CHEE108

PB89-134407

のないのである。

Biogenic Structure of Lower Chesapeake Eay Sediments

Virginia Inst. of Marine Science Gloucester Foint

Prepared for

Environmental Protection Agency, Annapolis, MD

Aug 82

6000

U.S. Department of Comparison Rotland Technical Information Service

REPORT NO.		3. RECIPIENT'S ACC	ESSION NO.
EPA/600/3-88/054		P889 1	344071AS
TITLE AND SUBTITLE		5 REFORT DATE	22
THE BIOGENIC OF LOWER CHESAPEAKE DAY SEDIMENTS	STRUCTURE	6. PERFOLMING OR	GANIZATION CODF
AUTLOBIA		8. PERFORMING OR	GANIZATION REPORT N
Nelsen, Diaz, Schaffner, Boesch, Bertl	esen,		
PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEN	AENT NO.
Virginia Institute of Marine Science			NT NO
College of William and Mary		11.00000000000000	antinu.
Gloucester Point, VA 23062		R805982-0	1-0
SPONSORING AGENCY NAME AND ADDRESS		13. TYPE OF REPOR	AT AND PERIOD COVERE
EPA. Chesapeake Bay Program		Final	
2083 West Street		14. SPONSORING A	GENCY CODE
Annapolis, MD 21401		FPA/600/	/05
SUPPLEMENTANT NOTES			
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic subst biological examination were collected Maryland Geological Survey for interst	In information a means of a tes in determi tances. Large simultaneousl titial water c	ssessing the re ning the distri volume box cor y with cores ta hemistry. Vert	lative bution es for ken by ical
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic subst biological examination were collected Maryland Geological Survey for interst distribution of organicsms within the determining the depth of biological mit of organisms has been found to be corr Employed was an x-ray technique to det in different areas of the estuary as uproduced by resident organisms.	In information a means of a tes in determi- tances. Large simultaneousl titial water c cores was uti ixing. The ver related to the termine the re well as the ty	ssessing the re ning the distri volume box cor y with cores ta hemistry. Vert lized as a mean rtical distribu depth of mixin lative amounts pes of biogenic	lative bution es for ken by ical s of tion g. of mixing structure
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic subst biological examination were collected Maryland Geological Survey for interst distribution of organicsms within the determining the depth of biological mit of organisms has been found to be corr Employed was an x-ray technique to det in different areas of the estuary as to produced by resident organisms.	In information a means of a tes in determi- tances. Large simultaneousl titial water of cores was uti ixing. The ver related to the termine the re well as the ty	ssessing the re ning the distri volume box cor y with cores ta hemistry. Vert lized as a mean rtical distribu depth of mixin lative amounts pes of biogenic	lative bution es for ken by ical s of tion g. of mixing structure
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic subst biological examination were collected Maryland Geological Survey for interst distribution of organicsms within the determining the depth of biological mit of organisms has been found to be corr Employed was an x-ray technique to det in different areas of the estuary as to produced by resident organisms.	In information a means of a tes in determi- tances. Large simultaneousl titial water of cores was uti- ixing. The ver- related to the termine the re- well as the ty	ssessing the re ning the distri volume box cor y with cores ta hemistry. Vert lized as a mean rtical distribu depth of mixin lative amounts pes of biogenic	lative bution es for ken by ical s of tion g. of mixing structure
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic subst biological examination were collected Maryland Geological Survey for interst distribution of organicsms within the determining the depth of biological mit of organisms has been found to be corr Employed was an x-ray technique to det in different areas of the estuary as w produced by resident organisms. KEY WORDS AM DESCRIPTORS	In information a means of a tes in determi- tances. Large simultaneousl titial water of cores was uti- ixing. The ver related to the termine the re- well as the ty b.IDENTIFIER:	ssessing the re ning the distri volume box cor y with cores ta hemistry. Vert lized as a mean rtical distribu depth of mixin lative amounts pes of biogenic	c. COSATI Field Group
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic subst biological examination were collected Maryland Geological Survey for interst distribution of organicsms within the determining the depth of biological mit of organisms has been found to be corr Employed was an x-ray technique to det in different areas of the estuary as to produced by resident organisms. KEY WORDS AN DESCRIPTORS	In information is a means of a tes in determi- tances. Large simultaneousl- titial water of cores was uti- ixing. The ver- related to the termine the re- well as the ty- ND DOCUMENT ANAI b.IDENTIFIERS	ssessing the re ning the distri volume box cor y with cores ta hemistry. Vert lized as a mean rtical distribu depth of mixin lative amounts pes of biogenic	lative bution es for ken by ical s of tion g. of mixing structure c. cosati Field Group
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic subst biological examination were collected Maryland Geological Survey for interst distribution of organicsms within the determining the depth of biological mit of organisms has been found to be corr Employed was an x-ray technique to det in different areas of the estuary as to produced by resident organisms.	In information is a means of a tes in determi- tances. Large simultaneousl- titial water of cores was uti- ixing. The ver- related to the termine the re- well as the ty- ND DOCUMENT ANALI- b.IDENTIFIER:	ssessing the re ning the distri volume box cor y with cores ta hemistry. Vert lized as a mean rtical distribu depth of mixin lative amounts pes of biogenic	lative bution es for ken by ical s of tion g. of mixing structure c. COSATI Field'Group
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic subst biological examination were collected Maryland Geological Survey for interst distribution of organicsms within the determining the depth of biological main of organisms has been found to be corr Employed was an x-ray technique to det in different areas of the estuary as to produced by resident organisms. <u>KEY WORDS AN</u> DESCRIPTORS	In information is a means of a tes in determi- tances. Large simultaneousl- titial water of cores was uti- ixing. The ver- related to the termine the re- well as the ty- ND DOCUMENT ANALA b.IDENTIFIER:	ssessing the re ning the distri volume box cor y with cores ta hemistry. Vert lized as a mean rtical distribu depth of mixin lative amounts pes of biogenic	lative bution es for ken by ical s of tion g. of mixing structure c. cosATI Field Group
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic subst biological examination were collected Maryland Geological Survey for interst distribution of organicsms within the determining the depth of biological mit of organisms has been found to be corr Employed was an x-ray technique to det in different areas of the estuary as to produced by resident organisms. <u>KEY WORDS AN</u> DESCRIPTORS	In information is a means of a tes in determi- tances. Large simultaneousl- titial water of cores was uti- ixing. The ver- related to the termine the re- well as the ty- ND DOCUMENT ANAL b.IDENTIFIER:	ssessing the re ning the distri volume box cor y with cores ta hemistry. Vert lized as a mean rtical distribu depth of mixin lative amounts pes of biogenic	lative bution es for ken by ical s of tion g. of mixing structure c. cosati Field Group
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic substi- biological examination were collected Maryland Geological Survey for interst distribution of organicsms within the determining the depth of biological mit of organisms has been found to be corr Employed was an x-ray technique to det in different areas of the estuary as to produced by resident organisms. X. KEY WORDS AN DESCRIPTORS	In information is a means of a tes in determi- tances. Large simultaneousl- titial water of cores was uti- ixing. The ver- related to the termine the re- well as the ty- ND DOCUMENT ANAL b.IDENTIFIER:	ssessing the re ning the distri volume box cor y with cores ta hemistry. Vert lized as a mean rtical distribu depth of mixin lative amounts pes of biogenic	lative bution es for ken by ical s of tion g. of mixing structure c. COSATI Field'Group
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic subst biological examination were collected Maryland Geological Survey for interst distribution of organicsms within the determining the depth of biological mit of organisms has been found to be corr Employed was an x-ray technique to det in different areas of the estuary as w produced by resident organisms. KEY WORDS AM DESCRIPTORS	In information a means of a tes in determi- tances. Large simultaneousl- titial water of cores was uti- ixing. The ver- related to the termine the re- well as the ty- ND DOCUMENT ANAI b.IDENTIFIER:	ssessing the re ning the distri volume box cor y with cores ta hemistry. Vert lized as a mean rtical distribu depth of mixin lative amounts pes of biogenic	lative bution es for ken by ical s of tion g. of mixing structure c. cosati Field/Group
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic subst biological examination were collected Maryland Geological Survey for interst distribution of organicsms within the determining the depth of biological mit of organisms has been found to be corr Employed was an x-ray technique to det in different areas of the estuary as to produced by resident organisms.	In information is a means of a tes in determi- tances. Large simultaneousl- titial water of cores was uti- ixing. The ver- related to the termine the re- well as the ty- ND DOCUMENT ANALA b.IDENTIFIER: 19. SECURITY UNCLASSING	Seessing the re ning the distri volume box cor y with cores ta hemistry. Vert lized as a mean rtical distribu depth of mixin lative amounts pes of biogenic LYSIS STOPEN ENDED TERMS	21. NO OF PAGES
This study was designed to obtain relationships in the Chesapeake Bay as importance of benthic macroinvertebrat and fate of sediment-borne toxic subst biological examination were collected Maryland Geological Survey for interst distribution of organicsms within the determining the depth of biological mit of organisms has been found to be corr Employed was an x-ray technique to det in different areas of the estuary as to produced by resident organisms. <u>NECRIPTORS</u>	In information a means of a tes in determi- tances. Large simultaneousl- titial water of cores was uti- ixing. The ver- related to the termine the re- well as the ty- ND DOCUMENT ANAI b.IDENTIFIERS 19. SECURITY UNCLA- 20. SECURITY	CLASS (This Report) SSIFIED CLASS (This Report)	21. NO OF PAGES 25.7 22. PRICE

n v

-!

A STATISTICS MARK

EPA/600/3-88/054 August 1982

PB89-134407

EPA Chesapeake Bay Program Final Report Grant R805982-01-0

بالمنه ليرتنه

 \tilde{U}

The Biogenic Structure of Lower Chesapeake Bay Sediments

by

Karl J. Nilsen Robert J. Diaz Linda C. Schaffner Donald F. Boesch Rodney Bertelsen Michael Kravitz

Virginia Institute of Marine Science Gloucester Point, Virginia 23062

August 1982

REPRODUCED BY U.S. DEPARTMENT OF COMMERCE NATIONAL TECHNICAL INFORMATION SERVICE SPRINGFIELD, VA. 22161 This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

ii

NOTICE

CONTENTS

List o	f Tables	v
I.	Executive Summary	1
II.	Introduction	4
III.	Methods	6
IV.	Results	- 9
	A. Sediments	÷9
	B. Faunal Composition and Abundance	21
	C. Spatial Patterns in Distribution	29
	D. Vertical Distribution Patterns	34
	Individual Species Patterns	34
	Seasonal Effects	50
	E. Sediment Structure and Levels of Bioturbation	50
	Physical Structures	50
	Biological Structures	56
	Trends	57
	F. Microscopic Examination of Sediments	57
	G. Pore Water Chemistry	61
V.	Discussion	64
	A. Population Distribution	64
	Individual Species Distribution.	65
	Seasonal Effects	65
	B. Biogenic Structure and Bioturbation.	65
	C. Sediment Composition	66
	D. The Relationship Between Pore Water Chemistry and	
	Macrobenthos	67
VT.	Mechanisms of Toxic Transport by Macrobenthos.	60
***	Management Considerations and Future Research Nooded	71

iia

FIGURES

Number		Page
1	Box core station locations	7
2	Vertical distribution of the meso-polyhaline mud habitat 9-78	35
3	Vertical distribution of the meso-polyhaline mud habitat 6-79	36-
4	Vertical distribution of the meso-polyhaline mixed habitat 9-78	37
5	Vertical distribution of the meso-polyhaline mixed habitat 6-79	38
6	Vertical distribution of the meso-polyhaline sand habitat 9-78	39
7	Vertical distribution of the meso-polyhaline sand habitat 6-79	40
8	Vertical distribution of the polyhaline mud habitat $6-79.$. 41
9	Vertical distribution of the polyhaline mixed habitat 9-78	. 42
10	Vertical distribution of the polyhaline mixed habitat 6-79	. 43
11	Vertical distribution of the polyhaline sand habitat 9-78	. 44
12	Vertical distribution of the polyhaline sand habitat 6-79	. 45
13	Vertical distribution of the poly-euhaline mixed habitat 9-78	. 46
14	Vertical distribution of the poly-euhaline mixed habitat 6-79	. 47
15	Vertical distribution of the poly-euhaline sand habitat 9-78	. 48

iii

16	Vertical distribution of the poly-euhaline sand habitat 6-79	49
17	Vertical distribution of <u>Pseudeurythoe</u> <u>ambigua</u> along a sand gradient	53
18	Vertical distribution of fecal pellets at depth for all stations sampled each cruise	62

iv

TABLES

Number		Page
1	Grain size distribution from vertical sectioning of box cores	10
2	Net sedimentation rates predicted for box core station locations	19
3	Summary information on the biology of some common Chesapeake Bay benthic invertebrates	22
4	Major salinity and substrate habitats sampled	30
5	Dominant species and their depth distribution in each major habitat	31
6	The twenty dominant species with their depth distribution	51
7	List of species having 10% or more of their populations below 10 cm	52
8	Sediment type based on visual observations, and extent of bioturbation based on radiographs for each station sample	54
9	List of particle species found in lower Chesapeake Bay sediments	59
10	Mean % abundance distribution among the four major particle types	60

v

I. EXECUTIVE SUMMARY

Sediment dynamics in estuarine areas are controlled by a complex interaction of physical and biological processes. When most toxic substances enter the estuary they become closely associated with the sediment, thus, the factors that influence the movement of sediments must be understood in order to predict the transport and fate of toxicants. This study characterizes the biological processes that effect sediment dynamics in the lower Chesapeake Bay.

Benthic organisms (a very diverse group of invertebrates that live on and in bottom sediments) have the potential to redistribute dissolved and particulate materials within the sediments, and between the sediment and water column. This activity of benthic organisms is generally referred to as bioturbation. Depending upon the life habits of the particular species involved their bioturbation activities may affect the distribution of toxic substances by:

- mixing causing newly arrived surface material to be quickly buried or resurfacing older material
- ventilation increasing the exchange between interstitial water and the water column
- increasing sediment stability decreasing the probability that buried material will be resurfaced
- decreasing sediment stability increasing the probability that buried material will be resurfaced
- causing rapid sedimentation through pellitization of fine suspended particles
- causing erosion by making sediment more easily transported

Analysis of our box core samples from around the lower Bay (Figure 1) brought us to the following set of basic conclusions:

0

C

• The majority of the stations with large percentages of silt and clay are found north of the Rappahannock River. Stations south of the Rappahannock are mostly muddy sands. Sand dominates the mouth of the Bay and along the Eastern Shore.

• Many of naturally occurring particles that compose the sediments are organic-mineral aggregates that are destroyed during classical grain size measurement techniques. These aggregates cannot be neglected in considering the dynamics of deposition and transport of toxic substances. Microscopic analysis showed an average of 69% of the particle species showed a positive reaction for the presence of organic matter. All stations exhibited great similarity in the percent abundance distribution of the different natural particles despite wide differences in grain size as derived from conventional analysis. The larger organic-mineral aggregates are certainly fecal pellets, created by the feeding activities of the benthos. Smaller amorphic aggregates are most likely formed in the decay of fecal pellets.

- Organisms capable of bioturbating sediments were found to occur over the entire lower Bay. Populations were numerically dominated by euryhaline opportunists. These species are extremely dynamic and occur over a wide range of salinities and sediments. Their populations tend to vary a great deal both spatially and temporally. A large number of equilibrium species were also found. While not numerically dominant they tended to be the biomass dominants. A pattern along the salinity gradient also exists, with the polyhaline zone having the greater number of individuals and species than the mesohaline zone.
- The majority of the benthic organisms in the lower Bay are found in the top 10 cm of sediment. Muds have the fewest deep dwelling organisms, muddy sands an intermediate number, and sands the highest number. While there are a greater number of individuals and species in the polyhaline zone compared to the mesohaline zone the proportion of deep dwelling organisms is similar in both salinity zones. Polychaetes were the most specious groups to live deep (>10 cm) in the sediment. All major taxonomic groups had deep dwelling representatives. Most of the deep dwelling species, were not numerically dominant, but due to their large size were capable of processing large volumes of sediment.
- None of our cores were without some evidence of bioturbation. The vast majority of the cores were 90 to 99% bioturbated. Those that had the least amount of bioturbation tended to be in the upper part of the study area, have fluid mud surfaces, or have high amounts of coarse sand and gravel. Physical structures, mostly mud or sand laminations, dominated the muds in deep channel areas and deep holes where perioidic summer anoxia allows only the temporary settling of opportunistic species which tend to be shallow bioturbators. Muds in shallower areas contain more species and more

biological structures. Most of the muddy sands of the lower Bay are dominated by both living and abandoned biogenic structures. Sands are most uniformly mixed from bioturbation activities and show little biogenic structure other than tubes of living organisms. Muds tend to have a more tube or burrow oriented sedentary community while sands have a more mobile fauna causing a more uniform bioturbated sediment fabric.

The density of biogenic structures of living organisms is highest in the top 2-3 cm of sediment, but structures are common to 15-20 cm and have been observed below 50 cm. This would indicate mixing to be most rapid near the surface and decrease with depth. Back filling of abandoned burrows
and tubes is an important means of quick burial of surface material to depths of 5 to 40 cm or more.

These findings all have implications that must be considered for the management of toxic substances and for modeling their distribution and fate in estuaries. The benthos directly and/or indirectly influence the chemical gradients within the pore waters. They also figure very predominantly in mixing and turnover of the sediments. Our study indicates that bioturbation will be most intense in the top several centimeters, but that most areas of the lower Bay have large organisms penetrating to 30 cm or more. Most of the Bay bottom is bioturbated, with the least bioturbation occurring in deep holes where fluid mud and periodic anoxía limit the development of benthic populations. The mechanisms of toxic transport by the benthos can be summarized as follows:

- Feeding activities
 - subsurface to surface movement
 - sedimentation through pelletization
- Burrowing activities
 - subsurface to surface movement
 - · lateral movement within sediments
- Tube building
 - stabilization of surface
 - increase in sedimentation
- Ventilation of burrows or tubes • alter pore water profiles
 - alter pore water profiles
 - increases flux between sediment and water column

All these activities in some way affect the mass properties of sediments and the dynamics of estuarine sedimentation. Any model for predicting the movement of toxic substances within or between the sediment and water must include biological mixing coefficients. Models not considering the benthos may erroneously predict permanent burial of a toxicant within a short time when in fact the toxicant could be buried and resurfaced many times before sedimentation removes the toxicant from the biologically active zone.

II. INTRODUCTION

One of the prime objectives of the EPA Chesapeake Bay Program has been to obtain the information necessary to predict the distribution and ultimate fate of toxic materials entering the Chesapeake Bay system. Most toxicants entering the water column become closely associated with particulate materials which eventually settles to the bottom as sediment. Thus, a thorough understanding of sediment dynamics and chemistry is necessary to understand the movement of sediment-bound toxicants through the Bay system.

With the exceptions of azoic or rapidly accumulating environments, most sediments are inhabited by benthic organisms which have the potential to redistribute dissolved and particulate materials within the sediments. In the Chesapeake Bay faunal composition and abundance change with substrate type and salinity gradients (Boesch 1977, Roberts et al. 1975). These faunal changes are reflected in the type and degree of influence benthic organisms have on both sedimentological and geochemical profiles (Winston and Anderson 1971, Aller 1978).

Depending on their life histories and living positions, benthic organisms may increase sediment stability (Fager 1964, Mills 1967), decrease sediment stability (Rhoads and Young 1971, Thayer 1979), increase the sediment accumulation rate (Haven and Morales-Alamo 1966, Lynch and Harrison 1970) or increase erosion (Rowe 1974). All of these processes indirectly influence the fate of sediment-bound toxicants. Benthic organisms may also affect the distribution of toxicants through their burrowing and feeding activities which displace materials, both horizontally and vertically, or through burrow ventilation which effectively increases the exchange between interstitial waters and the overlying water column (Aller 1978).

This study was designed to obtain information on the animal-sediment relationships in the Chesapeake Bay as a means of assessing the relative importance of benthic macroinvertebrates in determining the distribution and fate of sediment-borne toxic substances. Large volume box cores for biological examination were collected simultaneously with cores taken by Maryland Geological Survey for interstitial water chemistry. Vertical distribution of organisms within the cores was utilized as a means of determining the depth of biological mixing. The vertical distribution of organisms has been found to be correlated to the depth of mixing by Krezoski et al. (1978). We also employed an x-ray technique established by Howard and Frey (1975) to determine the relative amounts of mixing in different areas of the estuary as well as the types of biogenic structure produced by resident organisms. Our last approach involved a microscopic study of the sediments to aid in the conceptualization of the effects animals have on altering grain size properties. This information was used to formulate hypotheses regarding the effect benthic organisms have on interstitial chemical profiles and sediment dynamics.

5

•

Ġ

D

III. METHODS

A joint cruise with Maryland Geological Survey was made in September 1978. Twenty-five stations in the Virginia portion of the Chesapeake Bay were sampled with a box corer for biological studies and a gravity corer for chemical studies. An additional 3 stations were sampled by box corer on a separate cruise in late April 1979 in order to perfect newly developed core processing techniques. A second joint cruise with Maryland Geological Survey (sediment chemistry) and National Bureau of Standards (water column chemistry) in June 1979 visited a final 25 stations. The resulting data includes detailed biological and chemical profiles from 50 stations representing the various sedimentary and estuarine environments of the lower Bay (Fig. 1).

Biological sampling was accomplished using a U.S. Navy Electronics Laboratory spade box corer. The box corer takes an undisturbed sample encompassing a surface area of 0.062 m^2 with a maximum penetration of 60 cm.

Once the box core was retrieved any overlying water was carefully siphoned off and surface topography (ripple marks, fecal mounds, burrow openings, tube density, surface traces) was observed and recorded. One side of the box was removed and a 6 cm thick vertical slice was cut, placed in a water tight plexiglass container and refrigerated for later radiography. The remainder of the box corer was measured for depth of penetration and then a small sediment sample was taken at vertical intervals of 0, 2, 5, 10, 20 and, if possible, 40 cm and preserved in 70% ethyl alcohol for later staining and microscopic examination. The remainder of the core was placed intact in a water tight plexiglass container and stored in a freezer.

The 6 cm section was trimmed to a 2 cm thickness for radiographic examination. This is thought to be the ideal thickness for examining biological and sedimentological structures (Howard and Frey 1975). We used a Torr 120 kv. x-ray machine with 14 x 17 Kodak AA Industrial x-ray film. Voltage, amerage, exposure time and development time was recorded for each radiograph. Color and/or black and white photographs were taken of each core for further visual documentation and comparison. The degree of bioturbation at a station was visually estimated from x-radiographs of the vertical core sections using criteria outlined in Howard and Frey (1973, 1975). This technique involves estimating the amount of physical structure observable in radiographs versus the amount that has been altered by biological activities including tube building and mixing.

Fig. 1. Box core station locations.

Ţ

The other frozen box core section was cut into 5 cm horizons. A sediment sample was saved for grain size analysis. Each horizon was dissected to uncover an organism's position and associated biogenic structures. The organisms were removed, identified and preserved in 70% ethanol. The disaggregated sediment was sieved through a 0.5 mm sieve to recover any small macrofaunal organisms missed in the dissections. Information derived from dissections, sieved samples and radiographs was used to construct a three dimensional distribution map of organisms for each core (See Appendix C).

The small sediment samples taken at vertical intervals along the core were microscopically examined in order to classify particle types. A periodic acid-Schiff reagent was used to stain particles for the presence of carbohydrates and carbohydrate-proteins (Humason 1967). Details of staining procedure is given by Whitlatch and Johnson (1974). Small amounts of stained sediments were mounted on microscope slides using a glycerol mounting medium. Fields were randomly chosen until the first 300 particles on each of 2 slides were measured and identified into the following categories at 400X:

Non-Encrusted

Mineral Grains	Encrusted Mineral Grains	Mineral Aggregates
<25 µm	<25 µm	<25 um
25-50 µm	25-50 µm	25-100 µm
50-100 μm	50-100 µm	100-300 μm
100-150 μm	100-150 µm	300-500 µm
•	•	>500 µm

A scan of the entire slide at 100X was made to count less frequently occurring particles (fecal pellets, plant tissue, diatoms, etc.).

Problems arose in attempts to perform all analyses on one box core. Also, freezing the core resulted in poor preservation of biological specimens, thus making identifications difficult. A separate cruise was made in April 1979 to perfect new sampling procedures. Two box cores rather than one were taken at each of three stations (103, 104 and 105). One box core was used for an x-ray sample (taken as before) and the remainder was dissected on board rather than frozen and transported to the laboratory. The other box core was divided on board at intervals of 0-2 cm, 2-5 cm, 5-10 cm, 10-15 cm, 20-30 cm, 30-40 cm and 40-50 cm. Sediment samples for grain size and microscope analysis were taken at each interval before sieving through a 0.5 mm sieve on board. All biological samples were preserved in 10% formalin. Biological samples were sorted, identified and transferred to 70% ethanol as before. These techniques proved more successful and were employed on the June 1979

IV. RESULTS

A. Sediments

Table 1 lists the percent sand, silt, and clay for the vertical intervals taken down each core. The majority of the stations with large percentages of silt and clay are found north of the Rappahannock River. Stations south of the Rappahannock River are mostly muddy sands. Sand dominates the areas at the mouth of the Bay and along the Eastern Shore.

Most of the cores are fairly homogeneous, but a few show some large vertical variations. Sediments at Station 27 in Pocomoke Sound contains mostly fine sand (55%) with little gravel (.2%) in the top 5 cm. At the 20-25 cm layer the gravel content has increased to 20% and fine sand has decreased to 15%. Sediments at Stations 37 and 39 are mostly medium sand in the top 5 cm, but become coarser towards the deeper layers. Station 41 has alternate layers of low and high gravel content sediments.

Station 77 has high percent silt-clay sediments in the top 5 cm (45%) but this drops to 12.5% in the 10-15 cm layer before increasing to 30% in the 20-40 cm layer. Station 78 exhibits the most dramatic example of vertical sediment change. The top 10 cm contains 90% mud sediments, but the next layer (10-15 cm) only 28% mud.

Sediments at Station 80 fluctuate considerably in % sand with depth. Sediments at Stations 89 and 91 increase in their percent mud and coarse sand with depth. Stations 28 and 49 are the only two stations which have a consistent gradient of increasingly muddy sediments with depth.

The most common vertical variation found in cores is an increase of coarser material with depth, the next most frequent occurrence is random fluctuations, and the least common is an increase of finer materials with depth. Vertical variations represent changes in the energy environment or source of sedimentary materials.

Table 2 lists the sedimentation rates at the different sampling sites. Most stations have net deposition rates on the order of .5 to 1.5 cm/yr. Stations 26, 86, 94 and 96 have deposition rates greater than 1.5. Except for Station 96, all have high silt clay contents. Station 96 with the largest deposition rate (2.64 cm/yr) is located in a shoal area just east of the York Spit Channel and south of a large discontinued spoil dump area. Stations 44, 50, 90, 91, 97, and 100 have negative deposition rate indicating erosion in these areas. All these areas have clean sands and except for stations 90 and 91 occur at or very near the mouth of the Bay. Both stations 90 and 91 occur in shallow high energy environments.

Section Depth	% gravel	% sand	9 cilt	∜ clav
Depen		, Build	<u> </u>	- 76 CIAY
Station 26		3 9		
0-5 cm	missing			
5-10	trace	11.6	50.9	37.5
10-15	0.1	6.0	53.0	40.9
15-20	0.1	6.3	50.8	42.8
20-25	missing			
25-30	0.1	10.6	47.2	42.0
30-35	trace	2.5	46.5	51.0
35-40	0	2.7	48.5	48.8
40-43	0	4.1	49.5	46.4
Station 27				
0-5 cm	0.2	85.8	8.6	5.4
5-10	0.1	92.8	3.9	3.2
10-15	0	92.7	3.9	3.4.
15-20	6.0	83.2	5.4	5.4
20-25	19.9	73.9	2.9	3.3
25-30	16.8	71.2	5.1	6.9
Station 28			e de la constante de la constan La constante de la constante de La constante de la constante de	
0-5 cm	1.3	85.3	5.0	84
5-10	1.4	88.5	3.3	6.8
10-15	5.1	78 1	6.0	10.8
15-20	1 4	62 1	15 3	21 1
20-27	5 5	56 7	16.0	21.1
	~ * * ~	50.7	10.9	20.0
Station 29				
0-5 cm	trace	96.4	0.9	2.6
5-10	0.1	97.6	0.7	1.5
10-15	0.1	97.3	0.6	2.0
15-19	0.1	96.6	1.2	2.1
Station 30				
0-5 cm	0.2	19.6	41.8	38.4
5-10	0	15.9	56.3	27.8
10-15	0	35.3	30.6	34.1
15-20	0	16.8	41.3	41.9
20-25	0	31.3	35.2	33.5
Station 31				
0-5 cm	0.1	1.1	51.5	47.3
5-10	0	0.6	55 4	44 0
10-15	ñ	2.6	54 0	44.0
	~	4m 9 V	54.0	

Table 1 . Grain size distribution from vertical sectioning of box cores.

23

6

11. F.A.S

(Carlora

Section 🐡	-			
Depth	% gravel	% sand	% silt	% clay
6 , , , , , , ,				
Station 32				
0-5 cm	0.2	58.7	25.3	15.8
5-10	0.4	52.2	27.2	20.2
10-15	trace	52.4	27.9	19.6
15-25	0.1	54.4	25.9	19.5
Station 33				
0-5 cm	missing			
5-10	0.2	44 5	38 1	17 2
10-40	miccina		J0.1	1/.2
T0-40	missing			
Station 34				
0-5 cm	0	21.6	52.0	26.4
5-10	0.1	13.6	53.7	27.6
10-15	0	21.4	53.5	25.0
15-21	0	13.0	53.6	33.4
Station 35				
0-5 cm	0.2	38.5	41.6	19.7
5-10	missing			
10-15	0	43.1	36.4	20.6
15-20	0	42.6	34.9	22.5
20-25	0	34.7	40.2	25.0
25-30	trace	44.1	24.9	31.0
30-38	0	39.6	36.1	24.3
Station 36	miccing			
Scation 30	MISSING			
Station 37				
0-5 cm	10.8	84.4	1.7	3.2
5-10	18.3	72.8	3.6	5.2
10-18.5	25.5	64.4	4.5	5.5
Station 38				
0-5 cm	0.7	41 7	30 8	17 8
5-10	1.6	20 1	30 0	21.0
10_15	L.V miccina	20+T	33.3	20.5
15-20	urserug	21 6	61 0	26.0
20-25	0.5	21.0	51.2	26.9
20-23	0.2	22.5	52.0	25.3
25-30	0.3	26.0	48.5	25.2
30-35	0.7	34.1	42.4	22.9
35-40	0.3	34.0	44.1	21.7
40-45	0.6	34.1	42.3	23.0
45-51	0	21.3	48.7	30.1

11 -

Section				
Depth	% gravel	% sand	% silt	% clay
Station 39				
0-5 cm	1.7	05 7	0 r	
5-10	4.8	93.7	0.5	2.0
10-16	277	92.0	0.8	2.4
	34.1	59.4	3.3	4.6
Station 40				
0-5 cm	0	90.4	4.1	55
5-10	0	88.6	5.5	5.8
10-15	trace	88.1	4.9	6.0
15-20	0.2	86.2	5.8	70
20-25	0.5	86.7	5.0	7.0
25-33	0.6	84.8	6.3	1.8
		0110	0.5	8.3
Station 41				
0-5 cm	5.8	78.8	5.8	9.5
5-10	14.7	63.0	8.7	13.6
10-15	11.8	61.1	13.1	14 0
15-20	7.4	56.2	13.5	22.0
20-24	27.4	46.4	9.9	16.6
.				10.4
Station 42				
0-5 cm	0.7	73.3	16.0	10.0
5-10	0.1	61.8	24.5	13.6
10-15	0	67.4	19.9	12 7
15-20	trace	67.7	19.8	12.7
20-25	missing			ال و شند
25-30	0	66.4	18.6	14.0
30-36	trace	68.9	19.5	11.6
Station 43				
0-5 cm	1 4	(0.1		
5-10	Li4 minoine	09.4	20.0	9.2
10-15	1 0	70 0		
15-20	1.0	73.9	14.9	9.3
20-24	1.0	80.0	12.2	6.8
20 24	0.1	79.9	13.5	6.5
Station 44				
0-5 cm	2.0	01.2		_
5-10	1 3	91.3	2.3	4.5
10-13	missing	07.0	3.2	7.7
			a da ang ing ing ing ing ing ing ing ing ing i	
Station 45				
0-5 cm	0.6	95.1	1 /	2 0
5-10	0.7	95.8	1.4	2.9
10-15	3.7	90.9	1 9	4.0
15-20	0.9	85.9	5 0	3.0
20-27	3.9	83.1	57	0.1

e.,

ß

DECLIOI				
Depth	% gravel	% sand	% silt	% clay
Station 46				
0-5 cm	0.1	00.0		
5-10	0.1	82.0	8.8	9.2
10-18	0.1	82.4	10.4	7.0
TO TO	0.5	73.9	14.5	11.1
Station 47		an an tao 1960 ang		
0-5 cm	0.1	79.8	11 4	
5-10	missing		11.4	8.7
10-15	trace	56 6	26.0	
15-20	0.5	62 5	20.9	16.5
20-25	trace	72 1	15 2	14.6
25-30	0.8	71 2	12.3	12.6
30-38	0.1	57 1	13.2	14.9
			20.4	22.4
Station 48				
0-5	0.1	72.8	18.0	0 1
5-10	0.2	81.0	11.9	6 9
10-18	0.2	81.0	12.1	6.6
Station 49			ta ang ang ang ang ang ang ang ang ang an	
0-5	1.0	60 6	26.0	
5-10	0.6	58 1	20.8	11.5
10-15	0.2	52 D	25.2	16.0
15-20	0.1	51 6	26.5	20.1
20-25	0	50 4	30.0	18.3
25-30	trace		29.5	20.1
30-35	trace	47.3	29.6	23.1
35-40	0 1	40.0	29.3	24.1
40-45	0	42.0	31.2	25.8
45-50	traco	33.0	38.9	27.6
50-55	trace	40.0	34.1	25.9
Station 50	LIALE	39.0	35.2	25.8
0-5 cm	missing			
5-10	0.2	00 (
10-15	0.1	90.0	4.7	4.6
15-22	0.1	00.0	5.4	5.7
	0.1	90.1	4.9	4.9
Station 76				
0-2 ст	trace	4.0	47.5	/.9 5
2-5	0	6.7	49.8	40.3
5-10	0	3.8	56.0	43.3
10-15	0.1	4.3	53.6	40.2
15-20	0.1	3.8	54.6	41.7 /1 c
20-30	0.1	5.6	56.7	41.)
30-40	0	5.6	51.8	31.1 19 7

