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Abstract. In this paper we propose a finite element discretization of the Maxwell-Landau-Lifchitz-Gilbert equations
governing the electromagnetic field in a ferromagnetic material. Our point of view is that it is desirable for the discrete problem
to possess conservation properties similar to the continuous system. We first prove the existence of a new class of Liapunov
functions for the continuous problem, and then for a variational formulation of the continuous problem. We also show a
special continuous dependence result. Then we propose a family of mass-lumped finite element schemes for the problem. For
the resulting semi-discrete problem we show that magnetization is conserved and that semi-discrete Liapunov functions exist.
Finally we show the results of some computations that show the behavior of the fully discrete Liapunov functions.

1. Introduction. In this paper we propose a finite element discretization of the Maxwell-Landau-
Lifchitz-Gilbert equations governing the electromagnetic field in a ferromagnetic material. Our point of view
is that it is desirable for the discrete problem to possess conservation properties similar to the continuous
system (see for example [17]). The first part of our paper recalls the standard conservation and energy decay
properties of the Maxwell-Landau-Lifchitz-Gilbert equations, and in addition we prove the existence of a new
class of Liapunov functions which can be viewed as another set of conserved quantities for these equations.
We also prove a special continuous dependence result. The remainder of the paper is devoted to outlining
a finite element method that possesses the conservation, energy decay and Liapunov function properties of
the continuous system.

To obtain a simple model problem for ferromagnetic calculations, we suppose that there is a bounded
cavity Ω ⊂ R3 with a perfectly conducting outer surface Γ. We assume that both Ω and Γ are simply
connected. Within the cavity is a ferromagnetic material occupying a bounded sub-domain ΩM ⊂ Ω. For
simplicity we assume that outside the ferromagnet (i.e. in Ω \ ΩM ) is vacuum.

In order to model the electromagnetic behavior of the ferromagnetic material, the basic Maxwell system
must be augmented by an equation describing the influence of the ferromagnet. We outline the equations
next (see for example [12, 5, 18]). The electromagnetic field in Ω is described by four vector functions
of position and time: E, the electric field, H the magnetic field, B the magnetic induction and M the
magnetization. The magnetic variables are related as follows:

B = µ0 (H +M) in Ω,(1.1)

where µ0 is the magnetic permeability of free space.
The standard Maxwell equations are satisfied throughout Ω so that

ε0
∂E

∂t
−∇×H + σE = −J ,(1.2)

∂B

∂t
+∇×E = 0.(1.3)

Here ε0 is the permeability of free space, σ the conductivity and J is the applied current density. The
conductivity σ vanishes in free space but may be non-zero in the ferromagnet. A spatially dependent
permittivity ε would also be simple to implement using the method presented in this paper.

To complete the system of equations, we need an equation for the magnetization M . This is provided
by the Landau-Lifchitz-Gilbert equation (denoted LLG in this paper). This states that

∂M

∂t
= |γ|G(H,M)×M + α

M

|M |
× ∂M

∂t
,(1.4)

or equivalently (see for example [10])

∂M

∂t
=

|γ|
1 + α2

(
G(H,M)×M + α

M

|M |
× (G(H,M)×M)

)
,(1.5)

∗Department of Mathematical Sciences, University of Delaware, Newark DE 19716, USA
†DASSAULT AVIATION, 78 quai Marcel Dassault, 92 214 Saint-Cloud Cedex, FRANCE

1



where γ is the gyro-magnetic factor, α is the damping constant, and G(H,M) is the total magnetic field in
the ferromagnet.

This field arises from a number of contributions because the magnetic field H can be augmented by an
effective field H l(M) deriving from a local magnetic energy E(M):

G(H,M) = H +H l(M) and
1
2
µ0

∫
ΩM

M ·H l(M)dx = −E(M) .(1.6)

Here E(M) denotes a suitable positive definite quadratic form so thatH l is linear with respect toM . In this
paper, in particular for numerics, we will deal with the two most frequently retained terms in the literature
(see for instance [18],[3],[10]), namely:
Energy of anisotropy: The crystal structure of the ferromagnet introduces preferred directions for the

magnetization. Here we consider the simplest case of a uniaxial crystal. In this case there is a
preferred direction, called the easy axis, in the direction of a unit vector p. Let P (M) denote the
projection of M on the plane perpendicular to p so that

P (M) = M − (p ·M)p.

then the energy of anisotropy is

Ean(M , t) =
∫

ΩM

K|P (M(x, t))|2 dx.

Exchange energy: This energy gives cohesion to the magnetization or, from a mathematical point of view,
it ensures that M ∈ H1(ΩM ). We take the simple form

Eex(M , t) =
∫

ΩM

A

(∑
i

∣∣∣∣∂M(x, t)
∂xi

∣∣∣∣2
)

dx.

On ΓM = ∂ΩM , the boundary of the ferromagnet, it is necessary to assume a boundary condition.
Following [13], we use

∂M

∂n
= 0 on ∂ΩM ,(1.7)

where n is the unit outward normal to ΩM .
Hence, in this paper, we use

E(M , t) =
∫

ΩM

K|P (M(x, t))|2 dx+
∫

ΩM

A

(∑
i

∣∣∣∣∂M(x, t)
∂xi

∣∣∣∣2
)

dx(1.8)

where A and K are constants characterizing the material.
Thus, at least formally, the effective field is given by

H l(M) = −2K

µ0
P (M) +

2A

µ0
∆M .

and

G(H,M) = H − 2K

µ0
P (M) +

2A

µ0
∆M .

Remark 1.1. The coefficients A, K and α and the unit vector p, are all constants in time but may
depend on space (the only assumption is then that α, A and K are non negative and uniformly bounded).
For the sake of simplicity of the presentation they are assumed, in this paper, to be true constants in time
and space.

Remark 1.2. We have not included a static magnetic field in the expression for G since such a field
can be included in the magnetic field H. Thus the magnetic field H includes both the demagnetizing field
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and the static field. In this model, the ferromagnet occupies exactly the region of space where M 6= 0 so
that

ΩM = {x ∈ Ω | M(x, t) 6= 0 for all t} .

This makes sense since a first consequence of the LLG equation is that the norm of M is independent of
time. To see this, at least formally, we take the dot product of the LLG equation (1.4) with M and conclude
that

1
2

∂

∂t
|M(x, t)|2 =

∂M

∂t
(x, t) ·M(x, t) = 0.

Thus, for almost every x ∈ Ω, we have the following conservation of the norm of M :

|M(x, t)| = |M(x, 0)|.(1.9)

Because of this pointwise conservation of the norm of M , the extent of the ferromagnet is determined by
the initial distribution of magnetization.

Remark 1.3. In most works (see for example [18] or [3]) the norm of M is also assumed to be constant
in space. Throughout this paper, we shall assume that |M | ∈ L∞(ΩM ).

Using the equations (1.1), (1.2), (1.3) and (1.4) and eliminating B gives us the following system which
we call the Maxwell-LLG system. The electromagnetic field (E,H,M) satisfies

ε0
∂E

∂t
−∇×H + σE = −J(1.10)

µ0
∂H

∂t
+∇×E = −µ0

∂M

∂t
(1.11)

∂M

∂t
= |γ|G(H,M)×M +

α

|M |
M × ∂M

∂t
(1.12)

in Ω where

G(H,M) = H +H l(M).

For simplicity, we have assumed that the boundary of the overall domain Ω is perfectly conducting. Thus

ν ×E = 0 on Γ = ∂Ω(1.13)

where ν is the unit outward normal to Ω.
Finally, we assume that E, H and M are specified at time t = 0. Thus

E(t = 0) = E0, H(t = 0) = H0, and M(t = 0) = M0(1.14)

where E0, H0 and M0 are given functions. For physical reasons, these initial fields must satisfy the
constraint that

∇ · (H0 +M0) = 0 in Ω and ν · (H0 +M0) = 0 on Γ.

This ensures that B is divergence free.
Remark 1.4. Adding a magnetostatic contribution to the LLG equation (like the demagnetising field,

see [3]) is redundant here because of the coupling with Maxwell’s equations. Moreover it must be pointed out
that this coupling allows us to model a conducting ferromagnet via σ 6= 0. It is not clear that this would be
possible by working with a demagnetising field.

The Maxwell-LLG system (1.10)–(1.14) has been studied first by Visintin [18], who established existence
of weak solutions in the three dimensional case, and more recently by Carbou and Fabrie who consider regular
solutions local in time [7]. Concerning the numerical analysis of this system, closely related works include
[10] and [14] where the exchange contribution is neglected, and [11] and [19] where Maxwell’s equations are
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taken under the magnetostatic limit. In these works energy decay is always ensured but in the first two only
the conservation of the norm of M is inherited by the numerical method.

