
RNAVLAB 2.0:

COMBINING WEB APPLICATIONS, GRID

COMPUTING, AND DYNAMIC PROGRAMMING TO

OVERCOME RESOURCE LIMITATIONS IN RNA

SECONDARY STRUCTURE ANALYSIS

by

Abel Licon

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Computer
Science

Spring 2010

c© 2010 Abel Licon
All Rights Reserved

RNAVLAB 2.0:

COMBINING WEB APPLICATIONS, GRID

COMPUTING, AND DYNAMIC PROGRAMMING TO

OVERCOME RESOURCE LIMITATIONS IN RNA

SECONDARY STRUCTURE ANALYSIS

by

Abel Licon

Approved:
Michela Taufer, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
B. David Saunders, Ph.D.
Professor and Chair Department of Computer and Information Sciences

Approved:
George H. Watson, Ph.D.
Dean of College of Arts and Sciences

Approved:
Debra Hess Norris, M.S.
Vice Provost for Graduate and Professional Education

ACKNOWLEDGEMENTS

I want to thank my advisor Dr. Michela Taufer for seeing the potential in me

so early in my academic career and for the continuing guidance and support that

has been imperative to my success. I would like to thank Dr. Ming-Ying Leung and

Dr. Kyle Johnson for all their support and collaboration through the RNAVLab

project and all the GCLab members past and present for all their help. I would like

to thank all my committee members for taking the time out of their busy schedule

to read my thesis and provide me with their valuable feedback.

I would also like to thank my Dad, Salvador Licon Jr., for showing me what

it means to be a good father and husband, my Mother, Rosa Licon, for keeping me

humble and kind-hearted, and my brother, Salvador Licon III, for being my best

friend.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vii
LIST OF TABLES . ix
ABSTRACT . x

Chapter

1 INTRODUCTION . 1

1.1 Problem Overview and Proposed Solution 1
1.2 Thesis’s Contributions . 2
1.3 Outline . 3

2 BACKGROUND AND RELATED WORK 5

2.1 RNA Secondary Structure Prediction 5

2.1.1 Predictions based on Minimization Free Energy 6

2.2 Predictions based on Consensus Structures 8

2.2.1 Predictions based on Machine Learning Techniques 9
2.2.2 Limitations of Current Implementations 10

2.3 Computational Environments for Prediction and Analysis 10

2.3.1 Classification Features . 11
2.3.2 Overview of the Web Portals 13

iv

3 RNAVLAB . 19

3.1 From RNAVLab 1.0 to RNAVLab 2.0 19

3.1.1 RNAVLab 1.0 . 19
3.1.2 RNAVLab 2.0 . 20

3.2 RoR Web Application Front-end . 22

3.2.1 Web Interface . 22
3.2.2 Web Service . 25

3.3 Java Back-end . 28

3.3.1 Dispatcher Daemon . 29
3.3.2 Prediction Tools . 31
3.3.3 Analysis Tools . 32

3.3.3.1 Comparison Tool . 32
3.3.3.2 Alignment Tools . 33

3.4 User Database . 33

4 OPTIMAL SEGMENTATION OF LONG RNA SEQUENCES . . 35

4.1 Search for Optimal Segmentations . 35
4.2 Algorithm Overview . 37
4.3 Algorithm Complexity . 40

5 EVALUATION RESULTS . 42

5.1 Evaluation Goals . 42
5.2 Prediction Program, Scoring Metrics, and Datasets 42
5.3 Single-Segment Predictions vs. Predictions with Non-overlapping

Chunks . 43

5.3.1 Dealing with Resource Limits 45

5.4 Sliding Overlapping Chunks vs. Optimal Non-overlapping Chunks . . 47

v

6 CONCLUSION AND FUTURE WORK 51

6.1 Conclusion . 51
6.2 Future Work . 52

BIBLIOGRAPHY . 54

vi

LIST OF FIGURES

2.1 Stem-loops and Pseudoknots . 6

2.2 Chronology of Prediction Codes . 16

2.3 Running time and memory consumption of PknotsRE with respect to
input sequence length. 17

2.4 Characterization of existing Web portals. 18

2.5 Example of a pseudoknot shown via the PseudoViewer application. . 18

3.1 RNAVLab 1.0 before improvements 20

3.2 RNAVLab 2.0 integrating the new front-end and back-end features. . 21

3.3 Screen shot of Home Page. 23

3.4 Screen-shot of Sign-in page. 24

3.5 Screen-shot of sequence page where you can create a new sequence. . 25

3.6 Screen-shot of prediction page where you can submit a new
prediction. 26

3.7 Screen-shot of structures page where you can view your predicted
structure. 27

3.8 Screen-shot of comparisons page where you can find similar
predictions. 28

4.1 Example of score matrix with backtrack to rebuild the optimal
segmentation with N = 4 and Max C = 2 40

vii

5.1 Examples of 4 score matrixes obtainable with a sequence of 4
nucleotides. 46

5.2 Sensitivity and selectivity as a function of the chunk length for two
sequences in our data set. 47

viii

LIST OF TABLES

5.1 Comparison of sensitivity and selectivity for secondary structures
predicted considering the sequence of nucleotides as a whole and as a
set of non-overlapping chunks using an a-posteriori approach. . . . 44

5.2 Comparison of sensitivity and selectivity for secondary structures
predicted considering the sequence of nucleotides as a whole and as a
set of non-overlapping chunks selected using an a-priori approach. 48

5.3 Comparison of sensitivity and selectivity for secondary structures
predicted considering the sequence of nucleotides as a set of sliding
overlapping chunks and a set of non-overlapping chunks. 50

ix

ABSTRACT

As ribonucleic acid (RNA) molecules play important roles in many biological

processes including gene expression and regulation, their secondary structures have

been the focus of many recent studies. Despite the computing power of supercomput-

ers, computationally predicting secondary structures with thermodynamic methods

is still not feasible when the RNA molecules have long nucleotide sequences and

include complex motifs such as pseudoknots. Furthermore, there is no consolidated

environment for access to the several available prediction and analysis tools.

In this thesis we address this problem by extending a virtual laboratory for

studying RNA secondary structures, called RNA Virtual Laboratory (RNAVLab

2.0), with a Web application that allows scientists to easily and effectively access a

set of heterogeneous tools for the study of secondary structures supported by het-

erogeneous computational resources. We design a dynamic programming algorithm

for finding the optimal, non-overlapping segmentation of a long RNA sequence into

segments (chunks) given a scoring function based on energy values. We integrate our

algorithm into RNAVLab 2.0 to enable the prediction of the chunks independently

and the generation of a complete secondary structure prediction from the combined

local energy minima. We measure the prediction accuracy for the 14 longest se-

quences in Group A in CONTRAfold using RNAVLab 2.0 and show that 12 times

out of 14 our virtual environment outperforms other methods based on global energy

minima, while in the other two cases it has similar accuracy results.

x

Chapter 1

INTRODUCTION

1.1 Problem Overview and Proposed Solution

The secondary structure of an RNA molecule is the collection of hydrogen

bonds between the nucleotide bases. RNA secondary structures can be classified into

two basic categories called stem-loops and pseudoknots. Both kinds of secondary

structures on overlapping RNA viral genes have been implicated in important viral

gene expression processes[17, 23, 33]. Today there is an active research commu-

nity that brings together scientists with diverse training and expertise ranging from

physics to computer science and biology, to develop, test, and apply computational

methods to directly link RNA secondary structures in general and pseudoknots in

particular to the RNA functionalities.

Despite the computing power of supercomputers, computationally predicting

secondary structures with thermodynamic methods is still not feasible when the

RNA molecules have long nucleotide sequences (i.e., longer than 1000 nucleotides)

and include complex motifs such as pseudoknots. Furthermore, there is no con-

solidated environment for accessing the several available prediction and analysis

codes. When dealing with the prediction and analysis of secondary structures, sci-

entists have very few sources from which to retrieve information on the structures.

To retrieve, sort, and elaborate pieces of information from these sources, scientists

have to do significant handwork sorting, merging, and comparing results as well

as extrapolating conclusions. For example, when studying pseudoknots secondary

1

structures, scientists need to access databases such as PseudoBase [31] that are not

always provided with advanced search engines. Information from the database has

to be copied and pasted into files with different format (e.g., FASTA) and this task

is left to the scientists. Ultimately, the scientists have to submit the retrieved data

to portals such as PseudoViewer [2] for the pseudoknots’ visualization. Ideally, sci-

entists should be led through the different steps by a unified, user-friendly portal

that screens them from database issues as well as provides them with powerful tools

for search, formatting, and visualization.

In a first attempt to address this problem, we built RNAVLAb 1.0 (RNA Vir-

tual Laboratory) [26]. RNAVLab 1.0 was a Java desktop application that scientists

can download and run on their local machine. RNAVLab 1.0 was a first prototype

of a virtual laboratory to consolidate many powerful RNA secondary structure pre-

diction and analysis tools. In this thesis we propose RNAVLab 2.0, an extension of

the first prototype that aims to improve the type and quality of services provided

by RNAVLab as well as the quality of secondary structures predictions.

1.2 Thesis’s Contributions

The contribution of this thesis are threefold:

• We extend RNAVLab to include Web applications and Web services that allow

scientists to easily access heterogeneous computational resources from a Con-

dor pool. The management of the resources is done dynamically at runtime.

• We design a dynamic programming algorithm that runs in polynomial time

and allows scientists to achieve the optimal, non-overlapping segmentation of a

long RNA sequence into segments (chunks). The secondary structure of each

chunk can be predicted independently, then combined with the structures

predicted for the other chunks to generate a complete secondary structure

prediction that is thus a combination of local energy minima.