5

10

 \mathcal{L}

Section				
Depth	% gravel	% sand	% silt	% clay
.				
Station 77	~ ~	r/ 2	10.0	07.0
0-2	0.3	54.3	18.2	21.2
2-5	0	85.2	5.9	8.9
5-10	0.1	84.9	5.6	9.4
10-15	trace	87.5	4.0	8.5
15-20	1.1	68.5	8.4	13.0
20-30 30-40	0.7 0.3	65.6 69.5	$13.1 \\ 12.2$	20.7 17.9
Station 78				
0-2	0.2	9.8	48.8	41.1
2-5	0.2	10.7	46.2	42.9
5-10	0	11.9	53.6	34.5
10-15	0.7	71.6	12.4	15.3
15-20	0.1	72.7	13.7	13.5
20-30	0.6	77.3	10.9	11.1
30-40	0.4	80.4	9.5	9.7
Station 79				
	13	2 9	41.2	54.6
0-2	1.3	03	50.4	49.2
5 10	0	37	45 9	50 3
5-10	0.1	2.0	45.5	40.1
10-15	0.2	5.9	40.9	47.1
15-20	trace	4.9	41.4	47.0
20-30	0	5.2	40.5	40.5
30-40	0	4.2	45.5	50.2
Station 80			an an an an thair. An airte an	
0-2	0.1	66.3	21.4	12.2
2-5	0	54.1	31.6	14.3
5-10	0.1	29.4	47.4	2 1
10-15	0	41.7	36.6	21.6
15-20	0	31.0	43.8	25.2
20-30	trace	56.3	27.1	16.5
30-40	0.4	59.3	26.5	13.8
40-50	0.3	48.1	31.8	19.8
Station 81				
0-2 cm	0.1	68.5	18.9	12.5
2-5	2.7	74.1	11.0 -	12.1
5-10	0.7	65.6	16.7	16.9
10-15	0 0	68.7	15.2	16-0
15_20	1 2	6.8.7	13.7	16.7
20-30	0.8	44 6	25.1	29.4
20-50	17	66 7	15 9	16.3
50-40 6050	T. 1	60.0	18 6	10.5
40-30	U.9	00.9	10.0	12.2

Section				
Depth	% gravel	% sand	Z silt	% clay
Station 82				
0-2 cm	0	1.1	46.4	52.5
2-5	0	1.9	52.5	45.5
5-10	0	2.4	51.4	46.2
10-15	0.1	0.4	43.1	56.4
15-20	0	0.7	45.3	54.0
20-30	0	2.0	47.5	50.5
Station 83				
0-2 cm	0.6	3.2	49.5	46.6
2-5	0	1.8	47.3	50.8
5-10	0	1.7	51.7	46.6
10-15	0	1.9	48.2	50.0
15-20	trace	1.5	50.2	48.3
20-30	0	1.7	45.4	53.0
Station 84				
0-2 cm	0.3	9.9	62.8	26.9
2-5	0	8.9	60.1	31.0
5-10	0	5.8	55.7	38.5
10-15	0	9.0	56.7	34.3
15-20	0	11.3	59.8	28.9
20-30	0	14.3	56.3	29.4
30-40	0.1	5.0	55.2	39.7
Station 85				
0-2 cm	0.4	6.2	53.8	39.5
2-5	trace	5.5	57.6	36.9
5-10	0.3	8.0	55.2	36.5
10-15	0	11.7	53.7	34.6
15-20	0.1	14.4	53.8	31.7
20-30	missing			
30-40	0	10.0	52.7	37.3
40-50	0	11.0	49.2	39.8
Station 86				
0-2 cm	0.2	2.7	49.8	47.3
2-5	0	1.1	45.7	53.2
5-10	0.1	2.2	52.5	45.2
10-15	0.2	1.8	51.8	46.1
15-20	1.0	1.6	48.6	48.8
20-30	0	1.4	50.2	48.3

Section				
Depth	% gravel	% sand	% silt	% clay
Station 97			·····	
DLALIUII 07				
0-2 CH 2 F	trace	6.0	73.6	20.4
2-0	0	8.6	67.2	24.2
5-10	0	10.1	63.2	26.7
10-15	0.1	10.9	62.4	26.6
15-20	0	10.0	62.7	27.4
20-30	0	7.4	58.4	34.2
30-45	0	9.0	56.8	34.2
Station 88				
0-2 cm	0.4	35 1	16 0	10 -
2-5	0.1	42 5	40.0	10.5
5-10	0	70 5	33.9	21.5
10-15	ñ	29.5	48.5	22.1
15-20	0 1	20.9	4/.6	25.4
20-30	0.1	27.1	50.3	22.5
30-40	0	27.9	49.5	22.6
20-40 40-50		25.4	49.1	25.4
40-50	0.2	24.7	48.4	26.8
Station 89				
0-2 cm	- 0.1	82.3	8 4	0 2
2-5	0.1	87.7	55	2.4
5-10	trace	92.5	3.0	0.8
10-15	0.3	80 0	5.0	4.5
15-20	0	8/ 1	4.3	5.5
20-30	1 2	04.1 97 C	5.8	10.1
		07.0	4.5	6.5
Station 90				
0-5 cm	0.2	96.6	a 6	26
5-10	0.3	97.2	0.0	2.0
10-18	0.7	97.7	0.4	2.0
			0.5	1.4
Station 9]				
0-2 cm	0.2	96.8	0.8	2.2
2-5	0	96.6	0.5	2.8
5-10	0.1	97.7	0.3	1.8
10-15	0.1	96.1	1.5	2.3
15-20	1.3	95.0	1.2	2.5
Station 92				
C-2	0	0 0		
2-5	0	0.3	49.5	50.2
5-10		0.5	54.6	44.9
10 15	missing			
15 20	U	0.3	49.2	50.4
10-20	0	1.1	49.2	49.6
20-30	0	0.4	48.6	51.0
JU-40	0	0.3	49.7	50.0
40-30	0	0.4	47.8	51.7

Section				
Depth	% gravel	% sand	% silt	% clay
Station 93				
0-2 cm	a 1	55	50 0	31. 5
2-5 CM	0.1	0 4	62 0	34.5
5-10	0.6	7.4	59.7	20.5
10-15	0.0	20	50.7	20.7
15-20	0	16.3	56 2	32.0
20-30	0.1	14.5	59 /	27.4
30-40	0.1	12.5	J2.4 55 0	22.2
40-50	0.5	87	57 0	31.2
-0-50	0.5	0.7	57.0	33.1
Station 94				
0-2 сп	0.1	56.8	30.2	12.9
2~5	0.1	67.9	21.4	10.6
5-10	0	62.0	26.0	11.9
10-15	0	54.9	29.9	15.2
15-20	0	54.8	31.4	13.8
20-30	0	49.5	34.9	15.6
30-42	0	58.2	25.6	16.2
Station 95				·. :
0-2 cm	0	8.8	53 3	28 0
2-5	trace	10.0	50.0	20.0
5-10	0	5 /	53 /	40.0
10-15	õ	7 2	52.2	70.6
15-20	0	64	52.6	41 0
20-30	Ő	7 2	50.3	41.0
30-40	traco	7 9	51 1	42.5
40-50	n	10 7	50.2	41.0
40-50	v	12.07	20.3	37.0
Station 96				
0-2	0.1	92.9	2.8	4.2
2-8	0.1	93.6	2.7	3.6
Station 97			and and a second se Second second	
0-2 cm	1.8	65.8	*32.3 sil	t & clav
2-5	trace	67.0	20.6	12.3
5-10	trace	76.9	13.3	9.8
10-15	trace	79.9	11.3	8.8
15-20	0	63.0	24.9	12.1
Station 98				
0-2 cm	12 7	68 1	8 /	10 0
2-5	<u> </u>	77 1	6.9	11 0
5-10	5.7	80 4	υ.ο ς ς	ττ·0
7.10	2.1	00.4	د و	0.0

L

Table 1 (continued)

Section				
Depth	% gravel	% sand	% silt	% clay
-				
Station 99				
0-5 cm	0.2	73.0	16.2	10.6
5-10	trace	62.0	20.4	17.6
10-15	0.3	65.1	18.0	16.6
15-20	0.5	64.0	17.0	18.5
20-30	0.7	57.1	20.6	21.6
30-40	0.5	63.4	19.9	16.2
Station 100	missing			
Station 103				
0-2 cm	missing			
2-5	0.3	70.9	14.2	14.6
5-10	0.3	78.8	11.9	8.9
10-20	0.2	66.4	18.7	14.7
20-37	0.1	66.1	19.0	14.8
Cr				
Station 104	0 (~ ~ ~		
0-2 cm	0.6	30.8	43.6	25.0
2-3	missing			
5~10	0.2	49.0	31.0	19.8
10-15	missing			
15-20	U	61.3	19.5	19.2
20-30	trace	50.3	29.7	20.0
30-40	0.1	61.5	18.7	19.8
Station 105				
	0.1	(0.1		
0-2 Cm	0.1	68.1	19.1	12.8
2-3	0	61.7	23.5	14.8
J-10 10 15	0.1	58.9	23.9	17.1
15 20	U	49.3	32.0	18.7
13-20	trace	53.4	28.0	18.5
20-30	U	63.0	19.6	17.5
30-40	U	68.3	15.3	16.4

Station	Sedimentation rate cm/yr	depth (ft)
76	1.00	0.0
20		98
20	• (0	12
20	-84	82
29	-40	33
	• • • • • • • • • • • • • • • • • • • •	88
31	L.US. search 1	44
32	.97	46
33	• / 4	35
	.75	39
35	.56	39
36	.64	37
37	.96	22
38	.82	37
39	.57	43
40	.57	42
41	.33	46
42	.04	38
43	0	38
44	22	24
45	.81	29
46	.42	24
47	.11	44
48	1.46	28
49	missing	38
50	08	58
76	.59	98
77	1.05	65
78	1.47	78
79	.55	60
80	.58	58
81	.86	51
82	1.46	80
83	-83	40
84	.85	42
85	.83	39
86	1.59	61
87	.62	33
88	missing	38
89	.89	40
90	65	26
91	44	30
92	.70	20
	•• •	÷

Table 2. Net sedimentation rates predicted for box core station locations*.

.

Station	Sedimentation rate cm/yr	depth (ft)
93	1.01	43
94	2.20	55
95	1.22	35
96	2.64	27
97	-1.02	110
98	missing	61
99	.11	55
100	-1.08	62

* Information taken from Annual report of EPA grant R806001010 Baseline sediment studies to determine distribution, physical properties, and sedimentation budgets and rates by Robert J. Byrne, Carl H. Hobbs III, and Michael J. Carron. 1979.

B. Faunal Composition and Abundance

A total of 34,811 individuals representing 173 taxa were collected. Polychaetes were by far the most numerous (21,592 individuals) and diverse (84 species) benthic invertebrates, with crustaceans second (8,491 individuals, 39 species), and molluscs third (4,499 individuals, 35 species). Miscellaneous groups were represented by 229 individuals and 15 species (see Appendix A for species list).

A great disparity existed between the number of individuals collected on the September 1978 cruise and the number collected on the June 1979 cruise. In September, 1978 4,197 individuals were collected. Polychaetes represented 10% of the total, crustaceans 82%, molluscs 7% and miscellaneous taxa 1%.

On the June 1979 cruise 27,326 individuals were collected, almost a 7 fold increase. Polychaetes had the greatest relative increase with 69% of the total. Relative to the total, crustaceans decreased to 17%, molluscs to 13% and miscellaneous groups to less than 1%.

Aside from the numerical disparity between the two seasons, a shift in dominance from one set of species to another occurred. Using McCloskey's Biological Index (McCloseky 1970) a ranving dominance can be given that is representative of each species abundance and frequency. The five dominant species in the fall collections were: 1) <u>Pseudeurythoe ambigua</u> (polychaete), 2) <u>Paraprionospio pinnata</u> (polychaete), 3) <u>Retusa canaliculata</u> (gastropod), 4) <u>Ampelisca abdita</u> (amphipod), and 5) <u>Nereis succinea</u> (polychaete). In the early summer collections the five dominant species were: 1) <u>Streblospio benedicti</u> (polychaete), 2) <u>Pectinaria gouldii</u> (polychaete), 3) <u>Pseudeurythoe</u> <u>ambigua</u> (polychaete), 4) <u>Paraprionospio pinnata</u> (pelychaete), and 5) <u>Mulinia lateralis</u> (bivalve). <u>Streblospio benedicti</u> was not among the top 20 in the fall, while <u>Pectinaria gouldii</u> was ninth and <u>Mulinia lateralis</u> was seventh.

Some of this disparity can be explained by the sampling of different stations as well as a change in techniques (see Methods section). Most of the numerical disparity and species dominance shift from fall to spring can be explained by spring juvenile recruitment, especially by fecund surface dwellers such as <u>Streblospio benedicti</u>, <u>Polydora ligni</u>, <u>Mediomastus ambiseta</u>, <u>Mulinia lateralis and Pectinaria gouldii</u>. Boesch et al. (1976), in discussing the seasonality of benthic communities in Chesapeake Bay, notes that although recruitment takes place all summer long, only spring and fall recruitment contribute significantly to the adult population. Predation by epibenthic predators such as the blue crab and fish can reduce the populations of these prolific surface dwellers during the summer (Virnstein 1977). By September, the benthos is probably at its lowest population levels, as reflected by the samples taken at this time.

Table 3 lists the common species found in the study with information on occurrence, feeding type, biogenic activity and habitat preferences.

References	Howard & Frey 1975 Bocach 1973			Abbatt 1974	Sanders 1960 Boesch 1973 McCall 1977	Maurer et al. 1974	Mayou and Howard 1975 Boesch 1973 Maurer at al. 1974
llabítat	wide range prefera mud mesohaline ro polyhaline	widu range of sediments polyhaline	sand polyhaline	wide range of sediments meschaline to polyhaline	wide range more abundant on mud meschaline to polyhaline	muddy sands mesohaline to pulyhaline	fine-medium sand polyhaline
Biogenic Activity or Structure	random burrowing	random burrowing	sand encrusted tube	crawling trails on surface	crawling trails on surface	binds sediment by byasus threads, pelletization	vertical burrows
Feeding Type	predator	produkor	suspenaton feeder	deposit feeder, facultative ectoparasite of molluscs and marine worms	carnivore	suspension feeder	surpension feeder
Depth Distribution	0-50 cm	0-10 cm	0+20 cm	0-2 cm	0-2 cm	surface	0-20 ст
Stations Occurred	29, 46, 76, 80, 83, 84, 90, 96, 97, 104, 105	88, 89, 91, 93, 94, 97, 99, 100, 103, 104	27, 28, 29, 37, 40, 46, 47, 49, 84, 89, 90, 91, 94, 96, 97, 99, 103	34, 41, 46, 48, 76, 77, 78, 87, 94, 95, 103, 104, 105	26, 27, 29, 32, 34, 35, 36, 47, 35, 36, 42, 44, 46, 47, 48, 49, 78, 79, 81, 84, 48, 89, 85, 88, 89, 91, 94, 95, 97, 104, 105	28, 32, 35, 36, 40, 41, 42, 77, 89, 91, 103, 104, 105	29, 40, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100
Spectus	Nemertea Cerchratulus Lacteus	Tubulanua pellucidus	Phorontda 2015 sp.	Mollusca Gastropoda <u>Odostomia</u> sp.	Retusa canaliculata	Blvalvía Anadara transversa	Ensis directus

2

Table 3. Summary information on the biology of some common Chesapeake Bay benthic invertebrates.

Table 3

\sim	
inued	
(cont	
n	
ble ble	
C	

Spectes	Stations Occurred	Depth Distribution	Feeding Type	Biogenic Activity or Structure	llabitat	keferences
Bivalvia (continued) Lynnsia hyalina	77, 81, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99	0-5 cm	suspension feeder	pelletization	wide range of sediments polyhaline	
<u>Mulinia laterallis</u>	26, 29, 37, 38, 42, 44, 48, 49, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 104	0-5 Cm	suspension feeder	burrowing produces funnel shaped depressions	wide range of sediments mesohaline to polyhaline	Frey & Howard 1972 Stanley 1970 Boesch 1973
Mya arenaria	76, 77, 78, 81, 83, 84, 87, 88, 89, 90, 95, 97, 98	0-10 cm	suspension feeder	long vertical burrow for their siphons	wide range of sediments mesohaline to polyhaline	Maurer et al. 1974
Tellina ugilis	44, 46, 47, 48, 50, 88, 89, 90, 91, 92, 94, 96, 97, 99, 100, 105	0-10 cm	suspension feeder	pelletization	muddy sand - sand polyhaline	Maurer et al. 1974
Yoldia limitula	42, 43, 46, 49, 88, 89, 94, 95, 97, 104, 105	0-5 cm	shallow subsurface deposit feeder	pelletization 6-12 g/m ² /yr random burrowing	silt clay to fine sedimen: polyhaline	khoads 1974
tacea Ostracod sp.	29, 30, 32, 35, 36, 38, 44, 47, 48, 89, 94, 103, 104, 105	0 - 5 cm	filtor feeder	nnknown	wide range of sediments & salinity	Barnes 1968

Stat io
30, 32, 76, 78, 81, 0-2 cm 8 86, 87, 88, 93, 95, 104
30, 36, 76, 78, 81, 0-2 ст ері 93, 94, 96, 97, 98, всл , 104, 105
27, 29, 30, 32, 33, 0-5 cm sol 46, 47, 49, 76, 77, 79, 80, 81, 82, 81, 85, 81, 88, 89, 90, 91, 94, 96, 97,
84, 88, 89, 91, 93, 0-2 cm susp 96, 97, 103, 104 selec
35, 40, 49, 84, 88, 0-30 cm sele 91, 98, 103, 105

	Rafarances	Caine 1978 Caine 1977	Fauchald & Jumars 1979	Howard & Frey 1975 Mayou & Howard 1975 Rhoads 1974	Fauchald & Jumars 1979	Hertweck 1972 Howard & Frey 1975 Booch 1973	1717
	Habitat	eract bryozoan or hydroids	wide range of sediments polyhaline	muddy sand to sand, most abundant in higher energey regimes	wide range of sediments & salinity	wide range prefers mud meschaline to	wide range of sediments
	Blogunic Activity or Structure	uncertain	forms tubes of surface debris horizontally along the sediment surface	long sand encrusted tube "conveyor belt species" ventilates tube	burrowing	muintains doep gallery of burrows, ventilates	maintains deep gallery of burrows, ventilates
	Feeding Type	ambush predator, filter feeder	tentaculate surface deposit feoder	subsurface selective deposit feeder	long eversible unarmed pharynx feeds on <u>Nereis</u> succinea, canabilistic nd detritus	arnivore, non-melective loposit feeder	arnivore, non-selective eposit feeder
	Depth Distribution	Burface	E∪ ∽~O	0-30 0.	0-5 10 10 10	0-40 CM	0-40 cm d
a manaka na manaka na manaka na manaka na kana na manaka na manaka na manaka na manaka na manaka na manaka na m	Stations Occurrod	35, 84, 88, 91, 93, 94, 96, 97, 103, 104, 105	78, 79, 82, 84, 87, 88, 89, 90, 91, 93, 94, 53, 96, 97, 98, 99, 104, 105	27, 28, 35, 77, 84, 88, 89, 91, 95, 96, 97, 98, 103, 105	76, 77, 78, 79, 80, 81, 82, 63, 84, 85, 86, 87, 88, 91, 93, 95, 96, 97, 98	35, 38, 40, 42, 45, 46, 76, 77, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 100, 104, 105	27, 28, 29, 32, 37, 39, 44, 50, 76, 80, 96
	Spectus	Amphtpoda (continued) Paracaprella tennia	Annel ida Polychaeta Asubellides oculata	Clymenella corquata	Eteone heteropoda	Glycera americana	Clycera dibranchiata

wide range of sediments meschaline to pulyhaline

maintains deep gallery of burrows, ventilates

Table 3 (continued)

Ŕ

1

ł

.

a na na sana na				Utoconto Activity		
Species	Stations Occurred	Depth Distribution	Feeding Type	biogenic Activity or Structure	Habitat	References
Polychaeta (continued) Heteromastus filiformis	41, 46, 76, 78, 80, 81, 82, 83, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99, 103, 104, 105	0-20 cm	non-selective deposit feeder	network of capiliary like burrows	mud to muddy sand meschaline to polyhaline	Myers 1977 Howard & Frey 1975 Fauchald & Jumars 1979
Mediomastus ambiseta	76, 78, 83, 84, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100	0-10 сп	non-selective deposit feeder	feeds head down, defeacts on surface so can be considered "conveyor-beit species"	wide range of sediments polyhaline	Fauchald & Jumars 1979
Norols surcines	26, 28, 30, 33, 34, 36, 40, 41, 76, 77, 78, 79, 80, 81, 82, 91, 93, 94, 95, 96, 97, 98, 103, 104	0-40 cm	omnivore, non-selective deposit feeder	forms branching burrows ventllates	wide range of sediment and salinity	Fauchald & Jumars 1979 Howard & Frey 1975 Wolff 1973
Faraprionospio pinnata	26, 27, 28, 30, 31, 31, 35, 35, 37, 38, 41, 43, 47, 48, 49, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 82, 96, 103, 104, 105, 96, 103, 104,	0-15 cm	tentaculate deposit feeder	forms temporary burrows	wide range of sediments prefers mud meschaline to polyhaline	Boesch 1973 Fauchald & Jumars 1979
Pect Inar la Bould11	32, 35, 36, 38, 41, 46, 76, 77, 78, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 100, 103, 104, 105	C=0	tentaculate selective sub- surface deposit feeder	cone shaped sand tube, "mud kull" fooding trace random burrowing "conveyor belt species"	wide range of widhments mesohaline to polyhaline	Hertweck 1972 Whitlatch 1974 Rhoads 1974 Gordon 1966

	References	Wolff 1973 Grassle & Grassl 1974 Pettibone 1963 Fauchald & Jumar	Fauchald & Jumar. 1979	Myers 1977 Howard & Frey 1975 Fauchald & Jumar	Gardiner 1975	Fauchald & Jumars 1979
	llabitat	wide range of sediments mesohaline to polyhaline	wide range of sediments meschaline to polyhaline	mostly mud meschaline to polyhaline	muddy sands mesohaline to polyhaline	wide range of sediments mesohaline to polyhaline
	Blogenic Activity or Stiucture	builds mucous tube in great densities, have been known to bury oyster reefs	random burrowing	burrower, semi- permanent burrows it irrigates	random burrowing	tube builder
	Feeding Type	suspension feeder, surface deposit feeder	eversible lower 11p for rasping carrion feeder	non-selective deposit feeder	eversible pharynx	selected surface deposit feeder
	Depth Distribution	0-5 0	0-40 cm	0-15 cm	0-30 cm	0-5 CH
	Stations Occurred	76, 77, 78, 81, 82, 83, 84, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100	27, 28, 29, 31, 32, 33, 34, 35, 36, 31, 32, 39, 40, 41, 42, 43, 45, 46, 48, 50, 77, 79, 80, 81, 92, 94, 93, 94, 95, 96, 97, 98, 99, 103, 104	76, 78, 80, 81, 84, 85, 87, 88, 90, 93, 95	32, 43, 77, 79, 84, 85, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99	76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 103, 104
Table 3 (continued)	Spectles	Polychaeta (continued) Polydora <u>ligni</u>	Paeudeurythoe ambigua	Scoloplos fragilis	<u>Sigambra</u> <u>tentaculata</u>	<u>Streblospio</u> benedlet <u>1</u>

NIT STATE

 1	1	
References	Myers 1977 Young & Young 1978	Fisher et al. 1980
Habitat	wide range of sediments polyhailno	wide range of sediments salinity
Biogenic Activity or Structure	sub-surface defecation produces clay balls	"conveyor belt species"
Feeding Type	grooved tentaculate sclective surface deposit (volvr	sub-surface deposit feeder
 Depth Distribution	0-15	0-10
Stations Occurred	29, 36, 45, 47, 49, 84, 08, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100	76, 77, 78, 79, 80, 81, 85, 89, 90, 91, 93, 94, 96, 98, 99, 100
Spectes	Polychaeta (continued) Tharyx sp.	011gochaete
C. Spatial Patterns in Distribution

To facilitate the discussion of species distribution patterns, stations have been categorized into major salinity and substrate habitats (Table 4). We have adopted the Venice classification of salinity zones for estuaries (Symposium on the Classification of Brackish Waters 1958). Stations were differentiated between the meso-polyhaline transition zone and the polyhaline zone by the occurrence of species restricted to higher salinities (i.e. <u>Micropholis atra, Nucula proxima, Yoldia limatula</u>). Station differentiation between the polyhaline and the poly-euhaline transition zones was based on the occurrence of stenohaline continental shelf species (i.e. <u>Goniades carolinae, Glycera robusta, Spiophanes wigleyi</u>, and various syllid species). Some of the stations in the meso-polyhaline transition zone included stations sampled by Maryland Geological Survey.

A similar strategy was employed in differentiating sediment type. Ignoring eurytopic species, we used less frequent, but common species to determine biologically meaningful sediment differences. Species which occur at either end of the mud-sand spectrum tend to be more restricted to their habitat than species occurring in mixed sediments (Purdy 1964). Mud stations usually had less than 10% sand and contained species which do not occur normally in sand (i.e. <u>Asychis elongata</u>, <u>Ogyrides limicola</u>, <u>Macoma balthica</u>). Sand stations had less than 15% sand and were characterized by sand specific species (i.e. <u>Sabellaria vulgaris</u>, <u>Trichophoxus</u> <u>epistomus</u>, <u>Owenia fusiformis</u>, and <u>Monoculodes edwardsi</u>). Sediments with a more even mixture of mud and sand were considered as mixed sediments.

The dominant species in each of the 8 habitats sampled in the lower Bay are listed in Table 5. Eight species occur among the 10 dominant organisms in more than half of the habitat types. This reflects the relatively opportunistic tendencies exhibited by these species. The ubiquity, dominance, and irruptive population dynamics of these organisms make it difficult to understand patterns in distribution. Rhoads et al. (1978) have pointed out the importance of sea-floor disturbance in determining the distribution of most opportunistic species, yet disturbance is a difficult parameter to quantify particularly when it is not of a catastrophic nature.

Tests of significance (t-test, Sokal and Rholf 1969) were used to compare numbers of species between various sediment types, salinity zones, and seasons. There was a highly significant (p=0.01) increase in the number of species from the 9/78 sampling to the 6/79 sampling. There were no significant differences between substrates within any one salinity zone for the fall sampling. There was a significant (p=0.05) substrate difference in the polyhaline zone for the June 1979 sampling, with mud having fewer species that either mixed or sand substrates. Haven et al. (1967) sampling the polyhaline zone of the York River also found fewer species in the mud than in sand.

Significant differences also existed in the comparisons between salinity zones. The meso-polyhaline transition zone had fewer species than the polyhaline zone in both seasons. Boesch (1972) found a similar gradient in species diversity from areas of higher salinity to areas of lower salinities.

Table 4. Major salinity and substrate habitats sampled.

	Station M	lumbers*	
September-October	1978		
Salinity	Mud	Substrate	Sand
Meso-Polyhaline transition	23, 24, 26, 30, 31	22, 32, 34	20, 21, 25, 27 28, 29
Polyhaline	none	35, 38, 41, 42, 43	36, 37, 39, 40
Poly-Euhaline transition	none	46, 47, 48, 49	44, 50
June 1979			
Salinity	Mud	Substrate	Sand
Meso-Polyhaline transition	23, 24, 76, 78, 79, 82, 83, 84, 85, 86	21, 77, 30, 81	25, 65
Polyhaline	87, 92, 93, 95	88, 94, 98, 99, 103, 104	89, 90, 96
Poly-Euhaline transition	none	97, 105	91, 100

* Stations 33 and 45 not included in the analysis due to inadequate sampling.

Table 5. Dominant species and their depth distribution in each major habitat based on the biological index of McCloseky (1970).

Meso-polyhaline mud

- 1. Streblospio benedicti
- 2. Ampelisca abdita
- 3. Nereis succinea
- 4. Mulinia lateralis
- Paraprionospio pinnata 5.
- Pectinaria gouldii 6.
- 7. Eteone heteropoda 8.
- Leucon americanus 9.
- Pseudoeurythoe ambigua 10.
- Glycinde solitaria

Meso-polyhaline mud-sand

- 1. Pectinaria gouldii
- Mulinia lateralis 2.
- 3. Streblospio benedicti
- 4. Paraprionospio pinnata
- 5. Ampelisca abdita
- 6. Pseudoeurythoe ambigua
- 7. Nereis succinea
- 8. Eteone heteropoda
- 9. Glycinde solitaria
- 10. Macoma balthica
 - Retusa canaliculata

Meso-polyhaline sand

- 1. Paraprionospio pinnata
- Pseudoeurythoe ambigua 2.
- 3. Clycera dibranchiata
- 4. Ampelisca abdita
- 5. Phoronis sp.
- Retusa canaliculata 6.
- 7. Glycinde solitaria
- 8. Nereis succinea
- 9. Ampelisca vadorum
- 10. Streblospio benedicti

Table 5 (continued)

Polyhaline mud

1. Pectinaria gouldii

ź.

- 2. Streblospio benedicti
- 3. Mediomastus ambiseta
- 4. Mulinia lateralis
- 5. Paraprionospio pinnata
- 6. Sigambra tentaculata
- Asabellides oculata Glycinde solitaria 7. 8.
- ۶. Pseudoeurythoe ambigua
- Lyonsía hvalina 10.

Polyhaline mud-sand

- 1. Pectinaria gouldii
- Pseudoeurythee ambigua 2.
- 3. Paraprionospio pinnata 4. Streblospio benedicti
- 5. Anadara transversa
- Nereis succinea 6.
- Clymerella torquata 7.
- 8. Mediomastus ambiseta
- 9. Mulinia lateralis
- 10. Oligochaete

Polyhaline sand

- Pseudoeurythoe ambigua 1.
- 2. Streblospio benedicti
- 3. Mulinia lateralis
- Spiophanes bombyx 4.
- 5. Mediomastus ambiseta
- 6. Ensis directus
- 7. Sabellaria vulgaris Pectinaria gouldii
- 8. 9.
- Ampelisca verrilli 10.
- Anadara transversa

Table 5 (continued)

Poly-euhaline mud-sand

- <u>Retusa canaliculata</u>
 <u>Paraprionospio pinnata</u>
- 3. Maldanidae

Ġ.

- 4. Tellina agilis
- 5. Mediomastus ambiseta
- 6. Pectinaria gouldii
- 7. Pseudeurythoe ambigua
- 8. Turbonilla interrupta
- 9.
- Ampelisca abdita Glycinde solitaria 10.

Poly-euhaline sand

- Tellina agilis 1.
- 2. Spiophanes bombyx
- Streblospio benedicti 3.
- <u>Glycera</u> sp. 4.
- 5. Medicmastus ambiseta
- 6. Arabellidae

. .

- 7. Glycera dibranchiata
- Capitellidae sp. A 8.
- 9. Retusa canaliculata Pectinaria gouldii
- 10.

33

and the second

D. Vertical Distribution Patterns

> Oxidence to Time Timetto

The vertical distribution patterns of individuals and species in the major habitats for each cruise are graphically depicted in Figures 2-16. Histograms represent the number of individuals or species while the line represents the cumulative % with depth. All areas had the greatest species abundances in the top 10 cm. Based on the percentages, only the fall sampling in the meso-polyhaline transition zone showed any differences in species numbers and abundances. Mud had 100% of its macrobenthic organisms contained in the top 10 cm, while mixed had 91% and sand the least with 54%.

If one looks at the actual numbers of organisms living below 10 cm a pattern emerges. Muds generally had the shallowest faunal penetration, with mixed sediments intermediate. Sand usually had the largest number of deep dwelling organisms. A pattern along the salinity gradient also existed, with the polyhaline zone having greater number of individuals and species than the meso-polyhaline transition zone. With one exception the poly-euhaline transition zone had the least number of deep dwelling organisms. That one exception was station 91, which had a large number of animals penetrating beyond 10 cm.

Individual species distribution

Polychaetes were the most successful group living in the deeper sediment layers. Most of these polychaetes built long tubes (e.g. <u>Clymenella</u> and <u>Asychis</u>) or deep burrows (e.g. <u>Glycera</u> and <u>Nereis</u>). A few polychaetes burrowed freely without any permanent structure to the surface (i.e. <u>Pseudeurythoe ambigua, Sigambra</u>). Molluscs and crustaceans were equal in their ability to penetrate the deeper layers. Bivalves with long siphons, such as <u>Mva</u>, <u>Macoma</u> and <u>Tellina</u>, were able to bury deep and still maintain connections to the surface. <u>Ensis directus</u>, another deep burrowing bivalve, maintains a burrow as its connection to the surface. Crustaceans which could build tubes or burrows (e.g. the anthurid isopod <u>Cyanthura</u>, amphipod <u>Leptocheirus</u> and the decapods <u>Upogebia</u> and <u>Callianassa</u>) were able to penetrate into the anaerobic zone. <u>Aligenea elevata</u> (a bivalve) and <u>Listriella clymenellae</u> (an amphipod) were able to live deep in the sediments due to their association with the deep tube dwelling polychaete <u>Clymenella</u> torquata.

Table 6 lists the twenty dominant species found in this study with their maximum sediment penetrations. Most of the abundant species are restricted to the top layers.

Table 7 lists those species whose populations living below 10 cm exceed 10% of the total population. A total of 34 species would be significantly undersampled if a sampler was to penetrate only 10 cm. <u>Pseudeurythoe</u> <u>ambigua</u>, the third most dominant species of the study, had more than one half of its population living deeper than 10 cm. Fig. 17 describes its vertical distribution along a sand gradient. Increasing the mud content decreases the penetration of this annelid. Other numerically dominant species with significant deep populations include the mobile glycerid

34

A BALLER AND

re 4 Stars

6

. <

36

ġ

Ťø

ż.

Fig. 6. Vertical distribution of the meso-polyhaline sand habitat 9-78.

のないでする

.39

6....

6

18

Fig. 8. Vertical distribution of the polyhaline mud habitat 6-79.

-

4

A CONTRACTOR OF A CONTRACTOR A

Ð

16

Fig. 12. Vertical distribution of the polyhaline sand habitat 6-79.

6)

ŝ

Þ

Fig. 13. Vertical distribution of the poly-euhaline mixed habitat 9-73.

- internet 4

ь

へう

è

2

.

No. of Concession, Name

ري. م

polychaetes, which build temporary burrows extending 40 cm or more, and the maldanid polychaete <u>Clymenella</u> torquata, which builds a vertical sand tube of 15-20 cm in length. In the cases of <u>Callianassa atlantica</u>, <u>Scoloplos</u> robustus, <u>Pilargis</u> sp. A, <u>Asychis elongata</u>, and <u>Dilonereis magna</u> all individuals were found below 10 cm.

Seasonal effects

Of the 53 stations sampled, 42 stations had 80% or more of the total number of organisms contained in the top 10 cm. Of the remaining 11 stations, 10 were from the September 1978 cruise. This is a result of both technique differences which allowed better recovery of small soft bodied animals and the spring bloom of surface dwellers such as <u>Streblospio benedicti</u>, <u>Mulinia lateralis</u>, <u>Pectinaria gouldii</u>, <u>Mediomastus</u> <u>ambiseta</u>, and <u>Polydora ligni</u>. Populations of deep dwelling organisms remained relatively constant increasing slightly in the spring collection.

E. Sediment Structure and Levels of Bioturbation

X-ray techniques, developed by Howard and Frey (1973, 1975), were used to determine the effects organisms have on mixing sediment. Radiographs have enabled us to determine the degree of bioturbation, what organisms dominate the sediment structures, and depths to which biogenic structures extend. Since we used methods outlined by Howard and Frey (1975) we felt it appropriate to use their bioturbation classification. By estimating the percentage of the area in a radiograph disturbed by organisms, a station could be placed in one of the following bioturbation percentage groups: 0, <30, 30-60, 60-90, 90-99, 100% (see Table 8). None of our samples were without some evidence of bioturbation and the vast majority fell in the group 90-99\% bioturbated. Those that had the least amount of bioturbation tended to be either in the upper part of the study area, have fluid mud surfaces, or have high amounts of coarse sand and gravel (Stations 41, 49, 78, 79, 80, 82, 86, and 98).

