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Abstract
Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-

cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable

to the cell-cycle length, randomness in cell-division times generates additional intercellular

variability in protein levels. Moreover, as many mRNA/protein species are expressed at

low-copy numbers, errors incurred in partitioning of molecules between two daughter cells

are significant. We derive analytical formulas for the total noise in protein levels when the

cell-cycle duration follows a general class of probability distributions. Using a novel hybrid

approach the total noise is decomposed into components arising from i) stochastic expres-

sion; ii) partitioning errors at the time of cell division and iii) random cell-division events.

These formulas reveal that random cell-division times not only generate additional extrinsic

noise, but also critically affect the mean protein copy numbers and intrinsic noise compo-

nents. Counter intuitively, in some parameter regimes, noise in protein levels can decrease

as cell-division times become more stochastic. Computations are extended to consider

genome duplication, where transcription rate is increased at a random point in the cell

cycle. We systematically investigate how the timing of genome duplication influences differ-

ent protein noise components. Intriguingly, results show that noise contribution from sto-

chastic expression is minimized at an optimal genome-duplication time. Our theoretical

results motivate new experimental methods for decomposing protein noise levels from syn-

chronized and asynchronized single-cell expression data. Characterizing the contributions

of individual noise mechanisms will lead to precise estimates of gene expression parame-

ters and techniques for altering stochasticity to change phenotype of individual cells.
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Author Summary

Inside individual cells, gene products often occur at low molecular counts and are subject
to considerable stochastic fluctuations (noise) in copy numbers over time. An important
consequence of noisy expression is that the level of a protein can vary considerably even
among genetically identical cells exposed to the same environment. Such non-genetic phe-
notypic heterogeneity is physiologically relevant and critically influences diverse cellular
processes. In addition to noise sources inherent in gene product synthesis, recent experi-
mental studies have uncovered additional noise mechanisms that critically effect expres-
sion. For example, the time within the cell cycle when a gene duplicates, and the time
taken to complete cell cycle are governed by random processes. The key contribution of
this work is development of novel mathematical results quantifying how cell cycle-related
noise sources combine with stochastic expression to drive intercellular variability in pro-
tein molecular counts. Derived formulas lead to many counterintuitive results, such as
increasing randomness in the timing of cell division can lower noise in the level of a pro-
tein. Finally, these results inform experimental strategies to systematically dissect the con-
tributions of different noise sources in the expression of a gene of interest.

Introduction
The level of a protein can deviate considerably from cell-to-cell, in spite of the fact that cells are
genetically-identical and are in the same extracellular environment [1–3]. This intercellular
variation or noise in protein counts has been implicated in diverse processes such as corrupting
functioning of gene networks [4–6], driving probabilistic cell-fate decisions [7–12], buffering
cell populations from hostile changes in the environment [13–16], and causing clonal cells to
respond differently to the same stimulus [17–19]. An important source of noise driving ran-
dom fluctuations in protein levels is stochastic gene expression due to the inherent probabilistic
nature of biochemical processes [20–23]. Recent experimental studies have uncovered addi-
tional noise sources that affect protein copy numbers. For example, the time take to complete
cell cycle (i.e., time between two successive cell-division events) has been observed to be sto-
chastic across organisms [24–32]. Moreover, given that many proteins/mRNAs are present
inside cells at low-copy numbers, errors incurred in partitioning of molecules between two
daughter cells are significant [33–35]. Finally, the time at which a particular gene of interest is
duplicated can also vary between cells [36, 37]. We investigate how such noise sources in the
cell-cycle process combine with stochastic gene expression to generate intercellular variability
in protein copy numbers (Fig 1).

Prior studies that quantify the effects of cell division on the protein noise level have been
restricted to specific cases. For example, noise computations have been done in stochastic gene
expression models, where cell divisions occur at deterministic time intervals [33, 38, 39].
Recently, we have analyzed a deterministic model of gene expression with random cell-division
events [40]. Building up on this work, we formulate a mathematical model that couples sto-
chastic expression of a stable protein with random cell-division events that follow a general
class of probability distributions. Moreover, at the time of cell division, proteins are randomly
partitioned between two daughter cells based on a framework that allows the partitioning
errors to be higher or lower than as predicted by binomial partitioning. For this class of models,
we derive an exact analytical formula for the protein noise level as quantified by the steady-
state squared Coefficient of Variation (CV2). This formula is further decomposed into individ-
ual components representing contributions from different noise sources. A systematic
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investigation of this formula leads to novel insights, such as identification of regimes where
increasing randomness in the timing of cell-division events decreases the protein noise level.

Next, we extend the above model to include genome-duplication events that increase the
gene’s transcription rate [36, 41]. To our knowledge, this is the first study integrating random-
ness in the genome-duplication process with stochastic gene expression. An exact formula for
the protein noise level is derived for this extended model and used to investigate how the tim-
ing of duplication affects different noise components. Counter intuitively, results show that
doubling of the transcription rate within the cell cycle can lead to smaller fluctuations in pro-
tein levels as compared to a constant transcription rate through out the cell cycle. Finally, we
discuss how formulas obtained in this study can be used to infer parameters and characterize
the gene expression process from single-cell studies.

Methods

Coupling gene expression to cell division
We consider the standard model of stochastic gene expression [42, 43], where mRNAs are
transcribed at exponentially distributed time intervals from a constitutive gene with rate kx.
For the time being, we exclude genome duplication and the transcription rate is fixed through-
out the cell cycle. Assuming short-lived mRNAs, each transcription event results in a burst of
proteins [43–45]. The corresponding jump in protein levels is shown as

xðtÞ7!xðtÞ þ B; ð1Þ
where x(t) is the protein population count in the mother cell at time t, B is a random burst size
drawn from a positively-valued distribution and represents the number of protein molecules
synthesized in a single-mRNA lifetime. Motivated by observations in E. coli and mammalian
cells, where many proteins have half-lives considerably longer than the cell-doubling time, we
assume a stable protein with no active degradation [46–48]. Thus, proteins accumulate within

Fig 1. Sample trajectory of the protein level in a single cell with different sources of noise. Stochastically expressed proteins
accumulate within the cell at a certain rate. At a random point in the cell cycle, gene duplication results in an increase in production
rate. Stochastic cell-division events lead to random partitioning of protein molecules between two daughter cells with each cell
receiving, on average, half the number of proteins in the mother cell just before division. The steady-state protein copy number
distribution obtained from a large number of trajectories is shown on the right. The total noise in the protein level, as measured by the
squared coefficient of variation (CV2) can be broken into contributions from individual noise mechanisms.

doi:10.1371/journal.pcbi.1004972.g001
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the cell till the time of cell division, at which point they are randomly partitioned between two
daughter cells.