2

• We integrate the algorithm into RNAVLab and use the extended virtual envi-

ronment to predict secondary structures that could not otherwise be predicted

due to lack of computing resources by limiting the size of the chunks while

using energy as a scoring function. We show that these predictions are com-

parable in accuracy to those using a single whole sequence prediction.

RNAVLab 2.0 bridges the gap between existing tools and the scientists: a

Web front-end provides a consolidated environment and a Java back-end supplies

the scientists with the resources to use the available tools. The Web front-end is

developed using the Ruby on Rails framework which provides a scaffold for quickly

building modular and maintainable Web applications and Web services. The multi-

threaded Java back-end handles the scheduling of prediction and analysis jobs sub-

mitted via the front-end. The two parts communicate over a TCP control connec-

tion and shared MySQL database. Our dynamic programming algorithm extends

the tools in RNAVLab by allowing the prediction of the secondary structure of

very long RNA sequences when computing or storage resources are limited (either

because of hardware or prediction code capabilities). Our algorithm searches all

possible non-overlapping primary sequence segmentations and maximizes a given

scoring function.

1.3 Outline

Chapter 2 introduces the concept of RNA secondary structure predictions as

well as describes the main algorithms that attempt to computationally predict them.

Chapter 3 extensively describes RNAVLab 2.0, including an overview of the Ruby

on Rails (RoR) Web application front-end and the Java back-end multi-threaded

daemons which handle the scheduling of predictions, alignment, and comparisons as

well as the communication with the RoR front-end. Chapter 4 describes the dynamic

programming algorithm for optimally segmenting a long RNA primary sequence into

3

chunks. Chapter 5 evaluates the proposed dynamic programming algorithm once

integrated in RNAVLab and compares the accuracy (in terms of sensitivity and

selectivity) to more traditional prediction methods. Chapter 6 concludes this thesis

with a summary and future work.

4

Chapter 2

BACKGROUND AND RELATED WORK

2.1 RNA Secondary Structure Prediction

Ribonucleic Acid (RNA) is made up of four types of nucleotide bases: ade-

nine (A), cytosine (C), guanine (G), and uracil (U). A sequence of these bases is

strung together to form a long, single-stranded RNA molecule. RNA molecules vary

greatly in size, ranging from about twenty nucleotide bases in microRNAs to a long

polymer of over 30,000 bases in complete viral genomes [29]. Among the four nu-

cleotide bases, C and G form a complementary base pair by hydrogen bonding, as

do A and U. Although an RNA molecule is a linear polymer, it tends to fold back

on itself to form a three dimensional (3D) functional structure mostly by pairing be-

tween complementary bases. The 3D structure of an RNA molecule is often the key

to its function. Because of the instability of RNA molecules, experimental determi-

nation of their precise 3D structures is a time consuming and rather costly process.

However, useful information about the molecule can be gained from knowing its

secondary structure that refers to the collection of hydrogen bonded base pairs in

the molecule. Essentially, all RNA secondary structures are made up of elements

that can be classified into two basic categories: stem-loops and pseudoknots (see

Figure 2.1). Both kinds of secondary structure elements have been implicated in

important biological processes like gene expression and regulation [17, 23, 33].

Since finding the structures of RNA in the wet lab is prohibitively expensive

and time consuming, much research has been done to predict these structures com-

putationally. Different computational methods have been integrated in prediction

5

Figure 2.1: Stem-loops and Pseudoknots

codes from methods based on free energy minimization (MFE) to methods based

on consensus structures and machine learning techniques. Existing prediction codes

are normally based on one or more of these methods and can support additional

features such as the prediction of pseudoknots, parallel prediction, and calculating

the partition function. Despite the significant community effort in the past three

decades and the increasing computing power available to scientists for their simula-

tions, we cannot accurately predict the secondary structure of large RNA sequences

(> 300 nucleotides) efficiently. Figure 2.2 summarizes the main prediction codes

and classifies them in terms of their prediction strategies (i.e., Minimization Free

Energy, Consensus or Machine Learning Techniques) and additional features (i.e.,

including pseudoknots, parallelization, and calculating the partition function). The

codes are sorted chronologically.

2.1.1 Predictions based on Minimization Free Energy

The development of mathematical models and computational prediction al-

gorithms based on free energy minimizations (also called MFE) for stem-loop struc-

tures started in the late ’70s to early ’80s [15, 35]. One of the first attempts to

predict RNA secondary structures computationally was done by Nussinov and

used a dynamic programming algorithm to maximize the amount of base pairs in a

fold [15]. The algorithm searches the space of possible bindings and gives back the

6

structure with the maximum amount of pairs. Nussinov’s algorithm was extended

in Mfold [35] to include the energy contributions found in wet lab experiments for

a variety of short secondary structures [30]. Given a particular structure, a bond

was weighted according to the energy that it can take to break that bond.

Despite the computing power of supercomputers and emerging advanced tech-

nologies, e.g., multi-core architectures, the prediction of secondary structures of long

RNA sequences (on the order of thousands of nucleotides) based on thermodynamic

methods is still not feasible, especially if the structures include complex secondary

structures such as pseudoknots. The time and space required for accurate predic-

tions of pseudoknots based on energy minimizations grow very rapidly with the

sequence length. Figure 2.3 shows the time and memory (in logarithmic scale) allo-

cated for the prediction of RNA pseudoknots with various lengths using one of the

most accurate prediction programs, PknotsRE[20]. PknotsRE’s algorithm has a

runtime and memory demand in the order of N6 and N4, respectively, where N is the

length of the input sequence. The program conducts an exhaustive search for the

optimal structure with the lowest free energy and has the capability to predict rather

complex structures, even some non-planar structures, for short RNA segments up

to 200 nucleotides in length on a commodity desktop PC. To overcome the tremen-

dous demand in computing resources needed for pseudoknot prediction, alternative

algorithms have been proposed (e.g., PknotsRG [19] and NuPack [18]) that re-

strict the types of pseudoknots to keep runtime and memory size under control. For

instance, PknotsRG [19] limits the types of pseudoknots to simpler structures for

longer segments, up to 800 nucleotides. However, a large variety of pseudoknots have

been shown to occur in nature [31]. Their omission from computational methods

may significantly affect the prediction accuracy.

Parallel implementations of MFE algorithms aims to address the computa-

tional complexity and reduce it by using advanced parallelization techniques and

7

parallel libraries. In GTFold, the energy calculations of loops are parallelized using

OpenMP [12]. GTFold uses the same MFE algorithm as MFold but at the same

time obtains two orders of magnitude speedup over these two codes with compa-

rable accuracy thanks to the parallelization. Like many other methods, GTFold

approach does not consider pseudoknots because they introduce even more complex

data dependencies than non-pseudoknotted approaches.

MFE dynamic programming algorithms have been extended beyond the sin-

gle predictions to find the partition function of all the possible structures of a given

sequence in McCaskill [13] and NuPack [18]. The partition function gives the

probability that any pair of bases will bind and thus can be used to find the most

probable structure. In particular, NuPack extends this model to include pseudo-

knots but has a high running time of O(N4) [18].

2.2 Predictions based on Consensus Structures

Software packages for RNA secondary structure predictions based on homol-

ogy search benefit from RNA sequence and secondary structure alignments. In

the Sankoff algorithm, two or more sequences are folded and aligned simultane-

ously [21]. This can be thought of as combining the Waterman and Smith alignment

algorithm [22] and Nussinovs maximal base pair matching algorithm [15]. Although

mathematically optimal, the running time of this approach is prohibitively expen-

sive, i.e., O(N3M) with N being the length of the sequence and M being the number

of sequences. Heuristic approaches such as in the DynAlign code reduce the search

space to tradeoff thoroughness for performance [11]. Again, none of these codes

includes pseudoknots. This approach is more interesting when trying to find a con-

sensus structure in two functionally related sequences.

8

2.2.1 Predictions based on Machine Learning Techniques

Machine learning techniques have been extensively used in bioinformatics for

problems ranging from gene finding [9] using Hidden Markov Models to protein

structure prediction [16] using Genetic Algorithms (GAs). Thus, it is no surprise

that these techniques have been also applied to the problem of RNA secondary

structure prediction. Since the prediction problem can be seen as an optimization

problem, GAs can be used to search the space of possible structures using energy

functions as fitness functions as in e.g., STAR [6]. Using a genetic algorithm ap-

proach, STAR searches the space of secondary structures for the minimum free

energy structure. Instead of exhaustively searching the space of secondary struc-

tures like MFold does, STAR uses an evolutionary algorithm to obtain a structure

with the minimum energy. Although the structure is not guaranteed to be the ab-

solute minimum since GAs only search a sub-set of the space, it was found that the

accuracy was comparable to that of exhaustive searches. The main advantage of

using the GA technique is that it can be easily parallelized, and although that does

not help dramatically with non-pseudoknotted structures predictions, which have

a relatively low degree polynomial running time, it can be extremely useful when

applied to higher order polynomial algorithms that include pseudoknots.

As an alternative to thermodynamic methods for RNA secondary structure

prediction, Stochastic Context Free Grammars (SCFG) have been proposed for

secondary structure prediction [8]. These approaches rely on estimating probability

distributions over a set of transformation rules that define how the fold is formed.

SCFGs have the ability to learn the parameters of a generative model by observ-

ing a set of sequences with their corresponding secondary structures. In general,

SCFGs are outperformed by physics based approaches, although recently Con-

traFold proposed a generalization of SCFGs where a flexible and richer feature set

allows the inclision of free energy parameters more akin to thermodynamic models

9

[3]. However, the complexity of the RNA secondary structures predicted by these

methods is restricted by the expressibility of their grammars, thus highly complex

structures, such as pseudoknots, cannot be predicted by SCFGs.