Since x-rays are expensive to reproduce we have chosen to reproduce for the final report radiographs which are representative of most major habitats in the lower Chesapeake Bay (see Appendix D). For a description of radiographs plus other visual observations for each core see Appendix E. A description of structures produced, as well as size and orientation is given for each major species in Appendix F.

Physical Structures

Most of the physical structuring in the lower Chesapeake Bay consists of mud-sand laminations (in the radiographs sand appears black; mud appears white). Laminations are of small scale ripple in Station 82 (Plate 1) to planar in Station 80 (Plate 2). Sand lamination occurs in Station 100 (Plate 3) trough cross bedding.

Table 6. The twenty dominant species with their depth distribution (determined by BioIndex of McCloskey 1971).

Species dep	th distribution (cm)
Streblospio benedicti	0 5
Pectinaria gouldii	0-5
Pseudoeurythoe ambigua	0-5
Paraprionospio pinnata	0-50
Mulinia lateralis	0-15
Ampelisca abdita	0-3
Mediomastus ambiseta	0-3
Nereis succinea	0-5 -
Retusa canaliculata	0-40
Glycera spp. (dibranchiata americana)	0-2
Maldanidae sp.	0-40
Glycinde solitaria	0-50
Anadara transversa	0-10
Polydora ligni	0-2
Eteone heteropoda	0-5
Tellina agilis	0-5
Leucon americanus	0-10
Sabellaria vulgarie	0-2
Tharvy sp.	0-2
Ensis directus	0-10
	0-20
	Species Streblospio benedicti Pectinaria gouldii Pseudoeurythoe ambigua Paraprionospio pinnata Mulinia lateralis Ampelisca abdita Mediomastus ambiseta Nereis succinea Retusa canaliculata Glvcera spp. (dibranchiata, americana) Maldanidae sp. Glycinde solitaria Anadara transversa Polydora ligni Eteone heteropoda Tellina agilis Leucon americanus Sabellaria vulgaris Tharyx sp. Ensis directus

Table 7. List of species living having 10% or more of their populations below 10 cm.

N

% Mollusca Aligena elevata Crustacea Listriella clymenellae Pinnixa retinens P. chaetopterana Callianassa atlantica 100 -Upogebia affinis Annelids Ancistrosyllis hartmanae Glycera dibranchiata Pseudoeurythoe ambigua Clymenella torquata Scoloplos rubra Praxillela gracilis Maldanaidae sp. Cirratulidae sp. Ampharetidae sp. Bhawania goodei Glycera americana Harmothoe sp. A Paleonotus heteroseta Ancistrosyllis jonesi Pilargis sp. A Sigambra tentaculata Scoloplos robustus Gyptis brevipalpa Arabella iricolor Cabira incerta Harmothoe extenuata Magelona rosea Asychis elongata Drilonereis longa Arabellidae sp. Drilonereis magna Brania wellfleetensis Echinodermata Micropholis atra

è

ېږ ۲

¢)

7

Fig. 17. Vertical distribution of <u>Pseudeurythoe</u> ambigua along a sand gradient.

53

A

17-3

Table 8. Sediment type based on visual observations and extent of bioturbation based on radiographs for each station sample.

Station	Sediment Type	Percent Bioturbation
26	mud	no radiograph
27	sand	90-99
28	sand	90-99
29	sand	100
30	mud	no radiograph
31	mud	no radiograph
32	muddy sand	no radiograph
33	mud	no radiograph
34	muddy sand	100
35	muddy sand	90-99
36	muddy sand	100
37	sand	90-99
38	muddy sand	90-99
39	sand	90-99
40	sand	90-99
41	muddy sand	90-99
42	muddy sand	90-99
43	muddy sand	90-99
44	sand	90-99
45	sand	no radiograph
46	muddy sand	90-99
47	muddy sand	90-99
48	muddy sand	90-99
49	muddy sand	60-90
50	sand	90-99
76	mud	90-99
77	muddy sand	90-99
78	mud	60-90
79	mud	60-90
80	muddy sand	30-60
81	muddy sand	90-99
82	mud	30-60
83	mud	90-99
84	mud	90-99
85	mud	90-99
86	mud	<30
87	mud	90-99
88	muddy sand	90-99
89	muddy sand	100
90	sand	90-99
91	sand	no radiograph
92	mud	90-99

Table 8 (continued)

Station	Sediment Type Percent Bioturbation				
93	mud	90-99			
94	muddy sand	90-99			
95	mud	90-99			
96	sand	90-99			
97	nuddy sand	90-99			
98	muddy sand	60-90			
99	muddy sand	90-99			
100	sand	90-99			
103	muddy sand	90-99			
104	muddy sand	90-99			
105	muddy sand	90-99			
	 A specific strategies of the second strategies of the seco				

55

ł

.

.† + Other physical structures consist of methane pocketing as seen in the lower half of Station 82 (Plate 1). Methane is produced in areas of high organic input and absence of oxygen. Methane production in these areas may be so high, particularly during the summer, that bubbles form which escape to the surface, thus forming bubbletubes (Martens and Klump 1980). Macrofauna may, by pumping oxygen into the sediment, prevent methane saturation (Martens 1976).

Other physical features of special interest are substrate changes. Station 78 (Plate 4) has a fluid mud surface stabilized by a dense mat of <u>Ampelisca abdita</u> (an amphipod) tubes. Below the tubes the sediment changes abruptly to coarse sand and gravel. The top 12-15 cm of Station 27 (Plate 5) is fine sand below which is a storm erosion layer of hard clay, rocks and shells. At Station 103 (Plate 6) there was formerly an oyster reef which is now covered by fine sand and populated by the maldanid polychaete <u>Clymenella</u> torquata.

Biological Structures

Biological structures can be classified into three types. Living maintained structures are usually found in the top 10 cm, but have been found as deep as 50 cm. Most of these are tubes or burrows of polychaetes, many having a halo of lighter colored sediment due to ventilation by the occupants. The most frequent tubes or burrows seen are those of Pectinaria gouldii, Paraprionospio pinnata, Loimia medusa, Asychis elongata, Clymenella torquata, Glycera sp. and Heteromastus filiformis. Details of their burrow or tube morphology can be found in Appendix F. Except for Ensis, no other molluscs made permanent burrows, their effects being restricted to bioturbation. Crustaceans, except for thallasian shrimps, produced burrows too small to be easily recognized or preserved. Although biogenic structures attributable to fish were not observed, other studies have noted the effects of fish on bottom sediments (Cook 1971, Risk and Craig 1976, Howard et al. 1977). The abundance of rays, flat fish and blue crabs in Chesapeake Bay make them good candidates for a lot of the bioturbation seen in our cores.

Tubes or burrows which are abandoned and subsequently filled in with surface sediment represent the second major class of biogenic structures. The filling consists of surface sediment which has not undergone compaction and is therefore very fluid as well as black due to the higher oxygen demand of a higher organic content surface fill. These cylinders of fluid black mud generally occur below 5 cm to depths greater than 60 cm. Most of these structures are large; apparently the small burrows are destroyed by bioturbation (Cullen 1973). These structures are seen in radiographs of Stations 84 (Plate 7-E) 95 (Plate 8-6), and 78 (Plate 4-F).

The third major class of biogenic structures is the bioturbation structure. The random feeding and burrowing of polychaetes, molluscs, and crustaceans mix the sediment layers. At low levels this feeding produces a mottled appearance with faint bands of former laminae (see radiographs of Stations 84 - Plate 7 and 95 - Plate 8). At higher levels of bioturbation the substrate is completely mixed, leaving living maintained structures as the only sediment structures (see radiographs of Stations 27 - Plate 5, 42 - Plate 9 and 96 - Plate 10).

Trends

Physical structures dominate the muds in deep channel areas extending into deep holes at the mouths of major rivers. Stressful conditions of a fluid mud surface and periodic summer anoxic conditions allow only the temporary settling of oportunistic species such as the clam <u>Mulinia</u> <u>lateralis</u>, and the polychaete <u>Streblospio benedicti</u> (see <u>Radiograph</u> of Station 82 - Plate 1).

Sometimes <u>Ampelisca abdita</u>, a tube dwelling amphipod, can colonize these fluid surfaces and reach densities high enough to literally carpet the surface. This has a stabilizing effect allowing deeper tube dwellers like Loimia to become established. These tube mats are ephemeral (Mills 1967) and are destroyed by major physical disruptions (i.e. storm, anoxia, or high deposition of sediment). Radiograph 80 (Plate 2) had such a <u>Ampelisca</u> community and demonstrates the alternate horizons of physical and biological dominances.

Muds in shallower regions are less likely to suffer anoxic conditions, contain more animals, and hence are more biologically structured. Faint physical layering is evident, but backfilled burrows dominate the sediment fabric (see radiographs of Stations 84 - Plate 7 and 95 - Plate 8).

Most of the mixed sediments of the bay are dominated by biogenic structures. Tubes of the maldanid polychaete <u>Clymenella</u> torquata are very common in these areas (see radiographs of Stations 42 - Plate 9 and 103 -Plate 6). Sands appear to be the most uniform, usually lacking back-filled burrows which are probably destroyed by the bioturbation of the mobile fauna characteristic of the sand. Only the tubes and burrows of living animals remain (see radiographs of Stations 27 - Plate 5 and 96 - Plate 10). Wave action is probably the dominant influence on the sediment fabric in the sand areas just outside the bay (see radiograph of Station 100 - Plate 3).

F. Microscopic examination of sediments

Biologists involved in animal-sediment relationship studies are disgruntled over the information derived from traditional dry sieving grain size analysis. Larger biogenic structures such as fecal pellets, organic aggregates, tube fragments and plant fragments are often destroyed or broken down to their smaller mineral components. Young (1971) found dry sieving yielded 78-91% silt-clay while gentler wet sieving gave values of 33-50%.

Very often the distribution of organisms does not correlate with median grain size, % silt, clay or other parameters derived from dry sieving. Whitlatch (1976) in a study of food resource partitioning in deposit feeding annelids, noted that the sorting coefficient based on only three points was a poor measure of sediment complexity, but diversity of particle species based on a microscopic study was more indicative of what an organism is likely to encounter while feeding.

Since a toxin's fate and transport is ultimately tied in with where a particle settles we thought it useful to obtain information on the abundance and size of particles before they are destroyed, by using microscopic and staining techniques recently developed (see Methods).

Table 9 lists the types of particles and whether they are abundant, common or rare in lower Chesapeake Bay sediments. Organic-mineral aggregates refer to small mineral grains embedded in a matrix of organic material. Most workers (Rhoads 1974, Johnson 1974, Ronan 1978) agree that the organic-mineral aggregates represent fecal pellets in various states of decay.

Mineral particles consist of solitary grains usually of quartz which may or may not have an organic encrustation. Anderson and Meadows (1969) have found these encrustations to be bacterial films and colonies. Almost all mineral grains larger than 25 μ were encrusted while less than 20% of the mineral grains less than 25 μ were encrusted.

Whole fecal pellets, although abundant in the scanning, represent a small fraction of the abundance as compared to organic-mineral aggregates, encrusted mineral grains and mineral grains. This may be caused by their rapid degradation and as mentioned before degradated fecal pellets are probably represented as organic-mineral aggregates. McCall (1979) took fecal pellets and disaggregated them by stirring and then more vigorous blending. His results as documented in sequential light micrographs, show that whole fecal pellets disaggregates, and finally solitary mineral grains.

Macrophyte fragments were common in all sediments sampled. The identity of the plants could not be ascertained, but most likely represented remains of the marsh grass <u>Spartina alterniflora</u> and eelgrass <u>Zostera marina</u>. Because most stations sampled were in water depth in excess of 20 feet, live diatoms were rare, but their frustules were common.

All other particles, although common, were represented by such low numbers as to be considered unimportant to this study.

Table 10 gives the per cent abundance distribution among the four major particle classes. Organic-mineral aggregates less than 25 μ were the most abundant particles, except at six stations where non-encrusted mineral grains less than 25 μ were. Of these six stations, four stations (44, 90, 91, 100) are undergoing erosion (see Table 2). The absence of low density organic-mineral aggregates, which are more easily transported than mineral grains of comparable size might be expected in this type of environment. Johnson (1974) experimented with settling velocities found organic-mineral aggregates stayed in suspension longer than their mineral components lending support to the buoyancy effect of the organic matter.

.

Table 9. List of Particle species found in lower Chesapeake Bay sediments.

Various unknowns (c)

Mineral grains	(a)
Organic-mineral aggregates	(a)
Encrusted mineral grains	(a)
Fecal pellets	(a)
Macrophyte fragments	(c)
live diatoms	(r)
diatom frustules	(c)
tube fragments	(c)
spines, rods or spicules	(c)
filamentous algae	(r)
Unknown cells	(c)
Polychaete setae	(r)
Plant seeds	(r)
Metazoans	(r)
Pine pollen	(c)
egg cells	(c)
Foramanifera test	(c)
Oak trichome	(c)
Dinoflagellate	(r)
Crustacean exoskeleton	(r)
Plant pollen	(r)
Protozoan	(r)
flagellates	(r)
Tittinid test	(r)
Hydroid fragment	(r)
Veliger	(r)
fish scale	(r)

a - abundant c - common r - rare

4 4

Ş,

n B

ت ج

1

Table 10. Mean % abundance distribution among the four major particle types.

ъ

		1						and the second second		
					105	32	m	40	13	
					104	27	4	46	16	
					603	30	'n	43	13	
50	25	ŝ	41	10	8	36	5	16	8	
64	23	~	45	14	1 66	33	9	42	20	
48	51	ω	52	ω	86	26	S	44	18	
47	25	5	53	6.	67	28	4	÷.	17	
46	27	S	42	14	96	37	Ŷ	28	~	
45	32	S	48	8	95	32	و	47	11	
44	30	S.	21	~	94	36	ŝ	43	10	
43	28	2	20		93	11	2	41	=	
42	26	~	43	12	92	30	8	45	13	
41	24	2 1 1	49	17	16	44	5	23	9	
40	24	0	43	13	8	48	9	24	9	
39	26	'n	51	1	89	2.8	4	44	16	
38	34	10	41	10	88	31	9	45	12	
37	23	5	51	15	87	28	9	47	14	
36	28	4	44	14	86	25	7	44	19	
35	õ	1	43	1	85	31	5	46	13	
34	36	æ	41	ິສີ	84	27	9	46	1	
33	31	ŝ	43	11	83	31	Ŷ	ć 4	*T	
32	33	و	39	11	82	31	5	6.4	12	
31	25	6	41	16	<u>8</u>	33	9	42	14	
30	18	9	59	30	80	29	9	40	18	
29	32	4	35	1	6/	32		42	17	
28	31	9	41	15	78	33	4	43	15	
27	35	~	35	13	17	31		46	· •	
26	44	4	41	ں ب	76	31	'n	43	17	
station	lineral grains <25 µ	incrusted lineral grain <25 µ)rganic-minerøl Aggregate <25 µ	Drganic-mineral ugregate 25-100 µ	it at ion	llneral grains	ncrusted lineral grain 25 µ	rganic-mineral ggregate <25 µ)rganic-mineral ₁₄₈ regate 25-100 p	
	Station 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Station 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Mineral grains 44 35 31 32 18 25 33 31 36 30 28 23 34 26 24 24 26 28 30 32 27 25 21 23 25 <25 µ	Station 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Mineral grains 44 35 31 32 18 25 33 31 36 30 28 23 34 26 24 24 26 28 30 32 27 25 21 23 25 Finctusted 47 6 4 6 9 6 8 8 5 4 5 10 5 6 5 7 5 5 5 8 7 5	Station26272829303132333435363738394041424344454647484950Mineral grains44353132313630282334262424262830322725212325 < 25 μ < 7 6 4 5 31 36 30 28 23 34 26 24 24 26 28 30 32 27 25 21 23 25 < 25 μ 4 7 6 6 8 8 5 4 51 0 5 5 5 5 8 7 5 < 25 μ 4 5 14 51 43 44 51 41 51 43 42 53 52 45 41 < 25 μ 41 51 43 44 51 41 51 43 40 41 50 21 48 42 53 52 45 41 < 25 μ < 35 45 41 51 41 51 43 44 50 21 48 42 53 52 45 41	Station 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Mineral grains 44 35 31 32 18 25 33 31 36 30 28 23 34 26 24 24 26 28 30 32 27 25 21 23 25 $\sim 25 \mu$ Hnerusted Mineral grain 4 7 6 4 6 9 6 8 8 5 4 5 10 5 6 5 7 5 5 5 5 8 7 5 $\sim 25 \mu$ Organic-mineral 41 35 41 39 43 41 43 44 51 41 51 43 49 43 50 21 48 42 53 52 45 41 $\sim 25 \mu$ Organic-mineral 6 13 15 11 8 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $\sim 25 -100 \mu$	Station $26\ 27\ 28\ 29\ 30\ 31\ 32\ 33\ 34\ 55\ 37\ 38\ 39\ 40\ 41\ 42\ 43\ 44\ 56\ 46\ 47\ 48\ 49\ 50$ Mineral grains $44\ 35\ 31\ 32\ 18\ 25\ 33\ 31\ 36\ 30\ 28\ 23\ 34\ 26\ 24\ 24\ 26\ 28\ 30\ 32\ 27\ 25\ 21\ 23\ 25$ Mineral grains $44\ 35\ 31\ 32\ 18\ 25\ 33\ 31\ 36\ 30\ 28\ 23\ 34\ 26\ 24\ 26\ 28\ 30\ 32\ 27\ 25\ 21\ 23\ 25$ Mineral grain $4\ 7\ 6\ 4\ 6\ 9\ 6\ 8\ 8\ 5\ 4\ 5\ 10\ 5\ 6\ 5\ 7\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 7\ 5\ 5\ 5\ 7\ 5\ 5\ 5\ 5\ 5\ 7\ 5\ 5\ 5\ 7\ 5\ 5\ 5\ 7\ 5\ 5\ 7\ 5\ 5\ 7\ 5\ 5\ 7\ 5\ 5\ 7\ 7\ 7\ 7\ 7\ 7\ 7\ 7\ 7\ 7\ 7\ 7\ 7\$	Station 26 27 28 29 30 31 32 33 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Mineral grains 44 35 31 32 18 25 33 31 36 30 28 23 34 26 24 26 28 30 32 27 25 21 23 25 23 25 23 25 Mineral grain 4 7 6 4 6 9 6 8 8 5 4 5 10 5 6 5 7 5 5 5 5 8 7 5 5 5 5 5 8 7 5 4 1 Mineral grain 4 7 6 4 6 9 6 8 8 5 4 5 10 5 6 5 7 5 5 5 5 8 7 5 5 5 5 5 4 5 41 Organic-mineral 41 35 41 35 59 41 39 43 41 43 44 51 41 51 43 49 43 50 21 48 42 53 52 45 41 9 1 9 8 14 10 Organic-mineral 6 13 15 11 8 16 11 11 8 11 14 15 10 11 17 17 12 8 7 8 14 9 81 40 91 91 91 91 10 10 107 104 105 9 8 14 9 01 91 92 93 94 95 96 97 98 99 100 103 104 105 Station 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 103 104 105 104 105 Station 76 77 78 79 80 81 82 83 84 85 86 87 88 99 90 91 92 93 94 95 96 97 90 103 104 105 30 27 32 Station 76 77 78 79 33 31 31 27 31 25 28 31 28 48 40 91 91 92 93 94 95 96 97 90 100 103 104 105	Station 26 27 28 30 31 32 31 32 34 35 36 37 38 39 40 41 44 45 33 31 36 37 25 25 25 8 7 5 <th colspa="</td"><td>Station $26\ 27\ 28\ 29\ 30\ 31\ 32\ 33\ 35\ 37\ 38\ 95\ 40\ 41\ 42\ 43\ 46\ 47\ 48\ 49\ 50$ Mineral grains 44 35 31 32 18 25 33 31 36 30 28 23 34 26 24 26 28 30 32 27 25 21 23 25 $-35\ \mu$ Incrusted Mineral grains 44 35 31 32 18 25 33 31 36 30 28 23 34 26 24 26 28 30 32 27 25 21 23 25 $-35\ \mu$ Incrusted Mineral grain 4 7 6 4 6 9 6 8 8 5 4 5 10 5 6 5 7 5 5 5 5 5 8 7 5 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 8 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 8 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 8 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 3 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 3 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 Station 76 77 78 79 80 81 82 83 84 85 86 87 88 99 09 91 92 93 94 95 96 97 98 99 100 103 104 105 Station 76 77 78 79 80 81 82 83 84 85 86 87 88 99 09 91 92 93 94 95 96 97 98 99 100 103 104 105 Station 76 77 78 79 80 81 82 83 84 85 86 87 88 99 09 91 92 93 94 95 96 97 98 99 100 103 104 105 $-25\ \mu$ Mineral grains 31 31 31 32 32 31 31 27 31 25 28 31 28 48 44 30 31 36 32 37 28 26 33 36 30 27 32 Incrusted Mineral grains 41 31 31 32 72 31 25 28 31 28 48 44 30 31 36 32 37 28 26 33 45 36 30 27 32 $-35\ \mu$ Mineral grains 41 41 24 5 46 44 745 44 24 53 45 47 43 47 28 43 44 42 43 46 44 74 56 44 40 40 40 40 40 40 40 40 40 40 40 40</td></th>	<td>Station $26\ 27\ 28\ 29\ 30\ 31\ 32\ 33\ 35\ 37\ 38\ 95\ 40\ 41\ 42\ 43\ 46\ 47\ 48\ 49\ 50$ Mineral grains 44 35 31 32 18 25 33 31 36 30 28 23 34 26 24 26 28 30 32 27 25 21 23 25 $-35\ \mu$ Incrusted Mineral grains 44 35 31 32 18 25 33 31 36 30 28 23 34 26 24 26 28 30 32 27 25 21 23 25 $-35\ \mu$ Incrusted Mineral grain 4 7 6 4 6 9 6 8 8 5 4 5 10 5 6 5 7 5 5 5 5 5 8 7 5 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 8 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 8 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 8 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 3 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 3 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 Station 76 77 78 79 80 81 82 83 84 85 86 87 88 99 09 91 92 93 94 95 96 97 98 99 100 103 104 105 Station 76 77 78 79 80 81 82 83 84 85 86 87 88 99 09 91 92 93 94 95 96 97 98 99 100 103 104 105 Station 76 77 78 79 80 81 82 83 84 85 86 87 88 99 09 91 92 93 94 95 96 97 98 99 100 103 104 105 $-25\ \mu$ Mineral grains 31 31 31 32 32 31 31 27 31 25 28 31 28 48 44 30 31 36 32 37 28 26 33 36 30 27 32 Incrusted Mineral grains 41 31 31 32 72 31 25 28 31 28 48 44 30 31 36 32 37 28 26 33 45 36 30 27 32 $-35\ \mu$ Mineral grains 41 41 24 5 46 44 745 44 24 53 45 47 43 47 28 43 44 42 43 46 44 74 56 44 40 40 40 40 40 40 40 40 40 40 40 40</td>	Station $26\ 27\ 28\ 29\ 30\ 31\ 32\ 33\ 35\ 37\ 38\ 95\ 40\ 41\ 42\ 43\ 46\ 47\ 48\ 49\ 50$ Mineral grains 44 35 31 32 18 25 33 31 36 30 28 23 34 26 24 26 28 30 32 27 25 21 23 25 $-35\ \mu$ Incrusted Mineral grains 44 35 31 32 18 25 33 31 36 30 28 23 34 26 24 26 28 30 32 27 25 21 23 25 $-35\ \mu$ Incrusted Mineral grain 4 7 6 4 6 9 6 8 8 5 4 5 10 5 6 5 7 5 5 5 5 5 8 7 5 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 8 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 8 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 8 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 3 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 $-25\ \mu$ Organic-mineral 6 13 15 11 8 16 11 1 3 11 14 15 10 11 17 17 12 8 7 8 14 9 8 14 10 Station 76 77 78 79 80 81 82 83 84 85 86 87 88 99 09 91 92 93 94 95 96 97 98 99 100 103 104 105 Station 76 77 78 79 80 81 82 83 84 85 86 87 88 99 09 91 92 93 94 95 96 97 98 99 100 103 104 105 Station 76 77 78 79 80 81 82 83 84 85 86 87 88 99 09 91 92 93 94 95 96 97 98 99 100 103 104 105 $-25\ \mu$ Mineral grains 31 31 31 32 32 31 31 27 31 25 28 31 28 48 44 30 31 36 32 37 28 26 33 36 30 27 32 Incrusted Mineral grains 41 31 31 32 72 31 25 28 31 28 48 44 30 31 36 32 37 28 26 33 45 36 30 27 32 $-35\ \mu$ Mineral grains 41 41 24 5 46 44 745 44 24 53 45 47 43 47 28 43 44 42 43 46 44 74 56 44 40 40 40 40 40 40 40 40 40 40 40 40

Except for the erosional stations it is remarkable how similar the other stations are in their 2 abundance distributions of particle types. This is very different from grain size data obtained by conventional grain size analyses based on weight (see Table 1).

Fig. 18 is a graph of the mean number of fecal pellets at each depth sampled for all stations sampled in each cruise. The highest number of fecal pellets lie on the surface and quickly decline at 2 cm and more slowly decline until 10 cm where there is a slight increase. From 10-40 cm there is a gradual decline. This distribution is expected because most benthic organisms deposit their fecal pellets on the surface. A slight increase from 5-10 cm probably represents a secondary input from subsurface defecation. The fact that whole fecal pellets are found at 40 cm is consistent with the experiments by Cadee (1979) on the resistance of <u>Heteromastus filiformis</u> fecal pellets. He found the pellets to be highly resistent to bacterial breakdown or moderate stirring as compared to experiments with <u>Maccus balthica</u> fecal pellets, which were very easily disaggregated (Risk and Moffat 1977).

Sediments collected during the early summer cruise (6-79) had about twice the number of fecal pellets as did those collected during the fall cruise (9-78). This is consistent with the overall increase in numbers of animals for the 6-79 cruise.

Sediments at all stations showed an abundance of stained particles. Differences between stations in the number of stained versus non-stained particles were insignificant, but some differences existed in the size or form. For example fine grained sediments lacked the larger encrusted mineral grains, but had a correspondingly higher concentration of organicmineral aggregates. Vertical differences at any one station were insignificant, with the exception of larger numbers of fecal pellets and live diatoms near the surface.

G. Pore Water Chemistry

At the time of this writing the only complete set of chemical analysis of the pore water is on the major cations and anions (information provided by Dr. S. Tyree, Department of Chemistry, College of William and Mary). Most of these (Na, K, Mg, Ca, F, Cl) ions are conservative and constant with depth. The rest (NH₂⁺, NO₃⁻², PO₄⁻³, SO₄⁻², HCO₃⁻) are controlled by decomposition of organic matter mediated by various microorganisms. Sulphate reduction is probably the controlling decomposition pathway and has been frequently studied. In two studies of the sulphur cycle in the marine environment Jørgensen (1977) and Goldhaber et al. (1977) attributed the constant sulphate value in the upper 10 cm of the sediment to the irrigation activity of the macrofauna.

In examining our data for this relationship several difficulties arose. The need for a certain volume of water to be able to run all the analyses allowed the chemists to sample only mud, which has a high water content. Such environments are limited in the lower Bay and have sparse benthic

is S

Ļ.,

े.भ ए

 \mathcal{C}

44

<

:

3

populations. Nevertheless there seems to be good agreement between the abundance, composition and vertical distribution of benchic invertebrates and the sulphate profile. In cores from stations 26, 30, 32, 33, 76, 80, 82, 86 and 92, sulphate decreases sharply after the first several centimeters. All these cores either had low populations of macrofauna or animals were restricted to the upper 5 cm. Cores of stations 28, 34, 35, 38, 77, 79, 83, 84, 85, 87 and 88 had either erratic sulphate changes or increasing sulphate with depth. These cores had larger populations of benchic animals, whose activity could be responsible for the observed sulphate distribution.

V. DISCUSSION

A. Population Distribution

Macrobenthic communities in the lower Bay are numerically dominated by euryhaline opportunists (sensu Boesch 1977). These species are extremely dynamic, and occur over a wide range of salinities and sediment types. Their populations vary both spatially and temporally. Equilibrium species, while not numerically dominant, tend to dominate biomass.

The majority of macrobenthic organisms in the lower Chesapeake Bay are found in the top 10 cm of the sediment column. Such a vertical distribution agrees with vertical studies elsewhere (Molander 1928, Holme 1953, Lie and Pamatmat 1965, Keith and Hulings 1965, Johnson 1967, Smith and Howard 1971, Beukema 1974 and Rosenberg 1974). Most ecologists agree that the surface sediment contains the largest reservoir of easily assimilated organic matter. Microbial distributions have been directly linked to the abundant supply of organic material on and near the surface (Aller and Yingst 1980).

Even if food supply is adequate at depth within the sediment, oxygen may not be. Substrate plays a large role in determining oxygen penetration. A larger grain size of sand sediments facilitates pore water exchanges, allowing oxygenation to deeper depths. This enables a deep mobile fauna to exist without connections to the surface.

Deep dwelling organisms in the stable mud habitat where the RPD (Redox Potential Discontinuity) layer lies almost on the surface tend to have a direct connection to the surface via a tube or permanent burrow. Organisms irrigate these structures, thus bringing oxygen down into the sediments. The few organisms that live at depth in the muddy sediments, such as the polychaete <u>Pseudeurythoe</u> <u>ambigua</u>, must have a tolerance of sulprides with some capacity to respire anaerobically. Unstable mud habitats probably lack deep dwelling organisms because of the organism's inability to maintain permanent connections with the unstable surface.

All salinity habitats sampled in this study have a similar proportion of deep dwelling organisms, but differences exist in actual numbers of individuals and species. The increase in deep dwelling organisms from the meso-polyhaline transition zone to the polyhaline zone may be just a reflection of the overall increase in numbers and species of the polyhaline zone. Numbers of deep dwellers decreased from polyhaline to poly-euhaline transition zone. Rhoads (1967) states that organisms respond to the fluctuating environment of the nearshore by building deep burrows while offshore benthos restrict themselves to the upper layers.
Individual species distribution

As was true in most studies of macrobenthic vertical distribution most of the organisms found below 10 cm in the study were polychaetes (Smith and Howard 1971 and Beukema 1974). Their respiratory physiology is well adapted to infaunal life (Mangum 1970). Many of the deep dwelling species are not numerically dominant, but the large size of many of these animals (i.e. <u>Asychis, Callianassa, Cerebratulus, Ceriantheopsis, Upogebia</u> and <u>Thyone</u>) would dominate standing crop biomass. Because of their large size they process large volumes of sediment, thus altering the geological properties and indirectly affecting community development (Myers 1977).

Seasonal effects

Juvenile settling in spring by <u>Streblospio</u> <u>benedicti</u>, <u>Mulinia</u> <u>lateralis</u>, <u>Mediomastus</u> <u>ambiseta</u>, and <u>Polydora</u> <u>ligni</u> caused large increases in the number of organisms inhabiting the 0-2 cm horizon. These opportunistic species are well known for their quick population eruptions (Boesch et al. 1976). Virnstein (1977, 1979) examined the role of predation in structuring Chesapeake Bay bottom communities. His conclusion was that summer predation by fish and crabs lowered populations of surface dwellers, while organisms living deeper in the sediment escaped and were abundant year around. In addition, deeper dwelling organisms have temporally more stable populations because they are buffered from the variability of the sediment-water interface (Sanders et al. 1965).

B. Biogenic Structure and Bioturbation

Information from our radiographs and dissections indicates that the sediments of the lower Chesapeake Bay are highly bioturbated. The prevalence of bioturbated sediments have been found in other areas (Moore and Scrutton 1957, Rhoads 1967, Robbins et al. 1979, Howard and Frey 1973). The density of biogenic structures of living animals is highest in the top 2-3 cm but structures are common to 15-20 cm and have been observed beyond 50 cm. This would indicate mixing to be extremely rapid near the surface and to be considerably slower deeper down. This is precisely what Aller and Cochran (1976) found when measuring biological mixing rates of Long Island Sound sediments using 234 Th/ 238 U ratios.

Back-filled burrows occur below 5 cm down to depths of 40 cm or more. These structures have several implications for the geochemistry of pore waters. First, they represent an avenue for rapid subduction of high water content, high organic content, surface material without the usual slow compaction and decay process normally associated with slow burial. Secondly, these back-filled burrows represent areas of high bacterial activity which may strongly influence the chemistry of pore water. The geochemist must compensate for this type of heterogeneity by either taking larger samples or more replicates. For instance, a small diameter core taken in the middle of a back-filled burrow would yield different results from one taken to either side of the burrow.

An important trend evident in the radiographs, that has geochemical implications, is that muds tend to have a more tube or burrow orientated community while sands have a more mobile fauna, thus causing a more uniform bioturbated sediment fabric. Howard and Frey (1975) noted the same thing for Georgia estuaries. Aller (1978) hypothesized that a sedentary fauna would develop horizontal gradients as well as vertical gradients in sediment chemistry while with mobile fauna only a vertical gradient would be present.

Howard and Frey (1973), in studying nine Georgia estuaries, concluded that biogenic influences decreased with salinity and deep channel areas. Many of the least bioturbated areas were in deep channels (Station 82 and 86). Periodic summer anoxia prevents the establishment of a permanent benthic population. This study only examined the lower Bay (south of the Potomac River) but comparison with the concurrent study of biogenic structures in the upper Bay by Maryland Geological Survey (EPA contract R805964) shows a lowering of bioturbation levels in the lower salinities. This is not surprising since number of individuals and species collected differed by an order of magnitude. Winston and Anderson (1971) in a study of bioturbation of a New Hampshire estuary concluded that the lower rate of biological mixing in the lower salinities was due to lower numbers of the polychaete Nereis. Depth of mixing may be different for the two areas based on Pb 210 analysis by Goldberg et al. (1978). They concluded that mixing by invertebrates occurred in the top 5 cm in the upper Bay while it occurred to 30 cm or more in the lower Bay.

Seasonal differences are not possible to differentiate in our x-rays. At sedimentation rates on the order of 0.5 to 1 cm per year benthic populations mix sediments in terms of years, not months. Seasonal differences in bioturbation levels have been noted by Cadee (1979), Myers (1977), and Driscoll (1975). The higher water temperatures of late summer stimulate the benthos to their highest activity levels. Longer term differences in bioturbation levels, substrate type and community composition have been mentioned for Stations 80, 78, and 103.

C. Sediment Composition

In this study, sediments examined microscopically exhibited a high degree of similarity in the percent abundance distributions of particles despite wide differences in grain size information derived from conventional methods. Many of the differences between this microscopic study and conventional grain size analyses can be attributed to the destruction of larger organic-mineral aggregates into smaller mineral components by the latter method and the fact that convention sanalyses are based on weight of particles. The microscopic method is somewhat arbitrary and subject to unavoidable variability in technique. It needs refinement to be more quantitative and to detect differences one feels must exist. This criticism is also raised by other workers (Johnson 1974, Hughes 1979). Despite its shortcomings, the microscopic method may more realistically characterize sediment structure and complexity as it exists in the field, than do standard grain size analyses.

