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Abstract. The numerical schemes of P.C. Waterman (J. Acoust. Soc. Am. 45 (1969), 1417-1429), fre-
quently referred to under the name of “the T-matrix method,” have formed the basis for many scattering
computations in many settings. However, no successful analyses of the algorithms have been published, so
the limitations on their range of applicability and numerical stability remain largely unknown; this is of
particular importance because of the apparently inconsistent success achieved in numerical experiments.
Here, we give an operator condition that guarantees the viability of the algorithm and mean-square con-
vergence of the far-field patterns generated by the second Waterman scheme for the case of time-harmonic
acoustic scattering by a hard obstacle; we prove further that the operator condition holds at least when-
ever the scattering obstacle is ellipsoidal. For the convergence proof, we also assume that the square of the
wavenumber is not an interior Dirichlet eigenvalue for the negative Laplacian; in the contrary case, we show
that the algorithm is at best numerically ill-conditioned. With this and previous experience in numerical
applications, it appears that the performance of the algorithm is markedly shape-dependent; for certain
obstacles, e.g., ellipsoids, instabilities are so localized in wavenumber that they are practically numerically
irrelevant, while it is not clear whether the erratic results found in applications to various other shapes

arise from a failure of convergence or from numerical instability.
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0. Introduction.

In 1969, P.C. WATERMAN [18] proposed certain formal computational procedures aimed at ap-
proximation of the time-harmonic acoustic fields scattered by hard and soft obstacles; cf., also, the
earlier article [17] concerning electromagnetic scattering. Actually, for each acoustic case two proce-
dures were motivated; evidently, one or both of these procedures have come to be known generally
as “the transition-matrix method,” or “the T-matrix method.” Many calculations have been based
on these schemes and their subsequent variants, since the same ideas were transported over—again,
formally—to be applied in other sorts of scattering problems: elastic scattering, multiple scattering,
scattering in and by inhomogeneous media, etc.

Indeed, the methods seem attractive from the computational standpoint, since they require sim-
ply the evaluation of certain surface integrals involving classical special functions, for the formation
of the coefficients and righthand side of a certain linear algebraic system, followed by solution of
the system. In particular, approximations of neither singular nor even weakly singular boundary
operators are required.

Moreover, there seems to persist a general perception that the Waterman schemes do not suffer
from the sort of numerical instabilities undermining the simplest, “unmodified,” integral-equation
reformulations of the exterior radiation problems when the square of the wavenumber is sufficiently
near a certain type of interior eigenvalue of the negative Laplacian. In fact, the formulation of numer-
ical procedures valid and stable at all frequencies was apparently one of the aims in [18], and, indeed,
in the derivation of the first scheme there, by using relations usually known now as “null-field equa-
tions,” Waterman obtained a moment problem for the “total” acoustic field that is uniquely solvable
for all values of the wavenumber (an easily proven property recognized subsequently). The latter
unique solvability is, along with various numerical results displaying no apparent anomalies, evi-
dently the source of the perception that the Waterman algorithms are free of the interior-eigenvalue
type of instability.

However, for both the hard- and soft-scattering problems, in setting up numerical schemes
for approximation of the total fields through implementation of the moment-problem reformula-
tions, Waterman selected sequences of trial functions (constructed from the regular spherical-wave
functions) which fail to be complete at the wavenumbers corresponding to the pertinent interior
eigenvalues, in the usual Hilbert space L,(T") associated with the boundary T of the obstacle. While
the Appendix of [18] indicates that Waterman was aware of this lack of completeness, he never-
theless retained the choices, apparently because his numerical results seemed to indicate that the
defect produced no instabilites. But as we show here, there are numerical instabilities present at the
exceptional wavenumbers, at least for those shapes satisfying a certain operator condition (which
includes the ellipsoids); the important question then concerns the widths of the surrounding intervals
over which the matrix condition numbers are “too large.” For nice shapes such as ellipsoids, these
intervals of instability are so narrow that they are practically numerically invisible, as reported in
[15]. But for other obstacles for which erratic numerical results are observed, the situation is not
clear; it may be either that the algorithm is not convergent for those shapes or that the intervals of
numerical instability are broader. (It is interesting to observe that, in the latter eventuality, the use
of the incomplete sequences will have effectively introduced into the numerical computations for a
uniquely solvable problem the same sort of shortcoming that is encountered in the use of the primi-
tive boundary-operator reformulations for another reason, viz., because those problems themselves
are originally not uniquely solvable at the pertinent interior eigenvalues.)
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Almost all of the work published on the Waterman schemes and their modifications, including
the original papers [17] and [18], is in the nature of numerical experimentation on the basis of heuristic
motivation. That is, there have appeared essentially no papers establishing the needed fundamental
facts about viability, convergence, and numerical stability for even the most basic schemes. These
matters are of even more than the usual importance in this case, in view of the sometimes erratic
and unstable numerical results appearing. That is, the schemes appear to perform very well for
some obstacle shapes and frequencies but very poorly—if at all—for others, and none of the basic
issues connected with understanding the range of applicability of the methods has been satisfactorily
resolved. Thus, it is not known to which obstacle shapes and frequencies the methods are applicable,
nor are there general results resolving the uncertainty about just which field quantities are being
convergently approximated (the far-field pattern? the field outside a circumscribing sphere? the
field right down to the obstacle boundary? the unknown surface field?) or the type of convergence
that can be expected (pointwise? uniform? in the least-squares sense?). Remarkably, the question
of the viability of the schemes, i.e., whether the sequence of matrices figuring in the computations
have the requisite property of eventual invertibility (to say nothing of their conditioning), has not
even been resolved in general. In short, the schemes have remained in the status of “formalisms.”

Evidently, most of the reported numerical implementations of the Waterman schemes have
treated very regular and simple shapes, for which the far-field pattern has been the quantity most
frequently approximated. Perhaps the strongest verification of the convergence of the far-field pat-
terns calculated on the basis of one of the Waterman schemes is the indirect evidence provided
in the examination of an inverse method by COLTON AND MONK [3]. There, to test an inverse
shape-reconstruction scheme, “synthetic” far-field pattern scattering data were manufactured from
a program credited to G. KRISTENSSON and implementing one of the Waterman schemes. The
successful reconstruction of a number of smooth bodies of revolution shows that the data generated
in the solution of the forward problems were undoubtedly correct. On the other hand, there also
seem to be numerous examples of instabilities and convergence difficulties that have not appeared
in published form.

As far as we know, the only collection of results on the questions of viability and convergence
were given in [4]; the present note comprises a modified and amplified form of that presentation.
Throughout, we restrict attention to a generalization of the second scheme motivated in [18] for the
acoustic hard-scattering problem; the generalization admits any Neumann data belonging to L, (T")
and reduces to the second Waterman algorithm in case the data comprise the negative of the normal
derivative of an acoustic incident field. In all of our “positive” results we require that the squared-
wavenumber not belong to the countably infinite set of interior Dirichlet eigenvalues for the negative
Laplacian. Then our main development, in Theorem 5.1.7, shows that the operator condition which
we denote by (C.2) is sufficient to ensure viability, convergence of the far-field patterns in the
mean-square sense, and boundedness of the sequence of matrix condition numbers pointwise at each
pertinent wavenumber. However, in the contrary case when the squared-wavenumber does coincide
with an interior Dirichlet eigenvalue, in Theorem 5.1.4 we show that if the generalized second
Waterman scheme is viable, then it must be numerically unstable; more precisely, we prove that,
if there is a sequence of invertible matrices, then the corresponding sequence of condition numbers
diverges to co. The operator condition (C.2) that we impose is evidently a stringent condition on
the shape of the obstacle, as roughly indicated by some other facts proven in Section 5; while we do
not presently know the class of shapes for which the condition obtains, we do show that it holds for
ellipsoidal obstacles, by exploiting a well-known symmetry result holding in that case, which was
first observed by WATERMAN [18].



In one of the other previous attempts at analysis of these methods, KRISTENSSON, RAMM, AND
STROM [9] (cf., also, the reorganized version in [14]) provide a proof of convergence of a rather
general set-up which would encompass the first Waterman scheme, but the hypotheses of their
analysis are too restrictive to admit the intended application, requiring conditions on the trial- and
test-functions that can be met only in the very simplest case of a spherical obstacle. Thus, the
results of [9] provide no information about the procedures that are apparently usually meant when
speaking of “the T-matrix method.” A much more detailed explanation of this appears in [5].

This article is a sequel/companion to [5], in which basis properties of the traces and normal
derivatives of the familiar collections of outgoing and regular spherical-separable solutions of the
Helmholtz equation are examined and the results applied in discussions of some questions closely
related to the Waterman schemes. A description of these schemes for the approximate solution of
the problem of time-harmonic acoustic scattering by a hard obstacle can be found in Sections 5 and
7 of [5], so we shall not repeat here the detailed developments, but just cite the form of the second
scheme proposed in [18], which is the method of present interest.

As we already indicated, WATERMAN [18] treats both the sound-hard and sound-soft cases of the
acoustic-scattering problem, while we restrict attention to the former but admit more general data,
i.e., we examine here only the exterior Neumann/radiation problem for the Helmholtz equation.
This problem is formulated in the next Section 1, where we also review some background material
and notation already introduced in [5], and end with some comments on the transition matrix. We
proceed in Section 2 to motivate and set up a generalization of the second Waterman scheme that is
appropriate for treating the exterior Neumann /radiation problem with square-integrable boundary
data. We also review and amplify there a basic result of KRASNOSEL’SKII, ET AL. [8] on the use
of the Galerkin-Petrov method in the construction of convergent approximations to an element of a
Hilbert space by appropriately selected trial functions. Section 3 contains some further discussion
of numerical instabilities inherent in the second Waterman scheme at (and near) interior Dirichlet
eigenvalues. We provide in Section 4 a negative result showing that one can expect convergence
to the Neumann data in L,(T) for every data-function chosen from L, (T) only if the obstacle is
spherical. The main results on viability, convergence, and numerical (in)stability, which we already
summarized, are presented in Section 5. Section 6 contains our proof that the operator condition
(C.2) holds for ellipsoidal obstacles, which relies on Waterman’s symmetry result; since the latter is
of such importance in the present reasoning, we have provided an Appendix in which we recall the
argument and fill in more of the details.

We close this introductory Section 0 with a few general observations about the Waterman
methods and the literature concerning them.

While practically any scheme for the solution of problems of scattering by obstacles can be cast
into the form of a “transition-matrix method” (¢f. the remarks here in Section 1), the presentation
of the Waterman schemes in such a form seems to be an especially convenient means for presenting
them. This circumstance, coupled with the emphasis placed in [18] on the transition-matrix aspect of
the algorithms, has apparently led to a common use of the term “the T-matrix method” in referring
to a numerical scheme based on [18]. But this practice has led to confusion in communications and
the literature, for various reasons. That is, since the algorithms are but two of many schemes that
might be called “T-matrix methods,” and since the latter term is sometimes used in reference to one
or another class of methods that may or may not include those of Waterman, misinterpretations have
resulted from the unqualified use of designations such as “the T-matrix method” or “the T-matrix
approach” in reference to the Waterman schemes alone.
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Moreover, as we have noted, it does not seem to be generally recognized that there are actually
two numerical methods proposed in [18] for each type of scattering problem; the “transition-matrix
forms” of the two algorithms are concisely summarized here in (1.11) and (1.12) of Section 1 and in
[5, Section 7]. Thus, although the two methods are superficially very similar, differing “only by a
matrix transposition,” their analyses apparently require different approaches, and it is not so clear
that the two are “equivalent” in the sense that they always either succeed or fail together. The
algorithm that is implicit in the abstract of WATERMAN [18] is the second algorithm motivated in
the paper; it is the one examined here and evidently the method most frequently implemented. On
the other hand, the analysis of KRISTENSSON, ET AL. [9] is apparently aimed at the first scheme of
[18]—cf. the description in [5, Section 5]—although the title, abstract, and summaries in [9] refer
only to “the T-matrix approach in scattering theory.” Further, even though the results of [9] do
not lead to a validation for either of the Waterman schemes, because the hypotheses imposed in the
analysis there are too stringent to admit the necessary choices of trial and test functions, a number
of later articles have stated that “the T-matrix method” is proven to converge in [9], apparently
on the strength of the unqualified assertions in the abstract and summaries of the latter work, i.e.,
apparently without inspecting what is actually accomplished there. Thus, we find subsequent writers
citing a proof of convergence of “the T-matrix method” in [9], unaware that there are really two
methods involved, that [9] concerns the first method (while they intend to apply the second method),
and that the proof of [9] is not applicable to either Waterman scheme.

