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ABSTRACT

Processor architectures have been rapidly evolving for decades. From the intro-

duction of the first multicore processor by IBM in 2001 [2] to the massively parallel

supercomputers of today, the exploitation of parallelism has become increasingly im-

portant, as the clock rates of a single core have plateaued. Heterogeneity is also on

the rise since the revelation that domain-specific pieces of hardware (GPUs) could be

repurposed for generalized parallel computation [10]. This shift has prompted the need

to rethink algorithms, languages, and programming models in order to increase paral-

lelism from a programming standpoint and migrate large scale applications to today’s

massively powerful platforms. This is not a trivial task, as these architectures and sys-

tems are still undergoing constant evolution. More recently, supercomputing centers

are transitioning toward utilizing fat-nodes (nodes with even more cores due to the

presence of multiple accelerators) in order to reduce node count and the overhead asso-

ciated with cross-node communication. For example, Oak Ridge National Laboratory’s

TITAN supercomputer (OLCF-3), which was built in 2011, was comprised of 18,688

nodes, each containing a single NVIDIA Tesla K20x GPU accelerator [60]. In 2018,

less than a decade later, ORNL constructed the Summit supercomputer (OLCF-4),

consisting of 4,608 nodes, each equipped with six NVIDIA Tesla V100 GPU accelera-

tors [67].

The trend toward fat-node based systems illustrates the importance of on-node

programming models. Low-level languages like CUDA and OpenCL offer direct con-

trol over GPU hardware, but they incur a learning curve and lack portability, which

are concerns for application developers. It is a huge time sink to have to learn a

hardware-specific low-level language, port your code using that language, and then

reimplement that same code when a newer GPU (or non-GPU) architecture emerges.
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The demand for portable solutions for programming parallel systems with minimal

programmer overhead lead to the creation of directive-based programming. Directive-

based programming models, such as OpenMP [106] and OpenACC [40, 24, 105], allow

programmers to simply annotate their existing code with statements that describe the

parallelism found within that code. A compiler then translates this into code that

can run on a specified target architecture. This type of programming approach has

become increasingly popular amongst industry scientists [9]. Although directive-based

programming models allow programmers to worry less about programming and more

about science, expressing complex parallel patterns in these models can be a daunting

task, especially when the goal is to achieve the theoretical maximum performance that

today’s hardware platforms are ready to offer. One such parallel pattern commonly

found in scientific applications is called wavefront.

This thesis examines existing state-of-the-art wavefront applications and par-

allelization strategies, which it uses to create a high-level abstraction of wavefront

parallelism and a programming language extension that facilitates an easy adaptation

of such applications in order to expose parallelism on existing and future HPC systems.

This thesis presents an open-source tool called Wavebench, which uses wavefront algo-

rithms commonly found in real-world scientific applications to model the performance

impact of wavefront parallelism on HPC systems. This thesis also uses the insights

gained during the creation of this tool to apply the developed, high-level abstraction

to a real-world case study application called Minisweep: a mini-application represen-

tative of the main computational kernel in Oak Ridge National Laboratory’s Denovo

radiation transport code used for nuclear reactor modeling. The OpenACC imple-

mentation of this abstraction running on NVIDIA’s Volta GPU (present in ORNL’s

Summit supercomputer) boasts an 85.06x speedup over serial code, which is larger

than CUDAs 83.72x speedup over the same serial implementation. This serves as a

proof of concept for the viability of the solutions presented by this thesis.
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Chapter 1

MOTIVATION AND PROBLEM STATEMENT

1.1 Thesis Objective

The objective of this thesis is to explore and develop a high-level programming

abstraction for a complex parallel pattern called wavefront that is commonly found in

real-world scientific applications.

1.2 Contributions

1. Design and create a standardized high-level programming abstraction (language

extension) to be effectively mapped onto heterogeneous parallel architectures for

the wavefront parallel pattern

2. Evaluate this abstraction on multiple state-of-the-art platforms using a tool we

created to model the performance impact of the developed abstraction

3. Apply this abstraction to a real-world scientific application of broad interest

1.3 Organization

This thesis is organized as follows. Chapter 2 will provide background infor-

mation on the state-of-the-art high-level programming models, motivate the need for

extensions, and introduce the wavefront parallel pattern we will examine in order to

meet our goals. Chapter 3 will outline the related work in regards to the wavefront

pattern in the scope of high performance computing. Chapter 4 will outline the au-

thor’s HPC background and past work that led up to this thesis. Chapter 5 will define

the wavefront parallel pattern, as well as outline the goals of this thesis in regards to

extending existing programming models in order to support this pattern. Chapter 6

1



will lay out the strategy the author used to accomplish these goals, and it will also

present a preprocessor that applies appropriate code transformations, which serves as

a proof of concept for the discussed strategy. Chapter 7 presents a tool the author

developed to help model the performance impact of wavefront parallelism using wave-

front algorithms found in many real-world scientific applications. Chapter 8 shows the

author’s methodology at work as the developed abstraction is applied to a real-world

scientific application that is in use today as part of an Exascale project and presents

associated results. Finally, this thesis concludes in Chapter 9.
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Chapter 2

INTRODUCTION

Hardware architectures are rapidly evolving. High performance computing nodes

are becoming increasingly heterogeneous, including the current and anticipated ex-

ascale accelerated node architectures [14], which are expected to contain a mix of

throughput and latency optimized cores [102]. Since throughput cores will be more

numerous on these machines, an application can achieve high performance if its algo-

rithm exhibits a greater degree of parallelism, thus keeping all the cores on the chip

busy. Latency optimized cores, lesser in count, will prioritize serial performance and

deal with expensive memory accesses. Such a balanced mixture of cores is expected to

manage different types of parallelism available in an algorithm. Memory has advanced

as well. 3D memory stacking with memory moving onto the socket provide increased

bandwidth and faster communication.

2.1 On-Node High-Level Programming Models

Such diverse architectures require their own code optimization strategies. Ap-

plication developers prefer a “write-once” code development strategy in which a single

piece of code will execute efficiently and portably on all targeted architectures. How-

ever, it is required that a programming model not be designed with just the underlying

hardware in mind. Its implementation is also expected to address requirements of ap-

plications and its algorithms. The programming language that implements the model

should provide the right abstractions to improve the productivity of scientific develop-

ers. Programmers often resort to a trade-off between achieving portability and high

performance. Why? The issue is two-fold. Adequate application parallelism will not

be exposed on a particular hardware architecture if the algorithm is structured in a way

3



that limits the level of concurrency that a programming model can exploit. Secondly,

a performance-portable single code representation is only possible if the programming

abstractions are carefully crafted in a way that allows the programming models to

provide informative hints to the compilers in order to generate optimized code across

platforms.

Some of the most widely used types of on-node programming models that pro-

vide developers with such abstractions are based on directives: annotations added to

existing serial code used to instruct the compiler as to how the code is meant to run on

parallel architectures. Directives allow us to abstract the rich feature set of hardware

architectures, incrementally improve, port, and maintain the codebase across platforms.

Two of the most widely used directive-based programming models are OpenMP and

OpenACC. OpenMP is a multi-platform, shared memory multiprocessing API that has

been around since 1997 [34]. In 2015, it started supporting offloading features, such

as the ability to target multiple devices within a system [106]. OpenMP 4.5 is being

deployed to applications, e.g., Pseudo-Spectral Direct Numerical Simulation-Combined

Compact Difference (PSDNS-CCD3D) [32], a computational fluid dynamics code on

turbulent flow simulation using GPUs on the ORNL Titan system. OpenACC started

in 2012 as a directive-based model for general purpose GPU (GPGPU) programming,

and it has since been generalized to support many kinds of heterogeneous systems, in-

cluding multi-core CPUs, GPUs, and FPGAs [40, 24]. Since its inception, it has been

widely used to port large-scale applications spanning several domains such as AN-

SYS [95], GAUSSIAN [43], and Icosahedral non-hydrostatic (ICON) [96] to massively

parallel architectures.

2.2 Essential Features of High-Level Programming Models

Directive-based models, along with other types of high-level programming mod-

els, aim to provide developers with four key features: parallelism, performance, pro-

grammability, and portability.
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2.2.1 Parallelism

The stagnation of processor clock rates due to power consumption and cooling

challenges has ended the era of sequential computing. Instead, industry has shifted

its focus to parallel architectures as a way to increase on-chip performance. At the

node level, multi-core processors have become ubiquitous. In addition, enterprise-grade

systems utilize multiple nodes connected via some type of network in order to provide

an additional layer of parallelism and computational power. These “supercomputers”

are representative of the way in which hardware trends are evolving. As a result,

parallelism is the foundation of any modern programming model.

2.2.2 Performance

There are many different types of parallel architectures, such as multi-core

CPUs, Graphics Processing Units (GPUs), and Field-Programmable Gate Arrays (FP-

GAs), all of which benefit from different types of optimizations. A high-level program-

ming model should aim to provide a way for developers to tune their applications to

be performant on the architecture they intend to run their application on. Ideally,

this type of architecture-specific optimization can be handled automatically by the

compiler, requiring only that the programmer specify the target architecture at com-

pile time. This ensures that the code will perform as optimally as manually written,

low-level code specific to that architecture [46].

2.2.3 Programmability

As mentioned in Section 2.2.2, there are many different types of parallel ar-

chitectures. In addition, heterogeneous hardware (hardware that combines elements

of multiple architectures) is becoming increasingly common. Multi-node systems add

an additional layer of complexity to the equation. Programming one node is hard.

Programming many nodes is harder. Programming models must provide developers

with a concise way of representing how their code should run on a parallel system, so

that they only need to write their application once. That code should be generalized
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enough that it can be compiled into machine code that will run on any supported

parallel architecture, including heterogeneous ones. These models should also provide

a method for distributing computational tasks within an application across multiple

nodes, as multi-node systems are becoming more and more common.

2.2.4 Portability

Finally, a programming model should aim to be portable. It is not enough to

simply represent code in a way that is conducive to compilation on existing archi-

tectures. Architectures are constantly evolving, and we cannot predict what future

systems will look like. For example, ORNL’s Titan supercomputer is a GPU-based,

multi-node machine that presented a number of programming challenges when it was

first built [60]. ORNL’s newest machine, Summit [67], adds another layer of complexity

in that each node will be equipped with 6 NVIDIA Volta GPUs, unlike Titan, which

only contained one GPU per node. High-level programming models must be robust

enough to handle these types of evolutionary challenges. An inability to due so moti-

vates the need for changes and/or extensions in order to keep up with future hardware

trends.

2.3 Directive Based Programming Model: OpenACC

The on-node programming model this thesis aims to extend is OpenACC. Ope-

nACC is a performance-portable, directive-based parallel programming model that

targets modern heterogeneous HPC hardware [105]. The compiler directives that it

provides can be used to annotate loops and regions of code that exhibit parallelism.

The programmer can also specify a target at compile time to let the compiler know

what type of hardware is being targeted based on the annotated code regions. Sup-

ported hardware includes multicore CPUs, as well as various types of accelerators,

including Intel’s Xeon Phi and many generations of NVIDIA’s GPUs.

Another advantage of OpenACC is that when targeting accelerators, program-

mers do not have to explicitly manage data movement between the host (CPU) and
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accelerator(s), nor do they have to manually initiate the startup and shutdown of the

accelerator(s). Instead, this is handled by the OpenACC compiler and runtime en-

vironment. These features dramatically reduce the amount of programmer overhead

that is necessary, preserve performance, and allow for the creation of a single, portable

codebase that will run on many different types of HPC hardware and systems. This

section will present key features of OpenACC’s execution and memory models that are

used throughout this thesis.

2.3.1 OpenACC Execution Model

OpenACC employs a host-directed execution model. What this means is that

most of a programmer’s application executes within a host thread, and compute inten-

sive parallel regions (denoted by directive annotations) are offloaded either to multiple

host cores (multicore CPU) or an accelerator (such as a GPU). The OpenACC spec-

ification refers to the host thread as the host and the parallel hardware, whether it

be a multicore CPU or an accelerator, as the device. The job of the device is to

execute portions of the code that are annotated with directives. These portions can

be parallel regions, which are regions of code that contain parallel loops specified by

the programmer, kernels regions, which contain loops to be executed as kernels that

are determined by the compiler to be parallelizable, or serial regions, which contain

blocks of sequential code.

Since many parallel regions contain multi-dimensional loop nests and modern

accelerators and multicore CPUs support multiple levels of parallelism, OpenACC

provides clauses the programmer can use within a directive to describe which portions

of a loop nest should execute at what level. Accelerators and multicore CPUs both

support coarse-grained parallelism: fully parallel execution across execution units with

limited synchronization support. OpenACC exposes coarse-grained parallelism via the

gang clause. Most accelerators and some multicore CPUs also support fine-grained

parallelism: multiple execution threads within a single execution unit. OpenACC

exposes fine-grained parallelism via the worker clause. Last, most accelerators and
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multicore CPUs support SIMD operations within execution units. OpenACC exposes

these operations via the vector clause. It is the job of the programmer to understand

the difference between these levels of parallelism and know which portions of their code

can execute in what manner in order to properly annotate their source code for parallel

execution.

Another useful feature of OpenACC is its async clause, which can be used to

allow the host and device to execute portions of code asynchronously. This is useful

in a couple of ways. First, it can be used to allow multiple parallel regions to execute

asynchronously on a device (or across multiple devices). This is appropriate when a

single parallel compute region is unable to utilize all available computational power a

device has to offer or when there is so much work in a single compute region that the

programmer decides it would be advantageous to split it up and run portions of that

region on different devices, yielding additional parallelism. Second, it can be useful

in overcoming some of the overhead associated with data movement between the host

and device. By allowing the host thread to continue execution while a parallel region

is offloaded to the device, the host thread can begin to transfer data to the device that

will be needed for a compute region yet to run, rather than waiting for an unrelated

compute region to complete execution before beginning the data transfer.

2.3.2 OpenACC Memory Model

One defining characteristic of a host/device execution model is that device mem-

ory may be separate from host memory. For example, GPUs have their own onboard

memory, which is separate from the rest of the system’s memory. In such a system,

the host thread is unable to read or write device memory, since it is not part of the

host thread’s virtual memory space, and the device is similarly unable to read or write

host memory in most cases. Certain devices do provide the ability to read and write

host memory, but such operations typically incur a significant performance penalty.

Instead, all data movement between host and device memory must be performed by

the host thread through explicit system calls.
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Fortunately, OpenACC provides directives for managing data movement be-

tween the host and device. The compiler takes care of generating the appropriate

system calls, but the programmer needs to be aware of what is actually happening

on the back end. Typically, data transfer overhead is where most parallel applications

that utilize an accelerator suffer performance losses. If data movement is not efficiently

managed, these losses can even be so big as to outweigh the computational benefit of

using the accelerator, resulting in a slowdown of overall application performance. De-

vice memory also tends to be much smaller than host memory, so there is a limit to how

much data can be offloaded onto an accelerator, which in turn prohibits the amount of

associated computation that can be offloaded via a single data transfer.

Some types of accelerators (such as GPUs) employ what is known as a weak

memory model: they do not support memory coherence across different threads. This

can create issues where results cannot be guaranteed for each execution of the same

program. For example, if two threads within a parallel compute region write to the

same location in memory, results may differ. Compilers usually can detect such cases,

but it is still possible to write a compute region where this behavior exists, and thus,

produces inaccurate results. Similarly, programmers need to be aware of whether data

synchronization between the host and device is necessary. If a compute region offloads

data to the device and that same data is read by the host during execution later on,

it is important to ensure that the data has been synchronized back on the host-side

before the host thread reaches that point in execution. This can become a problem

when haphazardly utilizing OpenACC’s async compute clause. OpenACC provides a

number of clauses for use with its data directive in order to manage data transfer and

synchronization between the host and device.

