
PRIVATE AND VERIFIABLE COMPUTATION

by

Dimitris Mouris

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and
Computer Engineering

Winter 2024

PRIVATE AND VERIFIABLE COMPUTATION

by

Dimitris Mouris

Approved:
Jamie Phillips, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Levi T. Thompson, Ph.D.
Dean of the College of Engineering

Approved:
Louis F. Rossi, Ph.D.
Vice Provost for Graduate and Professional Education and
Dean of the Graduate College

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Nektarios G. Tsoutsos, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Rudolf Eigenmann, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Xiaoming Li, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Rui Zhang, Ph.D.
Member of dissertation committee

VITA

Dimitris Mouris received his B.Sc. (2016) and M.Sc. (2018) degrees in com-

puter science and computer systems, respectively, from the National and Kapodistrian

University of Athens, Greece. In 2019, Dimitris started his Ph.D. in electrical and com-

puter engineering at the University of Delaware, Newark, DE, USA, and passed the

qualification exam in the Summer of 2019. He also submitted his dissertation proposal

in the Spring of 2023. Since 2019, Dimitris has been a research and teaching assistant at

the University of Delaware. His research is in the intersection of applied cryptography

and privacy, with a special interest in the area of privacy-enhancing technologies using

secure multi-party computation, zero-knowledge proofs, and homomorphic encryption.

He has authored multiple articles in transactions and conference proceedings.

Apart from his academic experience, Dimitris has spent time working in the

industry. In the summer of 2022, Dimitris interned at Meta Inc. as a Research Scientist

in the Statistics & Privacy team and worked on private advertising and private record

linkage protocols. After his summer internship, he continued working for three months

as a part-time student researcher to publish his internship work. In the summer of 2021,

Dimitris interned at Amazon Web Services (AWS) and worked on enabling role-based

access control for Amazon Redshift, a data analytics warehouse. His work has been

productionized allowing millions of customers to have better control over permissions

and security privileges. Before joining the University of Delaware in 2019, Dimitris

worked as a research assistant at the Athena Research & Innovation Center in the

European Union’s Horizon 2020 “My Health My Data” project. He designed and

implemented an end-to-end framework for privacy-preserving medical data analytics

using secure multi-party computation.

iv

Dimitris participates in the Crypto Forum Research Group (CFRG) of the In-

ternet Engineering Task Force (IETF) to enable real-world use cases of secure com-

putation. Parts of his work have been used by CFRG specifications. He has also

contributed to the Open Quantum Safe (OQS) project, an open-source project that

aims to support the development and prototyping of quantum-resistant cryptography.

From 2020 until 2022, Dimitris was also the global challenge co-lead of the international

Embedded Security Challenge (ESC) competition; an annual student-run competition

during the Cyber Security Awareness Worldwide (CSAW) event.

v

ACKNOWLEDGMENTS

First and foremost, I would like to express my deep gratitude to my advisor,

Nektarios Tsoutsos, for his unconditional support and continuous guidance throughout

my academic journey. Nektarios’ mentoring and always optimistic outlook have helped

me grow not only as a researcher but also as an individual. I first met Nektarios in

2016 while he was pursuing his Ph.D. under Mihalis Maniatakos’ guidance. During

that time, I was completing my Master’s at the University of Athens and they gave

me the opportunity to collaborate on a research project in secure computation. This

was my first exposure to the field of Cryptography and research in general, and they

were an invaluable resource of guidance. I would like to express my gratitude to both

Nektarios and Mihalis for their mentorship at that time. A year later, Nektarios joined

the faculty at the University of Delaware and we were both excited to continue working

together.

I would also like to thank my committee members, Rudolf Eigenmann, Xiaom-

ing Li, and Rui Zhang for their valuable insights towards completing this dissertation.

I am also grateful to my awesome internship mentors Shubho Sengupta, Prasad Bud-

dhavarapu, Ni Trieu, Daniel Masny, and Benjamin Case from the Statistics and Privacy

team at Meta, as well as Pavel Sokolov and Huiyuan Wang from the Amazon Redshift

Catalog (RedCat) team. I had the privilege of spending two incredible summers work-

ing with them, and they helped me develop both as a researcher and as an engineer.

I want to give special acknowledgments to my friends and co-authors, Chaz Gouert

and Pratik Sarkar, for the multiple brainstorming sessions and the great moments we

shared that led to the realization of this work. Furthermore, I am grateful to my all

friends for being there for me throughout this journey.

vi

My sincere thanks to my best friend and wife, Eirini Vangeli, for her unlimited

love and for always being on my side. Moving from Greece to the United States was

a big decision but she embraced it and pursued her own dreams. Together, we have

explored a new country, created a new home, and continue chasing our dreams. My

deepest thanks to my parents for their unconditional love and for opening so many

doors for me to achieve my dreams. Without their endless support, this journey would

not have been possible.