All of the particle types found in this study have been found in similar studies by Johnson (1974, 1977), Whitlatch (1974, 1976), Ronan (1978) and Hughes (1979). As with the other studies mineral grains and organic-mineral aggregates dominate over all other particles. An average or 69% of the particle species showed a positive reaction for the presence of organic material. In a similar environment Johnson (1977) found stained particles made up 61% of the total, and in a study of sediments in St. Margaret's Bay, Nova Scotia Hughes (1979) found stained particles comprised 66% of the total.

A significant finding in our study was the large numbers of fecal pellets found in all sediments. Risk and Moffat (1977) found that high populations of <u>Macoma balthica</u> could incorporate up to 28 cc/m³/yr of sediment into fecal pellets and pseudofeces. The binding of fine mineral grains into larger fecal pellets (pelletization) has profound effects on the geophysical properties of sediments. Pelletization causes water content to increase and compaction to decrease, resulting in a more easily resuspended sediment (Rhoads & Young 1971, Driscoll 1975). This results not only in transport, but increased surface area for exchange between sediment and the water column, an important feature in nutrient and geochemical cycling (Rhoads 1973).

A second effect of pelletization is increased sedimentation. Suspension feeders remove very fine particles which would not ordinarily settle out due to the hydrodynamic regime and bind them into larger, more easily deposited fecal pellets (Haven and Morales-Alamo 1966, Risk and Moffat 1977). Finally, pelletization may stimulate bacterial growth (Hargrave 1976, Newell 1965). This is important because the metaholic process of bacterial decomposition of organic material governs most of the important geochemical reactions in sediments (Berner 1976). Gordon et al. (1978) found that oil levels in sediments decreased by the increased bacterial degradation stimulated by the activities of the polychaete Arenicola.

Insignificant vertical differences in sediment composition have been attributed to homogenization thru bioturbation (Johnson 1977). Several of our stations reveal the lack of bioturbation and so it seems impossible the lack of vertical sediment changes are due to this process. Forces which coagulate mineral grains and organic debris, as well as encrustation processes are widespread within the sediment. Surface material incorporated at depth does not change significantly, at least within the sensitivity of our methods.

D. The Relationship Between Pore Water Chemistry and Macrobenthos

Jørgensen (1977), in a study of sulphate reduction in Limfjorden, found constant sulphate values in the pore water in the upper ten centimeters of the sediment. This was attributed to the macrofauna, which would pump overlying waters into the sediments and thus decrease the concentration gradient existing between the water and pore water. He also discovered a great deal of difference between replicate cores. This may have been due to

macrofauna density differences. In this study, the types of sulphate profiles measured in cores were generally related to faunal depth distribution profiles. Cores with fauna limited to the upper 5 cm generally had decreasing sulphate profiles, while increasing or erratic profiles were observed in cores with larger populations and a greater proportion of deep-dwelling fauna.

Fenchel (1969) attributed heterogeneity of Eh measurements to worm burrows. Goldhaber et al. (1977) stated the necessity of taking large samples to integrate all the heterogeneity caused by macrofauna burrows. Aller and Yingst (1978) detailed this heterogeneity in their chemical study of the burrow of the polychaete <u>Amphitrite ornata</u>. Burrows are lined with rich organic material that enhances bacterial decomposition. Extremely high rates of sulphate reduction take place along the outer wall while aerobic conditions prevail along the inner wall, setting up strong concentration gradients. Sulphate is continuously supplied by irrigation as well as by the flushing out of decomposition products. We have seen evidence of these microenvironments in our samples. A thin black lining surrounds the light colored halo of oxygenated sediment of many tube and burrow dwellers.

VI. MECHANISMS OF TOXIC TRANSPORT BY MACROBENTHOS

Macrobenthic organisms can affect the distribution of toxic materials by solid phase mixing (toxic materials adhering to sediment particles) or liquid phase mixing (toxic materials dissolved in pore waters).

Mobile deposit feeders mix and transport particles during their feeding and burrowing activities. Sheldon and Warren (1966) note that sand may be physically transported in the stemachs of fish and crustaceans. Several workers (Rhoads 1963, 1967, Gordon 1966, Mangum 1964) have measured rates of particle mixing of common marine invertebrates of the Atlantic and found their mixing rates to exceed annual sedimentation rates several times. One animal in particular, Clymenella torquata, studied by both Mangum (1964) and Rhoads (1967) is particularly important because of its feeding style and depth of influence. <u>Clymenella</u> is a maldanid polychaete which builds a sand tube extending down 15-20 cm. It feeds at the bottom of its tube and defecates on the surface; hence the term "conveyor belt species" (Rhoads 1974). This animal is quite abundant in the lower Bay and it can resurface material 25-100 years old depending on local sedimentation rates. Robbins et al. (1979) detailed the effects of a "conveyor belt species" (an oligochaete found in the Great Lakes) by sprinkling radioactive 137Cs on the surface sediments in an aquarium filled with oligochaetes. Initially the layer of 137Cs was buried until it reached the feeding level where it was resurfaced again. Some escaped feeding, but overall the effect was continuing process of burial and resurfacing.

Animals may also indirectly alter the probability of particle movement. Large tube dwelling polychaetes mound sediments, exposing them to higher current velocities (Newman et al. 1970). Tubes of benthic animals have been known to bind and stabilize bottom sediments (Fager 1964, Mills 1967, Featherstone and Risk 1977). Tubes can trap fine materials, increasing the sedimentation rate (Lynch and Harrison 1971).

Mobile deposit feeding bivalves, by pelletizing the surface sediments, produce a porous surface allowing for greater water content (Rhoads and Young 1971). This decreases critical threshold velocity for resuspension and increases the opportunity for sediment-water exchange so important in nutrient cycling (Rhoads 1973).

Pellet production affects grain size distribution and settling velocities. Pelletization increases sedimentation rates (Risk and Moffat 1977, Verwey 1952) and in some cases biodeposits exceed other sedimentary pathways (Prokopovich 1969). Populations of suspension feeders trap fine materials from the water column and process them into larger fecal pellets. McCall (1979) measured settling velocities of fecal pellets and their

constituent particles and found an increase of two orders of magnitude in settling when the particles are pelletized.

Pellet production indirectly affects the chemistry of interstial waters. Fecal pellets provide an excellent substrate for enhanced bacterial growth (Newell 1965). Other studies have linked macrofauna activity and bacterial activity (Briggs et al. 1979, Tunnicliffe and Risk 1977). Since bacterial metabolism is the controlling action for many chemical species (Berner 1976), this enhancement by macrofauna on bacteria indirectly influences the chemistry of pore waters. Two studies have found that the activities of deposit feeding polychaetes increased bacterial degradation by stimulating microbial metabolism (Gordon et al. 1978, Gardner et al. 1979).

Benthic animals significantly affect pore water profiles by irrigation of their dwelling structure. Rhoads et al. (1978) found irrigation rates were an order of magnitude greater than particle reworking rates. Jørgensen (1977) and Goldhaber et al. (1978) both note that macrofauna irrigation may be responsible for the homogeneous distribution of sulphate in the upper 10 cm. Irrigation increases oxygen penetration (Jørgensen 1977, Rhoads et al. 1978). Increasing oxygen has the effect of lowering pH, increasing Eh and decreasing phosphorus and ammonia (Khalid et al. 1978).

Studies documenting the effects animals have on chemical profiles are increasing. Bowen et al. (1976) and Livingston and Bowen (1979) cite bioturbation as controlling transuranium nuclide distribution. Even redistribution of 137Cs at a 2800 m radioactive disposal site by macrofauna is reported (Dayal et al. 1979). These activities have lead scientists to construct bioturbation mixing models (Goldberg and Koide 1962, Berger and Heath 1968, Guinasso and Schinck 1975, Aller and Yingst 1978, Aller 1980, Hutson 1980) necessary for a complete model of transport of toxics within and out of the sediments.

70

VII. MANAGEMENT CONSIDERATIONS AND FUTURE RESEARCH NEEDED

The crux of this report to managers is that macrofaunal animals are abundant in the lower Chesapeake Bay sediments and play a major role in the movement of sediment, which in turn influences the distribution and fate of toxic materials. The magnitude of animal activities may change from mud to sand and from oligohaline to polyhaline habitats. Effects also differ for different communities of animals (sedentary vs. mobile, shallow infauna vs. deep infauna). In considering the sediment fluxes in the lower Bay it is then essential to factor in the effects of the dynamic macrofauna.

Animals mixing sediments and altering sediment movements have several implications to management decisions. Pollution or other disturbances usually induce the development of benthic communities which differ from those inhabiting undisturbed bottoms. According to Rhoads et al. (1978) quick colonizing surface dwellers are favored under disturbed conditions. Deeper dwelling species are usually not colonizers and may require years to reestablish populations. The loss of deep living benthic animals decreases the depth of bioturbated sediments and may mean the loss of nutrients for recycling. Hale (1975) indicated the benthos to be the most important source of nutrient regeneration to Narragansett Bay, contributing to the Bay's high productivity. Our large seafood industry depends on the high productivity of our Bay and any activity that would cause a change in regeneration of nutrients should be carefully evaluated.

Another consideration is that any model predicting the movement of toxic material within the sediment or between sediment and water must have a biological mixing coefficient. Models without such a coefficient may erroneously predict permanent burial of a harmful toxin within a short time. Dayal et al. (1979) found 137Cs redistributed primarily by bioturbation at a 2800 m nuclear waste disposal site. Managers should realize that benthic animals, unlike man, do not allow things to be buried and forgotten.

Benthic animals may affect dredge material movements. Engineers may predict, based on hydrodynamic regime and conventional grain size distribution analysis, where dredged material may eventually settle. Unfortunately, spoil sediments passing over an oyster reef might be deposited as larger fecal pellets which would accumulate instead of being transported. If this was polluted dredged material, an oyster reef could be contaminated.

Macrobenthic organisms are important in understanding the distribution and fate of toxins, and in forming hypotheses on the possible effects and transformation of toxicants. Work is now needed to establish biological mixing rates for the incorporation of animal effects into models predicting the movement of toxic substances. These rates should be measured using

different communities, varying temperatures, and under different stress levels. Sampling for chemical profiles should be scaled to reflect burrow sizes and densities, both of which impart a small scale heterogeneity to the chemical environment.

72

Bunkessing and a

BIBLIOGRAPHY

- Abbott, R. T. 1974. American Sea Shells, 2nd ed. Van Nostrand Reinhold Co., New York.
- Aller, R. C. 1978. The effects of animal-sediment interactions on geochemical processes near the sediment-water interface. Pages 157-172 <u>In:</u> M. L. Wiley, ed., Estuarine Interactions. Academic Press, New York.
- Aller, R. C. and J. K. Cochran. 1976. ²³⁴Th/²³⁸U disequilibrium in nearshore sediments: particle reworking and diagenetic time scales. Earth and Planetary Science Letters 29:37-50.
- Aller, R. C., and J. Y. Yingst. 1978. Biogeochemistry of tube-dwellings: a study of the sedentary polychaete <u>Amphitrite ornata</u> (Leidy). J. Mar. Res. 36:201-254.
- Aller, R. C. and J. Y. Yingst. 1980. Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA. Mar. Biol. 56:29-42.
- Anderson, J. G. and P. S. Meadows. 1969. Eacteria on intertidal sand grains. Hydrobiologia 33:33-46.
- Barnes, R. D. 1968. Invertebrate Zoology, 2nd ed. W. B. Saunders Co.
- Berger, W. H. and G. R. Heath. 1968. Vertical mixing in pelagic sediments. J. Mar. Res. 26:134-143.
- Berner, R. A. 1976. The benthic boundary layer from the viewpoint of a geochemist. Pages 33-55 In: I. N. McCave, ed., The Benthic Boundary Layer. Plenum Press, New York.
- Beukema, J. J. 1974. The efficiency of the Van Veen grab compared with the Reineck box sampler. J. Cons. perz. int. Explor. Mer. 35(3):319-327.
- Boesch, D. F. 1972. Species diversity of marine macrobenthos in the Virginia area. Chesapeake Sci. 13:206-211.

Beesch, D. F. 1973. Classification and community structure of macrobenthos in the Hampton Roads area, Virginia. Mar. Biol. 21:226-244.

- Boesch, D. F. 1977. A new look at the zonation of benthos along the estuarine gradient. Pages 245-266 In: E. C. Coull, ed., Ecology of Marine Benthos, University of South Carolina Press, Columbia, South Carolina.
- Boesch, D. F., M. L. Wass, and R. W. Virnstein. 1976. The dynamics of estuarine benthic communities. Pages 177-196 In: M. L. Wiley, ed., Estuarine Processes, Vol. 1. Academic Press, New York.
- Bowen, V. T., H. D. Livingston, and J. C. Eurke. 1976. Distributions of transuranium nuclides in sediment and biota of the North Atlantic Ocean. Pages 107-120 In: Transuranium Nuclides in the Environment. International Atomic Energy Agency, Vienna.
- Briggs, K. B., K. R. Tenore, and R. B. Hanson. 1979. The role of microfauna in detrital utilization by the polychaete <u>Nereis succinea</u> (Frey and Leuckart). J. Exp. Mar. Biol. Ecol. 36:225-234.
- Cadee, G. C. 1979. Sediment reworking by the polychaete <u>Heteromastus</u> <u>filiformis</u> on a tidal flat in the Dutch Wadden Sea. Neth. J. Sea Res. <u>13:441-456</u>.
- Caine, E. A. 1977. Feeding mechanisms and possible resource partitioning of the Caprellidae (Crustacea: Amphipeda) from Puget Sound, U.S.A. Mar. Biol. 42:331-336.
- Caine, E. A. 1978. Habitat adaptations of North American Caprellid Amphipoda (Crustacea). Biol. Bull. 155:288-296.
- Cook, D. 0. 1971. Depressions in shallow marine sediments made by benthic fish. J. Sediment Petrol. 41:517-602.
- Dayal, R., A. Okubo, I. W. Duedall, and A. Romanmoorthy. 1979. Radionuclide redistribution mechanics at the 2800 m Atlantic nuclear waste disposal site. Deep-Sea Res. 26:1329-1345.
- Driscoll, E. G. 1975. Sediment-animal water interaction, Buzzards Bay, Massachusetts. J. Mar. Res. 33:275-302.
- Fager, E. W. 1964. Marine sediments: effects of a tube-building polychaete. Science 143:356-359.
- Fauchald, K., and P. A. Jumars. 1979. The diet of worms: a study of polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. Rev. 17:193-284.
- Featherstone, R. P., and M. J. Risk. 1977. Effect of tube-building polychaetes on intertidal sediments of the Minas Basin, Bay of Fundy. J. Sediment. Petrol. 47:446-450.

Fenchel, T. 1969. The ecology of marine microbenthos. IV. Structure and function of the benchic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6:1-182.

- Fisher, J. B., W. J. Lick, P. L. McCall, and J. A. Robbins. 1980. Vertical mixing of lake sediments by tubificid cligochaetes. J. Geophys. Res. 85:3997-4006.
- Frey, R. W. 1970. The lebensspuren of some common marine invertebrates near Beaufort, North Carolina. II. Anemone burrows. J. Paleontol. 44:308-311.
- Frey, R. W., and J. D. Howard. 1972. Georgia coastal region, Sapelo Island, U.S.A.: sedimentology and biology. VI. Radiographic study of sedimentary structures made by beach and offshore animals in aquaria. Senckenbergiana Marit. 4:169-182.
- Galstoff, P. S. 1964. The American oyster, <u>Crassostrea</u> <u>virginica</u> Gmelín. Fish. Bull., U.S. 64:1-480.
- Gardiner, S. L. 1975. Errant polychaete annelids from North Carolina. J. Elisha Mitchell Sci. Soc. 91:77-220.
- Gardner, W. S., R. F. Lee, K. R. Tenore, and L. W. Smith. 1979. Degradation of selected polycyclic aromatic hydrocarbons in coastal sediments: importance of microbes and polychaete worms. Water, Air, and Soil Pollution 11:339-347.
- Goldberg, E. D., and M. Koide. 1962. Geochronological studies of deep sea sediments by the thorium-ionium method. Geochimica et Cosmochimica Acta. 26:417-450.
- Goldberg, E. D., V. Hodge, M. Koide, J. Griffin, E. Gamble, O. Bricker, G. Matisoff, G. R. Holdren, Jr., and R. Braun. 1978. A pollution history of Chesapeake Bay. Geochimica et Cosmochimica Acta. 42: 1413-1425.
- Goldhaber, M. B., R. C. Aller, J. K. Cochran, J. K. Rosenfeld, C. S. Martens, and R. A. Berner. 1977. Sulphate reduction, diffusion and bioturbation in Long Island Sound sediments: report of the FOAM group. Am. J. Sci. 277:193-237.
- Gordon, D. C., Jr. 1966. The effects of the deposit feeding polychaete <u>Pectinaria gouldii</u> on the intertidal sediments of Barnstable Harbor. Limnol. Oceanogr. 11:327-332.
- Gordon, D. C., Jr., J. Dale, and P. D. Keizer. 1978. Importance of sediment working by the deposit-feeding polychaete <u>Arenicola marina</u> on the weathering rate of sediment-bound oil. J. Fish. Res. Bd. Can. 35:591-603.
- Grassle, J. F., and J. P. Grassle. 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. J. Mar. Res. 32:253-284.

- Guinasso, N. L., and D. R. Schink. 1975. Quantitative estimates of biological mixing rates in abyssal sediments. J. Geophys. Res. 80:3032-3043.
- Hale, S. S. 1975. The role of benthic communities in the nitrogen and phosphorus cycles of an estuary. Pages 291-308 In: F. G. Howell, J. B. Gentry and M. H. Smith, eds., Mineral Cycling in Southeastern Ecosystems. ERDA Symposium Series, Technical Information Center. U.S. Energy Research and Development Administration.
- Hargrave, B. T. 1976. The central role of invertebrate faeces in sediment decomposition. Pages 301-321 In: J. M. Anderson and A. Macfadyen, eds., The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell Scientific Publications, London.
- Haven, D. S., and R. Morales-Alamo. 1966. Aspects of biodeposition of oysters and other invertebrate filter feeders. Limnol. Oceanogr. 11:487-498.
- Haven, D. S., J. Kraeuter, R. Swartz, and M. Wass. 1967. An animalsediment study in the lower York River, Virginia. In: Concentration of Suspended Radioactive Wastes into Bottom Deposits. Final Rept. to U.S. Atomic Energy Commission. Va. Inst. Mar. Sci., Gloucester Point, Va.
- Hertweck, G. 1972. Georgia coastal region, Sapelo Island, U.S.A.: sedimentology and biology. V. Distribution and environmental significance of lebensspuren and in-situ skeletal remains. Senckenbergiana Marit. 4:125-167.
- Holme, N. A. 1953. The biomass of the bottom fauna in the English Channel off Plymouth. J. Mar. Biol. Assoc. U.K. 32:1-49.
- Howard, J. D., and R. W. Frey. 1973. Characteristic physical and biogenic sedimentary structures in Georgia estuaries. Am. Assoc. Petrol. Geol. Bull. 57:1169-1184.
- Howard, J. D., and R. W. Frey. 1975. Estuaries of the Georgia Coast, U.S.A.: sedimentology and biology. II. Regional animal-sediment characteristics of Georgia estuaries. Senckenbergiana Marit. 7: 33-103.
- Howard, J. D., T. V. Mayou, and R. W. Heard. 1977. Biogenic sedimentary structures formed by rays. J. Sediment. Petrol. 47:339-346.
- Hughes, T. G. 1979. Studies on the sediment of St. Margaret's Bay, Nova Scotia. J. Fish. Res. Bd. Can. 36:529-536.

Humason, G. L. 1967. Animal Tissue Techniques. W. H. Freeman, San Francisco.

Hutson, W. H. 1980. Bioturbation of deep-sea sediments: oxygen isotopes and stratigraphic uncertainty. Geology 8:127-130.

- Johnson, R. G. 1967. The vertical distribution of the infauna of a sand flat. Ecology 48:571-578.
- Johnson, R. G. 1974. Particulate matter at the sediment water interface in coastal environments. J. Mar. Res. 32:313-330.
- Johnson, R. G. 1977. Vertical variation in particulate matter in the upper twenty centimeters of marine sediments. J. Mar. Res. 35:273-282.
- Jorgensen, B. B. 1977. The sulfur cycle of a coastal marine sediment (Limejorden, Denmark). Limnol. Oceanogr. 22:814-832.
- Keith, D. E., and N. C. Hulings. 1965. A quantitative study of selected nearshore infauna between Sabine Pass and Bolivar Point, Texas. Publ. Inst. Mar. Sci., Univ. Texas. 10:33-40.
- Khalid, R. A., W. H. Patrick, Jr., and R. P. Gambrell. 1978. Effect of dissolved oxygen on chemical transformations of heavy metals, phosphorus, and nitrogen in an estuarine sediment. Estuarine and Coastal Mar. Sci. 6:21-35.
- Lie, U., and M. M. Pamatmat. 1965. Digging characteristics and sampling efficiency of the 0.1 m² van Veen grab. Limnol. Oceanogr. 10:379-384.
- Livingston, H. D., and V. T. Bowen. 1979. Pu and ¹³⁷Cs in coastal sediments. Earth and Planetary Science Letters 43:29-45.
- Lynch, M. P., and P. W. Harrison. 1970. Sedimentation caused by a tubebuilding amphipod. J. Sediment. Petrol. 40:434-436.
- Mangum, C. P. 1964. Activity patterns in metabolism and ecology of polychaetes. Comp. Biochem. Physiol. 11:239-256.
- Mangum, C. P. 1970. Respiratory physiology in annelids. Am. Scientist 58:641-647.
- Martens, C. S. 1976. Control of methane sediment-water bubble transport by macroinfaunal irrigation in Cape Lookout Bight, North Carolina. Science 192:998-1000.
- Martens, C. S., and J. V. Klump. 1980. Biogeochemical cycling in an organic-rich coastal marine basin. I. Methane sediment-water exchange processes. Geochimica et Cosmochimica Acta. 44:471-490.
- Maurer, D. 1977. Estuarine benthic invertebrates of Indian River and Rehoboth Bays, Delaware. Int. Rev. Ges. Hydrobiol. 62:591-629.
- Maurer, D., L. Watling, and G. Aprill. 1974. The distribution and ecology of common marine and estuarine pelecypods in the Delaware Bay area. Nautilus S8:38-45.

Mayou, T. V., and J. D. Howard. 1975. Animal-sedi. 't relationships of a salt marsh estuary--Doboy Sound. Senckenbergiana Marit. 7:205-236.

- McCall, P. L. 1979. The effects of deposit feeding oligochaetes on particle size and settling velocity of Lake Erie sediments. J. Sediment. Petrol. 49:0313-0818.
- McCloskey, L. R. 1970. The dynamics of the community associated with a marine scleratinian coral. Int. Rev. Ges. Hydrobiol. 55:13-81.
- Mills, E. L. 1967. The biology of an ampeliscid amphipod crustacean sibling pair. J. Fish. Res. Bd. Can. 24:305-355.
- Molander, A. R. 1928. Investigations into the vertical distribuion of the fauna of the bottom deposits in the Gullmar Fjord. Svenska Hydrografisk-Biologiska Kommissionens Skrifter. N.S. Hydrographie. 6:1-5.
- Moore, D. G., and P. C. Scruton. 1957. Minor internal structures of some recent unconsolidated sediments. Am. Assoc. Petrol. Geol. Bull. 41:2723-2751.
- Myers, A. C. 1977. Sediment processing in a marine subtidal sandy bottom community. I. Physical consequences. J. Mar. Res. 35:609-632.
- Neumann, A. C., C. D. Gebelein, and T. P. Scoffin. 1970. The composition, structure and erodability of subtidal mats, Abaco, Bahamas. J. Sediment. Petrol. 40:274-297.
- Newell, R. C. 1965. The role of detritus in the nutrition of two marine deposit feeders, the prosobranch <u>Hydrobia ulvae</u> and the bivalve <u>Macoma balthica</u>. Proc. Zool. Soc. London. 144:25-45.
- Pettibone, M. H. 1963. Marine polychaete worms of the New England region. I. Aphrodiridae through Trochochaetidae. U.S. Nat. Mus. Bull. 227:1-356.
- Prokopovich, N. P. 1969. Deposition of clastic sediments by clams. J. Sediment. Petrol. 39:891-901.
- Purdy, E. G. 1964. Sediments as substrates. Pages 238-271 In: J. Imbrie and N. Newell, eds., Approaches to Paleoecology. Wiley, New York.
- Rhoads, D. C. 1963. Rates of sediment reworking by <u>Yoldia limatula</u> in Buzzards Bay, Massachusetts and Long Island Sound. J. Sediment. Petrol. 33:723-727.
- Rhoads, D. C. 1967. Biogenic reworkings of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Say, Massachusetts. J. Geol. 75:461-476.

Rhoads, D. C. 1973. The influence of deposit-feeding benthos on water turbidity and nutrient recycling. Am. J. Sci. 273:1-22.

- Rhoads, D. C. 1974. Organism-sediment relations on the muddy seafloor. Oceanogr. Mar. Biol. Ann. Rev. 12:263-300.
- Rhoads, D. C., and D. K. Young. 1971. The influence of deposit-feeding organisms on sediment stability and community trophic structure. J. Mar. Res. 28:150-178.
- Rhoads, D. C., P. L. McCall, and J. Y. Yingst. 1978. Disturbance and production on the estuarine seafloor. Am. Scientist 66:577-586.
- Risk, M. J., and H. D. Craig. 1976. Flatfish feeding traces in the Minas Basin. J. Sediment. Petrol. 46:411-413.
- Risk, M. H., and J. S. Moffat. 1977. Sedimentological significance of fecal pellets of <u>Macoma balthica</u> in the Minas Basin, Bay of Fundy. J. Sediment. Petrol. 47:1425-1436.
- Robbins, J. A., P. L. McCall, J. B. Fisher, and J. R. Krezoski. 1979. Effect of deposit feeders on migration 137Cs in lake sediments. Earth and Planetary Science Letters 42:277-287.
- Roberts, M. H., D. F. Boesch, and M. E. Bender. 1975. The Chesapeake Bay: A study of present and future water quality and its ecological effects. II. Analysis and projection of ecological conditions. Final Rept. to National Commission on Water Quality. Va. Inst. Mar Sci., Gloucester Point, Va.
- Ronan, T. E., Jr. 1978. Food-resources and the influence of spatial pattern on feeding in the phoronid <u>Phoronepsis</u> viridis. Biol. Bull. 154:472-484.
- Rosenberg, R. 1974. Spatial dispersion of an estuarine benchic faunal community. J. Exp. Mar. Biol. Ecol. 15:69-80.
- Rowe, G. T. 1974. The effects of the benthic fauna on the physical properties of deep-sea sediments. Pages 331-400 In: A. L. Inderbitzen, ed., Deep-sea Sediments: Physical and Mechanical Properties. Plenum Press, New York.
- Sanders, H. L. 1960. Benthic studies in Buzzards Bay. III. The structure of the soft bottom community. Limnol. Cceanogr. 5:138-153.
- Sanders, H. L., P. C. Mangelsdorf, Jr., and G. R. Hampson. 1965. Salinity and faunal distribution in the Pocasset River, Massachusetts. Limnol. Oceanogr. 10(Suppl.):R216-229.

Sheldon, R. W., and P. J. Warren. 1956. Transport of sediments by crustaceons and fish. Nature 210:1171-1172.

Shinn, E. A. 1968. Burrowing in recent lime sediments of Florida and the Bahamas. J. Paleontol. 42:879-894.

- Smith, K. C., and J. D. Howard. 1971. Comparison of a grab sampler and large volume corer. Limnol. Oceanogr. 17:142-145.
- Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Memoir 125. The Geological Society of America, Inc., Boulder, Colorado.
- Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science 203:458-461.
- Tunnicliffe, V., and M. J. Risk. 1977. Relationships between the bivalve <u>Macoma balthica</u> and bacteria in intertidal sediments: Minas Basin, Bay of Fundy. J. Mar. Res. 35:499-507.
- Verwey, J. 1952. On the ecology of distribution of cockle and mussel in the Dutch Wadden Sea, their role in sedimentation and the science of their food supply, with a short review of the feeding behaviour of bivalve mollusks. Arch. Neerl. de Zool. 10:171-239.
- Virnstein, R. W. 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58:1199-1217.
- Virnstein, R. W. 1979. Predation on estuarine infauna: response patterns of component species. Estuaries 2:69-86.
- Wass, M. L. 1972. A checklist of the biota of lower Chesapeake Bay. Spec. Sci. Rept. No. 65, Va. Inst. Mar. Sci., Gloucester Point, Va.
- Watling, L. 1975. Analysis of structural variations in a shallow estuarine deposit-feeding community. J. Exp. Mar. Biol. Ecol. 19:275-313.
- Whitlatch, R. B. 1974. Food-resource partitioning in the deposit-feeding polychaete <u>Pectinaria gouldii</u>. Biol. Bull. 147:227-235.
- Whitlatch, R. B. 1976. Seasonality species diversity, and patterns of resource utilization in a deposit-feeding community. Ph.J. Dissertation, University of Chicago, Chicago, IL.
- Whitlatch, R. B., and R. G. Johnson. 1974. Methods for staining organic matter in marine sediments. J. Sediment. Petrol. 44:1310-1312.
- Winston, J. E., and F. E. Anderson. 1971. Bioturbation of sediments in a northern temperate estuary. Mar. Geol. 10:39-49.
- Wolff. W. J. 1973. The estuary as a habitat: an analysis of data on the soft-bottom macrofauna of the estuarine area of the rivers Rhine, Meuse, and Scheldr. Zoologische Verhandelingen. No. 126 (Communication No. 106 of the Delta Institute for Hydrobiological Researcher).

Young, D. K. 1971. Effects of infauna on the sediment and seston of a subtidal environment. Vie. et Milieu Suppl. 22:557-571.

1

Young, D. K., and M. W. Young. 1978. Regulation of species densities of seagrass-associated macrobenthos: evidence from field experiments in the Indian River estuary, Florida. J. Mar. Res. 36:569-593.

EPA Chesapeake Bay Program Final Report Grant R805982-01-0

*

۵

Appendices for The Biogenic Structure of Lower Chesapeake Bay Sediments

Appendix A.	Species List
Appendix B.	Species and abundance data for each station collected during the 9/78, 4/79 and 6/79 sampling cruises 9
Appendix C.	Selected three-dimensional drawings representing distribution and life style of organisms in a box core at each station
Appendix D.	Selected radiographs
Appendix E.	Station description with visual observations, x-ray description and important biogenic species 110
Appendix F.	Description of the biogenic structures of some of the common and important macrobenthic organisms found in the lower Chesapeake Bay

Appendix A Species List

```
Phylum Cnidaria
    Class Hydrozoa
            Sertularia argentea Linnaeus, 1758
    Class Anthozoa
            Anthozoa sp.
        Family Edwardsiidae
            Edwardsia elegans Verrill, 1869
        Family Cerianthidae
            Ceriantheopsis americanus (Verrill, 1864)
Phylum Platyhelminthes
    Class Turbellaria
            Turbellarians
Phylum Rhynchocoela
    Class Anopla
        Family Tubulanidae
            Tubulanus pellucidus (Coe, 1895)
        Family Lineidae
            Cerebratulus lacteus (Leidy, 1851)
            Nemertea sp.
    Class Enopla
        Family Amphiporidae
            Amphiporus bioculatus (McIntosh, 1873)
            Amphiporus sp.
Phylum Ectoprocta
    Class Gymnolaemata
        Family Walkeriidae
            Aeverrillia armata (Verrill, 1874)
        Family Membraniporidae
            Membranipora sp.
        Family Electridae
            Electra crustulenta (Pallas, 1766)
Fhylum Phoronida
            Phoronis sp.
Phylum Mollusca
    Class Pelecypoda
        Family Nuculidae
            Nucula proxima Say, 1822
        Family Nuculanidae
            Yoldia limatula (Say, 1831)
        Family Arcidae
            Anadara ovalis (Bruguiere, 1792)
            Anadara transversa (Say, 1822)
        Family Mytidae
            Mytilus edulis Linnaeus, 1785
        Family Leptonidae
            Leptonid
```

2

G

Appendix A Species List (continued) Phylum Mollusca (continued) Family Montacutidae Aligena elevata (Stimpson, 1851) Family Lucinidae Lucina multilineata Tuomey and Holmes, 1857 Family Veneridae Germa germa (Totten, 1834) Mercenaria mercenaria (Linnaeus, 1758) Pitar morrhuana (Linsley, 1848) Family Mactridae Mulinia lateralis (Say, 1822) Family Tellinidae Macoma mitchilli Dall, 1895 Macoma balthica (L., 1758) Tellina agilis Stimpson, 1858 Family Solenidae Ensis directus Conrad, 1843 Family Myacidae Mya arenaria (Linnaeus, 1758) Family Lyonsiidae Lyonsia hyalina Conrad, 1831 Family Pandoridae Pandora trilineata Say, 1822 Class Gastropoda Family Caecidae Caecum pulchelum Stimpson, 1851 Family Calyptraeidae Crepidula plana Say, 1822 Family Naticidae Natica pusilla Say, 1822 Family Columbellidae Anachis translirata Ravenel, 1861 Mitrella lumata (Say, 1826) Family Melongenidae Busycon carica (Gmelin, 1790) Family Sassaridae Nassarius trivittatus (Say, 1822) Family Turridae Manzelia cerina Kurtz and Stimpson, 1851 Family Fyramidellidae Odostomia impressa Say, 1822 Odostomia_sp. Turbonilla interrupta Totten, 1835 Turbonilla stricta Verrill, 1874 Family Acteonidae

589 -

 \mathcal{O}

Acteon punctostriatus C. B. Adams, 1840 Family Retusidae Retusa canaliculata (Say, 1822)

_ 77

Appendix A Species List (continued) Phylum Mollusca (continued) Family Scaphandridae Cylichna alba Brown, 1827 Fazily Corambidae Doridella obscura Verrill, 1870 Family Cratenidae Cratena kaoruae Marcus, 1957 Phylum Annelida Class Polychaeta Family Polygordiidae Polygordius sp. Family Phyllodocidae Phyllodoce arenae Webster, 1879 Phyllodoce mucosa Oersted, 1843 Paramaitis speciosa (Webster, 1870) Etecne heteropoda Hartman, 1951 Family Polynoidae Lepidametria commensalis Webster, 1879 Lepidenotus sublevis Verrill, 1973 Harmothoe extenuata (Grube, 1840) Harmothee sp. A Family Carysopetalidae Bhawania goodei Webster, 1884 Paleanotus heteroseta Hartman, 1945 Family Glyceridae Clycera americana Leidy, 1855 Glycera dibranchiata Ehlers, 1868 Clycera robusta Ehlers, 1868 Family Coniadidae Goniadella gracilis (Verrill, 1873) Glycinde solitaria (Webster, 1879) Family Nephtyidae Nephtys incisa (Malmgren, 1865) Nephtys picta (Ehlers, 1858) Azlacohamus circinata (Verrill, 1974) Family Syllidae Brazia wellfleetensis Pettibone, 1956 Syllis cornuta Rathke, 1843 Procercea cornuta (Agassiz, 1863) Family Resionidae Cvozis brevipalpa (Hartmann-Schröder, 1959) Podarke obscura Verrill, 1873 Family Filargidae Ancistrosyllis hartmanae Pettibone, 1966 A. jenesi Pettibone, 1966 <u>Sicambra tentaculata</u> (Treadwell, 1941) <u>Sicambra</u> sp. Cibira incerta Webster, 1879 Pilargis sp. A

Ľ

Appendix A Species List (continued) Phylum Annelida (continued) Family Nereidae -Nereis succinea (Frey and Leuckart, 1847) Websterinereis tridentata (Webster, 1880) Family Capitellidae Capitellidae sp. A Capitellidae sp. B Heteromastus filiformis (Claparede, 1864) Mediomastus ambiseta Hartman, 1947 Notomastus sp. Family Maldanidae sp. Asychis elongata (Verrill, 1873) Praxillela gracilis (Sars, 1861) Clymenella torquata (Leidy, 1855) Clymenella zonalis (Verrill, 1874) Family Ophelidae Travisia carnea (Verrill, 1873) Family Spionidae Spio filicornis (0. F. Muller, 1766) Spio setosa (Verrill, 1873) Scolecolepides viridis (Verrill, 1873) Prionospio cirrifera Wiren, 1883 Prionospio pygmaea Hartman, 1961 Prionospio cirrobranchiata Day, 1961 Paraprionospio pinnata (Ehlers, 1901) Polydora ligni Webster, 1879 Pelvdora socialis (Schmarda, 1861) Streblospio benedicti Webster, 1879 Spiophanes bombyx (Claparede, 1870) Spiophanes wigelyi Pettibone, 1962 Family Paraonidae Aricidea fragilis McIntosh, 1885 Aricidea wassi Pettibone, 1965 Aricidea catherinae Laubier, 1967 Aricidea suecica Eliason, 1920 Family Chaetopteridae Chaetopterus variopedatus (Renier, 1904) Spiochaetopterus oculatus (Gitay, 1969) Family Sabellaridae Sabellaria vulgaris Verrill, 1873 Family Onuphidae Onuphis eremita Audouin and Milne-Edwards, 1833 Diopatra cuprea (Bosc, 1802) Family Eunicidae Marphysa sanguinea (Montagu, 1315) Family Arabellidae Arabella iricolor (Montagu, 1804) Drilonereis longa Webster, 1879 Drilonereis magna Webster and Benedict, 1887

5

ì

Appendix A Species List (continued) Phylum Annelida (continued) Family Amphinomidae Pseudeurythoe ambigua (Monro, 1933) Family Magelonidae Magelona sp. Magelona rosea Moore, 1907 Family Grbinidae Scoloplos rubra (Webster, 1879) Scoloplos robustus Verrill, 1873 Scoloplos foliosus Hartman, 1951 Scoloplos acutus (Verrill, 1873) Scoloplos fragilis (Verrill, 1673) Family Cirraculidae Cirratulus grandis Verrill, 1873 Tharyx sp. Family Oweniidae Owenia fusiformis (Dell: Chiaje, 1844) Family Pectinariidae Pectinaria gouldii (Verrill, 1873) Family Ampharetidae Asabellides oculata (Webster, 1879) Family Terebellidae Amphitrite ornata (Leidy, 1855) Loimia medusa (Savigny, 1818) Polycirrus eximius (Leidy, 1855) Family Sabellidae Sabella microphthalma Verrill, 1873 Class Oligochaete Oligochaete sp. Phylum Arthropoda Subclass Ostracoda Ostracod sp. Subclass Malacastraca Order Cumacea Family Leuconidae Leucon americanus Zimmer, 1943 Family Diastvlidae Oxyurostylis smithi Galman, 1912 Order Isopoda Family Anthoridae Cyathura polita (Stimpson, 1853) Ptilanthura tenuis (Harger, 1830) Family Idoteidae Chiridotea caeca (Say, 1313) Edotea triloba (Sav. 1813) Erichsonella filiformis (Say, 1818) Order Amphipoda Family Ampeliscidae Ampelisca abdita Mills, 1964 Ampelisca vadorum Mills; 1963 Ampelisca verrilli Mills, 1967

6

¥ .

