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ABSTRACT

Gauss sums play an important role in the construction of strongly regular Cayley

graphs and association schemes. Compared with other approaches to the constructions

of strongly regular graphs, the method using Gauss sums requires a lot of background

knowledge from algebra and number theory. In [50], Schmidt and White provided a

conjecture on cyclotomic strongly regular graphs which contains 11 sporadic examples

of cyclotomic strongly regular graphs. We first generalize one of their sporadic examples

to an infinite family of strongly regular graphs by using a union of cyclotomic classes.

We do so by first deriving expressions for the (restricted) eigenvalues of Cayley graphs

without evaluating Gauss sums explicitly, and then giving conditions that determined

candidate Cayley graphs be strongly regular.

A. V. Ivanov’s conjecture on amorphic association schemes was first disproved

by Van Dam. Before the work of this dissertation, only finitely many counterexamples

were known. In the dissertation, we shall give 15 infinite families of counter examples

to Ivanov’s conjecture. Moreover, our families of association schemes are pseudocyclic.

We shall prove this fact by using the properties of Gauss sums of the index 2.
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Chapter 1

INTRODUCTION

This dissertation consists of two results. The first main result is to give sufficient

and necessary conditions that determine certain Cayley graphs, which come from cyclo-

tomy, to be strongly regular. The significance of this result lies not only in generalizing

Example 5 in Table I below, but also in giving an approach to constructing strongly

regular Cayley graphs without evaluating Gauss sums of high indices explicitly.

The second main result is the construction of infinite families of counterexam-

ples to A. V. Ivanov’s false conjecture about amorphic association schemes. Since

association schemes can be viewed as generalizations of strongly regular graphs, we

begin by introducing basic terminology in graph theory.

An graph Γ(V, E) consists of a set V of vertices, a set E of edges, and a mapping

associating to each edge e ∈ E an unordered pair x, y of vertices called the endpoints

of e. We call v := |V | as the order of the graph. We say an edge is incident with its

endpoints. If E = ∅, we say Γ(V, E) is edgeless. We call the number edges which are

incident with a vertex x the valency of x. If two endpoints of an edge are same, this

edge is called a loop. A graph is called simple, if it does not contain loops and no two

distinct edges have exactly the same pair of endpoints. If an ordered pair of vertices

is associated to each edge of a graph, we have a directed graph, otherwise, the graph is

called undirected. For a simple and undirected graph Γ(V, E), the elements of E can

be identified with elements of some subset of V × V . In this dissertation, we assume

graphs to be simple, undirected and not edgeless.

In a graph Γ(V, E) of order v, label the vertices by {1, . . . , v}. The adjacency

matrix A of Γ is defined by A = (aij), where aij = 1, when vertex i and vertex j are
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adjacent, and aij = 0 otherwise. Thus, A is a symmetric 0-1 matrix with diagonal

entries all being zeros. It is well known that all eigenvalues of the matrix A are real

and it has exactly v linearly independent eigenvectors. The eigenvalues (eigenvectors)

of A are called the eigenvalues (eigenvectors) of Γ.

We call two graphs Γ(V1, E1) and Γ(V2, E2) isomorphic if there exists a bijection

σ from V1 to V2 such that σ(x)σ(y) ∈ E2 if and only if xy ∈ E1. Furthermore, we say

an isomorphism σ is an automorphism, if V1 = V2 and E1 = E2. It is easy to see that

all automorphisms of a graph form a subgroup of the permutation group of the vertex

set. We call this group the automorphism group of the graph S(V ). Usually, we do not

distinguish between two isomorphic graphs, since in graph theory isomorphic graphs

share exactly the same graph theoretic properties. In the following, we call the graphs

“new”, if they are not isomorphic to known examples.

We call two vertices x and y of the graph G are adjacent, if xy ∈ E(G). Let

N(x) be the set of vertices adjacent with x. Then, N(x) is called the neighborhood of

x and |N(x)|, denoted as d(x), is called the valency of x. We call a graph regular of

valency k, if all of its vertices have the same valency k. We call a regular graph of order

v and valency v − 1 a complete graph. As examples, we introduce simple closed paths.

A walk of length n in a graph G is a sequence v0, e0, v1, . . . , vn−1, en−1, vn, where vi and

vi+1 are two endpoints of the edge ei, 0 ≤ i ≤ n − 1. A walk is called a simple closed

path, denoted by Cn, if v0, . . . , vn−1 are distinct points, e0, . . . , en−1 are distinct edges

and v0 = vn. It is easy to see that Cn, n ≥ 1, are regular graphs. A straightforward

conclusion is that for a regular graph Γ of valency k, k is an eigenvalue of Γ, and the

all-one vector 1 is an eigenvector with respect to k.

In graph theory, regular graphs occupy an important position. In this disser-

tation, we concern ourselves with a special type of regular graphs, strongly regular

graphs. A strongly regular graph srg (v, k, λ, µ) is a graph with v vertices that is regu-

lar of valency k and that has the following properties:

(1) Any two adjacent vertices x and y have exactly λ common neighbors.

(2) Any two non-adjacent vertices x and y have exactly µ common neighbors.
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We call nonnegative integers v, k, λ and µ the parameters of a strongly regular graph.

The triangle C3, quadrangle C4, pentagon C5 are examples of strongly regular graphs.

Moreover, the Petersen graph is an example of strongly regular graphs, srg (10, 3, 0, 1).

In Brouwer and Haemers’ book [14], we see that there are many more examples of

strongly regular graphs that have been constructed. A natural question is to construct

more new strongly regular graphs. This is the main topic of our first research project

in this dissertation.

Strongly regular graphs have been studied extensively since their introduction

by Bose [12] in 1963. Given a set of parameters v, k, λ and µ, the following three types

of questions are important in the theory of strongly regular graphs:

(1) Construct strongly regular graphs with the above parameters if possible.

(2) Show the graphs obtained are new.

(3) Show the non-existence of strongly regular graphs with the above parameters if one

cannot construct them.

For the third item, we refer the reader to Brouwer and Van Lint’s paper [16], which

contains a detailed survey on the non-existence problem. This dissertation is only

concerned with the first two questions.

Clearly, two strongly regular graphs with different parameters (v, k, λ, µ) are

non-isomorphic to each other. Thus, it is straightforward to show two strongly regular

graphs are non-isomorphic, if they have different sets of parameters. Then, we focus

on the first problem above. An important approach in the theory of strongly regular

graph is to investigate the eigenvalues of graphs. An eigenvalue of a graph is called

as an restricted eigenvalue, if it has a eigenvector that is not a multiple of the all-one

vector. In Chapter 3, we shall prove the a candidate regular graph to be strongly

regular by showing that it has exactly two restricted eigenvalues. In Chapter 2, we

shall introduce some effective methods to fulfill this task.

Regular graphs can be constructed through many approaches. An effective

method is by the Cayley graph construction. An automorphism group G of a set

V acts regularly on V , if only the identity element of G fixes any point. A Cayley
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graph Γ(V, E) is defined as a graph which admits an automorphism group G (written

additively) acting regularly on the vertex set V . Let P be any point (we call it base

point) of V , then the regularity of G acting on V allows us to identify the elements

of V with the elements of G. Let D be a subset of G such that 0 does not belong to

D and −D = D. The Cayley graph Cay(G, D) generated by the connection set D is

the graph with the vertex set G and the edge set E, which is identified with the set

{(x, y) | x− y ∈ D and x, y ∈ G}. It is straightforward that the graphs we obtain in

this way are regular. (See Theorem 2.2.9.)

The Cayley graph construction has two main benefits as follows. First, the

Cayley graph construction provides a unified method to construct regular graphs in

various groups. Furthermore, compared with other types of construction, a strongly

regular graph with finite parameters by the Cayley graph construction are easier to

be generalized to an infinite family of strongly regular graphs. With the assistance of

computers, we search a general pattern of D in an infinite family of groups, and then

prove the pattern gives a infinite family of strongly regular graphs. The subfield and

semi-primitive cyclotomic strongly regular graphs, which will be defined after a couple

of lines, are typical results obtained through this approach. Moreover, the Cayley

graph construction was successfully used in a series of papers [25, 27, 28]. Our first

main result, published in [53], was also obtained using this type of construction.

The second benefit of the Cayley graph construction is that eigenvalues of Cayley

graphs are relatively easy to compute. In fact, the eigenvalues of a Cayley graph are

given by character sums. (See Theorem 2.2.9) Let p be a prime, f be a positive integer

and q = pf . Let Fq be finite field of order q and F∗q be the multiplicative group of Fq.

Let D be a subset of F∗q such that −D = D. A Cayley graph Cay(Fpf , D) with the

connection set D is a graph whose vertex set is Fpf and any two vertices are adjacent

if and only if their difference belongs to D. A subtle construction of D is crucial to

our research project. By the means of cyclotomy, we point out the connection between

eigenvalues of Cayley graphs and Gauss sums (Gauss sums will be introduced in Section

2.1).
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Let γ be a primitive element of Fq. Let N be a positive integer that divides

q − 1 such that 1 < N < q − 1. Let C0 = 〈γN〉 ≤ F∗q. Then, we have [F∗q : C0] = N ,

|C0| = q−1
N

and the sets C0, C1 = γC0, . . . , CN−1 = γN−1C0 are called the cyclotomic

classes of order N of Fq. The class C0 is also called the N th power residues. If we

set D to be one or a union of cyclotomic classes, the eigenvalues of Cayley graphs are

determined by the values of Gauss sums. The advantage of this construction lies in

that powerful tools from algebra and number theory (such as Stickelberger’s theorem,

see [9], Chapter 10) can be consequently applied to this problem. In the dissertation,

our connection set D is a union of cyclotomic classes. Before the formal introduction

of our result, we summarize recent progress about the case when D is a single class.

If D is a single class, it is easy to see that Cay(Fq, Ci) ∼= Cay(Fq, C0), 1 ≤

i ≤ N − 1. Without loss of generality, we set D = C0. Thus, D is a subgroup of

F∗q. If Cay(Fq, D) is strongly regular, then we speak of a cyclotomic strongly regular

graph. A straightforward result is that Cay(Fq, D) is strongly regular if D is the

multiplicative group of a subfield of Fpf . (See Section 2.4) Such cyclotomic strongly

regular graphs are called subfield examples. Next, if there exists a positive integer t

such that −1 ≡ pt (mod N), then it can be shown that Cay(Fq, D) is a strongly regular

graph. (For the proof of this fact, see [8].) Such cyclotomic strongly regular graphs are

called semiprimitive examples. It is natural to ask: Can we classify and characterize

all cyclotomic strongly regular graphs? Schmidt and White [50] proposed a conjectural

classification of cyclotomic strongly regular graphs.

Conjecture 1.0.1. (Conjecture 4.4, [50]) Let p be a prime, f a positive integer, and

q = pf . Let N > 1 be a divisor of (q − 1)/(p − 1). Assume that D is the subgroup of

F∗q of index N such that −D = D. If Cay(Fq, D) is a strongly regular graph, then one

of the following holds:

(1) (subfield case) D = F∗pe for some integer e ≥ 1, e|f .

(2) (semi-primitive case) There exists a positive integer t such that −1 ≡ pt (mod N).

(3) (exceptional case) Cay(Fpf , D) is one of the 11 sporadic examples appearing in the
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following table:

N p f [(Z/NZ)∗ : 〈p〉]

11 3 5 2

19 5 9 2

35 3 12 2

37 7 9 4

43 11 7 6

67 17 33 2

107 3 53 2

133 5 18 6

163 41 81 2

323 3 144 2

499 5 249 2

Table 1.1: Sporadic examples of Cay(Fpf , D)

Conjecture 1.0.1 as a whole remains open, while partial results can be found in

[1, 50]. In [50], Schmidt and White gave a proof of Conjecture 1.0.1 for the case where

[(Z/NZ)∗ : 〈p〉] = 2. (See Theorem 5.4, [50]) Their proof depends on the generalized

Riemann hypothesis. According to a personal conversation with Bernhard Schmidt

at Caltech in March 2012, this is the most recent progress about this conjecture. We

should remark that this conjecture is closely related to subdifference sets of Singer

difference sets. (See [50]).

In [50], the authors gave sufficient and necessary conditions for irreducible cyclic

codes to have two nonzero weights (Theorem 3.1, [50]). By their theorem, it is straight-

forward to show subfield and semi-primitive irreducible cyclic codes have exactly two
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nonzero weights. Two-weight linear codes are closely related to strongly regular Cayley

graphs, projective two-intersection sets in finite geometry, and partial difference sets.

(See, for instance, [14, 17, 40].) Thus, Schmidt and White’s results actually gave the

conditions that determine a candidate Cayley graph to be subfield or semi-primitive

example, when the connection set is a single cyclotomic class.

Compared with the constructions of strongly regular graphs by using a single

cyclotomic class of finite fields, unions of cyclotomic classes give us more examples. In

fact, some sporadic examples of such strongly regular graphs have been found:

(1) (De Lange [21]) Let q = 212 and N = 45. Then, the connection set D = C0∪C5∪C10

gives a strongly regular graph, while Cay(Fq, C0) is not.

(2) (Ikuta and Munemasa [32]) Let q = 221 and N = 49. Then, the connection set

D = C0 ∪ C3 ∪ C6 ∪ C9 ∪ C12 gives a strongly regular graph, while Cay(Fq, C0) is not.

(3) (De Lange [21]) Let q = 212 and N = 45. Then, the connection set D = C0 ∪ C1 ∪

C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 gives a strongly regular graph, while Cay(Fq, C0) is not.

The above examples solidify our confidence in constructing strongly regular graphs

using unions of cyclotomic classes.

Our first main result was contained in [53]. It is not the first time that this

method was successfully used. A sequence of papers [25, 28] greatly contributed to this

topic. Feng and Xiang in [25] extended the above three examples into infinite families

and, what is more, they obtained nine more infinite families of strongly regular graphs.

They succeeded in generalizing index 2 examples in Table I. Soon after, Ge, Xiang

and Yuan in [28] generalized the index 4 example in Table I. Since their results require

some technical terminology that has not been defined, we postpone sketching them to

Chapter 3.

The first main task of this dissertation is to generalize one index 6 example in

Table I to an infinite family using a union of cyclotomic classes. In fact, by our main

theorem (Theorem 3.0.10), we shall obtain 2 more infinite families of strongly regular

graphs. The constructions in [25, 27, 28] rely on explicit determination of index 2 and

4 Gauss sums. A major obstacle is the determination of Gauss sums of high index.
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However, after studying [28] closely, we realized that in order to construct strongly

regular Cayley graphs by using methods similar to those in [25, 27, 28], one does not

need to evaluate Gauss sums of high indices explicitly; it suffices to know which subfield

(of the cyclotomic field) the Gauss sums belong to.

We should remark that Koji Momihara gave a recursive construction of strongly

regular Cayley graphs in [44], generalizing all but the first sporadic example in the

statement of the Schmidt-White conjecture (Conjecture 1.0.1) into infinite families.

His construction is useful and elegant, but is different from our method.

In this dissertation, we first generalize the construction of [28] to the index w

case, where w ≥ 2 is even. We shall show that the Cayley graphs defined in Chapter 3

have at most w + 1 restricted eigenvalues. See Theorem 3.0.9. Furthermore, we shall

give necessary and sufficient conditions for the candidate Cayley graphs to be strongly

regular. The statements and proofs of the two conclusions constitute the main content

of Chapter 3. After the proofs, we shall describe the three infinite families of strongly

regular graphs obtained by using the results of Chapter 3.

As generalizations of regular graphs, a d-class association scheme can be viewed

as d regular graphs defined on the same vertex set, whose union is a complete graph

and they are interrelated in a specific way. The simplest association schemes are the

schemes with one class, which contains no interesting information. The next simplest

case, the symmetric schemes with two classes, can be seen to be equivalent to strongly

regular graphs. We refer the reader to [3, 5, 14, 15, 29] for more examples of association

schemes.

The Bose-Mesner algebra of an association scheme, was introduced in [10], is

a powerful tool in the theory of association scheme. Let A0, A1, . . . , Ad be the

adjacency matrices of the regular graphs of a d-class association scheme. Then, all

R-linear combinations of A0, A1, . . . , Ad form a Bose-Mesner algebra. If all primitive

idempotents of this algebra have the same rank, we call the scheme pseudocyclic.