2.2.2 Limitations of Current Implementations

There are several limiting factors common to many of the codes in Figure 2.2.

First of all, most of the research does not include pseudoknotted structures. Predict-

ing pseudoknots increases the complexity of the computational problem. Moreover,

although these programs are accurate for sequences a few hundred bases in length,

their accuracies diminish for longer sequences due to a lack of experimental energy

results for long RNA sequences that can be used for tuning the computational al-

gorithm [5]. In general, the accuracy of predicting pseudoknotted structures is even

lower than that of non-pseudoknotted structures. Finally, most of the algorithms are

difficult to parallelize and thus to run faster on available parallel and distributed

computer systems. For instance, MFE approaches use a dynamic programming

algorithm that has many different recurrence relations and are not as easily par-

allelizable as other dynamic programming algorithms, especially when considering

pseudoknotted structures [24]. Although there are approaches to parallelize these

algorithms [12], they do not scale well and do not include pseudoknots. It is clear

that there is still much work to do in RNA secondary structure predictions and in

coming up with methods to parallelize the existing algorithms and improve their

accuracies.

2.3 Computational Environments for Prediction and Analysis

When dealing with RNA secondary structures, scientists have several sources

of data (databases) and tools available. To retrieve pieces of information from these

sources as well as to sort and elaborate the data with these tools, scientists have

to do significant hand-work by sorting, computing, merging, and comparing results

10

as well as extrapolating conclusions. For instance, when dealing with pseudoknots,

scientists need to access databases such as PseudoBase [31], which are not always

provided with advanced search engines. The data from the database has to be copied

into files of different format (e.g., FASTA and EMBL).

When it is time to predict secondary structures, the scientists have to down-

load and compile prediction codes on their platforms; the platforms do not always

include the required libraries and do not always fully support the code execution.

Even if portable, some of these codes require significant amount of computing power

that is not always available on the scientists PC. An alternative is to submit the

data to portals that provide prediction and visualization functions. However, most

portals provide only prediction functions using a single code. If the scientists want

to compare predictions using different codes, they are forced to navigate multiple

portals with different interfaces and submission policies. Ideally, scientists should

have a consolidated, easy-to-use environment that provides them with powerful tools

for prediction, analysis, and visualization.

Figure 2.2 provides an overview of the existing environments for prediction

and analysis; the figure classifies the environments based on features such as source

availability, visualization capability, batch processing integration, storage capability,

inclusion of multiple prediction codes, integration of prediction tools, Web service

capability, and alignment capability.

2.3.1 Classification Features

The following is a description of the features used for classifying existing

computational environments in Figure 2.4.

• Source Availability- The access to the source code allows scientists to fur-

ther extend and change the methods in existing prediction codes. Not all the

prediction codes are open-source.

11

• Visualization- Computational methods for prediction treat the RNA primary

sequence and secondary structure as a sequence of characters. Although this

type of representation makes it easy for a program to manipulate the data, it is

not very easy to understand and interpret for the scientists. Tool that provides

predictions of secondary structures should also provide some kind of easy to

understand and interpret visualization capability. A popular representation is

to portray the sequence in an image that shows the sequence and all the base

pairs in a 2-D space.

• Batch Processing- Scientists frequently are not just studying a single se-

quence but a family of sequences or a set of families. The ability to submit

more than one sequence prediction at a time with the same parameters is

essential in improving the workflow and overall usability of the tools.

• User Database- The analysis of a sequence is not over when the structure is

predicted. Many scientists study the same sequences for several months and

from different prospectives while they wait for wet-lab results. If an online

user database is not provided, scientists are forced to either save predictions

locally in their own databases (most likely their file system that often is not

backed up) or waste resources by re-predicting the structure over and over.

With an online user database, scientists can come back at a later time and

add additional sequences and make additional analysis on the saved predic-

tions, again increasing productivity and keeping unnecessary re-predictions to

a minimum.

• Multiple Prediction Codes- It is useful to have several predictions codes

that incorporate different prediction strategies available in the same Web ap-

plication. Each technique has its own strengths and weaknesses. When mul-

tiple options are available, scientists are able to exploit the strengths with a

12

given data set, as well as benchmark the codes given a set of sequences with

experimentally found structures.

• Comparison Tools- It is very useful to quantify the similarity of secondary

structures across sequences. This capability can give more insights into the

functional similarity of RNA sequences than its primary sequences, given that

the structure tends to be more conserved than the actual sequence. Addition-

ally, comparison tools can be used to compare the performance of different

predictions tools.

• Web Service- Although Web portals are very useful for quick analysis of a

few sequences, they are not very efficient for the automatic prediction of very

large sets of sequences. On the other hand, Web services allow programmers

to create their own prediction applications, either desktop or other Web appli-

cations, that can take advantage of the particular Web services without having

to use a browser. This is essential for high throughput and automation.

• Alignment- Many programs align RNA primary sequences. Very few envi-

ronments consider the alignment of secondary structures even if it has been

observed that such alignments can provide scientists with additional insights

on the RNA segment functions.

2.3.2 Overview of the Web Portals

The idea behind a consolidated computational environment is to allow sci-

entists to use a single tool for submitting a sequence or sequences, notifying them

via e-mail or the browser when the prediction is done, and analyzing the results to

reach accurate conclusions. Unfortunately none of the existing environments provide

scientists with such a rich, unified environment.

The Vienna Package [7] in Figure 2.4 is one of the most well known pack-

ages for prediction and analysis. It consists of a C library and several stand-alone

13

programs for the prediction, comparison, and alignment of RNA secondary struc-

tures. The stand-alone programs are not integrated in an unified environment and

do not address multiple prediction approaches but instead deploy the Zuker and

McCaskill [13, 35] algorithms. Thus, the Vienna Package does not include the pre-

diction and analysis of pseudoknots. Lastly, the package does not integrate grid

technology and advanced visualization. In DynAlign [11], there is no Web portal

to submit sequences online. The only way to access the program is to download the

code and compile it for a specific machine. This is one of the main problems we

solved in RNAVLab.

PknotsRG [19] does provide many features for prediction pseudoknots in-

cluding batch processing and multiple prediction codes. However, it still lacks the

feature of allowing the scientists to save their structures online and to align them.

These two features are very important for scientists. NuPack [18] has a user friendly

Web Interface for using its several software packages. It also adds partition and vi-

sualization features. Still, it lacks Web services that allow more advanced users to

automate prediction submissions.

ContraFold [3] provides the most basic functionality of single sequence pre-

dictions and visualization. Although it has been shown to be more accurate than

most simpler SCFGs and MFE approaches, without the appropriate features, users

may choose to use a less accurate program based on the extensive features. Pknot-

sRE [20] is only available by downloading the source and compiling from scratch.

Although this is the most compute and memory intensive program, no resources are

provided with it (e.g., interfaces to grid resources) and users have to rely on their

own resources to get the predictions. Probably the most well known Web appli-

cation is MFold/UNAFold [34] by Zuker, one of the pioneers in RNA secondary

structure prediction. Although it has been shown that several other programs are

14

more accurate and can explore a wider range of secondary structures (e.g., pseudo-

knots) than MFold, because of its popularity and Web application, it is one of the

most used programs. RNAVLab aims to bring the most powerful applications in

one place and let the scientists decide what application best fits their needs.

GTFold, the parallel implementation of the MFold algorithm, does not have

a Web application for online submission [12]. It requires the user to download

and compile the application from source. The code requires OpenMP support on

the machine on which it is executed. This may overwhelm the user who can ulti-

mately decide to take a easier path by using traditional Web portals. In the case of

STAR [6], there is no site available for the download of the source and binaries or

even a Web portal, making it difficult to obtain. Authors of papers that compare

their implementation accuracy and performance versus STAR usually asked for the

source directly from the authors.

Although not a prediction algorithm, PseudoViewer is listed in Figure 2.5

because it is very useful for fast visualizations of RNA secondary structures with

and without pseudoknots [2]. PseudoViewer also provides scientists with a Web

service that allows other prediction sites as well as application developers to take

advantage of the auto-generated pictures in their own applications.

Although existing portals are normally very useful, none include all the fea-

tures listed in Section 2.4 and thus do have some limitations. For instance, only

PknotsRG, MFold, NuPack, Vienna, and ContraFold have online Web portals. All

allow the scientists to submit one sequence for prediction and each has a max length

in nucleotides for the sequence that can be submitted and predicted. To sum up,

while they all provide some of these useful features; none of them provide a consol-

idated environment that incorporate all of the features required by a scientist.

15

Figure 2.2: Chronology of Prediction Codes

16

Figure 2.3: Running time and memory consumption of PknotsRE with respect to
input sequence length.

17

Figure 2.4: Characterization of existing Web portals.

1

28 40

71

81

C
A
U
C
G
A
U
C
G
G
G

U
C
G
A U

C
G
A

C
G
G
C
G

C
U
G
A
U
C
G
A
U
G
G

U
C
G
U
A

ACUUA
U

C
U

A
G
G
A
C

U
A

G

U
U

U A
U

G C G

G
A
U

C
U
A
G

G
C G U A G C U

A
N

Figure 2.5: Example of a pseudoknot shown via the PseudoViewer application.

18

Chapter 3

RNAVLAB

3.1 From RNAVLab 1.0 to RNAVLab 2.0

In previous work, we built RNAVLab 1.0 [27] to facilitate the prediction and

analysis of RNA secondary structures by providing several tools and resources in

a uniform environment. To address the limitations presented in Chapter 2, we ex-

tended RNAVLab 1.0 from a simple desktop application to a complete, unified frame-

work for the prediction and analysis of RNA secondary structures, called RNAVLab

2.0.