The outline of this paper is as follows. In section 2, we give the main properties of the continuous
problem, namely the conservation of the norm of M and the decay of the electromagnetic energy, but
also, in addition to these known results, we define new Liapunov functions associated with the nonlinear
problem. In section 3, we introduce a weak formulation adapted to the continuous problem in the sense that
a variational version of each previous result is given. Moreover we show for this formulation a continuous
dependence result. In section 4, we explain how a certain class of finite element methods can be used to
approximate the Maxwell-LLG equations while preserving energy decay, the norm of M and the Liapunov
functions as shown in section 5. Finally a fully discrete scheme is described and we provide some numerical
results to illustrate the method in section 6.

2. Mathematical properties of the continuous problem. Here we shall present some derivations
which lead to certain a priori estimates and suitable Liapunov functions associated to the nonlinear Cauchy
problem (1.10)– (1.12).

We define the space of vector functions W 1,∞(ΩM ) by

W 1,∞(ΩM ) =
{
u ∈ (L∞(ΩM ))3 | ∀i, ∂u

∂xi
∈ (L∞(ΩM ))3

}
.

For ease of notation we shall write V = W 1,∞(ΩM ) equipped with the norm

‖u‖V = ‖u‖∞ +
3∑

i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
∞

.

It is clear that this space is an algebra. Indeed it is known (see [4] p.155) that H1(Ω)∩L∞(Ω) is an algebra
such that

u, v ∈ H1(Ω) ∩ L∞(Ω) ,
∂

∂xi
(uv) =

∂u

∂xi
v + u

∂v

∂xi
.

It is straightforward to see that for any u,v ∈ V ,

‖uv‖V ≤ 2‖u‖V ‖v‖V .

We also recall that

H(curl; Ω) = {u ∈ (L2(Ω))3 | ∇ × u ∈ (L2(Ω))3},
H0(curl; Ω) = {u ∈ H(curl; Ω) | ν × u = 0 on ∂Ω}.

In this section we shall assume that there exists regular enough solutions to the Maxwell-LLG problem,
namely

E ∈ C1
(
R+, (L2(Ω))3

)
∩ L∞ (R+,H0(curl; Ω)) ,

H ∈ C1
(
R+, (L2(Ω))3

)
∩ L∞ (R+,H(curl; Ω)) ,

M ∈ C1
(
R+, (L∞(Ω))3

)
∩ L∞ (R+, V ) .

We have already seen one classical conservation result (see [10] or [18] for complete proofs):

|M(x, t)| = |M(x, 0)| , a.e. x ∈ ΩM .

Another classical result is the decay of the total electromagnetic energy (when J = 0). This can easily be
derived from the Maxwell-LLG system, but we shall derive it from a new and more general result concerning
Liapunov functions for the Maxwell-LLG system.
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2.1. Stationary states and associated Liapunov functions. Despite energy decay, the long time
convergence of solutions to the Maxwell-LLG equations is still an open question. The only known result
has been obtained by Joly, Komech, Vacus (see [9]) under restrictive assumptions (see also [6], [2] for weak
convergence results). For this reason it seems to be interesting to get as much information as possible about
the behavior of solutions for long time. The goal of this section is to introduce new Liapunov functions for
the Maxwell-LLG system.

We suppose that the triplet (Ẽ, H̃,M̃) ∈ H0(curl; Ω) × H(curl; Ω) × V is a stationary state of the
Maxwell-LLG equations (i.e. the functions satisfy the Maxwell-LLG system with zero time derivative). Note
that if J = 0 this implies that

σẼ −∇× H̃ = 0 in Ω.(2.1)

Another important property of the steady state that we shall use is that M̃ and H̃ must satisfy∣∣∣G(H̃,M̃)× M̃
∣∣∣ = 0, a.e. x ∈ ΩM .

To establish this property it suffices to note that from the LLG equation, via Pythagorus’s theorem,∣∣∣∣∂M∂t

∣∣∣∣2 +
∣∣∣∣ α

|M |
M × ∂M

∂t

∣∣∣∣2 = γ2 |G(H,M)×M |2 .

With this observation we make the following definition:
Definition 2.1. Let (Ẽ, H̃,M̃) be a stationary state. We denote by λ the “indicator” defined by

λ =
G(H̃,M̃) · M̃

|M̃ |2
in ΩM .

The main properties of the indicator λ are:
1. The indicator λ is well defined if |M̃ | is bounded below. Suppose there is a constant M− such that

|M(x, 0)| ≥ M− > 0 for a.e. x ∈ ΩM then the indicator λ is in L1(ΩM ):

M2
−

∫
ΩM

|λ|dx ≤
∫

ΩM

|λ| |M̃ |2dx =
∫

ΩM

|G(H̃,M̃) · M̃ | dA

≤ ‖G‖H−1(ΩM )‖M̃‖H1(ΩM ) < ∞.

2. Almost everywhere

G(H̃,M̃) = λM̃ ,

since almost everywhere

G(H̃,M̃)× M̃ = 0 , G(H̃,M̃) · M̃ = λ|M̃ |2 .(2.2)

Now we can prove the following theorem:
Theorem 2.1. Suppose J = 0. Given (Ẽ, H̃,M̃) a stationary state and λ the associated indicator,

then the time dependent function

Vλ(E,H,M) =
1
2

∫
Ω

(
ε0

∣∣∣E − Ẽ
∣∣∣2 + µ0

∣∣∣H − H̃
∣∣∣2) dx+

1
2

∫
ΩM

µ0λ
∣∣∣M − M̃

∣∣∣2 dx

+E(M − M̃)

is a strict Liapunov function. More precisely,

d

dt
Vλ(E,H,M) = − µ0

|γ|

∫
Ω

α

|M |

∣∣∣∣∂M∂t

∣∣∣∣2 dx−
∫

Ω

σ|E|2 dx .(2.3)

This result is interesting for several reasons:
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1. If we consider the special case of J = 0 and Ẽ = H̃ = M̃ = 0 in Ω, then we have a solution of the
static equations Maxwell-LLG equations. Taking the indicator λ = 0 we see that

V0(E,H,M) =
1
2

∫
Ω

(
ε0 |E|2 + µ0 |H|2

)
dx+ E(M).

This is the electromagnetic energy of the field. Thus if we define

W (E,H,M) = V0(E,H,M)

we obtain the classical dissipation of energy

d

dt
W (E,H,M) ≤ 0.

Note that any other choice of a constant value for λ would give an equivalent energy differing from
our choice by a constant.

2. The decay of Vλ is at the same rate as the energy decay:

d

dt
Vλ(E,H,M) =

d

dt
W (E,H,M) .(2.4)

This follows because the right hand side of (2.3) is independent of λ.
3. If (E,H,M) converges to (Ẽ, H̃,M̃) as t →∞, then, for the associated indicator λ,

Vλ(E,H,M) → 0 .

The identity (2.4) can be integrated over the time to give a necessary condition for convergence:
Corollary 2.2. Let (E,H,M) be a solution of (1.10)-(1.12) with initial data (E0,H0,M0) and

suppose that J = 0. If (E,H,M) converges to (Ẽ, H̃,M̃), then necessarily

W (E0,H0,M0)−W (Ẽ, H̃,M̃) = Vλ(E0,H0,M0) .

A paper is in preparation where these ideas are used to study the asymptotic behavior of solutions to
(1.10) – (1.12). The discretization that we shall describe also guarantees the decay of discrete Liapunov
functions, and is part of the reason why we can call the method an accurate discretization.

Proof. (of Theorem 2.1.) Let (E,H,M) be a solution to Maxwell-LLG equations associated to initial
data (E0,H0,M0) and (Ẽ, H̃,M̃) be some stationary state. Let us now consider the difference between
them and denote

NE = E − Ẽ , NH = H − H̃ , and NM = M − M̃ .(2.5)

It is convenient to define NM in all of Ω by extending NM on ΩM by zero. We also define α′ = α/|M |.
Since Maxwell’s equations are linear and ∂M̃/∂t = 0, it is straightforward to check (using (2.1) that the
triplet (NE ,NH ,NM ) is a solution to the following problem:

ε0
∂NE

∂t
+ σNE −∇×NH = 0,(2.6)

µ0
∂NH

∂t
+∇×NE = −µ0

∂NM

∂t
,(2.7)

∂NM

∂t
= |γ|G(H,M)×M + α′M × ∂NM

∂t
.(2.8)

We now rewrite the right hand side of the last equation as a function of NH , NM and M̃ only. First we
have

G(H,M) = H +H l(M)

=
[
H − H̃

]
+H l

(
M − M̃

)
+
[
H̃ +H l

(
M̃
)]

= NH +H l (NM ) +G(H̃,M̃)

= NH +H l (NM ) + λM̃ .(2.9)
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Besides,

M × ∂NM

∂t
= NM × ∂NM

∂t
+ M̃ × ∂NM

∂t
.