Next, we will define amorphic association schemes. Given a d-class association

scheme, we can take unions of classes to form larger edge sets of graphs (we call this

8



process fusion). Note that the fusion of a scheme may not be a scheme again. If every

fusion of an association scheme gives rise to a new association scheme, the original

association scheme is called amorphic.

It is clear that each nontrivial relation of an amorphic association scheme must

be strongly regular. In [33], A. V. Ivanov conjectured that the converse is also true,

that is: if each nontrivial relation in an association scheme is strongly regular, then

the association scheme must be amorphic. This conjecture turned out to be false, even

though it is true for the case d = 3. The first counterexample was given by Van Dam

in the case where the association scheme is imprimitive. (See [18].) Later on, Van Dam

[19] also gave a counterexample in the case where the association scheme is primitive.

More counterexamples were given by Ikuta and Munemasa [32] in the primitive case.

It should be noted that only a few known counterexamples to Ivanov’s conjecture

in the primitive case had been known until [26] was published, and no infinite family

of counterexample was found. Thus, our second main research topic is to construct

more counterexamples to A. V. Ivanov’s conjecture on amorphic association schemes.

Our results in [26] actually gave 15 infinite families of pseudocyclic and non-amorphic

association schemes.

Our constructions come from cyclotomic association schemes. Let Fq be the

finite field of order q. Let N be a positive integer that divides q − 1 such that 1 <

N < q − 1. Let C0, C1, . . . , CN−1 be cyclotomic classes of order N of Fq, defined

as above. Then, (Fq, {{0}, C0, . . . , CN−1}) is an N -class association scheme. We

call this scheme cyclotomic. We prove that the unions of cyclotomic classes decribed in

Chapter 4 give rise to new association schemes and the fusion schemes are pseudocyclic

(Defined in Chapter 2). The Bannai-Muzychuk criterion plays an important role in the

proofs. The statements and proofs of this fact constitute the main content of Chapter

4. By the results in [25], there are 15 of the above fusion schemes in which each relation

is a strongly regular graph but the schemes are not amorphic. The counterexamples

will be given immediately after finishing the preparations of Section 4.1 and 4.2.

Here, we need to make three remarks. First, what we obtain from this method

9



are infinite families of association schemes. Second, the fusion schemes are obviously

not cyclotomic association schemes again. Third, two of the counterexamples are

generalizations of those given by Ikuta and Munemasa in [32].
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Chapter 2

PRELIMINARIES

The main purpose of this chapter is to define basic terminology and introduce

some important properties and results in combinatorics, algebra and number theory.

They serve as ingredients in the proofs of our results in Chapter 3 and 4. We assume

the reader has basic knowledge in algebra and algebraic number theory. We refer the

reader who is not familiar with them to [37] and [34].

We first summarize the contents of this chapter. Most of the proofs of this

chapter can be found in the references. Some important proofs will be given for the

convenience of the reader. This chapter contains 5 sections. In Section 2.1, we shall

introduce characters, Fourier analysis on finite Abelian groups and Gauss sums. Section

2.2 will be devoted to introducing designs, differences sets, strongly regular graphs and

Cayley graphs. In Section 2.3, we shall introduce necessary results from algebra and

number theory, especially Stickelberger’s theorem. In Section 2.4, we shall give a brief

introduction to some known results in the construction of strongly regular graphs using

a union of cyclotomic classes. The last section is a brief introduction to symmetric

association schemes.

In order to avoid redundancy, the concepts that were formally introduced in the

last chapter will not be repeated. Moreover, we list some conventions of the dissertation

as follows. Let p be a prime and q be a power of p. Let Fp be the finite field of order p

and Fq be the finite field of order q. The nonzero elements of Fq form a multiplicative

cyclic group of order q − 1, which is denoted as F∗q.

We begin by an introduction of algebraic tools including characters and Fourier

analysis on Abelian groups. Our main goal of Section 2.1 is to introduce Gauss sums

over finite fields.
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2.1 Algebraic Tools

Let C be the field of complex numbers and C∗ be the set of all nonzero elements

of C. Let (G, +) be a finite (additive) abelian group of order n with identity element

0.

Definition 2.1.1. A character χ of the group G is a group homomorphism from G

to C∗, i.e. χ(x1 + x2) = χ(x1)χ(x2) for all x1, x2 ∈ G.

The principal character χ0 is defined by χ0(x) = 1, for all a ∈ G. Let χ be a

nonprincipal character of G. Then, χ(0) = 1. It immediately follows that χ(x)n = 1

for any element x of G. This implies that χ(x) is an nth root of unity. Hence, χ in fact

maps G to U , the group of all nth complex roots of unity.

Let χ and ψ be two characters of G. The multiplication of χ and ψ is defined

by χ ·ψ(x) = χ(x)ψ(x). Clearly, the map χ defined by χ(x) = χ(x) is also a character

of G. By

χ · χ(x) = χ(x)χ(x) = |χ(x)|2 = 1,

the inverse of χ is given by χ. Then, we have the following theorem:

Theorem 2.1.2. The set of all characters defined on the finite abelian group G (ad-

ditively written) is a multiplicative abelian group. We denote this group as Ĝ. The

identity element of Ĝ is χ0. The inverse of the element χ is given by χ.

The group Ĝ is called the dual group of G. The following proposition plays a

fundamental role in the theory of characters.

Proposition 2.1.3. ([39], Theorem 5.4) If χ is a nonprincipal character of the finite

abelian group G, then ∑
x∈G

χ(x) = 0. (2.1)

If x ∈ G and x 6= 0, then ∑
χ∈Ĝ

χ(x) = 0. (2.2)
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Proof: Since χ is not trivial, there exists an element y ∈ G such that χ(y) 6= 1. Note

that y +G = G. From

χ(y)
∑
x∈G

χ(x) =
∑
x∈G

χ(y + x) =
∑
x∈G

χ(x),

we have

(χ(y)− 1)
∑
x∈G

χ(x) = 0.

The equality (2.1) follows because χ(y) 6= 1. The equality (2.2) follows from similar

arguments as above. �

The groups G and Ĝ have the following relationship:

Theorem 2.1.4. ([2], Corollary 1.5) G ∼= Ĝ.

We remark that there is no straightforward isomorphism between G and Ĝ. The

following two orthogonal relations are very useful to our proofs.

Theorem 2.1.5. Let χ and ψ be two characters of G, then

1

|G|
∑
x∈G

χ(x)ψ(x) =

 0, if χ 6= ψ

1, if χ = ψ
. (2.3)

On the other hand, if x and y are two elements of G, then

1

|G|
∑
χ∈Ĝ

χ(x)χ(y) =

 0, if x 6= y

1, if x = y
. (2.4)

Proof: From Proposition 2.1, we have∑
x∈G

(χ · ψ)(x) = 0,

when χ · ψ 6= χ0. When χ · ψ = χ0, we have∑
x∈G

1 = |G|.
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Thus, (2.3) holds. Since ∑
χ∈Ĝ

χ(x)χ(y) =
∑
χ∈Ĝ

χ(x− y), (2.5)

the second sum in (2.5) is equal to 0 by Theorem 2.1. When x = y, by Theorem 2.1.4,

the second sum in (2.5) is equal to∑
χ∈Ĝ

χ(x− y) =
∑
χ∈Ĝ

χ(0) =
∑
χ∈Ĝ

1 = |Ĝ| = |G|.

Thus, (2.4) holds. �

Let CG be the space of functions f from G to C. Elements of CG can be identified

with vectors in the vector space Cn by

f 7→ (f(g1), . . . , f(gn)), f ∈ CG.

It is easy to see that CG is an n-dimensional vector space over C. We define the inner

product of two elements f and x of CG by

(f, h) =
1

|G|
∑
x∈G

f(x)h(x). (2.6)

It is straightforward to prove the following proposition.

Proposition 2.1.6. ([2], Theorem 1.7) Ĝ forms an orthonormal basis in CG.

Proof: By Theorem 2.1.5, any two distinct elements of Ĝ are orthogonal. Also, by

Theorem 2.1.4, we have |Ĝ| = n = dimCG and the theorem follows immediately. �

By Proposition 2.1.6, any f in CG can be written as

f =
∑
χ∈Ĝ

cχχ,

where cχ = (χ, f). The coefficients cχ are called the Fourier coefficients of the function

f . The Fourier transform of the function f is defined by

f̂(χ) =
√
|G| · cχ =

1√
|G|

∑
x∈G

f(x)χ(x). (2.7)

We state and prove the following two lemmas.
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Lemma 2.1.7. (Fourier inversion formula) Let G be a finite abelian group and f be a

function from G to C. Then, we have

f(x) =
1√
|G|

∑
χ∈Ĝ

f̂(χ)χ(x), for all x ∈ G

Proof: The conclusion of the lemma immediately follows by Theorem 2.1.5. �

Define

|f̂(χ)| = ((χ, f) · (χ, f))
1
2 . (2.8)

The last lemma we need is called Parseval’s identity.

Lemma 2.1.8. (Parseval’s identity) Let G be an abelian group, and let f be a function

from G to C. Then, we have ∑
a∈G

|f(x)|2 =
∑
χ∈Ĝ

|f̂(χ)|2.

Proof: By (2.8), we have

∑
χ∈Ĝ

|f̂(χ)|2 =
∑
χ∈Ĝ∗

[(
1√
|G|

∑
x∈G

f(x)χ(x)

)(
1√
|G|

∑
x∈G

f(x)χ(x)

)]

=
∑
x∈G

∑
y∈G

f(x)f(y)

 1

|G|
∑
χ∈Ĝ

χ(x)χ(y)


=

∑
x∈G

|f(x)|2.

�

Now, we introduce characters of finite fields. Let Fqm be the finite field of order

qm. The trace function from Fqm to Fq is defined as follows.

Definition 2.1.9. The trace is a function from Fqm to Fq defined by

Trqm/q : Fqm → Fq,

x 7→ x+ xq + · · ·+ xq
m−1

.
(2.9)

If Fq is the prime field Fp, the trace Trqm/p from Fqm to Fp is called the absolute trace.
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Trace functions have the following properties.

Proposition 2.1.10. ([39], Theorem 2.23) The trace function Trqm/q defined in (2.9)

satisfies the following properties:

(1) Trqm/q(α + β) = Trqm/q(α) + Trqm/q(β) for all α, β ∈ Fqm.

(2) Trqm/q(c · α) = c · Trqm/q(α) for all α ∈ Fqm and c ∈ Fq.

(3) Trqm/q is a linear functional from Fqm to Fq, where Fqm is viewed as a vector space

over Fq.

(4) Trqm/q(α) = m · α for all α ∈ Fq.

(5) Trqm/q(α
q) = Trqm/q(α) for all α ∈ Fqm.

Additive characters are defined over Fq, where (Fq, +) is a finite additive Abelian

group. Let ξp be a fixed complex primitive pth root of unity, and Trq/p be the trace

from Fq to Fp. The additive character ψa of Fq is given by

ψa(x) = ξ
Trq/p(ax)
p , where a ∈ Fq.

We usually write ψ1 simply as ψ, which is called the canonical additive character of Fq.

It is easy to see that every additive character of Fq can be expressed in this way, i.e.,

{ψa | a ∈ Fq} = ̂(Fq, +). (2.10)

Note that (F∗q, ·) is a finite multiplicative Abelian group. The multiplicative characters

of Fq are the characters of F∗q.

The following proposition follows from Proposition 2.1.3.

Proposition 2.1.11. Let ψa be an additive character of Fq and χ be a nontrivial

multiplicative character of Fq. Then, we have

∑
x∈Fq

ψa(x) =

 0, a 6= 0

q, a = 0,

and ∑
x∈F∗q

χ(x) = 0.
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Let N be a positive integer with N | (q − 1), and let χ be a multiplicative

character of Fq of order N , i.e., N is the least positive integer such that χN = χ0. The

Gauss sum g(χ) of order N is defined by

g(χ) =
∑
x∈F∗q

χ(x)ψ(x). (2.11)

We should remark that the Gauss sum g(χ) is just the Fourier coefficient cχ in

the expansion of ψ with respect to the multiplicative characters, that is,

ψ(x) =
1√
|F∗q|

∑
χ∈F̂∗q

ψ̂(χ)χ(x) =
1

|F∗q|
∑
χ∈F̂∗q

g(χ)χ(x) (2.12)

In fact, by Lemma 2.1.7, we have

1

|F∗q|
∑
χ∈F̂∗q

g(χ)χ(x) =
1

|F∗q|
∑
χ∈F̂∗q

∑
y∈F∗q

χ(y)ψ(y)

χ(x)

=
1

|F∗q|
∑
y∈F∗q

ψ(y)

∑
χ∈F̂∗q

χ(y − x)


=

1

|F∗q|
· ψ(x)

∑
χ∈F̂∗q

χ(0)

 = ψ(x).

In the following, we shall concern ourselves with character sums. Let D be a

subset of an Abelian group G. Then, character sums χ(D) are defined by

χ(D) =
∑
x∈D

χ(x) (2.13)

for χ in Ĝ. We shall show that character sums are closely related to eigenvalues of

Cayley graphs and Gauss sums.

2.2 Combinatorial Structures

In this section, we start to introduce the basic definitions and properties of

objects of study from combinatorics. Association schemes will be introduced in a

separate section of this chapter. We begin by the definition of designs.
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A 2-(v, k, λ) design (balanced incomplete block design, BIBD) is a pair S =

(P , B) such that

(1) The set P is called point set. The elements of P are called points. Write v = |P|.

(2) The set B is a collection of subsets of P , each of size k. The set B is called the

block set. Denote b = |B|.

(3) For each point P ∈ P and B ∈ B, we say P is incident with B, if P ∈ B.

(4) For every 2 points of P , there are exactly λ blocks of B incident with both of them.

In the following, we assume that v > k. The Fisher inequality gives a necessary

condition for the existence of a BIBD.

Theorem 2.2.1. ([52], Theorem 19.6) For a 2-(v, k, λ) design with v > k, we have

b ≥ v.

We list some basic properties of a BIBD in the following proposition. The proof

can be found in [52] (pp. 219).

Proposition 2.2.2. Let S = (P ,B) be a BIBD with v points and b blocks. Let P be a

point. We use rP denote the number of blocks incident with P . Then, we have

(1) rP is a constant, i.e. rP is unrelated to the choice of P .

(2) bk = vr.

(3) λ(v − 1) = r(k − 1).

In the dissertation, we mainly concern ourselves with so-called symmetric de-

signs. A BIBD with b = v is called a symmetric design or square design. Equivalently,

a BIBD in which any two distinct blocks intersect at exactly λ points is a symmetric

design. Particularly, a (v, k, λ)-symmetric design with λ = 1 is called a projective plane.

We call n = k−1 the order of the plane. By Proposition 2.2.2, we have v = n2 +n+ 1.

Thus, parameters of a projective plane must have the form (n2+n+1, n+1, 1). We usu-

ally call blocks of a projective plane lines. The Fano plane (see below) is the (unique)

projective plane of order 2. ([52], Example 19.6)

An example of projective planes is usually constructed as follows. Let F3
q be

the 3-dimensional vector space over Fq. Let P be the collection of all 1-dimensional
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Figure 2.1: Fano plane

subspaces of F3
q and B be the collection of all 2-dimensional subspaces of F3

q. If a

1-dimensional subspace is contained in a 2-dimensional subspace, we say that they are

incident. It is easy to see that such structure is a BIBD with λ = 1. This vector space

contains
q3 − 1

q − 1
= q2 + q + 1

1-dimensional subspaces and the same number of 2-dimensional subspaces. Thus, the

BIBD we constructed is symmetric. This is exactly a projective plane of order q.

Usually, the design is denoted by PG(2, q). By the language of geometry, PG(2, q)

stands for a projective geometry of dimension 2 over Fq.

Now, we describe a more general case as follows. Let V be the d-dimensional

vector space Fdq for d ≥ 3. We call the structure formed by the subspaces of V of

dimension k = 1, 2, . . . , d−1 the (d−1)-projective geometry PG(d−1, q). Furthermore,
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we call

1-dimensional subspaces of V points of PG(d− 1, q),

2-dimensional subspaces of V lines of PG(d− 1, q),

...

(d− 1)-dimensional subspaces of V hyperplanes of PG(d− 1, q).

The numbers of points and hyperplanes of PG(d − 1, q) are both equal to qd−1
q−1

. It is

easy to see that when d = 3, PG(d− 1, q) is just a projective plane of order q.