In any event, a discussion of the intended meaning of the term “transition-matrix method” is
moot here, since the view of either scheme of [18] as such a method does not seem to help at all
in understanding its operation and analyzing its validity. We have found it much more profitable
to regard the schemes as aiming to approximate quantities in the scattering process other than the
transition matrix directly; accordingly, we consider the appearance of the transition matrix in a
description of the algorithms as natural but nevertheless peripheral to their foundations.

Finally, it is important to point out that the original papers of Waterman, as well as many of the
succeeding articles concerned with the same schemes, contain several errors and misleading state-
ments that have also contributed to the general confusion concerning the foundations and operation
of the methods. These errors arise mainly from a failure to understand some fairly basic mathe-
matics that is involved in the formulation of practically any approximation-of-solution method. For
example, there seems to be the consistent confusion of the “completeness property” and the “basis
property,” so that writers erroneously assert the existence of infinite-series expansions in terms of
a sequence which is merely known to be complete. For that matter, there is a general failure in
the literature on these methods to distinguish between an actual (convergent) infinite-series rep-
resentation, or “expansion,” and a finite sum intended as an “approximation.” This is frequently
reflected in the consistent omission of limits of summation, along with the interpretation of a sum-
mation as a finite-sum approximation at one point but as a convergent infinite-series representation
at another point, according to the exigencies of the current argument. For example, these points
emerge very clearly when one tries to trace in [18] the “argument” leading to the purported equality
“QT = —Re Q,” claimed as connecting the infinite transition matrix 7 and a certain infinite matrix
Q, which is used in [18] and elsewhere to describe the operation of the second Waterman scheme.
The steps given there constitute a completely formal symbol manipulation, so that it is indeed
remarkable to find that the equality does in fact turn out to hold for some obstacles; we remark
further in [5] and here at the end of Section 5 on the validity of this relation. Many of these sorts
of errors and misconceptions have not been recognized and corrected by succeeding writers after
appearing once (as in the example just cited), but instead were repeated and propagated, making
their eventual eradication far more difficult.



1. Background; remarks on “transition-matrix methods.”

In this section we formulate the exterior Neumann /radiation problem for the Helmholtz equation and
briefly recall the associated analytical machinery that is needed later. We continue with the setting
and notation described in [5], and rely, for the most part with little comment, on the background
material and notations summarized there.

Setting. Throughout, we suppose that 2 is a bounded and connected regularly open subset of
R? for which the corresponding exterior domain L= R3 \ Q_ is also connected. The boundary
[':=00_ = 0Q, we take to be of class C?, and denote by n the continuous unit-normal field
for I' that is oriented toward the exterior domain (1, . The “wavenumber” parameter x is taken to
be real and positve. By H(I') = (Ly(T), (-, +)o) we denote the usual Hilbert space of equivalence
classes of complex measurable functions defined a.e. and having their moduli square-integrable with
respect to the Lebesgue measure A on I', equipped with the inner product given by

(£.9), :=/nydxp, for f, g€ LyT),

an overbar throughout denoting complex conjugation.

The trace “|r and normal derivative u,,, on T' of a complex C'-function defined in either Q_
or {2, we define in the normal-L, sense. If u,,, exists for such a function, then so does u|F, and we
say that u is L,-regular at I'. It is convenient to establish notations for the collections of solutions
of the Helmholtz equation

Au+ K*u =0 (1.1)

in the exterior domain €2, that also possess L,-regularity at I" and satisfy the Sommerfeld radiation
condition
ILm o{é-gradu(p@) —irku(eé)} =0 uniformly for ée€ X, (1.2)
0—00

in which ¥, denotes the unit sphere (boundary of the unit ball) in R*. Accordingly, we set
W, (Q;6) :={ueC?(Qy) | (1.1) holds in ., (1.2) holds, and u is Ly-regular at T }.

For uw in W, (Q, ;) we refer to u|p and u,, as, respectively, the Dirichlet data and the Neumann
data of u. Integral representations of the elements of W, (2, ; &), and of solutions of (1.1) in Q_
that are L,y-regular at I', in terms of their Neumann and Dirichlet data are well known and recorded
for reference in, e.g., [5], where one can also find the definitions and summaries of the simplest
properties of the interior and exterior single- and double-layer potentials V.7 {¢}, VX {p}, W {¢},
and W {p} for the Helmholtz operator, with density ¢ € H(T), as well as of the associated “direct-
value” operators S,, D, , and T, acting in H°(T'), all constructed with the help of the fundamental
solution given by, for each x € R?,

eih‘/b’*}(l

Ef(y) == for ye R\ {x}.

27y — x|

The exterior Neumann/radiation problem; the Neumann-to-Dirichlet-data operator
A,. We formulate the exterior Neumann problem only for data in H°(T). Given g € H(T),

the Neumann/radiation problem corresponding to 2_, &, and g requires the determination of u €

—)

W, (9, ; k) satisfying the Neumann condition

Un = 9- (1.3)
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This problem is well posed, i.e., corresponding to each g € H°(T) there is a unique element u, €
W, (Q; k) such that u,,,
existence and uniqueness result implies that an operator A, : HO(I') — HO(T) is well-defined

= g; the map g — u, has continuity properties in various senses. The

according to
Acg =

thus, A, maps the Neumann data to the corresponding Dirichlet data for each element of W (2 ; k).
The operator A, is very useful for a variety of purposes. A number of its properties are cited in
[5], e.g., A, is injective and compact in H°(T), with dense range closed under conjugation, while its
adjoint coincides with its conjugate: A% = A, where the conjugate L of a linear operator defined
in a space of complex functions is defined by setting Lg := Lg for g € D(L) := { g | g€ D(L) }.
Then A is also injective and has range dense in H°(T'). Further, A, has a coercivity property:

—Im (4,9,9),>0  whenever g€ H°(T), g#0. (1.4)

Naturally, there are relations connecting A, and the operators associated with the layer potentials;
some of these are also given in [5].

With A, , the integral representation for the solution u, of the exterior Neumann/radiation
problem with data g can be put into the form

1
u,(x) = 1 Efg—EZ A g9tdir == E{— A EZ, tgd\p foreach xe€,, (1.5)
a9 2 r x K 2 r K +

the second equality following from the relation A% = A,..

The operator B,. It is very important to review the properties of a certain multiple of the
“imaginary part” of A, the operator B, defined in H°(T') by
ik "
Bh: = 2(141l€ - Ah:)
Clearly, B, is compact and self-adjoint, while (1.4) implies that it is also positive-definite, i.e., that
(B.f,f), >0for f e HYT), f # 0. It follows that B, is injective, so R(B,) is dense in H°(T).

From the relation A% = A, we find that B, is also self-conjugate, i.e., that B, = B,; this shows
that R (B

) is closed under complex conjugation, so g € R(B,,) iff g € R(B,,). The properties of
1 11 1
B, ensure that it has a compact, self-adjoint square root B2, such that B, = B2 BZ. Clearly, B2

K

1
is also injective. Moreover, it is shown in [5] that B2 is self-conjugate along with B, , i.e., that
1 1 1
B; = B;; in particular, R(B,%) is also closed under complex conjugation. Finally, it is sometimes

useful to know that R(B,% ) € R(A,), which is also proven in [5].

Spherical-separable solutions of the Helmholtz equation. Playing the role of trial- and
test-functions in the Waterman algorithms are certain of the traces and normal derivatives of the
classical spherical-separable solutions of the Helmholtz equation. The basis properties of these
functions in H°(T') and related Hilbert spaces form the major topic of [5]; we retain the nota-
tion used there. Thus, after choosing a point O € Q_ to serve as pole, we introduce the family
{VEC |m=—1,...,1,1=0,1,2,... } of outgoing spherical-separable solutions of (1.1) with sin-
gularity at the pole O according to
x—0

VO (x) = \/th(l) (k]x — O|)2m(m) for xeR, x#0,
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with hl(l) denoting the spherical Hankel function of first kind and order I and {}A/;m} a family
of spherical-surface harmonics forming a complete and orthonormal set in the usual Hilbert space
H°(Z,) = L,(%,) associated with the Lebesgue measure on the unit sphere ;. Explicitly, for
m=—I,...,land 1 =0,1, 2, ..., we take

1 sinmyp, ifm <0
} Pllml(cos Jg) whenever &€ X,
cosmypg ifm>0

e o[ A+l (1 |m]!
Yim(&) = {%(1 +00) L+ |m)

with (J, ;) indicating the usual spherical codrdinates of & relative to a fixed codrdinate system,
while P/" denotes the associated Legendre function of order m and degree ! “on the cut”; specifically,
we use the definition of P/ given in [12] (which differs slightly from that of, e.g., [1]). Since O € Q_,
(the restriction of) each V}%© gives an element of W, (Q; k).

The members of the corresponding family { RegVj%° | m=—1,...,1,1=0,1,2,... } of en-
tire solutions of (1.1) in R® are defined in a similar manner with the spherical Bessel function j,
replacing hl(l) (and extended by continuity to all of R*). Here, Reg V,*Y = Re V%9, since & is real
and we are using a family of real spherical harmonics.

Since it is somewhat more convenient in the construction of a Galerkin method to work with
singly indexed functions, we choose a bijection n — (I*(n),m*(n)) carrying the set of positive

integers onto { (I,m) |1=0,1,2,... ,m=—1,...,1} and write, e.g., V9 := Wfa)m*(n) for
n=12,....
The biorthonormal sequence for (V,’{”g) . Closely associated with the sequence (V59)™

of normal derivatives is the sequence (U;fo)n:1 in H°(T), with

Uro .= —ig{Reg VOl — A Reg V91

nn

Directly from the definition it follows that U%® can be interpreted as the trace on T of the “total field”
in the time-harmonic scattering of the incident acoustic field with complex amplitude —%Reg VRO
by a hard obstacle occupying Q_. The functions U%© arise naturally in several ways. For example,
(i/k)UL® is the density required to represent Reg V,*© in Q_ in the form of an interior double-layer
potential. That is, by using the integral representation of Reg V,*© in Q_, it is easy to check that

Reg V9 (x) = iW,:{U,’fo}(x) foreach xeQ_ n=12 ...,

with W {cp} denoting the interior double-layer potential with density ¢. By computing the trace
from this representation, we find the very useful result

i(1+ D)UC =RegVf©|.,, for n=1,2,3,..., (1.6)

in which D, : H°(T) — H°(T') denotes the compact operator induced by the “direct value” of the
double-layer potential, i.e.,

= / Ef hd\p  for Ap-aa.xel, forall he HOT).
r

Further, the sequence (U5°)”"_ figures in the construction of series expansions of outgoing solutions
of the Helmholtz equation in terms of (V”O) . In fact, with the help of the integral representation
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(1.5) it is easy to show that the solution u, of the exterior Neumann /radiation problem with H(T)-
data g has the expansion

u,(x) = Z(g,UgO)OV,fo(x) (at least) for |x — O| > R§, (1.7)

n=0

with RJ(S denoting the radius of the circumscribing ball for _ that is centered at O.

A simple computation will verify that the two sequences (V,59)

=0 and (Uz©) ", are biortho-
normal in HO(T), i.e., that

n=1

mon?’ mn? fOI‘ m, n = ]., 2, ey

(V250 T79), =

and, moreover, that B, maps each V59 to the corresponding UsC: B, V9 = UrO, for each n.

1
Directly, it follows that the sequence (B,% VO

%0)> | is orthonormal in HO(T'); since it is also easy to

i
n=1
check its completeness in that space, it is an orthonormal basis for HO(T').

1
The Hilbert space associated with B2. By introducing the inner product (-, )J_\I for L,(T)
according to

(f,9)" = (BZf,B2g),, for f,ge Ly(T),

and denoting by H(I') the Hilbert space obtained by completing L,(I") with respect to this inner

product, it is easy to see that we get a space for which (V,f,?l):ozl itself is an orthonormal basis.