Appendix A Species List (continued) Phylum Arthropoda (continued) Family Corophiidae Cocophium tuberculatum Shoemaker, 1934 Erichthonius brasiliensis Dana, 1855 Unciola irrorata Say, 1818 Unciola serrata Shoemaker, 1945 Unciola dissimilis Shoemaker, 1942 Family Gammaridae Garmarus mucronatus Say, 1818 Elasmopus laevis Smith, 1873 Melita nitida Smith, 1873 Family Lilljeborgiidae Idunella sp. Listriella clymenellae Mills, 1962 Family Oediarotidae Monoculodes edwardsi Holmes, 1903 Family Photidae Photis dentata Shoemaker, 1945 Leptocheirus plumulosus Shoemaker, 1932 Family Fhexecephalidae Trichephozus epistomus Bousfield, 1973 Family Pleustidae Pleusyztes glaber (Boeck, 1861) Family Stenothoidae Parametopella cypris (Holmes, 1903) Family Caprellidae Caprella penantis Leach, 1811 Paracaprella tenuis Mayer, 1903 Order Mysidacea Family Mysidae Neonysis americana (S. I. Smith, 1873) Order Decapoda Family Ogyrides Ogyrides linicola Williams, 1955 Family Cransonidae Craryon septemspinosa (Say: 1913) Family Upogehiidae Upostebia affinis (Say, 1818) Family Callianassidae Cilliandssa atlantica Rathbun. 1925 Family Paguridhe Lacures Longicarpus Sav. 1817 Family Mulidae Libinia dubia H. Milne-Edwards, 1834 Family Anthilise Neopamope texana savi (Smith, 1559) Family Pinactheridae Pinniva retin hs Rathbun, 1915 Pinniga chaetopterana Stimpson, isra

530¹⁰

Appendix A Species List (concluded) Phylum Echinodermata Class Ophiuroidea Family Ophiodermatidae <u>Micropholis atri</u> (Stimpson, 1852) Class Holothuroidea Family Cucumariidae <u>Thyone briareus</u> (LeSueur, 1824) Phylum Chordata Class Ascidiacea Family Botryllidae <u>Botryllus schlosseri</u> (Pallas, 1766) Family Molgulidae <u>Molgula manhattensis</u> (DeKay, 1843)

8

-b

Ó

Appendix B

بيد سيونو وموجه ويو

No.

Species and Abundance data for each station collected during the 9/78, 4/79, and 6/79 sampling cruises

9

1

	Station 26 9-78									
		Box core section (cm)								
Taxon	0-5	5-10	10-15	15-20	20-25	25-30	30-35	75 /0		
Mollusca								22-40	40-45	
<u>Mulinia lateralis</u> Retusa canaliculata	8 1									
Crustacea										
Ampelisca abdita Edotea triloba Leucon americanus	86 2 86	1* 1*								
Polychaera										
<u>Glycinde solitaria</u> <u>Loimia medusa</u> <u>Nereis succinea</u> <u>Paranaitis speciosa</u> <u>Paraprionospio pinnata</u>	2 1 3 1 7									
* contamination f										

solution from surface

Station	27	9-78

Taxon	0-5	5-10	10-15	15-20	20-25	25-30
Nollusca <u>Retusa</u> <u>canaliculata</u>	6					
Crustacea						
Ampelisca abdita	2				- 1*	
Listriella clymenellae		1		1.		
Polychaeta						
Ancistrosyllis nartmanae				1		
Clymenella torquata			2			
Glycera dibranchiata		1		1		
Clycinde solitaria	1					
Paraprionospio pinnata	5					
Pseudoeurythoe ambigua	1		4	6		
Spiophanes sp.	1					
Spionidae		1				and the state of the
				· · · · · · · · ·		
Phoronida						
Phoronis sp.		1	1997 - A. 1998			
anna a suite anna an an anna anna anna anna anna a						

11

* contamination from surface

÷

-		
10.00		1.1.1.1

Station 28 9-78

Taxon	05	5-10	10-15	15-20	20-28
Nollusca					
Anadara transversa	2				
				a an	
Crustacea				a ta	•
Pinnixa retinens	1				
Polychaeta					
Chaetopterus variopedatus	1				
Clymenella torquata		1			
<u>Glycera</u> dibranchiata					1
<u>Glycinde</u> solitaria	1	1 1			a Fridde
Maldanidae sp.					1
<u>Nereis succinea</u>	3				
Paraprionospio pinnata		6			
Pseudoeurythoe ambigua	•	1	1	9	19
Phoronida					
Phoronic en	า่				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

Station 29 9-78

Taxon	0-5	5-10	10-15	15-20
Nesertea				
Cerebratulus lacteus	1		1	
Mollinges				
Ensis directus				
Yulinia lateralis	2			
Odostomia impressa	1			
Retusa canaliculata	4			
Crustacea				
<u>Ampelisca</u> abdita	5	2*		
Ampelisca verrilli	6	3*		
<u>Cyanthura polita</u>	· · · · · · · · · · · · · · · · · · ·			
USTIALOU	2			
Polychaeta				
Ancistrosyllis hartmanae			1 1 20	
Drilonereis longa		1		
<u>Glycera</u> dibranchiata	5		1	
Loimia medusa	1			
Orbiniidae sp.		2		
Pseudoeurythoe ambigua			2	1
Scolopics rubra			2	
Therebellidae sp.	1			
maryx sp.	1			
Phoronida				
Phoronis sp.			5	

* contamination from surface

Taxon	0-5	5-10	10-15	15-20	20-25 25-30
Nollusca					
Acteon punctostriatus Bivalve sp.	1				
Crustacea					
Ampelisca abdita	3,080 19	6*	6*	3*	
Leucon americanus	5				
<u>Melita nitida</u> <u>Neomvsis americana</u>	1				
Ostracod	3				
Polychaeta	•				
Glycinde solitaria	2				
Loimia medusa	2	1			
Nereis succinea	25	1			
Paraprionospio pinnata	1				

Station 30 9-78

* contamination from surface

14

Station 31

Taxon	0-5	5-10 10-15
Polychaeta		
Prionospio sp.		1*
Pseudoeurythoe ambigua		1
		the second s

15

* contamination from surface

-1

÷

Taxon	0-5	5-10	10-15	15-20
Mollusca			a de la companya de la	
Anadara transversa	2		1*	
Retusa canaliculata	1			
Crustacea				
Ampelisca abdita	7.			
Leucon americanus	1			
Listriella clymenellae	1		1	
Ostracod	1			
an an an an an Aragan				
Polychaeta				
Clymenella sp.	1	1		
Glycera dibranchiata	1			
Orbiniidae sp.	1			
Paraprionospio pinnata	3			
Pectinaria gouldii	2	1	1*	
Praxillela gracilis			1	
Pseudoeurythoe ambigua		1		
Sigambra tentaculata				1
				-
			The second s	

Station 32 9-78

* contamination from surface

10 · 14

<u>ن</u> د

*

Station 33 9-78

Taxon	0-5	5-10 10	-15	15-20	20-25	25-30	30-35	35-40
Crustacea Unciola irrorata	,	<u></u>					3*	
Polychaeta Nereis succinea	2							
Pseudoeurythoe ambigua		1		· · · · ·				

17

* contamination from surface.

Station 34 9-78

Taxon	0-5	5-10	10-15	15-21
Mollusca			a and a second	
Odostomia sp.	1			
Retusa canaliculata	5			
Crustacea				
Neomysis americana	1			
Pinixa retinens				1
Polychaeta				
Ancistrosyllis sp.			1	
Glycinde solitaria	5			
Maldanidae sp.	1			
Nereis succinea	1	1		
Orbiniidae sp.	1			1
Paraprionospio pinnata	12	5	1	
Pseudoeurythoe ambigua	1			

Station 35 9-78

Taxon	0-5	5-10	10-15	15-20	20-25	25-30	30-38
Mollusca							
Anachis translirata	1						
Anadara transversa	2						
Retusa canaliculata	6	1*					
Turbonilla interrupta	1						
						11 A.	
Crustacea					te de la composition de la composition Composition de la composition de la comp		
Ampelísca abdita	20	1*					
Corophium sp.	1						
Listriella clymenellae	1						
Neomysis americana		1*					
Ostracod	2						
<u>Pinnixa</u> chaetopterana			1				e da esta en la composición de la comp Esta esta esta esta esta esta esta esta e
P. retinens				1			
Polychaeta							
<u>Clymenella</u> torquata		· 3		1			
<u>Glycera</u> americana		1					
Goniadidae sp.	1	· ·	· ·				
Harmothoe sp. A		1					
Nephtyidie sp.	1						
Notomastus sp.	1						
Paleanotus heteroseta	1.4	1					
Paraprionospio pinnata	2						
Pectinaria gouldii	5	1					
Pseudoeurythoe ambigua		1			2		1
						121 121	i Altonia
Echinodermata							
Micropholis atra			1				
		·					

* contamination from surface
Station 36 9-78

Taxon	0-5	5-10	10-15	15-20
Mollusca				
Anadara transversa	76			
Retusa canaliculata	3			1*
Turbonilla interrupta	1			
Crustacea	a tati da a			
Ampelisca abdita	5			
Ampelisca vadorum	3			
Ampelisca verrilli	5	4		
Corophium tuberculatum	3			
Edotea triloba	1			
Ostracod	3			
Polychaeta				
Ampharetidae		1		
Cirratulidae sp.			2	
Nephtyidae sp.			1	
Nereis succinea	8			1
Paraprionospio pinnata	1			
Pectinaria gouldii	1			
Polygordius sp.		1		
Pseudoeurythee ambigua		1	1	1
Sabellaria vulgaris	16			
Tharyx sp.		3		
Ascidacea				
Molgula manhattensis	9			

* contamination from surface

Station 37 9-78

Taxon	0-5	5-10	10-18.5
Mollusca <u>Mulinia lateralis</u>	2		
Crustacea <u>Neomysis</u> americana	6	1*	
Polychaeta Ampharetidae sp.		1	1
Ancistrosyllis hartmanae A. jonesi Bhawansa goodesi			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Drilonereis longa Glycera dibranchiata Paraprionospio niparta	1	- 1 ■1	Ĩ
Pseudoeurythoe ambigua		4 4	2
Phoronis sp.	1		

* contamination from surface

Station 33 9-78

Taxon	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-51
Mollusca									
<u>Mulinia lateralis</u>	2							·	
Crustacea									
Ostracod sp.		1*							
Polvchaeta									
Glycera americana		- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	1						
Glycinde solitaria	1								
Loimia medusa	1	1							
Paleonotus heteroseta	1							1.1	
Paraprionospio pinnata	1	8	3						
Pectinaria gouldii	5	3							
Pseudoeurythoe ambigua				. 1					

Station	39	÷.,	9-78	

Taxon	0-5	5-10	10-15	15-20
Nollusca				
Turbonilla interrupta	1		•	
Crustacea				
Ampelisca verrilli	2			
Callianassa atlantica				1
Pinnixa chaetopterana	1		1	•
Pinnotheridae sp.			1 1	
Ptilanthura tenuis	3		1.000	
Trichophoxus epistomus	2	1*	1*	
Arabellidae sp. Cirratulidae sp. <u>Clycera dibranchiata</u> <u>Clycera sp.</u> <u>Nephtys sp.</u> Orbiniidae sp. <u>Paleanotus heteroseta</u> Paraonidae Phyllodocidae <u>Pseudoeurythoe ambigua</u> Echinodermata <u>Micropholis atra</u>	1 2 1 1	1 1 1	1 1 1	

* contamination from surface

ij

-

Station 40 9-78

Taxon	0-5	5-10	10-15 15-20	20-25	25-3
allusea					
Actaon nunctoctristus	1				
An idara transuarsa	1		1*		
Busycon carica	1		.	·	
Frais diractus	-	1		4	t des agres
Odoctomia improcesa	1	-			
Parusa canaliculata	6				
Metusa canariculata	0				
iustatea impoliana yonnilli					
Amperisca verrini Anthuridaa an	Ţ			14	
Lictrialla alumanallas			T	1	
Pippothoridae an	•		4	.	
Unciola irrorata	1				
unciona intorata	. 1				
oluchaeta					
Amphinomidae en	7				
Canitallidae	- -		1		
Clycera americana	٦.	• • •	1		
Harmothoe en A			1		
Maldanidae en	1		1 2	1	T
Norais sussings	1		1 4	1	. T
Paleanotus batarosata	4				
Phyllodacidus			1		
Providencial ambient	2		11 7	1	
Sphallaria wulgaria	5		11 4	- -	
Saberraria vorgaris	, , , , , , , , , , , , , , , , , , ,				
ab in adormata					
Miaropholia etva					
rucrophoris acra			.		
horonida		an an an Array an An Array an			
Phoronic cr		7			
moronis sp.		*			
Malaula manhattanata	1				
noiguia mannactensis	L .				
		·			

-

Station 41 9-78

Taxon	0-5	5-10	10-15	15-20	20-24
Mollusca					
Anadara transversa	11		1. A.	2*	
Odostomia sp.	1				
Crustacea					
Ampeliscidae sp.	1				
Polychaeta					
Ancistrosvllis sp.			1		
<u>Heteromastus</u> filiformis			1	and the states	
Maldanidae sp.	the second			1	
<u>Nereis succinea</u>	6	· · · ·			
Paleanotus heteroseta	1				
Paraprionospio pinnata	1				
<u>Pectinaria gouldii</u>	4				- <u>-</u> -
Pseudoeurythoe ambigua	2	1	1	1	1
<u>Sabellaria</u> vulgaris	4				
Spionidae sp.	1				

25

* contamination from surface

Ľ

Station 42 9-78

ъ С

Taxon	0-5	5-10	10-15 15-2	20 20-25	25-30	30-36
Mollusca						
Anadara transversa	1					
Mulinia lateralis	1					- 1
Yoldia limatula	1					
					2 C	
Polychaeta						
Clycera americana				1		
Maldanidae	3	1	1 1			
Nephtys picta	4					
Nereidae			1			
Paleanotus heterose	ta	2				
Phyllodocidae	1					
Pilargidae			a shi sa shi 🕯 👔			
Pilargis sp. A			1		i And the	
Pseudoeurythoe ambi	gua					
Sigambra sp.	1		-			

Station 43 9-78

Taxon	0-5 5-10 10-15 15-20 2	0-24
Mollusca		
Aligena elevata	$(\mathbf{J}_{i},\mathbf{J}_{i})$, (\mathbf{J}_{i})	
Nucula proxima	n d i naka di Angha Angha di Ang	
Retusa canaliculata		
Yoldia limatula		
The second se		
Polychaeta		
Capitellidae sp.	1	
Harmothoe sp. A	1	
Maldanidae sp.	en en en en en tradición de la companya de la comp	
Nephtys sp.	2 1	
Orbiniidae sp.		
Paleanotus heteroseta	nta a segunda da <mark>H</mark> erena ta Angela da Angela	
Paraprionospio pippata		
Pilargidae en		
Praxillella granilia	1	
Pseudoeurythoo arbigur		
Sigambra tontamilata	1	1 .
organora centaculata	1	
Fchipodormata		
Miene-belt		
rucropholis atra	1 , and 1 is the second se	

Station 44 9-78

Taxon	0-5	5-10 10-13
Malluasa		
INTIUSCA		
Acteon punctostriatus	2	
<u>Mangelia cerina</u>	1	
<u>Mulinia</u> <u>lateralis</u>	6	
Natica pusilla	1	and the state of the second
Retusa canaliculata	57	
Tellina agilis		
Turbonilla interrupta		
	*	
Crustacea		
Neomysis americana	-	
Ostracod	1	
Oxyurostylis smithi	2	
	and 🗍	
Polychaeta		
Arabellidae		
Glycer: dibranchiata	7	1 0
Glycera sp.		∠
<u>Clycinde</u> solitaria	a an ag y a a tu	1
Maldanidao	T	
	Ŧ	

Station 45 9-78

	Taxon	0-5	5-10	10-15	15-20	20-27
Mollusca <u>Busycon</u>	<u>carica</u>	1				
Polychaeta Ampharet	tídae sp.	1				
<u>Glycera</u> Pseudoeu	americana irythoe ambigua	4	1 3	1		2
<u>Scolopic</u> <u>Tharyx</u> s	sp. robustus			1 1		
Phoronida Phoronis	<u>s</u> sp.	1				

29

-1___

Station 46 9-78

X

Taxon	0-5	5-10	10-18
Mollusca		e de la composición d	
Odostomia sp.	1		
Pitar morrhuana	1		
Retusa canaliculata	1		
Tellina agilis	1		
<u>Turbonilla</u> interrupta	6		1*
<u>Yoldia limatula</u>	1		
Crustacea			
Ampelisca abdita	7		
Libinia dubia	1		
Paguridae sp.	1		
Unciola serrata			1*
upogebia artinis	1		
Polychaeta			
Glycera americana			1
<u>Glycinde</u> solitaria	1		
<u>Glycinde</u> sp.	2		
Heteromastus filiformi	. <u>S</u>	1	
Asychis elongata	1		
Paleanotus heteroseta	2		
<u>Pectinaria</u> gouldii	1	1	
Pseudoeurythoe ambigua	1	1	1
Nemertea			
Cerebratulus lacteus		1	
		-	
Phoronida			
Phoronis sp.	1		
Echinodermata			
Micropholis atra	1		

* Contamination from surface

1. -

--

.

30

-

1

?

Station 4/ 9-78	
-----------------	--

\$

Taxon	0-5	5-10	10-15	15-20	20-25	25-30	30-38
Valluaaa							
TUITUSCA							
<u>Ketusa</u> <u>canaliculata</u>	11						
<u>Tellina agilis</u>	1						
<u>Turbonilla</u> <u>stricta</u>	1						
	• • • • • • • •						
Crustacea							
Ampelisca abdita	1						
Ostracod sp.	1						
Oxvurostylis smithi	1						
Pinnixa chaetopterana	1	1					
Polychaeta				tel e e c			
Aglaophamus circinata	2						
Glycinde solitaria	1						
Goniadidae sp.			1				
Maldanidae sp.		1					2
Orbiniidae sp.	1						
Paraprionospio pinnata	2	1					a parte di
Spionidae sp.	1						
Tharyx sp.	. 1						
Terebellidae sp.					1		
Phoronida			e En la se				
Phoronis	1						
a de la construcción de la constru							

Station 48 9-78

176

A. Same

L

Taxon	0-5	5-10	10-18
Mollusca			
Mulinia latavalia	_		
Adrinia Tateralis	2	9 g. j 19 g. s 19 g. s 19 g	
Udostomia sp.	1		
<u>Retusa</u> <u>canaliculata</u>	20		
Tellina agilis	1		
	100 B. A. B.		
Crustacea			
Ostracod sp.	1		
Polychaeta	· · · · · ·		
Glycinde solitaria	3	1	
Loimia medusa	3		
Paraprionospio pinnata	7	•	
Pseudoeurythoe ambigua		4	2

.

Station 49

9-78

Taxon	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55
Mollusca		•									
Acteon punctostrialus									1*		
Cylichna alba	3										
Macoma bIthica	1		1								
Mulinia lateralis	1										
Retusa canaliculata	5										
Yoldia limatula	1										
				1994) 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -							
Crustacea											
Ampelisca abdita	1								• •		
Listriella clymenellae	<u>!</u>		1								
Upogebia affinis			1					1			
										•	
Polychaeta											
Arícidea fragilis					1	1					
<u>Glycinde</u> solitaria			1								
Maldanidae sp.			1								
Paleanotus heteroseta	. 1										
Paraprionospio pinnata	<u>1</u> 3		1								
Tharyx sp.	· 1,							*			
Phoronida											
Phoronis sp.			1				1*				

33

* contamination from surface

ĥ

Station 50 9-78

Taxon	0-5	5-10	16 15	15-22
Mollusca				
<u>Tellina</u> agilis	3			
Polychieta				
Arabellidae sp.	1	1		~
Cirratulidae sp.	1	- The second	•	-
Drilonereis longa		2		
Clycera dibranchiata	1			*
<u>G. rcbusta</u> G. sp.	2			
Magelona sp.		1		
Orbiniidae sp.	1			
Pseudoeurythoe ambigu	a			
Scoloplos rubra			1	1
Spionidae sp.		1		

Χ.,

Station 76 6-79

Taxon		0-2	2-5	5-10	10-15	15-20	20-30	30-40
Platyhelminthes	n Legender de			1				
Turbellaria sp.	(a)**	5		1				
Nemertea								
Amphiporus bioocculatus		41		1				
Amphiporus sp.		3						
Cerebratulus lacteus	(b)			1				
Nollingoo								
Macona kalthian	60	20						
Mulinia latoralic		15		4				
Mun proparia	(a)	2/						
Odostopia ap	(e)	- 24				ang sa		
Tallinidaa en	(1)	27		1997 - 1998 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				
iciiinkude sp.								
Crustacea								
Ampelisca abdita	(g)	1106	15	15*	21*	9*	1*	3*
Edotea triloba	(h)	3						
Gammarus mucronatus	(i)	130	. 1	3*	4*	1*		
Leucon americanus	(j)	- 4						
Melita nitida	(k)	103	5	3*	2*			
Polychaeta	1.1.1							
Eteone heteropoda	(1)			5				
<u>Glycera</u> <u>americana</u>		1				•		
Glycera dibranchiata	(m)	0.1				1		
Glycinde solitaria	(n)	04						
Heteromastus filiformis	(0)	13		3				
Mediomastus ambiseta	(V) -	270		2		~		
Nereis succinea	(p)	270	5		1	- Z		
Paraprionospio pinnata	(q)		- 1	۰.				
Pettinaria goulaii	(\mathbf{r})	38	1	1.4		1*		
Polydora 11gn1	(S)	141						
Scolecolepides viridis	(1)	2	1					
Scolopios Iragilis	1	2.	T 1	104				e de la
streblospio benedicti	(u)	502	1	10*	· υ×			
Oliophata co		ç	1					
daad Nudwaid cat (m)		. . .	1	: fi				
acaa nyarora tar (m)				Ľ				

35

* contamination from surface

K,

**letters refer to drawings in Appendix C

Station 77 6-79

Taxon		0-2	2-5	5-10	10-15	15-20	20-30
Fetenroeta							
Membraninara sp.		q					
<u>Herbruitsborn</u> Spr							a e e e
Mollusca							
Anadara transversa	(a)	1					
Lyonsia hvalina	(6)	1.0					
Macona balthica	(c)		1				
Mulinia lateralis	(d)	16					
Mya arenaria	(e)		- 14			1*	1*
Odostomia sp.	(f)	1					
Crustacea							
Ampelisca abdita	(g)	3		1*			
Crangon septemspinosa	(h)	1					
Polychaeta							
Ancistrosvilis jonesi	(i)		1				
<u>Clymenella</u> torquata	(j)			-	1		
Eteone heteropoda	(k)		1		1×		
<u>Glycera</u> americana	(1)		1			1	
Harpothoe extenuata		·					1*
Hesionidae sp.					÷ .		1*
Nereis succinea	(m)	14	2				1
Pectinaria gouldii	(n) -	14	1				1*
<u>Polydora ligni</u>		2	1	1*			
Pseudeurythoe ambigua	(p)	2	1	.3	6	14	6
Sigamora tentaculata	(q)		·				1
<u>Streblospio</u> benedicti	(r)	17	7	1			
Oligochaeta sp.			1				

* contamination from surface

1

1

1.

- X

36

Station 78 6-79

Тахоп		0-2	2-5	5-10	10-15	15-20	20-30	30-40
Nemertea								
Amphiporus bioculatus	(a)	6			a di site			
Amphiporus sp.		2						
							1 - A - J	
Mollusca								
Macoma balthica	(b)	8						e transforma
Mulinia lateralis	(c)	10						
Mya arenaria	(d)	6						
Odostomia sp.	(e)	2						
Retusa canaliculata	(f)	L			ан на селот м			
Crustacea				204	174	6*	2*	3*
Ampelisca abdita	(g)	1837	62	300	1.1	0	-	
Edotea triloba	(h)	12	· 1		1			
Gammarus mucronatus	(i)	28	1	27				
Leucon americanus	(j)	345	3	7.	1.4			
Melita nitida	(k)	73	2					
					e de la composition d La composition de la c			
Polychaeta			1 1					
Asabellides oculata	(1)	-a 1 -						
Capitellidae sp.			2	1				
Eteone heteropoda	(m)	42	1				т	
Heteromastus filiformi	<u>s</u> (n)		2				*	
Mediomastus ambiseta	(0)	4	<u> </u>	T		de la com		
Nereis succinea	(p)		2					
Paraprionospio pinnata	(q)	10	2				1*	
Pectinaria gouldii	(r)	21	1				T.,	
Polydora ligni	(s)	8		1				
Scoloplos fragilis	(t)	1						14
Streblospio benedicti	(u)	425	g	13*	، ز	• 		T
				e star				
Oligochaeta sp.		1						

37

* contamination from surface

11

. .

1

Station 79 6-79

Taxon		0-2	2-5	5-10	10-15	15-20	20-30	30-40
				t forget				
Mollusca			1. j.					
Macoma balthica	(a)	1	1					
M. mitchilli	(b)	1	r y trans 2007					•
<u>Mulinia</u> <u>lateralis</u>	(c)	6	1					
Retusa canaliculata	(d)	1						
Crustacea								
Ampelisca abdita	(e)	2				1. 1. 1. 1.		
							•	
Polychaeta								
Ancistrosvllis jonesi	(f)		1					
Asabellides oculata	(g)	2				1.1		
Eteone heteropoda	(h)	12		1*				
Glycinde solitaria	(i)	10	1					
Nereis succinea	(j)	- 4		1				
Paraprionospio pinnata	<u>e</u> (k)	11	14	5	1			
Pectinaria gouldii	(1)				1*		•	
Pseudeurythoe ambigua	(m)	3	10			1.1.1.1.1.1.1		
Scoloplos acutus	(n)	- 2						
Sigambra tentaculata	(o)				1			
Streblospio benedicti	(p)	- 55		1				
					s de la			e
Oligochaeta sp.	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	2		4 - 12 1				
	1		. <u>j</u> u					

Stat	ion	80	6-79

Platyhelminthes	$\langle a \rangle$		1						÷.1
iurbeilaria sp.	(a)	1	1						
Nezertea									
Cerebratulus lacteus	(b)		1	2					
Valluasa									
Macoma balthica	(0)		7	9				1. A.	
Mulinia lateralis	(a)		77	2		1=			
ACTINIA LACCIALIS	(4)		- 1			- -			
Crustacea								· · · ·	•
Ampelisca abdita	(e)	. 1	80	2	8*	4*			
									. •
Polychaeta									
Eteone heteropoda	(f)		7						
<u>Glycera</u> dibranchiata	(g)			,1					
Glyceridae sp.			1						
<u>Glycinde</u> solitaria	(h)		1						
Heteromastus filiformis	(i)		9	26	7				
<u>Nereis</u> <u>succinea</u>	(k)		14						
Paraprionospio pinnata	(1)		15	· · ·					
Pectinaria gouldii	(m)		64	1		3≈			
Pseudeurythoe ambigua	(n)			. 1 .,					
Scolecolepides viridis	(o)		1	×					
Scoloplos fragilis	(p)		2	2					
Streblospio benedicti	(q)	1	98	1	2*	2*			
			,	2					
Oligochaeta sp.			.4.	3					

r - dead hydroid mat

م<u>ن</u>جز

Station 81 6-79

Taxon		0-2	2-5	5-10	10-15	15-20	20-30	30-40 40-50	
Platyhelminthes									1
Turbellaria sp.	(a)	2	9	1	1*				•
Nemertea									
Amphiporus bioculatus	(b)	1							
Nemertea sp.						1			
Mallugaa									
Ivonsia hvalina	(0)	1							
Mulinia lateralis	(a)	19							
Nya arenaria	(e)	1							
Retusa canaliculata	(f)	2							
Crustacea									
Ampelisca abdita	(g)	1							
<u>Edotea</u> triloba		1		÷		1*			
Leucon americanus	(h)	6		1*					
	(2)	17		0.4					
Clygindo colitorio	(1)	41		2^					1
Gyntis brevinalna	(J)	-	. 1	÷.					
Heteromastus filiformis	(k)		2				- 11		
Loimia medusa	(1)		ĩ	3		1			
Nereis succinea	(m)	3				-		en de la Recentra de Recentra de la Recentra	
Paraprionospio pinnata	(n)	2					1*	and the state of the	
Pectinaria gouldii	(o)	665	12	15	9*	1*	1*		
Polydora ligni	(p)	1	2				1.21		
Pseudeurythoe ambigua	(q)		7	10				ran (a construction) a construction a construc-	
Scoloplos fragilis	(r)		5						
Streblospio benedicti	(s)	8							
						$\mathcal{A}^{(1)} = \mathcal{A}$			
Uligochaeta sp.	(t)	5	6						

* contamination from surface

1

Station 82 6-79

Taxon			0-2	2-5	5-10	10-15	15-20	20-30
					·			
Mollusca								
Ensis directus	(a)		1	1.1	and a start of		•	
Macoma balthica	(b)		1					
Mulinia lateralis	(c)		3					
Mytilus edulis	(d)		2					
						en et de la composition		
Crustacea								
Ampelisca abdita	(e)		9					
Gammarus mucronatus	(f)		3					
	5							
Polychaeta	÷., ,	÷ .						
Asabellides oculata	(g)		2	1.1				
Eteone heteropoda	(h)		3					
Heteromastus filifornis	(i)		3	· · ·		la Mara		
Nereis succinea	(i)		. 2	1		·		
Paraprionospio pinnata	(k)		1		1			
Pectinaria gouldii	in		18		· • ·			
Polydora ligni	(m)		1	4				
Streblosnio benedicti	(n)		152	1				
derebiospio benedicei	(u)		1.16	· +				

41

Station 83 6-79

Taxon		0-2	2-5	5-10	16-15 15-20 20-:	30
Nemertea						
Cerebratulus lacteus	(a)			1		
Mollusca						
Macoma balthica	(b)		2	2		
M. mitchelli	(c)	1		2		
Mulinia lateralis	(d)	24	1			
<u>Nya</u> arenaria	(e)					
Crustacea						
Ampelisca abdita	(f)	12				
Leptocheirus plumulosus	(g)	1				
D-1						14. •
Polychaeta Frome betomeda	11.5			· ·		
<u>Eteone neteropoda</u>	(n)	Z	a .	_		
Glycinde solitaria	(1)	2	3	3		
Leinie nadue	())				1 1	
Modiomostus - Lista	(K)	~~~	T	Ţ		
Neroig guesiant	(1)	23				1.
Nereis succinea	(m)	2	1	1	1 1	
Paraprionospio pinnata	(n)	1	. 9	13	2	
Peccinaria gouldii	(0)	.33			e de la factoria de la composición de l	
Polydora ligni		2				
Pseudeurythoe ambigua	(p)		-	1		
Streblospio benedicti	(q)	120	7	1		

42

· ha

Station 84 6-79

Taxon	0-2	2-5	5-10	10-15	15-20	20-30	30-40
Nemertea	1						
<u>Cerebratulus</u> <u>lacteus</u> (a)	т Э						
Nemertea frag.	2						
Mollusca	1						
Acteon punctostriatus	1 2	- 1. T					
Cratena kaoruae (C)	1	1				- 1. 19 - 1.	
Ensis directus (d)	52	7					
Lyonsia hyalina (e)	421	14	8*	1*	1*	3*	
Mulinia lateralis (1)	421	T.4	Ŭ	-	5. E	n an Èirea	
Mya arenaria (g)	5	25	1*				
Retusa canaliculata (1)	ر .	<i>4</i>	-				
Crustacea	53						
Ampelisca abdita (1)	2	ے					
Corophium tuberculatum ())	ך 1	1					
Leucon americanus (K)	-	1					
Listriella clymenellae (1)	1	T					
Oxyurostylis smithi (m)	2	t ta se					
Paracaprella tenuis (h)	. <u></u>						
Polychaeta	20						
Asabellides oculata (0)							
<u>Clymenella</u> torquata (p)	26	<u>ь</u>	1.5			1*	
Eteone neteropoda (4)	12				en for de la composition de la composit La composition de la c		
Glycinde solitaria (?)	1/0	• •	1				
Mediomastus ambiseta (S)	240	5					
$\frac{\text{Nereis succinea}}{\text{Nereis succinea}} $ (U)	20	10	4		1*	•	
$\frac{Paraprionospio pinnata}{Paraprionospio pinnata}$	163	15	4	3*	2*		
Pectinaria gouidii (V)	105	1 12		-		1.11.11	
$\frac{Polydora 11gn1}{Polydora 2000 cmbigura (w)}$	· · · ·	, ,	4	1	3		
Pseudeurythoe amorgua (x)	-	· 1	2		-		
Scolopios fragilis (y)		1 1	-	2	2	1	
$\frac{\text{Sigambra}}{\text{Sigambra}} \frac{\text{tentaculata}}{\text{tentaculata}} $. 220	3 5	34	-	- -	1*	
Streblospio benedicti (aa)	22	ر ر				- 1	
Tharyx sp. (bb)	5. s *	1					
Phoronida	· .	1					
Phoronis sp. (cc)		L .					
			A				

* contamination from surface

(b) Cerianthus americanus in dissecting core

Taxon		0-2	2-5	5-10	10-15	15-20	20-30	30-40	40-50
Nemertea <u>Amphiporus</u> bioculatus	(a)		1						
Mollusca									
<u>Mulinia</u> <u>lateralis</u> <u>Retusa</u> <u>canaliculata</u>	(b) (c)	69 9		1*					
Crustacea		-							
Ampelisca abdita	(d)	22							
Crangon septemspinosa	(e)	1							
Polychaeta									
Eteone heteropoda	(f)	26	3						
Glycera americana	(g)						1		
<u>Clycinde</u> solitaria	(h)	2							
Paraprionospio pinnata	(i)	1	1						
Pectinaria gouldii	(j)	45	2						
Polvdora ligni	(k)						1*		
Pseudeurythoe embigua	(1)		1	1					
Scoloplos fragilis	(m)	1	3	3					
Sigambra tentaculata	(n)			4					
Streblospio benedicti	(o)	11	1	1					
Oligochaeta sp.	(p)	2	2						

44

Station 85 6-79

* contamination from surface

Station 86 6-79

Taxon		0-2	2-5	5-10	10-15 15-2	0 20-30
Mollusca Mulinia latorolia		0	3			
nutinia ideelalis	(a)	8	2			
Crustacea						
Leucon americanus	(b)	2				• • • • • • •
Polychaeta				. 1999		
Eteone heteropoda	(c)	10				-
Pectinaria gouldii	(d)	3	1			
Streblospio benedic	<u>ti</u> (e)	22	2			

45

reiseren TL.