Let cell division events occur at times ts, s 2 {1, 2, . . .}. The cell-cycle time

T≔ts � ts�1; ð2Þ

follows an arbitrary positively-valued probability distribution with the following mean and
squared coefficient of variation (CV2)

hTi ¼ hts � ts�1i; CV2
T ¼ hT2i � hTi2

hTi2 ; ð3Þ

where h.i denotes expected value through out this paper. The random change in x(t) during
cell division is given by

xðtsÞ7!xþðtsÞ; ð4Þ

where x(ts) denotes the protein levels in the mother cell just before division and x+(ts) denotes
the protein levels in one of the daughter cells just after division. Conditioned on x(ts), x+(ts) is
assumed to have the following statistics

hxþðtsÞjxðtsÞi ¼
xðtsÞ
2

; x2þðtsÞ � hxþðtsÞi2jxðtsÞ
� � ¼ axðtsÞ

4
: ð5Þ

The first equation implies symmetric partitioning, i.e., on average each of the daughter cells
inherits half the number protein molecules just before division. The second equation in Eq (5)
describes the variance of x+(ts) and quantifies the error in partitioning of molecules through
the non-negative parameter α. For example, α = 0 represents deterministic partitioning where
x+(ts) = x(ts)/2 with probability equal to one. A more realistic model for partitioning is each
molecule having an equal probability of being in the each daughter cell [49–51]. This results in
a binomial distribution for x+(ts)

ProbabilityfxþðtsÞ ¼ jjxðtsÞg ¼ xðtsÞ!
j!ðxðtsÞ � jÞ!

1

2

� �xðtsÞ
; j 2 f0; 1; . . . ; xðtsÞg; ð6Þ

and corresponds to α = 1 in Eq (5). Interestingly, recent studies have shown that partitioning
of proteins that form clusters or multimers can result in α> 1 in Eq (5), i.e., partitioning errors
are much higher than as predicted by the binomial distribution [33, 39]. In contrast, if mole-
cules push each other to opposite poles of the cell, then the partitioning errors will be smaller
than as predicted by Eq (6) and α< 1.

The model with all the different noise mechanisms (stochastic expression; random cell-divi-
sion events and partitioning errors) is illustrated in Fig 2A and referred to as the full model.
We also introduce two additional hybrid models [52, 53], where protein production and parti-
tioning are considered in their deterministic limit (Fig 2B and 2C). Note that unlike the full
model, where x(t) takes non-negative integer values, x(t) is continuous in the hybrid models.
We will use these hybrid models for decomposing the protein noise level obtained from the full
model into individual components representing contributions from different noise sources.

Modeling the cell-cycle time
In order to quantify the steady-state protein mean and noise, we need to define the stochastic
process that governs the timing of cell division. Variations in the duration of cell cycle can
result from a variety of factors, such as cell physiology, growth rate, cell size and expression of
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genes that affect cell-cycle time such as FtsZ [24–32]. Given these complexities, we take a
phenomenological approach to modeling cell-cycle time, and assume it to be an independent
and identically distributed random variable that is drawn from a mixture of Erlang distribu-
tions (also known as phase-type distribution). The motivation for choosing this distribution is
two fold:

1. Mixture of Erlang distributions can be represented via a continuous-time Markov chain,
allowing mathematical tractability in terms of deriving/analyzing time evolution of
moments.

2. This class of distribution is fairly general, in the sense that, any positively-valued distribu-
tion with CV� 1 can be modeled via a mixture of Erlang distributions [54].

Consider a mixture of n Erlang distributions with mixing probabilities pi, i = {1, . . ., n}. Recall
that an Erlang distribution of order i is the distribution of the sum of i independent and identical
exponential random variables. The cell-cycle time is assumed to have an Erlang distribution of
order i with probability pi and can be represented by a continuous-time Markov chain with
states Gij, j = {1, . . ., i}, i = {1, . . ., n} (Fig 3). Let Bernoulli random variables gij = 1 if the system
resides in state Gij and 0 otherwise. The probability of transition Gij! Gi(j+1) in the next

Fig 2. Stochastic models of gene expression with cell division. Arrows denote stochastic events that change the
protein level by discrete jumps as shown in Eqs (1) and (4). The differential equation within the circle represents the time
evolution of x(t) in between events. A)Model with all the different sources of noise: proteins are expressed in stochastic
bursts, cell division occurs at random times, and molecules are partitioned between the two daughter cells based on Eq (5).
The trivial dynamics _x ¼ 0 signifies that the protein level is constant in-between stochastic events.B) Hybrid model where
randomness in cell-division events is the only source of noise. Protein production is modeled deterministic through a
differential equation and partitioning errors are absent, i.e., α = 0 in Eq (5). C)Hybrid model where noise comes from both
cell-division events and partitioning errors. Protein production is considered to be deterministic as in Fig 2B. Since x(t) is
continuous here, x+(ts) has a positively-valued continuous distribution with samemean and variance as in Eq (5)

doi:10.1371/journal.pcbi.1004972.g002

Fig 3. A continuous-time Markov chain model for the cell-cycle time. Left: The cell-cycle time is
assumed to follow a mixture of Erlang distributions. At the start of cell cycle, a stateGi1, i = {1, . . ., n} is chosen
with probability pi. The cell cycle transitions through statesGij, j = {1, . . ., i} residing for an exponentially
distributed time with mean 1/ik in each state. Cell division occurs after exit fromGii and the above process is
repeated.

doi:10.1371/journal.pcbi.1004972.g003
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infinitesimal time interval [t, t + dt) is given by ikgij dt, implying that the time spent in each state
Gij is exponentially distributed with mean 1/ik. To summarize, at the start of cell cycle, a state
Gi1, i = {1, . . ., n} is chosen with probability pi and cell division occurs after transitioning
through i exponentially distributed steps. Based on this formulation, the probability of a cell-
division event occurring and a new cell cycle obtained from an Erlang distribution of size i start-
ing in the next time interval [t, t + dt) is given by kpi