Connections with far-field patterns. The structure H;(T') turns out to be intimately related
to the far-field patterns of the elements of W, (Q,; k). To describe this, we shall denote by uS, the
far-field pattern of u € W, (€0, ;) and by ®5° : HY(T) — HO(Z,) the Neumann far-field pattern
operator with respect to O, which maps the Neumann data g € H°(T') into the far-field pattern of
u,, or ®5°0g := (ug)fo. More explicitly, from the integral representation (1.5) for u, we find that

1 1
dx9g(8) = _E/ {egog - egleAng} d\r = _E/ {ego — A _ef9 gdir foreach &€ %,
r r

in which e£© denotes the complex amplitude of a certain plane wave propagating in the direction
—&, efO(y) := e "0 ~0) for y € R, & € £,. From this, it is shown in [5] that ®5° has the

V2

K

factorization

1
%0 = WP B2, (1.8)
in which ¥4° : H(T') — H°(X,) is a certain isometric isomorphism; (1.8) is recognized as the polar
decomposition of ®%°.

Now we can summarize the connection between convergence of the Neumann data on I' and
convergence of the far-field patterns on 3;, which is very important for our later reasoning:

Proposition 1.1. Let u € W, (Q,;%) and (u,) _, be a sequence from W, (Q;x). Then the
sequence ((un)fo):;l of far-field patterns converges to the far-field pattern u$ of u in the norm of

HO(%,) iff the sequence (u of Neumann data converges to u,, in the norm of Hy(T').

non) s

Proof: This follows directly from the polar decomposition (1.8) of the far-field-pattern operator,
which shows that H<I>'}\f)gHH0(E )= (V2/K) Hg”y_\[ for every g € H(T). 00
1

The transition matrix; “transition-matrix methods.” We close this section with some re-
marks on “transition-matrix methods.” In the present context of acoustic scattering by a hard
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obstacle and expansions in radiating spherical-separable solutions, the transition matriz is the infi-
nite array 7"° with elements

TEO .= —(Reg Vi, UL©) for m,n=1,2,...,

ms
which acts on appropriate incident-field spherical-expansion coefficients to produce the corresponding
scattered-field spherical-expansion coefficients. More precisely, let the Neumann data be given by
g = —u!, with u* a sufficiently regular “incident” acoustic field, i.e., a solution of (1.1) in an open
set (1, containing the closure of the ball B R (O). Then there is an expansion of the familiar form
in the regular spherical-wave functions,

u'(x) = Z 1, Reg V5O (x), for |x - (9| <R, (1.9)

n=1

for some R, > Rg. The convergence properties of the latter series ensure that the coefficients
(9,U9), = —(uln, Us®),, required in the expansion of the scattered field u” := u, appearing in
(1.7) can be computed from

[e%S) [e's)
_(u’;n7U—r';1,o)0 = - Z(RegvrfvgaU—#P)oLn = ZTngLn = (THOL)m, m = ]., 2, 3, ey
n=1 n=1

as the result of the action of the array 7%© on the incident-field expansion coefficients ¢ := (Ln)zo:l.
Thus, knowledge of the elements of 7*® permits one to capture directly the solution of any regular

scattering problem for £2_ and k outside the circumscribing sphere centered at O, as

u’(x) =Y (T%9) Vi9(x), for |[x—0|> R},

n=1

By the term “transition-matrix method” we should then understand an algorithm for con-
structing, for all sufficiently large N, an N x N matrix T, with the property that the corresponding
outgoing fields u$; generated by the recipe

N
ufy = Z(TNLN)HVT':O: with N = (Ln)gzl, (1.10)
n=1

converge in some reasonable sense to the scattered field u” produced by the incident field u* as in
(1.9), i.e., to the solution of the exterior Neumann /radiation problem u, with the data g = —u},. In
this broad sense, practically any method for approximate solution of the exterior Neumann /radiation
problem can be recast as a “transition-matrix method.” One might argue that the term should be
reserved for those schemes that are based directly and decisively on approximation of the transition
matrix itself, as a consequence of its characteristic property, instead of arising peripherally out of
some other line of reasoning. But from that point of view, it would not be clear whether there are
any “transition-matrix methods” known at all. At any rate, we already indicated that the name has
become widely attached to the schemes proposed by WATERMAN [18], so that a reference to “the

T-matrix method” usually indicates one or the other of those particular methods.

10



Using the broad terminology, the two Waterman schemes for the hard-scattering case can be
summarized in “I'-matrix form” as

T

QP (TFC) = —Re Q¥ (1.11)
and
QROTHY = —Re OF° (1.12)
in which the N x N matrix Q5 has the elements
00 = (Reg Vi®| ., V£9) .- (1.13)

That is, the first and second Waterman schemes propose the construction of N*" approximate
transition-matrices T3¢ and ’7~'N”O, for use in (1.10), satisfying (1.11) and (1.12), respectively. Some
motivation for such computations is given in [18]; a summary and additional remarks can be found
in [5]. In Section 7 of [5] and here at the end of Section 5, we comment on the apparently common
view that (1.12) results from “truncation” in an infinite-matrix relation.

In any event, a simple comparison reveals that the method that we propose in the next Section 2
specializes to that expressed by (1.12), i.e., to the second Waterman scheme.

11



2. Formulation of the generalized second Waterman scheme.

Before we can analyze one or the other of the numerical schemes proposed by WATERMAN [18], we
must realize it as the outcome of applying a known approximation-of-solution apparatus to some
operator problem. Such a framework is not provided in [18], so the approach that we settle on
here may bear little resemblance to the heuristic arguments advanced there. While there are in
fact a number of ways in which we can identify such an operator reformulation for the present
case, here we shall just show how the second Waterman scheme can arise as an application of the
familiar and fundamental “method of boundary-data approximation,” which exploits the continuity
of the solution map g — u,, taking the Neumann data-function to the corresponding solution of the
exterior Neumann /radiation problem.

To review the underlying idea, suppose that we can construct a sequence (uév );)Vozl in W, (Q;k)

N o0 . .
(upin) vy Of Neumann data converges in an appropriate
manner to the given Neumann data g € H°(T'). Then, owing to “continuous dependence on the
N oo
9 )N:l
itself converges to the unique solution u, of the exterior Neumann/radiation problem with the data
Upin) N1

such that the corresponding sequence
data,” there will be a corresponding sense (or perhaps various senses) in which the sequence (u

converges to g in the norm of H°(T'), then one can show easily that the

sequence of traces (ulY|.)x_, o[ of the solution in HO(T), (ulY)T_|

converge to u, uniformly on every closed subset of (2, and the sequence of approximating far-field

g. For example, if (
will converge to the trace u will

patterns will converge to the actual far-field pattern in H°(%,).

For the approximation of given Neumann data we choose (V,59) >, since this is a sequence of
normal derivatives of elements of W, (2, ; k) that is readily constructed (at least, when the required
orders of the spherical Hankel functions are not too large) and always complete in H°(T'")—and also
since we are reconstructing the methods of [18]. Now, a simple and obvious device for generating

convergent approximations of Neumann data by linear combinations of elements of (V,f,?l)zozl con-
sists in the use of the latter sequence as trial functions in a projection method for the approximate

solution of the (well-posed!) operator problem
given g€ H(T), find f e H(T) such that Lf = Lg, (2.1)

with H(T) denoting a Hilbert space of functions on I' in which H%(T') is densely imbedded and
L € B(H(I)) an isomorphism. Once H(T) and L have been selected, since we have already decided

on a sequence (V N);?:l of trial-function subspaces, viz., by taking V, := sp {V,’f,?, ::1 for each N,
to fix a Galerkin-Petrov projection scheme for the operator problem (2.1) it remains only to choose a
sequence of test-function subspaces (W N);)Vo:1 with dim Wy = N (= dim Vy); supposing this done,
we let Py denote the orthogonal projector onto Wy in H(T'). In the formulation of the method it is
useful to prepare for accommodating the introduction of a convergent approximation to the actual
data-function (which will ultimately require the establishment of some continuous dependence on
the data in the projection scheme). Accordingly, given g € H(T), let (gj\,)f\[o:1 denote a sequence

from H(T') converging to g in H(T).

With all of the components in place, the N*? subsidiary problem of the corresponding Galerkin-
Petrov procedure for the problem (2.1) appears as

given g€ H(T), find fy € Vy such that PyLfny =PnLgyn. (2.2)

Observe that the operator figuring in the problem (2.2) is the restriction Py L | Vv : YV = Wy,
acting between finite-dimensional spaces of the same dimension. Of course, the conditions f € Vy

12



and PyLfy = PyLgy can be realized as an equivalent system of linear algebraic equations by
making the obvious choice of basis for each trial-subspace V, and selecting bases for the test-
subspaces Wp. The entire point here is that the elements of the scheme that have been left free
are to be chosen to produce the approximants given in (2.3), infra, with the coefficients obtained
from the linear systems appearing in (2.4), since this yields a generalization of the second scheme of
WATERMAN [18], as we shall show.

Indeed, there are a number of choices of the components fixing the Galerkin-Petrov procedure
that all lead directly to the same systems in (2.4) (and the same approximants in (2.3)). It is
important to maintain this flexibility, not only because different choices in the set-up lead to various
useful conclusions (cf ., e.g., Sections 4 and 5 here) but also because the analysis of the Waterman
scheme is still underway, since we have not found a “definitive” operator reformulation. We should
also point out that, in any positive result yielded by our analysis, the convergence of approximations
to the given Neumann data will take place in whatever Hilbert space we have identified as H(T'), and
that mode of convergence may not be as strong as, say, convergence in the norm of H°(T'). Of course,
if we manage to assert only a relatively weak sort of convergence and cannot eventually strengthen
the conclusion, we may never be sure whether that state of affairs is actually “in the nature of
things” or arises merely out of our own limitations in analysis. In fact, we have little numerical-
experimental evidence on the manner in which the Waterman schemes converge, when they appear
to converge at all. More precisely, while there is ample numerical evidence that convergence of the
far-field patterns obtains in some sense for some obstacles, there are but few indications concerning
the convergent approximation of other parts of the scattered field.

To complete the initial motivation, we shall indicate for now just one selection of H(I"), L, and
W,y in the projection scheme that leads to (2.3) and (2.4); by inserting requirements of numerical
stability and the convergence of the radiating fields of ultimate interest, we produce what we call the
“generalized second Waterman scheme.” If we can establish the viability and convergence properties
of the projection method, so that we know when and how the approximating Neumann data converge
to the given data g, then we expect that we will be be able to make a corresponding assertion about
M) e N, of approximants converges to the desired
solution u,. Subsequently, we shall show that this scheme is really a generalization, i.e., that it

the sense in which the constructed sequence (u

does subsume the second algorithm proposed in [18] when the data have the special form —u!,, for a
sufficiently regular incident field u*, in the problem of time-harmonic acoustic scattering by a hard
obstacle occupying the closure of 2 . In this way, an analysis of the proposed Galerkin-Petrov
method(s) for the problem (2.1) will enable us to draw conclusions about the second Waterman
scheme.

Specifically, let us here identify H(T') as H°(T'), L as the identity operator, and the test-function
subspace Wy as sp {Reg V$O|F}::1, for N =1,2, ... ; then Py is the orthoprojector onto W, in
HO(T).

(The sequence (sp {Reg V,=© |F}7I:r:1)]°v°:1 is chosen as test-subspaces even though it is not ultimately
dense in H°(T') when x? is a Dirichlet eigenvalue for —A in _, since (Reg Vr’fo|r):o:1 then fails
to be complete in H°(T'); again, we are constrained here to make choices leading to a re-derivation
of the second scheme of [18], on which the majority of numerical computations have evidently been
based. This lack of completeness intrudes—in one guise or another—in the later reasoning, where
it has a decisive effect, at least on the numerical-stability question.)

It is easy to check that these choices in the projection method (2.2) lead to (2.3) and (2.4) for the
determination of the N approximant, so that we have motivated the formulation of
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(gW.IL.) The generalized second Waterman scheme:
(1.) Establish viability: Show that there exists N, such that { (V,"Q, Reg V,2O|1.)

nn’ S a

0 }NxN I
nonsingular matrix for N > Nj,.

Assuming that the scheme is viable, let g € H(T") and suppose that (gy) 7

N=1 1S a sequence

from H°(T') converging in a given sense to g; construct the sequence (uX)T_ . of outgoing
)
solutions of (1.1) as
N
uév = Z e AR for N > N, (2.3)
n=1
in which the collections of coefficients (o) )ivzl are determined by (cf. (2.2))
N
Z(VﬁvaegVT’;O|F)0aﬁ = (gN,RegV,'rjO|F)O, for m=1,...,N, for N> N,.
n=1
(2.4)
(2.) Establish convergence: Show that the sequence (ulY)_, ~converges in some sense to
the solution u, of the Neumann/radiation problem in Q. with data g.
(3.) Establish numerical stability: Show that the condition numbers (cond (Q%°))%_ N, of

the matrix operators in the systems (2.4) have a “sufficiently small” upper bound.