Station 87 6-79

	Taxon		0-2	2-5	5-10	10-15 15-20	20-30	30-45
	Platyhelminthes							
	Turbellaria sp.	(a)	2		1			
	Mollusca							
	Acteon punctostriatus		1					
	Ensis directus	(Ъ)	6	1				
	Lyonsia hyalina	(c)	18	4				
	Mya arenaria	(d)	4	•				
	Mulinia lateralis	(e)	1107	44	19*			
	Odostomia sp.	(f)	11	1				
	Retusa canaliculata	(g)	7	. 1				
	······································				a da			
	Crustacea							
	Ampelisca abdita	(h)	1					na trí nas L
	Leucon americanus	(i)	4					
	Polychaeta							
	Asabellides oculata	(;)	3					
	Cabira incerta	(k)			1			
	Eteone heteropoda	(1)	10	1				
	Glycera americana	(m)		1		a de la companya de l		
	Glycinde solitaria	(n)	7	1				
	Lepidametria commensalis	(o)		1				
	Loimia medusa	(p)		2				
	Mediomastus ambiseta	(q)	50					
	<u>Nereis</u> <u>succinea</u>	(r)	1					1.
	Paraprionospio pinnata	(s)	17	39	9	1		
	Pectinaria gouldii	(t)	628	39	12	1* 3*		
	Polydora ligni	(u)	1		*			
	Scoloplos fragilis	(v)	1 . T	1	3	1		
ŝ	Sigambra tentaculata	(w)		9	6	3		
	Streblospio benedicti	(x)	84	4	1*		an Ang ang ang	e dit e

* contamination from surface

Station 88 6-79

Taxon		0-2	2-5	5-10	10-15	15-20	20-30	30-40	40-50
Nemortas									······································
Tubulanus nellucidus	(2)	1	1						
period period	(4)	•	1						
Mollusca									
Aligena elevata	(b)					1			
Ensis directus	(d)	3	2			- <u>-</u>			
Lyonsia hyalina	(e)	11							
Mulinia lateralis	(f)	161	4	1*					
Mya arenaria	(g)	1		•					
Retusa canaliculata	(h)	2							
Tellina agilis	(i)	1						an a little	
Turbonilla interrupta	(i)	2							
Yoldia limatula	(k)	1							
Crustacea									
Ampelisca abdita	(1)	10							
Corophium tuberculatum	(m)	9	3	1*				2*	
Crangon septemspinosa	(n)	3							
Ericathonius brasiliensis	s (o)	10					1*]*	
Leucon americanus	(p)	11							
Listriella clymenellae	(q)	. 4	1		2				
Ogvrices limicola	(r)	1							
Paracaprella tenuis	(s)	4	1					1*	·
Photis dentata	(t)		1						
Delles-based									
Apphalides peulete									19 A. 1
Asabellides oculata	(u)	5		•					
Asychis elongata	(\mathbf{v})					-	_		1
Erang horozofa	(W)	4				2	1		
Clugara amoricana	(\mathbf{x})	5							
Clycoridae en	(y)		· · ·			1			
Glycindo solitario	(-)	7		,					1
Gyptis brevinalna	(22)			1					
Heterometus filifornic	(hb)			1		1			
Mediomastus ambienta	(00)	1.2	2	· · · •					
Nereis succines	(22)	- 44	*		and the second	-			
Paraprionospio pinnata	(aa)	29	27	-	2		2 N		
Pectinaria gouldii	(ee)	40	37	. /	-				
Poludera Hani	(11)	142	. -						
Priopospio cirrifera	(65)	0	,						
Pseudenrithoo ambiana	(11)	17	1	1	10				
Scolopics fragilie	(11)	1/	1	1	1-	٤			
Sigazora tentaculata	(11)					1			
Streblospin henedicti	(11)	122				*	1		1999 - L
Tharve sp.	(mm)	يتدفر بد	1						1944 1
	(· .	1					

Station 88 6-79 (continued)

48

.

٤.,

(nn)

.1

Taxon

م موجد بر محمد

."-- 0-2 2-5 5-10 10-15 15-20 20-30 30-40 40-50

Ascidiacea <u>Molgula</u> <u>manhattensis</u>

* contamination from surface

Station 89 6-79

Taxon		0-2	2-5	5-10	10-15	15-20	20-30
Namaataa							
Tubulanus pellucidus	(a)	1	1	1			
Ectoprocta							
Membranipora sp.		P			Arab Arab Arab		
Mollusca							
Aligena elevata	(b)	5	5	1	_		2
Anadara transversa	(c)	16		1*	2*		۶×
Ensis directus	(d)	1					~ .
Lyonsia hyalina	(e)	9	1. S. 1. S.				2*
Mitrella lunata		1					
Mulinia lateralis	(f)	5					
Mya arenaria	(g)	1		15 M			
Nucula proxima		1					
Retusa canaliculata	(h)	16	1				 A the second seco
Tellina agilis	(i)	. 3 .	1				
Turbonilla interrupta	(j)	9					
Yoldia limatula	(k)	6					
Crustical							
Annelisca abdita	(1)	26	2	2*		6*	2*
Arnalisca vadorum		- 1					
Ampelisca verrilli	(m)	1	. ÷				
Cancalla penantis	(n)	63	25*	11*	15*	10*	33*
Coronhium tuberculatum	(a)						2*
Editor triloha	(D)	5	1*	1*			
Erichthonius brasilionsi	e (n)	5	6	1 *		1*	1*
Entenendonus Stasificasi	5 (4)		1			1*	
EFICISONETIA TITIOTIMIS	(r)		- - -	1*			1*
Garmanus Eucronacus	(.)	7	7	3	4		
Listriella civaeneriae	(3)	· · · ·	•				
Ostracod sp.							
Relushaata							
roivenaeca traballa iricolor	(t)						1
Arabella Hicolol						1	
Aladellidae oculata	6.1	3					
Asaberrides ocuraca	(u) (u)					1	
Blawania goodei	(v) (v)						
Capital Vida	(#/		•				1
Clumonalla sorranta	()	- 80	51	11	5	4.	5
Clumphine to to to to to	(A) (A)	10		1	3	1	
Clumenella zonalls	(3)	1.2	5		1	· · · -	
Givera americana	(4)	· · · · · · · · · · · · · · · · · · ·	ر ي ۱		• • •		1*
GIVEIRGE SOITEGELA	(ua)	-					

49

¥ •

. . .

Station 89 6-79 (continued)

Taxon		0-2	2-5	5-10	10-15	15-20	20-30
Polychaeta (continued)					* 		
Gyptis brevipalpa	(bb)	1	2				
Harmothoe extenuata	(cc)		-		1		
Heteromastus filiformis.	(dd)	62	39	7	1	2	1
Maldanidae sp.			3	5		1	1
Mediomastus ambiseta	(ee)	34	24	1		- -	.
Nereis succinea	(ff)	3			1		2
Owenia fusiformis	(gg)	1					
Paranaitis speciosa	(hh)	2				ينجو بالمراجع	
E raprionospio pinnata	(ii)	8	2				2*
Pectinaria gouldi		287	15	10	6*	2*	2*
Phyllodoce mucosa	(jj)	1		1			
Polydora ligni	(kk)	37	1		1*	1*	8*
Prionospio cirrifera			1		11 - A		
Pseudeurythoe ambigua	(mm)	37	128	30	33	34 .	38
Sabellaria vulgaris	(nn)	6	7*	1*	7*	7*	13*
Sigambra tentaculata	(00)	1	5	2		1	2
Streblospio benedicti		233	33	4*			
Tharyx sp.				3			
Oligochaete sp.		6	5				
Phoronida							
Phoronis sp.			4				
8 F F							
ASCIDIACEA							
Molgula manhattensis		2					

* contamination from surface

1

. <u>.</u> .

1

.

ł,

S. C. M.

Station 90 6-79

Taxon		0-5	5-10	10-18
Nemertea				
<u>Cerebratulus</u> lacteus	(a)		1	
Phoronida				
Phoronis sp.	(b)	1		
Mollusca				
Aligena elevata	(c)	4		1
Ensis directus	(d)	19	9	2
Lyonsia hyalina	(e)	9		
Mulinia lateralis	(f)	-27	4	
Mya arenaria	(g)	2		
Tellina agilis	(h)	3	1	1
Crustacea				
Ampelisca abdita	(i)	1		
Chiridotea caeca	(j)	1		
Erichthonius brasiliensi	<u>s</u> (k)	1		
Monoculodes edwardsi	(1)	5	1	
Oxyurostylis smithi	(m)	5	1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1*
Trichophoxus epistomus	(n)	1		
Polychaeta				
Asabellides oculata	(0)	1		
Glycera americana	(p)	22	3	
Heteromastus filiformis	(q)	2	2	1
Mediomastus ambiseta	(r)	9	3	
Nephtvidae sp.	(s)	1		
Pectinaria gouldii	(t)	1		
Polvdora ligni	(u)	1		
Pseudeurvthoe ambigua	(v)	2	1	· · · · · · · · · · · · · · · · · · ·
Scolecolepides viridis	(w)		2	
Scorelepis squamata	(x)	1		
Scoloplos fragilis	(y)		1 1	
Scolor los rubra	(z)	3	1	2
Spiophanes bombyx	(aa)	194	77	35*
Streblospio benedicti	(bb)	22	4	
Tharyx sp.	(cc)	21	12	2
Travisia carnea	(dd)	1		
Oligochaete sp.	(ee)	87	÷ 3	

* contamination from surface

Station 91 6-79

Taxon		0-2	2-5	5-10	10-15	15-20
Nemertea						
Tubulanus pellucidus	(a)	2				
Mollusca	(1)					
Acteon punctostriatus	(D)	4		4	1	7
Aligena elevata	(6)	2		-	*	
Caecum pulchellum	(u)	-	1			
Ensis directus	(e)	19	5	1		2
Lucina multilineata	(f)		5			
Lyonsia hyalina	(g)	44				2*
Mercenaria mercenaria	(h)	1				
Mulinia lateralis	(i)	37				
Nucula proxima	(j)	3			- 11 pr	
Retusa canaliculata	(1)	12	1*			
Tellina agilis	(m)	20				
lurbonilla interrupta	(n)	3				
Crustacea						
Ampelisca abdita	(p)	4				
Ampelisca verrilli	(q)	15	a a A a a a a g			
Callianassa atlantica	(r)				1	
Caprella penantis	(s)	.29	1*			
Corophium tuberculatum	(t)	6			1*	
Erichthonius brasiliens	<u>is</u> (u)	7				
Gammarus mucronatus	(v)	4	`		,	
Listriella clymenellae	(w)	ن ۱	4	4	۷.	
Oxyurostylis smithi	(x) (y)	7				
Paracaprella tenuis	(z)	•				1*
Parametopella cypris	(-)	1				
Unciola serrata	(aa)	3.				
Polychaeta						
Aricidea catherinae	(66)	•	1			
Aricidea wassi	(22)	1	1	T		
Asabellides oculata		1	1			5 .
Bhawania goodei	(ce) (ff)					2
Brania wellfleetensis	(**)	3	1	.1	2	
Cabira incerta	(gg)	2	2	3	5	4
Capitellidae sp.					1	
Clymenella torquata	(ii)	9	6	2	4	5
Drilonereis magna	(jj)					1

Station 91 6-79 (continued)

Taxon		0-2	2-5	5-10	10-15	15-20
Balaabaaba (aasta 1)						
rotychaeta (continued)		•				
Eteone heteropoda	(kk)	2	_s, ÷			
Glycera americana	(11)	21	2			1
<u>Clycinde</u> solitaria	(mm)	2				
Goniadides carolinae	(nn)	1				
Heteromastus filiformis	(00)	12				
Magelona rosea					1	
Mediomastus ambiseta	(pp)	37	2	2	an a	
Nephtys incisa	(qq)	2	1			
Nereis succinea	(rr)	4				•
Pectinaria gouldii	(ss)	48				in indetti
Polydora ligni	(tt)	45				
Pseudeurvthoe ambigua	(uu)	4	5	4	9 .	22
Sabellaria vulgaris	(vv)	2				
Scoloplos rubra	(ww)			1		
Sigambra tentaculata	(xx)				1	
Spio filicornis	(vv)	1			5 T i i i	
Spiophanes bombyx	(zz)	131	42	8		4*
Streblospio benedicti	(ab)	710	18	11*	1*	10*
Tharvy sp.	(ac)	16	1			
Olivochaere	()	20	1	1	1*	5*
8		20	-	-	÷.	
Phoronida					$M_{\rm eff} = 10^{-1}$	
Dhomania an	(-1)					

* contamination from surface

Station 92 6-	7	ľ								•				ł						•		•	,	,		•	•	1	,)		l		į																																								2	2		•	•	ļ	j				1								ļ		1]	î	E	ļ	1	1	,)		2	l	ŧ	9		•	-		ĺ	ĺ	ĺ	ĺ	İ	1	1	1	1			•									l	l	1	1		L	l	1	3		ć	ć	ł	ł	,
---------------	---	---	--	--	--	--	--	--	--	---	--	--	--	---	--	--	--	--	--	---	--	---	---	---	--	---	---	---	---	---	--	---	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	--	---	---	---	---	--	--	--	---	--	--	--	--	--	--	--	---	--	---	---	---	---	---	---	---	---	---	--	---	---	---	---	--	---	---	--	---	---	---	---	---	---	---	---	---	--	--	---	--	--	--	--	--	--	--	--	---	---	---	---	--	---	---	---	---	--	---	---	---	---	---

Taxon		0-2	2-5	5-10	10-15	15-20	20-30	30-40	40-50
Kallucas									
Tellina agilis	(a)		1				en el contra de La ferrar el contra de la contra d		
Polychaeta							•		
Asychis elongata	(b)				1				
Glycinde solitaria	(c)	2		1		$= \sum_{i=1}^{n} (i - 1) \sum_{i = 1}^{n} (i - 1$			
Gyptis brevipalpa	(d)					1			
Heteromastus filiformis	(e)						1		
Mediomastus ambiseta	(f)	13	8						
Paraprionospio pinnata	(g)	3	4	4	1		1*		
Pectinaria gouldii	(h)		1	1					
Pseudeurythoe ambigua	(i)	· .							2
Sigambra tentaculata	(i)		1	1		1			
Streblospio benedicti	(k)	11	7						
Heteromastus filiformis Mediomastus ambiseta Paraprionospio pinnata Pectinaria gouldii Pseudeurythoe ambigua Sigambra tentaculata Streblospio benedicti	(a) (e) (f) (g) (h) (i) (j) (k)	13 3 11	8 4 1 1 7	4 1 1	1	1	1		

* contamination from surface

م د

- 1 - 5 x

4

7. ÷

ŝ

•

54

~ · ·

ر المراجع المراجع مراجع المراجع

Station 93 6-79

Taxon	0	-2	2-5	5-10	10-15	15-20	20-30	30-40	40-5
latvhelminthes									
Turbellaria sp. (a)	3							
emertaa									
Tubulanus nellucidus (c)	1							
lal lusca									
Freis directus (d)	1	1						
Luongia hyalina (с) e)	2	-						
Mulinia lateralis (£)	73	10						
infinia incluing	- /		· • •						
mistacea									
Ampeliera abdita (0)	11	3]*	1*				
Corophium tuberculatum (ь) h)	6	-						
Edotoa triloha	4).		1						
Laucon americanus (1)	25			1.1.1				
Quirides limicola	1) (k)	1	- - .						
Paragaprolla topuis (1)		7						
Taracapierra cenurs	, 1 /		· · · · ·						
Polychaeta									
Acychic cp ((m)					1			
Asychis sp.	(m) 1	02	:23	1		- 1 - 1-			
Et cono: hotoropoda	(α)	7							
<u>Clusinda selitaria</u>	(0) (n)	2	-						
Hotoromostug filiformic	$\left(a \right)$. ***					1 1		
Medianastus ambienta	(4) (~)	55	o la	1997 - 1997 -					
Mendia sugainad		22				11 T			
Refeis Succinea	(=)	ā	34	12	2				
Paraprionospio pinnaca	(L) · · ·	126	77	4					
Petriaria gouldii	(u) . (w)	2.74		- -					
Polydora 11gn1	(v) (v)		1						
Prionospio cirrilera	(w) : (w)	2	.⊥ 	2	1				
rseudeurvinoe amoigua	(A) ()		2. 		* .				
Scolopios fragilis	(y) (-)		<u>نا</u> م	1	1				
Sigambra tentaculata	(2)	170	. 0.	0	· L				
<u>Streblospio benedicti</u> (a	aa)	F10	20	د					
Tharyx sp. (1	bb)		1						
						- <u>-</u>			
Oligochaeta sp.		1					an an an		

* contamination from surface

- . . .

1

(b) Cerebratulus lacteus found in the dissecting core

i ...

55

۶.
Station 94 6-79

Taxon		0-2	2-5	5-10	10-15	15-20	20-30	30-40
Nomartaz								
Tubulanus pellucidus	(a)		3	2				
	(/							
Phoronida								
Phoronis sp.	(b)	1		1				
Mollusca			100					
Ensis directus	(c)	3	4	1				
Lyonsia <u>hyalina</u>	(d)	6						
<u>Mitrella lunata</u>	(e)	3	_					•
<u>Mulinia</u> <u>lateralis</u>	(f)	21	2					
Odostcaia sp.	(g)				1=			
Retusa canaliculata	(h)	8						•
<u>Tellina</u> <u>agilis</u>	(1)	18						
Yoldia limatula	(j)	6	1					
Crustacea		.			an the Second	, en lesser a		
Ampelisca abdita	(K)	25						
Corophium tuberculatum	(1)	1/						
Crangon septemspinosa	(m)	. 1	<u>1</u>					
Edotea triloba	(n)	2						
Lrichtnonius brasiliensi	<u>s</u> (0)	9						
Ustracoda sp.	(-)	12	1					
Paracaprella tenuis	(p)	14	1					
Polyobaata								
ioiyenaeta	(a)	75						
Asuchie elongata	(4)					9 J.	1	
Bhayapia coodai	(L) (g)	1	1	6	2		-	
Cabira incorta	(+)	. *	ĩ	ĩ				
Clumenalla zonalis	(11)	4	1	2				
Glycera americana	(\mathbf{v})	2		-	1			
Glycera sp.			1					
Glycipde solitaria	(w)	5						
Gyptis brevipalpa	(x)	in st		1				
Harmorhoe extenuata	(v)	1						
Vedionastus ambiseta	(z)	358	26	3				
Nephtys incisa	(aa)	2						
Sereis succinea	(bb)	6						
Parap, ionospio pinpata	(cc)	2						
Pectinaria couldii	(dd)	2035	42	8	3*	8*	1*	and and
Palydora Jioni	(00)	36	- 	`				in the second
Prionospio cirrifera	(ff)	3		5				
Providenzythoa ambigua	(00)	í		· •		1		
rseuceurvence amorgua	166/	-					1	

Station 94 6-79 (continued)

Taxon	0-2 2-5 5-10 10-15 15-20 20-30 30-40
Polychaeta (continued) <u>Scoloplos</u> sp. (hł <u>Sigambra tentaculata</u> (ij <u>Spio</u> sp. (jj <u>Streblospio benedicti</u> (kł <u>Tharyx</u> sp. (1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Oligochaeta sp. Ascidiacea <u>Botryllus</u> <u>schlosseri</u> (=	34 12 n) P*

57

* contamination from surface

:

(nn) Thyone briareus found in the dissecting core

(oo) Cerianthus americanus - found in the dissecting core

Station 95 6-79

Taxon		0-2	2-5	5-10	10-15	15-20	20-30	30-40	40-50
Mollusca		-							
Ensis directus	a)								
Lyonsia hyalina	Б)	1	10	24 Tv		14			
<u>Mulinia</u> <u>lateralis</u> (c)	155	19	2*		T.			
<u>Mya arenaria</u> (d)	3	1			na she ye			
Odostomia sp.	e)	9	2						
<u>Retusa</u> conaliculata ((f)	1							
Yoldia limatula ((g)	1			an a				
Crustacea									
Leucon americanus	(i)	1	1*						
		et de la j		e dijeta					
Polychaeta									
Asabellides oculata	(j)	19	· 1						
<u>Clymenella</u> torquata	(k)	1	-						
Eteone heteropoda	(1)	8	T				e generation de la composition de la co La composition de la c		
Glycera americana	(=)	. 1				L ·			
<u>Glycinde</u> solitaria	(n)	5				1997 - 1997 -			
Mediomastus ambiseta	(0)	100	1			_			
Nereis succinea	(p)	1				1			
Paraprionospio pinnata	(q)	14	19	3			~		
Pectinaria gouldii	(r)	787	88	34	1*	5*	2		
Pseudeurythoe ambigua	(s)	1	1						
Scoloplos fragilis	(t) :		1						
Sigambra tentaculata	(u)	1	14	· 1	1	1			
Streblospio benedicti	(v)	93	1						
Tharyx sp.	(w)	1							
								1	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11

* contamination from surface

1

¢

58

٩.

Station 96 6-79

Taxon		0-2	2-8
Colenterata			
Edwardsia elegans	(a)	1	
N			
Corobratulus lasteve	(h)	3	
Cerestatuius facteus	(0)		
Phoronida			
Phoronis sp.	(c)	2	
Mollusca			
Ensis directus		267	25
Lyonsia hyalina	(e)	29	
Mulinia lateralis	(g)	183	4
Tellina agilis	(h)	26	1
Crustacea			
Ampelisca abdita	(i)	1	
Ampelisca verrilli	(j)	1	
Corophium tuberculatum	(k)	2	
Edotea triloba	(1)	3	
Erichthonius brasiliens	<u>is</u> (m)	1	
Gammarus mucronatus	(n)	1	
Monoculodes edwardsi	(0)	1	
Oxyurostylis smithi	(p)	1	
Paracaprella tenuis	(p)	2	
Pinnotneres sp.	(r)		1
Polychaeta			
Asabellides oculata	(s)	9	
Clymenella torquata	(1)	14	1
Eteone heteropoda	(-)	7	
Glycera americana	(v)	28	1
Glycera dibranchiata	(w)		4
Gyptis brevipalpa	(x)		1
Harmothoe extenuata	(y)		1
Magelona rosea	(z)	1	1-
Mediomastus ambiseta	(aa)	87	17
Nephtys incisa	(bb)	2	2
Nereis succinea	(ec)	2	
Owenia fusiformis	(dd)	1	
Paraprionospio pinnata	(ee)	3	
Pectinaria gouldii	(ff)	79	3
Polydora ligni	(gg)	11	1
Prionospio pygmae	(hh)	8	2

59

. .

i.

1

.

Station 96 6-79 (continued)

Taxon		0-2	2-8
Polychaeta (continued)			
Pseudeurythoe ambigua	(ii)	1	2
Sabellaria vulgaris	(jj)	2	
Spio setosa	(kk)	1	
Spiophanes bombyx	(11)	131	15
Streblospio benedicti	(===)	250	14
Tharyx sp.	(nn)	6	1
Oligochaetes		1	1

60

Ĩ,

(d) <u>Busycon carica</u> found in dissection core

(f) Mitrella lunata found in dissection core

(u) Diopatra cuprea found in dissection core

Station 97 6-79

Taxon		0-2	2-5	5-10°	10-15	15-21
Hvdrozoa						
Hydractinia echinata	(a)	P				
Sertularia argentea	(b)	P	P	P	Ρ	Р
Nemertea						
Cerebratulus lacteus	(c)	5	1			
Tubulanus pellucidus	(d)	9				
Phoronida						
Phoronis sp.		1				
a da anti-anti-anti-anti-anti-anti-anti-anti-						
Mollusca						
Acteon punctostriatus	(e)	1			8	
Crepidula plana	(f)	2				
Doridella obscura	(g)	1				
Ensis directus	(h)	1				
Lvonsia hyalina	(i)	2				
Mitrella lunata	(j)	3				
<u>Mulinia</u> <u>lateralis</u>	(k)	1				
<u>Mva arenaria</u>	(1)	2				
<u>Mytilus</u> edulis	(m))				
Nucula proxima	(n)	· · · . L .				
Retusa canaliculata	(0)					
<u>Tellina agilis</u>	(p)					
Yoldia limatula	(q)	1				
Crustacea						
Ampelisca abdita	(r)	2				
Corophium tuberculatum	(s)	16	1			
Crangon septemspinosa	(t)	1				
Edotea triloba	(u)	1				
Erichthonius brasiliensi	<u>s</u> (v)	1 - 1				
Libinia dubia	(w)	1				
Neomysis americana	(x)	1				
Oxyurostylis smithi	с (у)	1			2.4	
Paracaprella tenuis	(z)	23	2**		57	
Parametopella cypris	(aa)	14				
<u>Fleusyrites</u> glaber	(00)	4				1944 - A.
Inciola serrata	(cc)	8				
Polychaeta						
Asabellides oculata	(bb)	12		1*		
Clymenella torquata	(ee)	2				
steche beterupuda	(ff)	3				

Station 37 6-79 (continued)

Taxon		6-2	2-5	5-10 10-15 1	15-21
Polychaeta (continued)					
Lepidonotus sublevis	(22)	3			
Mediomastus ambiseta	(hh)	185			
Nephtys incisa	(ii)	4		1	
Nereis succinea	(jj)	7			
Paranaitis speciosa	(kk)	3			
Pectinaria gouldii	(11)	1951	7	8 1*	
Polydora ligni	(1112)	76			
Proceraea cornuta	(nn)	1			
Pseudeurythoe ambigua	(00)	11 may 1, 20		3	
Sabellaria vulgaris	(pp)	523	2	9* 1*	
Sigambra tentaculata	(44)	2	1	2	?
Strebiospio benedicti	(rr)	220	1	1*	-
Tharvx sp.	(ss)	7	2		

* contamination from surface

•

, A

ι.

A

Ł

Station 98 6-79

Taxon		0-2	2-5	5-13
Nemertea				
Amphinorus hioculatus	(a)	1		
Tampiriporus Diocuricus	(u)			
Mollusca				
Ensis directus	(b)	4	3	
Mercenaria mercenaria	(c)	1		1
Mulinia lateralis	(a)	3	3	n an an F rainn An Arainn
Mya arenaria	(e)	6		1 1 1
Crustacea				
Edotea triloba	(g)	2		
Idunella sp.	(h)			1
Leucon americanus	(i)	13	4	-
Listriella clymenellae	(1)	2	1	1
Neomysis americana	(k)	ī		
Pleusyntes glaber	(m)	ī		
Unciola serrata	· (n)	4	1	
Polychaeta				
Arabella iricolor	(0)		2	· · · 1
Aricidea succica	(p)		1	
Asabellides oculata	(a)	7	6	2
Clymenella torquata	(r)	16	3	8
Eteone heteropoda	(s)	9	4	1
Glycera americana	(c) (t)	3	1	
Glycinde solitaria	(u)	2	1	1
Gyptis brevipalpa	(\mathbf{v})	2	- 7	
Héteromastus filiformi	(v) (v)	18	11	2
Marphysa sancuínea	(v)			ĩ
Mediomastus ambisera	(2)	7		
Nereis succinea	(33)	3	3	1
Pectinaria couldii	(hb)	40	35	ŝ
Polycirrus eximine	(cc)	37		ĩ
Polydora Lieni	(dd)		1	•
Paeulourythee ambient	(ec)			3
Scolonlos rubra	(EE)	1	2	
Spin setosa	(00)	2	4	er de la composition
Strohlospia Bonadiati	(hb)	179	80	12
Syllis cornera	(13)	2 / SA	1	13
Tharvy sp	(11)	1	1	
AHOLYA SPA	(11)	,		Ĺ
Oligochaeta sp.	(kk)	22	26	2
			a da ser en el composito de la	

(f) Callianassa atlantica found in the dissection core

(1) Pinniza sp. found in dissection core

Ζ.

Station 99 6-79

Taxon		0-	-5	5-10	10-15	15-20	20-30	30-39
Nemertea								
Tubulanus pellucidus	(a)		1					
Phoronida								
<u>Phoronis</u> sp.	(b)		3					
Mollusca								
Ensis directus	(c)		3	3				
Lyonsia hyalina	(d)			1				
<u>Mulinia</u> <u>lateralis</u>	(e)		2					
<u>lellina agilis</u>	(g)		2					
Polychaeta								
Asabellides oculata	(h)	1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	2					
Asychis elongata	(i)					1		
<u>Glycera</u> americana						1		
<u>Clycera</u> sp.	(j)		1.					
<u>Clycinde</u> solicaria	(k)		1					
Pectinaria gouldii	(1)	7	0	39	25*	8*	4*	
Pseudeurythoe ambigua	(m)			2	2			
Sigambra tentaculata	(n)			÷ .		1.1	1	
Streblospio benedicti	(0)]	2					
Tharvx sp.	(p)		3					
Oligochaeta sp.	(a)		9					
	11/		,					

64

.

2

•

* contamination from surface

X

Station 100 6-79

Taxon		0-8
Nemertea		
Tubulanus pellucidus	(a)	1
Phoronida		
Phoronis sp	(h)	•
<u>inoronio</u> sp.	(0)	ر د
Mollusca		
Ensís directus	(c)	23
Nassarius trivittatus	(d)	3
Tellina agilis	(e)	34
Crustacea		
Pagurus longicarpus	(f)	1
Parametopella cvpris		4
Unciola irrorata	(g)	3
Polychaeta		
Capitellidae sp. A	(h)	346
Capitellidae sp. B		- 1
Drilonereis longa	(i)	3
Glycera americana	(j)	3
<u>Glycera</u> sp.		4
Magelona rosea	(k)	1
Neclomastus ambiseta	(1)	86
Replicys Incisa Beatings in and list	(m)	1
Peludera ligni	(0)	4
Poludona angialia	(p)	1
Polydord socialis	(q)	1
Prionocnia pyemeen	(\mathbf{r})	4
Scoloplos aputua	(s)	15
Spin satora	(\mathcal{L})	1
Spionhanes hombury	(u) (v)	1
Streblosnin borgdigti	(V) (p)	1
Tharvy sp.	(w)	8 25
-merly obs	(x)	20
Olfgochaeta sp		
	1	4

(h) <u>Onuphis eremita</u> found in dissection core

65

Station 103 4-79

Taxon		0-2	2-5	5-10	10-15	15-20	20-30	30-45
Colenterata	an A An An	al da angla Ala						
Anthozoa sp.	(a)		1					
Sertularia argentea	(b)	Р	P	P*		P*	p*	P*
Nemertea				1999) 1997				
Tubulanus pellucidus	(c)	2						
Ectoprocta								
Aeverillia armata	(d)	P	P*	P*		P*		P
Electra crustulenta	(e)	P	P*	P*		P*		
Phoronida			an a					
Phoronis sp.	(f)	1	s s , t s s,					
Mollusca	÷							
Aligena elevata	(g)	3		1	1			
Anadara transversa	(h)	68	34*	28*	2*	2*	11*	11*
Doridella obscura	(i)	6		ан алан Алан ал	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
Lyonsia hyalina	(j)	1						
Mitrella lunata	(k)	69	5*	4*	2*		1*	2*
Mulinia lateralis	(1)				1*			
Crustacea								
Ampelisca vadorum	(m)	7		2*				1*
Corophium sp.	(n)						1*	5 - S.A.
Edotea triloba	(0)	1				1*		e e e e e
Elasmopus levis	(p)	9	4	1*				
Erichthonius brasiliensis	(a)	1						
Gammarus mucronatus	(r)	8	2				1*	
Listriella clymenellae	(s)			3		1		
Neopanope texana savi	(2)	3						
Ostracoda sp.	1.57	1		1*				
Paracaprella tenuis	(u)	63	6*	14*	1*	8*	38*	68*
Parametopella cypris	(v)	2						
and the second secon								
Polychaeta								
Amphitrite ornata	(w)	1	5	2				
Capitellidae sp.				1				
Chrysopetalidae sp.					1			the second
Clymenella torquata	(x)		3,	9	6	5	3	1*
Eteone heteropoda	- (y)	20	2	4*		2*	1*	
Glyceridae sp.				3				
Glycinde solitaria	(z)	1	3	1	1.			
Gyptis brevipalpa	(aa)			•	1			

Station 103 4-79 (continued)

Taxon		0-2	2-5	5-10	10-15	15-20	20-30	30-45
			· · · ·					
Polychaeta (continued)					24	14		
Hesionidae	(11)				1	2		
Heteromastus filitormis	(00)		. ,	-	1	2		
Maldanidae sp.		31	4	4				
Mediomastus ambiseta	(cc)	52	-	6*	_		-	10
Nereis succinea	(dd)	302	53	23	2		3	10
Paraprionospio pinnata	(ee)	3	6	1	3			
Pectinaria gouldii	(ff)				1*			
Podarke obscura	(gg)	1		1				
Polydora ligni		342	56	8*	6*			
Polynoidae sp.	(hh)	1						
Pseudeurythoe ambigua	(ii)	1	11	71	44	50	1	2
Sabella microphthalma	(jj)	32	22	16*	1*	1*	1*	
Sabellaria vulgaris	(kk)	10	4	8*		1*		
Scolecolepidis viridis	(11)	3				4) (S)		
Sigambra tentaculata	(mm)				1	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1		
Streblospio benedicti	(nn)	1						
Svllidae sp.	(00)	1						
Svllidae sp. A		1						
Ascidiacea								
Jotrvllus schlosseri	(pp)	P	P*	P*	P*	P*	P*	P*
Nolcula manhattensis	(aa)	2	14	2*	1*		1*	
	. 1 1 /							

* contamination from surface

**

7

67

•

.....