2.4 Complex Parallel Pattern: Wavefront

Despite the widespread impact that existing high-level programming models

have had on HPC in recent years, there still remains a gap in the way that they do

not adequately expose and parallelize some of the complex algorithms often found
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in scientific applications. One such case is a wavefront-based algorithm that is of

critical importance to solving scientific problems in multiple science domains. They are

useful for problems for which the result values that are computed have dependencies,

requiring that results be computed in stages (wavefronts), for which each stage’s results

depends on results computed in previous stages. The result is a limited amount of

parallelism; all the elements of each stage can be computed in parallel as long as their

dependencies from the previous stage are satisfied. Some examples of applications

that can expose and exploit this type of wavefront parallelism include linear systems

solvers, such as the Gauss-Seidel method [61], genome sequencing algorithms, such as

Smith-Waterman [104], characterisation of chromosomal rearrangement, such as the

Juicer/HiC tool [38, 51], and radiation transport codes [100, 66, 8].

This thesis aims to develop a viable extension to a directive-based programming

model, by creating a high-level representation of the wavefront parallel pattern. Al-

though our developed extension uses OpenACC, it can be considered for OpenMP as

well without needing to change its functionality. Currently, such an abstraction does

not exist, despite the prevalence of wavefront parallelism found in real-world applica-

tions. We support our abstraction with a tool we developed, called Wavebench, that is

used to model the performance of different types of wavefront applications on hardware

architectures found in state-of-the-art HPC systems. Our Wavebench tool features a

collection of wavefront algorithms that are representative of the different types of com-

putation found in the aforementioned applications. Throughout, we maintain a single

codebase that can be used to target different types of existing HPC systems, ranging

from multicore CPU-based systems, to heterogeneous GPU-based systems.

We also present a real-world case study application that is illustrative of the

complexities in a wavefront-based algorithm: the Minisweep proxy application [78].

Parallelizing this application using current directive-based APIs will help reveal the

gaps in their expressivity and features. We address this issue by designing and envi-

sioning an abstract parallelism model that represents these gaps with a combination
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of notations. Integrating these notations into a programming language are key to ex-

posing and mapping wavefront-based parallelism across HPC hardware architectures.

11



Chapter 3

LITERATURE REVIEW/RELATED WORK

This chapter presents work related to the prior research leading up to this thesis,

as well as work that helps motivate the goals of this thesis. The discussed topics include

auto-tuning code targeting accelerators, accelerating malware detection algorithms,

and leveraging heterogeneous hardware in order to solve Big Data problems.

3.1 Performance Optimization and Auto-Tuning of Code Targeting Accel-

erators

Performance-portable code generation has been a popular field of research for

decades. There are a number of library generators that automatically produce high-

performance kernels, including FFT [41, 88, 119], BLAS [115, 123, 27, 44, 49], Sparse

Numerical Computation [56, 112, 77, 22, 73], and domain specific routines [21, 31,

48]. Other research expands automatic code generation to routines whose performance

depends not only on architectural features, but also on input characteristics [74, 75, 50].

These systems are a step toward automatically generating performance-portable code

for different architectures. However, these prior works have been largely focused on

small domain-specific kernels.

There is also related work on GPU code optimization that looked at a number

of manual optimizations of CUDA kernels, including tiling, pre-fetching, and full loop

unrolling within CUDA kernels [93]. Some researchers looked at varying thread block

dimensions [76]. Others studied loop unrolling extensively as optimizations in CUDA

kernels, but they were concerned with improving the performance of a single applica-

tion [20]. A domain-specific auto-tuning framework for sparse matrix-vector multipli-

cation on the GPU exists [30], and 3D-FFT of varying transform sizes on GPUs has
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been optimized using auto-tuning [82]. These two related works applied auto-tuning to

specific applications, but not in a general sense. Another related work is the CUDA-

CHiLL project, which can translate loop nests to high performance CUDA code [92].

The developers of this project provide a programming language interface that uses an

embedded scripting language to express transformations or recipes. While this work

supports CUDA transformations, it relies on the creation of an external script, which

is not as convenient as using a directive-based approach like OpenMP or OpenACC.

The work presented here provides additional motivation behind the notion that

code transformations can provide huge performance benefits to applications. However,

these code transformations prove inconvient to implement most of the time. In order for

high-level programming models to grow in popularity, they have to begin to tackle some

of this more complex behavior without creating considerable additional programmer

overhead.

3.2 Malware Detection Strategies

In this section, we examine previous works on malware detection strategies that

make use of various compiler representations and techniques (particularly graphs), and

graph kernel parallelization. The work presented here proves that while these strategies

are viable, they are very computationally intensive. Utilizing accelerators can help

overcome the computational overhead created by these strategies, but programming

these accelerators proves to be challenging.

3.2.1 Graph-Based Malware Detection

Solving the problem of malware detection by examining structural and behav-

ior qualities of applications can be seen as a compiler techniques issue. In most cases,

source code is not available, so some type of decompiler is required. Additionally, com-

piler representations and techniques can be used to analyze an applications decompiled

code. For example, DroidMiner uses static analysis to automatically mine malicious

program logic from known Android malware [122]. Behavior graphs are constructed
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from malware in DroidMiner, and these graphs are flattened into feature vectors that

are then fed into several machine learning classifiers including naive Bayes, SVM, deci-

sion trees, and random forests for malware detection. The best algorithm of DroidMiner

can achieve a 95.3% detection rate on a dataset of 2466 malware. It can also reach

92% for classifying malware into its proper family.

Researchers at Los Alamos National Laboratory and the University of Tech-

nology in Iraq proposed algorithms for malware detection that make use of graph-

based representations of instruction traces of binaries [13, 11]. Each graph represents

a Markov Chain, where the vertices represent instructions. They use a combination

of different graph kernels to construct a similarity matrix between these graphs. They

then feed this resulting similarity matrix to an SVM to perform classification. These

papers does not address the possibility of optimizing or parallelizing these algorithms,

which exceeds O(n2).

Researchers at the University of Gttingen proposed a method for malware de-

tection based on efficient embedding of Function Call Graphs (FCG), which are high

level characteristics of the applications [42]. They extracted function call graphs using

the Androguard framework [36]. The nodes in the graph were labeled according to the

type of instructions contained in their respective functions. A neighborhood hash graph

kernel was applied to evaluate the count of identical substructures in two graphs. Fi-

nally, an SVM algorithm was used for classification. In an evaluation of 12,158 malware

samples, the proposed method detected 89% of the malware. The work discussed in

Section 4.2 presents a similar framework that achieves higher accuracy and yields bet-

ter performance due to a parallel implementation of the graph kernel used to construct

the similarity matrix that is fed into the SVM [98], thus highlighting the importance

of utilizing available accelerators.
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3.2.2 Graph Kernel Parallelization

There is a limited amount of research available that focuses on parallel imple-

mentations of graph kernels. Researchers at Stanford developed a method for imple-

menting a parallel version of breadth-first search (BFS), and they present results on

both multicore CPU and GPU [55]. They also present a hybrid method which dynam-

ically chooses which of their implementations will yield the best performance during

each BFS iteration. Although the kernel itself is different, this work shows a viable

hybrid parallel implementation of a graph traversal algorithm which scales well when

operating on large graphs. As discussed in Section 4.2, the hybrid implementation of

SPGK is similar in nature [120], and it can be leveraged for the purpose of malware

detection [98].

3.3 Leveraging Heterogeneous HPC Hardware for Big Data Applications

Many applications take advantage of heterogeneous hardware using an approach

known as MPI+X that leverages MPI for communication and an accelerator language

(e.g., CUDA and OpenCL) or directive-based language (e.g., OpenMP and OpenACC)

for computation. Codes that utilize MPI+OpenACC include: the electromagnetics

code NekCEM [84], the Community Atmosphere Model - Spectral Element (CAM-

SE) [81], and the combustion code S3D [71]. Codes that utilize MPI+OpenMP include

computational fluid dynamics MFIX [109], Second-order Mller-Plesset perturbation

theory (MP2) [62], and Molecular Dynamics [65].

Several prototype MapReduce frameworks have been specifically designed to

take advantage of multi-core CPUs and GPUs: Mars [52], MapCG [54], and MATE-

CG [58]. Unfortunately, they all have limitations which reduce their portability and

incur a much higher programming overhead than our solution. All three prototypes

are restricted to a single node or GPU, which greatly limits the size of problems that

they can handle. In addition, all three prototypes use CUDA as their backend GPU

language, which limits the supported hardware to only NVIDIA GPUs. Mars stores
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all the intermediate results in GPU memory, which requires the user to specify before-

hand how much data will be emitted during the Map phase [52]. This step requires

additional effort from the programmer and is highly error-prone. MapCG uses a C-

like language for its Map and Reduce functions which is then converted to OpenMP

and CUDA code for parallelism. This restricts the capabilities of the application to

their C-like language, which doesnt support many of the advanced feature of CUDA.

MATE-CG does not support a Map operation and limits the user to using only Reduce

and Combine operations, which makes porting existing MapReduce applications much

harder.

Researchers from Tokyo Tech present a method for scheduling Map tasks on

either the CPU or GPU depending on a dynamic profile of the task [103]. Others

from Ohio State created a MapReduce framework that is optimized specifically for

AMDs Fusion APUs [29]. With the Fusion APU, the GPU shares the same memory

space as the CPU, which enables their framework to do both pipelining and scheduling

of MapReduce tasks across the CPU and GPU. Again, we see a solution that lacks

portability.

3.4 Wavefront Algorithm Parallelization

Wavefront-based algorithms have been in discussion over the past approximately

30 years. The wavefront method was revisited in [117] using loop skewing, a procedure

to derive the wavefront method of execution of nested loops. Considered as far back as

1974 by Lamport [69], wavefront computations have had applications to diverse areas

including linear equation solvers [72, 87], gene sequence alignment [104] and radiation

transport [64, 17], iterative solution methods [91], particle physics simulations [63], and

parallel solution of triangular of systems of linear equations [53].

State-of-the-art research shows wavefront parallelization on GPUs, FPGAs and

co-processors. Smith Waterman, a dynamic programming concept and a local sequence

alignment algorithm, expresses wavefront-based computations and the algorithm has
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been mapped to NVIDIA GPUs [94], on Cell BE [116] and on reconfigurable com-

puting platforms [124, 25]. ASCI Sweep3D wavefront application solves a 1-group

time-independent discrete ordinates neutron transport problem on IBM Blue Gene/P

machine [57] by using blocking techniques for better parallel efficiency as the applica-

tion undergoes rapid succession of wavefronts. Preliminary studies to use TBB, Cilk,

CnC, and OpenMP 3.0 for wavefront in [37] indicate that optimizations be wrapped in a

higher level template to make it easier for less experienced users. AWE Chimaera [80],

NAS-LU [16] use different implementations of Lamport’s original parallel pipelined

wavefront ’hyperplane’ algorithm [69]. Acceleration of generalized pipeline wavefront

applications on modern GPU is discussed in [86]. Geometric Multigrid (GMG) is a

class of algorithm used to accelerate the convergence of iterative solvers for linear sys-

tems [114] using wavefront techniques. Proxy apps such as KRIPKE [5], SNAP [8]

(mimicking communication patterns of PARTISN [19] transport code) wavefront codes

investigate different data layout patterns and parallelism. A one-sided communication

in Sweep3D using Coarray Fortran achieved comparable performance to that of the

MPI version [33].

Classic compiler approaches for wavefront shows loop skewing followed by loop

permutation, where skewing breaks a dependence that would otherwise prevent per-

mute; this is implemented within CHiLL [28], a polyhedral compiler transformation

framework. Other work includes IEGenLib [108], Codegen+ [26]. A recent paper [110]

presents compiler and runtime framework within polyhedral framework to automati-

cally generate wavefront parallelization of sparse matrix computations. Swift/T [118]

has also been used to express wavefront computations [15]. Automatic generation of

wavefront parallelization of sparse matrix computations was discussed in [110]. Wave-

front parallelization of Gauss-Seidel and related algorithms employ manually written

inspectors and executors as discussed in [107, 45]. High Productive Computing System

(HPCS) languages: Chapel [23], X10 [79] and Fortress [12] also aim to provide users

with better programmability and productivity but they do not offer enough abstrac-

tions or vocabulary for heterogeneous platforms. HTP [121] proposed a hierarchical
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tree place that maps to an architecture with the goal of scheduling tasks to different

different nodes in the tree.

All these prior studies indicate that this is an important problem to solve and

that there are different types of approaches to approach this problem. However, most

of these strategies cannot be easily adopted for large scale applications since they

are either not solving the wavefront problem itself but offering solutions to a specific

problem type, requiring the user to incur a steep learning curve, or providing a solution

that is confined to a particular compiler and/or hardware. Such gaps in the state-of-

the-art work served as a motivation for us to rethink this problem and develop a suitable

solution that will provide scientific developers with directives supported by appropriate

loop transformation algorithms addressing the wavefront problem.
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Chapter 4

MOTIVATION FOR USING ACCELERATORS

Prior to investigating high-level complex parallel patterns, the author stud-

ied related topics including auto-tuning high-level languages targeting heterogeneous

systems, parallelizing machine learning algorithms used for malware detection, and

combining MapReduce with on-node parallel programming frameworks in order to ac-

celerate Big Data applications. This chapter dives into those topics, provides some

insight into the authors related contributions in the field of high performance comput-

ing, and highlights the benefits of using accelerators in the associated domains.

4.1 Auto-Tuning GPU Accelerated Applications Using High-Level Lan-

guages

Determining the best set of optimizations to apply to a kernel to be executed

on the graphics processing unit (GPU) is a challenging problem. There are large sets

of possible optimization configurations that can be applied, and many applications

have multiple kernels. Each kernel may require a specific configuration to achieve the

best performance, and moving an application to new hardware often requires a new

optimization configuration for each kernel.

This work applies optimizations to GPU code using HMPP and OpenACC,

which are high-level directive-based languages backed by source-to-source compilers

that can generate GPU code based on annotations in portions of the host code. How-

ever, programming with high-level languages was previously thought to mean a loss of

performance compared to using low-level languages. This work shows that it is pos-

sible to improve the performance of a high-level language by using auto-tuning. We

perform auto-tuning on a large optimization space on GPU kernels, focusing on loop
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permutation, loop unrolling, tiling, and specifying which loop(s) to parallelize, and

show results on convolution kernels, codes in the PolyBench suite, and computation-

ally expensive kernels extracted from the QuantLib library, which is widely used in the

domain of computational finance. The results show that our auto-tuned implementa-

tions are significantly faster than the default HMPP and OpenACC implementations

and can meet or exceed the performance of manually coded CUDA / OpenCL imple-

mentations [46, 47].

Figure 4.1: Single precision speedup graph comparing the performance of auto-tuned
HMPP code against manually written CUDA code

Figure 4.1 shows a sample of the results obtained using HMPP to auto-tune

kernels from the Polybench benchmark suite [46]. We see that the HMPP auto-tuned

code is at least on par with manually written and tuned CUDA code in all cases, and

in some cases, it exceeds the performance of the CUDA code by a considerable margin.

This demonstrates the viability of high-level languages from a performance standpoint,

in addition to the benefits of their programmability and inherent portability.

4.2 Parallelization of Graph-Based Machine Learning for Malware Detec-

tion

Prior work in learning-based malware detection engines primarily focuses on

dynamic trace analysis and byte-level n-grams. The approach in this work differs in
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that compiler intermediate representations are used, i.e., the call-graph representation

of binaries. Using graph-based program representations for learning provides structure

of the program, which can be used to learn more advanced patterns.
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Figure 4.2: Figure 4.2a shows the workflow toward construction of a machine learning
model generated during this work’s training phase. Figure 4.2b shows a flow diagram
demonstrating the classification of an unseen binary application used during the eval-
uation phase.

This work uses a computationally expensive graph kernel to identify similarities

between call graphs extracted from binaries [98]. The output similarity matrix is fed

into a Support Vector Machine (SVM) algorithm to construct highly-accurate models

to predict whether a binary is malicious or not, as shown in Figure 4.2a. Once a model

has been constructed, similarity vectors for call graphs of unknown applications need

to be computed in order to feed into the model for comparison against the training

data set. This is known as the testing phase, as shown in Figure 4.2b.
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Since this graph kernel is computationally expensive due to the size of the input

graphs, different parallelization methods for CPUs and GPUs are evaluated to speed up

this kernel, allowing continuous construction of up-to-date models in a timely manner.