?Vo:l is required to converge to g and the
can be shown to converge to u, must be specified without

Remarks. (1.) The manner in which the sequence (gy)
manner in which the sequence (u) )?: N,
ambiguity in any statement describing the success of the generalized second Waterman scheme.

(2.) We regard the operator underlying the N*'!' finite-dimensional problem in (2.4) as acting in
N-dimensional complex unitary space £. That is, the N x N matrix with elements QO :=
(V59 Reg VTQO|F) o» @ in (1.13), induces an operator Q% : £ — £} with respect to the canonical
basis for )Y (no confusion will arise from the use of the same symbol to denote the operator and its

generating matrix); explicitly, the components of Q%°3% are given by
N
(0P N)mZZ(V,f,g,Reng"o|r)0 N m=1,...,N, for gN=(BN,...,0) €&y,
"

(2.5)
so that the equalities in (2.4) can be written as Q5°a” = 4. Then, recalling that the ¢2-condition
number of the operator Q%% is

cond (Q59) := ||Q%C|[[|QsC ||, for N >N, (2.6)

requirement (gW.IL.3) demands that the sequence (cond (Q4°))~_, have an upper bound that

N=N
is “not too large.” Recall that cond (Q%°) measures the maximum (;)ossible ratio of the relative
¢Y -error in the solution of Q%%a™N = 4V to the relative £} -error in the computed righthand side
and matrix elements, so that satisfaction of the third requirement will ensure that the numerical
computations can be accomplished with an acceptable error. In fact, since there are always errors
in the data, if the condition numbers grow too large, then the computed solutions of the systems

(2.4) can be rendered so inaccurate as to be worthless.

To see that the scheme (gW.II) does indeed reduce to the second proposal of [18] under an
appropriate choice of the g, consider the problem of time-harmonic scattering of acoustic waves
by a hard obstacle occupying the closure Q_, in which the Neumann-data function is g = —u’,,,
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with u' denoting a regular incident field, i.e., a solution of (1.1) in a ball By (O) containing O_
and centered at . Then «* has an expansion as in (1.9), converging absolutely and uniformly on
closed subsets of By, (O); the series can be differentiated term-by-term any number of times, with
each resultant series retaining the same convergence properties (cf., e.g., VEKUA [16]). Then we can
take g, to be the partial sum — Zﬁzl t,Reg V"9 for N > 1, giving g, — g uniformly on T, and so
also in H°(T'). With this choice, the linear system in (2.4) becomes

N N
Z(V,f,g,Reg V£O|F)0a5 =— Z(Reg V,f,?,,RegV,’quF)oLn, for m=1,...,N. (2.7)
n=1 n=1

Clearly, the prospective N*! approximate transition matrix 7~'N”O deriving from (2.7) would satisfy
(1.12), which, as we pointed out in Section 1, is precisely the second scheme proposed by WATERMAN
[18]; cf., also, [5, Section T7].

Our results on the viability, convergence, and numerical stability of the Galerkin-Petrov method
represented by (2.2) will derive from application of the following Theorem 2.1. To understand its
implications, let L, denote the operator Py L in (2.2) and L, indicate its restriction L, |V =
(PwL)|Vy : Vy — Wy. Then, when Ly is bijective, the unique solution of the problem in (2.2)
is given by E;,l L gy Therefore, to establish the viability and convergence of the Galerkin-Petrov
scheme we must verify the bijectivity of the L n for all sufficiently large N and the convergence of

the sequence (Ly'Lygx) to g for every g € H(T"). Theorem 2.1 gives sufficient conditions and

oo

N=N,
necessary and sufficient conditions for this viability and convergence, in a slightly more general set-
ting that need not involve orthoprojectors. The theorem is obtained by an appropriate modification
of the statement and proof of Theorem 15.1 of KRASNOSEL’SKII, ET AL. [8]. In the statement, the

finite-dimensional range ’R(L N) of the operator Ly plays the rdle of the test subspace W, .

We continue to denote by B(H ) the collection of all bounded linear operators mapping the
Hilbert space H into itself; the norm of L € B(H) is indicated by ||L|| (). The norm of a bounded
linear operator L : H; — H, between Hilbert spaces H; and H, we may denote by ||L;H1,H2||.
Recall that a sequence (V]\,)f\,o:1 of subspaces of the Hilbert space H is said to be ultimately dense
in H iff limpn_ o dist (h, VN) =0 for every h € H, i.e., iff the sequence of orthoprojectors onto the
V) converges strongly to the identity operator in B(H).

Theorem 2.1. Let H be a Hilbert space and (Vyy)%_, an ultimately dense sequence of finite-
dimensional subspaces of H; denote by Il the orthoprojector in H onto V. Suppose that (L N)?Vozl
N”B(H) < ¢ for N > 1, and such
ihat dimR(Ly) < dim V) for each N. Let L n denote the restriction of Ly to Vi, regarded as
Ly :=Ly|Vy:Vy— R(Ly).

is a sequence of finite-rank operators bounded in B(H), with | L

(i.) Ifthe L N are eventually injective and uniformly invertible, i.e., if there exist Ny and ¢ > 0
such that

HLNUN”H >c ||UN||H for each vy € Vy, for each N > N, (2.8)

is a sequence from H converging to g in the norm of

then whenever g € H and (QN) ]O\J'o:1

H we have

~ ! !
ITng = glly < IR Lnon = glly < = llow =gl + 0+ 2) [Myg =g, for N >N
(2.9)
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in particular, the sequence (E&lL N9 N) then converges to g in the norm of H.

o0
N:NO
Now suppose also that each L, has the special form Ly = QL for each N, in which L € B(H)
and (Q N):;:l is a sequence of finite-rank projectors in B(H).

(#.) If L is bijective and EN is injective for N > some N, then (2.8) is necessary for the
o0

N—n_ to converge strongly to the identity operator in B(H).
-0

sequence (L' Ly)

(#ii.) If L is not injective, then either (a) Ly fails to be injective for all sufficiently large N or (b)

the subsequence (sz ) o

w1 Of injective operators satisfies limg oo ||E;,1;R(LN,C),VN)C || =

0.
Proof: Since dimR (Ly) < dimVy = dimR(Ly) + dim N (Ly) < dimR(Ly) +dim N (Ly), it is
clear that we have dim R (Ly) = dim Vyy = dim R (L) whenever we know that Ly : Vy = R(Ly)
is injective, for any N. We shall use this in the remainder of the proof without comment.

(i). Because of (2.8), for N > N, the restriction Ly is injective and therefore also bijective.
Moreover, the family {Ly'Ly : H = Vy } o _ v, is norm-bounded:

—

I8 Exllsemn < IERSREN) Vil I Exllgm < ¢ for N >N,

Now let g € H and (gy)5_, be a sequence from H. For N > N, we can write, upon noting that
L;VILNHN = LfvlLNHN =1y,

HEJ_VILNQN - QHH < HERIILN(QN - Q)HH + ||E1_V1LN(HN9 - Q)HH + ||HN9 - !]”H
! !
< low = gll + 0+ ) 1My — gl -

This establishes the second inequality in (2.9), while the first inequality there is obviously true, since
Ly'Lygy belongs to Viy. Now the final assertion of (4) follows when (g, )%_, converges to g in H,

in view of the ultimate denseness of (V]\,)]O\,o:1 in H.

(#). Under the special form Ly = Q L, with L bijective and ZN injective for N > N,, suppose

1 oo oo
that (Ly'Ly) N=N, N=N,
converges to g in the norm of H for every g € H. In particular, the sequence of operators is pointwise

converges strongly in B(H) to the identity operator, i.e., that (Ly'Lyg)

bounded, so the Banach-Steinhaus Theorem says that it is also norm-bounded; let ||i1_\,1 Lyl sy <
¢ for N > Ny. Let N > Ny and uy € R(Ly) = R(Qy): since Qy is a projector, we have

uy = Qnuy = QnLL'uy = LyL ™ uy, so
|25 unll g = NER EN L un gy < e IE gy

This implies (2.8).

(7i4). Suppose that alternative (a) of the statement does not hold; then it makes sense to speak of
oo

k=1"
subsequence of (|| Lfvi s R(L N, )s V. I ):):1 possesses a subsequence diverging to co, from which it will

the subsequence of injective operators, which we denote by (E Nk) We shall show that every

follow that limg_, o HZR& ; ’R(L Nk) , VNk || = 00, as claimed. Accordingly, we choose any subsequence

of (f Nk)z; and denote it again by (E Nk)Zir Assume that the counterpart of (2.8) holds for this
subsequence, 4.e., that there exist K; and ¢, > 0 such that

”LNkUNk ||H > ¢ ||’UNk ||H for each vy, € VNk’ for each k > K. (2.8)
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o

~N—p» for each f € H we get

Then, by recalling the boundedness of the sequence (||L || B( H))

|@n, Lf|l = | L, Tn, £ + Ly, (T = TN ) f[| g > o[ Ty, fll o = (T =T ) for &> K.

o0
N=1
inequality it follows that liminf, ,  [|Q nLf [l > collfll g for each f € H, which implies, in partic-

Since it is clear that any subsequence of (VN) is also ultimately dense in H, from the latter
ular, that L must be injective. Since this contradicts the hypothesis, we are forced to conclude that
there are no K|, and ¢, for which (2.8)' holds. In turn, this clearly implies that there is a subsequence
of (||LJ_\,i;R(L ~,)s Vi, )5, diverging to co. We have already indicated how this suffices for the
proof of (#4). [

In our applications of Theorem 2.1, we always arrange matters so that we have L = QL with
L € B(H) and Q y an orthogonal projector in H with dimR(Q ) = dim V}y for every N. Then the
hypothesis dim R (L) < dim V}y will clearly be fulfilled in every case.

Supposing that the hypotheses of Theorem 2.1.7 obtain, let us display the finite systems that
must be solved to compute the elements of the sequence (EjvlL NgN)(;vo: N, converging to g € H,
for the case in which Ly = Q L, with @ as described in the preceding paragraph and L € B(H)
bijective. Obviously, we have then R(Ly) = R(Qy); let dy = dimVy = dimR(Ly), and let
{oN}! | and {w]}2~ | denote bases for Vy and R(Ly), respectively. Then, for N > Ny, Ly Lygy
is the unique solution of the problem

find v €Vy such that QnLv =QuyLygy,

and so is given by
dN

f’J_VlLNgN = Z ayvy, (2.10)

n=1

in which the coefficients {al¥ Z’il are uniquely determined by
Z(va,wﬁ)Haﬁ = (Lgn,wp) i for m=1,...,dy-. (2.11)

In fact, it is easy to see from (2.8) and the linear independence of the set {v2Y iﬁl that the matrix
of the system (2.11) is nonsingular for N > N,,.

Our strategy for establishing results about the generalized second Waterman scheme on the
basis of Theorem 2.1 should now be apparent: choosing Vyy = Vy := sp {V,*S N , for all N' (and

nonJ p=

N = V,f,?,, n=1,..., N), we want to identify a Hilbert space H associated

then, of course, v,

with T, an operator L, and orthogonal projectors @), in H in just such a way that the system
(2.11) has exactly the form (2.4). Once such a set-up is found, we must decide which hypotheses
of Theorem 2.1 are fulfilled. For example, if the conditions of Theorem 2.1.7 are met, we get from
(2.10) with coefficients determined by (2.11), é.e., from the Neumann data of the u)’ in (2.3) with the
coefficients generated by (2.4), a sequence (ul,)_ N,
of (1.1), which will then be known to converge to the Neumann-data-function g in the norm of the

of normal derivatives of outgoing solutions

space H; finally, an appropriate continuity statement about the solution-map g — u, will then allow

us to establish a certain type of convergence for the approximations (u) ) in (2.3) to u,.

N=N,
In the discussion motivating the formulation of (gW.IT), we essentially already cited one example
of identifications for which (2.11) coincides with (2.4), viz., with Vyy = Vy (and v} = V,59), take

n’n
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H to be H(T'), L to be the identity operator, @ to be the orthogonal projector in H°(T) onto
Wy := sp{Reg V|, } ney> and Ly to be QL = Qy. Then (2.11) becomes (2.4), with (2.10)
giving the normal derivative of ué\’ in (2.3). We shall not pursue the latter set-up, since it turns
out that condition (2.8) cannot hold in that setting for any but the spherical obstacles (and when
k? is not an interior Dirichlet eigenvalue). Two other sets of identifications of the desired sort are
given in Section 4 and in Section 5; in each of those cases, we show that Theorem 2.1 can be used
to draw some useful conclusions about (gW.II). In particular, the reasoning of Section 4 concerns

convergence in H%(T), and we use it to verify the negative assertion just made.