In the following, we shall focus on a special type of 2-(v, k, λ) symmetric designs

when λ > 1.

First, we define automorphism groups of a symmetric design. Two designs are

isomorphic if there exists a bijection between the point sets which sends blocks to

blocks and preserves incidence. This bijection is called an isomorphism of designs. An

automorphism of a symmetric design is an isomorphism with itself. All automorphisms

of a design form a group, where the operation of the group is functional composition.

We call this group the automorphism group of the design. Of course, the automorphism

group acts on both the point set and the block set of the symmetric design as a

permutation group in the natural way.

A 2-(v, k, λ) symmetric design is called regular, if there is an automorphism

group G (written additively) of the design which acts on its point set regularly, and

consequently acts on the block set regularly. (This bijection is usually called an iso-

morphism of a design.) For such a regular design, we identify the point set with the

group G and a block B with a subset D of G. By the regularity of the action of G on

the block set, the block set of the design will be given by {D + d | d ∈ G}, the set of

translations of D. It immediately follows that |(D+d)∩D| = λ for any nonzero a of G.

Thus, any nonzero element x of G has exact λ different representations as x = d1− d2,

d1, d2 ∈ D and d1 6= d2. In such a case, we call D (or any translate of D) a difference

set of G. The following is the formal definition of difference sets as follows.
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Definition 2.2.3. Let G be an additively written group of size v and D be a subset of G

of size k. Define the list of differences of D by ∆D = (d1 − d2 : d1, d2 ∈ D and d1 6= d2).

We say that D is a (v, k λ)-difference set, if ∆D = λ(G \ {0}).

The following proposition is straightforward.

Proposition 2.2.4. A regular 2-(v, k, λ) symmetric design is nothing but a (v, k, λ)-

difference set.

In the study of differences sets, group rings and characters play fundamental

roles. For a groupG (written multiplicatively), the group ring Z[G] is the ring consisting

of all elements of the form
∑

x∈G axx, where ax ∈ Z. The addition of two elements of

Z[G] is defined by ∑
x∈G

axx+
∑
x∈G

bxx =
∑
x∈G

(ax + bx)g.

The scalar multiplication of an integer a and an element
∑

g∈G agg is defined by

a ·

(∑
x∈G

axx

)
=
∑
x∈G

(aax)x.

The multiplication of two elements of Z[G] is defined by(∑
x∈G

axx

)
·

(∑
y∈G

byy

)
=
∑
x∈G

∑
y∈G

axbyxy.

Let A =
∑

g∈G axx be an element of Z[G]. We define A(−1) =
∑

x∈G axx
−1.

It is convenient to determine a subset D of G (written multiplicatively with

identity element 1) to be a difference set by using group ring notation. We identify

a subset D of G with the element
∑

x∈D x in Z[G], which will also be denoted by D.

Then, the following lemma is straightforward but important.

Lemma 2.2.5. A k-subset D of a group G (not necessarily Abelian) of order v is a

(v, k, λ)-difference set in G if and only if the following identity holds:

DD(−1) = (k − λ) · 1 + λG. (2.14)
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Let χ be a character from an Abelian group G to C∗. Denote
∑

x∈D χ(x) by

χ(D). It is easy to see that χ(D(−1)) = χ(D). Then, for Abelian groups, we have the

following important lemma.

Lemma 2.2.6. A k-subset D of an Abelian group G of order v is a (v, k, λ)-difference

set in G if and only if

|χ(D)|2 =

 k − λ, for χ 6= χ0

k2, for χ = χ0

(2.15)

Proof: Apply a character χ to both sides of (2.14), then (2.15) follows immediately

from Proposition 2.1.3. For the converse direction, we will need the Fourier inversion

formula. �

The following two examples are basic but important examples of difference sets.

Example: (Singer difference sets) Let PG(d−1, q) be the (d−1)-dimensional projective

geometry over Fq, where d ≥ 3. Define an incidence structure H = (P , B) whose point

set is the set of all points of PG(d− 1, q) and block set B is the set of all hyperplanes

of PG(d−1, q). A point P is said to be incident with a block B of H, if P is contained

in B. It is easy to see that H is a ( q
d−1
q−1

, qd−1−1
q−1

, qd−2−1
q−1

) symmetric design. Singer’s

theorem ([11], Theorem 6.2) says that H can be constructed from a difference set,

which is called the Singer difference set. We should remark that when d = 3, the above

construction leads to the classical projective plane of order q.

We construct Singer difference sets algebraically. Consider the quotient group

F∗qm/F∗q. Take a system L of coset representatives of F∗q in F∗qm such that Trqm/q maps

L to {0, 1}. Define

L0 = {x ∈ L | Trqm/q(x) = 0} and L1 = {x ∈ L | Trqm/q(x) = 1}.

Thus, L = L0 ∪ L1. Then, L0 is a ( q
m−1
q−1

, qm−1−1
q−1

, qm−2−1
q−1

)-difference set, which is a

Singer difference set. Yamamoto proved that qχ(L0) = g(χ) and qχ(L1) = −g(χ) for

every nontrivial character χ ∈ F̂∗qm/F∗q. The proof can be found in [23]. We should

remark that the significance of Yamamoto’s result lies in revealing the connections

between Singer difference sets (defined above) and Gauss sums.
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Example: (Paley difference sets) For any finite field Fq where q ≡ 3(mod 4). The

set S of all nonzero squares of Fq. Then, S is a (q, q−1
2
, q−3

4
)-difference set. Such a

difference set is called a Paley difference set.

Next, we shall develop the basic theory of strongly regular graphs. Let Γ be an

srg(v, k, λ, µ) and A be the adjacency matrix of Γ. We say that a graph Γc is the

complement graph of Γ, if they have the same vertex set and any two vertices of Γc are

adjacent if and only if they are nonadjacent in Γ. A straightforward result is that Γc

is srg(v, v − k − 1, v − 2k + µ− 2, v − 2k + λ).

Besides the examples listed in the first chapter, Paley graphs provide a family

of interesting srgs. Let q ≡ 1(mod 4). The Paley graph Paley(q) is the graph with

the finite field Fq as vertex set, where two vertices are adjacent when they differ by a

(nonzero) square. It is strongly regular with parameters (4t + 1, 2t, t − 1, t), where

q = 4t + 1. We should remark that the Paley graph Paley(q) is isomorphic to its

complement.

The following theorem is a basic one in the theory of strongly regular graphs.

Theorem 2.2.7. ([14], Theorem 9.1.2) For a regular graph Γ of order v and valency

k, not complete nor edgeless, with adjacency matrix A, the following are equivalent:

(1) Γ is an srg (v, k, λ, µ) for certain nonnegative integers λ, µ.

(2) A2 = (λ − µ)A + (k − µ)I + µJ for certain real numbers λ and µ, where I, J are

the identity matrix and the all-ones matrix, respectively.

(3) A has precisely two distinct restricted eigenvalues.

The proof of the above theorem is straightforward but it plays a fundamental role

in the theory of strongly regular graphs. In fact, we shall show our theorem (Theorem

3.0.10) by using the equivalence between (1) and (3). For restricted eigenvalues of srgs,

some basic properties are given in the following theorem.

Theorem 2.2.8. ([14], Theorem 9.1.3) Let Γ be an srg (v, k, λ, µ). Set r and s to be

restricted eigenvalues and f , g be their respective multiplicities. Then
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(1)

f, g =
1

2

{
v − 1± (v − 1)(µ− λ)− 2k√

(µ− λ)2 + 4(k − µ)

}
.

(2) rs = µ− k and r + s = λ− µ.

(3) If r and s are not integers, then f = g and (v, k, λ, µ) = (4t + 1, 2t, t− 1, t) for

some positive integer t.

When f 6= g, r and s are both integers. The case of an srg with f = g is called

the half case. Such graphs are also called conference graphs. For conference graphs,

their parameters must be the form (4t + 1, 2t, t − 1, t). It is easy to see that Paley

graphs are examples of the half-case, but there are many more examples. In Section

2.4, we shall see pseudocyclic association schemes are generalizations of the half-case

srgs.

Finally, we discuss eigenvalues of Cayley graphs. From the following well-known

theorem, we can see that eigenvalues of an Abelian Cayley graph are nothing but

character sums. For the sake of convenience, we give a proof to this proposition here.

Proposition 2.2.9. (See [14]) Let G be an Abelian group of order n and Γ = Cay(G, D)

be a Cayley graph with the connection set D. Then, we have

(1) The graph Γ is regular.

(2) The eigenvalues of Γ are given by χ(D) =
∑

d∈D χ(d), where χ ranges through all

characters of G.

Proof: Let x be a vertex of Γ. The number of edges incident with x is equal to

|{x + a | a ∈ D}| =: dx. Since dx = |D|, Γ is a regular graph of valency |D|. This

proves (1).

For (2), denote V (Γ) = {g1, . . . , gn} and Ĝ = {1 = χ0, χ1, . . . , χn−1}. It

suffices to prove that 
χ0(g1)

...

χ0(gn)

 , . . . ,


χn−1(g1)

...

χn−1(gn)

 (2.16)
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are linearly independent eigenvectors of the adjacency matrix A of Γ. Since

A


χi(g1)

...

χi(gn)

 =


∑

gj∼g1 χi(gj)
...∑

gj∼gn χi(gj)

 =


∑

d∈D χi(g1 + d)
...∑

d∈D χi(gn + d)



=


χi(g1)χi(D)

...

χi(gn)χi(D)

 = χi(D)


χi(g1)

...

χi(gn)

 ,

we have (χi(g1), . . . , χi(gn))T is an eigenvector of the adjacency matrix A with respect

to an eigenvalue χi(D). Moreover, by Corollary 2.1.5, the vectors in (2.16) are linearly

independent. Thus, all the eigenvalues of Γ are given by χ(D) =
∑

d∈D χ(d), where

χ ∈ Ĝ. �

By Theorem 2.1.5, we have
∑n

i=1 χj(gi)χ0(gi) = 0, when j 6= 0. It follows that

the eigenvector associated to χ(D) is othorgonal to 1, when χ 6= χ0. It follows that

the eigenvectors associated to the eigenvalue χ(D) cannot be a multiple of 1. Thus,

χ(D), χ 6= χ0, are restricted eigenvalues of Cay(G,D). Furthermore, by the above

proposition, the restricted eigenvalues of a Cayley graph Cay(G,D) are given by χ(D),

where χ 6= χ0.

We remark that eigenvalues of a Cayley graph over (Fq,+) are given by ψa(D)

for a ∈ Fq by (2.10).

As an example, we compute the spectrum of the following Cayley graph. The

(undirected) pentagon is the Cayley graph Cay(Z5, {±1}). The spectrum of the pen-

tagon is

{ξ + ξ−1 | ξ5 = 1} = {2, −1 +
√

5

2
( multiplicity 2),

−1−
√

5

2
(multiplicity 2)}.

We now introduce cyclotomy of finite fields. Let γ be a primitive element of Fq.

Let C0, C1, . . . , CN−1 be the cyclotomic classes of order N . Let ψ(x) be the canonical

additive character of Fq. Define N th cyclotomic periods (or Gauss periods) by

τa =
∑
x∈Ca

ψ(x), 0 ≤ a ≤ N − 1.
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Next, some basic properties of cyclotomic periods are presented in the following

proposition. The second item of the theorem below reveals the connection between

eigenvalues of the Cayley graphs with connection set Ca, 0 ≤ a ≤ N − 1, and Gauss

sums. It plays an important role in our first research project.

Proposition 2.2.10. Let γ be a primitive element of Fq and τa be N th cyclotomic

periods defined as above, 0 ≤ a ≤ N − 1. Write C⊥0 = {χ ∈ F̂∗q | χ(x) = 1, ∀x ∈ C0}.

Then, we have

(1) τa = ψγa(C0)

(2) τa = (1/N)
∑

χ∈C⊥0
g(χ)χ(γa).

Proof: (1) we have

ψγa(C0) =
∑
x∈C0

ψγa(x) =
∑
x∈C0

ψ(γax) =
∑
x∈Ca

ψ(x) = τa.

(2) we have

τa =
∑
x∈Ca

ψ(x)

=
∑
x∈Ca

1

q − 1

∑
χ∈F̂∗q

g(χ)χ(x) by (2.12)

=
1

q − 1

∑
χ∈F̂∗q

g(χ)
∑
x∈Ca

χ(x)

=
1

q − 1

∑
χ∈F̂∗q

g(χ)
∑
x∈C0

χ(γax)

=
1

q − 1

∑
χ∈F̂∗q

g(χ)χ(γa)
∑
x∈C0

χ(x)

=
1

q − 1

∑
χ∈F̂∗q

g(χ)χ(γa)
∑
x∈C⊥0

χ(x)

=
|C0|
q − 1

∑
χ∈C⊥0

g(χ) =
1

N

∑
χ∈C⊥0

g(χ)χ(γa)

�
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Cyclotomic periods are closely related to eigenvalues of Cay(Fq, D), where D is

one single class or a union of cyclotomic classes.

If the connection set D is a single class, i.e., D = C0, the restricted eigenvalues

of the Cayley graph Cay(Fq, D) are exactly τ0, . . . , τN−1. This can be seen as follows.

By Proposition 2.2.9, the restricted eigenvalues of Cay(Fq, D) are given by ψ(D) for

nontrivial additive characters ψ of Fq. Notice that (̂Fq,+) = {ψa | a ∈ Fq}. It suffices

to prove that if a1 and a2 are two nonzero elements of Fq such that a1/a2 is a power

of γN , then ψa1(D) = ψa2(D). Write a1 = γi1N+j and a1 = γi2N+j. Then, the above

equality can be viewed by

ψa1(D) =
∑
x∈C0

ψ(γi1N+jx) =
∑
x∈C0

ψ(γi2N+jx) = ψa2(D).

Thus, the restricted eigenvalues of Cay(Fq, D) are given by ψγa(D), i.e., τa for 0 ≤ a ≤

N − 1.

If the connection set D is a union of cyclotomic classes of order N , say D =

∪i∈ICi, the restricted eigenvalues of Cay(Fq, D) will be given by sums of cyclotomic

periods, i.e., ψγa(D) = ψ(γaD) =
∑

i∈I τi+a, 0 ≤ a ≤ N − 1.

By Proposition 2.2.10, ψγa(D), 0 ≤ a ≤ N − 1, are determined by evaluating

certain Gauss sums. The determination of Gauss sums is difficult in general. Explicit

evaluations of Gauss sums are known only in a few cases. Using Stickelberger’s theorem

and other number theoretic tools introduced in the next section, we shall compute

Gauss sums in certain cases.

2.3 Number Theoretic Tools

The main purpose of this section is to introduce some important properties of

Gauss sums. We introduce basic terminology and properties of cyclotomic fields, we

shall describe how to compute character sums through the evaluation of certain Gauss

sums. Our treatment will be concise, developing only those aspects that will be needed

in Chapter 3 and 4. The reader who is interested in a more systematic treatment of

cyclotomic fields should consult one of the references, [34], [38] and [54].
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Let N > 1 be a positive integer and ξN = e2πi/N , a complex primitive N th root

of unity. Let Z/NZ be the congruence classes modulo N and (Z/NZ)∗ be the set of

units of Z/NZ. Let φ be the Euler totient function. Thus, we have |(Z/NZ)∗| = φ(N).

The field Q(ξN) is the splitting field of the polynomial xN − 1 over Q. This

implies that Q(ξN)/Q is a Galois extension. Let G = Gal(Q(ξN)/Q). A well-known

result is that the Galois group G is isomorphic to (Z/NZ)∗. (See [34], Section 13.2.)

Moreover, it is well known that Z[ξN ] is the ring of integers of Q(ξN). Z[ξN ] is a

Dedekind domain, which means every nonzero proper ideal factors into a product of

prime ideals. Every prime ideal of Z[ξN ] is maximal. ([34], Corollary 2.) Therefore, if

P is a prime ideal of Z[ξN ] containing p, Z[ξN ]/P is a finite field of characteristic p.

Let s and t be relatively prime integers. We use ords(t) to denote the multi-

plicative order of t modulo s. Write (p) = pZ[ξN ]. The following theorem completely

determine the factorization of a prime p in Z[ξN ].

Theorem 2.3.1. ([41], Theorem 8.8) Let m be a positive integer and let p be a prime.

Write N = N ′pa, where gcd(N ′, p) = 1 and a ≥ 0. Then, p factors in Z[ξN ] as

(p) = (P1 . . . Pt)
φ(pa),

where P1, . . . , Pt are all prime ideals in Z[ξN ] containing p and t = φ(N ′)/ordN ′(p).