The hybrid implementation presented, which leverages both CPU and GPU, yields

the best performance, achieving up to a 14.2x improvement over an already optimized

OpenMP version, as shown in Table 4.1. The generated graph-based models are then

compared to previously state-of-the-art feature vector 2-gram and 3-gram models on

a dataset consisting of over 22,000 binaries. This work’s classification accuracy using

graphs is over 19% higher than either n-gram model and gives a false positive rate of

less than 0.1%. It is also possible to consider large call graphs and dataset sizes because

of the reduced execution time of the parallelized graph kernel implementation, which

leads to the construction of more accurate prediction models.

Dataset GPU 1D OpenMP
Hybrid

Size Overlap Matrix Graph

6K
1.58 h 40.52 m 1.01 m 3.19 m 4.65 s
0.01x 0.03x 1.0x 0.35x 14.2x

12K
9.36 h 5.61 h 10.96 m 20.48 m 52.57 s
0.02x 0.03x 1.0x 0.53x 12.5x

21K
memory

exhausted

4.55 h 5.50 h 50.37 m
1.0x 0.83x 5.42x

22K
6.51 h 12.24 h 2.47 h
1.0x 0.53x 2.63x

Table 4.1: Comparing similarity matrix computation time for each dataset. Runtimes
(h: hours, m: minutes, s: seconds) are presented for each implementation. Below each
runtime we give speedup compared to the best OpenMP (OpenMP Matrix) implemen-
tation is shown. VRAM limitation was exceeded for our larger datasets when only
running on the GPU.

Despite the excellent performance achieved utilizing this novel approach to ma-

chine learning applied to malware detection, the hybrid implementation presented is not

portable due to the use of architecture-specific programming models (such as CUDA).

At the time when this work was presented, there were no high-level tools available that

were suitable for abstracting a complex graph kernel like the one used. This presented

22



a significant implementation challenge because this approach needed to be rewritten

in order to run on the GPU. However, it still offered insights as to how certain types

of algorithms behave on different parallel architectures. We found that on average,

smaller graphs were better compared using the CPU and larger graphs, whose compu-

tational cost drastically outweighed the overhead of data movement, were better suited

for execution on the GPU.

4.3 A Portable, High-Level Graph Analytics Paradigm Targeting Dis-

tributed, Heterogeneous Systems

This paper presents a portable, high-level paradigm that can be used to run Big

Data applications on existing and future HPC systems. More specifically, it targets

graph analytics applications, since these types of applications are becoming increas-

ingly more popular in the Big Data and Machine Learning communities. Using this

paradigm, we accelerate three real-world, compute and data intensive, graph analytics

applications: a function call graph similarity application (similar to the one discussed

in Section 4.2), a triangle enumeration subroutine, and a graph assaying application.

Our paradigm utilizes the popular MapReduce framework, Apache Spark, in

conjunction with an on-node computational framework (in our case CUDA) in order to

simultaneously take advantage of automatic data distribution and specialized hardware

present on each node of our HPC systems, as shown in Figure 4.3. We demonstrate

scalability with regard to compute intensive portions of the code that are parallelizable,

as well as an exploration of the parameter space for each application. We present results

on a heterogeneous (hybrid) cluster with a variety of CPUs (from both Intel and AMD)

and GPUs (from both AMD and NVIDIA), as well as NVIDIAs PSG cluster, which is

homogeneous and utilizes NVIDIAs next-generation P100 GPUs. Figure 4.4 presents

performance results for the graph assaying application when run on a heterogeneous

cluster consisting of a variety of CPUs and GPUs. It exhibits favorable scalability when

run across multiple nodes, and a considerable speedup when using the GPU instead of

the CPU on those nodes for their portion of the computation. These results prove that
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Figure 4.3: A high-level depiction of the proposed paradigm, which uses Spark for
data/task distribution in conjunction with a local computational framework (X) on
each node.

our method yields a portable solution that can be used to leverage almost any legacy,

current, or next-generation HPC or cloud-based system [97, 101].

This work aimed to tackle the challenges of automating the process of task dis-

tribution across nodes in an HPC system, and it redefined the way we think about

portability by running real-world graph analytics applications across a cluster com-

posed of a range of different parallel architectures, while achieving optimal load bal-

ancing. To our knowledge, this is the first work to combine and efficiently utilize legacy,

state-of-the-art, and next-generation hardware simultaneously in an abstract fashion.
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(a) Single-node vs multi-node (b) CPU vs GPU

Figure 4.4: Runtime results for Graph Assaying run on the hybrid cluster

4.4 Summary

In short, these projects all contributed to our understanding of HPC systems, in

regards to both parallel hardware architectures and the software programming models

used to harness the power of such hardware. The skills we have acquired in overcoming

the obstacles faced in each work provides the foundation needed to tackle a multifaceted

problem like the one described in this thesis. In order to accomplish the goal of creating

a portable programming abstraction for the wavefront parallel pattern, we need to

use these skills to understand how the pattern in question behaves on different types

of hardware, identify the challenges in abstracting the pattern such that it will be

performant across existing and future parallel architectures, and understand the needs

of parallel application developers in order to develop extensions that are easy to use

from a development perspective.
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Chapter 5

EXPLORING A COMPLEX PARALLEL PATTERN: WAVEFRONT

This section introduces the complex parallel pattern investigated by this thesis,

demonstrate it’s real-world impact, discuss the obstacles faced when attempting to

parallelize such a pattern, and outline our goals moving forward.

5.1 Wavefront Parallel Patterns

A wavefront parallel pattern is a type of complex parallel pattern that is not

easily representable in existing high-level parallel programming models due to its irreg-

ular, multi-dimensional data dependencies. This pattern is used to examine a multi-

dimensional space that is split into components called gridcells. Each gridcell contains

elements that require some sort of in-gridcell computation, allowing for parallelism

across these gridcells. However, the complexity in implementing this type of parallel

computation arises due to the upstream data dependencies between gridcells. Wave-

front patterns exhibit a directional behavior in that the result computed at each gridcell

depends on the result computed at each of its neighboring gridcells along each axis in

the multi-dimensional space. This dependency places a restriction on the order in which

results can be computed. A parallel wavefront implementation sorts these in-gridcell

computations into a series of ordered wavefronts described by a sequence of planes of

gridcells starting at a corner of the multi-dimensional grid and sweeping through the

whole grid.

An example of the 3-dimensional wavefront sweep ordering used in Minisweep

is shown in Figure 5.1. While other orderings are allowed insofar as the upstream

data dependencies are satisfied, this is generally deemed to be the most efficient way
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Figure 5.1: Minisweep’s wavefront computational pattern

of parallelizing a wavefront-based pattern. It is worth noting that there are some

variations in upstream data dependency behavior across different wavefront algorithms.

As shown in Figure 5.2, the Smith Waterman sequencing algorithm utilizes a

parallel wavefront pattern across a 2-dimensional space, but unlike Minisweep, it con-

tains upstream data dependencies for all neighboring gridcells, not just the ones along

each individual axis. This means that the diagonal neighboring gridcells have been

computed two wavefront iterations before the current iteration, which is unlike Min-

isweep’s upstream dependencies that all reside along the previous wavefront iteration.

5.2 Real World Impact

Wavefront-based parallel patterns have been found in several applications in-

cluding particle simulation, bioinformatics, plasma physics and linear solvers. Cur-

rently, scientists are either resorting to not exploiting this pattern due to the compu-

tational complexity, or they are restructuring their codebase manually, which can be

quite time consuming and error prone. By creating a high-level parallel programming

language extension, we will be enabling application scientists to express these patterns
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Figure 5.2: Smith Waterman’s wavefront computational pattern

on current and future platforms, thus overcoming these obstacles. Our case study, Min-

isweep, represents a large scientific application, Denovo, as we mentioned earlier. This

is the radiation transport application that has a direct impact on the accuracy of ra-

diation shields built around nuclear reactors. By creating a high-level, directive-based

port of this code, we are enabling easy adaptability of wavefront patterns on hardware

platforms, allowing scientists to run several more configurations that can determine

and impact the shield accuracy. Such wavefront-based patterns were also observed in

miniapps KRIPKE and SNAP, which are also radiation transport codes.

Similarly, the Smith Waterman algorithm is a classic local sequence alignment

algorithm that has been widely studied and adopted for several sequence alignment

tools that are instrumental in studying cancer tumors [104]. Most of these tools are

created using either low-level or proprietary programming languages, and thus, they

are not portable across platforms. Therefore, the codebase is not contained in an easy-

to-use framework that biologists can utilize. By creating a software abstraction and

exploiting the wavefront pattern this alignment algorithm exposes, we will be able to

create a high-level Smith Waterman code that can be used for sequence alignment pur-

poses more easily. Similarly, the Hi-C application determines chromosome interactions
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that directly impacts tumor cell identification. The interactions currently have not

been studied from a computational standpoint. Observing a small set of interactions

with naked eye reveals a wavefront pattern of a different type compared to that of Min-

isweep and Smith Waterman. Further exploration of the data flow and dependency

analysis of these interactions has lead us to examine the right usage of the developed

high-level wavefront-based software abstraction.

In summary, we can see that wavefront-type parallel patterns are observed in

several applications. They provide an opportunity to exploit parallelism, but due to the

complexity of data flow and dependencies in these patterns, exploring such parallelism

has remained a challenge. Creating a software abstraction for these patterns has been

an even bigger challenge.

5.3 Implication of Wavefront’s Parallel Pattern on Data Transformation

As mentioned in Section 5.1, a wavefront parallel pattern contains a number of

upstream data dependencies that vary from application to application. Identifying a

wavefront access pattern in code just tells us that backward dependencies are satisfied,

but it doesnt tell us how many of those are needed for the current computation. From

a computational standpoint, all we know during each wavefront iteration is that each

cell in the current wavefront iteration can be calculated in parallel. This doesnt specify

how far back the data dependencies go. For example, Smith Waterman looks at all

neighboring cells, some of which were calculated two wavefronts behind the current

wavefront. In Minisweep, we only use data from the preceding wavefront. Additionally,

the contents of each gridcell will vary application to application, as the goals of the

program could be totally different despite utilizing a wavefront sweep pattern. This

means that the data representations of each application is going to follow a particular

pattern, but they will not be uniform across codes.
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5.4 Thesis Objective

The objective of this thesis is to create a high-level programming language

extension for wavefront-based parallel patterns, such that applications representing

such a pattern can easily adopt this high-level extension and be able to expose wavefront

parallelism on hardware platforms without struggling through the phase of manually

restructuring and reprogramming the given code. This thesis also uniquely explores

the data and dependency flow in applications that expose wavefront computations

in structured and unstructured meshes. A high-level language feature is created with

compiler and runtime support that is evaluated on applications from different domains.

In summary, this thesis creates a high-level portable solution for wavefront-based codes

that the scientists can use to port their legacy applications to modern HPC systems

without compromising performance or accuracy.
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Chapter 6

DESIGNING SOFTWARE ABSTRACTIONS IN PROGRAMMING
MODELS FOR WAVEFRONT PATTERN

6.1 Analyzing the Flow of Data and Computation in a Wavefront Model

Chapter 5 provides a clear definition of what a wavefront code is in terms of

both functionality, as well as what the implementation generally entails. In order to

construct an abstract parallelism model, we need to consider two main components:

code transformation and data representation.

Wavefront codes typically follow a very similar pattern in terms of their loop

nests. Parallelizing these types of codes usually involves transforming a serial loop

nest into one with a wavefront-style pattern where we can parallelize the in-gridcell

computations across gridcells within a given wavefront iteration. In practice, this

requires some source-to-source loop translations. Generally, this consists of taking a

serial loop nest, calculating the number of wavefront iterations required for the desired

parallelism-friendly access pattern, and transforming the loop nest such that we iterate

over each wavefront in serial, while parallelizing its inner loop(s). This is less than

trivial, since we need to perform bounds checks to make sure that all the threads

launched from the inner loops indeed lie within the bounds of the dimensions of the

current wavefront iteration in order to preserve computational accuracy. It also requires

that we have some way of storing and representing data such that each wavefronts

dependencies are preserved.

Despite being unable to completely automate the representation of a paral-

lel wavefronts data model, we can still construct a guided generalization that requires

limited input from the programmer. Typically, codes that utilize a wavefront algorithm
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have uniform gridcells (all gridcells contain a fixed amount of data). Given that pre-

sumption, it is reasonable to assert that a generalized data representation for satisfying

dependencies between wavefront iterations can be constructed with a little guidance

from the programmer. There are two components to such a representation: gridcell

size and dependency depth. If the programmer provides information about these com-

ponents, we can automate the construction of an intermediary storage unit where data

can be compiled and updated between wavefront iterations such that each wavefront

iteration has access to all its necessary data dependencies, while still minimizing the

memory footprint of such a data structure.

The reason that this programmer input is required is due to the lack of a concrete

data model. Each wavefront application is a little different in terms of data depen-

dencies and access patterns. We contend that automating the analysis of dependency

information for wavefront applications is a separate research problem entirely, and it

extends well beyond the scope of wavefront codes. There are currently no state-of-the-

art tools that do this well for parallel applications. Existing tools prioritize accuracy,

and therefore, any slight ambiguities are assumed to be dependencies. In the case of an

application with an irregular access pattern (like wavefront codes), extensive analysis

would have to be performed on the computational component of the code to determine

all possible values at a given wavefront iteration to ensure that there are no data col-

lisions, while also ensuring that all dependencies from previous iterations are met. An

example of this can be shown by utilizing PGI’s OpenACC compiler with the kernels

directive, which is meant to automatically detect which portions of the code that are

parallelizable. When this is used on our case study application of Minisweep, discussed

later in Chapter 8, all the loops in the loop nest corresponding to the spatial decom-

position of the simulation are considered to have potential data dependencies, and are

therefore no considered to be parallelizable. Based on our analysis of this wavefront

codes access pattern, we know this to be untrue. Within the bounds of a wavefront

iteration, Minisweep does not contain any data collisions or unmet dependencies.
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6.2 The Memory Model Abstraction

In addition to simply constructing a data structure to satisfy data dependen-

cies between wavefront iterations, it is important to also consider the best ways to

optimize the structure to minimize main memory accesses and maximize both spatial

and temporal locality within the cache [113]. This is especially important in parallel

systems because we have limited amounts of cache and multiple processing units will

access that cache simultaneously. To that end, this thesis presents a general rule for

optimizing data structures. Since a wavefront algorithms loop nest is structured such

that the spatial decomposition exploits coarse-grained parallelism and the in-gridcell

computations utilize fine-grained parallelism, it is important to make sure that the

data structure used to store temporary data is structured in a way that is advanta-

geous to the manner in which the data will generally be accessed. More specifically,

the components of the in-gridcell computations (whatever they may be) should be the

fastest-varying components of the storage array(s), and the spatial components should

be the slowest-varying. The spatial components should also reflect the order in which

they appear in the code (i.e. in a 3D loop nest accessed in the order Z/Y/X, Z should

be the slowest varying dimension, followed by Y , and then X).

This generalization can be applied to any existing parallel architecture. Gener-

ally speaking, parallel systems have some sort of multi-unit design. Whether that unit

is a core (CPU) or a multiprocessor (GPU), each unit typically has a certain amount

of cache that its computational resource(s) have access to. In the case of a CPU, each

core has its own L1 cache. In a GPU, such as NVIDIAs new V100 GPU, each SM

(multiprocessor) has its own L1 cache that each core within the SM has access to. Our

goal is to perform as much computation as possible on the data we can fit within these

cache spaces before we discard it in favor of reading in new data from main (CPU) or

global (GPU) memory.