Pn
j¼1ðjgjjÞdt, and whenever the event

occurs, the protein level changes as per Eq (4). Finally, the mean, the squared coefficient of vari-
ation, and the skewness of the cell-cycle time in terms of the Markov chain parameters are given
by

hTi ¼ 1

k
; CV2

T ¼
Xn
i¼1

pi
i
; Skewness ¼ hT3i � 3hTiðhT2i � hTi2Þ � hTi3

ðhT2i � hTi2Þ3=2 ¼ 2
Xn
i¼1

pi
i2

ð7Þ

[55], where hT3i is the third-order moment of the cell-cycle time. An important property of this
class of distributions is that increasing CV2

T also makes the distribution highly skewed, because
from Eq (7) both the CV and skewness are linear combinations of pi, albeit with different linear
coefficients that decrease with i. Considering that

Pn
i¼1 pi ¼ 1, the only way to increase CV2

T is
by increasing smaller-index components and decreasing larger-index components of the distri-
bution (i.e. increasing pi and decreasing pj, where i< j). Since higher values of i are more penal-
ized in the skewness equation, this would correspond to making the distribution more positively
skewed. Hence high values of CV2

T also means high values of skewness, thus occurrences of lon-
ger cell cycles are more probable. As we will shortly see, this property leads to mean protein lev-
els being dependent on CV2

T .

Results

Computing the average number of protein molecules
All the models shown in Fig 2 are identical in terms of finding hx(t)i and in principle any one
of them could have been used. We choose to analyze the full model illustrated in Fig 2A. Time
evolution of the statistical moments of x(t) can be obtained from the Kolmogorov forward
equations corresponding to the full model in Fig 2A combined with the cell-division process
described in Fig 3. We refer the reader to [52, 56, 57] for an introduction to moment dynamics
for stochastic and hybrid systems. Analysis in Appendix A in S1 Text shows

dhxi
dt

¼ kxhBi �
k
2

Xn
j¼1

jhxgjji
� �

: ð8Þ

Note that the time-derivative of the mean protein level (first-order moment) is unclosed, in the
sense that, it depends on the second-order moment hxgiji. Typically, approximate closure meth-
ods are used to solve moments in such cases [52, 57–62]. However, the fact that gij is binary can
be exploited to automatically close moment dynamics. In particular, since gij 2 {0, 1}

hgnij xmi ¼ hgijxmi; n 2 f1; 2; . . .g ð9Þ

for any non-negative integerm. Moreover, as only a single state gij can be 1 at any time

hgijgrqxmi ¼ 0; if i 6¼ r or j 6¼ q: ð10Þ
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Using Eqs (9) and (10), the time evolutions of hgiji and hxgiji are obtained as
dhgi1i
dt

¼ kpi
Xn
j¼1

ðjhgjjiÞ � ikhgi1i; ð11Þ

dhgiji
dt

¼ ikhgiðj�1Þi � ikhgiji; j ¼ f2; . . . ; ig; ð12Þ

dhxgi1i
dt

¼ kxhBihgi1i þ
k
2
pi
Xn
j¼1

ðjhxgjjiÞ � ikhxgi1i; ð13Þ

dhxgiji
dt

¼ kxhBihgiji � ikhxgiji þ ikhxgiðj�1Þi; j ¼ f2; . . . ; ig ð14Þ

and only depend on hgiji and hxgiji (see Appendix A in S1 Text). Thus, Eqs (8) and (11)–(14)
constitute a closed system of linear differential equations from which moments can be com-
puted exactly.

To obtain an analytical formula for the average number of proteins, we start by performing
a steady-state analysis of Eq (8) that yields

Xn
j¼1

jhxgjji
� �

¼ 2kxhBi
k

; ð15Þ

where h:i denotes the expected value in the limit t!1. Using Eq (15), hxgi1i is determined

from Eq (13), and then all moments hxgiji are obtained recursively by performing a steady-

state analysis of Eq (14) for j = {2, . . ., i}. This analysis results in

hxgiji ¼
kxhBi
ik

pi 1þ j
i

� �
: ð16Þ

Using Eqs (7), (16) and the fact that
Pn

i¼1

Pi
j¼1 gij ¼ 1 we obtain the following expression for

the mean protein level

hxi ¼ x
Xn
i¼1

Xi

j¼1

gij

* +
¼
Xn
i¼1

Xi

j¼1

hxgiji ¼
kxhBihTi 3þ CV2

T

� 	
2

: ð17Þ

It is important to point that Eq (17) holds irrespective of the complexity, i.e., the number of
states Gij used in the phase-type distribution to approximate the cell-cycle time distribution. As

expected, hxi increases linearly with the average cell-cycle time duration hTi with longer cell
cycles resulting in more accumulation of proteins. Consistent with previous findings, Eq (17)
shows that the mean protein level is also affected by the randomness in the cell-cycle times

ðCV2
TÞ [40, 63]. For example, hxi reduces by 25% as T changes from being exponentially dis-

tributed ðCV2
T ¼ 1Þ to periodic ðCV2

T ¼ 0Þ for fixed hTi. Next, we determine the noise in pro-
tein copy numbers, as quantified by the squared coefficient of variation.

Computing the protein noise level
Recall that the full model introduced in Fig 2A has three distinct noise mechanisms. Our strat-
egy for computing the protein noise level is to first analyze the model with a single noise source,
and then consider models with two and three sources. As shown below, this approach provides
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a systematic dissection of the protein noise level into components representing contributions
from different mechanisms.

