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Machine learning classifiers predict 
key genomic and evolutionary 
traits across the kingdoms of life
Logan Hallee 1 & Bohdan B. Khomtchouk 2*

In this study, we investigate how an organism’s codon usage bias can serve as a predictor and classifier 
of various genomic and evolutionary traits across the domains of life. We perform secondary analysis 
of existing genetic datasets to build several AI/machine learning models. When trained on codon 
usage patterns of nearly 13,000 organisms, our models accurately predict the organelle of origin and 
taxonomic identity of nucleotide samples. We extend our analysis to identify the most influential 
codons for phylogenetic prediction with a custom feature ranking ensemble. Our results suggest that 
the genetic code can be utilized to train accurate classifiers of taxonomic and phylogenetic features. 
We then apply this classification framework to open reading frame (ORF) detection. Our statistical 
model assesses all possible ORFs in a nucleotide sample and rejects or deems them plausible based on 
the codon usage distribution. Our dataset and analyses are made publicly available on GitHub and the 
UCI ML Repository to facilitate open-source reproducibility and community engagement.

The coding DNA of a genome describes the proteins of the organism in terms of 64 different codons that map 
to roughly 20 different amino acids and a stop signal. Different organisms differ not only in the amino acid 
sequences of their proteins but also in the extent to which they use the synonymous codons for different amino 
acids1. The inherent redundancy of the genetic code allows the same amino acid to be specified by one to six 
different codons so that there are, in principle, a vast amount of nucleic acid sequences to describe the primary 
structure of a given protein2. Coding DNA sequences can therefore carry information beyond that needed for 
simply encoding the amino acid sequence. Thus, one may ask: is it possible to classify some properties of nucleic 
acids from the usages of different synonymous codons?

In this study, we describe our attempt to classify codon usage in terms of viral, phageal, bacterial, archaeal, and 
eukaryotic lineage, as well as by cellular compartments from nuclear, mitochondrial, and chloroplast DNA. By 
performing secondary analysis of existing genetic code datasets stored in the Codon Usage Tabulated from Gen-
bank (CUTG) database3, we demonstrate that genomic and evolutionary features can be learned using machine 
learning (ML) methods and used for identifying phylogeny and DNA-type of genome-wide coding domains. 
Further analysis allows for the identification of which codons are most influential for phylogenetic prediction.

Sequencing entire genomes is increasingly easy with next-generation sequencing techniques that are gradually 
becoming inexpensive4. However, genome annotation is a notoriously tricky problem; interpreting the billions 
of DNA nucleotides and identifying where functional components are located is complicated. With a growing 
number of whole genomes to work with, annotating the open reading frames (ORFs) is more important than 
ever. ORFs are transcribed regions of DNA. Without considering introns, the only criteria for a potential ORF 
is a start and stop codon in the same frame, meaning a multiple of three nucleotides separates them5. Because 
of this, actual coding regions of DNA (correct potential ORFs) are extremely sparse among the possible ORFs.

Redundant codons are favored in genomes by their relative abundance on a species-by-species basis. This is 
relevant during translation because tRNAs for redundant codons can exist at different concentrations6. There-
fore, redundant codons with high or low respective tRNA concentrations can either halt or speed up transla-
tion. Sometimes, this variance in translation is necessary for the growing polypeptide chain to fold correctly6. 
A species’ codon distribution is becoming more and more important in genomics and structural biology7; the 
conventional “silent” mutations are not always silent.

Thus, we suspect that if a section of DNA uses many codons that are not relatively abundant in that genome, 
it is less likely to be an actual ORF. We hypothesize that codon usage frequencies establish a probability distribution 
within an organism’s genome that can be utilized with statistical tests to reject implausible ORFs. We have built a 
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proof-of-concept system to show how codon usage distributions could theoretically be used alongside genome 
annotation pipelines to reject implausible ORFs, and reduce the sparsity of correct ORFs in a pipeline.

Methods
Datasets.  Codon usage data.  We examined codon usage frequencies in the coding DNA of a large sample 
of diverse organisms from different taxa tabulated in the CUTG database. The exact details of our data prepara-
tion are detailed in the supplemental material, Section 1. The trimmed dataset is composed of 12964 organisms 
with phylogenetic information, the organelle location of the coding DNA, and the corresponding 64 codon 
usage frequencies. 126, 2918, 6868, 220, and 2832 belong to the archaea, bacteria, eukaryote, bacteriophage, 
and virus kingdoms, respectively. When categorized by DNA-type, the dataset includes 9249 nuclear, 2899 mi-
tochondrial, and 816 chloroplast entries.

DNA for open reading frame detection.  The DNA used to test the pipeline was of commercially available plas-
mids from Addgene, which were picked based on personal familiarity. Plasmids are typically small, circular 
components of double-stranded DNA. They are naturally used by bacteria to exchange genetic information but 
are used commonly in biological research to give bacteria genetic material8. The first plasmid used is the protein 
expression vector PUC18 (Addgene plasmid # 50004)9. It is a 2686 base pair (bp) plasmid with two correct ORFs 
with 855 total potential ORFs. The correct ORFs are genes that encode Escherichia coli (E. coli) proteins AMPr 
and B-gal, so the E. coli reference frequencies will be used to compare this data. The second plasmid contains 
HSP90 (Addgene plasmid # 22487)10, a human protein, and four other E. coli. protein sequences for cloning pur-
poses. At 7636 bp, this plasmid has 5470 potential ORFs, with only five correct ORFs. We use the E. coli reference 
for the four E. coli ORFs and the human reference for the HSP90 ORF.

These plasmids highlight how many start and stop codons are separated by three nucleotides, and how actual 
coding domains are incredibly sparse. Because the frame of reference is unknown until a coding domain is 
established, it can be tricky to tell a random sequence of DNA from an actual gene.

Statistical metrics.  In order to effectively evaluate our proposed ML models, we utilized the following 
quantitative metrics to measure the performance of each classification task.

The accuracy measures the percentages of sample objects that are correctly classified and labeled11. It denotes 
the ratio of the total number of true predictions to the sum of all observations. TP, FP, TN, and FN represent 
true positives, false positives, true negatives, and false negatives, respectively.

The precision measures the amount of variance and uncertainties of the data not explained by the fitted values 
of the model11. The precision ranges from 0 to 1. There is often a trade-off relationship between the Precision 
and the Recall11.

The recall, also known as the Sensitivity or True Positive Rate (TPR), suggests the proportion of true positives 
relative to the sum of true positives and false negatives11. The recall value ranges from 0 to 1, and this fraction 
indicates the percentages of samples or observations that are correctly classified.

The F1 score, also known as the F-measure, is the harmonic mean of precision and recall or sensitivity11,12. 
Numerically, the F1 score ranges from 0 to 1. F1 = 1 indicates perfect classification, which is equivalent to no 
misclassified samples FN = FP = 0 , as shown in Eq. (4).

As variants of the F1 score, the micro-F1 score ( F1micro ) and macro-F1 score ( F1macro ) are obtained by first 
calculating a Micro- and Macro-averaged Precision ( Pmicro and Pmacro ), as well as the Micro- and Macro-aver-
aged Recall ( Rmicro and Rmacro)11. Here, we need to calculate the confusion matrix for every class, in which 
C = 1, 2, . . . , i, . . . , n denotes the total n number of classes.