To prepare for the later developments concerning numerical stability and requirement (gW.IL.3),
it is important to expose the connection between the “abstract” operator L N =QnL | Vy : Vy =
R(Ly) and the “numerical” operator £y : £3% — £3~ induced by the dy x dy matrix figuring
n (2.11) with respect to the canonical basis of the dp-dimensional complex unitary space Eg”;

explicitly, we have

dn
(ZNﬁN)m:Z(LUN N)Hﬂ m=1,...,dy, for each ﬁNE(ﬁ{V’ ’ﬁd ) 2

n=1

(2.12)
(Of course, in our later applications of Theorem 2.1, the L ~ will coincide with the Q5 defined by
(2.5).) Now, while the viability and convergence of the Galerkin-Petrov scheme can be examined by
studying the L n alone, the numerical stability of the scheme depends upon the behavior of the L N

in particular, upon the growth of the sequence of £, IN_condition numbers (cond (L N)) N=N,’ Let the
operators Fy : €3 — Vyy and Gy : €35 — R(Ly) be defined by
dN
FnBN = Zﬂﬁ vy
=l for each N = (BN,...,BY ) € 5~ (2.13)
gN/@N ZﬂN N
Then it is easy to check that the adjoint operator Gy : R(Ly) — 63~ is given by
Syw = ((w,wflv)H)Z’ll for each w € R(Ly),
and so verify the relation
Ly =98vLnF N, for each N. (2.14)

Relation (2.14) permits us to draw conclusions about numerical stability from information about
the “abstract” operator Ly (i.e., from information about “potential stability”) and the properties
of the bases chosen for Vyy and R(Ly), which determine the respective properties of the ¥ and

Sn-
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3. Numerical instabilities at interior Dirichlet eigenvalues.

One of the curious features of the Waterman schemes for the acoustic hard-scattering problem is
their use of the sequence (RegV,#?|,.)"" of traces, which fails to be complete in H(T") when x? is
a Dirichlet eigenvalue for —A in Q_ (and, for the soft-scattering problem, their use of the sequence

2

(Reg V;5Q)™  of normal derivatives, which fails to be complete in H°(T') when «? is a Neumann

nn =
eigenvalue ?orl—A in Q_); ¢f., e.g., [13], and the review in [5]. Experience with projection methods
for the approximate solution of operator problems suggests that this may be the source of some defect
in the schemes which can have an important effect on their performance. We have included this
brief section to emphasize that it should therefore not be surprising to discover at least a numerical

instability in the Waterman schemes at the pertinent wavenumbers.

The most striking example of such behavior shows up in the simplest case, when {2_ is a ball
Bg(0) of radius R centered at O. There, the finite matrices figuring in the Waterman scheme, i.e.,
the matrices of the systems displayed in (2.4), are eventually singular whenever kR coincides with
a zero of one of the spherical Bessel functions j;, I =0, 1, 2, ... ; for such wavenumbers the method
is not viable, and the requisite computations cannot be effected. The corresponding set of k2-values
comprise the Dirichlet eigenvalues for —A in B (O).

In fact, in our “positive” viability and convergence result of Theorem 5.1.7, along with the
operator condition (C.2) described in Section 5 we find it at least convenient to require that x be a
“regular” value, i.e., that

k2 is not a Dirichlet eigenvalue for —A in Q_. (C.1)

For each such regular k, we also prove that the condition numbers of the operators Q% of (2.5)
form a bounded sequence. However, in the contrary case when (C.1) fails (but still under the same
operator hypothesis (C.2)), in Theorem 5.1.# we show that either the operators Q5 fail to be
invertible for all sufficiently large IV or the sequence of condition numbers of the invertible operators
diverges to oo, so that there is a numerical breakdown in either case. This result leads one to
suspect a similarity to the situation which is well known in numerical methods based on the most
primitive integral-equation reformulations of the exterior radiation problems, wiz., that there will
be an interval of k-values surrounding each exceptional value in which the condition numbers, while
remaining bounded at each x, grow so large that the computations cannot be performed accurately
(although we do not prove this).

Apropos of the stability question, we should also point out that the surface integrals appearing
in the matrix elements needed to set up the Waterman schemes can be exceedingly difficult to
approximate with acceptable accuracy, e.g., when values of the spherical Hankel functions of the
larger orders at “small” arguments are required and/or when the integrands are highly oscillatory.
In such cases, the occurrence of large condition numbers in the matrices themselves can seriously
degrade the accuracy of computed solutions of the linear systems (2.4).

Since instabilities strictly confined to discrete values of k¥ would be of no numerical consequence
at all, the question of central importance actually concerns the widths of any intervals of “effective
numerical instability.” For example, in the simple integral-equation set-ups, these intervals overlap
when the wavenumbers are sufficiently large, undermining the computations at every such . In the
case of the Waterman schemes, however, it is reasonable to conjecture that the widths are strongly
dependent on the shape and/or smoothness of Q_. For example, when T is an ellipsoid, computations
reported in [15] indicate that the instabilities, while present, are so remarkably localized near the
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square roots of the interior eigenvalues that they are practically invisible. In fact, it was found for
ellipsoidal boundaries that the use of double-precision arithmetic is completely inadequate to reveal
the regions of instability, which appear only with the help of quadruple-precision computations. But
it is very likely that this fortunate behavior arises out of some special property of ellipsoids and
cannot be expected in general. In numerical experiments with other shapes, especially those with
less smoothness, erratic behavior seems to be commonly encountered. In such cases, it is not clear
whether the numerical difficulties arise from the failure of the scheme to converge or from overlapping
of the regions of instability.

Since, in contrast to the motivation described in [18], the present study of the second Waterman
scheme does not directly employ the traces Reg VTfO|F, it may be helpful to explain how condition
(C.1) naturally arises here. In examining the matrices Q5° with elements given in (1.13), we exploit
the relations

(I+D,)B,VrS =ikRegV,r©

K™ nn

s for n=1,2,...,

which follow from (1.6) and the equality B, V,*S = W Thus, in our applications of Theorem 2.1
to draw conclusions about the second generalized Waterman scheme, we have been led to identify
the operator L figuring in that statement as either I + D* acting in H°(T) or an extension of this
operator acting in the larger Hilbert space H, (T') with preservation of the null space N'(I + D%); by
appropriate selection of the remaining elements, it turns out that the systems (2.11) will then take on
the form (2.4). Now, it is well known that A'(I + D) is nontrivial iff condition (C.1) holds; cf., e.g.,
[2, Theorem 3.22] (with due regard for the notation used there). Therefore, to ensure the bijectivity
hypothesis on L that is needed when we wish to apply statements (i) and (7)) of Theorem 2.1, we
must require the condition (C.1). On the other hand, when &? is an interior Dirichlet eigenvalue, so
L (= I + D) fails to be injective, we will be able to rely on Theorem 2.1.i# and the preparations
made following the proof of that theorem to assert the existence of the numerical instability already
described, at least in those (nice) circumstances in which condition (C.2) of Section 5 is fulfilled. In
any event, this provides some indications on the réle of condition (C.1) and the appearance of the
traces Reg V,<© |F in the formulation examined here, as an outcome of our “reverse-engineering” an
analytical origin for the second Waterman algorithm.
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4. An observation about viability and convergence to the data in H°(T').

It is reasonable to attempt first to identify those obstacles 2_, wave-numbers k, and Neumann-data
functions g for which the second generalized Waterman scheme succeeds in producing a sequence
(uln) v N, converging to g in the norm of H°(T). In this section, we consider instead an easier
question, by asking when the following statement is true:

The scheme (gW.II) is viable and the sequence (u®, of normal derivatives

H’H)NZNO
constructed from (2.3) converges to g in the norm of H°(T') whenever g € H°(T) (),

and the sequence (gN) ?Vozl converges to g in H(T).
Perhaps surprisingly, we find the following negative result: when the scheme is viable one cannot
expect that every g € H°(T') will be convergently approximated in H°(T') unless the geometry is

very special.

Theorem 4.1. Let condition (C.1) hold. Then statement (S), obtains iff Q_ is a ball centered at
0.

Proof: In the statement of Theorem 2.1 we take H = H(T'), Vy = Vy := sp {V,52 v QN =

nmJf p—=

Ry := the orthogonal projector in H°(T') onto the subspace Uy := sp {U,’jo}g:l, L = (I+D;),

and then Ly = QyL = Ry (I 4+ D). Naturally, we also take v = V9 and w)) = U%C here.
Under these identifications, it is easy to check that the system in (2.11) coincides with that of the
scheme (gW.II) in (2.4). In fact, for any h € H°(T') and any m, by recalling (1.6) and noting that

each Reg V%€ is real, we find
(Lhwi) g = (I + Db, U52) g = (b, (I +D)USS) = ik (h, Reg Vil ),

whence it is clear that (2.11) does now take on the form (2.4).

Clearly, I+ D is a bijection of H(T") onto itself, since (C.1) implies that the operator is injective
and Dy is compact in H°(T'). Thus, dimR(Ly) = dimR(Ryx(I + D%)) = N = dimVy = dim Vy
for each N. Statement (i) of Theorem 2.1 now implies that (S)0 holds if there exist Ny and ¢ > 0
such that (2.8) holds, i.e., such that

|Bn(I + Di)uyl, > ¢|lvw]l, foreach vy €Vy, foreach N >N, (4.1)

On the other hand, since (gW.II) is viable precisely when the operators L N = Ly | Vv : Vg —
R(L N) are injective for all sufficiently large N, Theorem 2.1.7 shows that (4.1) is also necessary for
(S)O, so that the two statements are equivalent.

Now, we claim that (4.1) holds, in turn, iff (V;,Q)Z‘;l is a basis for H%(T); since it is shown
in [5] that the latter basis-property obtains iff Q_ is a ball centered at O, the proof of the theorem
will be effectively complete once we establish the equivalence claimed. For this, we require some

auxiliary results. First, we recall a well-known basis-criterion:

Lemma 4.1. (M. M. GRINBLYUM) A complete sequence (v,)""
for B iff there is an a > 0 such that

, in a Banach space B is a basis

dist (Vy, V) >a  forall N,

in which Vy := { v € sp {v, }_, | lvllg =1} and Vi :=5p {0, }5L n -

Proof: A proof is given in [11]. [
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Lemma 4.2. Let H be a Hilbert space and (Vy)~_, and (Uy)n_,
H, with (Uy)y_, ultimately dense. Let Py denote the orthoprojector onto Uy. Suppose that
K € B(H) is compact and that I + K is injective. Then there exist Ny and ¢, > 0 such that

sequences of subspaces of

||PN1)N||H >c “”N“H foreach vy € Vy and N >N, (4.2)

iff there exist N, and ¢, > 0 such that
|Pn(I+ K)ox| > |lon|ly; — foreach vy €Vy and N > N,. (4.3)
Proof: Suppose that (4.2) holds while (4.3) fails. Then there exists a sequence (ka):il with
vy, € Vi, llow Ilg =1, and [|[Py (I + Ky |lg < % for each k; we may suppose that (ka):il
converges weakly in H to some v, which we indicate, as usual, by U, =, for kK = oo. Thus, on
the one hand, PNk (I+K )ka — 0 in the norm of H, while, on the other, it is easy to check that
Py (I+ K)vy — (I + K)v, as k — oo; we used here the ultimate denseness of (UN’C)ZOZ1 in H,
which follows from that of (Uy)7%_,-
Now, the compactness of K gives K UN, Kv = 0 in norm, and this clearly implies in turn that

Therefore, we must have (I + K)v = 0, and so also v = 0.

PNk Kka — 0, whence the convergence PNk I+ K)ka — 0 gives PNk vy, — 0in norm, as k — oo.
But this is impossible, since it contradicts (4.2), which requires that ||PNk ka|| g > ¢ > 0 for all
sufficiently large k. Therefore, (4.3) is implied by (4.2).