3.1.1 RNAVLab 1.0

RNAVLab 1.0 is a Java desktop application. Predictions are performed either

locally on the desktop or on a heterogeneous pool of resources using Condor statically

configured by reading setting files prepared by the user [26]. In order to predict

long RNA structures, a sliding window with a fixed length and step size is used

to sample the sequence into chunks. These chunks are sent to the Condor pool

for prediction. The predictions are recombined into a single long structure using a

rebuilding algorithm based on structural motifs. In Figure 3.1, we show the layout

of RNAVLab 1.0. RNAVLab 1.0 had a modular structure including three major

components:

• A segment sampler component to sample RNA sequence segments; a sliding

window with a fixed length and step size is used to sample the sequence into

chunks.

19

• A structure prediction component to predict the structures of the sampled

segments using different programs on heterogeneous computers, i.e., Pknot-

sRE [20] and PknotsRG [19].

• A structure analysis component to compare and contrast predictions with

observed structures as well as identify similarities and other characteristics

across predictions.

Figure 3.1: RNAVLab 1.0 before improvements

3.1.2 RNAVLab 2.0

In this thesis, we extended RNAVLab 1.0 as follows:

• We built a Ruby on Rails (RoR) Web application front-end including browser

and Web service interfaces for scientists to access the RNAVLab 2.0 tools over

the Internet (Section 3.2).

20

• We extended the Java back-end to a multi-threaded daemon that communi-

cates with the front-end via a shared MySQL user database and a TCP control

connection (Section 3.3).

• We replaced the fixed sliding window sampler and rebuilder with a new optimal

segmentation algorithm based on dynamic programming (Chapter 4).

Figure 3.2 shows the layout of RNAVLab 2.0 with the new and old features.

Figure 3.2: RNAVLab 2.0 integrating the new front-end and back-end features.

21

3.2 RoR Web Application Front-end

The Web application front-end in RNAVLab 2.0 is built using the Ruby on

Rails (RoR) framework. The RoR framework is based on the Model-View-Controller

(MVC) paradigm, a paradigm in which the domain-specific data (the model of the

data) is separated from its presentation (the view of the data) and from its control

(the logic that dictates the control flow). This separation allows for changes in the

model without affecting the view or the control and vice versa. It also results in

applications that are easier to modify, maintain and extend.

The Web application front-end and its Web service allow scientists to access

the RNAVLab back-end capabilities through the Internet or with a browser. Our

approach addresses and solves portability issues. The web application includes three

main parts:

• The Web interface that users interact with when using a browser

• The Web services that are interfaced with via XML requests

• The actual RoR application that services the pages and handles communica-

tion with the dispatcher daemon

3.2.1 Web Interface

The RNAVLab 2.0 Web application provides an easy-to-use, consolidated

environment for the prediction and analysis of RNA secondary structures. The main

pages of the site (Figure 3.3) represents the main tools used in RNA prediction and

analysis as well as a way for the users to save their predictions on an online user

database hosted at the University of Texas at El Paso (UTEP).

Other key pages of RNAVLab 2.0 are: the home and sign in page, the page

for submission of new sequences, the page for prediction of structures, the page for

comparisons and analysis of predictions.

22

• Home and Sign In- In this page (Figure 3.3), the users are introduced

into the RNAVLab project and are given several options for RNA structure

analysis. This includes a non-login option for user who need a quick prediction

or want to try RNAVLab 2.0. It also includes the possibility to create a login

account (Figure 3.4). Once a user has an account, she is allowed to access

the database, store her predictions, and create a virtual work laboratory for

working with her sequences of interest.

Figure 3.3: Screen shot of Home Page.

• New Sequences- In this page (Figure 3.5), users are able to upload one or

many sequences to their online virtual laboratory. The supported formats are

FASTA and BPSEQ. These sequences can be later selected for prediction and

analysis using the various RNAVLab tools.

23

Figure 3.4: Screen-shot of Sign-in page.

• New Predictions and Structures- The new prediction page, shown in Fig-

ure 3.6, allows the user to predict secondary structures using the several pre-

diction tools available. Prediction tools can work on the nucleotide sequence

as a whole (if the computation is within the resource constraints) or can use

the the optimal segmentation algorithm presented in Chapter 4 to segment the

sequence in shorter chunks and predict the single long structure. The struc-

ture page uses the Pseudoviewer web-service to show the resulting predicted

structure as shown in Figure 3.7.

• Alignment and Comparisons- This page allows the user to compare a given

secondary structure to other structures in her virtual laboratory, as shown in

Figure 3.8. This allow users to choose from the three comparison tools available

(Section 3.3.3.1) as well as the two alignment tools available(Section 3.3.2).

The page orders the structures by similarity, with the most similar first.

24

Figure 3.5: Screen-shot of sequence page where you can create a new sequence.

3.2.2 Web Service

When creating a project in Ruby on Rails by following the RESTful (Repre-

sentational State Transfer) protocol guidelines [4], the application is automatically

available as a RESTful Web service. For a site to be RESTful, it has to follow

certain criteria:

• The site has to be client-server based.

• The server has to contain information about the client.

• The site has a uniform way to manipulate and retrieve data on the server.

• All the information necessary to manipulate data is contained in an individual

request.

HTTP (Hypertext Transfer Protocol) meets these criteria. Thus, if we map

the HTTP request types to the actions provided in the controller for a given resource,

25

Figure 3.6: Screen-shot of prediction page where you can submit a new prediction.

we can easily supply a RESTful Web service. In RNAVLab, we do that with the

CRUD (create, read, update, and delete) actions. All the resources available in

RNAVLab have the CRUD actions available for the application developer to access.

For instance, given a sequence resource with id = 22, which represents a single RNA

primary sequence, and the data associated with it, there is a mapping for each of the

following HTTP request types and URLs to Ruby on Rails actions in the controller:

• A Get request to http://rnavlab.utep.edu:/sequences/22 retrieves a single se-

quence and all the information about it. This corresponds to the read action.

• A Post request to http://rnavlab.utep.edu/sequences creates a new instance

of a sequence in the user database. This corresponds to the create action.

• A Put request to http://rnavlab.utep.edu/sequences/22 update an existing

instance of a sequence in the user database. This corresponds to the update

action.

26

Figure 3.7: Screen-shot of structures page where you can view your predicted struc-
ture.

• A Delete request to http://rnavlab.utep.edu/sequences/22 removes the corre-

sponding sequence record in the user database. This corresponds to the delete

action.

When the user creates a new application, she creates a program that connects

to the site, makes the appropriate HTTP request to the corresponding URL, and

parses the XML response. The communication is handled entirely in HTTP, so there

is no need for an additional protocol like XML/RPC or SOAP.

Providing a RESTful Web service in this manner via RNAVLab has several

advantages:

• The server does not have to keep track of the client state, making the site less

complex and more scalable.

27

Figure 3.8: Screen-shot of comparisons page where you can find similar predictions.

• The site provides a uniform way to access and manipulate every resource.

This means that an application developer can always expect the same set of

actions for all the resources, making something such as a WSDL (Web Services

Description Language) unnecessary.

• No additional protocols like XML/RPC or SOAP are needed to access the

Web service.

3.3 Java Back-end

The Java back-end is in charge for the compute intensive tasks such as the

RNA secondary structure predictions. It consists of a multi-threaded TCP daemon

(dispatcher daemon) and several analysis tools. The tools have access to a pool

28

of heterogeneous resources at UTEP (a MPI cluster and a Condor pool). The

communication between back-end and front-end takes place via a TCP connection

and a shared MySQL user database.

3.3.1 Dispatcher Daemon

The dispatcher daemon harnesses and manages heterogeneous computing re-

sources provided by a Condor pool and a Beowulf cluster at UTEP. RNAVLab uses

these resources to predict RNA secondary structures (predictions are among the

most time demanding tasks in RNAVLab). Requests for predictions are submitted

by the user via the Web application and performed using one or multiple predic-

tion programs available. Currently RNAVLab supports the following prediction

programs: PknotsRE [20], PknotsRG [19], NuPack [18] and UNAFold[10] 1.

When receiving a request with one or multiple sequences to predict, the Web

application sends a message to the daemon, via a TCP connection, signaling that

there are prediction jobs pending in the user database. The daemon retrieves the

jobs and checks whether its local prediction database already contains the predic-

tions of the sequences submitted. If a prediction does not already exist in the

database, it is submitted to the heterogeneous resources via the Condor submission,

i.e., using Condor job matchmaking and job scheduling policies. Once Condor re-

turns the results, it saves them in the user database and updates the job status of

the submission. One advantage of not sending the actual sequences or structures to

the daemon is that if the daemon is offline, the jobs are not lost, but wait in the

database for the next time the daemon is started and accesses the data. Having a

TCP daemon also gives the potential benefit of hosting the Web application and the

Java back-end on separate machines, which can enable running several instances of

the submission daemon.

1 UNAFold was added as part of the RNAVLab 2.0 extension

29

To setup a grid computing environment for the daemon to submit jobs to,

RNAVLab relies on the Condor framework [28], for a variety of reasons. Condor

provides all of the functionalities needed to implement a seamless grid layer that

allows for faster prediction of RNA secondary structures by harnessing the idle cy-

cles of computers, i.e., workstations and clusters. The pool of machines on which

RNAVLab is currently relying consists of 23 single-, double-, and quad-processor 32-

and 64-bit machines, and while all these machines run Linux (i.e., Fedora, Kubuntu,

SuSE), Condor can also be installed on Unix, Windows (e.g., 2000, XP), and Mac-

intosh (OS X) machines, among others. Condor handles all the details of sending

executable and data files to computing resources and retrieving the computation

results. Furthermore, Condor provides other useful features, such as checkpoint-

ing and job migration that only require re-linking the prediction programs used by

RNAVLab with Condor libraries. These features can be very helpful, especially with

predictions that take a long time: if the application is interrupted, checkpointing

saves the computation state so it can be resumed later (instead of starting from

scratch), and job migration allows a saved state to resume execution on a different

machine. RNAVLab successfully re-links PknotsRE, NuPack, and UNAFold but

not PknotsRG, due to its use of pthreads. Therefore, PknotsRG cannot use check-

pointing and cannot benefit from job migration, but it can still be dispatched to the

computing resources using the Condor policies.