Thus
∂NM

∂t
= |γ|

[
(NH +H l(NM ))×M + λM̃ ×M

]
+ α′

[
NM × ∂NM

∂t
+ M̃ × ∂NM

∂t

]
,

and finally we obtain

∂NM

∂t
= |γ|

[
(NH +H l(NM ))×NM + (NH +H l(NM ))× M̃

+ λM̃ ×NM

]
+ α′

[
NM × ∂NM

∂t
+ M̃ × ∂NM

∂t

]
.(2.10)

Now on the one hand we take the dot product of (2.6) (resp. (2.7)) by NE (resp.NH) to get, by adding and
integrating,

1
2

d

dt

[∫
Ω

ε0 |NE |2 + µ0 |NH |2
]

dx+
∫

Ω

σ|NE |2 dx = −µ0

∫
Ω

NH · ∂NM

∂t
dx ,(2.11)

while on the other hand a simple expansion (using (1.8) and (2.9)) leads to

d

dt

[
E(NM ) +

∫
Ω

µ0

2
λ|NM |2dx

]
+
∫

Ω

µ0
α′

|γ|

∣∣∣∣∂NM

∂t

∣∣∣∣2 dx

= µ0

∫
Ω

(
λNM −H l(NM ) +

α′

|γ|
∂NM

∂t

)
· ∂NM

∂t
dx .(2.12)

By adding (2.11) and (2.12), we obtain that

d

dt

[
1
2

∫
Ω

(
ε0 |NE |2 + µ0 |NH |2 + µ0λ|NM |2

)
dx+ E(NM )

]
+
∫

Ω

µ0
α′

|γ|

∣∣∣∣∂NM

∂t

∣∣∣∣2 dx

+
∫

Ω

σ|NE |2 dx = µ0

∫
Ω

(
λNM − (NH +H l(NM )) +

α′

|γ|
∂NM

∂t

)
· ∂NM

∂t
dx .

(2.13)

It now remains to show that the right hand side vanishes. We take the dot product of equation (2.10)
successively by

λNM , −(NH +H l(NM )) and
α′

|γ|
∂NM

∂t
.

Using the triple product notation that

(u,v,w) = u · (v ×w)

we get

λNM · ∂NM

∂t
= λ|γ|

(
NM ,NH +H l(NM ),M̃

)
+ α′λ

(
NM ,M̃ ,

∂NM

∂t

)
,(2.14)

−(NH +H l(NM )) · ∂NM

∂t
= −α′

(
NH +H l(NM ),NM ,

∂NM

∂t

)
−λ|γ|

(
NH +H l(NM ),M̃ ,NM

)
− α′

(
NH +H l(NM ),M̃ ,

∂NM

∂t

)
,

(2.15)

α′

|γ|
∂NM

∂t
· ∂NM

∂t
= α′

(
∂NM

∂t
,NH +H l(NM ),NM

)
+ α′λ

(
∂NM

∂t
,M̃ ,NM

)
+α′

(
∂NM

∂t
,NH +H l(NM ),M̃

)
.

(2.16)

It then suffices to add and integrate the three identities to get the result.
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3. A weak formulation. Our goal here is to write a weak formulation suitable for finite element
discretization. The weak formulation explicitly includes the total magnetic field G as an unknown and so
differs from the weak formulation used by Visintin in [18] or Yang and Fredkin in [19]. In trying to use
Visintin’s formulation we were unable to verify energy decay for the corresponding discrete system. Having
G available as a variable makes the proof of energy decay possible. However our formulation does not seem
well suited to proving existence which was the aim of Visintin’s formulation.

In order to write a variational problem suitable for finite element discretization we need some notation.
Let

(u,v) =
∫

Ω

u · v dV

and ‖u‖ =
√

(u,u). We use the usual notation for Sobolev spaces of scalar function so that Hs(Ω) denotes
the space of functions with s square integrable derivatives on Ω equipped with the norm ‖.‖s (so ‖.‖0 = ‖.‖).

The weak formulation is obtained by multiplying each equation by a smooth test function and integrating
by parts. If we seek a solution on the time interval [0, T ], we are lead to the variational problem of finding

E ∈ C1([0, T ]; (L2(Ω))3) ∩ C([0, T ];H0(curl; ΩM )),
H ∈ C1([0, T ]; (L2(Ω))3),
M ∈ C1([0, T ]; (L2(Ω))3) ∩ C([0, T ]; (H1(ΩM ))3),

and G ∈ C1([0, T ]; (L2(ΩM ))3) ∩ C([0, T ]; (H1(ΩM ))3),

such that (
ε0

∂E

∂t
,ψ

)
− (H,∇×ψ) + (σE,ψ) = − (J ,ψ),∀ψ ∈ H0(curl; Ω) ,(3.1) (

µ0
∂H

∂t
,ϕ

)
+ (∇×E,ϕ) = −

(
µ0

∂M

∂t
,ϕ

)
,∀ϕ ∈ (L2(Ω))3 ,(3.2) (

∂M

∂t
, ξ

)
= |γ| (G×M , ξ) + α

(
M

|M |
× ∂M

∂t
, ξ

)
,∀ξ ∈ (H1(ΩM ))3 ,(3.3)

(G,φ) = (H,φ)− 2
µ0

(KP (M) ,φ)

− 2
µ0

3∑
i=1

(
A

∂M

∂xi
,
∂φ

∂xi

)
,∀φ ∈ (H1(ΩM ))3 .(3.4)

We also need suitable initial data for each variable that guarantees ∇·(H+M) = 0 in Ω and (H+M)·ν = 0
on ∂Ω. In particular we assume that at the initial time M(·, 0) ∈ V . In this paper shall simply assume the
existence of a unique solution to the above variational problem in the indicated spaces.

The variational formulation conserves the pointwise norm of M as stated in the following lemma:
Lemma 3.1. For almost every x ∈ Ω,

|M(x, t)| = |M0(x, t)|.

Remark 3.1. In view of our assumption that M(·, 0) ∈ V , this lemma and our previous assumptions
on M imply that

M ∈ C1([0, T ]; (L2(Ω))3) ∩ C([0, T ]; (H1(ΩM ))3 ∩ (L∞(ΩM ))3).

Proof. Let φ ∈ C∞
0 (ΩM ). By taking ξ = φM in (3.3), we obtain(
∂M

∂t
, φM

)
= |γ| (G×M , φM) + α

(
1

|M |
M × ∂

∂t
M , φM

)
= 0.(3.5)
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This implies ∫
Ω

φ|M |2dx =
∫

Ω

φ|M0|2dx , ∀φ ∈ C∞
0 (ΩM ).(3.6)

This shows that |M(x)| = |M0(x)|, a.e. x ∈ ΩM .

3.1. Liapunov functions and energy decay. Our goal here is to prove Theorem 2.1 for the weak
formulation. Essentially this is just a matter of checking that the steps in the proof for strong solutions of
the Maxwell-LLG system also have a weak analogue.

Theorem 3.2. Under the assumptions of Theorem 2.1, the results of Theorem 2.1 holds for the weak
Maxwell-LLG system (3.1)-(3.4).