The proof of the reversed implication is constructed in a similar argument. Let (4.3) hold but

suppose that (4.2) is false. Then there is a sequence (ka) with vy € Vi , lluy, Iz = 1, and

k=1
||PJ\,kak||H < % for each k, while vy, — vask = oo, for some v € H. Thus, Py vy — 0in
the norm of H and Py Uy, — v, S0 again we must have v = 0. Since the compactness of K again
shows that Py Kvy S Kv=0in norm, we get Py (I+K) vy, =Py vy + Py Kvy — 0; this
contradicts (4. 3) which says that ||PN I+ K )vN g > > cy >0 for all sufﬁc1ent1y large k. Therefore

(4.2) is also implied by (4.3), and the proof is complete 0

Returning to the proof of Theorem 4.1, from Lemma 4.2 we see that there exist N, and ¢ > 0
such that (4.1) holds iff there exist N; and ¢; > 0 such that ||Ryvnllg = ¢ |luyllo for each vy € Vi
and N > N,. In the present case, the latter is in fact equivalent to the existence of ¢, > 0 such that

||R1\,fu]\,||0 > ey ||fuN||0 for each vy € Vy, forall N >1, (4.4)
for, recalling that (V,52) " and (Ur0)> ot
maps V bijectively to Uy for each N. Now, it is easy to use the completeness of (V”O) (inH o)

nn

to check that the closed span Vy := 5p {VTf,?, n=N+1 in HO(T) is, for each N, just the orthogonal

complement H°(T') © Uy, so that also H*(T') © Vy = Uy. From this we find that Ry = I — Py,
with Py denoting the orthogonal projector onto Vy, so it follows that the H°(T)-distance between

are biorthonormal, we see that the restriction RN|\7 N

V5 and the unit sphere VN within the span Vy is just

dist (D, Vi) = inf [T =Pyox|y= _ inf  |[Ryow]l

N EVNsllonllo=1 InEV oy llo=1

Consequently, Lemma 4.1 implies that there exists ¢, > 0 such that (4.4) holds iff (V,’f,?l)zo:l is a
basis for H°(T'). But we have already pointed out that this happens iff Q is a ball centered at

0. 1

22



5. Viability and convergence of the far-field patterns in H°(Z,).

In this section, we investigate the viability of the generalized second Waterman scheme and the
convergence in H%(X;) of the far-field patterns of the approximants constructed as in (2.3); we also
establish some results about the numerical stability of the algorithm. In particular, we shall identify
some conditions under which the following statement holds:

The scheme (gW .II) is viable and the sequence (ul, of normal derivatives

oo
Q’H)N:NO
)N

constructed from (2.3) converges to g in the norm of Hy (T') whenever g € H%(T') (S
and the sequence (gy)~_, from H°(T') converges to g in Hx(T).

In turn, (S)?_\r implies viability and a weak sort of convergence for the generalized second Waterman
scheme itself, merely in the sense of far-field-pattern convergence in H°(X,), by Proposition 1.1.
As one might anticipate, we must here investigate the behavior of one or another of the familiar
boundary operators in the Hilbert space Hy(I'). It is convenient to introduce some notation for
working in this setting: let [ D} ], : {Ly(T') C Hy(T)} = Hy(T) denote the operator D} regarded
as densely defined and acting in Hy (T), i.e., such that [ D} ],.f := Dy f for each f € L,(T). In this
notz;;cion, we shall show that (C.1) along with the following condition gives us enough to establish
(5™

[D_l:]j_\[ : {L2(F) - Hﬁ(F)} — Hy(T') is compact. (C.2)
Lemma 5.1. The conditions (C.1) and (C.2) are sufficient to ensure (S)J_\I

Proof: Let (C.1) and (C.2) hold. Let the compact extension of [ D} ] to all of Hx(T) be denoted
again by [ Dy ], . We show first that I + [ D} ], is a bijection of Hy (T) onto itself, for which we
need only check that the operator is injective. Since (C.1) implies that I + D7 is injective, this
operator maps L,(I") onto itself. This shows that the range of I + [D*] contains L, (') and is

therefore dense in Hy (). From the compactness of [ D ], we know the range of I + [ D], also
to be closed in Hy (T, so that it must be all of Hy(I"). This implies that the (Hy (T)-) adjoint of
I + [D} ], is injective, allowing us to assert the same for I 4 [Dy ] itself, in this case. (In fact,
one can apply THEOREM IV of LAX [10] to show here that the null spaces of I + D* in H°(T') and
I+ |:D_;';:|;I in Hy(T) coincide, from which the desired result also follows.)

In the statement of Theorem 2.1 we take H = H(T'), Viy =V :=sp {V,f,?l nep @n =Py =
the orthogonal projector in Hy(T) onto Vi, L =1+ [D}],, and Ly = QyL =Py (I + [D}],);
clearly, Vyy then coincides with R(Ly) = R(Py (I + [Df],,)) for each N. We shall verify that,
under these identifications, the system in (2.11) coincides with that of the scheme (gW.II) in (2.4)

when we take v)Y = wl = V50 forn =1, ..., N and all N. In fact, for any h € Ly(T) and any m,
by recalling (1.6) we find

> ' min > ' moin

(Lh, Vi)™ = (B (I + Db, ViiQ), = (h, (I +D,)U30), = —ix(h, RegVin®|),

It follows that (2.11) does now take on the form (2.4) when the g5 belong to HO(T).

Let us check that the hypothesis of Theorem 2.1.7 is fulfilled with the indicated choices. For
each N and vy € Vy we have

JJen™ = 12+ [DF]5)ow — (I - Pn) [ D%

> o low|Z = (T = P [D

1P (7 + [ D5 Tnen

- N
:]NHB(H;I(F))”UNH—’
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with ¢ := ||(I + [Dg] The completeness of the sequence (V9)™ | in Hy(T)

||B(H @)

follows from its completeness in H°(T'), whence (I PN) converges strongly, i.e., pomtwise, to

N=1
the zero operator on Hy (I'); this convergence is therefore uniform on any compact subset of Hy(T').
Since [ D] is compact, it follows that ||(I —Py) [DZ]N”B(H?;(F)) — 0 as N = oco. Thus, the
preceding estimate shows that there exist N, and ¢ > 0 such that (2.8) holds in the present case.

Now statement (S)J:I follows from the conclusions of Theorem 2.1.i.  [J

We can now establish our basic result on viability, convergence, and numerical stability (or
instability):

Theorem 5.1. Let condition (C.2) hold.

(i.) If (C.1) is also true, then the generalized second Waterman scheme is viable and, for every

g € HY(T') and any sequence (gy)_, from H°(T') converging to g in the norm of Hy(T'),
the sequence ((u))S)%_ w, of far- ﬁeld patterns constructed from (2.3) and (2.4) converges

to the far-field pattern (u g)oo of the solution u, in the norm of H°(%,);
moreover, the sequence (cond (Q3°))~_, of £5-condition numbers of the numerical op-
-0

erators defined in (2.5) is bounded.

(#.) Suppose that (C.1) does not hold, so that ? is a Dirichlet eigenvalue for —A in Q_.
Then, either (a) the operator Q%° : ¢ — (5 defined in (2.5) fails to be injective for

all sufficiently large N or (b) the subsequence (Q'“O) of injective operators satisfies

k=1
limy_, o, cond (Q}‘V(Z) = 00, 5o that the scheme is at best numerically ill-conditioned.

Proof: (i). By Lemma 5.1, (C.1) and (C.2) imply that (S)Jjr
N)OO N )00
9 /N=N, 9'n) N=N,
of Neumann data converges to the given Neumann data g in the norm of H(I'). Now the con-

is true. Therefore, if g € H°(T), the

sequence (u can be constructed from (2.3) with (2.4) and the derived sequence (u

vergence assertion follows directly from Proposition 1.1, which establishes the equivalence between

convergence of Neumann data in H(I') and convergence of the corresponding far-field patterns in
HO(Z,).

To see that the sequence (cond (Q%f of ¢Y-condition numbers is bounded, with Q%°

PN n

defined in (2.5), let us make here (and in ]‘:heN(eoming proof of (i#)) the same identifications in
the statement of Theorem 2.1 that we used in the proof of Lemma 5.1; then the operator Q%P
coincides with £y, introduced in (2.12), for all N. We recall that (VrQ)>7_, is an orthonormal
basis for H};(I'), while we shall agree to regard the Vy here as subspaces of H (). Therefore, the
operators Fy : £ — Vy and Gy : £ — R(Ly), defined in (2.13) and coinciding now because
N =vNforn=1,...,N and all N, are clearly isometric

||B(£N) = ”ZN”B(VN) for all N and
HQ”O 1”3(@’) ||L IHB(V ) for N > N, and we get cond (Q5°) = cond (ZN) for all sufficiently

R(Ly) = Vy and we naturally choose w?
isomorphisms. Thus, the relation (2.14) implies that ||Q

large N. But it is obvious that the sequence (||E
boundedness of ( ||f’1HB(V ));C; N,

hold in the present setting. The boundedness of (cond (Q

N”B(v ))]O\,o_1 of norms is bounded, while the
~)/ N=

follows from (2.8), which is shown in the proof of Lemma 5.1 to

)) NZN, follows.

(44). Now we suppose that (C.1) does not hold. Assume further that alternative (a) is not the case, so
it makes sense to denote by (Q?V‘g)zil the subsequence of invertible operators of the sequence defined
from (2.5). Of course, just as in the proof of () Fy and Gy are isometric isomorphisms, so the

equalities || Q% HB(ZN) = HEN”B(V (for all N ||Qn(9 1” and cond(Q"ﬂN‘g) =

v By*) ~ ”i?\i”rs(vlvk)’
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cond (L w,) (for all k) remain valid. Since the operator L = I + [Dj ], here is not injective, we

—1

N,CHB(V = 00. Now, since Ly = Ly |V =

can apply Theorem 2.1.44 to assert that limy_, o ||E )
N
k

Pn(I + [Dg],) |V, it is easy to check that the sequence (ENPN)(I)Vo:l converges strongly to
I+ [Dy ], in Hy(T), so that

l}ngf ”ZNHB(VN) = liminf ||EN,PN||B(H;I(F)) > [|T+ [D:];\F“B(H;[(F)) >0,

N—oo

(the first equality holding here since ||L N H Bv,) = ||L NPN || B, (r)))? this implies that the sequence

(||EN ”B(V )):.11 has a positive lower bound. Thus, we can conclude that limy_, ., cond (Q}“VO) =
k N, = k
limy 00 cond (L Nk) = oo. This completes the proof. [

Naturally, the goal now is the determination of all domains 2_ for which (C.2) is true. Presently,
while we have no geometric characterization of this class of domains, we can show that it is nonvoid.
In fact, in the next section we give an operator condition sufficient to guarantee that (C.2) holds and
show that this sufficient condition obtains whenever I' is ellipsoidal. In the remainder of this section,
we supply some related results giving additional information about (C.2) which may be useful in
developing more definitive conditions for its validity.

There are conditions equivalent to (C.2) and phrased in terms of more familiar objects, one of
which we give in Proposition 5.1, infra. To understand the latter statement, it is helpful to consider
first just the boundedness relations given in

Lemma 5.2. The following four statements are pairwise equivalent:
(i.) The densely defined operator [ Dy ] : {L,(T") C Hy(T)} — Hy(T) is bounded.
(ii.) The densely defined operator BéD_,";B;% : {R(Bé) C HY(I)} — H°(T"), acting in H°(T'),
is bounded.
(iii.) R(B2) is invariant under D,
(iv.) The operator B;%DKB,% belongs to B(H°(T)).

Proof: Equivalence of (i) and (i): It is easy to see, directly from the definitions, that the densely
defined operator [ D], acting in Hy(T), is bounded iff there exists a positive M such that
1 1 . 1 1
||B,§D;;f||9 < M|BZf||, for all f € Ly(T), i.e., such that |BZD;Bx 2h|, < M|h|, for all
h € R(B,?), which is precisely the condition for the boundedness of the densely defined opera-
i1 1
tor BED:B, ® : {R(BzZ) c H*(I')} - H°(I), acting in HO(T").