To interface RNAVLab with Condor and dispatch jobs, a Condor submit file

describing the jobs is generated when the user invokes the use of global resources

through the Web application. Each job consists of a unique identifier, the name of

the analysis program to be used (e.g., PknotsRE, PknotsRG, NuPack, UNAFold,

alignment, comparison), and the command-line parameters (i.e., the input files with

the RNA sequences or type of alignment to use). The file is then submitted to the

pool. Condor also provides the functionality needed to check whether a submitted

30

job has completed execution: a single thread of the dispatcher daemon calls this

function and updates the shared MySQL user database with the results once the

job has been completed. The Web application updates the browser via an AJAX

(Asynchronous JavaScript and XML) call and the user can visualize the structure

as soon as the job is complete. At this point, the user can perform further analysis

of the predictions if needed.

3.3.2 Prediction Tools

The most costly computations are the predictions of the RNA secondary

structures. In order to provide a consolidated environment for predicting secondary

structures RNAVLab provide access to four well-known prediction programs. These

are:

• UNAFold Zucker’s latest version of MFold which has a running time of

O(N3)

• PknotsRE Riva’s and Eddys application that includes a constrained set of

pseudoknots and has running time of O(N6)

• PknotsRG Reider and Geigrichs application that further constrains the types

of pseudoknots predicted and has running time of O(N4)

• NuPack Pierce’s application which is an extension of the McCaskils algo-

rithm for also computing the partition function of the predictions and includes

pseudoknots. It has a running time of O(N4).

In case a sequence is too long to predict given the provided resources, RNAVLab

provides a dynamic programming algorithm that optimally segment a sequence

based on a max window length and energy score (Chapter 4). This algorithm can

be used with any of previous prediction algorithms and is part of this thesis’s con-

tribution.

31

3.3.3 Analysis Tools

The analysis of RNA sequences does not stop at predicting their secondary

structure. More can be learned from alignments and comparisons of these struc-

tures such as the structural conservation along evolutionary history and performance

amongst different applications. Thus, RNAVLab includes tools for comparison and

alignment of secondary structures.

3.3.3.1 Comparison Tool

Comparisons of observed and predicted structures, or across predicted struc-

tures using different programs are performed on aligned or non-aligned strings of

brackets. Three different algorithms can be used for comparisons in RNAVLab:

• A variant of the Hamming Distance- the algorithm assigns each kind of

nucleotide bond a numerical tag. Bonds GC, CG, UA, and AU are assigned

tags from 1 to 4, respectively. The closures of the bonds are all assigned 0. The

resulting numerical strings are compared and when two non-zero numbers and

their respective closing 0 match, it is counted as a true pair. This approach is

useful when the types of nucleotide bonds are important.

• A stack based algorithm- the algorithm uses stacks to keep track of the

positions of open parenthesis and brackets in secondary structures with and

without pseudoknots. When an open bracket or parenthesis is encountered,

its position is pushed into a stack associated to a stem-loop. Pseudoknots

are considered to be a combination of two stem- loops and therefore use two

stacks. When a closed bracket or parenthesis is encountered, the position is

popped from the associated stack. If a bracket or parenthesis is encountered

at the same time in both structures and the position popped from both stacks

is the same, this is counted as a true pair. This approach is useful when the

identification of exactly alike structures is important.

32

• A lenient algorithm- the algorithm uses simple string comparisons that

allows for similar yet shifted structures to receive high comparison scores.

The algorithm traverses two bracket strings and counts how many times an

open bracket or parenthesis is in the same position and how many times a

closed bracket or parenthesis is in the same position for the strings, without

considering the type of nucleotides involved. The smaller of these two values

is the amount of true pairs.

3.3.3.2 Alignment Tools

The alignment of two or more secondary structures is performed by aligning

their bracket strings using variants of well known alignment algorithms such as the

SmithWaterman [22] and NeedlemanWunsch [14] algorithms. Unlike the aforemen-

tioned algorithms that align string of nucleotides, i.e., A, U, C, and G, the variant

algorithms align strings of brackets, i.e., ”:”, ”(, and ”[. Shifts are indicated with

an underscore, i.e., . The alignment of secondary structure is very important to

identify secondary structures that are similar in their shape but are shifted: this

can happen when, e.g., a predicted structure is compared with an experimentally

observed structure or when the genome structures of two viruses belonging to the

same family are compared.

3.4 User Database

None of the applications mentioned in Chapter 2 allow users to store submit-

ted data for long period of time. This can be frustrating for scientists when working

on sequences for several days, weeks, months or even years. Without storage, the

user is forced to either save the structures on their own machine in flat files or some

kind of database, or just re-compute the structures whenever they are needed again,

which can be a waste of computing resources. In order to facilitate long term study

33

of RNA sequences, RNAVLab 2.0 provides users with a database that can store

previously submitted sequences for future references.

The user database associates each user with her own set of submitted se-

quences, predictions, alignments, and comparisons. Once a structure is predicted

with a given algorithm, it will not have to be predicted again, and the user will not

have to wait for a prediction as she would if she just re-submitted it. Furthermore,

because the dispatcher daemon checks the database to see if the sequence has been

submitted before, if two users happen to be studying the same sequence, when the

second user requests the predicted structure, she immediately gets back the predic-

tion submitted by the first user, making RNAVLab 2.0 more efficient than single

session prediction applications.

34

Chapter 4

OPTIMAL SEGMENTATION OF LONG RNA

SEQUENCES

4.1 Search for Optimal Segmentations

All the computer prediction programs described in Chapter 2 can predict the

secondary structure of an RNA sequence if given its primary sequence. Most of

these programs use thermodynamic methods to find the structure with the lowest

possible free energy (global energy minimum): they employ known energy values

for short RNA sequences (determined empirically in wet laboratories as a function

of the temperature required to completely denature a given RNA sequence) [2] and

use a dynamic programming algorithm to build the secondary structure prediction.

Although these programs are accurate for sequences a few hundred bases in length,

their accuracies diminish for longer sequences due to a lack of experimental energy

results for long RNA sequences. At the same time, because of the large polynomial

running times of these programs, especially those that consider pseudoknots, these

programs cannot predict the secondary structures of long RNA sequences of thou-

sands of bases because of computer resources constrains. Therefore we sought to

discover an alternative method that can find the optimal segmentation of these long

prediction given poor scoring function and resource constrains.

In our previous work [26], we used an alternative approach for predicting

secondary structures in which we divided long sequences into overlapping chunks,

predicted the structure of each chunk, and rebuilt the whole secondary structure

35

from these component parts. Using this method, our predictions remain supported

by the empirical thermodynamic evidence yet allow us to operate within existing

limitations in computing power and memory. However, this raised the fundamental

questions of how and where to subdivide the long sequence into chunks.

The problem of finding the best sequence segmentation to use for such a

prediction is similar to some problems in natural language processing, i.e., problems

with word recognition in recorded audio, finding paragraph breaks in a body of text,

or any other optimal segmentation of non-overlapping information given a metric for

scoring each segment. In the 1960s, Vintsyuk first proposed the use of dynamic [32]

programming methods for time-aligning a pair of speech utterances. Although the

essence of the concepts of dynamic time warping, as well as rudimentary versions of

the algorithms for connect-word recognition, were embodied in Vintsyuk’s work, it

was largely unknown in the West and did not come to light until the early 1980s –

long after more formal methods were proposed and implemented by others.

In [26], we used a brute force approach for subdividing long sequences in

chunks in which we conducted a search of a small sub-space of overlapping chunks

with fixed sizes by considering all the possible segmentations of the sub-space. Al-

though successful in terms of its accuracy, the approach was not optimal and was

extremely time demanding. The work in this thesis expands upon our previous

results and presents an optimal method using dynamic programming to segment a

long sequence into non-overlapping sub-segments. Not only does the method pro-

duce more accurate secondary structure predictions with respect to the similarity

to the structure found in nature, it also conducts the search more efficiently. It is

more efficient because, although the possible combinations of the segmentations is

O(2N), which is intractable for any RNA sequence of a practical length N, we can

use dynamic programming techniques to search this space in O(N2) time.

36

4.2 Algorithm Overview

Dynamic programming is an optimization technique that can be used when

the optimal solution of the overall problem is composed of optimal solutions to sub-

problems. Here, we want to find the optimal non-overlapping segmentation of a long

primary nucleotide sequence into chunks. In this case, the optimal segmentation is

one that will provide us with the greatest similarity to the associated observed sec-

ondary structure once the secondary structure of each segment has been predicted

and combined into an overall secondary structure prediction for the long sequence.

An initial approach to solve this problem is to enumerate all the possible segmen-

tations and search for the segmentation that maximizes the similarity with the

observed secondary structure among the 2N−1 alternatives, where N is the number

of nucleotides in the RNA sequence. Since the search space grows exponentially, this

approach is intractable for any practical value of N , even on supercomputers. As an

alternative approach, we can use dynamic programming to search the segmentation

space in polynomial time, where optimal solutions for each chunk are part of the

optimal solution for the whole sequence.