At last, my work was made possible by the support of the University of Delaware

Research Foundation (Grant #21A01012), the National Science Foundation (Grants

#2239334 and #1931916), Discover Bank and the Arkansas Venture Center, the US

Department of Energy (Grant #DE-EE0008768), and the Electrical and Computer

Engineering department at the University of Delaware.

vii

TABLE OF CONTENTS

LIST OF TABLES . xiii
LIST OF FIGURES . xv
ABSTRACT . xxi

Chapter

1 INTRODUCTION . 1

1.1 Privacy-Enhancing Technologies (PETs) 2
1.2 Problem Statement . 5
1.3 Contributions . 7

1.3.1 General-Purpose Transparent Zero-Knowledge Proofs 10
1.3.2 Functional and Security Verification of Intellectual Property (IP) 10
1.3.3 Privacy-Preserving Analytics 11

2 PRELIMINARIES . 13

2.1 Models of Computation . 13
2.2 Principles of ZKPs and VC . 14

2.2.1 Verifiable Computation . 14
2.2.2 Zero-Knowledge Proofs . 15
2.2.3 Properties of Proof Systems 16
2.2.4 A Primer on zk-STARKs . 17
2.2.5 Fiat-Shamir Heuristic . 19

2.3 Lightweight Pseudorandom Functions with Extended Input 20
2.4 Paillier Cryptosystem . 20
2.5 Commitment Schemes . 22
2.6 Secret Sharing . 23
2.7 Distributed Point Functions (DPF) 23

2.7.1 Incremental DPF (IDPF) . 23

viii

2.7.2 Verifiable DPF (VDPF) . 24

3 ZILCH: A FRAMEWORK FOR DEPLOYING TRANSPARENT
ZERO-KNOWLEDGE PROOFS . 25

3.1 Introduction . 26
3.2 The Zilch Framework . 29

3.2.1 Our Threat Model . 29
3.2.2 Key Observations in our Methodology 30
3.2.3 Overview of our Framework 31
3.2.4 Zilch Front-End Design . 35
3.2.5 Zilch Back-End Description 39
3.2.6 Application Programming Interface (API) for Zilch 44

3.3 Real Applications in Zilch . 45

3.3.1 Vickrey Auction using Zilch API 45
3.3.2 Zero-Knowledge Range Proofs with ZeroJava 48

3.4 Experimental Evaluation . 48

3.4.1 Our Benchmarks . 49
3.4.2 Experimental Results . 50
3.4.3 Comparison with Previous Works 52
3.4.4 Zilch Experiments using our Real-life Case Studies 53

3.5 Related Work . 54
3.6 Concluding Remarks . 59

4 PRIVACY-PRESERVING IP VERIFICATION 61

4.1 Introduction . 61
4.2 The Pythia Framework . 65

4.2.1 Threat Model . 65
4.2.2 Overview of Pythia . 66
4.2.3 From IP Netlists to ZK-friendly Encoding 68
4.2.4 Zero-Knowledge Circuit Evaluation 70

4.3 Library of Modules . 72

4.3.1 Area Verification Module . 73

ix

4.3.2 Performance Verification Module 74
4.3.3 Power Verification Module . 79

4.4 Pythia’s Optimizer . 81

4.4.1 Efficient Wire Placement Using Register Allocation 81
4.4.2 Bit-Packing . 82
4.4.3 Execution Parallelism . 84

4.5 Experimental Results . 85

4.5.1 Experimental Setup . 85
4.5.2 Performance Evaluation. 86

4.6 Related Work . 91
4.7 Concluding Remarks . 93

5 ZK-SHERLOCK: EXPOSING HARDWARE TROJANS IN
ZERO-KNOWLEDGE . 95

5.1 Introduction . 95
5.2 Zero-Knowledge Trojan Detection . 97

5.2.1 Threat Model . 97
5.2.2 Overview of our Methodology 99
5.2.3 Serialized Encoding for State Machine 102
5.2.4 State Machine Evaluation . 104

5.3 Experimental Results . 105
5.4 Related Work . 107
5.5 Concluding Remarks . 108

6 MASQUERADE: VERIFIABLE MULTI-PARTY
AGGREGATION WITH SECURE MULTIPLICATIVE
COMMITMENTS . 109

6.1 Introduction . 109
6.2 Our Problem Statement . 113

6.2.1 Overview . 113

x

6.2.2 Threat Model . 115

6.3 Private Data Aggregation Protocol 117

6.3.1 Our Multiplicative Commitment Scheme 118
6.3.2 Homomorphic Commitments on Homomorphic Data 121
6.3.3 Public Verifiability for Aggregator 123
6.3.4 Protecting Against Malicious Clients 124
6.3.5 Enabling Categorical Data Aggregation 125
6.3.6 Security Sketch . 128

6.4 Experimental Evaluations . 128

6.4.1 Experimental Setup . 129
6.4.2 Performance Evaluation . 129

6.5 Related Work . 134
6.6 Concluding Remarks . 138

7 PLASMA: PRIVATE, LIGHTWEIGHT AGGREGATED
STATISTICS AGAINST MALICIOUS ADVERSARIES 139

7.1 Introduction . 139

7.1.1 Our Contributions . 142
7.1.2 Related Work . 144

7.2 Technical Overview . 147

7.2.1 Histogram Protocol of Poplar 148
7.2.2 Our Basic Histogram Protocol 149
7.2.3 Heavy-Hitters from T -Prefix Count 153
7.2.4 T -Prefix Count Queries Oracle from VIDPF 154

7.2.4.1 Verifiable Incremental DPF (VIDPF) 155
7.2.4.2 Implementing T -Prefix Count Queries 157

7.3 Private Heavy Hitters . 163
7.4 Proof of Heavy-Hitters Protocol πHH 169

7.4.1 Proof Sketch . 169

xi

7.4.2 Formal Proof Details of Theorem 4 172

7.5 Batched Consistency Check . 178
7.6 Experimental Evaluations . 180
7.7 Analysis of Batched Consistency check 185
7.8 Heavy Hitters with different Thresholds 186
7.9 Compatibility with Differential Privacy 187
7.10 Concluding Remarks . 188

8 CONCLUSION . 189

BIBLIOGRAPHY . 191

Appendix

A PUBLICATIONS INCLUDED IN THIS THESIS 214
B PERMISSIONS . 215
C ADDITIONAL PUBLICATIONS . 217

xii

LIST OF TABLES

3.1 ZeroJava Language Operators . 36

3.2 zMIPS instructions: RD denotes the destination register, RS and RT

denote the source registers, A can be either a source register or an
immediate value, while L can be either an instruction number or a
label. 41