Contribution from randomness in cell-cycle times. We begin with the model shown in
Fig 2B, where noise comes from a single source—random cell-division events. For this model,
the time evolution of the second-order moment of the protein copy number is obtained as

dhx2i
dt

¼ 2kxhBihxi �
3k
4

Xn
j¼1

jhx2gjji
� �

; ð18Þ

and depends on third-order moments hx2 gjji (see Appendix B in S1 Text). Using the approach
introduced earlier for obtaining the mean protein level, we close moment equations by writing
the time evolution of moments hx2 giji. Using Eqs (9) and (10)

dhx2gi1i
dt

¼ 2kxhBihxgi1i þ
k
4
pi

Xn

j¼1

ðjhx2gjjiÞ � ikhx2gi1i; ð19Þ

dhx2giji
dt

¼ 2kxhBihxgiji � ikhx2giji þ ikhx2gði�1Þji; j ¼ f2; . . .; ig: ð20Þ

Note that the moment dynamics for hxi and hxgiji obtained in the previous section (Eqs (8),
(13) and (14)) are identical for all the models in Fig 2, irrespective of whether the noise mecha-
nism is modeled deterministically or stochastically. Eqs (8), (11)–(14) and (18)–(20) represent
a closed set of linear differential equations and their steady-state analysis yields

hx2giji ¼
k2xhBi2hTi 3þ CV2

T

� 	
3ik

pi þ
2k2xhBi2
i2k2

j2 þ 2ijþ j
2i

� �
pi: ð21Þ

From Eq (21)

hx2i ¼ x2
Xn

i¼1

Xi

j¼1

gij

* +
¼
Xn

i¼1

Xi

j¼1

hx2giji ¼ k2xhBi2
hT3i þ 4CV2

ThTi3 þ 6hTi3
3hTi ; ð22Þ

hT3i ¼ 1þ 3CV2
T þ 2

Xn

i¼1

pi
i2

 !
hTi3: ð23Þ

Using Eq (22) and the mean protein count quantified in Eq (17), we obtain the following
squared coefficient of variation

CV2
E ¼ 1

27
þ
4 9 hT3i

hTi3 � 9� 6CV2
T � 7CV4

T

� �
27 3þ CV2

T

� 	2 ; ð24Þ

where CV2
E represents the noise contribution from random cell-division events. Since cell divi-

sion is a global event that affects expression of all genes, this noise contribution can also be
referred to as extrinsic noise [49, 64–67]. In reality, there would be other sources of extrinsic
noise, such as, fluctuations in the gene-expression machinery that we have ignored in this
analysis.

Note that CV2
E ! 1=27 as T approaches a delta distribution, i.e., cell divisions occur at fixed

time intervals. We discuss simplifications of Eq (24) in various limits. For example, if the time
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taken to complete cell cycle is lognormally distributed, then

hT3i
hTi3 ¼ 1þ CV2

T

� 	3 ) CV2
E ¼ 1

27
þ 4 21CV2

T þ 20CV4
T þ 9CV6

T

� 	
27 3þ CV2

T

� 	2 ð25Þ

and extrinsic noise monotonically increases with CV2
T . If fluctuations in T around hTi are

small, then using Taylor series

hT3i=hTi3 � 1þ 3CV2
T : ð26Þ

Substituting Eq (26) in Eq (24) and ignoring CV4
T and higher order terms yields

CV2
E � 1

27
þ 28CV2

T

81
; ð27Þ

where the first term is the extrinsic noise for CV2
T ! 0 and the second term is the additional

noise due to random cell-division events.
Contribution from partitioning errors. Next, we consider the model illustrated in Fig 2C

with both random cell-division events and partitioning of protein between the two daughter
cells. Thus, the protein noise level here represents the contribution from both these sources.
Analysis in Appendix C in S1 Text shows that the time evolution of hx2i and hx2 giji are given
by

dhx2i
dt

¼ 2kxhBihxi þ
k
4
a
Xn
j¼1

ðjhxgjjiÞ �
3k
4

Xn
j¼1

ðjhx2gjjiÞ; ð28Þ

dhx2gi1i
dt

¼ 2kxhBihxgi1i þ
k
4
pi
Xn
j¼1

ðjhx2gjjiÞ þ
k
4
api
Xn
j¼1

ðjhxgjjiÞ � ikhx2gi1i; ð29Þ

dhx2gi1i
dt

¼ 2kxhBihxgiji � ikhx2giji þ ikhx2gði�1Þji; j ¼ f2; . . . ; ig: ð30Þ

Note that Eqs (28) and (29) are slightly different from their counterparts obtained in the previ-
ous section (Eqs (18) and (19)) with additional terms that depend on α, where α quantifies the
degree of partitioning error as defined in Eq (5). As expected, Eqs (28) and (29) reduce to Eqs

(18) and (19) when α = 0 (i.e., deterministic partitioning). Computing hx2giji by performing a

steady-state analysis of Eqs (28)–(30) and using a similar approach as in Eq (22) we obtain

hx2i ¼ k2xhBi2
hT3i þ 4CV2

ThTi3 þ 6hTi3
3hTi þ 2akxhBihTi

3
: ð31Þ

Finding CV2 of the protein level and subtracting the extrinsic noise found in Eq (24) yields

CV2
R ¼ 4a

3ð3þ CV2
TÞ

1

hxi ; ð32Þ

where CV2
R represents the contribution of partitioning errors to the protein noise level. Intrigu-

ingly, while CV2
R increases with α, it decrease with CV2

T . Thus, as cell-division times become

more random for a fixed hTi and hxi, the noise contribution from partitioning errors decrease.
It turns out that this dependence of CV2

R on CVT is a direct result of the second equation in Eq
(5), where stochasticity in the partitioning process increases linearly with x(ts), the number of
protein molecules just before division. Based on Eq (17), one needs to reduce kx or hBi to
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maintain a fixed hxi for increasing randomness in cell-division times. Since the average num-
ber of protein molecules just before division is 2kxhBihTi (see Appendix D in S1 Text), a reduc-
tion in kx or hBi results in a lower number of protein molecules before division, and hence,
lesser noise from partitioning as per Eq (5) and a smaller CV2

R . This reasoning is supported by
the fact that if we redefine the noise in the partitioning process to make it independent of x(ts),
i.e. modify Eq (5) as

hxþðtsÞjxðtsÞi ¼
xðtsÞ
2

; x2þðtsÞ � hxþðtsÞi2jxðtsÞ
� � ¼ a; ð33Þ

then the noise contribution from partitioning errors is given by

CV2
R ¼ 4a

3

1

hxi2 ; ð34Þ

and the dependency of CV2
R on CVT disappears (Appendix D in S1 Text).