In our dynamic programming approach, given a nucleotide sequence x of

length N with N >> 1 and j >= i, we first build a matrix we call predicted that is

filled as follows:

predicted(i, j) =predictprediction code(i, j)

with j − i < Max C << Nandj >= i (1)

The function predictprediction code(i, j) takes the chunk starting at nucleotide

i and terminating at nucleotide j and returns the predicted secondary structure

of the chunk using a prediction algorithm. Any code for prediction can be used

and, since the predictions are independent of one another, they can be performed in

parallel and stored in a database. However, not all the chunks can be predicted for

37

a very long sequence, due to resource constraints, such as limits in memory size and

computing power. Each code has a different Max C length, which is the longest

chunk length predictable. For example, the Pknots-RE [20] code can predict the

structure of sequences up to 200 nucleotides in length, while Pknots-RG [19] can

predict the structure of sequences up to 800 nucleotides long. Thus the predicted

matrix is an upper right triangular matrix.

The rebuilding process uses the upper right triangular matrix, selects non-

overlapping chunks and their predicted secondary structures from within the matrix,

and combines them to build a secondary structure prediction for a nucleotide se-

quence longer than can be predicted otherwise. The selection of the chunks can be

an a-posteriori or an a-priori selection.

A-priori selections are based only on the minimum energies of the chunks

and can be used for blind predictions. In an a-priori selection using the prediction

matrix, we build a score matrix and initialize its first row as follows:

score(1, j) =min energy(predicted(1, j))

∀j with1 ≤ j ≤ Max C << N (2)

where min energy() is the lowest predicted energy of the chunk starting at nucleotide

1 and terminating at nucleotide j. Here we assume that j ≤ Max C << N . Using

a recurrence relation, we complete the upper right triangle of the score matrix as

follows:

score(i, j) =min energy(predicted(i, j))+

+ min(score(k, i − 1))

∀1 ≤ k ≤ i − 1 (3)

38

For each cell of the score matrix, score(i, j), we also store a pointer to the

cell that gave the best score among the matrix cells score(k, i − 1)∀1 ≤ k < i − 1.

A-posteriori selections use experimentally obtained secondary structures as

references for the scoring and is used for finding the best possible segmentation in

terms of similarity to the known structure in nature.1 In an a-posteriori selection

using the prediction matrix, we build a score matrix and initialize its first row as

follows:

score(1, j) =compare(predicted(1, j), observed(1, j))

∀j with1 ≤ j ≤ Max N << N (4)

where compare() secondary structure of the sub-segment starting at nu-

cleotide 1 and terminating at nucleotide j to the corresponding experimentally ob-

served secondary structure, observed(1,j). The comparison can be based on different

criteria, e.g., sensitivity and selectivity. Using a recurrence relation, we complete

the upper right triangle of the score matrix, assuming that j ≤ Max C << N as

follows:

score(i, j) =compare(predicted(i, j), observed(i, j))+

+ max(score(k, i − 1))

∀1 ≤ k ≤ i − 1 (5)

Again, as for the a-priori approach described above, for each cell of the score

matrix we store a pointer to the cell that gave the best score among the matrix cells

score(k, i − 1)∀1 ≤ k <= i − 1.

1 The a-posteriori method uses the known structure in nature in its scoring func-
tion, therefore it can not be used as a stand alone prediction algorithm. How-
ever, this data could potentially be used for training data in Machine Learning
methods, but that is not covered in this thesis.

39

At this point, we backtrack through the pointers and retrieve the segments

that give the optimal similarity (best score). Figure 4.1 shows a mock example of

a score matrix and the backtrack used to identify the optimal segmentation for a

sequence of 4 nucleotides (N=4), with a code with maximum predictable length

equal to 3 (Max N=3). The values use are for demonstration purposes only and

do not represent a real prediction scenario.

Figure 4.1: Example of score matrix with backtrack to rebuild the optimal segmen-
tation with N = 4 and Max C = 2

4.3 Algorithm Complexity

The search for this optimal non-overlapping segmentation can be performed

in time O(N2), where N is the length of the sequence. Both the prediction and score

matrices have sizes of O(N2); thus completing them takes time O(N2). Furthermore,

it is important to note that, although every cell depends on the maximum score of

the i − 1 column, the maximum score for every row is the same. This is because

40

a row k represents all segments starting at nucleotide k and thus we need only to

compute the maximum score of the k − 1 column, representing all the segments

that end at nucleotide position k − 1. Once the maximal score for column k − 1 is

computed, the value can be copied to every other cell in row k, keeping the running

time at O(N2).

41

Chapter 5

EVALUATION RESULTS

5.1 Evaluation Goals

As part of the evaluation, we use RNAVLab 2.0 to understand whether pre-

dictions of a sequence set that consider each sequence as a whole is more or less

accurate than predictions that consider each sequence as multiple, non-overlapping

chunks. Chunks are obtained using our optimal segmentation algorithm presented

in Chapter 4. We also seek to understand whether the folding process favors local

minimum energies rather than global minimum energies. This is relevant when the

prediction of structures formed by very long sequences is not feasible. Therefore,

when the global energy cannot be determined experimentally, the search for global

energy must be replaced by the search across local minimum energies of shorter

chunks. Last but not least, we compare the results using RNAVLab 2.0 and our

optimal segmentation algorithm versus our previous work in [27] where we used a

sliding window search of overlapping chunks to rebuild long secondary structures.

5.2 Prediction Program, Scoring Metrics, and Datasets

Given the definition of our dynamic programming algorithm, any prediction

code and score metric for RNA secondary structure prediction can be used. We

choose to use a popular prediction tool such as PknotsRG [19] because of its excellent

performance in predicting the structure of sequences of up to 800 nucleotides and its

ability to predict pseudoknotted structures. We use this code to address questions

42

regarding the accuracy of our approach. Given both a predicted structure and an

observed structure in parenthetical format, we measure the accuracy of the predicted

structure in terms of sensitivity (i.e., ability to predict all true pairs) and selectivity

(i.e., ability to only predict true pairs). Secondary structures of long RNA sequences,

i.e., of the order of thousands of nucleotides, that have been experimentally validated

are rare. Thus, for our analysis in this thesis we used the longest nucleotide sequences

from Group A in CONTRAfold [3], which have lengths ranging from 200 to 482

nucleotides.

5.3 Single-Segment Predictions vs. Predictions with Non-overlapping

Chunks

To address whether predictions of a sequence set that consider each sequence

as a whole are more or less accurate than predictions that consider each sequence

as multiple, non-overlapping chunks, we select chunk sizes for our data set that are

not limited by the prediction program or by computing resources. Therefore, our

chunk sizes or Max C range from 1 to N , where N is the length of each sequence

in terms of nucleotides. We also select sequences whose secondary structures have

been experimentally-determined and are thus available for building the score matrix

in Chapter 4, based on an a-posteriori approach. Finally, we use the average value

of sensitivity and selectivity of predicted secondary structures versus experimental

secondary structures as our metrics.

We first predict the secondary structure of each entire sequence using Pknots-

RG. We then use our method and the same prediction code to identify the set

of non-overlapping chunks with highest sensitivity and selectivity, as described in

Chapter 4, Equations 4 and 5. The comparison of the two techniques, i.e., prediction

based on the entire sequence and prediction based on non-overlapping chunks, can

result in two possible outcomes. One possible outcome is that our approach based

on chunks always converges towards the predictions based on the whole sequence,

43

meaning we get a solution with one large chunk. Alternatively, solutions that have

a higher or equal score to whole sequence predictions are combinations of several

smaller chunks. Note that since the algorithm is optimal and we set MaxC = N ,

it will search through all configurations, even the one where the solution is just a

single chunk (which corresponds to the single sequence prediction). Also, the scores

based on an a-posteriori approach are not driven by energy values in our selections

but by the similarity to the known structure in nature.

For each sequence, Table 5.1 presents the sequence name and length; the

sensitivity and selectivity of the prediction considering the sequences as a single

sequence (a single chunk); the sensitivity, selectivity, the number of optimal non-

overlapping chunks used to rebuild the secondary structure, and the maximum chunk

length (or maximum window size) used with our method.

Table 5.1: Comparison of sensitivity and selectivity for secondary structures pre-
dicted considering the sequence of nucleotides as a whole and as a set
of non-overlapping chunks using an a-posteriori approach.

Single Sequence Multiple Chunks
- unlim. window

Name length(nt) sen. sel. #segm. sen. sel. #segm. max window
RF00458 A 202 0.58 0.39 1 0.78 0.64 4 146
RF00193 A 273 0.79 0.60 1 0.99 0.96 17 49
RF00231 A 275 0.71 0.41 1 0.97 0.71 9 68
RF00503 A 293 0.70 0.44 1 0.95 0.92 16 40
RF00030 A 297 0.68 0.48 1 0.67 0.59 13 59
RF00216 A 302 0.40 0.21 1 0.60 0.46 5 154
RF00010 A 312 0.77 0.63 1 0.77 0.63 3 306
RF00009 A 320 0.57 0.22 1 0.75 0.43 9 112
RF00100 A 330 0.40 0.23 1 0.81 0.70 8 107
RF00036 A 337 0.94 0.86 1 0.94 0.86 3 335
RF00209 A 379 0.75 0.46 1 0.90 0.76 10 218
RF00024 A 451 0.80 0.48 1 0.86 0.54 3 427
RF00210 A 462 0.80 0.56 1 0.91 0.74 7 295
RF00177 A 482 0.93 0.74 1 0.93 0.74 3 480

44

With unlimited chunk sizes and no resource limits, the chunk sets range

from 3 to 17 sub-segments and their sizes are always smaller that the total se-

quence length. Only in 4 cases out of the 14 sequences considered (i.e, RF00010 A,

RF00036 A, RF00024 A, and RF00177 A) did a single chunk cover the majority of

the sequence. For these four cases, Max C = N . Our approach for these cases

converges toward the whole-sequence prediction. In all the other cases, we observe

equal or better sensitivity and selectivity when rebuilding the secondary structures

from shorter non-overlapping sequence chunks. The better predictions can be either

due to insufficiently accurate thermodynamic models for longer sequences (since the

wet laboratory experiments are still missing or, in some cases, not feasible), or to

the tendency for structures when folding to favor multiple localized minimum free

energy structures rather than the global minimum free energy structure of the whole

sequence, or it can be a combination of both.