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP
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2× TP

2× TP + FP + FN
=

2× Precision× Recall

Precision+ Recall

(5)Pmicro =

∑C
i=1 TPii

∑C
i=1 TPi + FPi

, Pmacro =
1

C

C
∑

i=1

TPi

TPi + FPi
=

∑C
i=1 Precisioni

C

(6)Rmicro =

∑C
i=1 TPii

∑C
i=1 TPi + FNi

, Rmacro =
1

C

C
∑

i=1

TPi

TPi + FNi
=

∑C
i=1 Recalli

C

Version of record at: https://doi.org/10.1038/s41598-023-28965-7



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2088  | https://doi.org/10.1038/s41598-023-28965-7

www.nature.com/scientificreports/

The AUC​ represents the hypothesized area under the ROC Curve13. It reflects how well the model distinguishes 
between classes and provides a measure of the performance of the ROC curve14. The ROC curve plots the True 
Positive Rate against the False Positive Rate (FPR). The higher the proportion and curve are to 1, the better the 
fit of the ROC curve. By summing up all the rectangular areas under the ROC curve, we can use the Trapezoidal 
Rule as shown in Eq. (8), to estimate the value of AUC​. Similarly, the closer the AUC​ value is to 1 represents the 
selected model having more capability to distinguish between correct and incorrect classes for the samples. The 
closer the AUC​ value is to 0, the less capable the model is in differentiating the real class from other false classes.

Data splitting and cross‑validation.  First, the data was randomly shuffled to maintain the same propor-
tion of classes throughout the training and test splits. We split the data into a training set composed of 80% of 
the total data, with the remaining 20% into a test set. The training data was fed to fit the models and for cross-
validation (CV), where the test data was kept completely separate and only used for our final model evaluation. 
The reported results are from exclusively test data. For multi-class classification without massive class imbalance, 
such as our kingdom and DNA-type classification, we were looking for our metrics (section “Statistical metrics”) 
to be as close to 1 as possible; generally higher than 0.9. The confusion matrix for test prediction should be close 
to a diagonal matrix. With this in mind, we are not aware of a baseline in the literature to compare our results. 
Therefore, we will compare our models to each other on test data after optimization with cross-validation (CV).

The performance of the model with varying hyperparameters was optimized with k-fold CV procedures 
using a subset of our training data as a validation set. The training data was first randomly arranged and split 
into k groups. k = 3 or 5 in our models depending on the compute required. For k number of times, a unique 
group was taken out as a validation dataset, and the remaining groups were assigned as the training dataset. The 
model was developed using the remaining groups of the training dataset, and its performance was evaluated on 
the validation dataset. This method returns a list of five accuracy values for each iteration, and the average was 
calculated as a CV score.

Ensembles.  Choosing an optimal ML model is difficult. The No Free Lunch theorem15 shows that there is 
no single model that is better for every dataset. In fact, it implies that every model performs equally well when 
averaged with an infinite variety of data. Ensembles are composed of multiple models and seek to combat the 
No Free Lunch theorem. Features are independently input to each model individually and, in the model used for 
this analysis, the outputs are weighted evenly towards a majority vote for the ensemble prediction. This is called 
“hard voting”. Many well-performing ensemble models can often classify data points that are hard to classify for 
individual models. Here, we utilize some of our optimized models below by combining them with hard voting 
for the kingdom and DNA-type classification.

k‑nearest neighbors.  The k-Nearest Neighbors (k-NN) is a non-parametric classification algorithm based 
on classifying similar objects that cluster together in an n-dimensional feature space16. In this paper, we used the 
default method of the Euclidean distance, a distance or dissimilarity metric to compute the pairwise differences 
between data observations. The Euclidean distance is the most common measure of a straight-line distance 
between two samples. This Euclidean distance metric formula is specified below.

Any two objects p and q in the training set are embedded in an n-dimensional space, 64-dimensional in our 
data, and the class of an object in the test set is determined to be the most common class of its closest k neigh-
bors. When two objects are compared, each having n features, each object j is assigned to the class of neighbors 
c depending on the largest probability16:

We use five-fold CV to choose the optimal k for kingdom and DNA-type classification.

Support vector machines.  Support Vector Machines (SVMs) scale up the dimension of the feature data 
until it can be separated by a function of choice17. A margin of classification surrounds this function with impli-
cations for fitting the model, and its size is dictated by the constant C, where a lower C encourages a larger 
margin17. From our k-NN analysis discussed in section “Kingdom and DNA classification”, we know the king-
dom and DNA-types are distinctly clustered in high-dimensional space and should be easily separable by SVMs. 
The parameters tested during the five-fold CV are the kernel function of choice, the margin constant C, and γ , 
which scales the radial bias function (RBF) kernel.
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Random forests.  The Random Forests (RF) classifier is an ensemble method itself that combines the results 
of different decision trees by voting across them. RF classifiers are advantageous in preventing over-fitting and 
handling large datasets with high dimensionality18. In this paper, each decision tree arrives at a different predic-
tion based on the predictors and the training data used, both of which are randomly chosen. We use three-fold 
CV to search a set of optimal parameters for RF: number of trees to initialize, minimum samples per split, mini-
mum samples per leaf, max amount of features, max depth, and to bootstrap or not.

The RF model was also used to rank the codons in terms of importance for prediction. RFs can do this by 
keeping track of how each split (and feature) improve the prediction from the training dataset. The higher the 
leaf purity, the greater the importance of the feature. When this is kept track of in each tree for all trees, it can 
be normalized to 1, and the output is the “importance score” of each feature19.

Extreme gradient boosting.  Extreme Gradient Boosting (XGB) is also an ensemble method. It is a gra-
dient boosting-based algorithm that fits an additive model in a forward step-wise manner with an appropri-
ate learning rate η20. Unlike the RF method that builds trees independently, the XGB algorithm constructs its 
decision trees called weak learners or shallow trees sequentially to adjust the model step-by-step. While gradi-
ent boosting models boast greater sensitivity to underlying signals from feature data, they also exhibit greater 
sensitivity to underlying noise, making them more susceptible to over-fitting than RF models21. Our detailed 
outline of the mathematical procedures for updating an XGB model sequentially via stochastic gradient descent 
is included in our supplementary material, Section 2.

Artificial neural networks.  Artificial Neural Networks (ANNs) are designed to model a set of intercon-
nected biological neurons22. For classification, it is common to have an input layer that the data is fed to, then 
output to a certain amount of middle layers, and finally, there is an output layer considering each possible label. 
The outputs of neurons are weighted, and if the sum of weighted inputs meets the threshold of their activation 
function, they “fire” outputting to the next layer. These weights are what the chosen loss function optimizes 
over22,23. ANNs can powerfully handle high-dimensional datasets with large variable inputs and also capture 
their shape and complex relations from incomplete information23.

Our customized dense or feed-forward layer used a ReLU activation function. The weights were initialized 
with He Normal, and had l2 regularization on them. Using the sparse categorical cross-entropy for loss, the Adam 
optimizer, and 15 epochs for each model, we performed three-fold CV to choose the number of layers, neurons in 
each layer, the percent of dropout neurons, and the l2 penalty term for regularization. These considerations allow 
for a balance between model complexity and the prevention of over-fitting. After the optimal hyperparameters 
were chosen, the models were compiled and run with a validation split of 0.2 for 1000 epochs with a patience 
of 50; meaning the run was terminated when the validation loss did not improve for 50 epochs. Afterwards, the 
best weights were saved for test analysis.