Our OpenACC prototype of Minisweep accomplishes this on both architectures.
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When compiled for multicore CPU architectures, the spatial decomposition is paral-

lelized across CPU cores. Each core is responsible for a subset of the in-gridcell compu-

tations along each wavefront. For a given in-gridcell computation, we must perform a

series of computations on all data that reside within that gridcell. If our data structure

follows the generalization above, each CPU can exploit spatial and temporal locality

because the in-gridcell data is the fastest-varying, and thus, the data resides in adjacent

blocks of main memory. When this same code is compiled for execution on a GPU, a

similar behavior is observed. The spatial decomposition is parallelized at the gang-level

(per SM). This is equivalent to the CPUs parallelization. The GPU simply adds an

additional layer of parallelism within each in-gridcell computation at the vector-level

(per core within an SM). This allows the GPU to exploit additional temporal locality,

since vector-level threads access spatially local pieces of memory simultaneously. In

both cases, accesses to main (CPU) or global (GPU) memory are minimized. This

generalization can be applied to any existing or future parallel architecture that has a

multi-unit design where each unit has its own dedicated cache.

6.3 Translating the Wavefront Abstraction

Wavefront applications can be broken down into two main computational com-

ponents: spatial decomposition and in-gridcell computation. Spatial decomposition

refers to the challenge of decomposing a multidimensional space (array, matrix, 3-

dimensional space, etc) in a way that parallelism can be exploited. Such a decom-

position in these types of applications involves overcoming data dependencies in an

organized fashion so as to exploit as much cross-gridcell parallelism as possible. Most

wavefront algorithms also have an in-gridcell portion of computation, which may or

may not involve additional data dependencies.

It is important for us to consider how these computational components can be

mapped onto hardware. From a basic multicore CPU standpoint, this analysis is rel-

atively straightforward: we have a number of threads available to us, and we need to

determine whether the spatial component or the in-gridcell component will utilize a
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higher percentage of available threads. Typically, computational science applications

will contain enough in-gridcell parallelism to utilize all available threads on a single

CPU, leaving our wavefront dependency at the spatial level insignificant and/or un-

considered. However, modern HPC systems are becoming increasingly heterogeneous,

dense (more computational resources on a single node), and distributed (multi-node).

In particular, accelerators such as GPUs have become a central component of some

of the world’s fastest supercomputers, including ORNL’s Titan [60] and Summit [67]

machines. GPUs contain thousands of cores, have a hierarchy of parallelism within

them, and are abundant on machines like Summit and Sierra, where a single node

contains multiple GPUs. Failure to exploit all available layers of parallelism within

an application leaves a lot of performance on the table in machines with this much

computational power.

While wavefront applications don’t share a common type of in-gridcell com-

putation or even an identical data dependency, they do have some commonalities at

the spatial level. In particular, wavefront dependencies exist exclusively in the up-

stream direction. As we mentioned in Section 6.1, we cannot know how far in the

upstream direction a wavefront algorithm will reach for data, so it is the job of the

programmer to set up their data structures in a way that this can be satisfied and kept

up-to-date throughout the application’s execution. To study further, we referred to the

famous Koch-Baker-Alcouffe (KBA) [63] and Pautz [85] algorithms in order to explore

restructuring the order of a wavefront application’s execution to exploit the available

parallelism at the spatial level, while satisfying the required dependencies. The KBA

algorithm allows us to extract parallelism sweeping through the cartesian coordinates

without running into data dependency issues and Pautz defines special heuristics to

relax KBA for unstructured meshes.

6.3.1 What is the Koch-Baker-Alcouffe (KBA) Method?

The KBA method is a method of transforming a serial loop nest into one with

a wavefront-style pattern, which allows us to parallelize the in-gridcell computations
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across gridcells within a given wavefront iteration. An implementation of the KBA

method consists of two major components:

1. The transformation of a serial loop nest into a wavefront-based sweep over the

multi-dimensional space being examined

2. The parallelization of in-gridcell computations within each wavefront iteration

The translation of a wavefront-dependent loop nest into an iteration scheme

that is friendly toward upstream data dependencies contains two major code transfor-

mations: the creation of a wavefront hyperplane iteration and an inner bounds check

across parallel threads to ensure that we are computing cells that lie along the created

hyperplane. We can calculate the loop bounds for the desired hyperplane iteration

scheme as a factor of the dimensions of the original loop nest by summing the bounds

of all the dimensions in the multi-dimensional space and subtracting N − 1 from the

result, where N is equal to the number of dimensions being examined. In a traditional

3-dimensional space, the calculation of the total number of wavefront iterations is as

follows:

num wavefronts = (dimX + dimY + dimZ) − (3−1)

We can generalize this calculation using the following equation:

num wavefronts =
∑N

X=1 dimX − (N−1)

Listing 6.1: Calculating the number of wavefronts

Once we have performed the wavefront calculation, we have to make some

modifications to the spatial components of our loop nest. First, we replace our out-

ermost spatial loop with a sequential wavefront loop, which iterates from 0 to the

numwavefronts value we just calculated using the formula above. The inner spatial
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dimension loops do not need to be modified, except that they should now execute in

parallel. This will result in the creation of a number of threads equal to the product

of these inner dimensions. Each thread then must calculate the missing dimension

(previously the outermost dimension of the multi-dimensional loop nest), as a function

of the wavefront number and the values of the other N dimensions, and perform a

bounds check to make sure that the calculated value lies along the current wavefront.

The dimension calculation and bounds check of a 3-dimensional wavefront is shown

below:

i n t i z = wavefront − ( i x + iy ) ;

i f ( i z >= 0 && i z <= wavefront && i z < dimZ)

{ // Perform computation }

We can generalize this calculation and bounds check using the following abstrac-

tion:

iN = current wavefront number −
∑N−1

X=1 iX

i f ( iN >= 0 && iN <= current wavefront number && iN < dimN)

{ // Perform computation }

Listing 6.2: Wavefront bounds calculation

If this check passes, the thread will continue on and perform its portion of the

computation involving the in-gridcell computations of the cell in question. If it fails,

the thread will become idle. The result of this is an expansion of saturation across

whatever parallel architecture the code is running on. As the wavefront iteration

progresses through the multi-dimensional space, the size of each wavefront (in terms of

number of gridcells) gets larger, yielding more working threads and better saturation

of the parallel hardware. This behavior is illustrated in Figure 5.1. Pseudocode for

this code transformation is shown in Algorithm 1.

37



Algorithm 1: Wavefront loop transformation algorithm

Input: An N-dimensional loop nest
Result: A transformed N-dimensional parallelizable wavefront loop nest
num wavefronts =

∑N
X=1 dimX - (N-1);

for wavefront← 0 to num wavefronts do
#pragma parallel
for in−1 ← 0 to dimn−1 do...

#pragma parallel
for i1 ← 0 to dim1 do

iN = wavefront -
∑N−1

X=1 iX;
if iN >= 0 && iN < dimN then

computation;

end

end

end

6.3.2 High-Level Extension for Wavefront Codes

This thesis develops an extension of existing high-level programming frameworks

that automates the process of parallelizing wavefront codes by utilizing the strategies

discussed in Section 6.1 and employing the implementation methodology presented in

Section 6.3.1. We contend that this has far-reaching implications on existing and future

applications, as wavefront algorithms are very common and widely used in the domain

of computational science. Currently, such applications require manual code refactor-

ing/restructuring to implement a parallel wavefront sweep. As a result, developers are

constantly reinventing the wheel, instead of focusing their efforts on the science their

wavefront code is meant to simulate or analyze.

6.3.3 Exploring Asynchronous Execution to Saturate Massively Parallel

Processors

In addition to the high-level extension presented, this thesis explores differ-

ent types of asynchronous execution models to help further optimize wavefront codes.

Specifically, there are two main types of execution models investigated. The first
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involves asynchronously executing portions of wavefront sweeps across multiple par-

allel devices. Since future high performance computing (HPC) machines are built on

a multi-node/multi-device platform, this could be beneficial. For example, ORNLs

next-generation supercomputer Summit will feature approximately 4,600 nodes, each

equipped with 6 NVIDIA Tesla V100 GPUs. It would be beneficial if a high-level

wavefront extension allowed a developer to utilize all the available devices in a node in

order to fully utilize the hardware resources that machines like Summit have to offer.

The second type of execution model explored is asynchronous execution of

sweeps within a single device. In some wavefront codes, such as Minisweep, multi-

ple wavefront sweeps are performed within each timestep iteration. Depending on the

configuration of a given experiment, a single sweep might not be enough to fully satu-

rate a single device. Asynchronous execution could help ensure that the device is fully

utilized by running these sweeps asynchronously on a single device. For example, Min-

isweep models a 3-dimensional space (3D sweep), and it performs a sweep from each

of the 8 corners of that space. So, for each timestep, 8 total sweeps are performed. In

the case of a smaller spatial configuration, a single sweep might not be able to fully

saturate a device, so asynchronous execution on a single device could be advantageous.

However, if we run this on a machine like Summit with a large spatial configuration,

each sweep could potentially saturate one of Summits GPUs. In this case, it would

be more advantageous to distribute each of Minisweeps 8 sweeps across the 6 GPUs

available in a node on Summit in order to better utilize the available hardware.

As with the general high-level extension, adding both types of asynchronous

execution as an additional abstraction layer on top of the parallel wavefront abstrac-

tion layer would be greatly beneficial to developers from both a implementation and

portability standpoint.

6.3.4 Prototyping Software Abstraction

Due to the repetitive nature of such a modification and the prevalence of wave-

front algorithms within the domain of computational science, this thesis creates an
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#pragma acc wavefront (3 )
{
f o r ( i z =0; i z<dim z ; ++i z )

f o r ( i y =0; iy<dim y ; ++iy )
f o r ( i x =0; ix<dim x ; ++ix )
{

/∗−−− In−Gr i d c e l l Computation −−−∗/
}

}

(a) An example of an annotated wavefront loop nest prior to transformation.

i n t num wavefronts = ( dim z + dim y + dim x ) − 2 ;
f o r ( i n t wavefront=0; wavefront < num wavefronts ; wavefront++)
{
#pragma acc loop independent gang , c o l l a p s e (2 )

f o r ( i y =0; iy<dim y ; ++iy )
f o r ( i x =0; ix<dim x ; ++ix )
{

i z = wavefront − ( i y + ix ) ; /∗−−− Solve f o r outer dim −−−∗/
i f ( i z >= 0 && i z < dim z ) /∗−−− Bounds check −−−∗/
{ /∗−−− In−Gr i d c e l l Computation −−−∗/ }

}
}

(b) The result of transforming the serial loopnest shown in Figure 6.1a.

Figure 6.1: An example of our extension to the OpenACC standard. Note that the
dimensionality of the wavefront component is specified in the directive so that the
preprocessor knows how many loops within the loop nest to consider when performing
the requested transformation of the loop nest.

extension to be considered by programing model standards that would support this

type of a code transformation. In addition to formalizing the representation of this

code transformation, we have created a preprocessor that can be used to automate

this transformation and will serve as a proof-of-concept of our developed extension

to the existing OpenACC standard. Figure 6.1 shows an example loop nest before

and after the wavefront transformation is performed. Note that all of the required

loop transformations are performed using the original loop bounds while also preserv-

ing the in-gridcell computation, denoted by the placeholder for in-gridcell code. In
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a real application, the full body of the in-gridcell computation would be preserved.

The number following the wavefront clause tells the compiler (or preprocessor in our

case) how many loops to consider as part of the wavefront. Due to the complexity of

many computational science applications, additional loops could be present as part of

the in-gridcell computation, and we would not want to consider these as part of the

wavefront, since they have their own application-specific behaviors and the behavior

varies from one scientific domain to the other.

We also notice that the resulting spatial loops are parallelized using two clauses

from the OpenACC standard: gang and collapse clauses. By default, PGI’s OpenACC

compiler will parallelize loops annotated with the gang clause across CPU threads if

targeting a CPU, and it will parallelize these same loops across thread blocks when

targeting GPUs. Loops annotated with the vector clause are ignored when targeting

multicore CPUs. Second, using collapse ensures that both of these loops are paral-

lelized at the gang level. This leaves OpenACC’s vector clause free for use within

the in-gridcell component. In real-world applications (like the algorithms discussed in

Sections 7.1.2 and 7.1.3), there is a fair bit of computation to be done inside of each

gridcell. When working with state-of-the-art hardware like GPUs, we can expose this

parallelism at the thread level in order to leverage vector threads within thread blocks

and ensure that we are utilizing the full capability of the device.

We want to specifically point out that, in a more general sense, these strategies

are not confined to use within the OpenACC standard. While our extension is target-

ing the OpenACC standard, a similar strategy can be used to create abstractions for

other programming models and frameworks. In the case of OpenMP 4.5, for example,

we can use the teams and simd directives where we would use OpenACC’s gang and

vector directives, respectively. This would yield a similar accelerator offloading strat-

egy. Wavefront algorithms usually feature (at minimum) the two layers of parallelism

we have discussed: spatial (wavefront) parallelism, and in-gridcell parallelism. The

challenge when proposing an abstraction and/or an extension to an existing model or

framework lies in the efficient mapping of these layers of parallelism to concepts within
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the model in question that map appropriately to the targeted hardware architecture(s).
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Chapter 7

WAVEBENCH: A TOOL TO MODEL THE PERFORMANCE IMPACT
OF WAVEFRONT PARALLELISM

7.1 Introducing Wavebench

In addition to our formal representation of the wavefront transformation, we

have developed a tool, called Wavebench that can be used to model the performance

of wavefront-based applications on modern HPC systems. Wavebench is comprised of

algorithms that represent the core computational components of the types of applica-

tions discussed in Section 2.4. These algorithms have one thing in common: limited

parallelism due to upstream data dependencies that can be overcome using our wave-

front abstraction detailed in Section 6.3.4. Wavebench is written in C++ and features

a modular design. Each algorithm is contained within its own C++ class, which in-

herits from a common Simulation parent class. At runtime, the user can select which

algorithm they would like to run, as well as specify the problem size dimensions for

the simulation in question. The modularity of Wavebench’s code structure allows for it

to be extended in the future with new wavefront-based algorithms. Currently, we fea-

ture three algorithms: Local Sequence Alignment (LSA), Gauss-Seidel, and Radiation

Transport.

7.1.1 Local Sequence Alignment

Wavebench’s Local Sequence Alignment (LSA) algorithm is representative of

computation found in gene sequencing applications like Smith-Waterman [104] and

HiC [38]. The computations populate a 2D matrix. As shown in Figure 7.1, each cell

is dependent on its three neighbors in the upstream direction on the x-axis, y-axis,

and along the diagonal (both x and y axes). Note that all nodes in a diagonal can be
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computed in parallel, as all their dependencies are satisfied from the previous diagonal,

as illustrated by Figure 7.2. This pattern is the main commonality between wavefront

algorithms.

score score

score score

Figure 7.1: Local Sequence Alignment
gridcell dependency and in-gridcell
computation

1 2 3 4

2

3

4

3 4 5

4 5 6

5 6 7

Figure 7.2: 2D wavefront dependency
exhibited by the Local Sequence Align-
ment algorithm

Figure 7.3 shows a pseudocode snippet representative of the LSA algorithm’s

wavefront computation. A score is calculated using the value of each neighboring cell,

and the max is taken as the result stored in the cell currently being computed. This

is the only item that is computed for each cell, so the only parallelism that can be

exploited in this case is dependent on overcoming the wavefront data dependency.

f o r ( i n t x=1; x<rows ; x++)
f o r ( i n t y=1; y<c o l s ; y++)
{

/∗−−− Calcu la te s c o r e s −−−∗/
i n t d i a g s c o r e = matrix [ ( x − 1) ∗ c o l s + (y − 1 ) ] + sim ;
i n t up score = matrix [ ( x − 1) ∗ c o l s + y ] + gap ;
i n t l e f t s c o r e = matrix [ x ∗ c o l s + (y − 1 ) ] + gap ;

matrix [ x ] [ y ] = max(0 , d i ag s co r e , up score , l e f t s c o r e ) ;
}

Figure 7.3: Local Sequence Alignment loop nest
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7.1.2 Gauss-Seidel

The Gauss-Seidel method is an iterative method used to solve a linear system of

equations [61]. It is used for a variety of applications, from calculating market demand

and price fluctuations to modeling physical 3-dimensional space [35]. Computationally,

its structure is quite similar to the LSA algorithm discussed in Section 7.1.1. It solves

a 2D matrix with the same data dependencies, less the diagonal upstream dependency.