3.3 ZeroJava Built-in Functions . 43

3.4 Vickrey auction: P and V times for increasing number of participants
with security parameter λ = 80. 54

3.5 Comparison of existing ZKP systems based on their cryptographic
assumptions, the need for a trusted setup, their universality, and
resilience against known attacks from quantum computers. Regarding
ease of programmability, each bar indicates support for developing
ZKPs using arithmetic circuits, assembly language, procedural and
object-oriented programming, respectively. Among frameworks that
support high-level programming (i.e., those with three or four bars),
only Zilch supports the object-oriented paradigm. 55

4.1 Logical Effort and Parasitic Delays of Common Logic Gates. 74

4.2 Logic Gates Switching Probabilities: Pi denotes that node i is 1 based
on input A and B probability being 1. 79

4.3 Number of Gates and Wires Generated by Pythia Compiler and State
Vector Minimization After Applying Graph-Coloring and Bit-Packing
Techniques for Selected Benchmarks. 90

6.1 Size of the Zero-knowledge Proof Protocols. 132

6.2 Set-Membership Proof Timings with an Increasing Number of Set
Elements for Soundness t = 60. 133

xiii

6.3 A comparison with existing PDA schemes based on the cryptographic
technique they utilize, the type of variables they support and their
robustness against dropping participants and malicious inputs. . . . 136

7.1 Threat model comparisons, client input validation, and
server-to-server communication. 140

xiv

LIST OF FIGURES

1.1 Overview of this dissertation. 8

2.1 Example of a computation using arithmetic circuits. The output can
be expressed using a polynomial expression. 14

3.1 Zilch Framework Overview. Using our ZeroJava compiler, P provides
the assembly code to Zilch along with the private and public inputs.
Zilch first determines the steps bound T automatically and then
computes the result y. Finally, P and V interact over a limited
number of rounds and the verifier either accepts the proof (i.e., she is
convinced) or rejects it. 30

3.2 Prover and Verifier Interaction. Starting from a public computation
expressed in ZeroJava and a public tape, P and V agree on the
polynomial constraints. Next, P generates and encodes the transcript
tr, and combines it with the polynomial constraints into a single
composition polynomial CP that is shared with V . Finally, the two
parties engage in the FRI protocol and V either accepts or rejects P ’s
statement. 34

3.3 ZeroJava program to prove that a secret number has a Hamming
weight that is greater than a public threshold. 37

3.4 Vickrey Auction Overview. 46

3.5 ZK range query implemented in ZeroJava. 47

3.6 ZK range query implemented in zMIPS. 48

3.7 P , V timings (seconds) and communication complexity size (KB) for
a variety of benchmarks for different input sizes and 2−60 soundness
error. The communication overhead corresponds to the interactive
protocol between P and V . 49

xv

3.8 P ’s measured execution time for the Speck & Simon cipher
benchmarks using different security parameter sizes on the 32-bit and
the 64-bit block sizes with 64-bit and 128-bit keys respectively. . . . 50

3.9 P ’s measured execution time for the Fibonacci benchmark using
different word-sizes (8, 16, 32) and different security parameter sizes
for a variety of inputs (22 to 26). 51

3.10 Comparison between Zilch, Hyrax and Bulletproofs P and V timings
(seconds) for the matrix multiplication benchmark, as well as the
native JVM baseline execution (i.e., without generating a proof). . 51

4.1 Overview of Pythia. (a) The 3PIP vendor (P) possesses an IP
described in a Hardware Description Language. (b) P synthesizes the
IP and generates a gate-level netlist. (c) P determines the evaluation
order of the gates and transforms the IP into a zero-knowledge
friendly encoding for ZK state machines. (d) P minimizes the number
of intermediate wire values required to evaluate the netlist and
divides the encoding into independent shares that can be evaluated in
parallel. (e) The 3PIP vendor executes a module (e.g., functional,
performance, area verification) with the circuit specification as
private input and public test vectors chosen by the IP consumer. (f)
The two parties interact and P convinces V about the computational
integrity of the zero-knowledge evaluation. 64

4.2 Path logical effort calculation. The table depicts how the path logical
effort G, path branching effort B, path parasitic delay P , and the
number of logic stages in the path N counters are used to estimate
the delay of any circuit using the gate delays from Table 4.1. G, B,
P , and N are updated based on the type of logic gate and the
formulas in lines 17–22 in Alg. 4. 78

4.3 Adder evaluation. The numbers on the gates denote the evaluation
order, also illustrated by the row labels of the table (execution trace)
on the right-hand side. The green values represent which variable
changed after the evaluation of the gate denoted by the row number.
The variables r0–r3 can be interpreted either as four separate indices
or as one 4-bit block. The serialized private input encoding a part of
the above circuit is depicted at the bottom. 81

xvi

4.4 Chaining execution to enable parallel verification. Pythia divides
large executions into multiple shares and pre-computes the
intermediate states locally. The simulator computes the PRF digest
of the machine state and compares it with the digest provided in the
public input to verify its integrity. Each share can be verified
independently and in parallel. 84

4.5 Memory/Efficiency per gate trade-off for the prover. The horizontal
axis shows the maximum number of gates per share that can be
evaluated in less than a power of 2 state machine transitions. 87

4.6 Time measurements for proving 1 and 96 shares with a different
number of threads per share. The red squares depict the timings for 1
core/share (prove all 96 in parallel) to 96 cores/share (prove shares
sequentially). 88