Naive Bayes model.  Unlike other classifiers, the Naive Bayes Model (NB) is a probabilistic classifier based 
on the Bayes’ Theorem24. It is extremely fast in model training relative to other classification algorithms. This is 
because the NB has no complicated iterative parameter estimations, which leads to high efficiency and practical 
use even for high-dimensional data classification tasks. In Eq. (11), P(class|x) denotes the posterior probability, 
which determines what class the sample data belongs to. The numerator P(class|x) represents the probability that 
a sample would belong to a given class, and P(class) is the prior probability of a given class. The denominator at 
the bottom is the sample’s prior probability.

However, an important assumption of the NB model is that all the predictor variables are independent across the 
sample data. This assumption is not valid in this case, since codon frequencies inexorably add up to 1. Therefore, 
when one codon frequency is large, the other must be smaller, invalidating independence. Here, we performed 
the NB classifier as a “worst-scenario” case for classifier comparisons, since the NB model relies on an assump-
tion that is difficult to meet and often results in biased posterior probabilities in analysis.

Lasso regression.  Lasso regression is a penalized regression method that adds to the loss function when a 
coefficient is added to a parameter with an l1 norm:

where the feature data X times the “learned” coefficients β estimate the label vector Y. Y = Xβ is the absolute 
minimum for linear least squares regression, which means a perfect estimate. However, with the penalty constant 
α times l1 of β, the coefficients must be small and also estimate Y well25. Therefore, as the penalty constant grows 
larger, the features must be very good predictors if it is going to be worth adding them to the model. This allows 
trimming and ranking features, the codon frequencies, by varying the penalty. Lasso is a simple convex optimiza-
tion problem that computers can solve extremely quickly, so it was easy to programmatically set up a loop that 
trains codon frequencies vs. kingdom and varies α . We started extremely small and changed α a tiny amount 
each time to track the order of each feature leaving the coefficients. What worked well for this data is starting at 
α = 10−8 and varying by 10−6 until α = 0.01 is reached. The source code allows tracking of the coefficients in 
front of each codon and then takes the l0 norm of the column vector to count how many nonzero entries there 
are. Then, the most nonzero entries account for the most variance in the prediction and are ranked accordingly.

(11)P(class|x) =
P(x|class)P(class)

P(x)

(12)min �Y − Xβ�22 + α�β�1
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Here, we only do feature ranking for kingdom classification because the top features are useful for input into 
our ORF identifier.

K‑means.  K-Means is a clustering algorithm that optimizes k centroids to separate the feature data26. It does 
not use labels, so it is an unsupervised model. The idea behind using this with vast k values is to see if there are 
any higher k models that separate the data well. The set of kingdoms we are using is similar to k = 5 , because 
there are 5 categories. The original set of kingdoms in the Genbank data is approximately equivalent to k = 11 . If 
the codon usage data is well-separated by another more discriminatory structure, perhaps biological order, that 
might show up in K-Means analysis.

Possible open reading frame codon frequencies.  The potential ORFs of a sequence are calculated by 
a custom class in the Python programming language. The initial function finds all start codons (AUG) and all 
stop codons (UGA, UAG, UAA) and stores the index of the first nucleotide of them all. Some organisms exhibit 
different start codons or different amino acid translations, in general27. The customizability of our code allows 
for easy augmentation of these rules for analysis of these specific organisms. Additional details about our custom 
ORF class are presented in the supplemental material, Section 3.

If the start and stop indices are separated by a multiple of three nucleotides, and the index of the stop is greater 
than the index of the start, this region is recorded as a potential ORF. The potential ORF sequences are all fed to 
an additional function, which reads the codons in-frame and records the frequency of each codon by dividing 
the number of instances by the total number in the sequence.

Goodness‑of‑fit tests.  The χ2 goodness-of-fit test is used to statistically evaluate if a set sample “frequency” 
comes from a population “frequency” of a specific distribution28. This test is defined for the null hypothesis: The 
sample data follows a specified population distribution. It is advantageous for the purposes of testing ORF fre-
quencies because it is extremely flexible on binned data28, to which ORF frequencies are somewhat analogous. 
The disadvantage of this method is that it requires a sufficient sample size, the standard being 5 or larger in each 
bin. Frequency is in quotations above because χ2 really requires a count, which is easy to calculate by multiplying 
the frequencies by the total number of codons in the potential ORF. This multiplication enables each bin, codon, 
to have a large enough count. The population frequency from the organism of interest is also multiplied by the 
same number for consistency.

For the computation, the data separated into k bins, 64 for codon usage, which defines the test statistic as:

where Oi is the observed count for bin i and Ei is the expected count from the population for bin i28. In the case 
of codon usage frequencies, we use k − 1 degrees of freedom, assuming that the distributions are roughly mul-
tinomial. With this in mind, the null hypothesis is rejected, deeming a non-plausible ORF, when:

where χ2
1−α,k−1

 is the χ2 critical value using k − 1 degrees of freedom and a significance α28. The typical standard 
for α is 0.05; however, in this application, sample frequencies are easily rejected, and tuning α for useful output is 
quite tricky. Importantly, none of the population counts can be 0 due to the Ei term in the denominator. 0 counts 
are not found in every species from the compiled data but are not uncommon either. Usually, there is only one 
0 count in the reference, if any. To accommodate, the custom class looks for any 0’s in the population frequency, 
and the corresponding codons are removed from the sample and population frequencies. The impact of this 
necessary change is undesirable; fortunately, it was small on average due to the average codon accounting for 
1
64
th of the variance. The χ2 goodness-of-fit test is implemented in Python under scipy.stats29, and automatically 

calculates the degrees of freedom during calculation; thus, this removal of codons does not interrupt the future 
high-throughput capabilities of this setup.

The Cressie-Read goodness-of-fit test was also tried for rejecting potential ORFs. The Cressie-Read test is 
similar to the χ2 test, but it can account for 0’s in the population count30.

Results
Kingdom and DNA classification.  The best overall kingdom classification for k-NN was achieved with 
k = 1 , indicating that the 1-nearest neighbor algorithm demonstrates the greatest capability for kingdom clas-
sification tasks compared to other k neighbor options. The overall accuracy of the phylogenetic 1-nearest neigh-
bor result is 0.9660, with a AUC value of 0.9792 and macro-F1 score of 0.9293. In the DNA-type classification 
task, we took the same CV procedure and obtained an optimal value of k = 3 . The overall metrics of the DNA-
type 3-nearest neighbor algorithm are nearly perfect with 0.9942 accuracy, 0.9997 AUC, and macro-F1 score of 
0.9867. These results indicate that the kingdoms and DNA-types are distinctly clustered with very little overlap 
in the 64-dimensional feature space. This is because we used a small number of neighbors to calculate the class 
of a specific species, thus, they must be surrounded by their distinct class. Small overlap in the feature space 
will mean robust prediction for training and test datasets on this highly separable data, and hints at good SVM 
performance, as we previously mentioned.