Remark 3.2. As in the continuous case, choosing Ẽ = H̃ = M̃ = 0 and λ = 0 implies energy decay.
Proof. Using the definition of NE , NH and NM from (2.5) and defining

NG = G−G(H̃,M̃),

we obtain the following weak analogue of (2.6)-(2.8) using exactly the same argument as at the beginning of
the proof of Theorem 2.1:(

ε0
∂NE

∂t
,ψ

)
− (NH ,∇×ψ) + (σNE ,ψ) = 0,∀ψ ∈ H0(curl; Ω) ,(3.7) (

µ0
∂NH

∂t
,ϕ

)
+ (∇×NE ,ϕ) = −

(
µ0

∂NM

∂t
,ϕ

)
,∀ϕ ∈ (L2(Ω))3 ,(3.8) (

∂NM

∂t
, ξ

)
= |γ| (G×M , ξ) + α

(
M

|M |
× ∂NM

∂t
, ξ

)
,∀ξ ∈ (H1(ΩM ))3 ,(3.9)

(NG,φ) = (NH ,φ)− 2
µ0

(KP (NM ) ,φ)

− 2
µ0

3∑
i=1

(
A

∂NM

∂xi
,
∂φ

∂xi

)
,∀φ ∈ (H1(ΩM ))3 .(3.10)

First we compute the right hand side of (3.9). Since M ,M̃ ∈ (L∞(Ω))3, we can establish that(
α′M × ∂NM

∂t
, ξ

)
=
(

α′NM × ∂NM

∂t
, ξ

)
+
(

α′M̃ × ∂NM

∂t
, ξ

)
for all ξ ∈ (L2(Ω))3. Similarly, using (2.2),

|γ|(G×M , ξ) = |γ|(NG ×M , ξ) + |γ|(G(H̃,M̃)×M , ξ)

= |γ|(NG ×M , ξ) + |γ|(λM̃ ×M , ξ)

for all ξ ∈ (L2(Ω))3. Using these equalities we obtain the weak analogue of (2.6), (2.7) and (2.10) consisting
of (3.7) and (3.8) together with(

∂NM

∂t
, ξ

)
= |γ|

(
NG ×NM +NG × M̃ , ξ

)
+|γ|

(
λM̃ ×NM , ξ

)
+
(

α′NM × ∂NM

∂t
+ α′M̃ × ∂NM

∂t
, ξ

)
,(3.11)

for all ξ ∈ (H1(ΩM ))3. Note that this equation actually holds for all ξ ∈ (L2(ΩM ))3 by a density argument.
Now selecting ψ = NE and ϕ = NH in (3.7) and (3.8) respectively, and adding the result gives us

precisely (2.11) and (2.12) is obtained exactly as in the proof of Theorem 2.1.
It remains to prove the weak analogue of (2.14)-(2.16). First we choose ξ = λNM in (3.11). This gives

us the integral of (2.14). Next we choose ξ = NG to get the integral of (2.15). Finally if we choose

ξ =
α

|γ||M |
∂NM

∂t

which is possible because |M | ∈ L∞(Ω), we obtain (2.16).
9



3.2. Continuous dependence result. As discussed in the introduction, Visintin [18] has proved the
existence of a weak solution to the Maxwell-LLG equations globally in time. However, for a restricted special
case of the system, Alouges and Soyeur [1] have shown non-uniqueness of solutions for certain initial data.
It is not known if this troubling problem also occurs for the full Maxwell-LLG equations.

Here we shall show that smooth solutions are locally unique by proving a continuous dependence result.
This also suggests that a numerical method can be safely used to compute an approximation to smooth
solutions of the problem, if they exist.

Suppose that (E1,H1,M1,G1) and (E2,H2,M2,G2) are two solutions of the Maxwell-LLG equations
such that, at time t = 0,

|M1(x, 0)| = |M2(x, 0)| = |M(x)|, a.e. x ∈ ΩM .

Let

e = E1 −E2, h = H1 −H2,

m = M1 −M2, g = G1 −G2.

Then we define

E(t) =
1
2
(
ε0‖e‖2 + µ0‖h‖2 + µ0‖m‖2

)
+ E(m) .

We prove the following result:
Theorem 3.3. Suppose that M2/|M |(., t) ∈ V and G2(., t) ∈ V for each t ≥ 0. Suppose moreover that

there exist constants M− and M+ such that

0 < M− ≤ |M(x, 0)| ≤ M+ , a.e. x ∈ ΩM .

Then, for 0 ≤ t ≤ T ,

E(t) ≤ E(0) exp(Ct)

where C depends only on ‖M2/|M |‖V , ‖G2‖V and the coefficients of the problem. In addition C is propor-
tional to A.

Remark 3.3. Note that we have used a constant C that does not depend symmetrically on M i and Gi,
i = 1, 2. The norm of g does not appear in these estimates. This is not a problem since it can be estimated
in terms of norms appearing in our estimate.

We now introduce two technical results that we shall use in the proof of Theorem 3.3. First we show
that the weak version of the LLG equation used in this paper is equivalent to another weak version.

Lemma 3.4. If M2/|M | ∈ V , then, ∀ξ ∈ (L2(ΩM ))3,(
∂M2

∂t
, ξ

)
=

|γ|
1 + α2

[
(G2 ×M2, ξ) + α

(
M2

|M |
× (G2 ×M2) , ξ

)]
.

Proof. This is nothing other than the “weak” form of (1.5). Let φ ∈ (C∞
0 (ΩM ))3 and let ξ = φ× M 2

|M |
.

Then ξ ∈ (H1(ΩM ))3 and we may use it as a test function in (3.3), we obtain(
∂M2

∂t
,φ× M2

|M |

)
= |γ|

(
G2 ×M2,φ×

M2

|M |

)
+ α

(
M2

|M |
× ∂M2

∂t
,φ× M2

|M |

)
.

This yields(
M2

|M |
× ∂M2

∂t
,φ

)
= |γ|

(
M2

|M |
× (G2 ×M2) ,φ

)
+ α

(
M2

|M |
×
(
M2

|M |
× ∂M2

∂t

)
,φ

)
= |γ|

(
M2

|M |
× (G2 ×M2) ,φ

)
− α

(
∂M2

∂t
,φ

)
.(3.12)
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Adding (3.3) to α times (3.12) leads to

(1 + α2)
(

∂M2

∂t
,φ

)
= |γ| (G2 ×M2,φ) + |γ|α

(
M2

|M |
× (G2 ×M2) ,φ

)
.

The terms in ∂M2/∂t, G2 ×M2 and M2 × (G2 ×M2)/|M | are all in (L2(ΩM ))3 and hence by a density
argument the result holds.

The next result is a straightforward estimate, but it is key to our result since it allows us to estimate
terms involving g without using inverse powers of A (which can be very small).

Lemma 3.5. For all ξ ∈ V , ∃C > 0 such that

|(g,m, ξ)| ≤ C ‖ξ‖V E(t) ,

where (g,m, ξ) denotes the mixed product (g,m× ξ) = (g ×m, ξ). More precisely, a possible choice for the
constant C is

C = 2 max
(

1,
A

µ0
,
K

µ0

)
.

Proof. For any φ ∈ (H1(ΩM ))3, using (3.4) for the two sets of solutions, we have

(G1,φ) = (H1,φ)− 2
µ0

(KP (M1) ,φ)− 2
µ0

3∑
i=1

(
A

∂M1

∂xi
,
∂φ

∂xi

)
,

(G2,φ) = (H2,φ)− 2
µ0

(KP (M2) ,φ)− 2
µ0

3∑
i=1

(
A

∂M2

∂xi
,
∂φ

∂xi

)
,

and we conclude by subtracting that

(g,φ) = (h,φ)− 2
µ0

(KP (m),φ)− 2
µ0

3∑
i=1

(
A

∂m

∂xi
,
∂φ

∂xi

)
.(3.13)

Taking φ = m× ξ (φ ∈ (H1(ΩM ))3 since ξ ∈ V ), we get

(g,m, ξ) = (h,m, ξ)− 2
µ0

(KP (m),m, ξ)− 2
µ0

3∑
i=1

(
A

∂m

∂xi
,m,

∂ξ

∂xi

)
.(3.14)

Straightforward estimates give

|(g,m, ξ)| ≤ ‖ξ‖L∞(ΩM )‖h‖‖m‖+
2K

µ0
‖ξ‖L∞(ΩM )‖m‖2

+
2A

µ0

3∑
i=1

∥∥∥∥ ∂ξ

∂xi

∥∥∥∥
L∞(ΩM )

‖m‖
∥∥∥∥∂m

∂xi

∥∥∥∥ ,

≤ 1
2
‖ξ‖L∞(ΩM )

(
‖h‖2 + ‖m‖2

)
+

2K

µ0
‖ξ‖L∞(ΩM )‖m‖2

+
A

µ0

3∑
i=1

∥∥∥∥ ∂ξ

∂xi

∥∥∥∥
L∞(ΩM )

∥∥∥∥∂m

∂xi

∥∥∥∥2

+
A

µ0
‖m‖2

3∑
i=1

∥∥∥∥ ∂ξ

∂xi

∥∥∥∥
L∞(ΩM )

,

≤ 1
2
‖ξ‖L∞(ΩM )‖h‖2 +

1
2
‖ξ‖V max

(
1,

2A

µ0
,
2K

µ0

)
‖m‖2 + 2‖ξ‖V E(m) .

We conclude that

|(g,m, ξ)| ≤ max 2
(

1,
A

µ0
,
K

µ0

)
‖ξ‖V E(t) .

Proof. (of Theorem 3.3) For clarity, the proof is divided into a number of steps:
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Step 1:. Computation of
dE(t)

dt
.