Let σp be the automorphism of Q[ξN ] sending ξN to ξpN . Then, we have

Proposition 2.3.2. ([34] pp. 197, Corollary) Let p be a prime such that p - N . If P

is a prime ideal lying over on the prime p, then the group G(P ) = {σ ∈ G | σ(P ) = P}

is the cyclic group generated by σp.

We call G(P ) the decomposition group of P . Let K be the decomposition field

of p in Q(ξN), that is, K = {x ∈ Q(ξN) | σ(x) = x, for all σ ∈ G(P )}. The Galois

group of the extension of K/Q is as follows.

Proposition 2.3.3. Let K be defined as above. Then, we have Gal(K/Q) = (Z/NZ)∗/〈p〉.
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Proof: Notice that K is the fixed field of the group 〈σp〉. Then, by Theorem 1.10 in

Lang’s book ([36], p. 265), 〈p〉 ∼= H, the Galois group of the extension Q(ξN)/K. It

immediately follows that Gal(K/Q) ∼= (Z/NZ)∗/〈p〉. �

Let ξp be a primitive pth root of unity. Then, Gauss sums of order N defined

in (2.11) belong to Z[ξN , ξp], the integer ring of Q(ξN , ξp). Define σa,b to be the Galois

automorphism of Q(ξN , ξp) by

σa,b(ξN) = ξaN , σa,b(ξp) = ξbp

The following lemma gives some useful properties of Gauss sums. For a proof of the

lemma, we refer the reader to [9, p. 10] and [34, p. 208].

Lemma 2.3.4. Let χ be a multiplicative character of Fq of order N . Then

(1) g(χ) = −1, if χ = χ0, and |g(χ)|2 = q, if χ 6= χ0.

(2) σa,b(g(χ)) = χa(b)g(χa), where χ = χ−1.

(3) g(χ) = χ(−1)g(χ), and σp,1(g(χ)) = g(χp) = g(χ).

(4) For a character of χ of order N , g(χ)N ∈ Z[ξN ].

The first item of the above lemma gives the modulus of Gauss sums, but we need

to evaluate Gauss sums in many cases. Using the following Stickelberger’s theorem,

certain types of Gauss sums can be determined explicitly.

Theorem 2.3.5. (Stickelberger’s Theorem, see [9], Theorem 11.2.2) Let G be the Ga-

lois group of Q(ξN)/Q and Z[G] be the group ring. For a Gauss sum g(χ) of or-

der N over Fq, there exist a prime ideal P of Z[ξN ] containing p and an element

α =
∑N−1

a=1, gcd(a, m)=1 aσ
−1
a in Z[G] such that

(g(χ)N)Z[ξN ] = Pα (2.17)

For the proof of Stickelberger’s theorem, we refer the monographs [9] or [34].

By Theorem 2.2.10, the evaluation of Gauss sums in some cases provides a feasible

approach to determine cyclotomic periods, which are closely related to eigenvalues of

a Cayley graph. In the next section, we shall determine some types of Gauss sums by

using this theorem.
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2.4 Some Known Constructions Of Strongly Regular Graphs

Let N > 1 be a proper divisor of q − 1. Let γ be a primitive element of Fq and

C0, . . . , CN−1 be the cyclotomic classes of order N . Let ψ be the canonical additive

character of Fq. We construct Cayley graphs Cay(Fq, D) with the connection set D

being one single class or a union of some classes.

Based on the remarks at the end of Section 2.3, the eigenvalues of a Cayley graph

Cay(Fq, D) are given by ψγa(D), 0 ≤ a ≤ N − 1. Thus, a Cayley graph Cay(Fq, D) is

an srg if and only if |{ψγa(D) | 0 ≤ a ≤ N − 1}| = 2.

When the connection set D is a single class, i.e., D = C0, the eigenvalues of the

Cayley graph Cay(Fq, D) are given by τa, 0 ≤ a ≤ N − 1. Thus, the Cayley graph

Cay(Fq, C0) is an srg if and only if |{τa | 0 ≤ a ≤ N − 1}| = 2. The simplest case is

when D is the multiplicative group of a subfield Fpf ′ of Fpf . Set k = |C0|. In this case,

ψ(C0), ψ ∈ (̂Fq,+) and ψ 6= ψ0, take only two values as follows:

ψ(C0) =


− 1, if ψ|F

pf
′ 6= 1,

k, if ψ|F
pf
′ = 1.

This implies that Cay(Fq, C0) is an srg.

The next interesting case is when −1 ∈ 〈p〉, the cyclic subgroup generated by p

in Z/NZ, or equivalently, there exists a positive integer t such that −1 ≡ pt (mod N).

We call this case semi-primitive. In the semi-primitive case, τa, 0 ≤ a ≤ N − 1, take

only two values, that is, we actually obtain an srg. To describe this procedure, we first

cite the following theorem.

Theorem 2.4.1. ([9], Theorem 11.6.3) Let N > 2 be an integer. If there exists a

positive integer t such that −1 ≡ pt(mod N), with t chosen minimal. Let χ be a

(multiplicative) character of order N of Fpf . (This implies that N | pf − 1.) Then,

f = 2ts for some positive integer s. Let g(χ) be the Gauss sum on Fpf . Then, we have

g(χ) =

 (−1)s−1pts, p = 2

(−1)s−1+
(pt+1)s

N pts, p > 2.
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By the above theorem, Gauss sums are completely determined in the semi-

primitive case. The proof of this theorem was given in [9]. In fact, we are more

interested in the number of eigenvalues of a Cayley graph in the semi-primitive case.

It is easy to see that τa ∈ Q(ξp), 0 ≤ a ≤ N − 1. The cyclotomic periods of order

N are called uniform, if there exists a constant τ and a positive integer c such that

τi = τ all but i = c. By Theorem 2.4.1, we have the following corollary, which actually

completely determines the values of eigenvalues of a Cayley graph in the semi-primitive

case.

Corollary 2.4.2. Let p be a prime, N ≥ 2, q = p2ts, where s ≥ 1 and −1 ≡ pt(mod N)

with t chosen minimal. Then, we have
τN/2 =

√
q −
√
q + 1

N
; τi = −

√
q + 1

N
, i 6= N/2 where s, p,

√
q+1

N
are all odd

τ0 = (−1)s−1√q +
(−1)s

√
q − 1

N
; τi =

(−1)s
√
q − 1

N
, i 6= 0 otherwise.

By the above theorem, we actually show that the Gauss periods are uniform in

the semi-primitive case. We remark that the converse is also true, which was proved

in [8].

The following corollary is straightforward by Corollary 2.4.2.

Corollary 2.4.3. Let N > 1 be a proper divisor of q− 1, and γ be a primitive element

of Fq. Let C0, . . . , CN−1 be the cyclotomic classes of order N . If there exists a positive

integer t such that −1 ≡ pt(mod N), then the union of any t classes D = Ci1∪· · ·∪Cit,

where i1 < · · · < it, generates a strongly regular Cayley graph.

Schmidt and White proposed a conjecture that a cyclotomic srg must be one of

11 sporadic examples in Table I, besides the subfield examples and the semi-primitive

examples. Until now, no further exceptional example has been found. (See [49].) In

order to construct more srgs by using cyclotomic classes of finite fields, we use a union

of cyclotomic classes as the connection set of a Cayley graph instead of one single class.

Let D be a union of cyclotomic classes D = ∪i∈ICi for a subset I of {0, . . . , N −

1}. It is easy to see that the eigenvalues of the Cayley graph Cay(Fq, D) are essentially
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determined by cyclotomic periods, i.e., τa, 0 ≤ a ≤ N − 1. By Theorem 2.2.10, we

compute cyclotomic periods through the evaluation of certain Gauss sums.

The first interesting case is the index 2 case, that is, −1 6∈ 〈p〉 and 〈p〉 has index

2 in (Z/NZ)∗. We summarize the known results in this case. Many authors including

McEliece [43], Langevine [36], Mbodj [42], Meijer and Van der Vlugt[45] studied the

index 2 case. Finally, the Gauss sums of order N in the index 2 case are completed

determined in [56]. Based on their results, we have the following constructions.

First, in the index 2 case, it can be shown that N has at most two odd prime

divisors. Assuming that N is odd, we have the following three possibilities in the index

2 case (see [56]), where both p1 and p2 are primes.

(1) N = pm1 , p1 ≡ 3 (mod 4);

(2) N = pm1 p
n
2 , {p1 (mod 4), p2 (mod 4)} = {1, 3}, ordpm1 (p) = φ(pm1 ), ordpn2 (p) = φ(pn2 );

(3) N = pm1 p
n
2 , p1 ≡ 1, 3 (mod 4), ordpm1 (p) = φ(pm1 ) and p2 ≡ 3 (mod 4), ordpn2 (p) =

φ(pn2 )/2.

In the first case, we cite the following result about the evaluation of Gauss sums

of order N , where N = pm1 , m ≥ 1.

Theorem 2.4.4. (Langevin, [36]) Let N = pm1 , where m is a positive integer, p1 is a

prime such that p1 > 3 and p1 ≡ 3 (mod 4). Let p be a prime such that [(Z/NZ)∗ :

〈p〉] = 2 (that is, f =: ordN(p) = φ(N)/2) and let q = pf . Let χ be a multiplicative

character of order N of Fq, and h be the class number of Q(
√
−p1). Then the Gauss

sum g(χ) over Fq is determined up to complex conjugation by

g(χ) =
b+ c

√
−p1

2
ph0 ,

where

(1) h0 = f−h
2

,

(2) b, c 6≡ 0 (mod p),

(3) b2 + p1c
2 = 4ph,

(4) bph0 ≡ −2 (mod p1).

With the above theorem, Feng and Xiang obtained the following result in [25].
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Theorem 2.4.5. (Feng and Xiang, [25]) Let p1 ≡ 3(mod 4) be a prime, p1 6= 3,

N = pm1 , and let p be a prime such that f := ordN(p) = φ(N)/2. Let q = pf and

D = ∪p
m−1
1 −1
i=0 Ci ⊂ F∗q.

Moreover, assume that 1 + p1 = 4ph, where h is the class number of Q(
√
−p1). Then,

Cay(Fq, D) is an srg.

We remark that it is a good question to generalize the above theorem to the

case when p1 = 3.

The second case was completely determined by Feng, Momihara and Xiang in

[25, 27]. First, we cite the following theorem.

Theorem 2.4.6. (Mbodj, [42]) Let N = pm1 p
n
2 , where m,n are positive integers, p1

and p2 are prime such that {p1 (mod 4), p2 (mod 4)} = {1, 3}, ordpm1 (p) = φ(pm1 ),

ordpn2 (p) = φ(pn2 ). Let p be a prime such that [(Z/NZ)∗ : 〈p〉] = 2 (that is, f :=

ordN(p) = φ(N)/2) and let q = pf . Let χ be a multiplicative character of order N of

Fq, and h be the class number of Q(
√
−p1p2). Then the Gauss sum g(χ) over Fq is

determined up to complex conjugation by

g(χ) =
b+ c

√
−p1p2

2
ph0 ,

where

(1) h0 = f−h
2

,

(2) b, c 6≡ 0 (mod p),

(3) b2 + p1p2c
2 = 4ph,

(4) b ≡ 2ph/2 (mod `), here ` ∈ {p1, p2} is the prime congruent to 3 modulo 4.

With the above theorem, Feng and Xiang proved the following theorem.

Theorem 2.4.7. (Feng and Xiang, [25]) Let {p1(mod 4), p3(mod 4)} = {1, 3} be two

primes and N = pm1 p2. Let p be a prime such that ordpm1 (p) = φ(pm1 ), ordp2(p) = φ(p2)

and f := ordN(p) = φ(N)/2. Let q = pf and

D = ∪p
m−1
1 −1
i=0 Cip2 ⊂ F∗q.
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Moreover, assume that

p1 = 2ph/2 + (−1)(p1−1)/2b

p2 = 2ph/2 − (−1)(p1−1)/2b

p1p2 = 4ph − 1

where h is the class number of Q(
√
−p1p2), h is even and b ∈ {1,−1}. Then, Cay(Fq, D)

is an srg.

More recently, Feng, Momihara and Xiang in [27] generalized the above theorem

based on the following theorem.

Theorem 2.4.8. ([56], Case B1; Theorem 4.10) Let N = pm1 p
n
2 , where m and n are

positive integers, p1 and p2 are primes such that p1 ≡ 1(mod 4) and p2 ≡ 3(mod 4).

Let p be a prime such that ordpm1 (p) = φ(pm1 ), ordpn2 (p) = φ(pn2 ) and f := ordN(p) =

φ(N)/2. Let q = pf and χ be a character of order N of Fq. Then, for 0 ≤ s ≤ m− 1

and 0 ≤ t ≤ n− 1, we have

g(χp
s
1p

t
2) = p

f−hps1p
t
2

2

(
b+ c

√
−p1p2

2

)
,

g(χp
m
1 p

t
2) = −p

f
2 ,

g(χp
s
1p

n
2 ) = p

f
2 ,

where h us the class number of Q(
√
−p1p2), and b and c are integers determined by

b, c 6≡ 0(mod p), 4ph = b2 + p1p2c
2, and bp

f−h
2 ≡ 2(mod p1p2).

In [27], Feng, Momihara and Xiang proved the following theorem:

Theorem 2.4.9. (Feng, Momihara and Xiang, [27]) Let N = pm1 p
n
2 , where m and n are

positive integers, p1 and p2 are primes such that p1 ≡ 1(mod 4) and p2 ≡ 3(mod 4).

Let p be a prime such that ordpm1 (p) = φ(pm1 ), ordpn2 (p) = φ(pn2 ) and f := ordN(p) =

φ(N)/2. Let q = pf and

D = ∪p
m−1
1 −1
i=0 ∪p

n−1
2 −1
j=0 Cipn2 +jpm1

⊂ F∗q.
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Moreover, assume that

p1 = 2ph/2 + b

p2 = 2ph/2 − b

p1p2 = 4ph − 1

where h is the class number of Q(
√
−p1p2), h is even and b ∈ {1,−1}. Then, Cay(Fq, D)

is an srg.

The next case we are interested is the index 4 case. Based on the results in

[24], Ge, Xiang and Yuan in [28] constructed strongly regular Cayley graphs by using

unions of cyclotomic classes as connection sets. In [28], they found two infinite families

of srgs.

For the index 6 case, the main obstacle is that the evaluation of Gauss sums is

not done. (This is an open problem.) After we closely studied the proofs in [28], it is

realized that the explicit determination is not necessary. We shall give the statement

of the theorem and its proof in Chapter 3.

2.5 Symmetric Association Schemes

This section contains a short account of the basic theory of association schemes.

For the reader who is interested in association schemes, we recommend the references

[5, 15, 29]. We shall present the Bannai-Muzychuk theorem, which is important to our

proofs in Chapter 4.

Definition 2.5.1. Let X be a finite set of size v. A symmetric association scheme

with d classes is X together with d + 1 distinct subsets Ri, i = 0, . . . , d, of X × X

such that

(1) The sets R0, . . . , Rd form a partition of X ×X with R0 = {(x, x) | x ∈ X}.

(2) If x, y ∈ X, if (x, y) ∈ Ri, then (y, x) ∈ Ri.

(3) For any (x, y) ∈ Rk the number pkij of z ∈ X with (x, z) ∈ Ri and (z, y) ∈ Rj

depends only on i, j and k. The numbers pkij are called the intersection numbers of

the association scheme.
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In the following, we give some straightforward examples of association schemes.

We leave to the reader to verify them with the above definition.

(1) A strongly regular graph and its complement form a symmetric 2-class as-

sociation scheme. Let X be a set of size v. Denote Γ as a strongly regular graph

srg(v, k, λ, µ). Then, the complement graph of Γ is a srg(v, v − k − 1, v − 2k + µ−

2, v − 2k + λ). Set

R0 = {(x, x) | x ∈ X},

R1 = {(x, y) | xy is an edge of the graph Γ},

R2 = {(x, y) | xy is not an edge of the graph Γ}.

Thus, we can prove that (X, {R0, R1, R2}) is a 2-class association scheme.