The best parameters for SVM kingdom classification are C = 144 and γ = 50 with an RBF kernel yielding an 
accuracy of 0.9676, AUC of 0.9406, and macro-F1 score of 0.8936. The parameters chosen for DNA classification 

(13)χ2 =

k
∑

i=1

(Oi − Ei)
2

Ei

(14)χ2 > χ2
1−α,k−1
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are C = 400 and γ = 50 with an RBF kernel giving a nearly perfect accuracy of 0.9942, AUC of 0.9887, and 
macro-F1 score of 0.9866. While SVMs fall behind in terms of AUC for these datasets, they offer an extremely 
low compute, yet a relatively high accuracy, method to move forward with analysis.

The optimum parameters for RF kingdom classification are found at 1200 initial trees, 2 minimum samples 
per split, 1 minimum sample per leaf, auto setting for the max amount of features, max depth of 100, and false for 
bootstrapping, respectively. For DNA, it is 1088, 5, 1, auto, none, and false, respectively. This leads to an accuracy 
of 0.9483 and macro-F1 of 0.8065 for kingdom classification with 0.9934 accuracy and 0.9889 macro-F1 for 
DNA-type. RF offers a higher compute option that gives comparatively high metrics and the useful embedding 
option for feature ranking.

The best XGB kingdom classification results demonstrates 0.9502 accuracy, AUC of 0.997, and a macro-F1 
score of 0.8846. Similarly, the DNA-type classification results yield 0.9938 in the overall model accuracy, 0.9997 
of the AUC value, and 0.986 in the macro-F1 score. The XGB model offers a medium compute option that gives 
comparatively high metrics across the board.

Our optimized ANN kingdom classifier has an input layer of size 64, four hidden layers of size and order 
600-600-300-150, 0% dropout rate, l2 penalty of 6.1e−7 , and 5 softmax outputs; one for each kingdom class. This 
yields an accuracy of 0.9668, macro-F1 of 0.8839, and AUC of 0.9960. The DNA-type classifier has the same 
input layer, 8 hidden layers of size and order 700-700-700-700-700-700-350-175, 20% dropout rate, l2 penalty 
of 6.3e−5 , and 3 softmax outputs; one for each of the DNA-types analyzed. This gives us an accuracy of 0.9942, 
macro-F1 of 0.9870, and AUC of 0.9992. While ANNs require varying amounts of compute to train, they tend 
to learn complex behaviors from their training data. This is highlighted in our ANNs nearly diagonal behavior 
for confusion matrices in Fig. 1. However, ANNs are generally inefficient learners that require large amounts of 
data31. We suspect that with larger compiled codon usage bias datasets that ANNs will continue to improve in 
performance over the other models.

Regarding kingdom classifications, the NB model yields an overall accuracy of 0.7522, and 0.7032 in the 
macro-F1 score. On the other hand, the model for the DNA-type classification provides a relatively higher accu-
racy of 0.9390 and macro-F1 score of 0.8910. The AUC value for the ROC curves in the kingdom and DNA-type 

Figure 1.   Confusion matrices for ensemble and ANN models. Ensemble matrices are on the left, panels (a) 
and (c), while ANN matrices are on the right, (b) and (d). DNA classification is on the top, (a) and (b), with 
kingdom on the bottom, c and d. For DNA: 0 is nuclear, 1 is mitochondrial, and 2 is chloroplast. For kingdom: 
0 is archaea, 1 is bacteria, 2 is eukaryotic, 3 is phage, and 4 is viral. Entries down the left-to-right downward 
diagonal indicate correct classification, while all other entries are misclassified.

Version of record at: https://doi.org/10.1038/s41598-023-28965-7



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2088  | https://doi.org/10.1038/s41598-023-28965-7

www.nature.com/scientificreports/

classifications are 0.7980 and 0.9400, respectively, which are much weaker and indicative of a worse model fit 
than the other aforementioned classifiers.

Our final ensemble is composed of k-NN, SVMs, and RF classifiers using the optimized hyperparameters 
mentioned above. We utilized our other listed methods, as well as logistic regression and additional decision 
tree models that were trained and optimized for our datasets. However, when additional models were added 
to the ensemble, they decreased the test accuracy vs. just k-NN, SVM, and RF. Therefore, they were not kept in 
the final ensemble. Performance is comparatively high with 0.9695 accuracy and 0.9034 macro-F1 for kingdom 
classification, and 0.9965 accuracy and 0.9940 macro-F1 score for DNA-type classification.

A comparison of the selected classifiers is presented below. The Naive Bayes Classifier is omitted, due to the 
violation of the independence assumption, which could result in potentially biased posterior probability calcula-
tions. Hence, the comparisons between the six aforementioned classifiers (k-NN, RF, XGB, SVM, our ensemble, 
and ANN) are critical when determining the outcome of the study. The results are summarized in Tables 1 and 2.

The confusion matrices on the test data are presented from our ensemble and ANN models in Fig. 1. Confu-
sion matrices are a great visual tool for contrasting true and predicted labels, indicating perfect performance 
with all entries down the left-to-right downward diagonal.

Figure 2 displays a heatmap visualization of the species’ codon usage frequencies by kingdom classes. Visuali-
zations were made with a new prototype version of HeatmapGenerator32,33 available on Github branches: https://​
github.​com/​Bohdan-​Khomt​chouk/​Heatm​apGen​erator. The intensity of the colors is varied across, showing how 
similar one species is relative to its neighboring species. Species of the same kingdom share similar codon usage 
frequencies showing a striking visual contrast between vertical regions.

Figure 3 showcases PCA plots34, a dimensionality reduction method. The 64-dimensional codon frequency 
data is projected onto a 2-dimensional subspace along the first two principal components. The data is shown to 
be partially separable with dimension reduction from 64 to 2, supporting the notion from k-NN and SVMs that 
DNA-type and Kingdom are highly separable in the original 64-dimensional feature space.

After computing principal components of the design matrix, whose rows are the 64-dimensional vectors 
of codon usage frequencies, we once again applied k-NN to predict kingdom and DNA-type, and the results 
confirmed the existence of clustering in the data even when projected onto a lower dimensional subspace. For 
kingdom, k-NN with k = 3 and the number of principal components reduced to 25 yielded accuracy of 0.9308, 
AUC of 0.9503, and a macro-F1 score of 0.8334.

The more striking result is that for DNA-type, k-NN with k = 3 and the number of principal components 
reduced to 5 yielded accuracy of 0.9553, AUC of 0.9553, and a macro-F1 score of 0.8973. These scores are slightly 
lower than those produced by k-NN with the full feature space. However, they remain respectably high despite 
fitting on only five principal components.

The effectiveness of dimensionality reduction using PCA both confirms the strong predictive power that codon 
usage bias levels have on our responses and suggests that only a handful of codons are needed to build relatively 
robust models. We conclude that using feature ranking to choose and use a subset of influential codons is an 
appropriate methodology in codon usage applications. We showcase our results of rigorously choosing our subset 
of codons in the section below.

Table 1.   Kingdom classification results.

Model Precision Recall Micro F1-Score Macro F1-Score Accuracy AUC​

k-Nearest Neighbors 0.9660 1 0.9827 0.9293 0.9660 0.9792

Support Vector Machines 0.9676 0.9676 0.9676 0.8936 0.9676 0.9406

Random Forests 0.9475 0.9483 0.9483 0.8065 0.9483 0.8661

Ensemble 0.9691 0.9695 0.9695 0.9034 0.9695 0.9375

Extreme Gradient Boosting 0.9502 1 0.9745 0.8846 0.9502 0.9970

Artificial Neural Networks 0.9661 0.9668 0.9668 0.8839 0.9668 0.9960

Table 2.   DNA-type classification results.