4.7 P and V experimental results for selected benchmarks from the
ISCAS’85 and ITC’99 suites. 88

4.8 Amortized P and V evaluation time per cycle (over 10 cycles) using
selected benchmarks from the ISCAS’89 and ITC’99 suites. 89

4.9 Timing results for P and V of the area, performance (for both exact
and heuristic methods), and power modules for selected ISCAS’85
and ISCAS’89 benchmarks. The timings for ISCAS’89 netlists are
amortized over 10 cycles. P ’s offline costs are reported in Figs. 4.7
and 4.8 and are omitted from this plot. Our heuristic method incurs
less than 5% error in all cases, and offers significant performance
benefits compared to the exact method. 90

5.1 Overview of zk-Sherlock. (a) P possesses an IP described in a
Hardware Description Language that has some agreed-upon
functional specifications. (b) The 3PIP vendor (P) synthesizes the IP
and generates a gate-level netlist, determining the correct evaluation
order of the gates. (c) The 3PIP vendor transforms the IP into a
ZK-friendly encoding for the Trojan detection state-machine SM. (d)
P executes SM using the netlist as private input and public test
vectors chosen by V . (e) The two parties interact and P convinces V
that the IP is Trojan-free and that SM was evaluated correctly. . . 98

xvii

5.2 The gates are labeled by the evaluation order (first G1, then G2, etc.)
and are also shown on the rows of the tables (execution trace). The
underlined values in the tables show which simulation variable was
overwritten after the evaluation of the gate. The variables r0 – r3
represent four SM registers, also shown at the outputs of the gates.
(a) shows a circuit that outputs “1” when all four inputs are set to
high (note: there exist more combinations to output “1”). (b) shows
the same circuit as (a) after being injected with an example Trojan
that is only activated when all inputs are set to “1”. 101

5.3 Abstraction of two cycles of an 64-gate circuit in zk-Sherlock.
“Switching Gates” block and “Gate Outputs” block keep track of the
switched gates and the gate outputs, respectively. 104

5.4 Experimental timings for P and V per input-pair for selected
benchmarks. 106

5.5 Percentage of the total gates that switched over increasing number of
input pairs for selected Trojan-free benchmarks. 106

6.1 Overview of Masquerade. Each participant sends their encrypted
data along with a zero-knowledge proof that their ciphertext is
well-formed to the curator, who in turn performs the homomorphic
aggregation. Participants also publish their commitments on a
bulletin board so that everyone can access them and verify the
correctness of the encrypted sum. Finally, the analyst decrypts and
publishes the result of the computation. 110

6.2 The Masquerade Protocol. The numbers 1-4 refer to the algorithms
from Fig. 6.3. (1) First, the analyst generates a Paillier key-pair and
the public parameters for the commitment scheme and posts the
public key including N2, gm, and e. (2) Each participant i encrypts
their private data mi and generates a non-interactive ZKP to prove
the correctness of ciphertext Paimi

to the curator. Participants also
commit to Paimi

and publish the commitment values ci, while they
send the random ri values used for ci to the curator. (3) Upon
verifying the proof and commitment, the curator homomorphically
adds Paimi

to the encrypted aggregation and also adds the ris. (4)
The analyst receives the encrypted sum and the sum of the random
ris from the curator and verifies that the commitment opens
successfully. Finally, the analyst creates a non-interactive ZKP that
the final result sum is the correct decryption of Paisum. 121

xviii

6.3 The four core algorithms of the Masquerade protocol. In the top right
corner (inside the parentheses), we indicate which party runs each
algorithm. P , V , and C, stand for the prover, the verifier and the
commitment algorithm, respectively. Both P and V algorithms are
discussed in Section 6.3.4. 122

6.4 Histograms Overview. We can divide the Paillier plaintext space into
different sections, each of which corresponds to a different category.
Homomorphic addition of ciphertexts will result into summing the
bits from each category and end up with individual accumulators. . 126

6.5 Masquerade Performance. Time measurements in seconds for an
increasing number of participants from 1 to 212. The timings for
malicious participants use t = 60 and K = 4 and depend on the type
of study (quantitative or categorical), while for honest participants
the overheads do not depend on the type of study as ZKPs are
omitted. Finally, the ledger auditor performance is almost constant as
it involves fast modular multiplications. 130

6.6 Zero-Knowledge Proofs Performance. Time measurements in
seconds for both range and set-membership proofs for the prover and
the verifier with an increasing soundness parameter t in bits and
K = 4. 131

7.1 Distribution of session keys by client Ci. 151

7.2 Session keys and attestation by S2. 151

7.3 Algorithm for computing T -heavy hitters. 154

7.4 Protocol πVIDPF for Verifiable Incremental DPF (continues in Fig. 7.5). 158

7.5 Protocol πVIDPF for Verifiable Incremental DPF (continuing from
Fig. 7.4). 159

7.6 The ideal FHH functionality for T -heavy hitters. 162

7.7 Private T -Heavy Hitters Protocol πHH (continues in Fig. 7.8). 164

7.8 Private T -Heavy Hitters Protocol πHH (continues in Fig. 7.9). 165

7.9 Private T -Heavy Hitters Protocol πHH (continuing from
Fig. 7.8). 166

xix

7.10 The ideal FCMP functionality for comparison. 169

7.11 Simulation Algorithm against malicious corruption of server S2 and ℓ′

clients. Continues in Fig. 7.12. 174

7.12 Continuing the simulation from Fig. 7.11. Algorithm against
malicious corruption of server S2 and ℓ′ clients. 175

7.13 Simulation Algorithm against malicious corruption of server S0 and ℓ′

clients. Continues in Fig. 7.14. 176

7.14 Continuing the simulation from Fig. 7.13. Simulation Algorithm
against malicious corruption of server S0 and ℓ′ clients. 177