(2) Let X be a set of size of v and Ω be the collection of all 2-subset of X. Then,

|Ω| = v(v − 1)/2. Define R0, R1, R2 as follows:

R0 = {(α, α) | α ∈ Ω},

R1 = {(α, β) | α, β ∈ Ω, and |α ∩ β| = 1},

R2 = {(α, β) | α, β ∈ Ω, and |α ∩ β| = 0},

Then, one can show that (Ω, {R0, R1, R2}) is an association scheme. We call this

scheme as a triangular association schemes, denoted as T (v).

(3) Triangular association schemes can be generalized as follows. Let X be a

set of size of v and Ω be the collection of all d-subsets of X. Then, |Ω| =
(
v
d

)
. Define

R0, R1, . . . , Rd as follows:

R0 = {(α, α) | α ∈ Ω},

R1 = {(α, β) | α, β ∈ Ω, and |α ∩ β| = d− 1},
...

Rd = {(α, β) | α, β ∈ Ω, and |α ∩ β| = 0},

Then, one can show that (Ω, {R0, R1, . . . , Rd}) is an association scheme. We call

this scheme a Johnson association scheme, denoted as J(v, d).
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(4) Let X be an alphabet of size of q. Denote Ω = Xv, the set of all v-tuples

with entries in X. Consider the Hamming distance dist(α, β) of any two vectors of

Xv, and define R0, R1, . . . , Rv as follows:

R0 = {(α, α) | α ∈ Ω},

R1 = {(α, β) | α, β ∈ Ω, and dist(α, β) = 0},
...

Rv = {(α, β) | α, β ∈ Ω, and dist(α, β) = v},

Then, one can show that (Ω, {R0, R1, . . . , Rv}) is an association scheme. We call

this scheme a Hamming association scheme, denoted as H(q, v).

Association schemes are generalizations of strongly regular graphs. Let (X, {Ri}0≤i≤d)

be an association scheme with d classes and |X| = v. Define the neighborhood of the

point α in the graph Γi = (X,Ri) by Ri(α) = {β ∈ X | (α, β) ∈ Ri}, 0 ≤ i ≤ d.

By Definition 2.5.1, |Ri(α)| is exactly p0
ii, which is independent with the choice of α,

1 ≤ i ≤ d. We use ni to denote p0
ii. It follows that Γi are regular graphs of valency ni,

0 ≤ i ≤ d. Notice that R0, . . . , Rd are partition of X × X. By Definition 2.5.1, we

also have n0 + n1 + · · ·+ nd = v with n0 = 1.

From the above arguments, we actually show pkij = |Ri(α) ∩ Rj(β)|, if (α, β) ∈

Rk. Intersection numbers play an fundamental role in the theory of association schemes.

We contain some of their basic properties in the following propsition.

Proposition 2.5.2. ([15]) Let (X, {Ri}0≤i≤d) be a d-class association scheme. We

have

(1) pk0j = δjk and pki0 = δik.

(2) p0
ij = niδij.

(3)
∑d

i=0 p
k
ij = nj.

(4) nkp
k
ij = nip

i
kj.

Proof: We prove the items from (1) to (4) as follows:

(1) For (α, β) ∈ Rk, 0 ≤ k ≤ d, we have R0(α) = {α} and Rj(β) = {γ | (β, γ) ∈ Rj}.
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Thus, pk0j = |R0(α) ∩ Rj(β)| = |{α} ∩ {γ | (β, γ) ∈ Rj}|. It follows that pk0j = 1 when

j = k; and equals to 0, otherwise. The second identity follows by similar arguments.

(2) Notice that R0(α), . . . , Rd(α) partition X. This implies that p0
ij = |Ri(α)∩

Rj(α)| = ni if i = j; equals to 0, otherwise. This concludes the identity of the second

item.

(3) Since R0(α), . . . , Rd(α) are partition of X, we have, for (α, β) ∈ Rk,

d∑
i=0

pkij =
d∑
i=0

|Ri(α) ∩Rj(β)| = |
(
∪di=0Ri(α)

)
∩Rj(β)| = |X ∩Rj(β)| = |Rj(β)| = nj.

(4) Take an element α of X. Then, for any (α, β) ∈ Rk, there are exactly pkij

elements γ of X such that (α, γ) ∈ Ri and (β, γ) ∈ Rj. Through this way, we can

obtain nkp
k
ij triangles. On the other hand, for any (α, γ) ∈ Ri, there are exactly pikj

elements β of X such that (α, β) ∈ Rk and (β, γ) ∈ Rj. Through this way, we can

obtain nip
i
kj triangles.

It is easy to see that any triangules obtained by the first way can also be obtained

by the second way. Then, we have nkp
k
ij ≤ nip

i
kj. For the similar reason, we have

nip
i
kj ≤ nkp

k
ij, which actually implies that nkp

k
ij = nip

i
kj. �

Moreover, if all Γi are connected, (X, {Ri}0≤i≤d) is called primitive. Otherwise,

it is called imprimitive. We define adjacency matrices Ai, 0 ≤ i ≤ d, of an association

scheme (X, {Ri}0≤i≤d) by the adjacency matrix of Γi. In terms of adjacency matrices,

the axioms of Definition 2.5.1 can be written as

(1)
∑d

i=0 Ai = J , where J is the all-one matrix of size v × v.

(2) A0 = I.

(3) AiAj = AjAi.

(4) AiAj =
∑

k p
k
ijAk, for all i, j and k ∈ {0, . . . , d}.

Thus, the vector space B = 〈A0, A1, . . . , Ad〉 forms an algebra, which is

called the Bose-Mesner algebra of an association scheme (X, {Ri}0≤i≤d). Notice that

A0, . . . , Ad are pairwise commutative, thus, they can be diagonalized simultaneously.

More precisely, the n-dimensional real linear space Rv can be decomposed as

Rv = V0 ⊕ V1 ⊕ · · · ⊕ Vd,
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where Vi is the common eigenspace of A0, . . . , Ad for 0 ≤ i ≤ d. Let E0 =

1
|X|J, E1, . . . , Ed be the projections of Rv to V0, V1, . . . , Vd, respectively. The matri-

ces E0, E1, . . . , Ed form a basis of B. This can be seen from the facts E0, E1, . . . , Ed

are linearly independent and the dimension of B is not larger than d+ 1.

The basis transition matrix from {A0, A1, . . . , Ad} to {E0, E1, . . . , Ed} is

denoted by P = (pij)0≤i,j≤d, and is usually called the first eigenmatrix (or character

table) of the scheme. Explicitly, P is the (d+1)×(d+1) matrix with rows and columns

indexed by 0, 1, . . . , d such that

(A0, A1, . . . , Ad) = (E0, E1, . . . , Ed)P.

The basis transition matrix from {E0, E1, . . . , Ed} to {A0, A1, . . . , Ad} is denoted by

Q = (qij)0≤i,j≤d, and is usually called the second eigenmatrix of the scheme. Explicitly,

Q is the (d+ 1)× (d+ 1) matrix with rows and columns indexed by 0, 1, . . . , d such

that

(A0, A1, . . . , Ad)Q = (E0, E1, . . . , Ed).

It is easy to see that PQ = QP = vI.

Let mi = rank(Ei) = Tr(Ei). The mi’s are called the multiplicities of the

scheme. We call the scheme (X, {Ri}0≤i≤d) pseudocyclic, if there exists an integer t such

that mi = t for 1 ≤ i ≤ d. The following theorem gives combinatorial characterizations

of pseudocyclic association schemes.

Theorem 2.5.3. Let (X, {Ri}0≤i≤d) be an association scheme. Then the following are

equivalent.

(1) (X, {Ri}0≤i≤d) is pseudocyclic.

(2) For some constant n, we have ni = n and
∑d

i=1 p
j
ii = n− 1, for 1 ≤ i ≤ d.

(3) (X,B) is a 2− (v, n, n− 1) design, where B = {Ri(x) | x ∈ X, 1 ≤ i ≤ d}.

The proof of this theorem can be found in [15, p. 48] or [31, p. 84]. Part (2) of

the above theorem will be useful in Section 4.
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A classical example of pseudocyclic association schemes is the cyclotomic associ-

ation scheme over a finite field. Let q = pf , where p is a prime and f a positive integer.

Let γ be a fixed primitive element of Fq and N |q− 1 with N > 1. Let C0 = 〈γN〉, and

Ci = γiC0 for 1 ≤ i ≤ N − 1. Assume that −1 ∈ C0. Define R0 = {(x, x) | x ∈ Fq},

and for i ∈ {1, 2, . . . , N}, define Ri = {(x, y) | x, y ∈ Fq, x − y ∈ Ci−1}. Then

(Fq, {Ri}0≤i≤N) is the cyclotomic association scheme of class N over Fq. The first

eigenmatrix P of the cyclotomic scheme of class N is the following (N + 1) by (N + 1)

matrix (with the rows of P arranged in a certain way)

P =



1 N−1
q

N−1
q

N−1
q
· · · N−1

q

1 τ
N−1

τ0 τ1 · · · τ
N−2

1 τ
N−2

τ
N−1

τ0 · · · τ
N−3

...

1 τ0 τ1 τ2 · · · τ
N−1


(2.18)

where the τi’s are the cyclotomic periods (or Gauss periods) of order N defined by

τi =
∑
x∈Ci

ψ(x).

In the above defintion, ψ is the canonical additive character of Fq.

Let (X, {R0, R1, . . . , Rd}) a d-class association scheme. For a partition Λ0 :=

{0},Λ1, . . . ,Λd′ of {0, 1, . . . , d}, let RΛi
= ∪k∈Λi

Rk, for 0 ≤ i ≤ d′. If (X, {RΛi
}0≤i≤d′)

forms an association scheme, then we say that (X, {RΛi
}0≤i≤d′) is a fusion scheme of

the original scheme. Given a partition {Λi}0≤i≤d′ of {0, 1, 2, . . . , d} with Λ0 = {0},

there is a simple criterion in terms of the first eigenmatrix P of (X, {Ri}0≤i≤d) for

deciding whether (X, {RΛi
}0≤i≤d′) forms an association scheme or not. For readers

who are interested in this topic, we refer them to the references [14] and [15].

We state this criterion below

Theorem 2.5.4. (The Bannai-Muzychuk Criterion, see [4]) Let P be the first eigenma-

trix of an association scheme (X, {Ri}0≤i≤d). Let Λ0 := {0},Λ1, . . . ,Λd′ be a partition

of {0, 1, . . . , d}. Then (X, {RΛi
}0≤i≤d′) forms a fusion association scheme if and only
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if there exists a partition {∆i}0≤i≤d′ of {0, 1, 2, . . . , d} with ∆0 = {0} such that each

(∆i,Λj)-block of P has a constant row sum. Moreover, the constant row sum of the

(∆i,Λj)-block is the (i, j) entry of the first eigenmatrix of the fusion scheme.

Given a d-class association scheme (X, {R0, R1, . . . , Rd}), if (X, {RΛi
}0≤i≤d′)

forms a fusion association scheme, for every partition {Λi}0≤i≤d′ of {0, 1, 2, . . . , d}

with Λ0 = {0}, then we call the original scheme (X, {Ri}0≤i≤d) amorphic. Amor-

phic association schemes have intrinsic links with srgs. An srg(v, k, λ, µ) is said to

be of Latin square type (respectively, negative Latin square type), if (v, k, λ, µ) =

(m2, t(m − ε), εm + t2 − 3εt, t(t − ε)) for some integer m, t and ε = 1 (respectively,

ε = −1). The following theorem (see [20]) is useful for our second research project.

Theorem 2.5.5. All graphs in an amorphic association scheme with at least three

classes are strongly regular of Latin square type, or they are all of negative Latin square

type.

We shall use this theorem to show that the examples in Chapter 4 are not

amorphic, which give counterexamples to A. V. Ivanov’s conjecture.

We remark that the above theorem may not hold when the association scheme

has only two classes. Let (X, {R0, R1, R2}) be a 2-class association scheme, where

(X,R1) is an srg which is neither Latin square type nor negative Latin square type.

This scheme is clearly amorphic, but it does not satisfy the conclusions of Theorem

2.5.5.

For more information on amorphic association schemes, we refer the reader to

[20].
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Chapter 3

THE CONSTRUCTIONS OF STRONGLY REGULAR GRAPHS USING
GAUSS SUMS OF EVEN INDEX

In this chapter, we construct strongly regular Cayley graphs in the index 6 case.

As the discussion of Section 2.4, the main obstacle in the construct is the evaluation

of Gauss sums of higher index (greater or equal than 6). But, in Theorem 3.0.9, we

develop an approach to bypass this obstacle. Based on this conclusion, we shall give

sufficient and necessary conditions in Theorem 3.0.10 that determine candidate Cayley

graphs to be strongly regular.

Let Fq be the finite field of order q and γ be a primitive element of Fq. Let

N > 1 be a proper positive divisor of q − 1. Let C0, C1 = γC0, . . . , CN−1 = γN−1C0

be the cyclotomic classes of order N of Fq, where C0 = 〈γN〉 ≤ F∗q.

In this chapter, we assume that (i) gcd(p(p− 1), N) = 1, where N |(q − 1), and

q = pf , f is the order of p modulo N , (ii) −1 6∈ 〈p〉, the cyclic subgroup of (Z/NZ)∗

generated by p. These assumptions have the following consequences.

First, the index [(Z/NZ)∗ : 〈p〉], denoted by w, must be even. This can be seen

as follows. From gcd(p(p−1), N) = 1, we see that N is odd. Thus φ(N) is even, where

φ is the Euler totient function. If w is odd, then f = φ(N)/w is even. It follows that

pf/2 ≡ −1 (mod N), contradicting the assumption that −1 6∈ 〈p〉.

Secondly, let χ be a multiplicative character of Fq of order N . We claim that

g(χ) ∈ Z[ξN ]. We prove this claim as follows. For any b ∈ F∗p, since gcd(N, p− 1) = 1,

we have χ(b) = 1. Hence by Part (2) of Lemma 2.3.4, σ1,b(g(χ)) = χ̄(b)g(χ) = g(χ).

It follows that g(χ) ∈ Z[ξN ]. We can actually go a little further. Let K be the

decomposition field of the prime p in Q(ξN). Then it is well known [34, p. 197] that
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Gal(Q(ξN)/K) = 〈σp,1〉. By Part (3) of Lemma 2.3.4, we have g(χ) ∈ K. In fact, we

have g(χ) ∈ OK , the integer ring of K.

Gauss sums g(χ) with χ being a multiplicative character of order N of Fq (and

−1 6∈ 〈p〉) are called Gauss sums of index w.

For our first research project, we assume N = pm1 , where p1 is an odd prime,

m ≥ 1 is an integer, and w|(p1 − 1). In this case, Gal(Q(ξN)/Q) ∼= (Z/NZ)∗ is cyclic,

and K is the unique imaginary subfield of Q(ξN) with [K : Q] = w. Since w|(p1 − 1),

we see that K is in fact a subfield of Q(ξp1). Therefore if χ is a multiplicative character

of Fq of order N , we in fact have g(χ) ∈ Z[ξp1 ].

Let g be a primitive root modulo p1. Define Ũj = gj〈p〉 ⊆ (Z/p1Z)∗, for all

0 ≤ j ≤ w − 1. Then (Z/p1Z)∗ = ∪w−1
j=0 Ũj. For 0 ≤ j ≤ w − 1, we define ηj by

ηj =
∑
a∈Ũj

ξap1 , (3.1)

where ξp1 is a complex primitive p1-th root of unity. The following lemma is well known

(see [51]).

Lemma 3.0.6. With the above assumptions, {ηj | 0 ≤ j ≤ w − 1} is an integral basis

of K.

Proof: Note that [K : Q] = w. Then, by Proposition 1 in [51], we know that

η0, . . . , ηw−1 form a integral basis of K. �

Let χ be a multiplicative character of Fq of order N . Let r be the largest

nonnegative integer such that pr|g(χ). That is, p−rg(χ) ∈ OK , but p−(r+1)g(χ) 6∈ OK .

Note that if χ′ is another multiplicative character of Fq of order N , then there exists a

d ∈ (Z/NZ)∗ such that χ′ = χd; it follows that g(χ′) = g(χd) = σd,1(g(χ)). This shows

that the integer r does not depend on the choice of the multiplicative character of order

N . The explicit computation of r can be done by using Stickelberger’s theorem on the

prime ideal factorization of Gauss sums as the following lemma.
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Lemma 3.0.7. Let χ be a multiplicative character of Fq of order N . With the above

assumptions and notation, we have

r =
f − f̃

2
+ b,

where f̃ = p1−1
w

, b = min{b0, b1, . . . , bw−1} and bj = 1
p1

∑
z∈([1,p1−1]∩Ũj) z for all 0 ≤ j ≤

w − 1, here [1, p1 − 1] denotes the set of integers x, 1 ≤ x ≤ p1 − 1.