Model Precision Recall Micro F1-Score Macro F1-Score Accuracy AUC​

k-Nearest Neighbors 0.9942 1 0.9971 0.9867 0.9942 0.9997

Support Vector Machines 0.9942 0.9942 0.9942 0.9866 0.9942 0.9887

Random Forests 0.9935 0.9934 0.9934 0.9889 0.9934 0.9882

Ensemble 0.9665 0.9665 0.9665 0.9940 0.9965 0.9942

Extreme Gradient Boosting 0.9938 1 0.9969 0.9860 0.9938 0.9997

Artificial Neural Networks 0.9942 0.9942 0.9942 0.9870 0.9942 0.9992
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Figure 2.   Heatmap visualization of species’ codon usage frequencies by kingdom class. The horizontal 
axis denotes all 64 codon usage frequencies of a species, while the vertical axis is separated by our kingdom 
discrimination. Red color represents a high relative codon frequency while blue is low. Rows that have a 
similar color profile represent phylogenetically close organisms sharing a nearly homogeneous codon usage 
distribution.
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Figure 3.   PCA for Kingdoms and DNA-Type. (a) Represents DNA-type and (b) represents Kingdom. The 
vertical labels correspond with the color code for the data points among the plots. The original DNA-type 
distinction from Genbank is used: 0 (nuclear), 1 (mitochondrion), 2 (chloroplast), 3 (cyanelle), 4 (plastid), 
5 (nucleomorph), 6 (secondary endosymbiont), 7 (chromoplast), 8 (leucoplast), 9 (NA), 10 (proplastid), 11 
(apicoplast), 12 (kinetoplast), and our kingdom discrimination is used: arc (archaeal), bct (bacterial), euk 
(eukaryotic), phg (phageal), vrl (viral). The horizontal axis of the PCA plots showcases the distribution of data 
along the first principal component while the vertical showcases along the second principal component.
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Ranking codons.  The lasso and RF kingdom classification feature rankings are highlighted in Table 3.
Here, the lasso and RF ranking choose a different feature order but with a clear preference for the order of cer-

tain codons. Regardless of the discrimination chosen, eukaryotes vs. prokaryotes or our five-category structure, 
CUA comes up as the most influential codon from the lasso analysis. The codons in the top 20 of both ranking 
systems are CUA, GAU, GCG, UGA, CUU, AAG, ACA, CGC, AGA, and CUG. Perhaps this is a starting place 
for discovering novel biological functions in the concentration and usage of tRNA; this is discussed more in the 
discussion section (“Discussion” section).

Clustering.  K-Means analysis was conducted on the set of 12964 codon frequencies for clusters 2 through 
600. An elbow graph and corresponding silhouette scores for clusters 2 through 50 are shown in Fig. 4. The 
goal here was to uncover any unintuitive clustering structure to gain insight into how specific the codon usage 
phylogenetic classification could go. The hope was that the silhouette score would jump up, or an interesting 
pattern in inertia would appear, indicating the possibility of a larger k clustering in the data. This was not the 
case past clusters 35 and 39, which showcases a large jump in silhouette and a slight increase in inertia. Without 
distinguishing patterns in silhouette and inertia, the k does not indicate an intuitive clustering of the data. This 

Table 3.   Sorting codon usage frequencies and their corresponding amino acid by their kingdom prediction 
power with lasso and RF. The left side ranks the codons and their corresponding amino acids (AA) by our 
lasso feature ranking system. The right side is the same but with our RF feature ranking system. Codon usage 
frequency as a feature is tested by its influence on predicting phylogeny in our kingdom discrimination: viral, 
phageal, bacterial, archaeal, and eukaryotic. Lasso directly compares the dropout of each feature to the R2 of 
the fitted model, while RF does this indirectly. Therefore, these represent the features that roughly account 
for the most variance in phylogenetic prediction. While the systems differ in their exact order, there are many 
commonalities in the relative order of the codons. For instance, UGA being more influential than UAA in both 
systems.

Lasso Codon AA Lasso Codon AA RF Codon AA RF Codon AA

1 CUA​ Leu 33 CAA​ Gln 1 UGA​ STOP 33 GGU​ Gly

2 GAU​ Asp 34 UGG​ Trp 2 AGG​ Arg 34 UUG​ Leu

3 AUU​ Ile 35 ACU​ Thr 3 CUA​ Leu 35 AUU​ Ile

4 GCG​ Ala 36 GGU​ Gly 4 AAG​ Lys 36 CCU​ Pro

5 UUC​ Ser 37 GGG​ Gly 5 UGU​ Cys 37 AGC​ Thr

6 AUC​ Ile 38 CGA​ Arg 6 GCG​ Ala 38 UCC​ Ser

7 UGA​ STOP 39 UAU​ Try 7 GAU​ Asp 39 AUC​ Ile

8 AAU​ Asn 40 GGC​ Gly 8 CUG​ Leu 40 GGG​ Gly

9 CUU​ Leu 41 CCC​ Pro 9 GAA​ Glu 41 GUA​ Val

10 GGA​ Gly 42 UCU​ Ser 10 GAG​ Glu 42 ACG​ Thr

11 UUU​ Phe 43 ACC​ Thr 11 CUU​ Leu 43 GCU​ Ala

12 GAC​ Asp 44 UCA​ Ser 12 UGC​ Cys 44 CUC​ Leu

13 CUC​ Leu 45 AUA​ Ile 13 ACA​ Thr 45 UUU​ Phe

14 AAG​ Lys 46 GCC​ Ala 14 AGA​ Arg 46 UCG​ Ser

15 UUA​ Leu 47 GUG​ Val 15 UGG​ Trp 47 GCA​ Ala

16 ACA​ Thr 48 CCU​ Pro 16 CGC​ Arg 48 CAU​ His

17 CGC​ Arg 49 GUC​ Val 17 UCU​ Ser 49 CGG​ Arg

18 AGA​ Arg 50 UCG​ Ser 18 CAG​ Gln 50 CAA​ Gln

19 AGG​ Arg 51 GAA​ Glu 19 AUA​ Ile 51 UCA​ Ser

20 CUG​ Leu 52 AUG​ START​ 20 AAA​ Lys 52 UAU​ Tyr

21 UGC​ Cys 53 CAU​ Leu 21 GGC​ Gly 53 GUU​ Val

22 AAA​ Lys 54 CGG​ Arg 22 UUC​ Phe 54 AAC​ Asn

23 GAG​ Glu 55 UAC​ Tyr 23 UUA​ Leu 55 UAA​ STOP

24 CCG​ Pro 56 UAA​ STOP 24 CCG​ Pro 56 UAC​ Tyr

25 ACG​ Thr 57 CGU​ Arg 25 ACU​ Thr 57 GUG​ Val

26 UCC​ Ser 58 UGU​ Cys 26 CGA​ Arg 58 GCC​ Ala

27 GUU​ Val 59 UAG​ STOP 27 GAC​ Asp 59 GUC​ Val

28 AGC​ Ser 60 AAC​ Asn 28 CCC​ Pro 60 AGU​ Ser

29 GCA​ Ala 61 CCA​ Pro 29 CGU​ Arg 61 AAU​ Asn

30 GUA​ Val 62 AGU​ Ser 30 CCA​ Pro 62 ACC​ Thr

31 UUG​ Leu 63 CAC​ His 31 AUG​ START​ 63 CAC​ His

32 GCU​ Ala 64 CAG​ Gln 32 GGA​ Gly 64 UAG​ STOP
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may indicate some predictive ability to classify roughly 35 phylogenetic classes from the data. Somewhere near 
the order of phylum, class, or order, but certainly not species.