Station 104 4-79

Taxon	0-2	2-5	5-10	10-15	15-20	20-30	30-37
Colenterata							
Anthozoa sp. Sertularia argentea	2 P	p*	P*	1	P*	P*	P*
Nemertea							
Cerebratulus lacteus		1					
Tubulanus pellucidus		1					
Ectoprocta	an a						
Aeverrillia armata			P*				
Electra crustulenta	P*	P×		P*			ana an
Mollusca							
Anadara ovalis	2		104	1/2	1 -	7.4-	1.6 +
Anadara transversa (a)	99	32=	19*	14*	4*	1.	40^
Lynosia hyalina	1 6						
Mulifia lateralis	1						
Ratuea canaliculata	5	1*	1*				
Turbonilla interrupta	1						
Yoldia limatula (b)	1					2 2	
Crustacea		1 N		a di ta Atala. Na			
Ampelisca vadorum	1						
Corophium tuberculatum	2	1	1*	1*	1*		1*
Edotea triloba	2						
Elasmopus levis	1	ta ang					
Erichthonius brasiliensis				1*			
Gammarus mucronatus			1				
Leucon americanus	1		1 4				14
Ostracoda sp.	1	1 ^x	1*	1.4			7.
Paracaprella tenuis	2	2	1				a de la composition de la composition
Pinnixia retinens		· · ·	1		da de la serie Novembre de la serie de la Novembre de la serie de la s		
Polychaeta			ka she				
Asabellides oculata	1	· · · ·				i strati	
Eteone heteropoda	2		1*			de la trava	
<u>Glycera</u> <u>americana</u> (c)	•	1	• •				
<u>Clycinde</u> solitaria	8	2					т. 1. н. н.
Lepidametria commensalis	1		1				
Lepidonotus sublevis	1		1				
Madiomastus ambiseta	24	6	5*				
Nereis succinea	18	4	,		1	1	3

68

•

Station 104 4-79 (continued)

n para series de la companya de la c			· · · · · · · · · · · · · · · · · · ·					
Taxon		0-2	2-5	5-10	10-15	15-20	20-30	30-37
Polychaeta (continued)								
Orbiniidae sp.		1						
Paraprionospio pinnata	(d)	6	20					
Pectinaria gouldii	(e)	19	· 1					
Polydora ligni		14	3	4*		1*		1*
Pseudeurythoe ambigua			1	1		1		
Sabellaria vulgaris		2						
Scolecolepides viridis		1	1					
Scolonios foliosus		1						
Scoloplos SD.				1				
Sigambra tentaculata		1	12	1		1		15
Stroblospio heredicti		2						
Strebiospio Benedicer								
· · · · · · · · · · · · · · · · · · ·								
Ascidiacea		D		Dż		p*	P*	P*
Botryllus schlosseri		r		1				
Molgula manhattensis		5						

* contamination from surface

Station 105 4-79

Taxon	0-2	2-5	5-10	10-15	15-20	20-30	30-40
Colontorata							
Coriantheoneis americanus			1				
Certancheopsis americanus			-				
Nemertea							
Cerebratulus lacteus				· 1 · · · ·			
Tubulanus pellucidus	2		1				
Mollusca	1						
Acteon punctostriatus	1						
Anadara transversa	1						
Bivalve sp.	L T						
Cylichna alba	1 1						
Gemma gemma	. <u>1</u>						
Nassarius trivittatus							
Udostomia sp.							
Retusa canaliculata	10	1					
Terlina agiiis	13	1					
<u>Valvia linetula</u>	7						
<u>ioidia limatula</u>							
^							
urustacea	2				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
Ampelisca vadorum	2	Ŧ					
Edotea tritoba	2						
Listriella clymenellae	. 1	1.1	2				
Ustracoda sp.	9						
Paracaprella tenuis	1						
Photis dentata	4				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
Polychaeta	2						
Asabellides oculara	ر ۱		2	14 A.	,		
<u>Cabira incerta</u>	1	1	Z		1		
Clymenella torquara	1	7	F				
$\frac{1}{2}$			ан р а				
Glycera americana	10	4					
Giveinde solitaria	. 12						
Harmothoe extenuata	4						
H. Sp. A		-					
Heteromastus Illilormis	4		,				
Loimia madusa			1 =				
Maldanidae sp.	500	1 5	2				
Nedlomastus ambiseta	509	10					
Nepntys Incisa	4						
Paleanotus heteroseta			1				
raraprionospio pinnata							

70

•

.

Station 105 4-79 (continued)

	Taxon		0-2	2-5	5-10	10-15	15-20	20-30	30-40
Polychaeta	(continu	ed)							
Pectina	ria gould	ii		1				S. S. Star	
Phvllod	oce arena	e		1					
Polydor	a ligni		9	1.11.11					
Prionos	pio cirro	branchiata	1			\			
Prionos	pio sp.			ана сана Селотрана Селотрана		1			an tanàn sy
Sigambr	a tentacu	lata	1		4	1			No. 19 May
Spiccha	etopterus	oculatus	1	1					
Spionid	lae sp.			1					
Spiopha	ines wigle	vi		1					
Tharvx	sp.			3	2				
Westeri	inereis tr	identata			1				

,71

Appendix C

Selected three-dimensional drawings representing distribution and life styles of organisms in a box core at each station*

* letters refers to species listed in Appendix B for Stations 76-105.

72

1

1

.

Station 28

MOLLUSCA

a. Anadara transversa

CRUSTACEA

b. Pinnixa retinens

POLYCHAETA

c. <u>Glycinde</u> solitaria

d. <u>Nereis</u> <u>succinea</u>

e. Chaetopterus variopedatus

f. Paraprionospio pinnata

g. Pseudoeurythoe ambigua

h. Clymenella torquata

i. <u>Glycera</u> dibranchiata

73

PHORONIDA

J.

2

j. Phoronis sp.

STATION 28

Đ

Ş.

W M

/k

Station 35

MOLLUSCA

- a. Retusa canaliculata
- b. Anadara transversa
- c. Turbonílla interrupta
- d. Anachis translirata

CRUSTACEA

- e. Pinnixa retinens
- f. Pinnixa chaetopterana
- g. Ostracod
- h. Ampelisca abdita
- i. Listriella elymenellae
- j. <u>Paracaprella</u> tenúis
- <u>Corophium</u> sp. (juv)
 ECHINODERMATA
- 1. Micropholis atra
- POLYCHAETA
- m. Paraprionospio pinnata
- n. <u>Pectinaria gouldii</u>
- o. <u>Clymenella torquata</u>
- p. <u>Glycinde</u> solitaria
- q. Nephtyidae

and a second

- r. Notomastus sp.
- s. <u>Glycera</u> americana

75

1

POLYCHAETA (cont.)

-

- t. Paleanotus heteroseta
- u. Harmothoe sp. A (located on the disk of Micropholis atra)

76

- v. Pseudoeurvthoe ambigua
- w. empty Chaetopterid tube

8

Station 43

MOLLUSCA

- a. <u>Nucula proxima</u>
- b. Retusa canalículata
- c. Leptonidae
- d. <u>Yoldia limatula</u>

POLYCHAETA

- e. Nephtys sp.
- f. Paraprionospio pinnata
- g. Capitellidae
- h. Praxillella gracilis
- i <u>Paleanotus heteroseta</u>
- j. Harmothoe sp. A
- k. <u>Pseudoeurvthoe ambigua</u>
- 1. Orbiniidae
- m. Sigambra tentaculata
- ECHINODERMATA
- n. Micropholis atra

Station 46

MOLLUSCA

- a. <u>Turbenilla</u> interrupta
- b. <u>Odostonia</u> sp. (juv)
- c. Retusa canaliculata
- d. <u>Tellina agilis</u>
- e. Yoldia limatula
- f. Pitar morrhuana

CRUSTACEA

g. Ampelisca abdita

- h. <u>Ipogebia affinis</u> (juv)
- i. Libinia dubia
- j. Paguridae
- k. <u>Unciela serrata</u>

POLYCHAETA

- 1. <u>Clycinde solitaria</u>
- m. <u>Glycera</u> americana
- n. <u>Paleanotus heteroseta</u>
- o. <u>Maldanopsis</u> elongata
- p. <u>Pectinaria gouldii</u>
- q. <u>Pseudoeurvthoe</u> ambigua
- r. Heterozastus filiformis

ECHINODERMATA

- t Ophuroidea (juv) PHORONIDA
- u Phoronid

1.

80

angester sy. V

Ò

Station 50 MOLLUSCA

j.

a. <u>Tellina</u> agilis

POLYCHAETA

- b. Cirratulidae
- c. <u>Glycera</u> dibranchiata
- d. <u>Glycera</u> robusta
- e. Scoloplos rubra
- f. Drilonereis longa
- g. <u>Magelona</u> sp.
- h. <u>Pseudoeurvthee</u> ambigua

- -

Appendix D Selected Radiographs

в9

2

...

3

Plate 1. Station 82, Mud environment.

Station 82: Channel regime just south of the Potomac River Latitude: 37 45 8.315 Longitude: 76 11 28.303 Sampling Date: 6/22/79 Water Depth: 24.39 m Radiographic positive print

MUD ENVIRONMENT:

ĺ.

<*

1000

ź۶

....

Thinly laminated and homodenous and units evident are typical of the channels.

Methane bubbles are produced in or it juntity in these regions. Degree of bicturbation: trace

- 1:1

SPECIAL FEATURES:

- A. Thin, parallel mud laminae
- B. Homogenous silty clay texture
- C. Methane bubbles
- D. Mulina lateralis shells (disarticulated)

Plate 2. Station 80, Mixed-sediment environment.

Station 80: Southeast of Tangier Island Latitude: 37 46 52.637 Longitude: 75 58 5.191 Sampling Date: 6/23/79 Water Depth: 17.68 m Radiographic positive print

MIXED-SEDIMENT ENVIRONMENT:

Physical laminae alternate with biologically mixed zones. The distinct interbedded mud-sand laminations result from variable current energies. The bioturbated surface mud layer probably resulted from the entrapment of fine-grain sediments by dense populations of tube builders, namely <u>Ampelisca abdita</u>. Substrate stabilization has allowed other species (e.g. - <u>Loimia medusa</u>) to establish themselves at depth. Destruction of laminae is probably the result of general bioturbators.

SPECIAL FEATURES:

A. Bioturbated muddy sand _one

- B. & C. Thick, parallel, interbedded mud and sand layers
- D. Biologically reworked muddy sand layer containing <u>Mulina</u> <u>lateralis</u> shells

- 5. Pectinaria gouldii tube
- E⁰. <u>Pectinaria douldii</u> tube with feeding trace
- F. Boinin modusi tube

Plate 3. Station 100, Coarse-medium sand environment Station 100: Outside the mouth of the Chesapeake Bay just

off Cape Charles Latitude: 36 55 45.512 Longitude: 75 54 53.444 Sampling Date: 6/13/79 Water Depth: 18.90 m Radiographic positive print

COARSE-MEDIUM SAND ENVIRONMENT:

The sediment environment within this region is heavily influenced by wave action. This high energy regime produces distinctive homogenous and cross-bedded units, although some biogenic activity is evident.

94

1.1

Degree of bioturbation: < 30 S

SPECIAL FEATURES:

à

1

è s

A. Heavy minera', planar cross-bedding unit

B. Homogenous sand bed

C. Undescribed capitellid burrows

D. Onuphis eremita tube

Plate 4. Station 78, Mixed-sediment environment.

Station 78: East of Tangier Island Latitude: 37 50 54.944 Longitude: 75 55 32.880 Sampling Date: 6/24/79 Water Depth: 23.78 m Radiographic positive print

MIXED-SEDIMENT ENVIRONMENT:

This region is characterized by strong tidal currents. The surface mud lamina of this core is covered with tubes of the amphipod, <u>Ampelisca abdita</u>. High densities of these tubes act as a sediment trap for fine-grain materials. The sedimentary sequence changes abruptly into a sandy substrate with little bioturbation. A storm erosion layer is present at depth.

Degree of bioturbation: 60-90% (above 5 cm) 30-60% (below 5 cm)

SPECIAL FEATURES:

- A. Clayey silt layer with some interbedded sand
- B. Muddy coarse sand with gravel
- C. Storm erosion layer with compacted clay pockets

96

*

£.

4 and 1

- D. Mulinia lateralis shells (boxed)
- E. Ilyanassa vibex shell (remnant)
- F. Unidentified polychaete burrow (inactive)

Plate 5. Station 27, Fine sand environment.

Station 27: Pocomoke Sound Latitude: 37 49 54.106 Longitude: 75 50 7.436 Sampling Date: 9/20/78 Water Depth: 4.88 m Radiographic positive print

FINE SAND ENVIRONMENT:

1

General bioturbation activities in this core have disrupted the ripple laminae, and homogenized the heavy minerals. The underlying hard clay is characteristic along the nearshore margin.

Degree of bioturbation: 60-90% (above 15 cm) 0% (below 15 cm)

SPECIAL FEATURES:

A. Homogenous fine sand with scattered heavy minerals (dark granules)

98

•

B. Mud lamina

- C. Consolidated clay substratum
- D. Heavy mineral ripple lamina
- E. Unidentified polychaete burrow
- F. Ilvanassa vibex shell (remnant)

ł

Plate 6. Station 103, Mixed-sediment environment.

Station 103: Western Shore just south of Wolf Trap Light Latitude: Longitude: Sampling Date: 4/25/79 Water Depth: 7.32 m Radiographic positive print

MIXED-SEDIMENT ENVIRONMENT:

Muddy sand core and oyster reef. This reef was probably devastated by MSX disease in the 1950's. <u>Clymenella torquata</u> apparently is responsible for extensive sediment sorting. Laminar disruption and sediment mottling are evident. Degree of bioturbation: 90-99%

100

SPECIAL FEATURES:

A. Mud laminae

豪

- B. Crassostrea virginica shells (remnant)
- C. Clymenella torquata tube

Plate 7. Station 84, Mud environment.

Station 84: Middle of the Bay just north of the Rappahannock River Latitude: 37 40 20.223 Longitude: 76 7 55.784 Sampling Date: 6/22/79 Water Depth: 12.80 m Radiograph positive print

MUD ENVIRONMENT:

Bioturbated clayey silt core, illustrating massive destruction at depth by the cerianthid anemone, <u>Ceriantheopsis</u> <u>americanus</u>. Some physical lamination is still apparent. Degree of bioturbation: 60-90%

192

SPECIAL FEATURES:

- A. Faint mud laminae
- B. <u>Paraprionspio pinnata</u> traces
- C. Mulinia lateralis shell (live)
- D. Asychis elongata tube
- E. Ceriantheopsis americanus burrow (inactive)
- F. Macoma balthica shell (disarticulated)

Plate 8. Station 95, Mud environment.

Station 95: Mouth of the York River Latitude: 37 12 45.712 Longitude: 76 16 38.419 Sampling Date: 6/12/79 Water Depth: 10.67 m Radiographic positive print

MUD ENVIRONMENT:

Moderately bioturbated clayey silt with thin mud laminae; usually found in deep-water muddy environments. Degree of bioturbation: 30-60%

STATE AND A STATE OF STATE

SPECIAL FEATURES:

A. Homogenous clayey-silt texture

B. Horizontal planar mud lamination

C. Inclined planar mud laminae

D. Paraprionspio pinnata traces

E. Pectinaria gouldii tube

F. Mulinia lateralis shell (boxed)

G. Unidentified polychaete burrow with Fe⁺⁺⁺ prec. halo (inactive)

Lina

Plate 1. Station 42, Mixed-sediment environment.

Station 42: Eastern Shore opposite the mouth of the York River Latitude: 37 12 48.174 Longitude: 76 4 6.364 Sampling Date: 9/15/78 Water Depth: 11.59 m Radiographic positive print

MIXED-SEDIMENT ENVIRONMENT:

High densities of <u>Clymenella</u> torquata can potentially stabilize the sediments. Their reworking activities can greatly modify the sediment fabric, resulting in laminar disruption and sediment mottling.

Degree of bioturbation: 90-99%

SPECIAL FEATURES:

A. Mud lamina that has been disrupted resulting in mud pockets

B. Mulinia lateralis shell layer

C. Clymenella torquata tubes (active)

D. Clymenella torquata tube (inactive)

Plate 10. Station 96, Coarse-medium sand environment.

an 🛥 malay marang managin ing pananana karang managin karang marang marang marang sa karang sa sa sa sa sa sa

Station 96: North of Chesapeake Bay Bridge Tunnel Latitude: 37 10 49.356 Longitude: 76 7 9.316 Sampling Date: 6/14/79 Water Depth: 8.23 m Radiographic positive print

COARSE-MEDIUM SAND ENVIRONMENT:

سمير المهار وتعصف الريان والمار المان والمار وتنام ويراجعوا المراجع وتراجع والمراجع والموارد فيروم

The oceanic-derived sands of this core contain a surface layer of <u>Pectinaria gouldii</u> tubes. Biological reworking processes have homogenized the sediments. The surface excavation is the result of unknown physical or biogenic action. Degree of bioturbation: 90-99%

SPECIAL FEATURES:

- A. Surface excavation of unknown origin
- B. Pectinaria gouldii tube
- C. Juvenile Ensis-directus burrow
- D. Paraprionspio pinnata trace
- E. Diopatra cuprea tube
- F. Ensis directus shell

Lin

Appendix E

Station description with visual observations, x-ray description and important biogenic species

Station: 26 9-78

Area: Tangier Sound (98 ft)

Depth penetration: 43 cm

Sediment: mud (top 12 cm fluid mud than cohesive black nud to 40 cm than grey mud)

Visual Structures:

U

Physical: methane gas pocketing

Biological: few amphipod tubes brown against black background on surface than nothing until 35-43 mat of old ampeliscid tubes.

Ir portant Biogenic Agents:

Ampelisca abdita - stabilizes sediment surface Nereis succinea - ventilates burrows Paraprionospio pinnata - small burrows (<1 mm. wide) Loimia medusa - large tube dweller (4 mm wide)

X-ray structures: no x-ray, sample destroyed by on-board handling

Station: 27 9-78

Area: Pocomoke Sound (16 ft) Depth penetration: 30 cm

<u>Sediment</u>: medium-fine sand with increasing coarse sand & gravel with depth

Visual Structures:

- Physical: many mineral colors, surface mottled with mud clasts, deeper get streaks of clay, thin layer mud under stones.
- Biological: few Clymenella tubes on surface, 15-20 mud filled burrow (7 mm)

Imp. Biogenic Agents:

C. tcrquata - "conveyor belt" which mixes top 15-20 cm <u>P. amtigua</u> - deep random burrowing polychaete <u>P. pinnata</u> - thin burrow in the top 5 cm

X-ray structures:

<u>Physical</u> - between 13-16 cm. See transition of medium and fine sand to coarse sand and gravel. This represents a storm erosion layer, few mud clasts in upper 10 cm, mud lining underneath stones

Biological - few Clymenella tubes; most abundant are Paraprionospio pinnata burrows.

Station: 28 9-78

Area: just south of Potomac River mouth (82 ft) Depth penetration: 28 cm

Sediment: fine-medium sand

Visual Structures:

Physical: few pebbles and clay veins toward bottom

<u>Biological</u>: on surface lots of <u>Pectinaria</u> tubes, few <u>Clymenella</u> tubes, 7 mm wide chaetopterid tube, glycerid polychaete trace to 28 cm. <u>Clymenella</u> tubes and a chaetopterid tube extend all the way to the bottom of the core

Important Biogenic Agents:

Chaetopterus variopedatus - large tube dweller Paraprionospio pinnata - thin burrows Pseudeurythoe ambigua - deep burrowing polychaete Clymenella torquata - "conveyor belt" species Glycera dibranchiata - large burrow dwelling polychaete capable of ventilating its burrow

X-ray Structures:

Physical - large lump of iron at 12-17 cm, more pebbles >15 cm down, one mud clast at 10 cm, 1g irregular dark area 20-25 cm?

「日間」の言い

<u>Biological:</u> few <u>pectinaria</u> tubes on top. Several glycerid burrows, couple of <u>Clymenella</u> tubes.

113

1. 2

Station: 29 9-78

romaini ingelian sharaja sainaa taa si arganatz

Area: just west of Tangier Island (33 ft) Depth penetration: 21 cm

Sediment: fine-medium sand

Visual Structures:

Physical: streaks of darker sediment (mottled R.P D.)

<u>Biological:</u> few <u>Clymenella</u> & ampeliscid tubes on surface large terebellid tube 0-10 cm, phoronid tube 5-20 cm. 13 mm hole going out of core 10-15 (Callianassid shrimp?)

Important Biogenic Agents;

Terebellidae - large tube dweller Deep errant polychaetes - <u>Pseudoeurythoe ambigua</u>, <u>Ancistrosyllis</u>, Orbinids, <u>Driloneris</u> Phoronid - thin vertical sand tubes

X-ray structures

Physical: uniform bioturated sand

Biological: very little - few phoronid tubes, mostly a mobile fauna

Station 30 9-78

Area: off southern tip of Tangier Island (88 ft.) Depth penetration: 38 cm

Sediment: mud - (fluid on top 5-6 cm)

Visual Structures:

Marking Street and

Physical: none

Biological: surface matted with <u>Ampelisca</u>. Several unoccupied Terebellid tubes 5-15 cm. Hydroid strands 25-30 cm

Important Biogenic Agents:

Ampelisca abdita - tubes stabilize surface sediment Nereis succinea - ventilates burrows Terebellids - large ventilating tube dweller

X-ray: no good because sample was frozen

Station: 31 9-78

÷.

Area: west shore between Potomac River & Rappahannock River (44 ft) Depth penetration: 19 cm

والمربعان والمتحا والمرجالان

÷.,

1

Sediment: mud (fluid)

Visual Structures:

Physical: none

Biological: none

Important Biogenic Agents: none

X-ray: sample frozen so no x-ray

Station: 32 9-78

4

Êa

Area: toward eastern shore between Rappahannock & Potomac Rivers (46 f:)

Depth Penetration: 20 cm

Sediment: muddy sand, poorly sorted

Visual Structures:

Physical: none

Biological: ampeliscid tubes, few Pectinaria & Clymenella tubes, hydroids at 0-5 cm at 5-10. Terebellid tube, at 10-15 <u>Clymenella</u> tubes, Terebellid tube and hydroids, at 15-20 old ampeliscid tubes, 4 mm burrow with gold brown long, and still have Terebellid tube.

Important Biogenic Agents:

<u>Pectinaria</u> - mobile tube dweller & "conveyor belt" species <u>Clymenella</u> - "conveyor belt" species Deep burrowing polychaetes - Orbinids, <u>Pseudeurythoe</u> ambigua, Pilargids

X-ray Structures: lost due to refrigeration failure (dried out)

Station: 33 9-78

Area: near the mouth of the Rappahannock River (35 ft) Depth penetration: 40 cm

Sediment: fine sandy mud

Visual Structure:

Physical : fluid top 3 cm

Biological: few stringy tubes on surface, 0-5 cm short piece of parchment-like tube, 5-20 cm Glycerid traces, 20-25 cm capitellid traces

Important Biogenic Agents:

Nereis succinea: ventilates burrow

X-ray Structure: none due to refrigeration failure

Station: 34 9-78

Area: middle of Bay off the Rappahannock River (39 ft) Depth penetration: 21 cm

Sediment: very fine sandy mud

Visual Structures:

Physical: fluid surface

<u>Biological:</u> 1 mm dia tubes of <u>Clymenella torquata</u> and stringy tubes on top (<u>Paraprionospio pinnata?</u>), few <u>Pectinaria</u> tubes on surface. 5-10 cm. 1 mm diameter burrow trace vertical, large 6 mm in diameter tube, 10-15 cm part of U shaped tube. (<u>Loimia medusa</u>), continuation of the 6 mm tube, 15-21 cm continuation of 6 mm tube

Important Biogenic Agents:

Paraprionospio pinnata - small burrows Clymenella torquata - "conveyor belt species"

X-ray Structures:

Physical: none

<u>Biological</u>: many in back-filled burrows of various sizes. <u>Nereis</u> burrow 0-4 cm, few vertical maldanid tubes, many small burrows of <u>P</u>. pinnata at 0-8 cm patch of small capitellid like traces at 17-21 cm (probably <u>Heteromastus</u> filiformis). Some Mulinia shell hash on surface

119

Station: 35 9-78

Area:

toward Eastern Shore of Rappahannock River (39 ft) Depth penetration: 38 cm

Sediment: very fine sandy mud

Visual Structures:

Physical: none

 <u>Biological:</u> 0-5 cm <u>P. pinnata mucoid tubes</u>, ampeliscid tubes, many <u>Pectinaria</u> tubes, lg Chaetopterid tube, many <u>Clymenella</u> tubes, couple of terebellid tubes, 5-10 cm continuation of <u>Clymenella</u> and terebellid tubes, ophiuroid in life position. 10-15 cm piece of cerianthid tube, continuation of <u>Clymenella</u> tubes. 20-25 cm continuation of <u>Clymenella</u> and terebellid tubes. 25-30 cm capitellid traces. 30-38 cm nothing.

Important Biogenic Agents:

Clymenella torquata - "conveyor belt species"

X-ray Structures:

Physical: slight trough cross bed sand in the upper 2 cm

<u>Biological</u>: couple of <u>Clymenella</u> tubes, many back-filled burrows of Glycerids, Terebellid and Cerianthid anemones. <u>P. pinnata</u> traces in the top 8 cm. Few capitellid traces

<u>:ation:</u> 36 9-78

<u>cea</u>: Eastern Shore opposite Rappahannock River (37 ft) Depth penetration: 21 cm

ediment: muddy sand mixed with gravel

isual Structure:

Ĉ

Physical: mottled R.P.D., 0-5 cm, increasing amount of pebbles with increasing depth

<u>Biological</u>: surface has <u>Sabellaria vulgaris</u> tubes. few ampeliscid tubes, one <u>Pectinaria</u>, one Ampharetid tube, section of Cirratulid burrow with reddish-brown lining. 5-10 cm continuation of burrows and ampharetid tube. 10-15 cm continuation of cirratulid burrow. 15-20 cm nothing

Important Biogenic Agents:

Nereis succinea - ventilates its burrow Ampharetid - tentaculate polychaete which mound sediment around Cirratulidae - large burrowing polychaete with lined burrow

X-ray Structure:

Physical: scattered pebbles, mottled with mud

<u>Biological</u>: many shell 1mm in diameter burrow (either <u>P. pinnata</u> or juvenile <u>Nereis</u>), 0-5 cm, couple of large back-filled burrows and cirratulid burrow (probably <u>Cirriformia grandis</u>)

Station: 37 9-78

Area: vest shore of transect between York & Reppahannock Rivers (22 ft)

Depth penetration: 18.5 cm

Sediment: poorly sorted sand - lots of shell & gravel

Visual Structure:

Physical: lots of gravel on bottom

<u>Biological:</u> <u>Clymenella</u> tubes seen from surface. Ampharetid tube 0-15 cm, 5-10 cm 11 mm in dia. mud filled burrow, Glycerid traces

Important Biogenic Agents:

Mobile polychaetes - Glycera, Drilonereis, Pilargids, Pseudeurythoe

X-ray Structures:

Physical: lots of pebbles & shell hash, large oyster shell at 13 cm, grey uniform sediment, a mud layer .5 cm

Biological: Clymenella tube to 10 cm, mobile fauna responsible for uniform sediment

122

<u>station</u>: 38 9-78

Area: middle of the Bay between York & Rappahannock Rivers (37 ft) Depth penetration: 51 cm. 語語になる語語の言語

相応の方法には、必要にな

Sediment: poorly sorted sandy mud

Visual Structure:

Physical: none

Biological: Terebellid tube 0-51 cm, few Pectinaria tubes on surface, mucus tubes of P. pinnata

Important Biogenic Agents:

Pectinaria gouldii - mobile tube dweller, "conveyor belt species" Loimia medusa - large tube dweller Glycera americana - large polychaete which ventilates its burrow

X-ray Structure:

Physical: sand patch on surface to 2 cm

Biological: many various back-filled burrows, glycerid traces, capitellid burrows at 25 cm

Station: 39 9-78

Area: toward Eastern Shore between York & Rappahannock River (43 ft) Depth penetration: 17 cm

Sediment: poorly sorted sand

Visual Structure:

Physical: gravel on bottom, black mottling, lots of <u>Mytilus edulis</u> shells

<u>Biological</u>: at 5-10 cm, a 2.4 cm diameter burrow (<u>Callianassa</u> <u>atlantica</u>) at 10-15 cm ophiuroid arm, <u>Callianassa atlantica</u>, many reddish-brown burrows with cirratulid tentacles (<u>Cirriform grandis</u>)

Important Bicgenic Agents:

<u>Callianassa atlantica</u> - large burrow, process large amounts of sediment Mobile polychaetes - <u>Clycera</u>, <u>Pseudoeurythoe</u>, Cirratulids, Arabellids <u>Micropholis atra</u> - ventilates its burrow

X-ray Structure:

Physical: wavy sand layering in the top 4 cm, large pebbles & gravel, mud clasts

<u>Biological</u>: lots of small indistinguishing worms traces, general uniform sediment brought on by bioturbation of a mobile fauna

Station: 40 9-78

Area: Eastern Shore between York & Rappahannock Rivers Depth Penetration: 33 cm

Sediment: medium fine sand

Visual Structure:

Physical: mottled RPD

Biological: Maldanid tube 0 to 25 cm, Whelk on surface, Ensis directus at 5-10 cm, fragment of cerianthid anemone tube, 10-15 cm goldish-brown burrows

Important Biogenic Agents:

Busycon carica - plower of the top several cm Ensis directus - large burrowing bivalve Clymenella torquata - "conveyor belt" species Glycera americana - large burrow which it ventilates Pseudoeurythoe ambigua - deep burrower Micropholis atra - ventilates its burrow

X-ray Structure:

Physical: 16-22 cm patch of shell fragments

Biological: thin burrows along surface, couple of deep backfilled burrows. Mostly bioturoated uniform sands <u>Clymenella</u> tubes 0-15 cm Station: 41 9-78

Area: between York River and Mobjack Bay (46 ft) Depth Penetration: 24 cm

Sediment: muddy sand, poorly sorted

Visual Structure:

Physical: gravel throughout increasing with depth (15-20) along with patches of compact orange and grey clays, strands hydroid throughout

Biological: 0-5 thin mucoid tubes (P. pinnata), Sabellaria reefs, Pectinaria tubes, 10-15 cm capitellid worm traces

Important Biogenic Agents

<u>Nereis succinea</u> - ventilates its burrow <u>Clymenella torquata</u> - "conveyor belt" species

X-ray Structure:

Physical: lots of <u>Anadara</u> shell hash near surface, very mottled looking, more stones at bottom with "islands of clay" mud living zround stones

Biological: couple back-filled burrow, Pectinaria tubes

3 64

٠,
Station: 42 9-78

Area: Eastern Shore opposite York River (38 ft) Depth penetration: 36 cm

Sediment: muddy fine sand

Visual Structure:

Physical: none

Biological: lots of Clymenella tubes, Cerianthid anemone tube at 15-20 cm, at 25-30 cm mud cylinder

こうちょうちょう いっちょう ちょうちょう ちょうちょう ちょうちょうちょう

「「「「「「」」」」

Important Biogenic Agents:

х. Э

<u>Clymenella torquata</u> - "conveyor belt species" Various mobile polychaetes

X-ray Structures:

Physical: shell hash30-35 cm, mud streak 25 cm

Biological: many Clymenella tubes to 18 cm, few orbinid polychaete traces, few back-filled burrows in the deeper layers, streak of mud 30-35 cm

9-73 Station: 43

The second s

mid Bay off York River (38 ft) Area:

Depth Penetration: 25 cm

تحصير تجريبهما وتد

سابو متيد بالتر وجز

Sediment: muddy sand, poorly sorted

Visual Structure

Physical: gravel further down

Biological: Yoldia limatula at 3 cm. Pb₂₁₀ core at this station resulted in a large cerianthid anemone. <u>P. pinnata</u> at 0-5 cm, 0-10 <u>Praxiella gracilis</u> tube, several misc. burrows, capitellid traces 10-13 cm, large burrow at 15-20 cm

Important Biogenic Agents:

Yoldia limatula - large deposit feeding bivalve, bioturbator Maldanidae - "conveyor belt" species Mobile polychaetes - general bioturbators Micopholis atra - ventilates its burrow

X-ray Structure:

Physical: 1g patch of sand without mud on left side 16-25 cm deep. lots of shell hash on surface

Biological: few maldanid tubes, some back-filled burrows, cerianthid trace or streaks at 19-28 cm, few mobile polychaete traces

Station: 44 9-78

<u>Area</u>: just north of Buckroe Beach (24 ft) Depth Penetration: 13 cm

Sediment: well sorted fine sand with lots of shell hash

Visual Structure:

Physical: surface rippled with wave height of 2 cm. Wave length 1/2 width of box. lots of shells.

Biological: Mulinia lateralis on surface, Glycerid polychaetes 5-10 cm.

Important Biogenic Agents:

<u>Mulinia</u> <u>lateralis</u> - produces "sitz" marks <u>Glycera</u> <u>dibranchiata</u> - ventilates its burrow

X-ray Structure:

Physical: lots of shell hash, ripple at right end surface, mud chart under crest. Very dynamic

Biological: one back-filled burrow

129

- 24

Station: 45 9-78

¢.