Equivalence of (i) and (éii): Suppose first that ’R,(B,% ) is invariant under D,. Then B, %DKB,%
is defined on all of H°(T); since it is easy to check that the operator is also closed, the Closed
Graph Theorem says that it must be bounded. Therefore, the H°(T')-adjoint (B,: %DﬁBé)* is also
in B(H°(I")). Explicitly, for h € R(B,%) it is clear that (B;%DNB,%)*}I = B% D:B;%h, which shows
that the densely defined operator B,%D:B;% : {R(Bé) C HY(I')} — H°(T) is bounded; the same is
then true of its conjugate, which is just B,%D_:B;% : {R(Bé) C H'(I)} —» HO(I"), since Bé is self-
conjugate. Conversely, suppose that the latter operator is bounded: then its adjoint (B,% D*B, %)*

coincides with the adjoint of its bounded extension in B(H 0 (F)), and so is, in particular, defined
on all of H%(T); c¢f. [19, Theorem 5.3(c)]. Moreover, according to [19, Theorem 4.19(b)], we have
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I S RN 1 1 — 1 1
(B2D:B.*)" = B.*(B:D;)" = Bx*D,B#; the domain { f € HT') | D,BZf € R(BE) } of
the latter operator must then be all of H°(T), i.e., R(B,% ) is invariant under D,,. The same is then

true for D,..

Equivalence of (iii) and (iv): This equivalence was essentially already established in the second
part of the proof. In fact, the implication (#ii) = (iv) was verified there directly, while, conversely,
the inclusion By ? D, BZ € B(H°(T)) implies that the domain { f € HO(T) | D,BZ f € R(B?) }
of By, %DnBé is all of H°(T'), which says precisely that R(Bé ) is invariant under D,,.  [J

Now the condition (C.2)" given in the following statement has been clarified.

Proposition 5.1. The condition (C.2) holds iff

R(Bé) is invariant under D, and B;%DNB,% € B(H°(T)) is compact. (C.2)
Proof: Suppose first that (C.2) holds. Then, in particular, [ D ]
that R(Bé) is invariant under D,,, while B,%D_,";B;% : {R(Bé) C H(I')} — H°(T') is bounded and

1 1 s 1
B, 2D,BZ € B(H°(T')). Of course, as we have noted, BZ D% B, ? is the restriction to R(B#) of the
1 10, 1 1 _1 1

adjoint (Bx 2D, BZ2)", so that the compactness of B, 2D, Bz, and then also that of B, > D, B2, will

is bounded, so Lemma 5.2 says

follow if we show that Bé D*B, LI compact; we shall prove the latter. Thus, letting ( fn):o:1 be a
sequence from R(B,% ) that is bounded in H%(T), we must produce a subsequence ( fnk)zc’:1 for which
(B,%D_;:B;%fnk)zil is a Cauchy sequence in HO(T'). With f, € H(T') such that f, = Béfn for
each n, it follows readily that (fn):;l is bounded in Hy(T). By the compactness of [ D ], there
is a subsequence such that (D_,’gfnk);ozl is Cauchy in Hy(T), whence it is clear that (B,% D_j;fnk)zozl,
i.e., the subsequence (B,%D_;‘;B,:%fnk)

of the proof.

is Cauchy in H°(T), as required, completing the first half

o]
k=1’

1 1 1
Now assume that (C.2)' is true. Since B2 is self-conjugate, it clearly follows that B, 2D, Bp?

_1__ 1%
is also compact, so its adjoint (B,e 2D,‘AMB,E) has the same property. To prove that (C.2) holds, let
1
(£.)7-, be a sequence from L,(T) that is bounded in Hy(T), so that (BZf,) is bounded in
C1 Tl 1 oo
HO(T). Therefore, there is a subsequence such that ((Bx 2D, BzZ) B2 fnk) 1 is a Cauchy sequence

i 1.1 PR 1
in HO(T). But we have (B« *D,B2)"Bg f, = BiDjf, foreachk,so (B2 D;:fnk)zozl is Cauchy
in H°(T), from which it is clear that (D_,*;fnk)zo:1 is Cauchy in Hy(T). This shows that [ Dy ], is

compact in Hy(T') and completes the proof.  [J

1
Obviously, it is of interest to accumulate information about the range R(B,E); alternate char-

1
acterizations of R(BZ) are of particular importance. In this direction, we have

Proposition 5.2. (i.) ’R,(B,%) ={ feHT) ‘ ((f,m)o)oo €l }

n=1

(ii.) R(B,%) is invariant under the operator D,; iff 3> |(an,V,'j,‘?l)0|2 < oo whenever f €
HO(T) and 2, | (£, VQ),|” < 0.

(iii.) If R(B,%) is invariant under D,, then RegV,*®| .. and A, RegV,53 lie in R(B,%) for each

n, so that Y oo, |(Reg Vr@| ., Vi£Q) ? < o0 and ¥, |(Reg Vi, V50| ) |2 < oo, for
n=1,2,3,....

0 | 0
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Proof: (i). Let f € R(BZ), say, f = BZf. Then (f,V;Q), = (f,BZV;Q),, since Bf is self-

nn nn

1
adjoint. Upon recalling that (BZV,G) " is an orthonormal basis for H%(T'), we conclude that

((f, Vrf,?l)o)zo:l € /,. Conversely, suppose that the latter inclusion holds for some f € H°(I'). Then
~ ~ _ 1
we can construct an element f € HO(T) by f := Y7, (f, Vi) B2 V,iS, the series converging in
_ 1~ _
H(T). Since B, V59 = Ur©, we compute B f = Y7 (£, Vi), Us; but the latter series is just
f itself, for, denoting the sum of the series by f, and recalling the biorthonormality of (V)™  and
(UF©)>°_,, we find that (fo,VrQ), = (£, VrQ), for each n, whence the completeness of (VrQ)""

1~ 1
in H°(T') implies that f, = f. Therefore, BZ f = f, so f € R(B#).

1
(#4). This clearly follows directly from the characterization of R(BZ) just proven in (i).

(i#i). Suppose that D, maps R(Bé) into itself. Then, for any n, since U® = B, V,*9 belongs to

1 1
R(B,) C R(BZ), the relation (I + Dn)Ul;;O = —ikRegV;*%|, shows that RegV,*°|. € R(BZ).
But then the inclusion 4, Reg V"% € R(BZ) follows directly from the definition of Uf®. [

nin

Remark. Appearing in the original presentation of WATERMAN [18] and repeated often in the
literature on these methods is the purported relation

QHOTHO = _Re QnO, (5_1)

claimed to connect the actual transition-matrix defined here in Section 1 and the infinite matrix Q*©
with elements Q%© defined in (1.13). That is, the product indicated on the left in (5.1) is intended
as (convergent) infinite-matrix multiplication. The “truncated” form of (5.1) is the relation (1.12),
already cited as forming the basis for the second Waterman scheme. Alternately, if (5.1) holds and
¢ is a sequence of coefficients generating a regular incident field as in (1.9), then the corresponding
sequence o := T*9, of scattered-field expansion coefficients will satisfy the infinite linear system
expressed by

Q"% = —Re Q"°.. (5.2)

It seems to be a common perception that (5.1) and (5.2) are correct in general, and that the “T-
matrix method” consists in truncating either of the two systems to get finite systems to solve for,
respectively, approximate transition matrices or approximate scattered-field expansion coefficients.
By “truncation” here we mean the formal application of the classical abscnittsmethode for approx-
imate solution of an infinite system; cf., e.g., [6]. In fact, the “derivation” of (5.1) given in [18]
is completely formal, and it is not known just when the relation is correct, just as it is not known
exactly when the abscnittsmethode can be applied to generate convergent approximations in the
indicated manner. In any event, an analysis of the correctness of (5.1) and (5.2) is not necessary for
an analysis of the second Waterman scheme. Nevertheless, one can show that (5.1) holds at least

1
whenever the set of traces {Reg V,#®|.} " belongs to the range R(BZ); the easy proof of this is

given in [5]. Therefore, according to Proposition 5.2.iii, (5.1) holds if ’R(Bé ) is invariant under D,..
By continuing along the lines that we have begun here, one can prove more concerning these ques-
tions; since we have not developed any new facts about the convergence of the methods by following
this approach through sequence spaces, we shall just roughly indicate some of the results without
proof. Thus, by supposing that conditions (C.1) and (C.2) hold, one can show that Q*© generates
a bounded linear operator in the sequence space £, that is also bijective, while the transition matrix
and scattered-field expansion coefficients satisfy (5.1) and (5.2), respectively. Moreover, application
of the abscnittsmethode to, say, (5.2), can be completely justified; the result will be a sequence of
“finite-length” elements of £, converging to the unique o satisfying (5.2), whence it also follows
easily that the corresponding sequence of far-field patterns will converge to the far-field pattern of
the scattered field, just as in the statement of Theorem 5.1.i. Finally, in case (C.1) fails to hold, the
numerical instability described in Theorem 5.1.ii can be established by the same approach.
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6. A condition sufficient for (C.2) and its satisfaction for ellipsoidal T.

In the preceding section, we established the implications of the condition (C.2), first with condition
(C.1) and then under the assumption that (C.1) fails, for the viability, convergence, and numerical
stability of the generalized second Waterman scheme. However, we have not yet shown here that
there are any domains Q_ for which (C.2) actually holds. While it appears that (C.2) is a strong
restriction on the shape of {2_, we can give at present no easily verifiable criterion that is equivalent
to this condition. We do, however, have a condition that is sufficient to ensure (C.2) and which can
be verified to hold for at least one important class of shapes, viz.,

R(B,) is invariant under D,; (C.2.1)

this is the content of Theorems 6.1 and 6.2.
Theorem 6.1. (i.) The condition (C.2.1) implies (C.2).

(i1.) Condition (C.2.1) is implied by the operator relation

D.B, = B,Dx. (C.2.2)

(#44.) The operator relation (C.2.2) is equivalent to the symmetry condition

(Vi RegVr©|L), = (Vi Reg Vi©|),  forall mandn=1,2,3,.... (C.2.2)

mon’ nn’

Moreover, if (C.2.2)" holds for some O € Q_, then it is also true with O replaced by any
other O' € Q_.

Proof: (i). To show that (C.2.1) implies (C.2) it is convenient to appeal to (a simple extension of)
a result of LAX [10]:

Lemma 6.1. Let (B,||-||z) be a Banach space and (H,(-,-)y) a Hilbert space with B C H,
B dense in H, and the natural injection map of B into H bounded. Let the operators L; and
L, € B(B) be formally adjoint when regarded as densely defined and acting in H. That is, with
Ek :{B C H} — H given by fkf :=L,f for each f € B, k =1 and 2, it is supposed that

(L,f,h), = (f.L,h), for f,heB. (6.1)

Then

(i.) il and E2 are bounded, and so possess unique extensions to elements of B (H ), which
we denote again by L, and L,, respectively; these extensions have norms not exceeding
1 ~ ~
{IIL, |5l Lyl g} ? and are related by L, = Ly*;

(ii.) if either L, or L, is compact (in B), then both L, and L., are compact (in H).
Proof: The proof of Lemma 6.1 appears at the end of this section.

Returning to the proof of Theorem 6.1.4, let (C.2.1) hold. As we have observed, R(B,) is
closed under complex conjugation because B, is self-conjugate, and so R(Bn) is also invariant
under D,.. This means that the domain of the operator B; 1D, B, is all of L,(T); since the operator
is also closed, it follows that it is in B(H°(T')). In the statement of Lemma 6.1, take B = H°(T),
H = Hy(T), Ly = D, and L, = B;'D,.B,.. To see that the hypotheses of Lemma 6.1 are fulfilled
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with these choices, we need only check that the two operators are formal adjoints with respect to
the inner product of Hy(T'). Accordingly, for f and h € L,(I') we compute

Dif, b)Y = (f,D,.B.h). = (f,B.B.*D,.B,.h), = (f,B.;'D.B.h)",
K 0 0

as required. Now, with the compactness of D* in H°(T'), Lemma 6.1 shows that (C.2) must be true.
(44). This statement is obvious.

(4i¢). It is easy to show that (C.2.2) and (C.2.2)" are equivalent. In fact, we can draw the conclusion
from the pairwise equivalence of the following chain of assertions, which follows by recalling the
completeness of (V,59) ™ | in H(T), relation (1.6), and the fact that the regular solutions Reg V,r®
are real-valued:

BND_:) = DHBN;

i — i
o Br(I+D7) = —(I+D,)B,;
%BE(I+D_;';)V,§§2, = %(I+Dn)Ban“§2, =RegV"O  for m=1,2,3,...;
(ViR =B (I + D) ViR), = (Vi Reg Vi©l),  for m,n=1,2,3,...;

and, finally,
(V,Z?n,Reg Vrfo|r)o = (Reg V;O|F=M)o

i — — i I
= (=—(I+D,)B.V;i2. Visa)o = (Vi — B (I + DR) Vi),
= (Vi9,Reg V€ for m,n=1,2,3,....
( nm m |r/o

The final assertion of (#i4) now follows from the equivalence of (C.2.2) and (C.2.2)’, since condition
(C.2.2) is independent of the choice of O € Q_. This completes the proof.  [J

We finish the development of our concrete sufficient condition for (C.2) and the conclusions of
Theorem 5.1 on the viability, convergence, and numerical stability of (gW.II) by recalling that the
symmetry condition (C.2.2)" obtains whenever T is an ellipsoid, as pointed out by WATERMAN [18].