Contribution from stochastic expression. Finally, we consider the full model in Fig 2A
with all the three different noise sources. For this model, moment dynamics is obtained as (see
Appendix E in S1 Text)

dhx2i
dt

¼ kxhB2i þ 2kxhBihxi þ
k
4
a
Xn
j¼1

ðjhxgjjiÞ �
3k
4

Xn
j¼1

ðjhx2gjjiÞ; ð35Þ

dhx2gi1i
dt

¼ kxhB2ihgi1i þ 2kxhBihxgi1i þ
k
4
pi
Xn
j¼1

ðjhx2gjjiÞ þ
k
4
api
Xn
j¼1

ðjhxgjjiÞ � ikhx2gi1i; ð36Þ

dhx2giji
dt

¼ kxhB2ihgiji þ 2kxhBihxgiji � ikhx2giji þ ikhx2gði�1Þji; j ¼ f2; . . . ; ig: ð37Þ

Compared to Eqs (28)–(30), (35)–(37) have additional terms of the form kxhB2i, where hB2i
is the second-order moment of the protein burst size in Eq (1). Performing an identical analysis
as before we obtain

hx2i ¼ k2xhBi2
hT3i þ 4CV2

ThTi3 þ 6hTi3
3hTi þ 2akxhBihTi

3
þ kxhB2ihTið3CV2

T þ 5Þ
2

; ð38Þ

which yields the following total protein noise level

CV2 ¼ CV2
E þ CV2

R þ CV2
P ¼ CV2

E þ
4a

3ð3þ CV2
TÞ

1

hxi

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{Partitioning noise ðCV2
RÞ

þ 3CV2
T þ 5

3ð3þ CV2
TÞ
hB2i
hBi

1

hxi

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Production noise ðCV2
P Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Intrinsic noise

ð39Þ

that can be decomposed into three terms. The first term CV2
E represents the contribution from

random cell-division events and is given by Eq (24). The second term CV2
R is the contribution

from partitioning errors determined in the previous section (partitioning noise), and the final
term CV2

P is the additional noise representing the contribution from stochastic expression (pro-
duction noise). A common approach to study gene expression noise is to decompose it into
intrinsic and extrinsic components. These components are obtained experimentally using the
dual-color assay that measures the correlation in the expression of two identical copies of the
gene [49]. As per this definition, CV2

E represents the extrinsic noise as random cell-division
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events are common to all genes and makes expression levels more correlated in individual cells.
In contrast, the contributions from noisy production and partitioning represent the intrinsic
noise as they are specific to an individual gene and make expression levels less correlated.

An interesting observation from Eq (39) is that CV2
T has opposite effects on CV2

R and CV
2
P

(for fixed mean protein level). While CV2
R monotonically decreases with increasing CV2

T , CV
2
P

increases with CV2
T . Thus, if hxi is small and α is large, then the noise contributed from parti-

tioning dominates the total noise, and making cell-cycle duration more random will reduce the
total noise. However, since both CV2

E and CV
2
P are monotonically increasing functions of CV2

T ,
the total noise will begin to increase with CV2

T once these noise sources become dominant. It
turns out that in certain cases the intrinsic noise becomes invariant of CV2

T . For example, when
B = 1 with probability one, i.e., proteins are synthesized one at a time at exponentially distrib-
uted time intervals and α = 1 (binomial partitioning)

CV2 ¼ CV2
E þ

4

3ð3þ CV2
TÞ

1

hxi þ
3CV2

T þ 5

3ð3þ CV2
TÞ

1

hxi ¼ CV2
E þ

1

hxi : ð40Þ

In this limit the intrinsic noise is always 1/Mean irrespective of the cell-cycle time distribution
T [33]. Note that the average number of proteins itself depends on T as shown in Eq (17).
Another important limit is CV2

T ! 0, in which case Eq (39) reduces to

CV2 � 1
27

z}|{CV2
E

|ffl{zffl}
Extrinsicnoise

þ 4a
9

1

hxi

zfflffl}|fflffl{CV2
R

þ 5
9
hB2i
hBi

1

hxi

zfflfflfflfflffl}|fflfflfflfflffl{CV2
P

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Intrinsicnoise

; ð41Þ

and is similar to the result obtained in [38] for deterministic cell-division times and binomial
partitioning.

Fig 4 shows how different protein noise components change as a function of the mean pro-
tein level as the gene’s transcription rate kx is modulated. The extrinsic noise is primarily deter-
mined by the distribution of the cell-cycle time and is completely independent of the mean. In
contrast, both CV2

R and CV
2
P scale inversely with the mean, albeit with different scaling factors

(Fig 4). This observation is particularly important since many single-cell studies in E. coli, yeast
and mammalian cells have found the protein noise levels to scale inversely with the mean
across different genes [68–71]. Based on this scaling it is often assumed that the observed cell-
to-cell variability in protein copy numbers is a result of stochastic expression. However, as our
results show, noise generated thorough partitioning errors is also consistent with these experi-
mental observations and it may be impossible to distinguish between these two noise mecha-
nisms based on protein CV2 versus mean plots unless α is known.

Quantifying the effects of gene duplication on protein noise
The full model introduced in Fig 2 assumes that the transcription rate (i.e., the protein burst
arrival rate) is constant throughout the cell cycle. This model is now extended to incorporate
gene duplication during cell cycle, which increases the burst arrival (transcription) rate by f
times (Fig 5). Note that due to gene dosage compensation, doubling the genome does not
always correspond to f = 2 [72–74]. If f> 1, then accumulation of proteins will be bilinear as
illustrated in Fig 1. As before, we again take a phenomenological approach to model the timing
of gene duplication. The cell-cycle time T is divided into two intervals: time from the start of
cell cycle to gene duplication (T1), and time from gene duplication to cell division (T2). T1 and
T2 are independent random variables, each drawn from a mixture of Erlang distributions (see
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Fig. B in S1 Text). The mean cell-cycle duration and its noise can be expressed as

hTi ¼ hT1i þ hT2i; b ¼ hT1i
hTi ; CV2

T ¼ b2CV2
T1
þ ð1� bÞ2CV2

T2
; ð42Þ

where CV2
X denotes the squared coefficient of variation of the random variable X. An important

variable in this formulation is β, which represents the average time of gene duplication normal-
ized by the mean cell-cycle time. Thus, β values close to 0 (1) imply that the gene is duplicated