Open reading frame detection.  The sequences input to the Python class gave some interesting results 
after the statistical test. When comparing all 64 frequencies to an E. coli reference for PUC18, all 855 potential 
ORFs are rejected with tiny p-values. The same occurs to all 5470 potential ORFs of the HSP90 plasmid using a 
human reference. However, the p-values for the correct ORFs are much bigger than their surrounding incorrect 
ORFs; correct ORFs hovered around p = 10−50 while incorrect ones varied from 10−100 to 10−200 . Therefore, 
the test is much more confident that the incorrect ORFs were incorrect compared to the correct ones. This hints 
that it is possible to optimize this method to be more likely to reject incorrect ORFs. The difference in the test 
statistic and p-value when comparing this adjusted χ2 vs. the Cressie-Read was negligible. Over several samples, 
χ2 with degree of freedom 62 for 63 codons vs. Cressie-Read for 64 codons performed almost exactly the same.

The results are much more reasonable when only using the most influential codons listed above for the popula-
tion and sample frequencies: the shared codons in the top 20 of lasso and RF analysis. Using a p-value threshold 
of 0.05, only 9 ORFs are rejected from the HSP90 plasmid and 12 are rejected from PUC18. More importantly, 
none of the correct ORFs from either were rejected. This is much more in line with our goal: creating a tool in 
addition to well-studied methods of ORF detection to trim a small amount of the potential ORFs. When the E. 
coli reference is used on the HSP90 plasmid, the results are similar: no correct ORFs are rejected.

When tried on several microsatellites and tandem repeats common in human genome annotation, the statis-
tical test unsurprisingly rejects all potential ORFs on the order of p = 10−300 or even 0 output. This is promis-
ing because the statistical test should reject these repeats extremely confidently, as the whole idea behind the 
predictive power here is that if certain codon frequencies get too high or low, it is unlikely to be a correct ORF. 
With a huge sequence of repeated nucleotides, the codons will also be repeated, and fortunately, the test gives 
the expected results.

Discussion
Our approach to classifying organisms using codon usage bias levels sits adjacent to existing methods of analyzing 
varying conditions within a species using differential transcript usage (DTU). In DTU, one measures how the 
relative transcript abundance of a gene differs in organisms of the same species but with different conditions35. As 
the same genetic code can be expressed in multiple ways via alternative splicing, DTU summarizes this change in 
expression, making it an effective approach to understanding certain mutations within the same species. While 
DTU captures the difference in expression of the same genetic code, codon usage bias levels represent a parsimo-
nious way of capturing variations between distinct sets of genetic code, allowing for higher-level analysis on the 
kingdom or cell type-specific level that need not involve two organisms of the same species. Codon usage bias 
levels enabled near-perfect classification of kingdom and DNA-type as shown in Fig. 1. However, the models have 
the most trouble distinguishing between viral and eukaryotic samples phylogenetically. Although this may be 
surprising due to the evolutionary distance between these categories, viruses often exchange genetic information 

Figure 4.   Elbow graph and silhouette score by cluster number generated from K-Means on codon usage 
frequency data. Listed are clusters 2 through 50. The inertia and silhouette pattern highlights the most intuitive 
clustering pattern at k = 3 with decent values for our kingdom sets k = 5 (analogous to our set of kingdoms) 
and k = 11 (analogous to the original set in the CUTG database).
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with their hosts. Viruses can even integrate their entire genomes into a host36. This widescale inclusion of viral 
DNA within Eukaryotic DNA offers a possible explanation for this discrepancy in performance.

Overall, our ORF rejection pipeline establishes a basis for a considerable amount of predictive power between 
codon usage frequencies and ORFs. The results are most promising when comparing the most influential codon 
frequencies found with lasso and RF feature ranking. Our dual feature ranking setup is similar to an ensemble 
for feature rank prediction, where we employ voting by choosing the common choices in the first n = 20 predic-
tions. The choices of n, our α for rejection, and other parameters are somewhat arbitrary for our proof-of-concept 
system. The specifics of these choices are discussed more in our supplemental material, Section 4.1.

Interestingly, our ranking ensemble highlights some potential biological findings. Lasso directly compares the 
dropout of each feature to the R2 of the fitted model, while RF does this indirectly. Therefore, these represent the 
features that roughly account for the most variance in phylogenetic prediction. If the following codons account 
for the most variance in phylogenetic prediction, it follows that their associated tRNAs could also be the most 
variable throughout phylogeny. Extensions and applications of codon usage feature ranking could showcase the 
most variable tRNAs throughout evolutionary history. In addition to that, one of the most influential codons 
is a stop codon: UGA. The frequency of stop codons is intuitively correlated to the size of the average coding 
region. An impromptu proof for this is included in our supplemental material, Section 4.2. Because UGA is 
very influential and notably variable in phylogenetic classification, the average coding region size could be a 
distinguishing variation throughout evolutionary history.

We suspect that this ranking ensemble that identifies the most influential codons for phylogenetic prediction 
could be used in other applications as well. Through PCA and other statistical techniques on the CUTG data-
base, we previously showed that the majority of variation of codon usage bias between species is based upon the 
relative usage of A+T and G+C nucleotides. This comes from a pattern between species preferring G/C-ending 
codons and others preferring U/A-ending codons37. These findings support the notion that successful horizontal 
gene transfer (HGT) occurs more between organisms with similar codon usage bias through the conservation 
of relative usage of nucleotides and codons to correctly utilize the tRNA pool38. Despite this barrier for HGT, 
researchers attempt to use local changes in codon usage frequency within a genome to detect HGT. Previous 
attempts of HGT detection generated many false positives and negatives when utilizing all 64 codons39, as HGT 
tends to come from a similar codon usage38. By zooming in on the most influential codons for phylogenetic 
classification that we identified, we hope that HGT detection from codon usage bias could be improved just like 
it improved our ORF detection.

While codon usage bias was previously not considered to affect the finalized protein product, improvements 
in biochemistry and structural analysis have shown that codon usage bias is definitively important for the final 
protein structure. Recently, a comparison of codon-specific Ramachandran plots shows a statistically significant 
difference in protein secondary structures7. This may be because mRNA secondary structure is heavily influenced 
by codon composition, and that variable concentrations of tRNAs for redundant codons can exist at different 
concentrations27. Both of these factors can either halt or speed up translation, which can be necessary for the 
growing polypeptide chain to fold correctly6. By easily distinguishing phylogeny and DNA origin, as well as 
rejecting incorrect ORFs, we showcase a huge variance in codon usage throughout evolutionary history and 
cell compartment. These findings point towards codon usage bias enabling niche fitness gains. Therefore, our 
analysis further supports the growing notion that “silent” mutations are not always truly silent, and that codon 
usage bias is influential and important in structural biology.