We note that by the linearity of (3.3) and (3.4)

1
2

d

dt

(
ε0‖e‖2 + µ0‖h‖2

)
= ε0(et, e)− (h,∇× e) + µ0(ht,h) + (∇× e,h)− (σe, e)

≤ −µ0(mt,h) ,(3.15)

where we denote by mt the derivative in time of m. Hence

1
2

d

dt

(
ε0‖e‖2 + µ0‖h‖2 + µ0‖m‖2

)
≤ µ0(m,mt)− µ0(mt,h)

≤ µ0(m,mt) + µ0 [(g,mt)− (h,mt)](3.16)
−µ0(g,mt) .

Choosing φ = mt, we deduce from (3.13) that

µ0 ((g,mt)− (h,mt)) = −2 (KP (m),mt)− 2
3∑

i=1

(
A

∂m

∂xi
,

∂

∂t

∂m

∂xi

)

= − d

dt

[∫
ΩM

(
K|P (m)|2 + A

3∑
i=1

∣∣∣∣∂m∂xi

∣∣∣∣2
)

dx

]

= − d

dt
[E (m)] .(3.17)

With (3.16), this shows that

d

dt

[
1
2
(
ε0‖e‖2 + µ0‖h‖2 + µ0‖m‖2

)
+ E(m)

]
= µ0(m,mt)− µ0(g,mt) ,

or equivalently

d

dt
(E(t)) +

αµ0

|γ|

∫
ΩM

|mt|2

|M |
dx = µ0(m,mt) +

[
−µ0(g,mt) +

αµ0

|γ|

∫
ΩM

|mt|2

|M |
dx

]
= RHS1 + µ0RHS2 .

(3.18)

Step 2:. Estimation of RHS1 = µ0(m,mt).
We just use the Cauchy-Schwarz inequality to write

µ0|(m,mt)| ≤ µ0‖m‖ ‖mt‖.(3.19)

Step 3:. Estimation of RHS2 = −(g,mt) +
α

|γ|

∫
ΩM

|mt|2

|M |
dx.

Using (3.3), we have

− (mt, g) +
α

|γ|

(
mt,

mt

|M |

)
=

−|γ| (G1 ×M1 −G2 ×M2, g)

−α

(
M1

|M |
× ∂M1

∂t
− M2

|M |
× ∂M2

∂t
, g

)
+α

(
G1 ×M1 −G2 ×M2,

mt

|M |

)
+

α2

|γ|

(
M1

|M |
× ∂M1

∂t
− M2

|M |
× ∂M2

∂t
,
mt

|M |

)
:= T1 + T2 + T3 + T4.

(3.20)
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In the following computations the right hand side is controlled term by term. The first term, T1 can be
expanded as

G1 ×M1 −G2 ×M2 = g ×M1 −G2 ×m ,(3.21)

and estimated using Lemma 3.5. We have:

|T1| = |γ| |(G2 ×m, g)| ≤ C|γ| ‖G2‖V E(t) ,(3.22)

where C = 2max(1, A/µ0,K/µ0).
The last term, T4, can be expanded using

M1

|M |
× ∂M1

∂t
− M2

|M |
× ∂M2

∂t
=

m

|M |
× ∂M2

∂t
+
M1

|M |
×mt .(3.23)

Hence T4 may be written:

T4 =
α2

|γ|

(
m

|M |
× ∂M2

∂t
,

1
|M |

mt

)
.(3.24)

By Lemma 3.4, we have

T4 =
α2

1 + α2

(
m

|M |
×mt,G2 ×

M2

|M |
+ α

M2

|M |
×
(
G2 ×

M2

|M |

))
.(3.25)

Hence

|T4| ≤ C4‖m‖ ‖mt‖(3.26)

where

C4 =
α2‖G2‖V

M−(1 + α2)

∥∥∥∥M2

|M |

∥∥∥∥
V

(
1 + α

∥∥∥∥M2

|M |

∥∥∥∥
V

)
.

It remains now to estimate T2 + T3. Expanding T2 we have

−
(
M1

|M |
× ∂M1

∂t
−M2

|M |
× ∂M2

∂t
, g

)
= −

(
M1

|M |
× ∂M1

∂t
,G1

)
+
(
M1

|M |
× ∂M1

∂t
,G2

)
+
(
M2

|M |
× ∂M2

∂t
,G1

)
−
(
M2

|M |
× ∂M2

∂t
,G2

)
,

and for T3(
G1 ×

M1

|M |
−G2 ×

M2

|M |
,

∂

∂t
(M1−M2)

)
=
(
G1 ×

M1

|M |
,
∂M1

∂t

)
−
(
G1 ×

M1

|M |
,
∂M2

∂t

)
−
(
G2 ×

M2

|M |
,
∂M1

∂t

)
+
(
G2 ×

M2

|M |
,
∂M2

∂t

)
.

By adding these two equalities, we see that

T2 + T3 = α

(
G1 ×

M2

|M |
,
∂M2

∂t

)
− α

(
G1 ×

M1

|M |
,
∂M2

∂t

)
+α

(
G2 ×

M2

|M |
,
∂M1

∂t

)
+ α

(
G2 ×

M1

|M |
,
∂M1

∂t

)
.

(3.27)

Then we compute

|T2 + T3| ≤ α

∣∣∣∣(G1 ×
m

|M |
,
∂M2

∂t

)
−
(
G2 ×

m

|M |
,
∂M1

∂t

)∣∣∣∣
≤ α

∣∣∣∣(g × m

|M |
,
∂M2

∂t

)
−
(
G2 ×

m

|M |
,mt

)∣∣∣∣
≤ α

∣∣∣∣(g × m

|M |
,
∂M2

∂t

)∣∣∣∣+ α

∣∣∣∣( G2

|M |
×m,mt

)∣∣∣∣ .

(3.28)
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Since by Lemma 3.4(
g × m

|M |
,
∂M2

∂t

)
=

|γ|
1 + α2

(
g ×m,G2 ×

M2

|M |
+ α

M2

|M |
×
(
G2 ×

M2

|M |

))
we conclude, via Lemma 3.5, that

|T2 + T3| ≤ C23E(t) + C24‖m‖ ‖mt‖.(3.29)

where

C23 =
2|γ|

1 + α2
max(1, A/µ0,K/µ0)‖G2‖V

∥∥∥∥M2

|M |

∥∥∥∥
V

(
1 + α

∥∥∥∥M2

|M |

∥∥∥∥
V

)
, C24 = α

‖G2‖V

M−
.

Step 4:. Conclusion of the proof.
From identity (3.18), and by adding the estimates in (3.19), (3.22), (3.26) and (3.29), we have established,

provided that M2,G2 ∈ V , that

1
2

d

dt
E(t) +

αµ0

|γ|

∫
ΩM

|mt|2

|M |
dx ≤ C1 E(t) + C2 ‖m‖ ‖mt‖.(3.30)

where

C1 = 2|γ|max(µ0, A, K)‖G2‖V

(
1 +

1
1 + α2

∥∥∥∥M2

|M |

∥∥∥∥
V

(
1 + α

∥∥∥∥M2

|M |

∥∥∥∥
V

))
,

and

C2 = µ0

(
1 +

α2

M−(1 + α2)
‖G2‖V

∥∥∥∥M2

|M |

∥∥∥∥
V

(
1 + α

∥∥∥∥M2

|M |

∥∥∥∥
V

)
+ α

‖G2‖V

M−

)
.

Now we use the arithmetic geometric mean inequality to write

‖m‖ ‖mt‖ ≤
δ

2

∥∥∥∥ mt

|M |1/2

∥∥∥∥2

+
1
2δ

∥∥∥|M |1/2m
∥∥∥2

and choose

δ =
αµ0

|γ|C2
.

Then (3.30) becomes

1
2

d

dt
E(t) +

αµ0

2|γ|

∫
ΩM

|mt|2

|M |
dx ≤ C1 E(t) + µ0

C2
2 |γ|M+

2αµ2
0

‖m‖2.(3.31)

We have shown that

d

dt
(E(t)) ≤ C E(t) ,(3.32)

where C = max(C1, C
2
2 |γ|M+/2αµ2

0). An application of Gronwall’s inequality proves the Theorem.

4. A Numerical Scheme. Here we present some finite element schemes for approximating equa-
tions (3.1)–(3.4). Let τh be a mesh covering Ω using regular finite elements of maximum diameter h. At this
stage the mesh could either consist of tetrahedral or hexahedral elements, but we assume that the boundary
of Ωm coincides with faces of the mesh.