Fig 5. Model illustrating stochastic expression together with random gene-duplication and cell-
division events. At the start of cell cycle, protein production occurs in stochastic bursts with rate kx. Genome
duplication occurs at a random point T1 within the cell cycle and increases the burst arrival rate to fkx (f > 1).
Cell division occurs after time T2 from genome duplication, at which point the burst arrival rate reverts back to
kx and proteins are randomly partitioned between cells based on Eq (4).

doi:10.1371/journal.pcbi.1004972.g005

Fig 4. Scaling of noise as a function of the mean protein level for different mechanisms. The
contribution of random cell-division events to the noise in protein copy numbers (extrinsic noise) is invariant of
the mean. In contrast, contributions from partitioning errors at the time of cell division (partitioning noise) and
stochastic expression (production noise) scale inversely with the mean. The scaling factors are shown as a
function of the protein random burst size B, noise in cell-cycle time (CV 2

T ) and magnitude of partitioning errors
quantified by α (see Eq (5)). With increasing mean level the total noise first decreases and then reaches a
baseline that corresponds to extrinsic noise. For this plot, B is assumed to be geometrically-distributed with
mean hBi = 1.5, CV2

T ¼ 0:05 and α = 1 (i.e., binomial partitioning).

doi:10.1371/journal.pcbi.1004972.g004
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early (late) in the cell-cycle process. Moreover, the noise in the gene-duplication time is con-
trolled via CV2

T1
.

We refer the reader to Appendix F in S1 Text for a detailed analysis of the model in Fig 5
and only present the main results on the protein mean and noise levels. The steady-state mean
protein count is given by

hxi ¼
kxhBihT1i 2f ð1� bÞ þ 3bþ bCV2

T1

� �
2

þ
kxhBihT2i 3f ð1� bÞ þ 4bþ f ð1� bÞCV2

T2

� �
2

;

ð43Þ

and decreases with β, i.e., a gene that duplicates early has on average, more number of proteins.
When β = 1, then the transcription rate is kx throughout the cell cycle and we recover the mean
protein level obtained in Eq (17). Similarly, when β = 0 the transcription rate is fkx and we obtain
f times of the amount as in Eq (17). As per our earlier observation, more randomness in the tim-

ing of genome duplication and cell division (i.e., higher CV2
T1
and CV2

T2
values) increases hxi.

Our analysis shows that the total protein noise level can be decomposed into three compo-
nents

CV2 ¼ CV2
E þ CV2

R þ CV2
P ð44Þ

where CV2
E is the extrinsic noise from random genome-duplication/cell-division events, and

the sum of the contributions from partitioning errors (CV2
R) and stochastic expression (CV2

P) is
the intrinsic noise. We refer the reader to Appendix F in S1 Text for noise formulas for any f,
and only present formulas for f = 2 here. In this case, the intrinsic noise is obtained as

CV2
R þ CV2

P ¼ 4að2� bÞ
3 ðb2 � 4bþ 6Þ þ b2CV2

T1
þ 2ð1� bÞ2CV2

T2

� � 1

hxi

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{CV2
R

þ ð10� 8bþ 3b2Þ þ 6ð1� bÞ2CV2
T2
þ 3b2CV2

T1

3 ðb2 � 4bþ 6Þ þ b2CV2
T1
þ 2ð1� bÞ2CV2

T2

� � hB2i
hBi

1

hxi

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{CV2
P

:

ð45Þ

Note that for β = 0 and 1, we recover the intrinsic noise level in Eq (39) from Eq (45). Inter-
estingly, for B = 1 with probability 1 and α = 1, the intrinsic noise is always 1/Mean irrespective
of the values chosen for CV2

T1
, CV2

T2
and β. For high precision in the timing of cell-cycle events

(CVT1
! 0, CVT2

! 0)

CV 2 � 4� 3ðb� 2Þ2b2

3 b2 � 4bþ 6
� 	2
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{CV2

E

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Extrinsicnoise

þ 4að2� bÞ
3 b2 � 4bþ 6
� 	 1

hxi

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{CV2
R

þð10� 8bþ 3b2Þ
3 b2 � 4bþ 6
� 	 hB2i

hBi
1

hxi

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{CV2
P

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Intrinsicnoise

; ð46Þ

where mean protein level is given by

hxi � kxhBihT1i 4� bð Þ
2

þ kxhBihT2i 3� bð Þ: ð47Þ

We investigate how different noise components in Eq (46) vary with β as the mean protein
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level is held fixed by changing kx. Fig 6 shows that CV2
P follows a U-shaped profile with the

optima occurring at b ¼ 2� ffiffiffi
2

p � 0:6 and the corresponding minimum value being� 5%
lower than its value at β = 0. An implication of this result is that if stochastic expression is the
dominant noise source, then gene duplication can result in slightly lower protein noise levels.

In contrast to CV2
P , CV

2
R has a maxima at b ¼ 2� ffiffiffi

2
p

which is� 6% higher than its value at
β = 0 (Fig 6). Analysis in Appendix F5 in S1 Text reveals that CV2

R and CV
2
P follow the same

qualitative shapes as in Fig 6 for any CV2
T1
and CV2

T2
. Interestingly, when CV2

T1
¼ CV2

T2
, the

maximum and minimum values of CV2
R and CV

2
P always occur at b ¼ 2� ffiffiffi

2
p

albeit with dif-
ferent optimal values than Fig 6 (see Fig. C in S1 Text). For example, if CV2

T1
¼ CV2

T2
¼ 1 (i.e.,

exponentially distributed T1 and T2), then the maximum value of CV2
R is 20% higher and the

minimum value of CV2
P is 10% lower than their respective value for β = 0. Given that the effect

of changing β on CV2
P and CV

2
R is small and antagonistic, the overall affect of genome duplica-

tion on intrinsic noise may be minimal and hard to detect experimentally.
While the above analysis is for a stable protein, a natural question to ask is how would these

results change for an unstable protein? Consider an unstable protein with half-life considerably
shorter than the cell-cycle duration. This rapid turnover ensures that the protein level equili-
brates instantaneously after cell-division and gene-duplication events. Let γx denote the protein

decay rate. Then, the mean protein level before and after genome duplication is hxi ¼ kxhBi=gx
and hxi ¼ 2kxhBi=gx, respectively. Note that in the limit of large γx there is no noise contribu-
tion from partitioning errors since errors incurred at the time of cell division would be instan-
taneously corrected. The extrinsic noise, which can be interpreted as the protein noise level for
deterministic protein production and decay is obtained as (for analysis on general f see Appen-
dix G in S1 Text)