Conclusions
The present findings revealed that codon usage frequencies are an accurate heuristic for classifying the cell 
compartment origin of nucleotide sequences. We also show viable phylogenetic classification from nucleotide 
samples, while K-Means shows potential for extended future discrimination similar to phylum or biological 
class. From the model performances presented by seven machine learning classifiers, our analysis suggests that 
a simple hard-voting ensemble of k-NN, SVM, and RF is optimal for classifying kingdom or DNA-type classes 
during the secondary analysis of existing genetic datasets. Our optimized ensemble had the highest accuracies 
of 0.9695 for kingdom and 0.9965 for DNA with high F1 scores as well. Extreme gradient boosting performed 
well with higher micro-F1 and AUC than our ensemble; these offer two low-compute choices for suitable clas-
sification methods. An optimized ANN offers a higher compute choice that performs almost equally well but 
could easily be improved with more available data.

We found that through the χ2 goodness-of-fit test that codon usage frequencies establish an approximated 
multinomial distribution which can be used to reject ORFs. Our lasso and RF models predicted the most influ-
ential codons for phylogenetic prediction to be: CUA, GAU, GCG, UGA, CUU, AAG, ACA, CGC, AGA, and 
CUG. These codons account for most of the variance in our feature data, analogous to a PCA with 10 principal 
components. This dimensionality reduction allows for reasonable ORF rejection in the DNA samples tested, 
rejecting a small number of possible ORFs but never the correct ORFs. Thus, with many considerations at play 
and optimization to be done, there is considerable potential in classification based on codon usage bias and 
possible ORF rejection. Biology is complicated because of the complexity and stochasticity at every step; how-
ever, it can become more manageable with careful data science. As codon usage frequency-based phylogenetic 
classification improves, and datasets become larger and more vast in biological depth, ORF detection and more 
applications should come to the surface using this neat quirk of biological regulation.
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Data availability
To facilitate code re-use/reproducibility in the greater AI/ML/data science community, we open-sourced R and 
Python scripts detailing our machine learning analyses on Github: https://​github.​com/​Bohdan-​Khomt​chouk/​
codon-​usage and https://​github.​com/​lhall​ee/​CUF-​ORF.

Received: 14 November 2022; Accepted: 27 January 2023

References
	 1.	 Angov, E. Codon usage: Nature’s roadmap to expression and folding of proteins. Biotechnol. J. 6, 650–659. https://​doi.​org/​10.​1002/​

biot.​20100​0332 (2011).
	 2.	 Inouye, M., Takino, R., Ishida, Y. & Inouye, K. Evolution of the genetic code; evidence from serine codon use disparity in Escherichia 

coli. PNAS 117(46), 28572–28575. https://​doi.​org/​10.​1073/​pnas.​20145​67117 (2020).
	 3.	 Nakamura, Y., Gojobori, T. & Ikemura, T. Codon usage tabulated from international DNA sequence databases: Status for the year 

2000. Nucleic Acids Res. 28, 292 (2000).
	 4.	 Wetterstrand, K.A. The Cost of Sequencing a Human Genome (accessed 1 Jan 2023); https://​www.​genome.​gov/​about-​genom​ics/​

fact-​sheets/​Seque​ncing-​Human-​Genome-​cost.
	 5.	 Andrews, S. J. & Rothnagel, J. A. The cost of sequencing a human. Nature Rev. Genet. 15, 193–294. https://​doi.​org/​10.​1038/​nrg35​

20 (2014).
	 6.	 Guimaraes, J. C. et al. A rare codon-based translational program of cell proliferation. Genome Biol. 21, 44. https://​doi.​org/​10.​1186/​

s13059-​020-​1943-5 (2020).
	 7.	 Rosenberg, A. A., Marx, A. & Bronstein, A. M. Codon-specific Ramachandran plots show amino acid backbone conformation 

depends on identity of the translated codon. Nature Commun. 13, 2815. https://​doi.​org/​10.​1038/​s41467-​022-​30390-9 (2022).
	 8.	 Scitable. plasmid/plasmids (accessed 1 Jan 2023); https://​www.​nature.​com/​scita​ble/​defin​ition/​plasm​id-​plasm​ids-​28/.
	 9.	 Larson, J. D. & Hoskins, A. A. Dynamics and consequences of spliceosome E complex formation. Elife 6, 27592. https://​doi.​org/​

10.​7554/​eLife.​27592 (2017).
	10.	 García-Cardeña, G. et al. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392(6678), 821–824. https://​

doi.​org/​10.​1038/​33934 (1998).
	11.	 Grandini, M., Bagli, E. & Visani, G. Metrics for multi-class classification: An overview. arXiv. arXiv:​2008.​05756  (2020).
	12.	 Chicco, D. & Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary 

classification evaluation. BMC Genom. 21, 6. https://​doi.​org/​10.​1186/​s12864-​019-​6413-7 (2020).
	13.	 Reinke, A. et al. Common limitations of image processing metrics: A picture story. arXiv 2021, 56. https://​doi.​org/​10.​48550/​arXiv.​

2104.​05642  (2021).
	14.	 Sun, L., Wang, J. & Wei, J. AVC: Selecting discriminative features on basis of AUC by maximizing variable complementarity. BMC 

Bioinform. 18, 50. https://​doi.​org/​10.​1186/​s12859-​017-​1468-4 (2017).
	15.	 Gómez, D. & Rojas, A. An empirical overview of the no free lunch theorem and its effect on real-world machine learning clas-

sification. Neural Comput. 28, 1. https://​doi.​org/​10.​1162/​NECO_a_​00793 (2016).
	16.	 Lantz, B. Machine Learning With R. Lazy Learning—Classification Using Nearest Neighbors 65–86 (Packet Publishing, 2015).
	17.	 David, M., & Wien, F.T. Support Vector Machines, The Interface to libsvm in package e1071 (2015)
	18.	 Breiman, L. Random Forests. Machine learning for detection of viral sequences in human metagenomic datasets. Mach. Learn. 

45, 5–32. https://​doi.​org/​10.​1023/A:​10109​33404​324 (2001).
	19.	 Chang, C.-H., Rampasek, L., & Goldenberg, A. Dropout feature ranking for deep learning models. In ARXIV. arXiv:​1712.​08645  

(2018).
	20.	 Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). www.​jstor.​org/​

stable/​26999​86.
	21.	 Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 54, 

1937–1967. https://​doi.​org/​10.​1007/​s10462-​020-​09896-5 (2021).
	22.	 Suzuki, K., Krenker, A., Bester, J. & Kos, A. Introduction to the artificial neural networks. Artif. Neural Netw. Methodol. Adv. Biomed. 