However, it has an additional layer of parallelism within each gridcell, as shown in

Figure 7.4. At each gridcell within the computed matrix, a summation is performed

for a group of data points within the given gridcell (denoted by the process cell()

method shown in Figure 7.5). This inner component is trivial to parallelize, as these

data points can be computed independent of one another. However, there are too few

of these in-gridcell components to yield peak performance on the majority of today’s

massively parallel hardware architectures. This justifies the need for overcoming the

cross-gridcell wavefront data dependency.

0 1 2 n

0 1 2 n0 1 2 n

0 1 2 n

Figure 7.4: Gauss-Seidel gridcell de-
pendency and in-gridcell computation

/∗−−−Loop over g r i d c e l l s −−−∗/
f o r ( i n t i y =1; iy<nce l l y −1; ++iy )

f o r ( i n t i x =1; ix<nce l l x −1; ++ix )
{

p r o c e s s c e l l ( ix , i y ) ;
}

Figure 7.5: Gauss-Seidel loop nest

7.1.3 Radiation Transport

Radiation Transport applications are widely used in the realm of computational

science for simulating flow of neutrons within nuclear reactors and predicting weather.

National laboratories have implemented various impactful radiation transport appli-

cations, such as Oak Ridge National Laboratory’s Denovo [18, 39, 59, 78], Lawrence

45



Livermore National Laboratory’s KRIPKE [66], The United States Nuclear Regula-

tory Commission’s SNAP [8], and The National Center for Atmospheric Research’s

MuRAM [111, 90, 89]. As illustrated by Figure 7.6, these codes are very complex, re-

quiring the programmer to consider a series of in-gridcell computations in addition to

the cross-gridcell wavefront data dependency they exhibit. These codes provide us with

insight regarding how complex and computationally intensive wavefront applications

in the real world can be.

Much like the previously discussed algorithms, this radiation transport algo-

rithm exhibits a wavefront dependency. However, since it is used to model 3-dimensional

space, the wavefront dependency is also 3D. This is actually quite similar to the up-

stream data dependency of the Gauss-Seidel algorithm discussed in Section 7.1.2 in

that each cell requires information from each cell in the upstream direction along each

axis. Since there are three axes to consider in a 3D case, this means that each cell

will depend on three neighboring cells. Figure 7.7 shows an example of this 3D wave-

front behavior by highlighting the first few wavefronts in different colors. We begin by

computing the yellow cell, and then we are able to compute the green cells in parallel.

Next, we can compute the blue cells in parallel because they rely on the information

contained by the green cells, and so on.
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Figure 7.6: Radiation Transport grid-
cell dependency and in-gridcell compu-
tation

Figure 7.7: 3D wavefront dependency
exhibited by the Radiation Transport
algorithm
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f o r ( i z =0; i z<dim z ; ++i z )
f o r ( i y =0; iy<dim y ; ++iy )

f o r ( i x =0; ix<dim x ; ++ix )
{

/∗−−− Transform −−−∗/
f o r ( i e =0; i e<dim ne ; ++i e )

f o r ( iu=0; iu<dim nu ; ++iu )
f o r ( i a =0; ia<dim na ; ++ia )
{

f o r ( im=0; im<dim nm ; ++im)
{ /∗−−− moments to ang l e s conver s i on −−−∗/ }

}
/∗−−− Solve −−−∗/
f o r ( i e =0; i e<dim ne ; ++i e )

f o r ( i a =0; ia<dim na ; ++ia )
{

compute ( ix , iy , i z , i e , ia , octant ) ;
}

/∗−−− Transform and wr i t e −−−∗/
f o r ( i e =0; i e<dim ne ; ++i e )

f o r ( iu=0; iu<dim nu ; ++iu )
f o r ( im=0; im<dim nm ; ++im)
{

f o r ( i a =0; ia<dim na ; ++ia )
{ /∗−−− ang l e s to moments conver s i on −−−∗/ }

output [ z ] [ y ] [ x ] [ e ] [ u ] [m] += r e s u l t ;
}

}

Figure 7.8: Radiation Transport loop nest

The pseudocode representative of the main sweep kernel of ORNL’s Denovo

radiation transport application is shown in Figure 7.8. The computations expose much

more complexity than the previous two types, and it models 3D space, unlike the 2D

algorithms discussed in Sections 7.1.1 and 7.1.2. Inside of each gridcell in this 3D space

lies a series of multi-dimensional computations. While the data examined by each of

the three pieces of in-gridcell computation contain no data dependency with respect

to the other components of the given gridcell, it is worth noting that each piece of

computation must be completed before the next piece of computation can begin. This

creates the need for synchronization points between pieces of parallel computation

47



within a gridcell.

7.2 Evaluation & Results

We use Wavebench to evaluate the efficacy of our extension. We use NVIDIA’s

Professional Service Group (PSG) cluster, as well as one of our own lab machines

in order to examine the performance impact of our solution on many state-of-the-art

hardware architectures, including multicore CPUs and multiple generations of NVIDIA

GPUs. While we target both multicore and accelerators, we have maintained a single

codebase for both types using OpenACC. Table 8.2 shows the configurations of the

different nodes that we used within the cluster. Performance of each algorithm is

measured using a speedup graph in order to show the performance impact of wavefront

parallelism compared to serial code.

Machine CPU NVIDIA GPU
UDel Skywalker (V100) AMD Threadripper 1950x (16 cores) V100 (16GB HBM2)
NVIDIA PSG (V100) Intel Xeon E5-2698 v3 (16 cores) V100 (32GB HBM2)
NVIDIA PSG (P100) Intel Xeon E5-2698 v3 (16 cores) P100 (16GB HBM2)
NVIDIA PSG (K40) Intel Xeon E5-2690 v2 (10 cores) K40 (12GB GDDR5)

Table 7.1: Specifications of the nodes in the systems we used to test different configu-
rations of Wavebench.

As discussed in Section 7.1.1, Wavebench’s Local Sequence Alignment (LSA)

algorithm is dependent on overcoming the wavefront data dependency in order to

exploit any parallelism, since only a single value is computed within each gridcell. As

shown in Figure 7.9, this algorithm runs up to 10x faster using state-of-the-art GPUs

in conjunction with our solution. We also notice that the 16-core CPUs outperform the

10-core CPU by a considerable margin, due to the increased parallelism. Since each

cell computes only a single value, parallelism is critical to this algorithm’s performance.

Single-core clock rates do not do much to contribute to the speed of the computation

here. While this use-case is relatively simple from a computational standpoint, this

algorithm is widely used in applications within the domain of genomics.
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Figure 7.9: Local Sequence Alignment speedups

The complexity of Wavebench’s Gauss-Seidel and radiation transport algorithms

created an issue in measuring performance because both algorithms are memory-

intensive. To that end, we adjusted the simulation’s problem size on each node to

be as large as possible, while still fitting within each GPU’s onboard memory. Our

goal is to measure the performance impact of our solution on a single device. Ta-

bles 7.2 and 7.3 specify the problem sizes used to test Wavebench’s Gauss-Seidel and

radiation transport algorithms, respectively. ncell x, ncell y, and ncell z denote the

sizes of the spatial dimensions being explored, while ncomp refers to the number of

elements present within each gridcell.

Machine ncell x ncell y ncomp
UDel Skywalker (V100) 500 500 32
NVIDIA PSG (V100) 750 750 32
NVIDIA PSG (P100) 500 500 32
NVIDIA PSG (K40) 500 500 32

Table 7.2: Problem sizes used to test Wavebench’s Gauss-Seidel algorithm.

Much like the LSA algorithm’s runtime, the Gauss-Seidel algorithm runs up to

10x faster on NVIDIA’s V100 GPU, as shown by Figure 7.10. Despite the similarity
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Machine ncell x ncell y ncell z ncomp
UDel Skywalker (V100) 64 64 64 64
NVIDIA PSG (V100) 128 64 64 64
NVIDIA PSG (P100) 64 64 64 64
NVIDIA PSG (K40) 64 64 64 32

Table 7.3: Problem sizes used to test Wavebench’s radiation transport algorithm.

in runtime, this algorithm presented several challenges. First, it is a memory bound

application, meaning that there is a significant amount of overhead when transferring

data from the host to the GPU. It also performs a considerable amount of reads and

writes to data stored in the GPU’s global memory during execution. This helps explain

the poor runtime on the K40 GPU. The K40 only offers 12GB of onboard GDDR5

memory. This may seem like a lot, but in the age of Big Data where more and more

applications are data-driven, this becomes a bottleneck. GDDR5 is also an old memory

architecture, so we sacrifice global read/write speeds on the device. There is simply

not enough compute on this GPU to outweigh the cost of data transfer and onboard

memory access.

However, the P100 and V100 GPUs tell a different story. In addition to pro-

viding a lot more computing power than the K40 offers, they feature HBM2 High-

Bandwidth Memory, making onboard global memory accesses much faster. They also

have a lot more onboard memory, 16GB and 32GB respectively, which allows us to

examine a larger problem size on a single device. The combination of these factors is

where we see the GPU’s performance surpass that of a multicore CPU. In the case of

the V100 on the PSG system, we have 32GB of onboard memory, allowing us to explore

a huge problem size. This is where we see the best performance because with more data

comes more parallelism. As described by Table 7.2, we explore a problem size that is

2.25x larger on the V100 than on the P100 PSG machine, and the GPU’s performance

scales accordingly. We notice that these nodes share the same 16-core CPU, but the

performance seems to level off, as it does not scale as well as the GPU’s performance.

This algorithm is also more complex than the aforementioned LSA algorithm in that it
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has an in-gridcell component that requires computation for a group of local elements

within each gridcell, instead of simply computing a single value for each cell. This is

advantageous for a GPU because we can exploit hierarchical parallelism and run these

computations at the thread level in addition to parallelizing the wavefront iterations

at the thread block level. It is worth noting that simply parallelizing these in-gridcell

computations does not result in enough parallelism to fully utilize the GPU and off-

set the cost of data transfer and memory accesses, as illustrated by the GPU results

marked “no wavefront” in Figure 7.10. In fact, there is so little in-gridcell computation

that we get a significant slowdown even compared to executing the original serial CPU

code.
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Figure 7.10: Gauss-Seidel speedups

Wavebench’s radiation transport algorithm provides insight into the perfor-

mance impact of our solution applied to a real-world application, not simply a gener-

alized, widely-used algorithm. Like the Gauss-Seidel method, this radiation transport

simulation is memory-bound, which presents a lot of the same challenges. However,

there is a significant amount of additional complexity within each gridcell, as dis-

cussed in Section 7.1.3. The in-gridcell computation is multi-dimensional, presenting
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the opportunity for a lot more vector-level parallelism than found in the Gauss-Seidel

method. In addition to the dimensional complexity, there is a series of not one, but

three in-gridcell computations that are performed on the data found within a gridcell.

This helps outweigh a lot of the memory overhead with computational demand and

increased parallelism.

Figure 7.11 shows our radiation transport simulation’s performance on the PSG

systems. As described by Table 7.3, we explore a different problem size for each system,

since we face the same challenge of limited onboard GPU memory. We double our

problem size on the P100 GPU compared to the K40 GPU and again on the V100

GPU compared to the P100 GPU. Since the problem size we are able to explore on the

K40 is relatively small, we see a modest 18x speedup. We also notice that we see the

fastest CPU speedup on this configuration. The 10-core CPU on this node is actually

clocked at a significantly faster speed (3.0 GHz) compared to the 16-core CPU (2.3

GHz) found in the P100 and V100 machines. Since this configuration also yields the

least amount of parallelism, increasing the single-core performance with a faster clock

yields some additional performance benefit.

However, the P100 and V100 configurations tell a different story yet again.

In these cases, we explore a much larger problem size, and we are equipped with

devices that have onboard HBM2 memory that is much faster. This, in conjunction

with increased in-gridcell computational demands, outweighs the memory overhead

of this algorithm by a significant margin. Here, we boast 68x and 97x speedups,

respectively. It is worth noting that combining wavefront parallelism with in-gridcell

parallelism still yields approximately 2x performance over simply parallelizing the in-

gridcell component, despite the immense amount of computation done inside of each

gridcell. This helps further demonstrate the importance of wavefront parallelism from

a performance standpoint in these types of applications. 97x in a real-world setting is

the difference between a simulation completing in an hour instead of 100 (over 4 days).

The impact of this performance improvement is huge. It allows domain scientists to

examine more simulation configurations in a shorter amount of time, meaning they can
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do more science overall. The benefit of our extension to a directive-based programming

model, such as OpenACC, is that it also helps them cut down on their programming

overhead, as well as minimizing the learning curve for scientists whose primary focus

is not computer science.
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Figure 7.11: Radiation Transport speedups

7.3 Path Forward

Having applied the wavefront transformation in a real-world application in the

author’s prior work [100] while creating a formal representation, its supportive exten-

sion, and our Wavebench tool, the author plans to closely work with the standard

organizations of both OpenMP and OpenACC and seek input on the standardization

of a potential new wavefront directive. This will be a concrete contribution of the

author’s on-going research on wavefront parallel patterns.
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Chapter 8

REAL-WORLD CASE STUDY: MINISWEEP

This chapter examines the real-world mini-application Minisweep and the im-

pact that wavefront parallelism has on its performance. Sections 8.1 through 8.4.2

and 8.5.1 through 8.5.3 were contributed by Oak Ridge National Laboratory scientists

Dr. Wayne Joubert and Dr. Oscar Hernandez in order to provide background on the

application itself and the techniques that were previously used by ORNL to parallelize

its wavefront sweep on ORNL’s supercomputers. We show how OpenACC is used to

parallelize and accelerate Minisweep on state-of-the-art HPC systems while maintain-

ing a single codebase. This is all part of collaborative work published at The Platform

for Advanced Scientific Computing (PASC) 2018 conference and the Computer Physics

Communications (CPC) 2018 journal [99, 100].

The Minisweep proxy application [78] is part of the Profugus radiation transport

miniapp project [6] that reproduces the computational pattern of the sweep kernel of

the Denovo Sn radiation transport code [39]. The sweep kernel is responsible for most of

the computational expense (80-99%) of Denovo. Denovo, a production code for nuclear

reactor neutronics modeling, is in use by a current DOE INCITE project to model the

International Thermonuclear Experimental Reactor (ITER) fusion reactor [7]. The

many runs of this code required to perform reactor simulations at high node counts

makes it an important target for efficient mapping to accelerated architectures.

This study involves Sn radiation transport algorithms for solving the linear

Boltzmann equation [70]. Here, a continuum model is used to simulate the density

of particles of a given energy and direction of motion within a 3-D volume. The ap-

proach yields a six dimensional problem (3-D in space, 2-D in angular particle direction
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and 1-D in particle energy) that is appropriately discretized in each dimension. Ap-

plications include neutronics calculations for nuclear reactor [4] and fusion reactor [7]

design, radiation shielding, nuclear forensics and radiation detection. The large num-

ber of problem dimensions available in the Sn transport algorithm affords significant

opportunities for parallelism on manycore parallel systems. However, the recursive

nature of the wavefront calculation in the spatial dimensions is a challenge to efficient

parallelization.

Denovo was one of six applications selected for early application readiness on

ORNL’s Titan system under the Center for Accelerated Application Readiness (CAAR)

project [18] and is part of the Exnihilo code suite which received an R&D 100 award

for modeling the Westinghouse AP1000 reactor [3]. Minisweep can be considered a suc-

cessor to the well-known Sweep3D benchmark [1] and is similar to other Sn wavefront

codes including KRIPKE [5], SN (Discrete Ordinates) Application Proxy (SNAP) [8]

and PARTISN [19]. KRIPKE was developed at Lawrence Livermore National Labo-

ratory (LLNL), while SNAP and PARTISN were developed at Los Alamos National

Lab (LANL). PARTISN is an older (pre-2000) benchmark from LANL that also solves

the Sn transport problem, but has a slightly different problem formulation compared

to Minisweep which makes it less suitable for running on accelerators. Mapping this

application to a GPU (or other type of accelerator) would most likely require a full

rewrite.