We proceed with our proof as follows. Let G = Gal(K/Q). By Lemma 2.3.3,

we have G ∼= (Z/NZ)∗/〈p〉, and thence have Gal(K/Q) is cyclic. Let g be a generator

of (Z/NZ)∗/〈p〉 and set Ui = gi〈p〉, 0 ≤ i ≤ w − 1. Then, ∪w−1
i=0 Ui = (Z/NZ)∗. The

above congruence can be written as

G ∼= {Ui | 0 ≤ i ≤ w − 1}.

Set σ = σg to be the generator of G. Let P be a prime ideal of OK containing p. We

have P = OK ∩ P ′ for some P ′ of Z[ξN ] containin p. By Stickelberger’s theorem, we

have

g(χ)OK = P
∑w−1

i=0 aiσ
i

, (3.2)

where

ai =
1

N

∑
z∈[1,N−1]∩Ui

z, for 0 ≤ i ≤ w − 1.

We remark that ai, 0 ≤ i ≤ w − 1, are integers. Notice that σ−1 = σw/2. Therefore,

we have

g(χ)OK = σw/2(g(χ)OK) = P
∑w−1

i=0 aiσ
i+w/2 (mod w)

= P
∑w/2−1

i=−w/2
aiσ

i+w/2

. (3.3)

Moreover, since K is the decomposition field of p in Q[ξN ], we have

pOK = P
∑w−1

i=0 σi

.

Thus, by (3.2) and (3.3), we have

ai + ai+w/2 = f =
φ(N)

w
, for 0 ≤ i ≤ w/2.

Notice that [(Z/p1Z)∗ : 〈p〉] = [(Z/NZ)∗ : 〈p〉] = w. Thus, we say (Z/p1Z)∗/〈p〉

is still generated by g. We shall finish our proof after proving the following lemma:
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Lemma 3.0.8. Under the above notations, we have

ai =
f − f̃

2
+ bi, for 0 ≤ i ≤ w − 1.

Proof: Each z in (Z/NZ)∗ can be expressed uniquely as z = p1y + x, where 0 ≤ y ≤

pm−1
1 − 1 and 0 ≤ x ≤ p1 − 1. Hence, we have

ai =
1

N

∑
z∈[1,N−1]∩Ui

z

=
1

N

∑
x∈[1,p1−1]∩Ũi

pm−1
1 −1∑
y=0

(p1y + x)

=
p1

N

 ∑
x∈[1,p1−1]∩Ũi

pm−1
1 −1∑
y=0

y

+
1

N

 ∑
x∈[1,p1−1]∩Ũi

pm−1
1 −1∑
y=0

x


=

φ(p1)

w

pm−1
1 − 1

2
+ bi =

f − f̃
2

+ bi.

Now, we return to the proof of Lemma 3.0.7. Based on above arguments and

Lemma 3.0.8, we have

g(χ)OK = p
f−f̃
2 P

∑w−1
i=0 bi,σ

i

and

g(χ)OK = p
f−f̃
2 P

∑w/2−1
i=−w/2

biσ
i+w/2

.

Moreover, bi + bi+w/2 = f̃ , 0 ≤ i ≤ w − 1. By Lemma 2.3.4, without loss of generality,

we assume b0 is the smallest nonnegative integer of {b0, . . . , bw−1}. It immediately

follows that f−f̃
2

+ b0 is the maximal power of p in g(χ). �

The proof of Lemma 3.0.7 is a generalization of the proof in [24]. (See [24], pp.

1430). We should remark that Lemma 3.0.7 is still valid when N is any odd number.

Now, we are ready to prove our first theorem. Define

D :=

pm−1
1 −1⋃
i=0

Ci. (3.4)

Then, the number of eigenvalues of the Cayley graphs whose connection sets are defined

by (3.4) has the following property.
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Theorem 3.0.9. The Cayley graph Cay(Fq, D) is an undirected regular graph of va-

lency |D|. It has at most w + 1 distinct restricted eigenvalues.

The proof is parallel to that of Theorem 3.1 in [28]. Since we will use some parts

of the proof later on, we will give the complete proof here.

Proof: Since N = pm1 is odd, we have 2N |(q−1) or q is even; consequently −C0 = C0.

Hence −D = D. It follows that Cay(Fq, D) is undirected. As 0 6∈ D, we see that

Cay(Fq, D) has no loops. From definition, we deduce that Cay(Fq, D) is a regular

graph of valency |D|.

The restricted eigenvalues of Cay(Fq, D), as explained in [14, p. 136], are given

by

ψ(γaD) =
∑
x∈D

ψ(γax),

where 0 ≤ a ≤ N − 1. By (3.4) and Lemma 2.2.10, we have

ψ(γaD) =

pm−1
1 −1∑
i=0

ψ(γaCi) =

pm−1
1 −1∑
i=0

τi+a

=
1

N

∑
χ∈C⊥0

g(χ)

pm−1
1 −1∑
i=0

χ(γa+i). (3.5)

If χ ∈ C⊥0 and χ = χ0 (the trivial character), then g(χ) = −1 and
∑pm−1

1 −1
i=0 χ(γa+i) =

pm−1
1 . If χ ∈ C⊥0 and ord(χ) 6= 1, then ord(χ) = p`1, 1 ≤ ` ≤ m since ord(χ)||C⊥0 |. For

those characters χ with 1 6= ord(χ) < pm1 , we have

pm−1
1 −1∑
i=0

χ(γa+i) = χ(γa)

pm−1
1 −1∑
i=0

χ(γ)i = χ(γa)
χ(γ)p

m−1
1 − 1

χ(γ)− 1
= 0.

Thus, in (3.5), the terms corresponding to characters of order p`1, 1 ≤ ` ≤ m − 1,

vanish. Hence (3.5) can be simplified to

ψ(γaD) =
1

N
[−pm−1

1 +
∑

χ∈C⊥0 ,ord(χ)=pm1

g(χ)

pm−1
1 −1∑
i=0

χ(γa+i)]. (3.6)
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Define a multiplicative character θ of Fq by setting θ(γ) = ξN . Then 〈θ〉 = C⊥0 since

C⊥0 is the unique subgroup of F̂∗q of order N . Thus any multiplicative character χ of

order pm1 can be expressed as θd for some d in (Z/NZ)∗. We have

ψ(γaD) =
1

N
[−pm−1

1 +
∑

d∈(Z/NZ)∗

g(θ
d
)

pm−1
1 −1∑
i=0

θd(γa+i)] (3.7)

For convenience, we set

Sa :=
∑

d∈(Z/NZ)∗

g(θ
d
)

pm−1
1 −1∑
i=0

θd(γa+i). (3.8)

Let r be the positive integer given in Lemma 3.0.7 such that p−rg(θ) ∈ OK . By

Lemma 3.0.6, we have

g(θ) = pr(N0η0 + · · ·+Nw−1ηw−1), (3.9)

where N0, . . . , Nw−1 are integers and η0, . . . , ηw−1 are defined in (3.1). From Lemma

2.3.4, we have g(θ
d
) = σd, 1(g(θ)). To simplify notation, we simply write σd for σd,1. It

follows that

g(θ
d
) = σd(g(θ)) = σd(p

r(N0η0 + · · ·+Nw−1ηw−1))

= pr(N0η
σd
0 + · · ·+Nw−1η

σd
w−1).

Now writing d ∈ (Z/NZ)∗ as d = d1 + p1d2, where d1 ∈ (Z/p1Z)∗ and d2 ∈ Z/pm−1
1 Z,

we have ησdj = σd(
∑

c∈C̃j
ξcp1) =

∑
c∈C̃j

σd1+pm−1
1 d2

(ξcp1) = η
σd1
j . We have

g(θ
d
) = pr(N0η

σd
0 + · · ·+Nwη

σd
w )

= pr(N0η
σd1
0 + · · ·+Nwη

σd1
w )

= σd1(p
r(N0η0 + · · ·+Nwηw))

= σd1(g(θ)) = g(θ
d1

). (3.10)
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Hence (3.8) can be written as

Sa =
∑

d∈(Z/NZ)∗

g(θ
d
)

pm−1
1 −1∑
i=0

θd(γa+i)

=
∑

d1∈(Z/p1Z)∗

∑
d1∈Z/pm−1

1 Z

g(θ
d1+p1d2

)

pm−1
1 −1∑
i=0

θd1+p1d2(γa+i)

=
∑

d1∈(Z/p1Z)∗

pm−1
1 −1∑
i=0

g(θ
d1

)θd1(γa+i)
∑

d2∈Z/pm−1
1 Z

θp1d2(γa+i).

Note that
∑

d2∈Z/pm−1
1 Z θ

d2p1(a+i)(γ) = 0 if and only if pm−1
1 - (a + i). We only need to

consider the terms for which pm−1
1 | (a + i). For each 0 ≤ a ≤ N − 1, there exists a

unique ia ∈ {0, 1, . . . , pm−1
1 − 1} such that pm−1

1 | (a + ia); writing a + ia = pm−1
1 ja,

ja ∈ Z/p1Z, we have

Sa = pm−1
1

∑
d1∈(Z/p1Z)∗

g(θ
d1

)θd1(γp
m−1
1 ja) = pm−1

1

∑
d1∈(Z/p1Z)∗

g(θ
d1

)ξjad1p1
. (3.11)

For each j ∈ Z/p1Z, define an additive character ψj on Z/p1Z such that ψj(d1) = ξjd1p1
.

We have

Sa = pm−1
1

∑
d1∈(Z/p1Z)∗

g(θ
d1

)ψja(d1)

= pm−1
1 pr

w−1∑
i=0

∑
d1∈C̃i

(N0η
σd1
0 + · · ·+Nw−1η

σd1
w−1)ψja(d1)

= pm−1
1 pr[(N0η0 +N1η1 + · · ·+Nw−1ηw−1)

∑
d1∈C̃0

ψja(d1)

+(N0η1 +N1η2 + · · ·+Nwη0)
∑
d1∈C̃1

ψja(d1)

· · ·

+(N0ηw−1 +N1η0 + · · ·+Nw−1ηw−2)
∑

d1∈C̃w−1

ψja(d1)]. (3.12)

Let M0 = N0 + N1 + · · · + Nw−1. Note that
∑w−1

i=0 ηi = −1. We continue the

computations of Sa by considering two cases.
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Case 1. ja = 0. In this case, ψja(d1) = 1 for all d1 ∈ Z/p1Z. It follows that∑
d1∈C̃z

ψja(d1) = (p1 − 1)/w, 0 ≤ z ≤ w − 1. Thus we have

Sa =
p1 − 1

w
pm−1

1 pr(N0

w−1∑
i=0

ηi +N1

w−1∑
i=0

ηi + · · ·+Nw−1

w−1∑
i=0

ηi) =
1− p1

w
pm−1

1 prM0

Case 2. ja 6= 0. In this case, ja must belong to a unique coset of 〈p〉 in (Z/p1Z)∗, say

ja ∈ gt〈p〉, where 0 ≤ t ≤ w − 1. In this case, for any 0 ≤ z ≤ w − 1, we have∑
d1∈C̃z

ψja(d1) = ηz+t,

where the subscript z + t of ηz+t is read modulo w. In the following, the subscripts of

ηi and Kj should also be read modulo w.

Define

K0 = η2
0 + · · ·+ η2

w−1,

K1 = η0η1 + · · ·+ ηw−1η0,

· · ·

Kw−1 = η0ηw−1 + · · ·+ ηw−1ηw−2.

Then

Sa = pm−1
1 pr[(N0η0 +N1η1 + · · ·+Nw−1ηw−1)ηt

+(N0η1 +N1η2 + · · ·+Nw−1η0)η1+t

· · ·

+(N0ηw−1 +N1η0 + · · ·+Nw−1ηw−2)ηw−1+t]

= pm−1
1 pr[N0(η0ηt + η1η1+t + · · ·+ ηw−1ηw−1+t)

+N1(η0ηw−1+t + η1ηt + · · ·+ ηw−1ηw−2+t)

· · ·

+Nw−1(η0η1+t + η1η2+t + · · ·+ ηw−1ηt)]

= pm−1
1 pr(N0Kt +N1Kt+1 + · · ·+Nw−1Kt+w−1) (3.13)
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As above , we have shown that w is even and f is odd. The Gauss periods ηj

satisfy the following relations (see [51]):

Kw/2 = (1 + (w − 1)p1)/w, Kj = (1− p1)/w, if j 6= w/2.

Clearly, there exists a unique element in the set {t + i | 0 ≤ i ≤ w − 1} that is

congruent to w/2 modulo w, say t+ h(a) ≡ w/2 (mod w). We have

Sa = pm−1
1 pr[

1− p1

w
(M0 −Nh(a)) +

1 + (w − 1)p1

w
Nh(a)]

= pm−1
1 pr(

1− p1

w
M0 + p1Nh(a)). (3.14)

Therefore in this case, we have

Sa ∈ {pm−1
1 pr(

1− p1

w
M0 + p1Ni) | 0 ≤ i ≤ w − 1}.

Summing up, let

E =

{
1

p1

(−1 +
1− p1

w
prM0)

}
∪
{

1

p1

(−1 +
1− p1

w
prM0) + prNi | 0 ≤ i ≤ w − 1

}
. (3.15)

We have shown that the restricted eigenvalues of Cay(Fq, D) belong to E. Since |E| ≤

w + 1, we see that Cay(Fq, D) has at most w + 1 distinct restricted eignevalues. The

proof of the theorem is now complete. �

Next we give necessary and sufficient conditions for Cay(Fq, D) to be an srg.

The proof uses discrete Fourier transforms, which were first employed in the proof of

Theorem 3.1 in [50].

Theorem 3.0.10. Let p1 be a prime, m ≥ 1, N = pm1 . Let p 6= p1 be a prime, f =

ordN(p), w = φ(N)/f , and q = pf . Assume that −1 6∈ 〈p〉, gcd(p(p − 1), N) = 1 and

w|(p1− 1). Let r be given in Lemma 3.0.7 and D be defined as in (3.4). Then Cay(Fq,

D) is a strongly regular graph if and only if there exists an integer `, 1 ≤ ` ≤ w − 1,

such that
pr(1− p1)`

w
≡ ε (mod p1) (3.16)
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and

ps =
`

w

(
p1 −

(p1 − 1)`

w

)
, (3.17)

where s = f − 2r and ε = ±1.

Proof: Suppose that Cay(Fq, D) is a strongly regular graph. Then by Theorem 2.2.7,

Cay(Fq, D) has exactly two distinct restricted eigenvalues. By our computations of

the restricted eigenvalues of Cay(Fq, D) in the proof of Theorem 3.0.9, we must have

Ni ∈ {0, ε} for all 0 ≤ i ≤ w − 1, where ε 6= 0 is an integer. Thus (3.9) becomes

g(θ) = εpr
∑
i∈I

ηi,

where I = {i | Ni = ε, 0 ≤ i ≤ w − 1}. From |g(θ)|2 = pf , we obtain that

|
∑
i∈I

ηi|2 = pf−2r/ε2. (3.18)

It follows that ε must be a power of p. Since r is the largest power of p dividing the

Gauss sum g(θ) (see Lemma 3.0.7), we have ε = ±1.

Let s = f − 2r and D′ = ∪i∈IC̃i ⊂ (Z/p1Z)∗. From (3.18), we see that D′ is

a difference set in (Z/p1Z,+) with parameters (p1,
p1−1
w
`, p1−1

w
` − ps), where ` = |I|.

From the basic parameter relation for difference sets, we obtain that

ps = (`/w)(p1 − (p1 − 1)`/w).

Next we claim that pr(1−p1)`
w

≡ ε (mod p1). This can be seen as follows.

ψ(γaD) =
1

pm1
(−pm−1

1 + Sa)

=
1

p1

(−1 + εpr(1− p1)`/w) + prNh(a).

Since ψ(γaD) are integers for all 0 ≤ a ≤ N − 1, we see that (1 − p1)`pr/w ≡ ε

(mod p1).