CV2
E ¼ ð1� bÞb

ð2� bÞ2 ; ð48Þ

Fig 6. Contributions from different noise sources as a function of the timing of genome duplication for
CV 2

T1
¼ CV 2

T2
¼ 0:05. Different noise components in Eq (46) are plotted as a function of β, which represents

the fraction of time within the cell cycle at which gene duplication occurs. The mean protein level is held
constant by simultaneously changing the transcription rate kx. Noise levels are normalized by their respective
value at β = 0. The noise contribution from partitioning errors is maximized at β� 0.6. In contrast, the
contribution from stochastic expression is minimum at β� 0.6. The extrinsic noise contribution from random
gene-duplication and cell-division events is maximum at β� 0.2 and minimum at β� 0.8. For this plot, the
mean of the protein is 170 molecules per cell; and the bursts are geometrically distributed with hBi = 10.

doi:10.1371/journal.pcbi.1004972.g006
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which is similar to noise level reported in [75]. When β = 0 or 1, the transcription rate and the
protein level are constant within the cell cycle and CV2

E ¼ 0. Moreover, CV2
E is maximized at

β = 2/3 with a value of 1/8. Thus, in contrast to a stable protein, extrinsic noise in an unstable
protein is strongly dependent on the timing of gene duplication. Next, consider the intrinsic
noise component. Analysis in Appendix G in S1 Text shows that the noise contribution from
random protein production and decay is

CV2
P ¼ 1

2

hB2i
hBi þ 1

� �
1

hxi ; hxi ¼ kxhBið2� bÞ
gx

: ð49Þ

While the mean protein level is strongly dependent on β, the intrinsic noise Fano factor¼
CV2

P � hxi is independent of it. Thus, similar to what was observed for a stable protein, the

intrinsic noise in an unstable protein is invariant of β for a fixed hxi.

Discussion
We have investigated a model of protein expression in bursts coupled to discrete gene-duplica-
tion and cell-division events. The novelty of our modeling framework lies in describing the size
of protein bursts B, the time between cell birth and gene duplication T1, the time between gene
duplication and cell division T2, and partitioning of molecules during cell division through
general statistical distributions. Exact formulas connecting the protein mean and noise levels to
these underlying distributions were derived. Furthermore, the protein noise level, as measured
by the squared coefficient of variation, was decomposed into three components representing
contributions from gene-duplication/cell-division events, stochastic expression and random
partitioning. While the first component is independent of the mean protein level, the other two
components are inversely proportional to it. Some important insights are as follows:

• The mean protein level is affected by both the first and second-order moments of T1 and T2.
In particular, randomness in these times (for a fixed mean) increases the average protein
count. This increase can be attributed to the fact that increasing cell-cycle time variations
leads to positively skewed distributions, making longer cell cycles (and hence higher protein
accumulation) more likely.

• Random gene-duplication/cell-division events create an extrinsic noise term which is
completely determined by moments of T1 and T2 up to order three. Interestingly, noise in the
timing of these events also critically affects the intrinsic noise contributions from stochastic
expression and partitioning. Hence, ignoring the effect of cell-cycle time variations, may lead
to erroneous estimation of intrinsic noise.

• The noise contribution from partitioning errors decreases with increasing randomness in T1

and T2. Thus, if hxi is sufficiently small and α is large compared to B in Eq (45), increasing
noise in the timing of cell-cycle events decreases the total noise level.

A key limitation of our approach is to model timing of gene-duplication/cell-division events
through independent random variables. There is always non-zero correlation in the cell-cycle
durations of mother and daughter cells [76–78]. Moreover, in the same cell cycle, times T1 and
T2 could be dependent [79]. While our assumption on independence of timing maybe unrealis-
tic, it played an important role in deriving exact analytical formulas for the protein mean and
noise levels. We have used Monte Carlo simulations to investigate scenarios where T1 and T2, or
successive cell-division events, have memory and are dependent random variables (see Appen-
dix H in S1 Text). Our analysis reveals that the results presented in Figs 4 and 6 hold even when
the assumption of independent timing is perturbed over biologically meaningful parameters.
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Effect of gene duplication on noise level
In this first-of-its-kind study, we have investigated how discrete f-fold changes in the transcrip-
tion rate due to gene duplication affect the intercellular variability in protein levels. Not sur-

prisingly, the timing of genome duplication strongly affects the mean protein level—hxi can
change up to f folds depending on whether the gene duplicates early (β = 0) or late (β = 1) in
the cell cycle. Results show that genome duplication has counter intuitive effects on the protein
noise level (Fig 6). For example, if stochastic expression is the dominant source of noise, then
doubling of transcription due to duplication results in lower noise, as compared to constant
transcription throughout the cell cycle. This is because for the same mean protein level, there
are more burst (transcription) events in the case of genome duplication (f = 2) than constant
transcription (f = 1). For example, consider deterministic timing (CV2

T1
¼ CV2

T2
¼ 0) and gene

duplication in the middle of the cell cycle (β = 0.5). Then, for the case β = 1, there are on aver-

age kxhTi burst events per cell cycle. For the same hxi, there are 1.05kxhTi production events in
the case of gene duplication (β = 0.5). This slight increase in the number of transcription events
leads to better averaging of bursty protein synthesis and lower noise levels. Overall, the effect of
β on different noise component is quite modest: as β varies, noise components deviate at maxi-
mum� 20% from their values at β = 0 (Fig 6). These results are in contrast to the case of an
unstable protein, where noise from the cell-cycle process is strongly dependent on β as shown
in Eq (48).