In this thesis, Minisweep is used as a vehicle to examine parallelization of wave-

front algorithms in general. However, it has multiple computational motifs (dense and

sparse linear algebra, structured grids) and parallelism requirements (halo communi-

cations, hierarchical synchronizations, atomic updates) which make the study of this

algorithm relevant to a much broader spectrum of codes. In addition to ORNL’s exist-

ing parallel implementations of Minisweep (OpenMP and CUDA), this thesis presents

a working OpenACC prototype that serves as a proof of concept for the strategy dis-

cussed in Chapters 5 and 6.

55



8.1 Overview of Sweep Algorithm

The Sn transport sweep algorithm possesses features common to wavefront al-

gorithms in general yet has structure specific to the requirements of Sn transport. It

can be considered in two parts: first, a wavefront algorithm relating the computations

between gridcells of a 3-D grid, and second the computations performed on a single

gridcell within this wavefront sweep across a grid.

8.1.1 Grid-level computations

We consider here a 3-D structured grid, with locally connected gridcells; see

Figure 5.1. Importantly, the result computed at a gridcell is dependent on the results

computed at the three neighbor gridcells in the upstream x, y and z directions; thus the

computation is described by a four-point stencil. This dependency puts a restriction

on the order in which results can be computed. One possible ordering is a series of

wavefronts described by a sequence of planes of gridcells starting at a corner of the

grid and sweeping through the whole grid (Figure 5.1). Other orderings are allowed as

well, as long as the dependencies are satisfied.

To model the physical problem, requires modeling particle flux in all directions.

To accomplish this, an execution instance of the algorithm performs a total of eight

sweeps, one starting at each corner of the domain. These directions are referred to

as “octants.” The results of all eight octant sweeps are added together form the final

result.

8.1.2 Gridcell-level computations

To further describe the algorithm, we define array v, which is dimensioned

v(nx, ny, nz, nu, ne, na, no). The nx, ny, nz dimensions refer to the spatial grid size. The

dimension no = 8 is the octants axis, across which results are summed for the final

result. The value na is a set of angular directions, and ne is the number of energy

groups, each representing a decoupled instance of the problem. Finally, nu represents a

set of unknowns for each gridcell based on the spatial discretization, e.g., finite element

56



coefficients for a gridcell. Though v is relevant to key computations of the algorithm,

the arrays that actually hold the input and output of the algorithm have the form

v′(nx, ny, nz, nu, ne, nm). Here v and v′ are related by the fact that the na, no axes are

compressed into nm moments to form v′ from v. The computation at a gridcell then is

composed of the following steps:

1. Moments-to-angles conversion - For a given octant and energy group the

input v′in(ix, iy, iz, ∗, ie, ∗) is transformed into array vin(ix, iy, iz, ∗, ie, ∗, io) by a

small matrix-vector product that relates the nm moments to the na angles. The

matrix depends on the octant but is independent of spatial location, energy group

and unknown.

2. Face contribution - The upstream components from the sweep are added to

vin(ix, iy, iz, ∗, ie, ∗, io).

3. Solve - An operation is performed on the array values vin(ix, iy, iz, ∗, ie, ∗, io)

which is coupled between the nu unknowns but decoupled in all other dimensions.

The result is vout(ix, iy, iz, ∗, ie, ∗, io).

4. Face update - The values of vout(ix, iy, iz, ∗, ie, ∗, io) are stored for use down-

stream by the sweep.

5. Angles-to-moments conversion - Array

vout(ix, iy, iz, ∗, ie, ∗, io) is transformed and added to v′out(ix, iy, iz, ∗, ie, ∗) with an-

other matrix-vector product with matrix depending on octant only.

8.1.3 Summary of problem axes

The problem dimensions and their respective couplings are thus summarized as

follows:

• Space: in the x, y and z dimensions, each gridcell depends on results from three

upstream cells, based on octant direction, resulting in a wavefront problem.
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• Octant: results for different octants can be calculated independently, the only

dependency being that results from different octants at the same entry of v′out are

added together and thus are a race hazard, depending on how the computation

is done.

• Energy: computations for different energy groups have no coupling and can be

considered separate problem instances, enabling flexible parallelization.

• Moment, angle: for fixed energy, octant and spatial location, the moments and

angles are interrelated by small (dense) matrix-vector products.

• Unknown: when the problem is represented as angles, a computation is performed

which may couple (only) the unknowns within the gridcell; for all other parts of

the computation, elements on this axis are fully independent.

8.2 Parallelizing the Sweep Algorithm

To map the sweep algorithm to a parallel system, it is of paramount importance

to minimize data motion as well as maximize parallelism, these being increasingly

critical for high performance on exascale systems. As a result, the general guiding

principle is that spatial dimensions must be the outermost loops, due to their sparse

coupling, whereas moment, angle and unknown loops must be innermost due to the

strong all-to-all couplings. The specific approach to parallelizing each axis is as follows:

Space: Spatial parallelism is based on the Koch-Baker-Alcouffe (KBA) algo-

rithm [64]. Here the 3-D structured grid is decomposed to processors with a 2-D tiling

in x and y (Figure 8.1). Each processor’s part of the grid is decomposed into blocks

along the z axis. Then a block wavefront process is applied starting at the corner

block of the domain. Processors proceed in a series of parallel steps, with one block

wavefront computed at each step and block face information communicated between

consecutive steps. For a GPU or other accelerated processor, the KBA block described

above is further decomposed into subblocks, and the computation is arranged into a

series of subblock wavefronts, which are then mapped to parallel threads.
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Figure 8.1: KBA parallel wavefront algorithm

Octant: Minisweep assigns compute threads to the eight wavefronts corre-

sponding to the eight octant directions. The wavefronts are independent; however

there is a potential race condition when two or more threads are updating the same

KBA block on the same KBA block wavefront step. The solution used in Minisweep is

a grid coloring approach. The KBA block is split in half along each dimension resulting

in eight ”semiblocks.” Eight semiblock steps are taken, and for each step every one of

the (up to) eight active wavefronts is assigned to a different semiblock. This is arranged

so that the wavefront dependencies are satisfied. A synchronization and thread fence

are required between consecutive semiblock steps.

Energy: Since the algorithm is embarrassingly parallel along the energy axis,

this problem axis can be decomposed in any way: across nodes, across threads in a

node, in a core or vector unit, or any combination.

Moment, Angle: The moment and angle axes are coupled to each other in

an all-to-all fashion via two small matrix-vector products. The moment, angle, and

unknown dimensions of the relevant arrays are ordered to be most rapidly varying,

enabling efficient stride-1 memory access. When possible, the matrix-vector products

are arranged to fit entirely within a vector unit. If na or nm exceed the vector unit

size, a blocking strategy is used with the computation fitting within the vector unit.
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Importantly, the moments-to-angles transform is threaded in angle and the angles-

to-moments transform is threaded in moment (otherwise a reduction across threads

and/or vector lanes is required). Because threads must be reassigned between moment

and angle threads, a synchronization and memory fence is required between these

operations.

Unknown: No couplings exist along the unknowns axis when the small matrix-

vector products are performed, therefore this axis permits some opportunity for thread-

ing here. However, for the inner solve computation in angle, each unknown may require

different kinds of computations. To prevent poor use of vector units, these computa-

tions are kept serial.

8.3 Abstract Parallelism Model

Minisweep defines and implements a set of high level abstractions to describe

the parallelism of its algorithm such that these abstractions can be used by any sim-

ilar application implementing the sweep motif. The goal of these abstractions is to

achieve productivity and performance portability across different architectures (GPUs,

Xeon Phi, CPUs, etc). These abstractions can be instantiated using general purpose

parallel programming languages like CUDA, OpenMP, and OpenACC. The need for

these abstractions is also suggestive of possible shortcomings in parallel programming

languages and suggests the need for extensions to support applications of this type.

The large number of problem dimensions inherent in Sn transport solves makes

the need for managing thread parallelism axes and hierarchical memory places via

use of abstraction layers acute. However, the techniques described here are applicable

to many other problems requiring multidimensional parallelism, for example, batched

dense linear algebra, block sparse linear solvers, and others.

Abstract machine model: Modern compute node hardware has an execution

hierarchy. For example, a compute node may be composed of multiple GPUs, each with

multiple cores possessing hardware threads and employing vector units composed of

vector lanes. Some of these have co-located memories, for example node main memory,
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GPU high bandwidth memory or GPU shared memory associated with a streaming

multiprocessor (SM) core. Execution threads are also associated with each level: for

NVIDIA GPUs, in-warp threads execute in lock-step within a warp, in-threadblock

threads are associated with an SM, and the thread grid is associated with the GPU.

One can thus view a node as a hierarchy of execution units, memory places and compute

threads, and in particular hardware threads can be thought of as indexed as a tuple

depending on the location in the hierarchy. Threads also have characteristics based on

location, e.g., thread synchronization across different cores of a node may be impossible

or much slower compared to on-core synchronization. Likewise memories at different

levels have different speeds, and thread access to memories may have NUMA effects

depending on the level. Note that these concepts readily apply to heterogeneous node

as well as homogeneous systems.

To abstract the characteristics of heterogeneous / homogeneous architectures,

we define “place.” A place consists of abstract executions units with local memories

where threads can possibly synchronize with each other (e.g., barriers, memory fences)

and access the memory. An architecture can be described as a set of “hierarchical

places,” where places can be nested in order to abstract the memory hierarchy of an

architecture and its local execution units. In our abstract machine model, a nested

place can access the memory of its parent place, but sometimes cannot synchronize

with sibling places. We use the term “place threads” to refer to execution threads

associated with each of the specific places. In Minisweep, place threads are created

during execution via an adaptor function which instantiates or destroys the threads for

the requested places in the underlying architecture; in practice, this is implemented

for example by launching a CUDA kernel or entering an OpenMP parallel region,

depending on programming language implementation on the given architecture.

Abstract arrays: In Minisweep, an “abstract (multidimensional) array” is

defined as an object that consists of a list of dimensions and a base pointer associated

with a memory place in the hierarchy. Array elements are accessed using a multiindex

through an indexing function. In this way the memory layout is controlled by an
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abstraction layer that can be easily modified based on the architecture. An abstract

array thus has a local view within the place it is allocated.

Abstract threads: Each independent variable of the science problem is as-

signed an abstract “threading axis” of abstract thread indices assigned to the corre-

sponding problem axis. For example, the axis of ne energy group values is assigned

a set of (ne or fewer) abstract compute thread indices used to compute those values.

The collection of these abstract thread indices (which can be used to describe threads

applied to the energy, octant, y location, z location, etc. problem dimensions) form a

tuple or thread multiindex, which will be later bound to a place thread.

Instantiation of the abstract threaded region: A fundamental operation

for multithreaded or accelerated codes is entry into a fork-join parallel region. In

Minisweep this is abstracted as a multi-threaded region that instantiates the abstract

threads. These regions can be nested and mapped to the same or different places.

Binding of abstract threads to places: A mapping of the abstract thread

multiindex to a place thread multiindex is made based on the type of parallelism

required. For example, since spatial wavefronts of the sweep algorithm require barriers

between wavefronts, the spatial y and z dimensions must necessarily be mapped to

threads within a place (e.g., threadblock on a GPU) that allows synchronization. By

comparison, energy groups are fully decoupled, thus no restrictions are placed on where

the abstract energy thread axis is mapped.

Parallel worksharing construct: This construct schedules work along prob-

lem axes to a set of abstract threads. and executes the work in parallel. The array

index values for a given problem axis are distributed to the abstract thread indices via

a block decomposition. For example, the full set of ne energy groups is partitioned into

blocks which are in turn assigned to abstract energy threads.

Table 8.1 describes the mapping of problem axes and associated abstract threads

to the place thread hierarchy for the algorithm. It is evident that the ability to syn-

chronize a subset of threads, akin to a barrier within an MPI sub-communicator, would

be of benefit, since synchronization does not scale well to large thread counts.
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Figure 8.2 is a simplified version Sn sweep parallelization using the abstract

parallelism model. The pseudocode shows the allocation of the required arrays and

definition of the hierarchical thread regions, followed by nested parallel loop over energy

groups, serial loop over wavefronts, parallel loop over gridcells in the wavefront, and

then the three threaded operations of moment-to-angles, solve and angles-to-moments.

problem dependency GPU Intel Phi
dimension type threading threading

energy (none) grid OpenMP thread

octant coloring threadblock CPU thread

spatial y wavefront threadblock CPU thread

spatial z wavefront threadblock CPU thread

moment all-to-all warp, serial vector, serial

angle all-to-all warp, serial vector, serial

unknown all-to-all warp, serial vector, serial

Table 8.1: Problem dimensions mapping to thread hierarchy.

8.4 Translation of Abstract Parallelism Model

This section shows flavors of how different models, CUDA, OpenMP and Ope-

nACC parallelize Minisweep. The narrative also discusses what we need (referring to

Section 8.3) and what the models lack (Section 8.5).

8.4.1 CUDA

The main sweep function, Sweeper sweep(), of Minisweep has a KBA pipeline

loop to support the KBA block sweep calculations and related asynchronous face com-

munication between nodes using MPI. For the CUDA case, faces and KBA blocks are

also transferred to and from the GPU asynchronously; for systems not requiring of-

fload, these calls do nothing. A mirrored array datatype, resembling the underlying

mechanisms of OpenACC, maintains copies of an array on CPU and GPU and manages

transfers; an accessor function returns the CPU or GPU pointer depending on where

the computation takes place. For details, see [59].
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// Abstract Arrays A l l o ca t i on
AbstractArrayAl loc ( v i (nx , ny , nz , ne ,nm, nu ) : p lace main )
AbstractArrayAl loc ( vo (nx , ny , nz , ne ,nm, nu ) : p lace main )
AbstractArrayAl loc ( ne ighbors ( num neighbors , ne , na , nu ) : p lace main )
// Mult ithreaded Regions f o r Abstract Threads
Abstract Threaded Region ( ab s t r a c t t h r e ad s e : p lace main ) {
Abstract Threaded Region ( ab s t r a c t th r ead s a ,

ab s t r a c t s th r e ad xy : p l a c e l o c a l ) {
// Do All P a r a l l e l Worksharing
Do All ( e in range (0 , ne ) ; ab s t r a c t t h r e ad e ) {
AbstractArrayAl loc ( vs (na , nu ) : p l a c e l o c a l )
do (w in range (0 ,w max ) ) {
// Do All P a r a l l e l Worksharing
Do All ( ( x , y ) in wavefront (w) ; ab s t r a c t th r ead xy ) {
z = z coord (x , y ,w)
//Do All P a r a l l e l Worksharing Matrix−Vector Product
Do All ( a in range (0 , na ) ; ab s t r a c t th r e ad a ) {
do (u in range (0 , nu ) ) { vs ( a , u) = 0
do (m in range (0 ,nm) ) {
vs ( a , u ) += a from m (a ,m) ∗ v i (x , y , z , e ,m, u)}}

} // end o f Do All ( a )
// Do All P a r a l l e l Worksharing
Do All ( a in range (0 , na ) ; ab s t r a c t th r e ad a ) {
// Apply upstream wavefront dependenc ies
do ( i ne ighbor o f (x , y , z ) in wavefront (w−1)) {
do (u in range (0 , nu ) ) { vs ( a , u ) −= neighbors ( i , e , a , u ) }}

s o l v e ( vs , a ) // Computation based on unknowns
// Save downstream wavefront dependenc ies
do ( i ne ighbor o f (x , y , z ) in wavefront (w+1)) {
do (u in range (0 , nu ) ) { ne ighbors ( i , e , a , u ) = vs (a , u ) }}

} // end o f Do All ( a )
//Do All P a r a l l e l Worksharing Matrix−Vector Product
Do All (m in range (0 ,nm) ; abst ract thread m ) {

do (u in range (0 , nu ) ) { vo (x , y , z , e ,m, u) = 0
do ( a in range (0 , na ) ) {
vo (x , y , z , e ,m, u) += m from a (a ,m) ∗ vs ( a , u) }}}

} // end o f wavefront loop w
AbstractArrayFree ( vs )
} // end o f Do All ( e )

}} // end o f Abstract Threaded Regions
AbstractArrayFree ( vi , vo , ne ighbors )

Figure 8.2: Abstract representation of sweep algorithm
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The key kernel operation of Minisweep is the block sweep operation, in func-

tion Sweeper sweep block(). This is launched as a CUDA kernel or alternatively is

initiated as a parallel region in OpenMP, as described above in the abstract model.