Using the mesh τh, we will construct finite element spaces Uh ⊂ H0(curl; Ω), Vh ⊂ H(div; Ω) and
Wh ⊂ (L2(ΩM ))3 ∩ (L∞(ΩM ))3 ∩ (H1(ΩM ))3. These spaces are such that ∇ × Uh ⊂ Vh and Wh ⊂ Vh.
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Assuming we can construct suitable spaces Uh, Vh and Wh, the semi-discrete numerical method we propose
is to find (Eh(t),Hh(t),Mh(t),Gh(t)) ∈ Uh × Vh ×Wh ×Wh such that

ε0

(
∂Eh

∂t
,ψh

)
Uh

− (Hh,∇×ψh)Vh
+ (σEh,ψh)Uh

= − (J ,ψh)Uh
,

∀ψh ∈ Uh ,(4.1)

µ0

(
∂Hh

∂t
,ϕh

)
Vh

+ (∇×Eh,ϕh)Vh
= −µ0

(
∂Mh

∂t
,ϕh

)
Vh

,

∀ϕh ∈ Vh ,(4.2)

and (
∂Mh

∂t
, ξh

)
Wh

= |γ| (Gh ×Mh, ξh)Wh
+ α

(
Mh

|Mh|
× ∂Mh

∂t
, ξh

)
Wh

,∀ξh ∈ Wh ,(4.3)

(Gh,φh)Wh
= (Hh,φh)Vh

− 2
µ0

(KP (Mh) ,φh)Wh
− 2

µ0

3∑
i=1

(
A

∂Mh

∂xi
,
∂φh

∂xi

)
Wh

,

∀φh ∈ Wh ,(4.4)

where (·, ·)Uh
(respectively (·, ·)Vh

and (·, ·)Wh
) are suitable discrete inner products depending on the space

Uh (respectively Vh and Wh).The compatibility condition that ∇× Uh ⊂ Vh is also assumed to hold.
Let Sh ⊂ H1(ΩM ). The space Wh is nothing more than Wh = Sh|ΩM

× Sh|ΩM
× Sh|ΩM

where

Sh|ΩM
= {ph|ΩM

| ph ∈ Sh} .

The key requirement is that the quadrature used to define (·, ·)Wh
uses exactly all the degrees of freedom of

the underlying space (with positive quadrature weights). With this assumption, we shall see that equation
(4.3) is satisfied pointwise at the interpolation points of the method.

4.1. Linear Tetrahedral Elements. In our previous paper [14] we used the second family of Nédélec
edge elements [16] on tetrahedra to discretize the Maxwell-LLG equations without the exchange term. This
family can also be used to discretize the problem treated here. The mesh τh consists of regular tetrahedra,
and we assume that Ω and ΩM are exactly covered by the tetrahedra (i.e. the boundary of ΩM coincides
with faces of tetrahedra for each h). The space Uh is the classical Nédélec second family space [16]

Uh =
{
uh ∈ H0(curl; Ω) | uh|K ∈ (P1)3 , ∀K ∈ τh

}
where P1 is the set of polynomials of total degree one in x, y and z.

The discrete inner product for this space is defined as follows:

(u,v)Uh
=
∑

K∈τh

QK(u · v)

where the local quadrature QK is given by

QK(φ) =
volume(K)

4

4∑
i=1

φ(ai),

where ai is the ith node of K. This choice of discrete inner product gives a block diagonal mass matrix
which improves the efficiency of time-stepping. However the quadrature scheme may allow spurious modes
for Eh, but this remains to be investigated. Of course the use of (u,v)Uh

= (u,v) avoids any possibility
of spurious modes at the expense of solving (by conjugate gradients) a well conditioned matrix problem at
each timestep.

The space Vh is simply

Vh =
{
vh ∈ (L2(Ω))3 | vh|K ∈ (P1)3, ∀K ∈ τh

}
15



and (., .)Vh
= (., .).

The space Wh is then

Wh =
{
wh ∈ (H1(ΩM ))3 | wh|K ∈ (P1)3 , ∀K ∈ τh with K ⊂ ΩM

}
,

and the discrete inner product for Wh is

(u,v)Wh
=

∑
K∈τh,K⊂ΩM

QK(u · v).

This choice precisely diagonalizes the mass matrix for Wh (if degrees of freedom parallel to the coordinate
axes are used at each node in the mesh).

4.2. Hexahedral elements. Here we discuss just one member of a family of hexahedral elements. The
two dimensional analogue of these elements is used in this paper for our numerical examples. Here the mesh
τh consists of hexahedral elements with each edge parallel to one of the three coordinate axes. Let Ql,m,n

denote the set of polynomials of degree at most l in x1, m in x2 and n in x3.
The space Wh is a product of quadratic elements. Let

Wh =
{
w ∈ (H1(ΩM ))3 | w|K ∈ Q3

2,2,2, ∀K ∈ τh with K ⊂ ΩM

}
,

The discrete inner product (., .)Vh
is computed using the tensor product Simpson’s rule on each element.

The space Uh is chosen to be the cubic edge space of Nédélec [15]:

Uh = {u ∈ H0(curl; Ω) | u|K ∈ Q2,3,3 ×Q3,2,3 ×Q3,3,2, ∀K ∈ τh} .

The definition of (., .)Uh
involves anisotropic quadrature rules for each component of the vector in Uh. For

details see [8]. Finally the space Vh is

Vh =
{
v ∈ (L2(Ω))3 | v|K ∈ Q3,2,2 ×Q2,3,2 ×Q2,2,3, ∀K ∈ τh

}
together with the use of an exact inner product (., .)Vh

= (., .).

5. Properties of the Semi-discrete Scheme. The numerical scheme conserves the magnitude of the
magnetization at the quadrature points of the discrete inner product. This is the discrete analogue of (1.9).

Lemma 5.1. Let ai be a quadrature point for the integration scheme used to compute the discrete inner
product (·, ·)Wh

. For each time t,

|Mh(ai, t)| = |Mh(ai, 0)|

In particular, ‖Mh‖∞,ΩM
is bounded independent of t and h.

Proof. We choose ξh ∈ Wh to interpolate Mh at ai and interpolate zero at all other quadrature (or
interpolation) points. Let wi be the corresponding quadrature weight in the discrete inner product. Using
this ξh in (4.3) we conclude that

wi
∂

∂t
Mh(ai) ·Mh(ai) =

(
∂

∂t
Mh, ξh

)
Wh

= wi

(
|γ| (Gh ×Mh) (ai) ·Mh(ai) + α

(
Mh

|Mh|
× ∂Mh

∂t

)
(ai) ·Mh(ai)

)
= 0.

The method also conserves the energy of the electromagnetic field, again mimicking the continuous case.
This will be a consequence of the existence of a discrete Liapunov function which we discuss next.

Let us assume J = 0. We can see that (Ẽh, H̃h,M̃h, G̃h) ∈ Uh × Vh ×Wh ×Wh is a stationary state
of the semi-discrete problem if

−(H̃h,∇×ψh)Vh
+ (σẼh,ψh)Uh

= 0 , ∀ψh ∈ Wh,

(∇× Ẽh,φh)Vh
= 0 , ∀φh ∈ Vh,

(G̃h × M̃h, ξh)Wh
= 0 , ∀ξh ∈ Wh.
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In addition (4.4) is also satisfied.
The assumption on the discrete inner product (, ·, )Wh

implies that G̃h×M̃h = 0 at all the interpolation
points of Wh. Hence at each interpolation point G̃h and M̃h are parallel, and there is a function λh ∈ Sh|ΩM

such that

G̃h = λhM̃h

at the interpolation points of Sh|ΩM
.

Now we can state and prove the semi-discrete version of Theorem 2.1.
Theorem 5.2. Suppose J = 0 and

(Ẽh, H̃h,M̃h, G̃h) ∈ Uh × Vh ×Wh ×Wh

is a stationary state of the semi-discrete problem with associated indicator λh. Let

Vλh,h(Eh,Hh,Mh) =
1
2

(
ε0(Eh − Ẽh,Eh − Ẽh)Uh

+ µ0(Hh − H̃h,Hh − H̃h)Vh

)
+

µ0

2
(λh(Mh − M̃h),Mh − M̃h)Wh

+ Eh(Mh − M̃h) ,

where

Eh(vh) = (KP (vh), P (vh))Wh
+
∑

i

(
A

∂vh

∂xi
,
∂vh

∂xi

)
Wh

for any vh ∈ Wh. Then Vλh,h is a strict Liapunov function and

d

dt
Vλh,h(Eh,Hh,Mh) = −µ0

|γ|

(
α

|Mh|
∂Mh

∂t
,
∂Mh

∂t

)
Wh

− (σEh,Eh)Uh
.