Area: western side near the James River (29 ft) Depth Penetration: 27 cm

Sediment: medium fine sand

Visual Structures:

Physical - few pebbles

Biological - Busycon on surface, maldanid tubes, phoronid tubes

والمتحصير الجراب بقرار والكرستين والمتنا وأأور المراجب والمتعاد

Important Biogenic Structures:

<u>Busycon carica</u> - "plower" Mobile polychaetes - <u>Pseudoeurythoe</u>, <u>Glycera</u>, <u>Scoloplos</u>

X-ray Structures: no x-ray

9-78 Station: 46

mid Bay off Fishermen's Island (49 ft) Depth Penetration: 18 cm Area:

Sediment: muddy sand, poorly sorted

Visual Structures:

Physical - none

Biological - Pectinaria tubes on surface, terebellid tubes beyond 17 cm, Yoldia & Tellina in 0-5 cm layer, Cerebratulus in 5-10 cm layer

Important Diogenic Agents:

Pectinaria gouldii - mobile tube dweller, "conveyor belt species" Asychis elongata - large tube dwelling polychaete Mobile fauna - Glycera, Pseudeurythoe, Cerebratulus

X-ray Structures:

Physical - shell fragments 0-5 cm

Biological - L. medusae tubes, grey bioturbate texture due to mobile fauna

Station: 47 9-78

W. Methodalatic results

r

Area: Hampton Roads (44 ft)

Depth Penetration: 38 cm

1

Sediment: muddy fine sand

Visual Structure:

Physical: none

Biological: Terebellid & Maldanid tubes all the way down

Important Biogenic Structures:

<u>Upogebia affinis</u> - decapod burrower Terebellidae - large tube dwelling polychaete Maldanidae - "conveyor belt" species

X-ray Structures:

Physical - patch of layered mud-sand (laminated) at 7-8 cm. Shell hash patchy at 20-26 cm

<u>Biological</u> - few <u>P</u>. <u>pinnata</u> burrows, a <u>Pectinaria</u> tube, maldanid tube, several glycerid burrows deeper down & capitellid traces deep

48 9-78

off Little Creek (28 ft) Depth Penetration: 18 cm

: a fine sand with lots of shell hash

:ructures:

2

sical - none

logical - Mulinia lateralis on top, Loimia medusa tube, mobile polychaetes

t Biogenic Structures:

<u>mia medusa</u> - large tube dwelling polychaete <u>aprionospio pinnata</u> - small burrows <u>udoeurythoe ambigua</u> - deep burrowing polychaete

ructures:

'sical - shell lag area 10-15 cm

<u>blogical:</u> numerous <u>P. pinnata</u> burrows at 0-7 cm, lots of glycerid traces, grey bioturbate texture from mobile fauna

Station: 49 9-78

off Lynnhaven (38 ft) Depth Penetration: 55 cm

Sediment: muddy sand top 20 cm than sandy mud 20-55 cm

Visual Structures:

Area:

X

Physical - more clay 40-50 cm

<u>Biological</u> - surface mucoid tubes of <u>P. pinnata</u> and <u>Ampelisca</u>, <u>Yoldia</u> at 0-5 cm. Maldanid tubes to 20 cm, glycerid burrow 25-30 cm, <u>Mulinia</u> shells below 20 cm, lots of mud filled burrows 35-40 cm, capitellid burrows. more glycerid burrows to 50 cm

Important Biogenic Agents:

<u>Yoldia limatula</u> - deposit feeding mollusc bioturbator <u>Upogebia affinis</u> - large deep burrowing decapod Maldanids - "conveyor belt" species

X-ray Structures:

<u>Physical</u> - top 8 cm sandier, patches of mud with thin sand layer at 1-5 cm and 30 cm

Biological - lots shell hash top 8 cm lot of mottling of backfilled burrows in last 30 cm (probably <u>Asychis</u> and Glycerids)

Station: 50 9-78

Area: off Cape Henry (58') Depth Penetration: 22 cm Sediment: medium-fine sand

Visual Structures:

Physical: none

<u>Biological</u>: <u>Nassarius</u> crawling on top, mobile polychaetes <u>Important Biogenic Agents</u>:

Mobile polychaetes - Glycera, Orbinids, Arabellids

X-ray Structures:

<u>Physical</u> - large <u>Ensis</u> shell, slight layering on top 1 cm <u>Biological</u> - small worm traces, general grey bioturbate texture

Station: 76 6-79

Area: Tangier Sound (98 ft)

Depth Penetration: 30 cm

Sediment: mud

Visual Structures:

<u>Physical</u> - black fluid mud, methane gas holes, dead hydroids throughout

<u>Biological</u> - lots of ampeliscid tubes on top, few <u>Pectinaria</u> on surface

Important Biogenic Agents:

<u>Macoma balthica</u> - deposit feeding bivalve <u>Ampelisca abdita</u> - stabilizing tubes <u>Nereis succinea</u> - ventilates its burrow <u>Pectinaria gouldii</u> - mobile tube dweller, "conveyor belt" species Capitellids - "conveyor belt" species

X-ray Structures:

Physical: darker mud band 2-4 cm hydroid mat produces mottling, methane bubbles 10-15 cm

<u>Biological</u>: numerous sinuous worm burrows (<u>P. pinnata</u>, <u>Mediomastus</u>, small Nereis)

Station: 77 6-79

Area: south of the Potomac River mouth (65 ft) Depth Penetration: 47 cm

Sediment: muddy medium-fine sand

Visual Structures:

Physical - top sandy mud (0-2 cm) than slightly muddy sand

<u>Biological</u> - lots <u>Pseudeurythoe</u> <u>ambigua</u>, few ampeliscid tubes, <u>Pectinaria</u> tubes & <u>Clymenella</u> tubes. An abandoned cerianthid anemone tube

Important Biogenic Agents:

<u>Nereis succinea</u> - ventilates its burrow <u>Pseudeurythoe ambigua</u> - deep mobile burrower <u>Glycera dibranchiata</u> - ventilates its burrow

X-ray Structures:

12 N

Physical - mottling

<u>Biological</u> - many small worm traces (probably juvenile <u>Nereis</u>) 5-30 cm lots of back-filled burrows producing the mottling

<u>Station:</u> 78 9-78

Area: Tangier Sound (78 ft) Depth of penetration: 35 cm

Sediment: mud - first 10 cm, 10-40 cm medium coarse sand

Visual Structures:

Physical - first 10 cm mud than coarse sand

Biological - Nereis & P. pinnata near surface, no back-filled burrow noted, deep down some old amphipod tubes

Important Biogenic Agents:

<u>Macoma balthica</u> - deposit feeding bivalve <u>Ampelisca abdita</u> - its tubes stabilizes surface, increases sedimentation <u>P. pinnata</u> - small burrowing polychaete <u>Nereis succinea</u> - medium burrowing polychaete, ventilates its burrow

X-ray Structures:

Physical: good demarcation between muc and sand at 5-10 cm, shell lag upper 10 cm, wavy sand laminae in upper 5 cm of mud

<u>Biological: Mulinia</u> at surface, <u>Nereis succinea</u> burrows, <u>Pectinaria</u> tubes. few back-filled burrows

Station: 79 9-78

Area: south of Potomac River Mouth (60') Depth of Penetration: 30 cm

Sediment: mud (black, fluid)

Visual Structures:

£

Physical: fluid mud

Biological: few Mulinia on surface

Important Biogenic Agents:

P. pinnata - small burrowing polychaete

X-ray Structures:

!

- <u>Physical</u> density change with higher mud content 0-8 cm than sandier further down - not supported by grain size data maybe just more cohesive
- <u>Biological</u> thin burrows 0-5 cm (probably <u>P. pinnata</u>) larger <u>Nereis succinea</u> branched burrow at 9-14 cm. <u>Mulinia</u> on surface, 3-6 cm lots of capitellid traces

Station: 80 6-79

Area: south Tangier Island (58 ft) Depth of Penetration: 50 cm

Sediment: alternating muddy sand to fine sandy mud

Visual Structures:

Physical - none

<u>Biological</u> - scattered ampeliscid tubes, <u>Loimia</u> tube & <u>Pectinaria</u> tubes

Important Biogenic Structures:

Ampelisca abdita - stabilizes sediment surface Pectinaria gouldii - "conveyor belt" species Heteromastus filiformis - "conveyor belt" species

X-ray Structures:

Physical - laminated mud and sand layers

<u>Biological - Pectinaria</u> tubes, large abandoned <u>Loimia medusa</u> tubes pierce laminae, capitellid traces Station: 81 6-79

Area: Pocomoke Sound (51 ft) Depth of Penetration: 50 cm

Sediment: muddy sand

Visual Structures:

Physical - sand gets coarser with depth

<u>Biological</u> - mucoid tubes of <u>P</u>. pinnata on surface, old <u>Loimia</u> medusae tubes, few back-filled burrows. Some <u>Pectinaria</u> tubes

Important Biogenic Agents:

Pectinaria gouldii - "conveyor belt" species Loimia medusa - large tube dwelling polychaete Pseudoeurythoe ambigua - mobile polychaete

X-ray Structures:

Physical - lots of shell hash, surface muddier with thin sand layering. Few pebbles & wood

<u>Biological</u> - mottled with back-fill turrows below 8 cm. Lots of <u>Pectinaria</u> on surface <u>Asychis elongata</u> tube 4-11 cm. Station: 82 6-79

<u>Area</u>: western shore between the Potomac and Rappahannock Rivers (80 ft)

Depth of Penetration: 30 cm

Sediment: mud (black, fluid)

Visual Structures:

Physical: fluid mud

Biological: none

Important Biogenic Agents:

Pectinaria gouldii - "conveyor belt" species

X-ray Structures:

 $\frac{Physical:}{5-7} \text{ cm, mud layer at 10-11 cm and 15-17 cm}$

<u>Biological</u>: few <u>Mulinia</u> shells, general bioturbate texture at 2-4 cm and 6-12 cm

Station: 83 6-79

north Rappahannock River (40 ft) Depth of Penetration: 50 cm

Sediment: mud

Area:

Visual Structures:

Physical - methane gas holes

<u>Biological</u> - large cerianthid back-filled burrow, lots of <u>P. pinnata, Macoma</u> at 10 cm.

Important Biogenic Agents:

 $\frac{\text{Cerebratulus lacteus - general bioturbator}}{P. \underline{\text{pinnata}} - \underline{\text{cmall burrowing polychaete}} \\ \frac{N. \underline{\text{succinea}} - \underline{\text{medium burrowing polychaete}}, \underline{\text{ventilates its burrow}} \\ \overline{\text{Capitellids}} - \underline{\text{"conveyor belt" species}} \\ \underline{\text{Maccma balthica}} - \underline{\text{deposit feeding bivalve}} \\ \end{bmatrix}$

a series and a series of the s

X-ray Structures:

Physical - nothing

Biological - many long thin burrows of P. pinnata from 0-12 cm, 6-40 cm back-filled burrows, <u>Macoma at 6 cm</u>, 4 mm burrow of <u>Nereis succinea</u> at 3-7 cm. Another at 27-34 cm

Station: 84 6-79

Area: mid Bay, north of the Rappahannock River (42 ft.) Depth of Penetration: 50 cm

Sediment - mud

Visual Structures:

Physical - none

Biological - large cerianthid back-filled burrow, lots of backfilled burrows

والمتع والتعريق والمراجع

Important Biogenic Agents:

<u>Ceriantheopsis americanus</u> - large tube dwelling anemone <u>Asychis elongata</u> - large tube dwelling polychaete <u>Nereis succinea</u> - medium burrowing polychaete, ventilates its burrow

X-ray Structures:

Physical - none

<u>Biological</u> - lots of <u>P</u>. <u>pinnata</u> burrows upper 12 cm, 3.5 cm wide back-filled cerianthid tube, 5 mm <u>Asychis</u> tube 9-15 cm. few <u>Pectinaria</u> on surface, few <u>Mulinia</u> on surface

Station: 85 6-79

Area: mid Bay between the Potomac and Rappahannock River (39 ft.) Depth of Penetration: 50 cm

and the second second

Sediment: mud

Visual Structures:

Physical: none

Biological: few Pectinaria on surface, few back-filled burrows

Important Biogenic Agents:

Pectinaria gouldii - "conveyor belt" species

د مەنبە بېشىمە خەر تارىخە مەن

X-ray Structures:

Physical - Mulinia shell hash layer 0-10 cm

Biological - few Mulinia near surface, few thin burrows 0-2 cm, few juvenile Pectinaria tubes near surface, few vertical burrows 0-8 cm, lots of back-filled burrows 8-37 cm Station: 86 6-79

<u>_</u>____

Area: in the mouth of the Rappahannock River (61 ft) Depth of Penetration: 30 cm

Sediment: mud (black, fluid)

Visual Structures:

Physical - fluid, gas bubbles

Biological - none

Important Biogenic Agents: none

X-ray Structure:

Physical - thin sand laying top 2 cm than gas bubbles. Some sand layering 6-7 cm. lots of shell hash 1-5 cm

Biological - nothing significant

<u>Station:</u> 87 6-79

Area: off Piankatank River (33 ft) Depth of Penetration: 50 cm

Sediment: mud

Visual Structures:

Physical - none

<u>Biological</u> - few maldanid tubes, back-filled burrows, few <u>Pectinaria</u> tubes

and a state of the second s

CHARGE READY

Important Biogenic Agents:

Chaetopterus variopedatus - large tube dwelling polychaete <u>Pectinaria gouldii</u> - "conveyor belt" species Capitellids - "conveyor belt" species <u>Glycera americana</u> - large burrowing polychaete, ventilates its burrow

Loimia medusa - large tube dwelling polychaete

X-ray Structures:

Physical - none

<u>Biological</u> - lots of juvenile <u>Pectinaria</u> on surface, lots of <u>P</u>. <u>pinnata</u> burrows in the 0-7 cm, lots of small scattered capitellid burrows, back-filled burrows 5-40 cm

Station: 88 6-79

gen benefit en al state of the first of the second state of the second state of the second state of the second

Area: mid bay between Rappahannock River and Mobjack Bay (38 ft) Depth of Penetration: 45 cm

Sediment: fine sandy mud

Visual Structures:

Physical - none

<u>Biological</u> - U shaped <u>Loimia medusa</u> tube, <u>Pectinaria</u> on surface, lots of <u>Mulinia</u>, small <u>Busycon</u> on surface

Important Biogenic Agents:

Mulinia lateralis - small burrowing bivalve Clymenella torquata - "conveyor belt species", ventilates P. pinnata - small burrowing polychaete Capitellid - "conveyor belt" species Glycerids - large burrowing polychaete, ventilates Asychis - large tube dwelling polychaete

X-ray Structures

<u>Physical</u> - few pebbles

Biological - Pectinaria & Mulinia on surface. P. pinnata 0-11 cm, capitellid burrows 0-10 cm, few back-filled burrows <u>Station:</u> 89 9-78

Area: Eastern Shore between Rappahannock and York Rivers (40 ft) Depth of Penetration: 30 cm

Sediment: muddy sand

Visual Structures:

Physical: none

<u>Biological</u>: few hydroids on top, lots of maldanid and <u>Pectinaria</u> tubes, <u>Sabellaria</u> reef, <u>Loimia</u> <u>medusa</u> tube, lots of mobile polychaetes, <u>Molgula</u> on top

Important Biogenic Agents:

<u>Clymenella</u> sp. - "conveyor belt" species, ventilates <u>Mobile polychaetes - Glycera, P. ambigua</u>, capitellids - bioturbators <u>Pectinaria gouldii</u> - "conveyor belt" species <u>Molgula manhattensis</u> - prolific biodepositor

X-ray Structure:

Physical: none

<u>Biological</u>: lots of juvenile <u>Clymenella</u> 0-7 cm, lots of <u>P</u>. pinnata burrows, grey bioturbate texture from mobile fauna

÷.

Station: 90 6-79

Area: Wolf Trap (26 ft)

Depth of Penetration: 20 cm

Sediment: fine-medium sand

Visual Structures:

Physical: few mud layers below 10 cm

<u>Biological:</u> lots of maldanid tubes and <u>Spiophanes</u> <u>bombyx</u> tubes, mobile polychaetus

Important Biogenic Agents:

<u>Ensis directus</u> - burrowing bivalve Oligochaete - "conveyor belt" species <u>Spiophanes bombyx</u> - tube dwelling polychaete, stabilizes Mobile polychaetes - <u>Clycera</u>, <u>Pseudeurythoe</u>, <u>Scoloplos</u> bioturbation

X-ray Structures:

Physical - thin mud layers at 12, 16, 20, 21 and 25 cm. few mud layers below 20 cm

<u>Biological</u> - lots of <u>Ensis</u> traces, 0-7 cm. long thin burrows. <u>Mulinia</u> shell hash layers at 12, 16, 20, 21 and 25 cm. (seems to be associated with thin mud layers)

Station: 91 6-79

Area: Eastern Shore between Rappahannock and York Rivers (30 ft) Depth of Penetration: 20 cm

Sediment: medium-fine sand

Visual Structures:

Physical - none

Biological - numerous Mulinia, Ensis and Tellina bivalves, lots of Clymenella tubes, mobile polychaetes and phoronid tubes

Important Biological Agents:

Ensis directus - burrowing bivalve <u>Tellina agilis</u> - burrowing bivalve <u>Callianassa atlantica</u> - large burrowing decapod <u>Clymenella torquata</u> - "conveyor belt" species, ventilates <u>Pectinaria gouldii</u> - "conveyor belt" species <u>Spiophanes bombyx</u> - tube dwelling polychaete, stabilizes <u>Mobile polychaete - Glycera, Pseudoeurythoe, Scoloplos</u> - bioturbators

X-ray Structure: none, dropped

Station: 92 6-79

Area: in Mobjack Bay (20 ft) <u>Depth of Penetration</u>: 50 cm

化建筑建设,并有非产

Sediment: mud (fluid)

Visual Structures:

Physical - fluid mud

Biological - watery tubes, lots of P. pinnata

Important Biogenic Agents: none

X-ray Structure:

Physical: frozen so partially destroyed

Biological: deep worm traces

Station: 93 6-79

Area: off the mouth of Mobjack Bay (43 ft) Depth of Penetration: 50 cm

Sediment: mud to sandy mud

Visual Structures:

Physical: none

<u>Biological</u>: small maldanid and ampeliscid tubes, dead hydroid fragments throughout, large <u>Cerebratulus</u> found just outside the box. lots of <u>P. pinnata</u> AN ADDRESS OF
Important Biogenic Agents:

<u>Cerebratulus lacteus</u> - bioturbator <u>Pectinaria gouldii</u> - "conveyor belt" species <u>P. pinnata</u> - small burrowing polychaete <u>Asychis elongata</u> - tube dwelling polychaete

X-ray Structure: frozen

c

Physical: mud layer at 20 cm

Biological: few back-filled burrows. Grey bioturbate texture

Station: 94 6-79

Area: mid Bay off Mobjack Bay (55 ft) Depth of Penetration: 40 cm

Sediment: sandy mud

Visual Structures:

Physical - none

<u>Biological</u> - large ampeliscid tubes, lots of <u>Asabellides</u> and <u>Pectinaria</u> tubes, old cerianthid tube, glycerid burrow, <u>Thyone</u> briareus Addres of the

Important Biological Agents:

<u>Clycera americana</u> - large burrowing polychaete, ventilates <u>Thyone briareus</u> - large deposit feeding holothurian <u>Ceriantheopsis americanus</u> - large tube dwelling anemone <u>Cerebratulus lacteus</u> - bioturbator <u>Pectinaria gouldii</u> - "conveyor belt" species <u>Clymenella torquata</u> - "conveyor belt" species, ventilates

X-ray Structures:

c.

Physical: Mytilus edulis shells at 30 cm

Biological: lots of juvenile Pectinaria on surface, some <u>Clymenella</u> tubes, large mud traces of back-filled burrows Asychis tube 15-20 cm

5

÷.,

Station: 95 6-79

Area: mouth of the York River (35 ft) Depth of Penetration: 50 cm

Sediment: mud

Visual Structures:

Physical: none

Biological: P. pinnata tubes on surface, few maldanid and Ampeliscid tubes, glycerid traces, old Cerianthid tubes. Many back-filled burrows のはななるので、たけ、なく、うちろ

Important Biogenic Agents:

<u>Glycera</u> sp. - large burrowing polychaete <u>Pectinaria gouldii</u> - "conveyor belt" species <u>P. pinnata</u> - small burrowing polychaete <u>Clymenella torquata</u> - "conveyor belt" species, ventilates Capitellids and oligochaetes - "conveyor belt" species

X-ray Structures:

Physical: s-me sand layering at 15-35 cm

<u>Biological:</u> many <u>Pectinaria</u> juveniles on surface, long <u>P. pinnata</u> burrows 0-10 cm, few small <u>Mediomastus</u> burrows at surface many back-filled burrow 7-35 cm. <u>Macoma</u> shell layer 12-14 cm 7-20 cm many capitellid burrows <u>Station: 96 6-79</u>

<u>Area</u>: mid Bay near York Spit Channel (27') Depth of Penetration: 13 cm

Sediment: all fine sand

Visual Structure:

Physical: none

<u>Biological</u> - large <u>Diopatra</u> tube, few maldanid tubes, lots of <u>Ensis</u>, <u>Busycon</u> on surface

Important Biogenic Agents:

<u>Glycera americana</u> - large burrowing polychaete, ventilates <u>Ensis directus</u> - burrowing bivalve, bioturbator <u>Clymenella torquata</u> - "conveyor belt" species, ventilates <u>Spiophanes bombyx</u> - tube dwelling polychaete, stabilizes <u>Pectinaria gouldii</u> - "conveyor belt" species <u>Capitellids</u> - "conveyor belt" species

X-ray Structures:

Physical: some sand layering top 0-4 cm, shallow cavity on surface

<u>Biological:</u> Ensis tubes, <u>Diopatra</u> tube, <u>Pectinaria</u> on surface, <u>Clymenella</u> tubes, lots of small thin branched burrows 0-1 cm

Station: 97 6-79

Area:

north of Cape Charles (110 ft) Depth of Penetration: 20 cm

Sediment: muddy fine sand

Visual Structures:

Physical:

Biological - lots Pectinaria on surface, some glycerid traces

Important Biogenic Agents:

<u>Tellina agilis</u> - burrowing bivalve, bioturbator <u>Nereis succinea</u> - medium burrow dwelling polychaete, ventilates Oligochaete - "conveyor belt" species <u>Sabellaria vulgaris</u> - builds "reefs" of sand <u>Pectinaria gouldii</u> - "conveyor belt" species <u>Glycera americana</u> - burrowing polychaete

X-ray Structure:

Physical - top 4 cm darker (muddier), lots of shell hash

Biological - lots of Fectinaria, few mud burrows, mostly grey bioturbate texture

Station: 98 6-79

Area: off Newport News (61 ft) Depth of Penetration: 13 cm

Sediment: muddy gravely coarse sand, poorly sorted

Visual Structures:

Physical: very heterogeneous sediment-mud gravel, hydroids, shells, junk and large rock on top

Biological: three large Callianassid burrows, mobile polychaetes

Important Biogenic Agents:

Callianassa atlantica - large burrowing decapod <u>Nereis succinea</u> - medium burrow dwelling polychaete, ventilates Oligochaetes - "conveyor belt" species <u>Pectinaria gouldii</u> - "conveyor belt" species <u>Mobile polychaetes - Glycera</u>, Orbinids, <u>Arabella</u>, <u>Marphysa</u>

X-ray Structures:

<u>Physical</u>: mul clasts, lots of shells hash, gravel and stones <u>Biological</u>: few <u>Nereis</u> burrows

158

6 al

Station: 99 6-79

Hampton Roads (55 ft) Depth of Penetration: 39 cm

Sediment: muddy fine sand

Visual Structures:

Area:

÷.

ŵ

Physical: shell layer at 10 cm

Biological: maldanid tubes, Ensis directus burrows, long Glycerid burrow to 20 cm. Pockets of fluid mud, cerianthid tube

Important Biogenic Agents:

Ensis directus - burrowing bivalve, bioturbator <u>Pectinaria gouldii</u> - "conveyor belt" species <u>Glycera americana</u> - large burrowing polychaete, ventilates

X-ray Structures:

Physical: lot of shell hash 5-15 cm. Darker mud band at 15-20 cm, large rock on surface

Biological: few Pectinaria on surface, three Asychis burrows 14-30 cm, back-filled burrows 15-35 cm

Station: 100 6-79

Area: off Cape Henry (62 ft) Depth of Penetration: 11 cm

Sediment: fine-medium sand

Visual Structures:

Physical: none

Biological: Ensis burrows. Mobile polychaetes

Important Biogenic Agents:

Capitellids - "conveyor belt" species Mobile polychaete: <u>Glycera, Magelona, Drilonereis</u>

X-ray Structures:

. İn

a.

Physical: iron oxide traces, sand layering in cross trough bedding

<u>Biological - large Loimia medusae</u> tube, small worm traces (Capitellids), <u>Ensis directus</u> traces, few thin Y branched burrows (probably juvenile glycerid)

Station: 103 4-79

Area: mouth of the York River (25 ft) Depth of Penetration: 17 cm

Sediment: muddy fine sand, lots of oyster shells

Visual Structures:

Physical - oyster shell layer at 5-12 cm

Biological - lots of Clymenella tubes

Important Biogenic Agents:

<u>Clymenella torquata</u> - "conveyor belt" species, ventilates <u>Paraprionospio pinnata</u> - small burrowing polychaete <u>Glycera sp. - large burrowing polychaete</u>, ventilates 調査国際に

X-ray Structures:

Physical - slight mud layering on top

Biological - oyster shells 5-12 cm, with tubes

Station: 104 4-79

Area: near Wolf Trap Depth of Penetration: 57 cm

Sediment: muddy fine sand

Visual Structures:

Physical: none

<u>Biological</u>: hydroid community on top, lots of back-filled burrows, cerianthid tube, lots of <u>Pectinaria</u> on surface, large <u>Cerebratulus</u> leaving traces

Important Biogenic Agents:

<u>Sertularia</u> - hydroid, changes surface topography <u>Cerebratulus lacteus</u> - bioturbator <u>Molgula manhattensis</u> - biodepositor <u>Paraprionospio pinnata</u> - small burrowing worm <u>Nereis succinea</u> - medium burrowing worm, ventilates <u>Pectinaria gouldii</u> - "conveyor belt" species Mobile polychaetes - Glycera, orbinids, etc.

X-ray Structures:

Physical: large mud patches

<u>Biological</u>: back-filled burrow of <u>Glycera</u> or cerianthids, small worms traces 0-5 cm (probably <u>P. pinnata</u>) few <u>Pectinaria</u> on surface
Station: 105 4-79

Area: Eastern Shore off Cape Charles City Depth of Penetration: 40 cm

Sediment: muddy fine sand

Visual Structures:

Physical: none

Biological: lots of Clymenella tubes, large Cerebratulus burrowing leaving a smooth oval burrow. Glycerid type back-filled burrows and traces. Ophiuroid with commensal polynoid at 7 cm, terebellid tubes, large Yoldia limatula, Asychis tube.

Important Biogenic Agents:

Yoldia limatula - deposit feeding bivalve Cerebratulus lacteus - bioturbator Ceriantheopsis americanus - large tube dwelling anemone Micropholis atra - ventilates Clymenella torquata - "conveyor belt" species Capitellidae - "conveyor belt" species Oligochaetes - "conveyor belt" species Clycera sp. - large burrowing polychaete, ventilator Loimia medusa - large tube dwelling polychaete

X-ray Structures:

Physical: none

Biological: Clymenella tubes, large Pectinaria, small worm traces, general grey bioturbate structure from mobile fauna

Appendix F

Description of the biogenic structures of some of the common and important macrobenthic organisms found in the lower Chesapeake Bay

Hydrozoa

Sertularia argentea - dead forms of this species break off during storms and are transported to certain areas where they are buried. They appear as black streaks and dots in our radiographs (ex. Sta. 76).

Anthozoa

<u>Ceriantheopsis</u> <u>americanus</u> - a large tube dwelling anemone which may be up to 2 cm in diameter and may go beyond 60 cm in depth. The tube is made of tough cnidae and persists long after the animal dies allowing for surface material to fill in (ex. Sta. 84). For more details on this organism and its structure see Frey (1970).

Nemertea

<u>Cerebratulus lacteus</u> - large predator (2 cm in diameter and 120 cm long) randomly burrowing as it searches for food. We have found specimens hanging from the bottom of 55 cm cores. As it burrows it leaves a oval opening matching its body. Howard and Frey (1975) found that its foraging traces do not remain open long and its effect is that of general bioturbation. Like other nemerteans, <u>Cerebratulus</u> produces copious amounts of mucous which may have a binding effect on sediment grains (see Station Drawing 93b).

Phoronida

<u>Phoronis</u> sp. - a tentaculate suspension feeder which builds a long thin straight tube of sand from 0-15 cm in length and <1 mm in diameter. May serve to stabilize the sediments at high densities (Ronan 1978).

Mollusca

Busycon carica - large carnivorous gastropod (up to 20 cm) which plows the top several centimeters of sediment leaving furrows behind it. Results of this action is the destruction of physical layering leaving a more homogeneous bioturbated texture. (See Station Drawing 40a).

164

Mollusca (continued)

Ensis directus - deep infaunal suspension feeding bivalve. It forms a slightly inclined burrow, which we have found as deep as 20 cm, but is known to occur as deep as 50 cm. (Allen 1954). We have found it to have a halo of lighter colored (oxygenated) sediment around the burrow. It is an extremely fast burrower and probably contributes to the highly bioturbated sands that it is commonly found in. (See Station Drawing 100c). <u>Mulinia lateralis</u> - shallow infaunal suspension feeding bivalve. We found size ranges <.5 mm to 20 mm. It can occur in large densities (approximately 30,000 per m^2 at station 87). It is this bivalve which contributes most heavily to the shell hash over most of the bay. Their colonization and die off sequences can be seen as distinct shell layers in several of our cores (see radiograph of Sta. 82).

Polychaeta

- <u>Asabellides oculata</u> a tentaculate deposit feeding ampharetid polychaete which is unusual because it builds a tube horizontally along the sediment surface. Tube has a thin membrane lining with coarse debris. (See Station Drawing 840).
- Asychis elongata a deep deposit feeding maldanid polychaete which produces a mud reinforced tube. Unlike other members of the maldanid family, <u>Asychis</u> feeds on the surface. Its tube is usually 4-6 mm wide and up to 50 cm long. It often becomes back-filled when abandoned. (See Station Drawing 88v).
- <u>Clymenella torquata</u> a deep deposit feeding maldanid polychaete which builds a thin (2-3 mm) sand tube to depths of 15-20 cm. Because of its foraging habit of feeding at the bottom of its tube (20 cm) and defecating on the surface, Rhoads (1974) called it a "conveyor belt" species. This species is very common in muddy sands and sand of the bay and is responsible for recycling old buried materials. It also irrigates its tube often causing metals to form insoluble oxides around it. In some of our radiographs faint white lines can be seen around its burrows due to these metal oxides. In our visual observation the loadings appear as an orange rust appearance. (See Radiographs 89 and 103).

165

Polychaeta (continued)

Ð

- Diopatra cuprea tubiculous carrivore which decorates the top third of its tube with bits of shell, hydroids, pebbles and other coarse material. Not significant in our study but may be locally abundant (Wass 1972). (See Sta. drawing 96 and radiograph 55).
- <u>Glycera dibranchiata and G. americana</u> infauna omnivores which produce inclining vertical terrows of 4-6 mm and up to 50 cm in depth. These commonly become backfilled. A halo of oxidized sediment surrounds these burrow. See Howard and Frey 1975 for more details an burrow morphology. (See Sta. drawing 85g).
- Heteromastus filiformis sma'l infaunal subsurface deposit feeding capitellid polychaete. It builds small (<.5 mm diameter 30 cm deep) multibranched feeding burrows with a vertical defecation tube so it is another "conveyor belt" species. A more complete description of its sediment reworking can be found in Cadee (1979). (See Station Drawing 80i).
- Loimia medusa tentaculate deposit feeding terebellid polychaete. It builds a mud reinforced I shaped tube. They are often back-filled. It produce feral mounds producing a microtopography. (See Sta. drawing 87p).
- Mediomastus ambiseta small infamal subsurface deposit feeding capitellid polychaete. Like Heteromastus it is a "conveyor belt" species but is confined to the top 5 cm. (See Sta. drawing 950).
- Nereis succinea infaunal omnivere. It builds a complex burrow (up to 6 mm in diameter) with several openings to the surface as well as blind facting branches. Fairly common to 15 cm in depth occasionally large adults to 50 cm. By ventilating its burrow it produces a halo of oxidized sediment in the anaerobic zone. This organism was designated to the most important species in the bioturbation of a New Hamanire estuary (Winston and Anderson 1971).
- Paraprionospio pinnata infaunal surface deposit feeding spionid polychaete. It forms a temperary burrow of .5 mm in diameter and down to 15 cm in depth although usually does not exceed 7 cm in depth. The burrow is very meandering with a mostly vertical component. This is our most common small burrow. (See Radiograph 84).

Polychaeta (continued)

- Pectinaria gouldii shallow infaunal deposit feeding polychaete (size range 2-68 mm). It produces a well constructed tube of sand grains, resembling an ice cream cone. It buries until the tip of its tube is at the sediment-water interface, feeding at the bottom and defecating on the surface ("conveyor belt" species). A lot of work on the biology and sediment reworking by this animal has been done (Gordon 1966, Rhoads 1967, Whitlatch 1974). Juveniles were extremely abundant in almost all of our cores in the spring of 1979. (See Sta. drawing 810).
- Polydora ligni a small suspension feeding spionid polychaete which builds silty U-shaped tubes. Galstoff (1964) reports its presence in Delaware Bay was responsible for the burial of oyster beds due to increase sedimentation rate caused by the suspension feeding biodeposition activities of this spionid polychaete.
- <u>Pseudoeurythoe ambigua</u> deep infaunal sub-surface deposit feeding polychaete. No burrow associated with this organism, a random burrower. It is one of the few organisms which occurs below 10 cm in muddy sediments without a direct connection to the surface. Its' respiratory physiology would be an interesting study.
- <u>Sabellaria vulgaris</u> suspension feeding polychaete which build; a very hard sand tube often interwining with other <u>Sabellaria</u> <u>vulgaris</u> tubes to form "mini reefs". Assorted epifauna which could not survive the soft bottom are associated with the <u>Sabellaria</u> structures (hydroids, <u>Anadara</u>, <u>Molgula</u> caprellids, etc.).
- <u>Scoloplos</u> sp. a sub-surface deposit feeding orbinid which has no permanent structures associated to it. Its' random burrowing in search for food produces the homogeneous bioturbate texture seen in many of our muddy sand and sand cores.
- <u>Spiochaetopterus occulatus</u> a suspension feeding polychaete which builds long, thin, straight tubes of clear chitin. Only abandoned tubes transported from other areas (<u>Zostera</u> beds) were found.
- <u>Spiophanes bombyx</u> tentaculate surface deposit feeding polychaete which builds a loosely constructed sand tube approximately 4 cm long and 2-3 mm wide. (See Sta. Drawing 90aa)

Polychaeta (continued)

<u>Streblospio benedicti</u> - small surface deposit feeding spionid which produces flimsy mucous tubes which project a few mm. from the surface. Frey (1970) tells how these organisms may be used as current vanes. (See Sta. drawing 86e).

Oligochaeta

Oligochaete sp. - small subsurface deposit feeding annelid. Another "conveyor belt" species.

Amphipoda

<u>Ampelisca abdita</u> - tube dwelling surface deposit feeder. It has been found to form tense tube mats (~ 68,000/m²) which stabilizes surface and may increase the sedimentation of fine material (Harrison and Lynch 1970). (See radiograph of Sta. 78 and station drawings of 30, 76 and 78).

Decapoda

Callianassa atlantica - a deposit feeding shrimp. It builds large (2 cm diameter) burrows with complex brancing and several openings to the surface. Both Shinn (1968) and Howard & Frey (1975) describe the burrows in greater detail. (See Sta. drawing 98).

Echinodermata

Micropholis atra - a deposit feeding ophiuroid found 5-12 cm deep. Usually 2 to 3 arms extend down anchoring the animal while the remaining arms reach the surface for feeding. A cavity surrounds the animal which it ventilates causing a halo of oxygenated sediments around it. (See Sta. drawing 105).

Thyone briareus - large deposit feeding holothurians. Moyers (1977) discusses the effect on sediment properties produced by the bioturbation of a deposit feeding set cucumber. (See Sta. drawing 94).