Since energy groups are independent, the energy thread axis is mapped off-threadblock

into the GPU thread grid; all other axes are mapped in-threadblock due to coupling

requirements as described earlier.

8.4.2 OpenMP

OpenMP is used to run Minisweep natively on a multicore or manycore processor

with OpenMP 3.1 parallel directives and the OpenMP 4.0 simd directive. The model

also implements KBA. OpenMP runs with a single thread of execution until the block

sweep function is encountered, at which point threads are spawned in energy, octant

and the y and z spatial dimensions. The temporary arrays placed in GPU shared

memory for the CUDA case are now CPU arrays, with one part of the array reserved

for each compute thread.

Since the OpenMP model uses a SIMD loop rather than thread numbers to

access vector lanes, loops are placed in the code for the angle, moment and unknown

dimensions, and each of these dimensions is assigned only a single thread; for the

CUDA case, however, these axes receive multiple threads and the SIMD for loop is

removed. The OpenMP port models the particle flux in all directions, i.e. performs a

total of eight sweeps using the tasks concept. Note: We have not ported the code to

OpenMP4.5 as part of this work. We believe that OpenMP4.5 could be an alternate

solution to explore minisweep on GPUs.

8.4.3 OpenACC

Our OpenACC implementation effort consists of two parts: parallelizing the

initialization of faces at the beginning of the sweep and parallelizing the in-gridcell

computations.
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/∗−−− Loop over wavefronts −−−∗/
f o r ( wavefront = 0 ; wavefront < num wavefronts ; wavefront+=1) {

/∗−−−KBA threading−−−∗/
#pragma acc loop independent gang , c o l l a p s e (2 )

f o r ( i y =0; iy<dim y ; ++iy )
f o r ( i x =0; ix<dim x ; ++ix ) {

i n t i z = wavefront − ( i x + iy ) ;
i f ( i z >= 0 && i z <= wavefront && i z < dim z ) {

/∗−−−moments to angles−−−∗/
#pragma acc loop independent vector , c o l l a p s e (3 )

f o r ( i e =0; i e<dim ne ; ++i e )
f o r ( iu=0; iu<NU; ++iu )
f o r ( i a =0; ia<dim na ; ++ia ) {

P r e s u l t = (P) 0 ;
#pragma acc loop seq

f o r ( im=0; im < dim nm ; ++im )
{ /∗−−−moments to ang l e s convers ion−−−∗/ }

}

/∗−−−so lve−−−∗/
#pragma acc loop independent vector , c o l l a p s e (2 )
f o r ( i e =0; i e<dim ne ; ++i e )

f o r ( i a =0; ia<dim na ; ++ia )
{ /∗−−−s o l v e c a l cu l a t i on−−−∗/ }

/∗−−−ang l e s to moments−−−∗/
#pragma acc loop independent vector , c o l l a p s e (3 )

f o r ( i e =0; i e<dim ne ; ++i e )
f o r ( iu=0; iu<NU; ++iu )
f o r ( im=0; im<dim nm ; ++im ) {

#pragma acc loop seq
P r e s u l t = (P) 0 ;
f o r ( i a =0; ia<dim na ; ++ia )
{ /∗−−−ang l e s to moments convers ion−−−∗/ }

}
}

}
}

Figure 8.3: Sweep loop nest with OpenACC annotations
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Parallelization of the face initializations involves five nested loops (spatial de-

composition of gridcells, unknowns within gridcell, energy groups and angles). How-

ever, it is worth noting that PGI’s OpenACC compiler only provides us with two levels

of parallelism currently: gang (block) and vector (thread). The compiler is yet to

thoroughly exploit the worker level of parallelism. So, in order to map a loop nest of

five loops onto the accelerator to achieve full parallelization, we utilized OpenACC’s

collapse clause to collapse a specified number of nested loops into one large loop,

which we can then map at either the gang or vector level. For Minisweep’s face ini-

tializations, we collapse the outer three loops (corresponding to the unknowns and two

spatial dimensions of the gridcells) and execute at the gang level. We also collapse the

inner two loops (corresponding to the energy groups and angles) and execute at the

vector level.

Parallelization of the in-gridcell computations in Minisweep is not as trivial, as

there are data dependencies between gridcells, as mentioned in Section 8.1.1. To that

end, we utilize the KBA parallel sweep algorithm (discussed in Section 8.2) in order

to exploit gang-level parallelism across the x, y, and z gridcell loops. Since there is

currently no existing high-level language that provides functionality for implementing

this type of parallel sweep, the programmer must modify the loop nest manually in

order to achieve the desired behavior. This involves creating an outer wavefront loop

that iterates over the wavefront decomposition, as discussed in Section 8.1.1 and shown

in Figure 5.1. The computations within these wavefronts can be parallelized, albeit

not trivially. First we must parallelize across the inner two dimensions: y and x. This

spawns a number of threads on the GPU. Within each of these threads, we calculate

our z value based off of the thread’s y and x values and the wavefront iteration number.

Then, we can perform a bounds check to determine whether that z value is within the

bounds of the wavefront being examined (denoted by the current wavefront iteration

number). This allows us to exploit parallelism across gridcells, while still accounting

for data-dependencies between wavefront iterations.

The embarrassingly parallel in-gridcell computations are performed for each
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energy group within each gridcell. Within each of these groups, there lies a series of in-

gridcell computations that must be performed for the given energy group in the gridcell

in question, all of which are embarassingly parallel. We mark these computations for

execution at the vector level. A representation of the result is shown in Figure 8.3.

Note that this code snippet is also the serial code if one were to simply remove all the

directives.

Transport algorithm sweeps are particularly challenging. After parallelizing this

sweep kernel using only two levels of parallelism, we faced an additional obstacle. Min-

isweep doesn’t run just a single sweep each timestep; it runs eight. Each of these sweeps

represents a different octant, which refers to the direction the sweep iterates through

the 3-dimensional simulation space. Each octant starts at a different corner of the

space and iterates diagonally to the opposing corner. This complicates our calculation

of the z dimension value, since we have to consider the direction that a given sweep is

moving in along each axis, as well as the bounds check to make sure that the calculated

z value lies along the current wavefront. If that isn’t already a daunting enough task,

these octant sweeps are also parallelizable, but OpenACC doesn’t provide us another

explicit layer of parallelism. Our solution to this predicament is to use asynchronous

parallel regions within our octant loop. This effectively will launch kernels on the

GPU asynchronously, which allows us to overlap computation across octants. This

asynchronous behavior provides us with a third level of parallelism that we can use to

saturate the GPU for a longer period of time, yielding optimal performance.

8.4.4 MPI Domain Decomposition

The goal of the domain scientists who use Minisweep is to explore the largest

3-dimensional space possible. This poses a challenge because we are limited by the

amount of memory present on a single node or device. We can overcome this limita-

tion by decomposing our simulation’s spatial component across nodes and/or devices

using MPI. Details about the data synchronization required to resolve dependencies be-

tween spatial blocks are presented in Section 8.4.1. In short, we decompose Minisweep’s
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simulation domain across spatial dimensions (corresponding to gridcell-level computa-

tion). A sub-component of the problem space is allocated on each device, which is

bound to a single MPI rank. This includes the collection of gridcells that a given MPI

rank is responsible for computing, as well as the few neighbors that it may need to read

data from (despite not computing). After each wavefront iteration, a synchronization

is used to update the neighbors that lie along the edge of the rank’s portion of the

simulation space. This incurs a small amount of overhead that is outweighed by the

computational benefit of utilizing many accelerators.

Minisweep allows the user to control the behavior of this decomposition by

providing two command line flags: nproc x and nproc y. The product of the values

passed using these flags should equal the number of MPI ranks used. By using these

additional arguments, we are able to decompose our problem across two spatial axes

instead of one, and the user is given the ability to control to what extent the simulation

is decomposed along each axis. For example, if we use 4 MPI ranks, we have the option

to decompose either the x or y axis across 4 ranks, or we can set both nproc x and

nproc y to 2, which decomposes the simulation across both axes simultaneously. When

using larger simulation configurations and a larger number of MPI ranks, we can play

with the nproc x and nproc y values to decompose the simulation in other ways and

observe the impact on Minisweep’s performance. An example of this would be using 16

MPI ranks and setting nproc x to 8 and nproc y to 2, or vice-versa. For the purposes

of this thesis, we stick to an even decomposition across both axes in our experimental

setup.

8.5 Programming Model Limitations

This section dives into the obstacles created by limitations in the programming

models that were explored. Section 8.5.1 presents general challenges that were faced due

to the structure and design of Minisweep’s code. Sections 8.5.2, 8.5.3, and 8.5.4 then

explore model-specific challenges faced when using CUDA, OpenMP, and OpenACC,
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respectively. These obstacles serve as additional motivation regarding the need for

extensions to existing programming models.

8.5.1 General

In all cases, inadequacies of current compilers required that some code be rewrit-

ten in an unnecessarily low-level fashion to obtain correctness and/or performance.

This seems to be a systemic challenge, insofar as it is difficult for compiler teams to

develop mature and performant compilers for frequently changing complex processor

hardware. Programming models support vectorization in different ways, leading to

portability challenges. CUDA treats vector lanes as threads, whereas OpenMP uses

SIMD loops and OpenACC has a vector clause for parallel loops. Such differences can

lead to increased use of undesirable ifdefs if it is required to support these multiple

programming models. Developers would prefer a single highly performant program-

ming model with a high level of abstraction targeting all architectures rather than the

need to use multiple programming models.

The Minisweep code requires in several places a thread synchronization or bar-

rier over only a subset of threads. A barrier across fewer threads could potentially run

much faster in current hardware. This feature is not currently supplied by any of the

programming models, though in principle a barrier across a subset of OpenMP threads

could be written, and the new CUDA 9 Cooperative Groups feature may be useful

here.

The Minisweep design makes it easy to change the mapping of machine threads

to abstract problem threads and problem dimensions. A more challenging goal is to

allow easy modification of the execution hierarchy. Such a design would allow easy loop

order permutation and other loop restructuring operations, loop blocking to optimize

cache use or reduce loop overheads, and on-demand reassignment of loop axes either to

parallel threads or alternatively serial execution. Such changes generally require motion

of significant portions of code, e.g., to optimize for loop invariant quantities. Presently

this must be done by hand, and is not directly supported by programming models
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or imperative programming languages as currently conceived. Likewise, the use of

accessor functions in Minisweep permits easy modification of memory locale and layout

for an array. One must still however schedule memory transfers across the memory

hierarchy manually for peak performance. Automatic transfers via paging/caching

such as the CUDA Unified Memory feature and similar functionality for Intel Phi

on-package memory will simplify programming for this, however past experience has

shown that manual prefetching of data across the hierarchy is sometimes necessary to

attain high performance. As memory layers proliferate, e.g., with inclusion of NVRAM,

managing this will become more challenging.

8.5.2 CUDA

CUDA by nature provides a lower level programming model compared to directives-

based methods. Though the CUDA runtime API provides a slightly higher abstraction

level than the CUDA driver API, both cases require ifdefs to make a code portable

between CUDA for GPUs and standard C/C++ for conventional architectures. CUDA

has the advantage that vector lanes are addressed explicitly as threads, resulting in reli-

able vectorization. However, certain coding constructs can lead to losses in performance

in unexpected ways. For example, in the course of developing the Denovo sweeper and

Minisweep, it was observed that when loop bounds were passed into a CUDA kernel

within a struct, performance was noticeably degraded compared to when passed in

as scalars. Furthermore, in some cases a for loop that was provably one-trip at com-

pile time ran slower than when the loop was altogether removed, necessitating use of

an ifdef to make a single CUDA / OpenMP-SIMD code. CUDA additionally has

limitations with repect to deep copy of structs and classes—since pointers in a host

struct are invalid on the device—though this is improving with the support of GPU

Unified Memory. In short, limitations of this nature can make it challenging to raise

the abstraction level in CUDA codes and maintain performance portability with other

platforms.
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8.5.3 OpenMP

Intel Phi performance typically depends on the effective vectorization of loops,

using the native simd directive or alternatively the OpenMP simd directive. In the

process of porting Minisweep to the Intel Phi using the Intel compiler, challenges to

loop vectorization were encountered. In one case an array accessor function needed to

be flattened by removing its use of a struct in order to enable the loop to vectorize.

In another case the compiler failed to remove a provably loop invariant quantity from

a loop, inhibiting vectorization. Also, the compiler would not vectorize the outermost

loop of a deep loop nest, though CUDA had no problem threading this loop. The dif-

fering treatment of vector lanes as threads by CUDA and by SIMD loops in OpenMP

required the undesirable use of special case code to handle the differences. Also, CUDA

generally favors larger kernels to minimize kernel launch overhead and maximize data

reuse, whereas with the Intel compiler it is difficult or impossible to vectorize large,

complex loops in one piece. These differences made it challenging to support the differ-

ent platforms without special case programming. Overall, the difficulty of predicting a

priori when a complex loop would vectorize and the need at times to rewrite code at a

lower abstraction level was detrimental to writing maintainable, performance portable

code.

We also explored converting current the OpenMP 3.1 code to 4.5 (only within

the scope of the ideas presented and not with respect to porting the full code to 4.5

to use GPUs). Adapting doacross for this type of wavefront problem would have been

a potential direction to take. However, doacross assumes a flat memory hierarchy

(shared memory), but instead, what we need for our type of case study is to map

data objects to a memory hierarchy (e.g. place and child place) that would allow the

wavefront computations to be more data-centric and be scheduled where the data is.

8.5.4 OpenACC

Similarly to OpenMP, we faced a number of challenges when implementing

our parallelization strategy discussed in Section 8.4.3 in OpenACC. We used PGI’s
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18.4 community edition compiler, and bugs were reported to PGI’s team. The first

issue was handling array accesses in the original Minisweep implementation. Accessor

functions are used to calculate the address of the flattened array accesses that occur

throughout the Sweeper sweep function, as described in Section 8.3. These functions

returned the address of the array access in question, which was then dereferenced by the

Sweeper sweep function in order to perform the manipulation on the array element.

OpenACC requires that we use the routine directive to convert these function calls

to routines. However, the compiler was unable to properly generate routine code for

functions utilizing external variables like these array accesses do. The solution to this

was to simply eliminate the use of these functions and inline the calculation of the array

address into the array accesses within the given loops, resulting in a more traditional

array access. Unfortunately this is detrimental to efforts to raise the abstraction level

of the code.

Another issue was related to loop bounds. In Minisweep, input parameters are

stored in a globally defined struct. Since these values are representing the sizes of

each dimension of the application, they are used later as loop bounds. However, while

parallelizing, OpenACC does not assume that no aliasing is being done since this struct

is defined globally (out of scope). There are two simple solutions to this issue. First,

the compiler flag -Msafeptr can be used to specify that there is no aliasing. However,

this would not be the best option for this application as there is some sort of pointer

aliasing present elsewhere. Instead, we simply extract the value of the dimension being

used for a given loop bound and store it in an integer variable prior to the start of the

accelerated loop.

The final issue we faced was identified as a compiler bug in PGI OpenACC 18.4.

OpenACC can use kernels or parallel to generate code from an accelerated region.