Noise in synchronized cells
The mathematical framework introduced for modeling timing of cell division can be easily
used to compute noise in synchronized cells. For example, let the cell-cycle duration be an
Erlang distribution with shape parameter n and rate parameter nk (i.e., pn = 1 in Fig 3), which
can be biologically interpreted as cells moving through n cell-cycle stages Gn1, Gn2, . . ., Gnn.
Statistical moments conditioned on the cell-cycle stage Gnj can be obtained using

hxm j gnj ¼ 1i ¼ hgnjxmi
hgnji

; m 2 f1; 2g: ð50Þ

Using Eq (50) and moments hgnjxmi obtained from Eqs (16) and (35)–(37), yields the following

conditional mean

hxjgnj ¼ 1i ¼ kxhBihTi 1þ j
n

� �
; ð51Þ

which increases with cell-cycle stage (i.e., higher values of j). The protein noise level given that
cells are in stage Gnj is given by

CV2jgnj¼1 ≔
hx2jgnj ¼ 1i � hxjgnj ¼ 1i2

hxjgnj ¼ 1i2

¼ nþ 3j

3ðnþ jÞ2
zfflfflfflfflffl}|fflfflfflfflffl{CV2

E

|fflfflfflfflffl{zfflfflfflfflffl}
Extrinsicnoise

þ 2na
3ðnþ jÞ

1

hxjgnji

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{CV2
R

þ nþ 3j
3ðnþ jÞ

hB2i
hBi

1

hxjgnji

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{CV2
P

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Intrinsicnoise

:

ð52Þ

Note that if n is large then the first term, which represents the noise contribution from the cell-
cycle process, is negligible and can be dropped. Interesting, while the noise contribution from
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partitioning errors CV2
R decreases with cell-cycle stage, the noise contribution from stochastic

expression CV2
P increases with j. Moreover, for B = 1 with probability 1 and α = 1, the intrinsic

noise is always 1/Mean irrespective of j. Assuming high n, the noise at cell birth (j = 1) and divi-
sion (j = n) are obtained as

CV2jgn1¼1 ¼
2a
3

1

hxjgn1i

zfflfflfflfflffl}|fflfflfflfflffl{CV2
R

þ 1

3

hB2i
hBi

1

hxjgn1i

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{CV2
P

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Intrinsic noise

ð53Þ

CV2jgnn¼1 ¼
a
3

1

hxjgnni

zfflfflfflffl}|fflfflfflffl{CV2
R

þ 2

3

hB2i
hBi

1

hxjgnni

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{CV2
P

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Intrinsic noise

; ð54Þ

respectively. Thus, measurements of Eqs (53) and (54) by synchronizing cells (or by using cell
size as a proxy for cell-cycle stage) can be used to quantify α and hB2i/hBi, providing a novel
way to separate these noise contributions. Next, we discuss how noise in asynchronous cell can
be used to quantify these parameters.

Parameter inference in asynchronous cells
Simple models of bursty expression and decay predict the distribution of protein levels to be
negative binomial (or gamma distributed in the continuous framework) [80, 81]. These distri-
butions are characterized by two parameter—the burst arrival rate kx and the average burst size
hBi, which can be estimated from measured protein mean and noise levels. This method has
been used for estimating kx and hBi across different genes in E. coli [47, 82]. Our detailed
model that takes into account partitioning errors predicts (ignoring gene-duplication effects)

Intrinsic noise ¼ 4a
3ð3þ CV2

TÞ
1

hxi þ
3CV2

T þ 5

3ð3þ CV2
TÞ

hB2i
hBi

1

hxi : ð55Þ

Using CV2
T⪡1 and a geometrically distributed B [50, 83–85], Eq (55) reduces to

Intrinsic noise ¼ 4a
9

1

hxi þ
5

9

1þ 2hBi
hxi : ð56Þ

Given measurements of intrinsic noise and the mean protein level, hBi can be estimated from
Eq (56) assuming α = 1 (i.e., binomial partitioning). Once hBi is known, kx is obtained from
the mean protein level given by Eq (17). Since for many genes hBi � 0.5–5 [47], the contribu-
tion of the first term in Eq (56) is significant, and ignoring it could lead to overestimation of
hBi. Overestimation would be even more severe if α happen to be much higher than 1, as
would be the case for proteins that form aggregates or multimers [33]. One approach to esti-
mate both hBi and α is to measure intrinsic noise changes in response to perturbing hBi by, for
example, changing the mRNA translation rate through mutations in the ribosomal-binding
sites (RBS). Consider a hypothetical scenario where the Fano Factor (intrinsic noise times the

mean level) is 6. Let mutations in the RBS reduces hxi by 50%, implying a 50% reduction in
hBi. If the Fano factor changes from 6 to 4 due to this mutation, then hBi = 3.6 and hαi = 3.25.
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Our recent work has shown that higher-order statistics of protein levels (i.e., skewness and
kurtosis) or transient changes in protein noise levels in response to blocking transcription pro-
vide additional information for discriminating between noise mechanisms [86, 87]. Up till now
these studies have ignored noise sources in the cell-cycle process. It remains to be seen if such
methods can be used for separating the noise contributions of partitioning errors and stochas-
tic expression to reliably estimate hBi and α.

Integrating cell size and promoter switching
An important limitation of our modeling approach is that it does not take into account the size
of growing cells. Recent experimental studies have provided important insights into the regula-
tory mechanisms controlling cell size [88–91]. More specifically, studies in E. coli and yeast
argue for an “adder”model, where cell-cycle timing is controlled so as to add a constant vol-
ume between cell birth and division [78, 91–93]. Assuming exponential growth, this implies
that the time taken to complete cell cycle is negatively correlated with cell size at birth. More
importantly, cell size also affects gene expression—in mammalian cells transcription rates line-
arly increase with the cell size [94]. Thus, as cells become bigger they also produce more
mRNAs to ensure gene product concentrations remains more or less constant. A main direc-
tion of future work would be to explicitly include cell size with size-dependent expression and
timing of cell division determined by the adder model. This formulation will for the first time,
allow simultaneous investigation of stochasticity in cell size, protein molecular count and
concentration.

Our study ignores genetic promoter switching between active and inactive states, which has
been shown to be a major source of noise in the expression of genes across organisms [95–
104]. Taking into account promote switching is particularly important for genome-duplication
studies, where doubling the number of gene copies could lead to more efficient averaging of
promoter fluctuations. Another direction of future work will be to incorporate this additional
noise source into the modeling framework and investigate its contribution as a function of
gene-duplication timing.
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