Proof. The proof is essentially to check that the steps in the proof of Theorem 2.1 hold in the semi-
discrete variational setting. This is not entirely obvious due to the use of discrete inner products (we use
this as an essential part of our proof) and the introduction of Gh as an explicit variable in the problem.

As in the proof of Theorem 2.1, we define (we use the same notation even though the fields are now
discrete)

NE = Eh − Ẽh, NH = Hh − H̃h, NM = Mh − M̃h, and NG = Gh −G(H̃,M̃)h .(5.1)

Now using the linearity of (4.1) and (4.2) and the fact that J = 0 we can easily check the analogue of
(2.11):

1
2

d

dt
[(ε0NE ,NE)Uh

+ (µ0NH ,NH)Vh
] + (σNE ,NE)Uh

= −(µ0NH ,
d

dt
NM )Vh

.(5.2)

To simplify notation, we can define the semi-discrete linear magnetic field H l,h ∈ Wh by

µ0(H l,h(Mh), ξh)Wh
= −2

[
(KP (Mh), ξh)Wh

+
∑

i

(A
∂

∂xi
Mh,

∂

∂xi
ξh)Wh

]
, ∀ξh ∈ Wh.

Using the definition of Eh and the definition of H l,h a direct calculation shows that

d

dt

[
Eh(NM ) +

µ0

2
(λhNM ,NM )Wh

]
+
(

αµ0

|γ||Mh|
∂

∂t
NM ,

∂

∂t
NM

)
Wh

= 2
(

KP (NM ),
∂

∂t
NM

)
Wh

+ 2
∑

i

(
A

∂

∂xi
NM ,

∂

∂t

∂

∂xi
NM

)
Wh
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+µ0

(
λhNM ,

∂

∂t
NM

)
Wh

+
(

αµ0

|γ||Mh|
∂

∂t
NM ,

∂

∂t
NM

)
Wh

= −µ0

(
Hl,h(NM ),

∂

∂t
NM

)
Wh

+ µ0

(
λhNM ,

∂

∂t
NM

)
Wh

+
(

αµ0

|γ||Mh|
∂

∂t
NM ,

∂

∂t
NM

)
Wh

.(5.3)

This is the semi-discrete analogue of (2.12). Adding (5.2) and (5.3) we obtain the analogue of (2.13):

d

dt

{
1
2

[(ε0NE ,NE)Uh
+ (µ0NH ,NH)Vh

+ µ0(λhNM ,NM )Wh
] + Eh(NM )

}
+(σNE ,NE)Uh

+
(

αµ0

|γ||Mh|
∂

∂t
NM ,

∂

∂t
NM

)
Wh

= µ0

[(
α

|γ||Mh|
∂

∂t
NM ,

∂

∂t
NM

)
Wh

− (NH ,
∂

∂t
NM )Vh

− (Hl,h(NM ),
∂

∂t
NM )Wh

+(λhNM ,
∂

∂t
NM )Wh

]
.(5.4)

Now we need to verify that the right hand side of this expression vanishes in order to prove the theorem.
The first part of this verification is similar to the proof of (2.14). We note that since (4.3) holds pointwise

at the interpolation points of Sh|ΩM
we can use as a test function any function with well defined point values.

In particular ξh = λhNM is a good test function (even though it is not in Wh). It is here that we use crucially
the fact that the semi-discrete scheme is defined using discrete inner-products. Hence, using the fact that
∂M̃h/∂t = 0, we have(

∂NM

∂t
, λhNM

)
Wh

= |γ| (Gh ×Mh, λhNM )Wh
+ α

(
λh

|Mh|
Mh ×

∂NM

∂t
,NM

)
Wh

.

Expanding this expression and using the fact that G̃h × M̃h = 0, as well as standard vector identities, we
obtain (

∂NM

∂t
, λhNM

)
Wh

= |γ|(NG × M̃h, λhMh)Wh
+ α

(
λh

|Mh|
M̃h ×

∂NM

∂t
,NM

)
Wh

,(5.5)

which should be compared to (2.14).
To derive an equation like (2.15) we use the linearity of (4.4), and the fact that ∂NM/∂t ∈ Wh to see

that (
NH ,

∂NM

∂t

)
Vh

+
(
H l,h(NM ),

∂NM

∂t

)
Wh

=
(
NG,

∂NM

∂t

)
Wh

=
(

∂NM

∂t
,NG

)
Wh

.

Now using (4.3) we can write (expanding the result slightly)(
NH ,

∂NM

∂t

)
Vh

+
(
H l,h(NM ),

∂NM

∂t

)
Wh

= |γ|(Gh ×Mh,NG)Wh
+ α

(
1

|Mh|
Mh ×

∂NM

∂t
,NG

)
Wh

= |γ|(Gh ×Mh,NG)Wh
+ α

(
1

|Mh|
NM × ∂NM

∂t
,NG

)
Wh

+ α

(
1

|Mh|
M̃h ×

∂NM

∂t
,NG

)
Wh

.(5.6)
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To derive the analogue of (2.16) we again note that (4.3) holds for general continuous test functions.
Hence choosing

ξh =
α

|γ| |Mh|
∂NM

∂t
,

we obtain (
∂NM

∂t
,

α

|γ| |Mh|
∂NM

∂t

)
Wh

=
(
Gh ×Mh,

α

|γ| |Mh|
∂NM

∂t

)
Wh

.

Now we can expand the right hand side of this equation and use the fact that G̃h = λhM̃h at the quadrature
points for the discrete Wh inner product to conclude that(

∂NM

∂t
,

α

|γ| |Mh|
∂NM

∂t

)
Wh

=
(
NG ×NM ,

α

|γ| |Mh|
∂NM

∂t

)
Wh

+
(
NG × M̃h,

α

|γ| |Mh|
∂NM

∂t

)
Wh

+
(

λM̃hNM ,
α

|γ| |Mh|
∂NM

∂t

)
Wh

.(5.7)

Adding (5.5), (5.6) and (5.7) shows that

µ0

[(
α

|γ||Mh|
∂

∂t
NM ,

∂

∂t
NM

)
Wh

−
(
NH ,

d

dt
NM

)
Vh

−
(

Hl,h(NM ),
∂

∂t
NM

)
Wh

+
(

λhNM ,
∂

∂t
NM

)
Wh

]
= µ0|γ|

[
(NG × M̃h, λhNM )Wh

− (Gh ×Mh,NG)Wh

]
.

However we can expand the last term on the right hand side and use standard identities to show that

(Gh ×Mh,NG)Wh
= (NG ×Mh,NG)Wh

+ (G̃h ×Mh,NG)Wh
= (G̃h ×Mh,NG)Wh

.

Again using the fact that G̃h = λhM̃h at the quadrature points for the inner product we have (upon
expanding and canceling further terms)

(Gh ×Mh,NG)Wh
= (λhM̃h ×Mh,NG)Wh

= −(λhNM ×Mh,NG)Wh

= −(λhNM × M̃h,NG)Wh

= (NG × M̃h, λhNM )Wh
.

Using these results shows that the right hand side of (5.4) vanishes and this completes the proof.
In the same way as for the continuous problem, a corollary of this result is that the discrete energy of the

system decays. It would now be desirable to prove convergence of the method using the discrete analogue of
the continuous dependence result proved for the variational problem. While we believe this to be possible,
we have not yet done it.

6. Numerical results. First we give some details of the fully discrete scheme used for calculations.
Then examples are provided in the 2-D case. We limit ourselves here to some static examples that illustrate
the foregoing theory.

6.1. A discrete scheme. We choose an explicit/implicit time-stepping scheme that guarantees the
conservation of the norm of Mh pointwise.

Let ∆t > 0 be the time step. Then we wish to compute

(E(n)
h ,H

(n+ 1
2
)

h ,M
(n+ 1

2
)

h ,G
(n)
h ) ∈ Uh × Vh ×Wh ×Wh
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for n = 0, 1, , · · · such that

E
(n)
h ≈ Eh(tn), H

(n+ 1
2
)

h ≈Hh(t
n+ 1

2
), M

(n+ 1
2
)

h ≈Mh(t
n+ 1

2
), G

(n)
h ≈ Gh(tn),

where tn = n∆t.
The initial data for E gives E(0)

h . The values of H(1/2)
h and M (1/2)

h can then be found by a half time
step of a suitable explicit scheme (for example Runge-Kutta). From then on

(E(n+1)
h ,G

(n+1)
h ,H

(n+ 3
2
)

h ,M
(n+ 3

2
)

h )

is determined from

(E(n)
h ,G

(n)
h ,H

(n+ 1
2
)

h ,M
(n+ 1

2
)

h )

as follows. First we can determine E(n+1)
h .