With kernels, the onus is on the compiler to check for dependencies and generate code,

whereaas with parallel, the onus is on the programmer; failure to do so will result in

inaccurate results. In our case, we observed that even though we used the parallel

directive and marked a loop nest for collapsing and parallelizing, the compiler still
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performed dependency checks as if we had used kernels directive. We confirmed this

behavior by parallelizing a loop with a known dependency. The compiler generated

parallel code but showed incorrect results. We then added a collapse clause to the end

of this loop directive, and we specified that it should be collapsed with the next loop

in the loop nest, which contained no such dependencies. The result here was that the

compiler reported that it parallelized this collapsed loop nest, but the results of the

computation were accurate. Due to the increased runtime, we were able to conclude

that the inner loop was indeed executing in parallel, but the outer loop was executing in

serial despite what the compiler had reported. All of these issues were easily overcome

in practice, but identifying them presented significant challenges along the way.

8.6 Profiling Minisweep

In order to validate the strategies discussed in Section 8.4.3 that we employed to

accelerate Minisweep using OpenACC, we analyzed the application’s execution using

PGI’s profiling tool pgprof . Figures 8.4 and 8.5 show different stages of Minisweep’s

execution. Our attention is mainly focused on the behavior of the compute regions

(light blue bars) and the two rows preceding the compute region breakdown, which show

the associated data transfer times from host to device and device to host, respectively.

Fortunately, these are barely visible, as we are keeping the vast majority of our data

on the GPU throughout Minisweep’s entire execution.

Figure 8.4 shows the beginning of Minisweep’s execution. As discussed through-

out Chapter 8, we are iterating over the diagonal wavefronts of a three-dimensional

space in this radiation transport simulation. As the wavefronts progress from a single

corner of the space toward the center, they grow in size. Since more and more gridcells

are being examined, the computational cost grows accordingly. This is reflected in the

profiler’s visualization, as we see the compute regions taking more and more time to

execute as the execution of the application progresses. The execution time of a single

compute region eventually plateaus once the GPU is being fully utilized, as shown in

Figure 8.5.
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Figure 8.4: Examining Minisweep’s execution using pgprof . The beginning of execu-
tion is shown here.

Figure 8.5: Examining Minisweep’s execution using pgprof . The most compute inten-
sive portion of execution is shown here.
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We are also running eight sweeps in parallel using OpenACC’s async directive,

as discussed in Section 8.4.3. We can see the eight corresponding asynchronous CUDA

streams at the bottom of the profiler’s visual output. As shown in Figure 8.4, there

is a lot of overlap between these streams at the beginning of execution. Since a single

sweep isn’t examining enough gridcells to sature the GPU, we are able to launch all

of our octant sweeps asynchronously. As each sweep progresses through the three-

dimensional space being examined, the size of its wavefront grows, thus increasing its

computational requirement. To that end, each sweep utilizes more and more of the

GPU, resulting in less and less asynchronous overlap between streams. Eventually, we

reach the most computationally intensive portion of the space: the middle. Figure 8.5

shows each stream utilizing enough of the GPU that there is almost no asynchronous

overlap. Eventually, each stream’s sweep will progress to the opposite end of the space,

resulting in a decrease of its active wavefront size. We then see the compute regions

begin to shrink, and the asynchronous CUDA streams begin to overlap quite a bit

again, mirroring the beginning of Minisweep’s execution shown in Figure 8.4.

8.7 Evaluation & Results

Machine CPU NVIDIA GPU
NVIDIA PSG (V100) 2x Intel Xeon E5-2698 v3 (16 cores) 4x V100 (16GB HBM2)
NVIDIA PSG (P100) 2x Intel Xeon E5-2698 v3 (16 cores) 4x P100 (16GB HBM2)
NVIDIA PSG (K40) 2x Intel Xeon E5-2690 v2 (10 cores) K40 (12GB GDDR5)

ORNL Titan AMD Opteron 6274 (16 cores) K20X (6GB GDDR5)
ORNL Summitdev 2x IBM POWER8 (10 cores) 4x P100 (16GB HBM2)

ORNL Summit 2x IBM POWER9 (21 cores) 6x V100 (16GB HBM2)
ORNL Percival Intel KNL 7230 (64 cores) N/A

Table 8.2: Specifications of the nodes in the systems we used to test different configu-
rations of Minisweep.

As a validation of portability, Table 8.3 shows Minisweep results for one GPU of

the Titan Cray XK7 system (CUDA), one GPU of the Summitdev IBM Minsky system

(CUDA) and one node of the Percival Cray XC40 KNL system (self-hosted OpenMP

4.0). The problem solved has ne = 64, na = 32, and nu = 4, with nx, ny, nz =
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32 The codes are not fully optimized, in particular one of the inner loops for the

OpenMP-KNL case did not vectorize. However, all cases across different hardware and

software environments attained a similar 4-5% of peak flop rate, a typical figure for

this algorithm which has significant memory accesses, register usage and integer index

calculations. This result suggests that the code is in fact performance portable, since

reasonable performance is reached for all systems.

System Cores GF/s GF/s % peak
(SMs) peak GF/s

Titan(K20X) 14 1311 55.9 4.26
Summitdev(P100) 56 5312 244.8 4.61
Percival(Phi7230) 64 2662 124.9 4.69

Table 8.3: Comparative performance on several platforms.

We evaluate the effectiveness of our abstract wavefront parallelism model by

comparing the runtimes of our parallel implementations of Minisweep (described in

Section 8.4) to the runtime of a serial version of the code on multiple HPC systems.

Table 8.2 describes the hardware available on nodes of each system. Note that the

NVIDIA Professional Service Group (PSG) machines and the ORNL Titan machine

are existing state-of-the-art HPC systems, while ORNL Summitdev is a development

cluster representative of the hardware that is now present on nodes in ORNL’s next-gen

supercomputer Summit [67]. We also utilized the PSG cluster’s V100 nodes, which

house NVIDIA’s next-generation GPU that are present on nodes in Summit. We

used PGI’s 18.4 compiler to compile our OpenACC and OpenMP. We have also used

GCC 6.3.0 and ICC 17.0 for OpenMP codes. Compiling the code using Intel’s OpenMP

compiler was not successful and required code restructuring to take advantage of SIMD

in minisweep.

Our experimental configuration is a representative example of what a real run

of Minisweep within the Denovo radiation transport code looks like. Our problem

dimensions on a single node are designed to be as large as we can fit on a single GPU:

ne = 64, na = 32, and nu = 4, with nx, ny, nz = 32, on K20x/K40 and nx, ny, nz = 64
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on P100/V100. For MPI runs, we ran across 4 nodes on NVIDIA’s PSG cluster, which

are each equipped with 4 GPUs. To that end, our in-gridcell sizes for ne, na, and nu

remain unchanged, but we explore a larger 3-dimensional space using nx, ny, nz = 128

on NVIDIA’s PSG system.

Figure 8.6: Minisweep’s speedups over serial using different runtime configurations
sorted according to each machine’s GPU. Note that the CUDA version is parallelized
along the same dimensions as the OpenACC GPU configuration. The corresponding
KBA configurations utilize the KBA blocking method for additional parallelism across
spatial dimensions.

Figure 8.6 presents the results when running different implementations of Min-

isweep using our single node configuration in the form of speedups over the baseline se-

rial implementation on existing HPC systems. Note that the speedup results presented

were obtained by calculating the average of a series of runs for each implementation.

There are a few notable results. First, our multicore CPU GCC’s OpenMP (3.1) and

OpenACC implementations yield favorable speedups. Note that GCC’s OpenMP per-

formed better than PGI’s OpenMP. As mentioned in Section 8.4.3, we have currently

parallelized the in-gridcell computations, as well as the spatial decomposition utiliz-

ing the KBA parallel sweep algorithm to resolve data dependencies, as discussed in

Section 8.1.1. This implementation boasts a larger speedup than our OpenMP GCC

version, as well as our CUDA configuration when parallelized over the same problem
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dimensions. Our OpenACC KBA configurations yield an addition layer of parallelism

across spatial dimensions and show a much larger speedup compared to configurations

which only execute in-gridcell computations in parallel. This leads us to conclude

that there is additional performance to be gained, albeit not trivial to implement. It

is also worth noting that our OpenACC implementation running on NVIDIA’s next-

generation Volta GPU boasts an 85.06x speedup over serial code, which is larger than

the 83.72x speedup over the same serial implementation achieved by CUDA. This

supports our claim that our extension to existing high-level programming models is

worthwhile, both from a performance standpoint, as well as a programming productiv-

ity standpoint. Currently, without major code modification, this challenge cannot be

overcome.

Figure 8.7: Absolute runtimes (measured in seconds) of OpenACC and CUDA ex-
periments on all GPUs used. Note that the V100/P100 problem size is an order of
magnitude larger than the K40/K20x configuration, as mentioned earlier.

Absolute runtimes for GPU configurations utilizing the KBA parallel sweep al-

gorithm are presented in Figure 8.7. As shown, our OpenACC GPU implementation

performs well compared to its CUDA counterpart in all cases. In addition to its excel-

lent GPU performance, it is worth noting that this same OpenACC implementation

was used to obtain results on our multicore CPU platforms by simply recompiling
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and specifying a different target. No additional code modifications were necessary to

achieve this demonstration of portability. We contend that this provides additional ev-

idence for the importance of an extension that would allow us to parallelize the outer

spatial dimensions, yielding additional parallelism across gridcells without requiring a

major coding effort on the part of the programmer. As stated in Section 8.3, this type

of abstraction will benefit any wavefront-type code that performs some type of spatial

dimension sweep. Our OpenACC proof-of-concept of such an abstraction demonstrates

this on a real-world wavefront-type application used at a major national laboratory.

Since these types of codes are very common in computational scientific applications,

we contend that this contribution has far-reaching implications for modern-day HPC

applications.

Figure 8.8: Minisweep’s runtimes when running on 4 nodes (each with 4 GPUs) using
16 MPI ranks (1 rank per GPU). Lower is better. Note that the runtimes of OpenACC
and CUDA are comparable even when run on multiple nodes. This reinforces our
conclusions drawn from Figure 8.6.

Figure 8.8 takes the developed strategy a step further by introducing the addi-

tional layer of MPI communication into the KBA sweep component of the code. Using

MPI, we can decompose the spatial domain across nodes, and in the case where a GPU

architecture is targeted, across devices within a node. Here, we observe similar behavior
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to the results shown in Figure 8.6, as it relates to runtimes of our different configura-

tions. It is worth noting that since we changed over from a single-directional sweep to

Minisweep’s true multi-directional octant sweeping method using asynchronous paral-

lel regions, we lose a bit of performance when compiling for a multicore CPU target.

This is due to the fact that PGI’s OpenACC compiler will parallelize gang loops by de-

fault when compiled with a multicore target. The optimal configuration for Minisweep

would be to actually parallelize our in-gridcell loops (currently annotated as vector

parallel) because we have enough parallelism inside our gridcells to fully saturate most

CPUs. Since we are unable to do this currently, we see OpenMP outperforming our

OpenACC configuration. However, our GPU configurations yield very fruitful results

when run across all 16 GPUs across 4 PSG nodes using 16 MPI ranks. Each rank is

bound to a different GPU using the acc set device num function. Here, we see Ope-

nACC continuing to outperform CUDA, which serves as evidence that our OpenACC

configuration will scale very well on larger, modern HPC systems.

We ran our GPU configurations of Minisweep on Summit itself. Constraints in

accessing the system have limited the ability to collect complete results, hence we have

not added our preliminary findings.

Scientifically, neutron flow simulation can take a considerable amount of com-

puting time. If not for speeding up these simulation runs using accelerators, scientists

will have to resort to simulating a model that is potentially less accurate leading to

questionable results. This can be quite a risky task to rely on for scientists working in

nuclear reactor facilities.
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Chapter 9

CONCLUSION & FUTURE WORK

From single-core processors to the massively parallel supercomputers of today,

the evolution of computing hardware has necessitated the development of new pro-

gramming models in order to exploit all the computing power that state-of-the-art

hardware has to offer. The rise of parallelism and heterogeneity has fundamentally

reshaped the way we think about programming. We don’t know exactly what the ma-

chines of tomorrow will look like hardware-wise, but we do know from a programming

standpoint that parallelism will only increase. Although we don’t know what hardware

will be present in it, Oak Ridge National Laboratory is expected to have its first exas-

cale machine, dubbed Frontier, operational just around the corner in 2021 [68]. The

uncertainty of the future is a motivating factor behind the need for portable, abstract

programming models that allow developers to maintain a single codebase across legacy,

existing, and future hardware architectures.

This thesis presents motivation for the continued development of such models

in Chapter 4. Section 4.1 presents results that dispel the myth that high-level pro-

gramming models cannot compete with hardware-specific, low-level languages from a

performance standpoint. Sections 4.2 and 4.3 provide insight from the applications side

of computing. More specifically, the applications examined in the associated projects

greatly benefit from utilizing state-of-the-art HPC hardware, but they faced obsta-

cles during development due to the lack of support for complex parallel behaviors in

high-level programming models that were available at the time.

Chapter 5 presents a complex parallel pattern, called wavefront, that is com-

monly found in real-world scientific applications across domains including (but not

limited to) linear systems solvers, genetic sequencing, and nuclear physics. Chapter 6
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presents an abstraction and designs an extension to existing high-level programming

models, such as OpenACC, that can be used to represent wavefront behavior in order

to achieve performance portability across HPC systems. Chapters 7 and 8 then eval-

uate the developed abstraction using different types of wavefront algorithms, as well

as a real-world application, Minisweep, containing wavefront parallelism in its core

compute region. The results presented in both chapters support the efficacy of the

developed abstraction by showing favorable performance improvements on a variety of

state-of-the-art HPC hardware, while maintaining a single codebase.

The techniques presented by this thesis are not unique to wavefront parallelism.

Complex parallel patterns are present in almost all large applications, and they will

have to be dealt with by application developers if those applications are to be ported to

existing and next-generation HPC systems. Up until this point, many high-level pro-

gramming models were playing catch-up with the evolution of state-of-the-art hardware

architectures. For example, OpenMP was created in 1997 as a shared memory multipro-

cessing API [106], but it has since evolved to support accelerator offloading since 2015,

starting with its 4.5 specification [83]. The on-node, high-level programming model of

focus in this thesis, OpenACC, was introduced in 2012 with accelerator offloading and

heterogeneous systems in mind from the start [105]. However, the OpenACC stan-

dard still does not support certain types of increasingly popular parallel architectures,

such as ARM processors and FPGAs, and it lacks support for more complex parallel

behavior, such as wavefront.

Moving forward, it is important to develop programming models that facili-

tate parallelism, while remaining platform-agnostic. Existing high-level models like

OpenMP and OpenACC make certain assumptions about hardware. For example,

OpenACC only provides three clauses with which to express parallelism in a piece of

code: gang, worker, and vector. Given that most GPUs already support two or three

levels of parallelism due to their hardware layout, it is not unreasonable to imagine a

future parallel architecture that contains additional levels of parallelism. We already

see an example of this in the form of ORNL’s Summit supercomputer, which contains

83



six NVIDIA GPUs per node. This can be thought of as a fourth layer of on-node par-

allelism. To that end, high-level programming models need to become more abstract in

the way they describe parallelism within a piece of code. It is also important that the

programming models of the future support more and more complex behavior. As the

wavefront parallel pattern shows us, parallel applications are becoming increasingly

complex. Simply providing methods of parallelizing traditional-style loop nests and

embarassingly-parallel computational algorithms is not going to be good enough in the

long term. The best way to extend existing programming models and facilitate the

development of robust, high-level programming models in the future is to begin looking

at more complex parallel patterns found across a range of scientific applications. This

is an ongoing, and potentially neverending challenge.
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Appendix

RELATED RESOURCES

This appendix provides additional resources related to the applications discussed

in this thesis. The Wavebench tool’s source code, discussed in Chapter 7, can be found

on GitHub at https://github.com/rsearles35/Wavebench. The Minisweep mini-

application, discussed in Chapter 8, can also be found on GitHub. The original code

exists in Dr. Wayne Joubert’s GitHub page at https://github.com/wdj/minisweep,

and the OpenACC version of the code can be found on the author’s GitHub page at

https://github.com/rsearles35/minisweep. The OpenACC code will be merged

into the original repository.
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