7.15 Equality verification of ℓ strings between two parties and
identification of unequal strings. 179

7.16 Comparisons of client costs for PLASMA and Poplar (KB is
Kilobytes and µs is microseconds). 181

7.17 Server runtime (over LAN) for an increasing number of clients. . . . 182

7.18 Server runtime over WAN. 183

7.19 Comparisons with Poplar [49] and the sorting-based approach of [13]
in terms of total server-to-server communication (in GB). 184

7.20 Comparisons with Poplar and the sorting-based approach of [13] in
terms of total monetary cost (in USD). 185

7.21 Algorithm for computing heavy hitters with different thresholds from
T -prefix count queries. 187

xx

ABSTRACT

The rise of cloud computing and big data analytics offers significant benefits

for individuals and organizations as they enable a plethora of applications in diverse

fields such as healthcare, home automation, and many more. These technologies en-

able individuals and organizations to adjust computational resources effortlessly and

take advantage of large amounts of data, leading to improved efficiency and reduced

costs. Unfortunately, processing vast amounts of data increases the risk of data theft

and misuse as sensitive information is accessible by the cloud provider and vulnerable

to attacks from third parties. Zero-knowledge proofs (ZKP), secure multiparty com-

putation (MPC), and homomorphic encryption (HE) are key cryptographic techniques

that focus on protecting data confidentiality while enabling valuable computations to

be performed on sensitive data. Unfortunately, generic solutions incur significant per-

formance overheads and may not be practical for many real-world use cases; thus,

specialized protocols need to be devised. Another challenge with HE and MPC is

to provide verifiable guarantees on the integrity of the computation, i.e., that it was

performed faithfully. ZKPs offer a solution to this problem, yet combining these tech-

nologies requires intricate solutions.

This dissertation focuses on private and verifiable computation. In particu-

lar, we start by introducing the Zilch framework for developing transparent ZKPs,

i.e., ZKPs that do not need a trusted setup. Zilch consists of a back-end that allows

verifying MIPS-like instructions and a front-end that compiles high-level code to our

zero-knowledge MIPS back-end. As a result, our framework makes ZKPs more acces-

sible and can facilitate many real-world applications. More specifically, we continue

this dissertation by utilizing Zilch to create specialized protocols for proving both func-

tional and security properties of intellectual property (IP) netlists without revealing

xxi

anything about them. These works focus on thwarting IP piracy in the integrated

circuit industry as IP vendors want to convince IP buyers about various properties of

their netlists while still maintaining the privacy of their designs.

Finally, we focus on privacy-preserving and verifiable statistics based on inputs

from multiple clients. More specifically, we introduce two protocols that offer verifiable

guarantees of the correctness of the final result and are secure against participants who

do not follow the protocol specification. Both these works assume a set of clients that

hold some private inputs and some aggregation servers that wish to compute statistics

based on the client inputs privately. The first work is called Masquerade and focuses

on aggregations and histograms, while the latter, called PLASMA, focuses on more

elaborate statistics such as private heavy-hitters (i.e., finding the most popular client

inputs). PLASMA relies on three servers and offers even stronger security guarantees

by considering that even one of the servers may be malicious and not follow the pro-

tocol specification. These two works showcase real-world applications of private and

verifiable computation.

xxii

Chapter 1

INTRODUCTION

The increasing digitization of information through the use of edge devices has

opened up new opportunities for businesses to provide real-time and personalized ser-

vices to individuals. This is achieved by collecting and transmitting data to cloud

servers for analysis and computation. For example, using real-time location data, ap-

plications can suggest popular restaurants nearby, provide navigation routes with less

congestion by combining data from multiple users, as well as help businesses identify

crowded shopping areas and target their marketing and advertising efforts. Businesses

also take advantage of cloud computing and big data for performing analytics, data

backups, and scaling resources on demand. This allows the party that owns the data

to learn useful statistics and insights about their data, while the cloud performs the

heavy computational work and returns the results.

Although cloud computing offers great flexibility for multiple industries, dele-

gating the computation of sensitive user data to untrusted cloud servers comes with

many risks [223]. For one, cloud servers might run unreliable software that is suscepti-

ble to a wide range of cyberattacks or even run on unverified – or malicious – hardware

[227,228]. Even worse, cloud service providers might have monetary incentives to look

into, store, and sell user data.

Furthermore, it is crucial to have verifiable guarantees in order to ensure the

integrity of data and the correctness of the outsourced computation. Organizations

and individuals need to be able to verify that the cloud computation has not been

tampered with (i.e., that the results are trustworthy). Without verifiable integrity

guarantees, there is a risk that the data and computations may be compromised, lead-

ing to inaccurate or biased results. The need for verifiability becomes even more critical

1

when dealing with sensitive or confidential data, such as personal or financial informa-

tion. Additionally, verifiability is also important for compliance with regulations and

standards, such as GDPR [234] and HIPAA [1].

In order to mitigate all these risks, researchers have developed a set of crypto-

graphic techniques, called Privacy Enhancing Technologies (PETs), that enable appli-

cations in statistics, machine learning, and finance, to name a few, while protecting

the privacy of individuals and organizations. These technologies enable organizations

to perform useful computations on sensitive data without revealing the actual data

to any of the parties involved. Before we delve into the problem statement of this

dissertation, we first need to discuss the different PETs, the applications they enable,

and their limitations.

1.1 Privacy-Enhancing Technologies (PETs)

Multiple applied cryptography techniques have been proposed to protect the

privacy of user data and promote transparency in outsourced computation without re-

lying on trusted third parties. Below we focus on the three more prominent techniques,

which provide the pillars of my research.