ε0

(
E

(n+1)
h −E(n)

h

∆t
,ψh

)
Uh

+
1
2

(
σ
(
E

(n+1)
h +E(n)

h

)
,ψh

)
Uh

−
(
H

(n+ 1
2
)

h ,∇×ψh

)
Vh

= −
(
J

(n+ 1
2
)

h ,ψh

)
Uh

∀ψh ∈ Uh .(6.1)

Assuming that the discrete inner product is well chosen, this is a rapid explicit calculation.
The remaining fields are computed from the non-linear system consisting of

µ0

H(n+ 3
2
)

h −H(n+ 1
2
)

h

∆t
,ϕh


Vh

+
(
∇×E(n+1)

h ,ϕh

)
Vh

= −µ0

M (n+ 3
2
)

h −M (n+ 1
2
)

h

∆t
,ϕh


Vh

,(6.2)

for all ϕh ∈ Vh,(
M

(n+3/2)
h −M (n+1/2)

h

∆t
, ξh

)
Wh

= |γ|
(
G

(n+1)
h ×M (n+1)

h , ξh

)
Wh

+α

(
M

(n+1)
h

|Mh|
×
M

(n+3/2)
h −M (n+1/2)

h

∆t
, ξh

)
Wh

,(6.3)

for all ξh ∈ Wh where M (n+1)
h = (M

(n+ 3
2
)

h +M
(n+ 1

2
)

h )/2,(
G

(n+1)
h ,φh

)
Wh

=
(
H

(n+1)
h ,φh

)
Vh

− 2
µ0

(
KP

(
M

(n+1)
h

)
,φh

)
Wh

− 2
µ0

3∑
i=1

(
A

∂M
(n+1)
h

∂xi
,
∂φh

∂xi

)
Wh

,(6.4)

for all φh ∈ Wh, where

H
(n+1)
h = (H

(n+ 3
2
)

h +H
(n+ 1

2
)

h )/2.

In practice we actually replace Hn+1/2 by an equivalent discretization of B that makes (6.2) explicit. In
our code the above two equations are then solved by Newton’s method at each time-step which is very time
consuming. Due to the use of the discrete inner product, equation (6.3) is satisfied at the quadrature points
of the discrete inner product and hence at the interpolation points for Wh.

Next we verify that the time stepping scheme conserves the magnetization.
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Lemma 6.1. Let ai be an interpolation point for Wh then for n ≥ 0,

|M (n+ 1
2
)

h (ai)| = |M (1/2)
h (ai)|

Proof. Similarly to the proof of Lemma 5.1, we choose ξh in (6.3) to interpolate M
(n+ 3

2
)

h +M
(n+ 1

2
)

h at
ai and vanish at all other points. We conclude that

(M
(n+ 3

2
)

h (ai)−M
(n+ 1

2
)

h (ai)) · (M
(n+ 3

2
)

h (ai) +M
(n+ 1

2
)

h (ai)) = 0.

Hence |M (n+ 3
2
)

h (ai)|2 − |M (n+ 1
2
)

h (ai)|2 = 0, and the result follows.
Obviously it would be desirable to prove convergence of the fully discrete scheme, together with the

existence and behavior of the Liapunov function. This has yet to be completed. Instead we show some
numerical results that suggest that the fully discrete Liapunov function behaves as expected.

6.2. Examples of discrete stationary states and Liapunov functions. In this section we shall
present some numerical results for a 2D version of the problem and method outlined in the previous sections.
The coefficients and basic geometry are from the NIST web site

http://www.ctcms.nist.gov/~rdm/toc.html#standards
and mimic permalloy:

A = 1.3× 10−11 J/m

K = 500 J/m3

α = 1
γ = 2.2× 105

The region ΩM is a 1× 2 micron rectangle (the NIST benchmark actually calls for the object to be a wafer
200 nm thick, but in this study we will only do a 2D calculation). The magnetization has constant magnitude
at every point in the ferromagnet

|M(x, t)| = 8.0× 105 A/m at every x ∈ ΩM .

The 2D problem can be obtained from the full 3D case, formally, by assuming that the ferromagnet
occupies an infinite cylinder with axis parallel to the z coordinate axis. Then the fields are assumed to be
independent of the z coordinate (depending only on x, y and t). This reduces the problem to two space
dimensions. However due to the non-linear nature of the problem the fields cannot be decoupled into TE
and TM modes. Thus the 2D simulation proceeds using field vectors with three components. The 2D finite
elements are correspondingly obtained from the 3D cubic elements we discussed in section § 4.2.

In the two examples presented here, the ferromagnet if covered by a 4 × 8 grid of square elements.
The surrounding air layer is a further two elements thick all around the ferromagnet. This gives h = 0.125
microns. Due to explicit time stepping of Maxwell’s equations there is a CFL condition that must be satisfied.
This is a strong constraint on the time-step and we use ∆t = 4.167× 10−17 seconds. One positive effect of
the very small time step is that we do not need to perform a large number of Newton steps at each time-step.

In these computations we seek to compute an approximate stationary state of the Maxwell-LLG system,
so we compute for many time-steps. Our experience is that convergence to steady state slows as the simulation
proceeds. Hence, since we are only interested to find a steady state solution, we progressively increase the
gyro-magnetic factor γ when we detect a slow down of convergence. More precisely, our criterion for changing
γ is that we try to keep at two Newton steps per time step. If more Newton steps are needed we decrease γ
whereas if only one Newton step is needed we increase γ. This corresponds to using a different, non-physical,
time step. In the computations shown here we actually integrated for 105 time steps.

In Figure 6.1 we show the final results of two computations that differ only in the initial data used. We
only show the x and y components of M as arrows and the x component using color contours (this is so
that the domains are easily visible) in the ferromagnet. During the progress of the solution we monitor the
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Fig. 6.1. Here we show the xy components of the magnetization M as arrows and the x component as color contours (to
facilitate visualizing the domains) at the final time for two different initial conditions.

electromagnetic energy, the exchange energy term Eex, the energy of anisotropy Ean and the gyro-magnetic
factor γ. Results corresponding to the single domain case in Figure 6.1 a) are shown in Figure 6.2.

To test the Liapunov functions we computed the indicator function λh for each steady state shown in
Figure 6.1, and then using the appropriate initial data we computed the energy and Liapunov function Vλh,h

for each λh. The results are shown in Figure 6.3. In Figure 6.3a) we are computing the single domain steady
state shown in Figure 6.1 a). The total energy is marked W (in red) and is the sum of the components in
Figure 6.2. The total energy decreases during the computation. We also show the evolution of the Liapunov
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Fig. 6.2. Here we show the time change of the various components of the energy during the computation of Figure 6.1 a).
The top left panel shows the electromagnetic energy (i.e. the energy for E and H), the top right shows the exchange energy
Eex, the bottom left shows the energy of anisotropy Ean and the bottom right panel shows how γ is increased throughout the
computation.

functions corresponding to the single and double domain static solutions (these are marked V ld1 and V ld2
respectively). As suggested by Theorem 5.2 the Liapunov functions decay at the same rate as the energy.
In this case it is difficult to distinguish the two Liapunov functions. However in Figure 6.3b) we show the
same data corresponding to the computation of the double domain static solution in Figure 6.1 b). Again
the evolution of the energy and Liapunov functions is similar, but only the Liapunov function for the double
domain case (V ld2) decreases to zero. The other Liapunov function (which is a Liapunov function for the
single domain static solution but not the double domain case) does not decrease to zero.

7. Conclusion. Our limited computational and theoretical study of the finite element method proposed
here suggests that it not only conserves the magnitude of the magnetization but also has the correct behavior
of energy decay and of the Liapunov functions. It is in this sense that we claim the method to be an “accurate”
scheme for computing the solution of the Maxwell-LLG system.

There are still many open questions with the scheme. We would like to prove an error estimate (although
it seems unlikely that a long time error estimate will be possible), and we would like to improve the efficiency
of the time-stepping so as to handle 3D problems.
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Fig. 6.3. Here we show the evolution of the total energy and Liapunov functions for the two examples shown in Figure
6.1. In the top panel we use initial data that results in the single domain case shown in Figure 6.1a). Similarly the lower
panel corresponds to Figure 6.1b). In each case W is the total energy, V ld1 is the Liapunov function for the single domain
and V ld2 is the Liapunov function for the double domain. These results verify the predicted rate of decay of the energy and
Liapunov functions, and show that the Liapunov functions can distinguish final states (particularly in the lower panel).
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