Conversely, let

x =
1

p1

(
−1 +

1− p1

w
pr`ε

)
,
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with ε = ±1. By (3.16), we have x ∈ Z. Define a function ϕ on (Z/NZ,+) by

ϕ(a) :=
ψ(γaD)− x

pr
, ∀a ∈ Z/NZ. (3.19)

We claim that the range of ϕ is a subset of Z. First we note that ψ(γaD) are alge-

braic integers. Secondly by the computations in the proof of Theorem 3.0.9, we have

ψ(γaD) = 1
p1

(−1 + 1−p1
w
prM0) or 1

p1
(−1 + 1−p1

w
prM0) + prNh(a), which are rationals.

Thus we must have ψ(γaD) ∈ Z. It follows that 1−p1
w
prM0 ≡ 1 (mod p1). On the

other hand, by assumption, we have (1−p1)pr`
w

≡ ε (mod p1). Combining these two

congruences, we obtain

M0 ≡ ε` (mod p1),

from which we see that ϕ(a) ∈ Z indeed.

To simplify notation, we use G to denote the cyclic group (Z/NZ,+). Then

Ĝ = {νj | 0 ≤ j ≤ N − 1}, where ν is the character of G sending 1 to ξN . The Fourier

transform ϕ̂ of ϕ is given by

ϕ̂(νj) =

∑
a∈G ϕ(a)νj(a)
√
N

,

for 0 ≤ j ≤ N − 1.

When j = 0, we have

ϕ̂(ν0) =

∑
a∈G(ψ(γaD)− x)
√
Npr

=

√
N(−1− p1x)

p1pr
=
√
N
ε(p1 − 1)`

wp1

. (3.20)

For 1 ≤ j ≤ N − 1, we have

ϕ̂(νj) =

∑
a∈G(ψ(γaD)− x)νj(a)

√
Npr

=

∑
a∈G ψ(γaD)νj(a)
√
Npr

. (3.21)

By (3.7), we have

ϕ̂(νj) =
1

pr
√
N

∑
a∈G

1

N

(
−pm−1

1 + Sa
)
νj(a)

=
1

prN
√
N

∑
a∈G

Saν
j(a)

=
1

prN
√
N

∑
d∈(Z/NZ)∗

g(θ
d
)

pm−1
1 −1∑
i=0

θ(γ)di
∑
a∈G

ξ
a(d+j)
N . (3.22)
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If p1|j, then the (inner) sum
∑

a∈G ξ
a(d+j)
N = 0 since d ∈ (Z/NZ)∗ (i.e., d is

relatively prime to N); we thus have ϕ̂(νj) = 0.

If gcd(p1, j) = 1, then the (inner) sum
∑

a∈G ξ
a(d+j)
N is nonzero (and equals N)

if and only if j ≡ −d (mod N); in this case, we have

ϕ̂(νj) =
1

pr
√
N
g(θj)(

pm−1
1 −1∑
i=0

ξ−jiN ).

Note that the above formula also holds true for those j such that 1 ≤ j ≤ N −1

and p1|j since
∑pm−1

1 −1
i=0 ξ−jiN = 0 if p1|j. Therefore for all 1 ≤ j ≤ N − 1, we have

ϕ̂(νj) =
1

pr
√
N
g(θj)(

pm−1
1 −1∑
i=0

ξ−jiN ). (3.23)

Using the definition of ϕ, we have∑
a∈G

ϕ(a) =
∑
a∈G

ψ(γaD)− x
pr

= N
−1− xp1

prp1

=
N

p1

· ε(p1 − 1)`

w
. (3.24)

From (3.20), (3.23) and Parseval’s identity, we have

∑
a∈G

ϕ(a)2 =
N−1∑
j=0

|ϕ̂(νj)|2 = |ϕ̂(ν0)|2 +
N−1∑
j=1

|ϕ̂(νj)|2

=
N(p1 − 1)2`2

w2p2
1

+
ps

N

N−1∑
j=1

|
pm−1
1 −1∑
i=0

ξ−jiN |
2

=
N(p1 − 1)2`2

w2p2
1

+
ps

N

pm−1
1 −1∑
i,k=0

(
N−1∑
j=0

ξ
j(k−i)
N − 1

)

=
N

p2
1

(
(p1 − 1)2`2

w2
+ ps(p1 − 1)

)
=

N

p1

· (p1 − 1)`

w
, (3.25)

where in the last step of the above computations we used the condition (3.17). Let

κ = N
p1
· `(p1−1)

w
and S = {a ∈ Z/NZ | ϕ(a) 6= 0} (that is, S is the support of ϕ). We

have

0 ≤
∑
a∈S

(ϕ(a)− ε)2 = |S| − κ.

53



On the other hand, from
∑

a∈G ϕ(a)2 = κ and ϕ(a) ∈ Z, we have κ ≥ |S|. Therefore

we must have |S| = κ and
∑

a∈S(ϕ(a) − ε)2 = 0. Hence ϕ(a) ∈ {0, ε} for all a ∈ G.

It follows that the ψ(γaD), 0 ≤ a ≤ N − 1, take only two values. By Theorem 2.2.7,

Cay(Fq, D) is an srg. The proof is now complete. �

Remark 3.0.11. Condition (3.16) is equivalent to

pb(1− p1)`

w
≡ ±1 (mod p1) (3.26)

This can be seen as follows. If we square both sides of (3.16), we obtain p2b+f−f̃ (1−p1)2`2

w2 ≡

1 (mod p1). Noting that pf ≡ 1 (mod p1) and pf̃ ≡ 1 (mod p1), we have p2b(1−p1)2`2

w2 ≡

1 (mod p1). Since p1 is prime, we must have pb(1−p1)`
w

≡ ±1 (mod p1). The converse

can be proved similarly. We comment that (3.26) is much easier to use since it does

not involve m any more.

Corollary 3.0.12. Let p1 be a prime, m ≥ 1, N = pm1 . Let p 6= p1 be a prime,

f = ordN(p), w = φ(N)/f , and q = pf . Assume that −1 6∈ 〈p〉, gcd(p(p − 1), N) = 1

and w|(p1 − 1). Let f̃ = ordp1(p), D be defined as in (3.4), and D̃ the subgroup of F∗
pf̃

of index p1. Then Cay(Fq, D) is an srg if and only if Cay(Fpf̃ , D̃) is an srg.

The proof is clear by Theorem 3.0.10 and the above remark. We omit the details.

After finishing this project, we became aware of the very interesting paper [44] by

Momihara. In [44], the author gave a recursive construction of strongly regular Cayley

graphs, generalizing all but the first example in the statement of the Schmidt-White

conjecture into infinite families. In particular, the two index 6 examples are generalized

into infinite families while we could only generalize one of the index 6 examples in this

dissertation. However, the approach taken here is different from that of [44] since ours

is a direct construction. Also we obtained two conditions (3.16) and (3.17) which are

necessary and sufficient for our construction to give rise to an srg. These conditions

reveal an interesting connection between strongly regular Cayley graphs and cyclic
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difference sets in (Z/p1Z,+), which will be useful in future investigation of strongly

regular Cayley graphs and cyclic difference sets.

With the definition of D in (3.4) and Theorem 3.0.10, we have the following

three infinite families of srgs. Our first example is nothing but a generalization of an

example in Table I.

Example 3.0.13. Let p = 11, p1 = 43 and N = pm1 for m ≥ 1. It is easy to use

induction to prove that ord43m(11) = φ(43m)/6 for all m ≥ 1. Let Fq be the finite

field of order q = 11f , where f = φ(43m)/w, w = 6. We claim that Cay(Fq, D), with

D = ∪p
m−1
1 −1
i=0 Ci, is an srg. We could use Corollary 3.0.12 together with the result in

Table I to prove this claim. But we prefer to do it without relying on the result in

Table I.

In this example, we have f̃ = 7 and b = 3 (here b is obtained by comput-

ing min{b0, b1, . . . , b5} and bj = 1
p1

∑
z∈([1,p1−1]∩C̃j) z, 0 ≤ j ≤ 5). It follows that

s = 1. Since 3
6
(43 − (43 − 1) × 3

6
) = 11, (3.17) is satisfied with ` = 3. Next

3×(1−43)×113

6
≡ −1 (mod 43), we see that (3.26) is satisfied. It follows by Theorem 3.0.10

and Remark 3.0.11 that Cay(Fq, D) is a strongly regular graph. This family of srg gen-

eralizes Example 5 in Table I.

Example 3.0.14. Let p = 5, p1 = 31 and N = pm1 for m ≥ 1. It is easy to use

induction to prove that ord31m(5) = φ(31m)/10. Let Fq be the finite field of order

q = 5f , where f = φ(31m)/w with w = 10. Now f̃ = 3. Let D̃ be the subgroup of F∗53

of index p1 = 31. Then D̃ is nothing but F∗5, i.e. the multiplicative group of the prime

subfield of F53 . Trivially Cay(Fpf̃ , D̃) is an srg. By Corollary 3.0.12, Cay(Fq, D) with

D = ∪p
m−1
1 −1
i=0 Ci is an srg.

Example 3.0.15. Let p = 2, p1 = 127 and N = pm1 for m ≥ 1. Again it is easy to use

induction to prove that ord127m(2) = φ(127m)/18. Let Fq be the finite field of order

q = 2f , where f = φ(127m)/w with w = 18. Now f̃ = 7. Let D̃ be the subgroup of F∗27

of index p1 = 127. Then D̃ is nothing but F∗2 = {1}. Trivially Cay(Fpf̃ , D̃) is an srg.
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By Corollary 3.0.12, Cay(Fq, D) with D = ∪p
m−1
1 −1
i=0 Ci is an srg. It should be noted

that as an srg, Cay(Fq, D) is not trivial at all.
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Chapter 4

PSEUDOCYCLIC AND NON-AMORPHIC FUSION SCHEMES

In this chapter, we construct counterexamples to A. I. Ivanov’s conjecture. In

fact, we are aiming for obtaining infinite families. Our examples are in the index 2 case.

By the results in [25], every relation of the examples we obtain defines an srg, which

is neither Latin square nor negative Latin square. Then, we obtain counterexamples

to Ivanov’s conjecture through this approach. Furthermore, by the Bannai-Muzychuk

criterion, the counterexamples are pseudocyclic.

Let Fq be the finite field of order q and γ be a primitive element of Fq. Let

N > 1 be a proper positive divisor of q − 1 and N is odd. Let C0, C1 = γC0,

. . . , CN−1 = γN−1C0 be the cyclotomic classes of order N of Fq, where C0 = 〈γN〉 ≤ F∗q.

Assume that −1 ∈ C0. Define R0 = {(x, x) | x ∈ Fq}, and for i ∈ {1, 2, . . . , N}, define

Ri = {(x, y) | x, y ∈ Fq, x − y ∈ Ci−1}. Then (Fq, {Ri}0≤i≤N) is the cyclotomic

association scheme of class N over Fq.

By the results in Baumert, Mill and Ward’s paper, [8], we have:

Proposition 4.0.16. The association scheme (Fq, {Ri}0≤i≤N) is amorphic if and only

if −1 is congruent to a power of p modulo N .

Proof: Bannai and Munemasa proved the Proposition in their paper [10]. �

Below we shall show that even in the case index 2, where −1 is not in the

subgroup 〈p〉, the cyclic group generated by p and 〈p〉 has index 2 in (Z/NZ)∗, the

cyclotomic association scheme (Fq, {Ri}0≤i≤N) is not amorphic, we can still have inter-

esting fusion schemes of (Fq, {Ri}0≤i≤N).

Based on Section 2.4, if N is odd, we have the following three possibilities in

the index 2 case (see [56]), where both p1 and p2 are primes.

57



(1) N = pm1 , p1 ≡ 3 (mod 4);

(2) N = pm1 p
n
2 , {p1 (mod 4), p2 (mod 4)} = {1, 3}, ordpm1 (p) = φ(pm1 ), ordpn2 (p) = φ(pn2 );

(3) N = pm1 p
n
2 , p1 ≡ 1, 3 (mod 4), ordpm1 (p) = φ(pm1 ) and p2 ≡ 3 (mod 4), ordpn2 (p) =

φ(pn2 )/2.

We first deal with the second case when n = 1.

4.1 The Index 2 Case With N = pm1 p2

In this subsection, we assume that N = pm1 p2 (m ≥ 1), p1, p2 are primes

such that {p1 (mod 4), p2 (mod 4)} = {1, 3}, p is a prime such that gcd(p,N) = 1,

ordpm1 (p) = φ(pm1 ) and ordp2(p) = φ(p2), and f := ordN(p) = φ(N)/2. Let q = pf , and

as before let C0, C1, . . . , CN−1 be the N -th cyclotomic classes of Fq. Note that here

we have −Ci = Ci for all 0 ≤ i ≤ N − 1 since either 2N |(q − 1) or q is even. For

convenience, we define d := p1p2. For 0 ≤ k ≤ d− 1, define

Dk =

pm−1
1 −1⋃
i=0

Cip2+kpm−1
1

(4.1)

Note that Dk = γkp
m−1
1 D0 and {0}, D0, D1, . . . , Dd−1 form a partition of Fq. Now define

R′0 = R0 and

R′k = {(x, y) | x, y ∈ Fq, x− y ∈ Dk−1}. (4.2)

We will show that (Fq, {R′k}0≤k≤d) is a fusion scheme of (Fq, {Ri}0≤i≤N). Our proof

depends on Theorem 2.4.6. (See [42])

Let χ1 be the multiplicative character of order pm1 of Fq defined by χ1(γ) =

exp(2πi
pm1

), and let χ2 be the multiplicative character of order p2 of Fq defined by χ2(γ) =

exp(2πi
p2

). By Theorem 2.4.6, we have

g(χ̄1χ̄2) =
b+ c

√
−p1p2

2
ph0 , (4.3)

where h0 = f−h
2

(h is the class number of Q(
√
−p1p2)), b, c 6≡ 0 (mod p), b2 + p1p2c

2 =

4ph, and b ≡ 2ph/2 (mod `), here ` ∈ {p1, p2} is the prime congruent to 3 modulo 4.

Now, we are ready to prove the first case when N = pm1 p2.
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Theorem 4.1.1. With the definition of R′k given in (4.2), (Fq, {R′k}0≤k≤d) is a pseu-

docyclic association scheme.

Proof: We will first prove that (Fq, {R′k}0≤k≤d) is an association scheme by using the

Bannai-Muzychuk criterion discussed in Section 1.

For each a, 0 ≤ a ≤ N − 1, there exists a unique ia ∈ {0, 1, ..., pm−1
1 − 1}

such that pm−1
1 | (a + p2ia). It follows that there is a unique ja, 0 ≤ ja ≤ p1p2 − 1,

such that a ≡ −p2ia + pm−1
1 ja (mod N). It is now easy to check that −ip2 + jpm−1

1 ,

0 ≤ i ≤ pm−1
1 − 1 and 0 ≤ j ≤ p1p2 − 1, form a complete set of residues modulo N .

The group of additive characters of Fq consists of ψ0 and ψγa , 0 ≤ a ≤ q − 2,

where ψ0 is the trivial character and ψγa is defined by

ψγa : Fq → C∗, ψγa(x) = ξTr(γax)
p . (4.4)

We usually write ψ1 simply as ψ. The character values of D0 were computed in the

proof of Theorem 5.1 [25]. Since Dk is a (multiplicative) translate of D0, we know the

character values of Dk as well. Explicitly, for each a, 0 ≤ a ≤ N − 1, write

a ≡ −p2ia + pm−1
1 ja (mod N),

with 0 ≤ ia ≤ pm−1
1 − 1 and 0 ≤ ja ≤ p1p2 − 1. For convenience we introduce the

Kronecker delta δa,p1 , which equals 1 if p1|a, 0 otherwise. Also we define δa,p2 by setting

it equal to 1 if p2|a, 0 otherwise. By the results in [25], we have

ψγa(Dk) = ψ(γa+pm−1
1 kD0) =

1

N
Ta+pm−1

1 k,

where

Ta+pm−1
1 k = −pm−1

1 − (−1)
p1−1

2 pm−1
1 p2

√
qδa+pm−1

1 k,p2
− (−1)

p2−1
2 pm1

√
qδja+k,p1

+
b

2
ph0pm−1

1 (p1δja+k,p1 − 1)(p2δa+pm−1
1 k,p2

− 1)

−
(
a+ pm−1

1 k

p2

)(
ja + k

p1

)
c

2
ph0pm1 p2

In the above formula, b, c are given by (4.3), and ( .
p2

), ( .
p1

) are Legendre symbols.