5.3.1 Dealing with Resource Limits

To address the question of whether structures, when folding, tend to favor

multiple localized minimum free energy structures rather than the global free energy

structure, we explore all possible values for each sequence in our data set, of Max C

from 1 to N in Equations 2 and 3. This results in N score matrices, each exploring

window sizes only up to the Max C associated with the matrix. Figure 5.1 shows a

simple example for a sequence with 4 nucleotides and four score matrices obtainable

with this sequence (The scores are mock examples). For each score matrix we rebuild

its lowest energy secondary structure given the limitation of the window size. Note

that this time our scoring approach is an a-priori approach based on energy values

only and not a comparison to the experimentally known structures as in the previous

section.

In Figure 5.2, we present two case studies from our data set to show how sen-

sitivity and selectivity grow as a function of the window size. In both examples, we

45

Figure 5.1: Examples of 4 score matrixes obtainable with a sequence of 4 nu-
cleotides.

see that the whole sequence is not necessary to predict the best secondary structure.

For Sequence RF00024 A with length 451 nucleotides and Sequence RF00210 A with

length 462, with windows of 198 and 375 nucleotides respectively, we can already

capture the best structures for the overall sequence. No further accuracy is gained

by using longer chunks.

In Table 5.2, we compare sensitivity and selectivity of the prediction for all

the 14 sequences in our data set using a global energy minimization (by feeding the

whole sequence into the prediction code) with the sensitivity and selectivity of the

prediction built from the best set of chunks obtained with our method. For the

latter prediction, the table presents the number of chunks and the length of the

46

B B B B B B B B B

B
B

B
B B B
B B B B B
B B B B B
B B B B
B B B B B B B B B

B B B B B B
B B B B
B B B
B B B B
B B B

B
B

B B B B B B B B B B B
B
B B B B B B B

B B B
B

B B

B

B B B B B B B B B B B

B
B B B B B B B B B B B

B B B B B
B B

B B B B B B B B
B B B B B B B B B B B B B B B B B B B

B B B B B B
B B B B B B B B B B B

B B

B B B

B B B B

B B B B B B B B B

B B

J J J J J J J J J

J

J

J
J
J J

J J J
J J
J J J J J
J
J
J
J
J J J J J J J J J

J J J
J J J
J J J J
J
J
J

J J J J
J J J

J

J

J J J J J J J J J J J
J

J J J J J J J

J J J

J

J J

J

J J J J J
J J J J J J

J
J J J
J J J J J J
J J

J J J J
J
J J

J J J J J J J J
J J J J J J J J J J J J J J J J J J J

J J J J J J
J J J J J J J J J J J

J J

J J J

J J J J

J J J J J J J J J

J J

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Chunk length
B SelectivityJ Sensitivity

RF00024_A, 451 nt

(a) Sequence RF00024 A, 451 nt

B B B B B B B
B

B
B

B B
B
B B B
B B B B B

B B B B
B
B B
B B B B B B B

B B B B
B B B B
B B B B
B

B B B B B B

B B B B B B B B B B B B

B B B B

B B B
B
B
B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B
B B B B B B B B B B B B B B B B B B B B

B B B B B B
B B B B B B

B B

B B
B B

B B

J J J J J J J
J

J

J

J J
J

J J J
J J
J J J

J J J J
J
J J
J J J J
J J J
J J J J
J J J J
J J J J
J

J J J J
J J

J J J J J J J J J J J J

J J J J

J J J
J
J
J J

J J

J J J J J J

J J

J J
J J

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Chunk length
B SelectivityJ Sensitivty

RF000210_A, 462 nt

(b) Sequence RF000210 A, 462 nt

Figure 5.2: Sensitivity and selectivity as a function of the chunk length for two
sequences in our data set.

longest chunk (Max C).

Using chunks that are limited in size (i.e., within the limitations of the com-

puter resources) allows us to overcome computing and memory constraints. At the

same time, we observe that for all 14 sequences we examined, the combination of

non-overlapping chunks can predict secondary structures with either equal or better

sensitivity and selectivity than those determined using the entire sequence. For only

two sequences out of the 14 (RF00177 A and RF00036 A), the value of Max C is

almost as long as N , indicating the convergence of our method to the search for the

global energy minimum.

5.4 Sliding Overlapping Chunks vs. Optimal Non-overlapping Chunks

In a previous attempt to solve the rebuilding of long RNA sequences using

the prediction of their subsegments, we used a segmentation approach that searches

the space of overlapping chunks [27]. Since the search space for overlapping chunks

is exponential, the complexity of an algorithm that explores all the possible chunks

is O(2N2), where N is the length of the input sequence. Because such an approach

47

Table 5.2: Comparison of sensitivity and selectivity for secondary structures pre-
dicted considering the sequence of nucleotides as a whole and as a set
of non-overlapping chunks selected using an a-priori approach.

Single Sequence Multiple Chunks
- lim. window

Name length(nt) sen. sel. #segm. sen. sel. #segm. max window
RF00458 A 202 0.58 0.39 1 0.71 0.53 17 71
RF00231 A 275 0.70 0.41 1 0.96 0.66 19 73
RF00193 A 273 0.79 0.65 1 0.82 0.65 46 33
RF00503 A 293 0.70 0.44 1 0.94 0.77 49 43
RF00030 A 297 0.67 0.48 1 0.67 0.48 9 228
RF00216 A 302 0.39 0.20 1 0.60 0.41 37 49
RF00010 A 312 0.76 0.63 1 0.76 0.63 6 307
RF00009 A 320 0.56 0.21 1 0.68 0.30 55 23
RF00100 A 330 0.40 0.22 1 0.70 0.48 20 107
RF00036 A 337 0.93 0.85 1 0.93 0.85 3 335
RF00209 A 379 0.74 0.45 1 0.79 0.50 15 218
RF00024 A 451 0.79 0.48 1 0.85 0.52 30 198
RF00210 A 462 0.79 0.56 1 0.80 0.57 18 375
RF00177 A 482 0.92 0.74 1 0.92 0.74 3 480

is not feasible even for short sequences, in our previous work we only searched

a sub-space of the possible subsegments by using heuristics. In particular, each

set of segments had a fixed size (window size) and a fixed sliding step (window

step). The segments in a set were generated by progressively sliding the fixed-size

window forward for a fixed number of steps. At each step, the nucleotides within the

window formed a segment. For an extensive sampling, this procedure was repeated

to generate several sets by increasing the window sizes and/or the window steps,

each time generating a new set of segments. In our experiments the window sizes

were increased by five bases. The maximum length of a window was n/2, where n is

the length of the RNA sequence we wanted to rebuild the secondary structure for.

Window steps ranged from 1 base to w − 1 bases, where w is the window size.

Accuracy is determined using the lenient algorithm described in chapter 3. It

48

uses simple string comparisons that allows for similar yet shifted structures to receive

high comparison scores. The algorithm traverses two string in dot-par format and

counts how many times an open bracket or parenthesis is in the same position and

how many times a closed bracket or parenthesis is in the same position in both

predicted and known structures. The lesser of these two values is the amount of

true pairs.

In this section we compare the sensitivity and selectivity for the predictions

obtained using the sliding overlapping chunks versus the approach in this thesis

based on optimal non-overlapping chunks, with an a-posteriori approach. Table 5.3

presents the results of the comparison. Our optimal a-posteriori approach always

matches or outperforms our previous approach. In addition, the number of chunk

predictions required with the optimal, non-overlapping approach is significantly less

that with the sliding overlapping technique.

49

Table 5.3: Comparison of sensitivity and selectivity for secondary structures pre-
dicted considering the sequence of nucleotides as a set of sliding over-
lapping chunks and a set of non-overlapping chunks.

Multiple Chunks Multiple Chunks
- sliding and - optimal and
overlapping non-overlapping

Name length(nt) sen. sel. sen. sel.
RF00458 A 202 0.78 0.64 0.78 0.64
RF00193 A 273 0.86 0.73 0.99 0.96
RF00231 A 275 0.97 0.71 0.97 0.71
RF00503 A 293 0.95 0.87 0.95 0.92
RF00030 A 297 0.70 0.53 0.67 0.59
RF00216 A 302 0.60 0.46 0.60 0.46
RF00010 A 312 0.68 0.57 0.77 0.63
RF00009 A 320 0.77 0.35 0.75 0.43
RF00100 A 330 0.75 0.58 0.81 0.70
RF00036 A 337 0.63 0.5 0.94 0.86
RF00209 A 379 0.77 0.54 0.90 0.76
RF00024 A 451 0.86 0.53 0.86 0.54
RF00210 A 462 0.91 0.69 0.91 0.74
RF00177 A 482 0.82 0.63 0.93 0.74

50

Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis we describe a Web application for the study and analysis of

RNA secondary structures that we call RNAVLab 2.0. It expands and extends the

existing virtual laboratory for the study of RNA secondary structures RNAVLab

1.0 with a Web application and Web service front-end and a multi-threaded Java

back-end. This portal is aimed at bringing several powerful prediction tools together

previously scattered across several portals and sites. Within RNAVLab 2.0, these

applications can be accessed from anywhere on the Internet using a browser or via

an XML RESTful Web service.