Homomorphic Encryption (HE) is a natural fit for cloud computing by allowing

operations to be performed on encrypted data. Users can encrypt their data on their

devices, send it to the cloud for computation, and receive an encrypted output which

only they can decrypt to access the final result. There are three types of homomorphic

encryption: partial HE (PHE), leveled HE (LHE), and fully HE (FHE). PHE [186,194]

enables only certain operations over encrypted data (i.e., either encrypted addition

or multiplication but not both), while LHE enables any type of encrypted operation

but only a limited number of times [57, 73, 115]. Finally, FHE [78, 114, 201] supports

unlimited additions and multiplications but incurs significant overheads compared to

PHE and LHE. There is a big line of research for accelerating FHE and making it

more practical [77, 78, 131, 143] but its practicality is questionable in many real-world

scenarios. A notable application of HE includes privacy-preserving machine learning

2

(ML) inference, where the cloud has a trained model with private weights and the users

can upload their sensitive data for classification while keeping it private from the cloud

[44, 79, 91, 97, 108, 152]. For example, a user can get a quick diagnosis by uploading

an encrypted X-ray image of their lungs to a cloud service provider that runs an ML

algorithm, and the cloud classifies it as either “healthy” or not – without being able

to look at the image.

Secure Multi-Party Computation (MPC) enables multiple entities to jointly per-

form a computation without disclosing any individual’s private inputs [22,120,172,246].

There are many MPC protocols that consider various threat assumptions about how

the participants are behaving that result in security/performance trade-offs. Most

practical protocols assume semi-honest (or passive) adversaries, meaning that they

will follow the protocol specification as opposed to malicious (or active) adversaries.

Another consideration is the number of honest participants and how privacy and cor-

rectness can be maintained when parties collude. MPC protocols that assume that the

majority of the parties behave honestly (i.e., honest majority) typically utilize secret

sharing as a basic tool [26,211]. A (t, n)-secret sharing scheme allows splitting a secret

amongst n parties, so that t or more parties can reconstruct the secret while having less

than t shares does not reveal anything about the secret. In this case, the parties first

represent the function as a Boolean or arithmetic circuit and then each party shares

its input with the other parties using secret sharing. The parties can now jointly eval-

uate the circuit gate by gate and finally reconstruct the shares on the output wires,

which represent the output of the function that was encoded as the circuit. On the

other hand, assuming a dishonest majority MPC is significantly more challenging and

requires specialized solutions such as garbled circuits [23,247], GMW oblivious transfer

[120,136], cut-and-choose [165], SPDZ [89], MPC in the head [137], and others [104].

Contrary to HE, most MPC protocols assume that the data owners participate

in the execution of the protocol. However, this is not always the case; separating

the MPC computing parties and the data owners brings MPC closer to the cloud

paradigm. Notable examples include privacy-preserving data sharing and analytics,

3

as well as privacy-preserving machine learning (ML) based on sensitive user data. In

the former case of analytics, MPC can be used to compute advanced statistics over

the joint data of multiple participants without revealing the actual data to any of the

parties, while in the case of privacy-preserving machine learning, MPC can be used

to train ML models on private data without revealing the actual data to any of the

parties. Additionally, similar to HE, MPC can be used for ML inference where the

MPC computing parties act as “the cloud” and the users securely share their data and

get back an encrypted classification.

Zero-Knowledge Proofs (ZKP) allow a prover P to convince a verifier V that a

public statement is true without revealing anything else apart from the fact that this

specific statement is true. Furthermore, ZKPs enable P to prove knowledge of some

secret w without revealing it [54, 121, 122]. ZKPs have multiple practical applications

including finance, where P can prove that a transaction is valid without revealing

the details of the transaction (e.g., prove that they have enough funds to make a

purchase without revealing their entire financial history to the seller, prove eligibility

for a mortgage by showing that their salary is above a threshold without revealing it,

etc.), and electronic voting (e-voting) where voters can prove that their vote was cast

without revealing how they voted, and others.

ZKP constructions can be classified into three different categories based on

their setup process: those with trusted setup per computation, those with transparent

setup, and those with universal trusted setup. ZKPs that require a trusted setup

per computation achieve a succinct/constant-size proof, which renders them ideal for

blockchain applications, like Zerocash [32]. Such constructions are based on quadratic

arithmetic programs [37, 113, 127, 195]. ZKPs with a universal trusted setup perform

only one setup but can be used to prove multiple statements [65, 128, 173, 245]. Such

techniques incur bigger proofs and slower verification compared to the first category.

Unfortunately, both aforementioned categories rely on a secret randomness for their

trusted setup (referred to as “toxic waste”) that has to be deleted to prevent malicious

parties from forging false proofs. Lastly, ZKPs with a transparent setup do not require

4

a trusted setup phase [31,34,35,51,61] as any randomness used is public coins.

Finally, although the focus of this dissertation is on ZKPs, HE, and MPC, we

mention two more PETs worth noting for completeness: Trusted Execution Environ-

ments (TEE) and Differential Privacy (DP). TEEs provide secure execution through

specialized hardware and software; they create an isolated environment, known as an

enclave, for a process to run and be invisible to other processes and even the operating

system [14, 252]. On the other hand, DP focuses on an information-theoretic notion

of output privacy and guarantees that the presence or absence of a single record in a

database should not affect the query result, and thus provides privacy [100].

1.2 Problem Statement

It has become evident that ZKP, HE, and MPC comprise a powerful arsenal of

techniques for private and trustworthy computation. Unfortunately, these techniques

are often a double-edged sword: for one, they are complicated to use, especially for

non-crypto-savvy developers. Utilizing some of these techniques requires expressing

a computation as a polynomial, using commitment schemes, finite field arithmetic,

and many other mathematical and cryptographic tools that many developers are not

familiar with. Therefore, it is crucial to develop tools and general-purpose frameworks

that render PETs easier to program and to adapt into existing applications. For

another, they introduce computational overheads (compared to plaintext computation)

and in some cases, they may even become impractical. Thus, specialized solutions need

to be developed for certain applications in order to be feasible.