Observe that a + pm−1
1 k ≡ −p2ia + pm−1

1 (ja + k) (mod N). So δa+pm−1
1 k,p2

= δja+k,p2 ,
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and

(
a+pm−1

1 k

p2

)
=

(
p1
p2

)m−1(
ja+k
p2

)
. Therefore, ψγa(Dk) is independent of ia.

In order to apply the Bannai-Muzychuk criterion, we define the following par-

tition of {ψγa | a ∈ Z/NZ}. For each j, 0 ≤ j ≤ d− 1, define

∆j+1 = {ψ
γ−p2i+pm−1

1 j | 0 ≤ i ≤ pm−1
1 − 1},

and ∆0 = {ψ0}. Clearly ∆0,∆1, . . . ,∆d form a partition of {ψγa | a ∈ Z/NZ}. For each

0 ≤ k ≤ d− 1, since ψγa(Dk) is independent of ia (here a ≡ −p2ia + pm−1
1 ja (mod N)),

we see that ψγa(Dk) is a constant for those a in the same subset of the above partition.

By the Bannai-Muzychuk criterion (with Λ0 = {0}, Λj+1 = {1 + ip2 + pm−1
1 j | 0 ≤ i ≤

pm−1
1 − 1}, 0 ≤ j ≤ d− 1), we see that (Fq, {R′0, R′1, . . . , R

′
d}) is an association scheme.

Next we show that the association scheme (Fq, {R′k}0≤k≤d) is pseudocyclic. To

this end, we show that the following group ring equation holds in Z[(Fq,+)].

Claim:
∑d−1

k=0D
2
k = (q−1)·0Fq +( q−1

p1p2
−1)(Fq−0Fq), where 0Fq is the zero element in Fq.

For any a, 0 ≤ a ≤ N − 1, we write a ≡ −iap2 + jap
m−1
1 (mod N) with ia ∈

{0, 1, . . . , pm−1
1 − 1} and ja ∈ {0, 1, 2, . . . , d − 1}. Since ψγa(Dk) is independent of ia,

we may assume that ia = 0. We now compute

d−1∑
k=0

ψγa(Dk)
2 =

1

N2

d−1∑
k=0

T 2
pm−1
1 (ja+k)

=
1

N2

d−1∑
k=0

T 2
kpm−1

1
.

Since the last expression above is independent of a, we see that the
∑d−1

k=0 ψγa(Dk)
2 are

equal to the same constant for all 0 ≤ a ≤ N − 1. Since each Dk is a union of some

N -th cyclotomic classes, it follows that
∑d−1

k=0 ψγa(Dk)
2 are equal to the same constant

for all 0 ≤ a ≤ q − 2. Therefore, by the inversion formula, we have

d−1∑
k=0

D2
k = (n− λ) · 0Fq + λFq,
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for some integers n, λ. Now applying the principal character to both sides, and com-

puting the coefficients of 0Fq on both sides, we have

n = p1p2 ·
q − 1

p1p2

,

n+ (q − 1)λ = d ·
(
q − 1

p1p2

)2

.

It follows that n = q−1, and λ = q−1
p1p2
−1. The claim is now established. A direct con-

sequence is that
∑d−1

i=0 p
j
i,i = q−1

N
−1, for all j, where pji,i are the intersection parameters

given by D2
i =

∑d−1
j=0 p

j
i,iDj + p0

i,i · 0Fq . By Part (2) of Theorem 2.5.3, the association

scheme (Fq, {R′k}0≤k≤d) is pseudocyclic. The proof is complete. �

In order to obtain counterexamples to Ivanov’s conjecture, we need each R′k

(1 ≤ k ≤ d) in Theorem 4.1.1 to be strongly regular. Note that R′k is just the

Cayley graph Cay(Fq, Dk−1), and Cay(Fq, Dk−1) ∼= Cay(Fq, D0) for all 1 ≤ k ≤ d since

Dk−1 = γ(k−1)pm−1
1 D0. It follows that if Cay(Fq, D0) is strongly regular, then all R′k,

1 ≤ k ≤ d, are strongly regular. In [25], we obtained necessary and sufficient conditions

for Cay(Fq, D0) to be strongly regular. (Theorem 2.4.7)

Based on the results in [25], we used a computer to search for p, p1, p2 satisfying

the conditions in Theorem 2.4.7. Feng, Wu and Xiang found six infinite families of

strongly regular graphs in this way. By the discussion preceding Theorem 2.4.7, and

since the parameters of each of the six examples of srg are neither Latin square type nor

negative Latin square type, each of the six families of srg gives rise to an infinite class

of counterexamples to Ivanov’s conjecture by Theorem 2.5.5. In Chapter 5, we shall

list the parameters of these examples. For the detailed reasons why we have strongly

regular graphs, we refer the reader to [25].

Example 4.1.2. Let p = 2, q = 24·3m−1
, p1 = 3, p2 = 5, N = 3m ·5, with m ≥ 1. Then

we have a 15-class pseudocyclic fusion scheme (Fq, {R′k}0≤k≤15) in which each relation

R′k, 1 ≤ k ≤ 15, is strongly regular.

We remark that when m = 2, Example 4.1.2 is the same as Example 1 in [32].
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Example 4.1.3. Let p = 2, q = 24·5m−1
, p1 = 5, p2 = 3, N = 5m ·3, with m ≥ 1. Then

we have a 15-class pseudocyclic fusion scheme (Fq, {R′k}0≤k≤15) in which each relation

R′k, 1 ≤ k ≤ 15, is strongly regular.

We remark that when m = 2, Example 4.1.3 is the same as Example 2 in [32].

Example 4.1.4. Let p = 3, q = 312·5m−1
, p1 = 5, p2 = 7, N = 5m · 7, with m ≥ 1.

Then we have a 35-class pseudocyclic fusion scheme (Fq, {R′k}0≤k≤35) in which each

relation R′k, 1 ≤ k ≤ 35, is strongly regular.

Example 4.1.5. Let p = 3, q = 312·5m−1
, p1 = 7, p2 = 5, N = 7m · 5, with m ≥ 1.

Then we have a 35-class pseudocyclic fusion scheme (Fq, {R′k}0≤k≤35) in which each

relation R′k, 1 ≤ k ≤ 35, is strongly regular.

Example 4.1.6. Let p = 3, q = 3144·17m−1
, p1 = 17, p2 = 19, N = 17m ·19, with m ≥ 1.

Then we have a 323-class pseudocyclic fusion scheme (Fq, {R′k}0≤k≤323) in which each

relation R′k, 1 ≤ k ≤ 323, is strongly regular.

Example 4.1.7. Let p = 3, q = 3144·19m−1
, p1 = 19, p2 = 17, N = 19m ·17, with m ≥ 1.

Then we have a 323-class pseudocyclic fusion scheme (Fq, {R′k}0≤k≤323) in which each

relation R′k, 1 ≤ k ≤ 323, is strongly regular.

We remark that by using Corollary 3.2 in [32], one can further obtain 3-class

fusion schemes of the above pseudocyclic association schemes, in which two relations

are strongly regular graphs, while the third relation is not (see the character table of

these 3-class fusion schemes in the statement of Corollary 3.2 of [32]).

4.2 The Index 2 Case With N = pm1

In this subsection, we assume that N = pm1 (here m ≥ 1, p1 > 3 is a prime such

that p1 ≡ 3 (mod 4)), p is a prime such that gcd(N, p) = 1, and f := ordN(p) = φ(N)/2.

Let q = pf , and as before let C0, C1, . . . , CN−1 be the N -th cyclotomic classes of Fq.

62



Note that −Ci = Ci for all 0 ≤ i ≤ N − 1 since either 2N |(q − 1) or q is even. For

0 ≤ k ≤ p1 − 1, define

Dk =

pm−1
1 −1⋃
i=0

Ci+kpm−1
1

(4.5)

Note that Dk = γkp
m−1
1 D0 and {0}, D0, D1, . . . , Dp1−1 form a partition of Fq. Now

define R′0 = R0 and

R′k = {(x, y) | x, y ∈ Fq, x− y ∈ Dk−1}. (4.6)

We will show that (Fq, {R′k}0≤k≤p1) is a fusion scheme of (Fq, {Ri}0≤i≤N).

Let χ be the multiplicative character of Fq defined by χ(γ) = exp(2πi
N

). By

Theorem 2.4.4, we have

g(χ̄) =
b+ c

√
−p1

2
ph0 , b, c 6≡ 0 (mod p), (4.7)

where h0 = f−h
2

and h is the class number of Q(
√
−p1), b2 +p1c

2 = 4ph, and bph0 ≡ −2

(mod p1).

Now, we are ready to prove the first case when N = pm1 .

Theorem 4.2.1. With the definition of R′k given in (4.6), (Fq, {R′k}0≤k≤p1) is a pseu-

docyclic association scheme.

Proof: The proof is similar to that of Theorem 4.1.1. For each a, 0 ≤ a ≤ N−1, there

is a unique ia ∈ {0, 1, . . . , pm−1
1 − 1}, such that pm−1

1 |(a + ia). It follows that there is

a unique ja, 0 ≤ ja ≤ p1 − 1, such that a ≡ −ia + pm−1
1 ja (mod N). It is now easy to

check that −i + jpm−1
1 , 0 ≤ i ≤ pm−1

1 − 1 and 0 ≤ j ≤ p1 − 1, form a complete set of

residues modulo N .

The group of additive characters of Fq consists of ψ0 and ψγa , 0 ≤ a ≤ q − 2.

The character values of D0 were computed in the proof of Theorem 4.1 [25]. Since

Dk is a (multiplicative) translate of D0, we know the character values of Dk as well.

Explicitly, for each a, 0 ≤ a ≤ N − 1, write

a ≡ −ia + pm−1
1 ja (mod N),
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with 0 ≤ ia ≤ pm−1
1 − 1 and 0 ≤ ja ≤ p1 − 1. For convenience, we also introduce the

Kronecker delta δja , which equals 1 if p1|ja, and 0 otherwise. By the results in [25], we

have

ψγa(Dk) = ψ(γa+kpm−1
1 D0) =

1

N
Ta+kpm−1

1
,

where

Ta+kpm−1
1

= −pm−1
1 +

ph0pm−1
1 b

2
(p1δja+k − 1)− ph0pm1 c

2

(
ja + k

p1

)
.

In the above formula, b, c are given in (4.7), and ( .
p1

) is the Legendre symbol. It is

important to note that ψγa(Dk) is independent of ia.

We define the following partition of {ψγa | a ∈ Z/NZ}. For each j, 0 ≤ j ≤

p1 − 1, we define

∆j+1 = {ψ
γ−i+pm−1

1 j | 0 ≤ i ≤ pm−1
1 − 1},

and ∆0 = {ψ0}. Then clearly ∆0,∆1, . . . ,∆p1 form a partition of {ψγa | a ∈ Z/NZ}.

For each 0 ≤ k ≤ p1 − 1, since ψγa(Dk) is independent of ia (here a ≡ −ia +

pm−1
1 ja (mod N)), we see that ψγa(Dk) is a constant for those a in the same sub-

set of the above partition. By the Bannai-Muzychuk criterion (with Λ0 = {0}, Λj+1 =

{1 + i+ pm−1
1 j | 0 ≤ i ≤ pm−1

1 − 1}, 0 ≤ j ≤ p1− 1), we see that (Fq, {R′0, R′1 . . . , R
′
p1
})

is an association scheme.

Similarly we can show that the following group ring equation holds in Z[(Fq,+)]:

p1−1∑
k=0

D2
k = (q − 1) · 0Fq + (

q − 1

p1

− 1)(Fq − 0Fq),

from which the pseudocyclicity of the scheme (Fq, {R′0, R′1, . . . , R
′
p1
}) follows. We omit

the details of the proof of the above group ring equation. The proof is now complete.

�

In order to obtain counterexamples to Ivanov’s conjecture, we need to have each

R′k (1 ≤ k ≤ p1) in Theorem 4.2.1 to be strongly regular. Note that R′k is just the

Cayley graph Cay(Fq, Dk−1), and Cay(Fq, Dk−1) ∼= Cay(Fq, D0) for all 1 ≤ k ≤ p1 since

Dk−1 = γ(k−1)pm−1
1 D0. Again it follows that if Cay(Fq, D0) is strongly regular, then all
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R′k, 1 ≤ k ≤ p1, are strongly regular. In [25], we obtained necessary and sufficient

conditions for Cay(Fq, D0) to be strongly regular. (Theorem 2.4.5)

Based on the results in [25], Feng, Wu and Xiang used a computer to search

for p, p1 satisfying the conditions in Theorem 2.4.5. We found six infinite families of

strongly regular graphs in this way. By the discussion preceding Theorem 2.4.5, each

of the six examples of srg gives rise to a class of infinitely many counterexamples to

Ivanov’s conjecture by Theorem 2.5.5. In Chapter 5, we shall list the parameters of

these examples. For the detailed reasons why we have strongly regular graphs, we

refere the reader to [25].

Example 4.2.2. Let p = 2, q = 23·7m−1
, p1 = 7, N = pm1 , m ≥ 1 is an integer. Then

we have a 7-class pseudocyclic fusion scheme (Fq, {R′k}0≤k≤7) in which each relation

R′k, 1 ≤ k ≤ 7, is strongly regular.

We remark that when m = 2, Example 4.2.2 is the same as Example 3 of [32].

Example 4.2.3. Let p = 3, q = 353·107m−1
, p1 = 107, N = pm1 , m ≥ 1 is an integer.

Then we have a 107-class pseudocyclic fusion scheme (Fq, {R′k}0≤k≤107) in which each

relation R′k, 1 ≤ k ≤ 107, is strongly regular.

Example 4.2.4. Let p = 5, q = 59·19m−1
, p1 = 19, N = pm1 , m ≥ 1 is an integer. Then

we have a 19-class pseudocyclic fusion scheme (Fq, {R′k}0≤k≤19) in which each relation

R′k, 1 ≤ k ≤ 19, is strongly regular.

Example 4.2.5. Let p = 5, q = 5249·499m−1
, p1 = 499, N = pm1 , m ≥ 1 is an integer.

Then we have a 499-class pseudocyclic fusion scheme (Fq, {R′k}0≤k≤499) in which each

relation R′k, 1 ≤ k ≤ 499, is strongly regular.

Example 4.2.6. Let p = 17, q = 1733·67m−1
, p1 = 67, N = pm1 , m ≥ 1 is an integer.

Then we have a 67-class pseudocyclic fusion scheme (Fq, {R′k}0≤k≤67) in which each

relation R′k, 1 ≤ k ≤ 67, is strongly regular.
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Example 4.2.7. Let p = 41, q = 4181·163m−1
, p1 = 163, N = pm1 , m ≥ 1 is an integer.

Then we have a 163-class pseudocyclic fusion scheme (Fq, {R′k}0≤k≤163) in which each

relation R′k, 1 ≤ k ≤ 163, is strongly regular.

Again we remark that by using Corollary 3.2 in [32], one can further obtain

3-class fusion schemes of the above pseudocyclic association schemes, in which two

relations are strongly regular graphs, while the third relation is not.
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Chapter 5

SOME OPEN PROBLEMS

In this chapter, we present some open problems that are related to the materials

in the previous chapters.

Problem 1: Prove Conjecture 1.0.1.

Schmidt and White proposed the conjecture in [50] by using the language of irre-

ducible cyclic codes. In fact, there is a one-to-one correspondence between cyclotomic

srgs and two-weight irreducible cyclic codes. (See [14, 17, 40]) Hence, their conjecture

gives a conjectural classification of all cyclotomic srgs as we mentioned in Chapter 1.

Table I lists all sporadic examples of cyclotomic srgs up to the number of vertices

being 100,000.

Partial results on Conjecture 1.0.1 was given in [50]. Their proof was only about

the index 2 case. Moreover, their proof is valid only when the generalized Riemann

conjecture is true. After [50], there has been no essential progress on this problem.

Problem 2: Evaluate Gauss sums of the index 6 or higher explicitly.

Though we found a way to bypass this main obstacle in Chapter 3, it is still a

good question to evaluate Gauss sums of index 6 or higher.

Problem 3: Generalize the last example in [21]. (Example (b) of [21])

This problem comes from De Lange’s paper [21]. De Lange constructed four

strongly regular Cayley graphs in this paper using unions of cyclotomic classes of finite

fields. All but the last example have been generalized to be infinite families. Find a

generalization of the last example.
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