An important component of RNAVLab 2.0 is the dynamic programming al-

gorithm for predicting the optimal segmentation of long sequences into chunks using

non-overlapping segments. This feature is particularly relevant when scientists try

to predict RNA sequences whose length is too long and thus cannot be predicted

as a whole because of resource constraints. We show in this thesis that predictions

based on rebuilding long secondary structures from the prediction of the single,

non-overlapping chunks can get comparable accuracy to predictions using the whole

sequence. More in particular, our results show that our approach can outperform

MFE methods using dynamic programming to search for global energy minima 12

times out of 14 with the longest sequences in Group A in CONTRAfold.

To address resource constraints, chunk lengths in RNAVLab 2.0 can be set up

less than Max C, where Max C is the maximum window length a PC can handle

51

before it runs out of memory or exceeds a desired max running time. Besides

overcoming the computational and memory constraints of a single computer, our

approach of segmenting a long sequence in chunks and predicting the chunks before

merging them in the long secondary structure makes it possible to predict the smaller

structures in parallel and thus makes it possible to use parallel computers across

campus and high performance computers across the Internet, such as TeraGrid

platforms.

6.2 Future Work

We identify several main tasks that can be considered for future work:

• In this thesis we explored the accuracy of our dynamic programming algorithm

when the rebuilding of the single chunks was performed using PknotsRG. Since

our algorithm is application-independent, it is worthwhile to study whether the

results presented in this thesis are reproducible across several other prediction

programs, including those that do not use the traditional energy minimization

method.

• Although the current pool of machines used by RNAVLab consists of Linux

machines only, future work includes its extension to clusters available across

the whole UTEP campus as well as the integration and support of BOINC

(Berkeley Open Infrastructure for Network Computing) [1] to allow researchers

to deploy desktop and laptop PCs owned by students or administration person-

nel outside the campus when these computers are idle. Work in [25] shows that

adding idle cycles of PCs significantly increases available computing power.

• Machine learning and artificial intelligent technique can be used as part of the

optimal segmentation algorithm to train a model to detect where a window

should be sampled and predicted, given only the input sequence. If such a

model can be found and it provides good accuracy, we can further decrease

52

the prediction running time by only predicting those chunks that the model

outputs and by not having to explore the N2 space of sub-segments, where N

is the length of the input sequence. An example of such a scenario could be

designing and training neural network based tools to identify optimal segmen-

tations when the experimental secondary structure is not available and the

memory and computing resources are limited.

• Robustness of an application is extremely important as the number of users

grows. We would like to examine the durability of the RoR Web Application

as well as the Java backend under several common use cases and load strains.

The lack of bugs in a site and its consistant and correct functioning will help

attract new users as well as keep existing ones.

• Help items such as tool tips and documentation make it easy for a user to

understand the tool that they are using in a straight foreward way. Future

work will include adding tool tips and comprehensive documentation in order

to further facilitate the easy use of RNAVLab 2.0.

• Although powerful and simple, the RESTful web-service is still a relatively

new technology and paradigm. It would be worthwhile to include a template

program in order to show users how to use the available services and give them

a foundation to extend their own implementations.

53

BIBLIOGRAPHY

[1] D.P. Anderson. BOINC: A system for public-resource computing and storage.
In proceedings of the 5th IEEE/ACM International Workshop on Grid Com-
puting, page 10. IEEE Computer Society, 2004.

[2] Y. Byun and K. Han. PseudoViewer: web application and web service for vi-
sualizing RNA pseudoknots and secondary structures. Nucleic Acids Research,
34(Web Server issue):W416, 2006.

[3] C.B. Do, D.A. Woods, and S. Batzoglou. CONTRAfold: RNA Secondary Struc-
ture Prediction without Physics-Based Models. Bioinformatics, 22(14):e90,
2006.

[4] R.T. Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, Citeseer, 2000.

[5] PP Gardner and R. Giegerich. A comprehensive comparison of comparative
RNA structure prediction approaches. BMC bioinformatics, (5), 2004.

[6] A.P. Gultyaev, FHD Van Batenburg, and C.W.A. Pleij. The computer simula-
tion of RNA folding pathways using a genetic algorithm. Journal of Molecular
Biology, 250(1):37–51, 1995.

[7] I.L. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Research,
31(13):3429, 2003.

[8] B. Knudsen and J. Hein. RNA secondary structure prediction using stochastic
context-free grammars and evolutionary history. Bioinformatics, 15(6):446,
1999.

[9] AV Lukashin and M. Borodovsky. GeneMark. hmm: new solutions for gene
finding. Nucleic Acids Research, 26(4):1107, 1998.

[10] NR Markham and M. Zuker. UNAFold: software for nucleic acid folding and
hybridization. Methods in molecular biology (Clifton, NJ), 453:3, 2008.

54

[11] D.H. Mathews and D.H. Turner. Dynalign: an algorithm for finding the sec-
ondary structure common to two RNA sequences. Journal of Molecular Biology,
317(2):191–203, 2002.

[12] A. Mathuriya, D.A. Bader, C.E. Heitsch, and S.C. Harvey. GTfold: A scalable
multicore code for RNA secondary structure prediction. In Proceedings of the
2009 ACM symposium on Applied Computing, pages 981–988. ACM New York,
NY, USA, 2009.

[13] JS McCaskill. The equilibrium partition function and base pair binding prob-
abilities for RNA secondary structure. Peptide Science, 29(6-7):1105–1119.

[14] S.B. Needleman and C.D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of molecular
biology, 48(3):443–453, 1970.

[15] R. Nussinov, G. Pieczenik, J.R. Griggs, and D.J. Kleitman. Algorithms for
loop matchings. SIAM Journal on Applied Mathematics, 35(1):68–82, 1978.

[16] J.T. Pedersen and J. Moult. Genetic algorithms for protein structure prediction.
Current Opinion in Structural Biology, 6(2):227–231, 1996.

[17] M. Petrillo, G. Silvestro, P.P. Di Nocera, A. Boccia, and G. Paolella. Stem-loop
structures in prokaryotic genomes. BMC genomics, 7(1):170, 2006.

[18] NA Pierce. NuPack: A Software Suite for the Analysis and Design of Nucleic
Acids, 2006.

[19] J. Reeder, P. Steffen, and R. Giegerich. PknotsRG: RNA Pseudoknot Fold-
ing Including Near-Optimal Structures and Sliding Windows. Nucleic acids
research, 2007.

[20] E. Rivas and S. R. Eddy. A Dynamic Programming Algorithm for RNA
Structure Prediction Including Pseudoknots. Journal of Molecular Biology,
285(5):2053–2068, February 1999.

[21] D. Sankoff. Simultaneous solution of the RNA folding, alignment and pro-
tosequence problems. SIAM Journal on Applied Mathematics, 45(5):810–825,
1985.

[22] TF Smith and MS Waterman. Identification of common molecular subse-
quences. Journal of molecular biology, 147(1):195–197, 1981.

55

[23] M.C. Su, C.T. Chang, C.H. Chu, C.H. Tsai, and K.Y. Chang. An atypical
RNA pseudoknot stimulator and an upstream attenuation signal for-1 riboso-
mal frameshifting of SARS coronavirus. Nucleic acids research, 33(13):4265,
2005.

[24] G. Tan, N. Sun, and G.R. Gao. A parallel dynamic programming algorithm
on a multi-core architecture. In Proceedings of the nineteenth annual ACM
symposium on Parallel algorithms and architectures, page 144. ACM, 2007.

[25] M. Taufer, C. An, A. Kerstens, and CL Brooks. Predictor@ Home: A” Pro-
tein Structure Prediction Supercomputer” Based on Global Computing. IEEE
Transactions on Parallel and Distributed Systems, 17(8):786, 2006.

[26] M. Taufer, T. Solorio, A. Licon, D. Mireles, and M.Y. Leung. On the Effec-
tiveness of Rebuilding RNA Secondary Structures from Sequence Chunks. In
Proceedings of 7th IEEE Intl Workshop on High Performance Computational
Biology (HiCOMB), pages 1–8, 2008.

[27] Michela Taufer, Ming-Ying Leung, Thamar Solorio, Abel Licon, David Mireles,
Roberto Araiza, and Kyle L. Johnson. RNAVLab: A Virtual Laboratory for
Studying RNA Secondary Structures Based on Grid Computing Technology.
Parallel Computing, 34(11):661 – 680, 2008. High-Performance Computational
Biology.

[28] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice:
The Condor experience. Concurrency and Computation Practice and Experi-
ence, 17(2-4):323–356, 2005.

[29] V. Thiel, K.A. Ivanov, A. Putics, T. Hertzig, B. Schelle, S. Bayer, B. Weiss-
brich, E.J. Snijder, H. Rabenau, H.W. Doerr, et al. Mechanisms and enzymes
involved in SARS coronavirus genome expression. Journal of General Virology,
84(9):2305, 2003.

[30] I. Tinoco, O.C. Uhlenbeck, and M.D. Levine. Estimation of secondary structure
in ribonucleic acids. 1971.

[31] FHD Van Batenburg, AP Gultyaev, CWA Pleij, J. Ng, and J. Oliehoek. Pseu-
doBase: a database with RNA pseudoknots. Nucleic Acids Research, 28(1):201,
2000.

[32] TK Vintsyuk. Speech Discrimination by Dynamic Programming. Cybernetics
and Systems Analysis, 4(1):52–57, 1968.

[33] S.R. WILKINSON and M.D. BEEN. A pseudoknot in the 3’ non-core region
of the glmS ribozyme enhances self-cleavage activity. RNA, 11(12):1788, 2005.

56

[34] M. Zuker. Mfold Web Server for Nucleic Acid Folding and Hybridization Pre-
diction. Nucleic acids research, 31(13):3406, 2003.

[35] M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Research,
9(1):133, 1981.

57