One such application arises from the Integrated Circuits (IC) industry. As

ICs play a crucial role in most electronic devices, the security of IC designs is a top

priority in today’s highly interconnected global economy [203]. The IC supply chain

involves acquiring Intellectual Property (IP) cores from third-party vendors (3PIP) and

combining them with in-house designs to manufacture the System-on-Chip (SoC) in

order to fabricate the IC [203,204]. The increased IC demand has led to an increase in

the number of 3PIP vendors that aim to increase their profits by offering reusable IP

5

cores, such as digital signal processors (DSPs) and FFT engines, that can be utilized by

multiple design layouts [225]. Unfortunately, the widespread use of third-party IPs has

attracted malicious actors that attempt to steal the IPs for financial gain [205] or use

them to exfiltrate sensitive information. These malicious entities rely on attacks such

as system-level analysis [226], reverse engineering [69], as well as hardware Trojans that

are triggered under certain conditions (e.g., user input, time-based, etc.) [224] or are

always on [146]. When activated, Trojans can alter device functionality by influencing

output wires or creating a side channel through which sensitive data can be leaked.

As a result, addressing IP piracy and prioritizing security in the IC supply chain is

becoming a crucial concern.

IP core verification is a crucial step of SoC design [95], where the IP consumers

provide functional requirements to the 3PIP vendors and the latter design circuits that

meet these specifications. The correctness of 3PIP designs should be verified prior

to integration, presenting a challenge for 3PIP vendors since they have to prove the

functionality of their designs to system integrators while protecting the privacy of the

circuit implementations. Ensuring that the circuit meets the specified requirements

while being highly testable is crucial in the IC supply chain. Unfortunately, previous

solutions focus only on functional verification and completely dismiss the privacy and

the security of IP designs, leading to IP piracy. In particular, 3PIP vendors cannot

demonstrate the functionality of the generated IP design to the system integrators

(i.e., IP consumers) without revealing their IP, while on the other hand, IP consumers

cannot test the netlist without having access to it. Thus, it is critical to eliminate this

deadlock and enable IP verification both in terms of functionality (e.g., area, power,

frequency) and in terms of security (e.g., the IP is Trojan-free) without disclosing the

design of the IP netlist.

Zero-knowledge proofs offer a promising solution to this problem, where the

3PIP vendors can prove various properties of their private netlists without revealing

any information about them. The ZKPs need to be transparent (i.e., no requirement for

a trusted third party to perform the setup) so that the system integrators have provable

6

guarantees that the 3PIP vendors have not forged false proofs. In this dissertation, we

propose new theoretical and technical solutions to solve this deadlock and thwart IP

piracy.

Another such application focuses on privacy-preserving analytics and crowd-

sourcing based on sensitive data from multiple individuals and organizations while

protecting the privacy of each participant. This is crucial in today’s technology-driven

world, where companies collect large amounts of user data for analysis (e.g., histograms,

heavy-hitters, etc.) and improvement purposes. A notable example is smart metering,

which can be applied to multiple participating households. Smart meters communi-

cate the electrical usage almost in real-time to provide better system monitoring and

customer billing than traditional meters. However, there are inherent privacy concerns

since fine-grained measurements (e.g., one every 15 minutes) may reveal personal infor-

mation about the number of people in a household and their activities [70,90]. Differ-

ent examples of privacy-preserving statistics and analytics include providing restaurant

recommendations, traffic avoidance (i.e., different roads may have different densities –

highways are busier than smaller suburban roads), as well as advertising (e.g., busi-

nesses can identify crowded shopping areas and target their marketing efforts) while

preserving the privacy of the participants.

Existing PETs enable computing some of the aforementioned examples by al-

lowing participants to encrypt their data and submit it to one or more servers that

run MPC or HE. Unfortunately, generic solutions suffer from high overheads and most

importantly, they do not verify the participants’ encrypted inputs, which allows ma-

licious parties to tamper with the encrypted computation. Therefore, it is of utmost

importance to devise new optimized protocols tailored for real-world privacy-preserving

analytics while verifying participants’ inputs.

1.3 Contributions

This dissertation focuses on verifiable and private computation. An overview is

presented in Fig. 1.1. In particular, Chapter 3 introduces a framework that accelerates

7

Zilch: A Framework for Deploying
Transparent Zero-Knowledge Proofs

Chapter 3

Masquerade: Verifiable
Multi-Party Aggregation with

Secure Multiplicative Commitments

Chapter 6

Zero-Knowledge Proofs, Homomorphic
Encryption, Commitments

Chapter 2

Privacy-Preserving IP Verification

Chapter 4

Privacy-Preserving Trojan Detection

Chapter 5

PLASMA: Private, Lightweight
Aggregated Statistics against

Malicious Adversaries

Chapter 7

Preliminaries

Verifiability Privacy

Figure 1.1: Overview of this dissertation.

and simplifies the deployment of ZKPs for any application transparently, i.e., without

the need for a trusted setup. To foster usability, our framework incorporates a novel

cross-compiler from an object-oriented Java-like language tailored to ZKPs as well as

a powerful API that enables integration of ZKPs within existing C/C++ programs.