Theorem 6.2. The equivalent conditions (C.2.2) and (C.2.2)" hold whenever the boundary T is
ellipsoidal. Therefore, when T is an ellipsoid condition (C.2) obtains, so that statements (1) and (i)
of Theorem 5.1 hold in that case.

Proof: Because the complete reasoning is somewhat lengthy, we have relegated to the Appendix an
amplification of Waterman’s argument showing that the symmetry condition (C.2.2)" holds when
T is ellipsoidal. The remaining statements of the Theorem follow immediately from this, by Theo-
rem 6.1. O

Finally, we supply a proof of Lemma 6.1. For this, we will rely on

Lemma 6.2. Let (B, ||-||5) and (H, (-, -)y)be, respectively, a Banach space and a Hilbert space
related as in Lemma 6.1. Let L € B(B) be symmetric when regarded as densely defined and acting
in H. That is, with L : {B C H} — H defined by Lf := Lf for each f € B, it is supposed that

(Lf.h), = (f.Lh),,  for f, heB. (6.2)
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Then
(i.) L is bounded, with norm not exceeding [|L]| B(B)’ and so possesses a unique extension to

an element of B(H), which we denote again by L, with ||L||B(H) ||L||B(B)7
(i.) if L is compact (in B), then L is compact (in H).
Proof: Statements (i) and (i) are, respectively, Theorem I and Corollary IT of LAX [10]. [

Proof of Lemma 6.1: The first part of the statement of (4) is noted in [10], along with a proof; we
choose to employ instead the approach taken in [7, Theorem 2.13] for establishing the result, since
this leads to an easy proof of (i). Let L := L,L, € B(B), and define L := L,L, : {BCH}— H,so
Ef = Lf for each f € B, and Lis just L regarded as acting in H. With (6.1) it is easy to check that
(6.2) holds, so Lis symmetric, and we may apply Lemma 6.2 to conclude that T is bounded. Denoting
its continuous extension in B(H) again by L, we see that [|Zl| 5 < [ILlls(m) < L1l 1 L2l ) -

Now the boundedness of El follows from
12211 = Eat Bif) g = (5.26) g < Wl 1z < Nl Loy £ for e B,

along with the claimed estimate for the norm of El. The boundedness of EQ is proven in the same
manner. Denote the bounded extensions again by fl, EQ € B(H). Since B is dense in H, the equality
(6.1) extends to hold for all f, h € H, whence we conclude that EQ = E{. To prove the compactness
assertion, we note first that the definition L := EQEI extends to hold on all of H as L = E*fl
Consequently, if either L, or L, is compact, then L := L,L, is compact, so Lemma 6.2 says that
L,ie., L1L,, is compact; the compactness of L, follows from this (cf., e.g., [19, Theorem 6.4(c)]),
along with that of L2 = L{. 0
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Appendix. Satisfaction of the symmetry condition (C.2.2)' when T is an ellipsoid.

In this Appendix, we fill in some of the details in the reasoning given by WATERMAN [18] to show
that the symmmetry condition (C.2.2)" holds whenever the boundary I' := 9Q_ is an ellipsoid.

It is more convenient now to work in the double-index notation. Thus, setting
QZZ = (ann(;)na Reg ‘/lfrcn(9 1" / kn’n Reg VE d)‘l"a

we want to prove that the difference D™ := QL™ — Q" vanishes for any ellipsoid T’ whenever k and
[ are nonnegative integers and the integers m and n satisfy —k < n <k and —I < m <. Since it is
easy to see that

1
/ Vi RegVio? e = 5 { / (Via© Reg Vist ) sm e / (Vis® Reg Via — VisSa Reg Vi) d/\r}

:;/(VkOReng )md)\r"‘ —dims

we get

Dim = Qi — gfn = /(V Reg Visd — Vis® Reg Vi ) on dAr-

From the latter expression it is already obvious that Dlm =0.

For the time being, we suppose merely that I is starlike with respect to the point O € Q_ and
symmetric with respect to each of three mutually orthogonal planes passing through O. Relative
to an origin located at O, let I' be described as the graph of the mapping given on the unit sphere
¥, by & = rp(8)é, in which r. is a positive real function of class C? on ¥;. Then, by setting up
the integral in spherical coordinates and merely invoking the properties of rp that are implied by
the geometric assumptions listed, one discovers that 15,5? = 0if (1) k and [ are of opposite parity
or if (2) m and n are of opposite parity or if (3) one of m and n is nonnegative while the other is
negative. Consequently, writing

— plm
Dlsmn T Dl+2sn - /FFvlsmnm d/\l"a

in which F;

Ismn

is given in R® \ {O} by

‘Flsmn (Qé) =1 {jl(ﬁg) yl+2s(’$g) - jl+2s("<"’9) yl(ﬂg)} lem(é) le+2s n(é) for 0> 0; éc€ 2]1:
where ¢ denotes distance measured from O, the proof is reduced to showing that

Im| <1, |n|<I+2s, 1>0, and s>1,
Dismn =0 for with m and n of the same parity and both either > 0 or <0, (A.l)

when T is an ellipsoid.
From this point we suppose that the integers [, s, m, and n are fixed as in (A.1).
Now, according to WATSON [20, pp. 296, 297], for k > 0 we can write

T ()Y i1 10(2) = o1 ()Y (2) = == Ry 2 (2),

Tz
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wherein (the “Lommel polynomial”) R, , is of the form

with [-] denoting the greatest-integer function; explicit expressions for the coefficients ¢;'(g) can be
found in [20], but are not needed here. Therefore, since j,(z) := {m/ 2z} , and correspond-
ingly for y,(z), for the spherical functions we have

1
(721

. . 1 l+3 _
() Yi4p(2) — Jigp(2) yi(2) = _z_ng 1 1+2 Z &y (g P2t
q=0

In particular, for the combination of present interest we find an expansion of the form

31(2) Yry25(2) = Jryas(2 i ( )2(8 Q)H (A.2)
=0

Next, we require the (generalized-Fourier) expansions of products of the basic spherical-surface
harmonics in terms of the same spherical-surface harmonics, for which we appeal to the results
cited by MESSIAH [12]. In the latter book, the complex orthonormal spherical-surface harmonics
{Y/||m|<1,1=0,1,2,... } are defined by

Y™ (8) := { (_i)m } (2l4—:; L M)% P/™ (cos6;) exp(imgs)  for {m 20 } , éex.

I+ |m|)! m <0

For the products of these spherical harmonics, Messiah gives the expansion

L+, p

- (2, +1)(2 : %
P S S P (ha00lp0)(tamima pa)T;
p=|l,-1,| 9=—P

for |m1| S l17 |m2| S l27 lla l2 = 07 17 27 Tty (A3)

in which the Clebsch-Gordon coefficients ( Iy Iy my my |pq) are defined for [m,| < Iy, [my| < I,
lg| <p,and l;,1,,p=0,1,2, ..., and satisfy

(Lilymymy|pg)=0 if g#my+my or p<|lj—ly| or p>1l +1, (A.4)
and

<l1 lymymy |pq> = (—1)ll+12+p< Lily =my —my |P —¢1>; (A.5)
the latter equality shows that <ll 1,00 | p0> = 0if [; + 1, and p are of opposite parity. Then, with

m(q) denoting the parity of the integer ¢, by also accounting for (A.4) the expansion in (A.3) can be
written in the form

Yy
1 2
1+, 1
21 1)(21 1)) 2 ~
= z {( 14:?(2)(4_21;_ )} <l1l200|p0><l1l2m1m2|p ml—}—m2>l/'pm1—i_m2
p=max {[m,+ma,l; ~ly} P
7"(1’):7"(114‘12)
for |my| <ly, |my| <1y, 1;,1,=0,1,2,.... (A.6)
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One can easily verify that the real H(X,)-orthonormal spherical-surface harmonics {}Aflm} defined
in Section 1 are given in terms of the complex orthonormal spherical-surface harmonics defined above
by

f/lO for m =0,
N L _1\ymVvm 1 —m _
=4 UMY form=1,.00 for 1=0,1,2,... .

%{(—l)mf’l_m - ?lm} form=-1,...,-1,
By using the latter relations with (A.6) and keeping in mind (A.5), when m; and m, are either both
nonnegative or both negative one arrives at an expansion of the form

}/21"'”1 lym,
I+, L+l
— miMmy v MMy v
= > ay, i, )Yy, m, | + > bty PV Yp m,—m,
p=max {|m;+ms|,|l; —ls|} p=max {|m; —my|,|l; —l5|}
m(p)=m(ly+ly) n(p)=m(ly+l5)

(with m; and m, either both >0 or both <0), (A7)

the second sum being absent if m;m., = 0; specific expressions for the coefficients are easily worked
out, but are not required for present purposes. Of course, the sums here are over even values of the
index p if w(l;) = =w(l,), which holds in the cases of interest to us. Since we have restricted [, s,
m, and n as in (A.1), with (A.2) and (A.7) the difference D
combination of integrals of the form [ F%,, dAp, in which F is given by F2 (08&) := ?pq (&)/ o™
for p > 0 and & € ¥, (¢ again denoting distance from O € 2_), and in no term of the sum do

1smm Can be expressed as a finite linear

we find o < 3. For such an integral, using the function rp describing the boundary I' that is here
star-shaped with respect to O, one computes

o pp+1 Y,
[Epnane = {2220 o} [ S, @z

1T

note that the integral on the left therefore vanishes when o = p + 1 for p # 0 (which can also be
shown by using the fact that F£ ' is harmonic in R? \ {O}, as observed in [18]). Thus, with the
indices satisfying the conditions of (A.1), we get

1

s—1 2(1+s) I mn =R
. ¢;(Q)a7}t25(p) [ p(p+1) Y, et
Dy =1 3 > > —2(s—q)—1 / plmtnl gy
smn G0+ — =
q=0 p:ma);{(le%_‘tn‘as} K q 2(3 Q) 21 rl" q

~

s—1 2(l+s) 1 mn
; ¢s (@125 (0) [plp+1) L _
+1 Z Z Kj2(sfq)+1 2(8 _ q) - 2(8 - CI) -1 5, W d)\El, (AS)

¢=0 p=max {|m—n|,2s}
p even

note that |m + n| and |m — n| are even, while the second sum is absent if mn = 0.

Finally, let us suppose that I' is an ellipsoid. Then we have already effectively required that O
lie at the center of the ellipsoid, and it is easy to check that the codrdinate system can be oriented
so that the function rp describing I' satisfies

= 51Yo0 + BaY2 + B35,

’—JHM| =
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in which the coefficients are given in terms of the lengths a,, a,, and a; of the semi-axes of the
ellipsoid, aligned along the respective axes of the associated cartesian system, as

2 1 1 1 2 |m (2 1 1 2 [3r (1 1
= - sy Y Y = - -\ — —= d = - — |\ ——=].
/Bl 3\/7_1- (a% + CL% + ag) 9 ﬂ2 3\/; (ag a% ag) ’ an 183 3 5 (a% ag)

Thus, on the basis of (A.7) one can prove by induction that 1/r2N can be written as a linear

combination of the spherical-surface harmonics {?’2 k2j alone, for each positive integer N.

}05 k<N
In particular, for 0 < g < (s—1) the function 1/ r%(s_q) has an expansion involving only the spherical-

surface harmonics {}A’Q k2j On the other hand, the inequality p > 2s holds in each term

Vo
of the sums in (A.8), Wher(l)cse]’iktgi(; cﬁaar that the only terms in those sums that will not vanish by
virtue of the orthogonality of the spherical-surface harmonics are those with p = 2s and ¢ = 0
(and the first sum has no such term if |m + n| > 2s, while the second fails to have such a term if
|m —n| > 2s). But the factor {p(p+1)/2(s—gq)} —2(s—¢) — 1 in the coefficient of those remaining

terms vanishes when p = 2s and ¢ = 0, so that (A.1) does indeed hold.

This establishes the symmetry condition (C.2.2)" for ellipsoids and completes the proof of The-
orem 6.2.
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