Appl. 2011, 256. https://​doi.​org/​10.​5772/​644 (2011).
	23.	 Abdel-Nasser, S. Principle of neural network and its main types: Review. J. Adv. Appl. Comput. Math. 2020, 7. https://​doi.​org/​10.​

15377/​2409-​5761.​2020.​07.2 (2020).
	24.	 Mitchell, T.M. Machine Learning 177–198 (McGraw Hill, 1997).
	25.	 Ranstam, J. & Cook, J. A. LASSO regression. Br. J. Surg. 105(10), 1348. https://​doi.​org/​10.​1002/​bjs.​10895 (2018).
	26.	 Ahmed, M., Seraj, R. & Islam, S. M. S. H. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics 

9(8), 1295. https://​doi.​org/​10.​3390/​elect​ronic​s9081​295 (2020).
	27.	 Parvathy, S. T., Udayasuriyan, V. & Bhadana, V. Codon usage bias. Mol. Biol. Rep. 49(1), 539–565. https://​doi.​org/​10.​1007/​s11033-​

021-​06749-4 (2022).
	28.	 Cochran, W.G. The χ2 test of goodness of fit. Ann. Math. Stat. 2, 3. https://​www.​jstor.​org/​stable/​i3127​71  (1952).
	29.	 Virtanen, F. et al. Fundamental algorithms for scientific computing in python. Nature Methods 17, 261–272. https://​doi.​org/​10.​

1038/​s41592-​019-​0686-2 (2020).
	30.	 Ogata, H. & Taniguchi, M. Cressie-read power-divergence statistics for non-gaussian vector stationary processes. Scand. J. Stat. 

2009, 36. https://​doi.​org/​10.​2307/​41000​312 (2009).
	31.	 Wilsona, D. R. & Martinez, T. R. The general inefficiency of batch training for gradient descent learning. Neural Netw. 16(10), 

1429–1451. https://​doi.​org/​10.​1016/​S0893-​6080(03)​00138-2 (2003).
	32.	 Khomtchouk, B., Booven, D. V. & Wahlestedt, C. HeatmapGenerator: High performance RNA-seq and microarray visualization 

software suite to examine differential gene expression levels using an R and C++ hybrid computational pipeline. Source Code Biol. 
Med. 9(1), 30. https://​doi.​org/​10.​1186/​s12859-​018-​2340-x (2014).

	33.	 Khomtchouk, B., Hennessy, J. R. & Wahlestedt, C. Shinyheatmap: Ultra fast low memory heatmap web interface for big data 
genomics. PLoS One 12(5), e0176334. https://​doi.​org/​10.​1371/​journ​al.​pone.​01763​34 (2017).

	34.	 Max, K. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, 
Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan, and 
Tyler Hunt. Package “caret”. https://​cran.r-​proje​ct.​org/​web/​packa​ges/​caret/​caret.​pdf (2022).

	35.	 Soneson, C., Matthes, K. L., Nowicka, M., Law, C. W. & Robinson, M. D. Isoform prefiltering improves performance of count-based 
methods for analysis of differential transcript usage. Genome Biol. 17, 12. https://​doi.​org/​10.​1186/​s13059-​015-​0862-3 (2016).

	36.	 Desfarges, S. & Ciuffi, A. Viral integration and consequences on host gene expression. Viruses Essent. Agents Life 2012, 147–175. 
https://​doi.​org/​10.​1007/​978-​94-​007-​4899-6_7 (2012).

	37.	 Khomtchouk, B. & Nonner, W. Gaussian-distributed codon frequencies of genomes. G3 GENES, GENOMES, GENETICS 9(5), 
1449–1456. https://​doi.​org/​10.​1534/​g3.​118.​200939 (2019).

Version of record at: https://doi.org/10.1038/s41598-023-28965-7

https://github.com/Bohdan-Khomtchouk/codon-usage
https://github.com/Bohdan-Khomtchouk/codon-usage
https://github.com/lhallee/CUF-ORF
https://doi.org/10.1002/biot.201000332
https://doi.org/10.1002/biot.201000332
https://doi.org/10.1073/pnas.2014567117
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://doi.org/10.1038/nrg3520
https://doi.org/10.1038/nrg3520
https://doi.org/10.1186/s13059-020-1943-5
https://doi.org/10.1186/s13059-020-1943-5
https://doi.org/10.1038/s41467-022-30390-9
https://www.nature.com/scitable/definition/plasmid-plasmids-28/
https://doi.org/10.7554/eLife.27592
https://doi.org/10.7554/eLife.27592
https://doi.org/10.1038/33934
https://doi.org/10.1038/33934
http://arxiv.org/abs/2008.05756
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.48550/arXiv.2104.05642
https://doi.org/10.48550/arXiv.2104.05642
https://doi.org/10.1186/s12859-017-1468-4
https://doi.org/10.1162/NECO_a_00793
https://doi.org/10.1023/A:1010933404324
http://arxiv.org/abs/1712.08645
http://www.jstor.org/stable/2699986
http://www.jstor.org/stable/2699986
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.5772/644
https://doi.org/10.15377/2409-5761.2020.07.2
https://doi.org/10.15377/2409-5761.2020.07.2
https://doi.org/10.1002/bjs.10895
https://doi.org/10.3390/electronics9081295
https://doi.org/10.1007/s11033-021-06749-4
https://doi.org/10.1007/s11033-021-06749-4
https://www.jstor.org/stable/i312771
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.2307/41000312
https://doi.org/10.1016/S0893-6080(03)00138-2
https://doi.org/10.1186/s12859-018-2340-x
https://doi.org/10.1371/journal.pone.0176334
https://cran.r-project.org/web/packages/caret/caret.pdf
https://doi.org/10.1186/s13059-015-0862-3
https://doi.org/10.1007/978-94-007-4899-6_7
https://doi.org/10.1534/g3.118.200939


14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2088  | https://doi.org/10.1038/s41598-023-28965-7

www.nature.com/scientificreports/

	38. Tuller, T. Codon bias, tRNA pools and horizontal gene transfer. Mob. Genet. Elements 1(1), 75–77. https://​doi.​org/​10.​4161/​mge.1.
1.​15400 (2011).

	39. Friedman, R. & Ely, B. Codon usage methods for horizontal gene transfer detection generate an abundance of false positive and
false negative results. Curr. Microbiol. 65, 639–642. https://​doi.​org/​10.​1007/​s00284-​012-​0205-5 (2012).

Acknowledgements
L.H. acknowledges funding support from the University of Delaware Graduate College through the Unidel
Distinguished Graduate Scholar Award. B.B.K. acknowledges funding support from Indiana University and
NIH R01DK132090. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors.

Author contributions
B.B.K. curated the dataset. L.H. and B.B.K. performed primary analysis, figure generation, and manuscript 
preparation. Both authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​28965-7.

Correspondence and requests for materials should be addressed to B.B.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Version of record at: https://doi.org/10.1038/s41598-023-28965-7

https://doi.org/10.4161/mge.1.1.15400
https://doi.org/10.4161/mge.1.1.15400
https://doi.org/10.1007/s00284-012-0205-5
https://doi.org/10.1038/s41598-023-28965-7
https://doi.org/10.1038/s41598-023-28965-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Machine learning classifiers predict key genomic and evolutionary traits across the kingdoms of life
	Methods
	Datasets. 
	Codon usage data. 
	DNA for open reading frame detection. 

	Statistical metrics. 
	Data splitting and cross-validation. 
	Ensembles. 
	k-nearest neighbors. 
	Support vector machines. 
	Random forests. 
	Extreme gradient boosting. 
	Artificial neural networks. 
	Naive Bayes model. 
	Lasso regression. 
	K-means. 
	Possible open reading frame codon frequencies. 
	Goodness-of-fit tests. 

	Results
	Kingdom and DNA classification. 
	Ranking codons. 
	Clustering. 
	Open reading frame detection. 

	Discussion
	Conclusions
	References
	Acknowledgements




