant,
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and there were 39 measurement points above the limit of detection, significantly more

measurements than were available for any previously published parameter estimation

study.

The multiple interruptions in the patient data provided the opportunity to quan-

tify the contribution rate of viral reservoirs to the active infected cell compartment.

These rates varied widely from patient to patient. The rate was characterized in terms

of number of productively infected cells produced per day, and equally well describes

such diverse potential reservoir processes as low-level persistent replication, viral blip-

ping, and spontaneous reactivation of quiescent cells. The overall fit is highly sensitive

to the rebound time, and the rebound time is uniquely determined by the reservoir

contribution rate. It is surprising, therefore, that a single value for the reservoir con-

tribution rate was able to describe the data well over multiple interruptions in the

same patient; this strongly suggests that the underlying process represented by the

parameter λy is continuous rather than bursting in nature. The quantification and

understanding of the viral reservoir dynamics is of critical importance to understand-

ing the nature of ongoing viral evolution under conditions of effective suppression, and

will be a necessary precursor to any attempts to flush the reservoirs and achieve a

functional cure for HIV.

In addition to being the most accurate way of describing the fit of a model to data

with high levels of measurement uncertainty, the publication of complete parameter

distributions identified from patient data also has significant practical importance. A

growing number of model-based interventions using variations of the model described

in Equation 1.1 are being proposed, including our own methods designed to minimize

the risk of resistance emerging during antiviral regimen switching [8,23,24,27,29]. Most

of these methods have used either nominal parameters or a single parameter set. The

parameter distributions published in this work provide a parameter set against which

the robustness of a proposed model-based method to expected patient variation can

be tested. The data used in this thesis came from a cohort restricted to patients with

good immunological control of the virus under antiviral suppression, so the distribution
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of parameters can only be said to be representative of such a subgroup of HIV-infected

persons. However, the publication of the identification methods will likely lead to the

publication of parameter distributions from patients in other studies in the future,

leading to a growing library of virtual patients.
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