Chapters 4 and 5 introduce Pythia and zk-Sherlock, two specialized ZKP frameworks

that solve a major problem in the globalized integrated circuit (IC) supply chain. Both

8

these works utilize the Zilch framework as a back-end for ZKPs. Pythia allows third-

party intellectual property (3PIP) vendors to prove to system integrators the functional

properties of their circuit designs while protecting the privacy of the circuit implemen-

tations. On the other hand, zk-Sherlock enables 3PIP vendors to prove an intellectual

property (IP) design is free of hardware Trojans (i.e., attacks that alter device func-

tionalities when triggered or create a side channel to leak sensitive information such as

cryptographic keys) without disclosing the corresponding netlist. To remain hidden,

some of these Trojans are “rarely activated”, meaning that for most common inputs

there is no switching activity in the area of the circuit where the Trojan lies. This

research direction takes advantage of this observation to simulate the circuit with mul-

tiple random input patterns and keep track of the switching activity throughout the

whole circuit. Detecting switching activity in all the gates of the circuit with a small

number of inputs indicates the absence of Trojans, whereas if there is a part of the

circuit that does not have any switching activity even after a relatively large number

of random inputs, we mark that as a potential culprit. Working together, these two

frameworks can mitigate the threat of IP reuse and piracy in the IC industry.

Next, in Chapters 6 and 7, we introduce two protocols for computing privacy-

preserving statistics. The former (i.e., Chapter 6), describes Masquerade, a specialized

protocol for computing private statistics such as aggregations, means, and histograms

without revealing anything about participants’ data. Masquerade privately verifies the

validity of shared data points to ensure the integrity of the statistics against untrusted

participants and provides public verifiability. The latter (i.e., Chapter 7), presents

a novel protocol, called PLASMA, for finding the most popular participant data in

a privacy-preserving way. This problem is known as computing the “heavy-hitters”.

PLASMA achieves full security against the collusion of a malicious server and malicious

clients, i.e., the privacy of participants is maintained even if one of the servers colludes

with multiple clients and deviates from the protocol specification. Additionally, even

in that scenario, PLASMA guarantees the correctness of the output by allowing the

servers to non-interactively verify client inputs and preemptively reject malformed ones.

9

1.3.1 General-Purpose Transparent Zero-Knowledge Proofs

One of our first works introduces Zilch, a framework for developing transparent

zero-knowledge proofs [184]. While state-of-the-art ZKP protocols rely on arithmetic

circuits that need to be regenerated for each different computation, in Zilch we have

implemented a MIPS-like processor model that allows verifying each instruction in-

dependently and composing a proof for the execution of the target application. Our

ZKP-tailored processor, called zMIPS, uses instruction sequences rather than static

arithmetic circuits. To further foster usability, Zilch incorporates a novel compiler

from our customized object-oriented Java-like language, called ZeroJava, to zMIPS

instructions. Finally, Zilch exposes a powerful API that enables the integration of

ZKP within existing C/C++ programs. We demonstrate the flexibility and ease of use

of Zilch using two real-life applications (i.e., the first focuses on secure auctions, while

the second on range proofs).

1.3.2 Functional and Security Verification of Intellectual Property (IP)

Next, we focus on resolving the deadlock between third-party intellectual prop-

erty vendors (3PIP) and IP consumers by introducing novel zero-knowledge construc-

tions to prove various functional and security properties of netlists without disclosing

anything about them. More specifically, in [178, 182] we introduce Pythia, a frame-

work that enables 3PIP vendors to convince system integrators about various functional

properties of a circuit (e.g., area, power, frequency) without disclosing its netlist (i.e.,

in zero-knowledge). Our approach comprises a circuit compiler that transforms ar-

bitrary netlists into a zero knowledge-friendly format and a library of modules that

provide cryptographic guarantees for various properties of the netlist while hiding the

actual gates.

Furthermore, in zk-Sherlock [179] we extend this line of work to enable 3PIP

vendors to convince system integrators that their IPs are free of hardware Trojans (i.e.,

they are safe to use), while also maintaining the privacy of their netlist designs. We use

10

a specialized circuit compiler that transforms arbitrary netlists into a zero-knowledge-

friendly format and introduces a versatile Trojan detection module that maintains the

privacy of the actual netlist. All these works (i.e., [178, 179, 182]) utilize the Zilch

framework [184] as a back-end for ZKPs.

1.3.3 Privacy-Preserving Analytics

Next, we focus on protocols for privacy-preserving statistics and analytics on

data of multiple individuals and organizations while providing verifiable guarantees of

the correctness of the computation. More specifically, our work in Masquerade [183]

computes private statistics, such as sum, average, and histograms without revealing

anything about participants’ data. An important aspect of any private computation

over data of multiple entities is to provide provable guarantees on the integrity of

data aggregations. To ensure the integrity of data aggregations, we propose a tailored

multiplicative commitment scheme and publish all the participants’ commitments on

a ledger to provide public verifiability. Lastly, in any private crowd-sourcing proto-

col that assumes multiple participants, it is safe to assume that some of them may

act maliciously and attempt to poison the aggregation results by submitting invalid

inputs. We complement Masquerade with two ZKP protocols that detect malicious

participants who attempt to poison the aggregation results by submitting invalid in-

puts. Masquerade ensures the validity of shared data points before being aggregated,

enabling a broad range of applications.

Finally, we propose PLASMA [181], a protocol for privacy-preserving analyt-

ics such as heavy hitters and histograms that utilizes three data-collection servers.

PLASMA allows computing private analytics while achieving full security (i.e., both

privacy and correctness) against a collusion of a malicious server and malicious clients.

Our framework allows each client to non-interactively send a message to the servers

and then go offline. We introduce a novel primitive, called verifiable incremental dis-

tributed point function (VIDPF) that employs lightweight techniques based on efficient

11

hashing and allows the servers to non-interactively validate client inputs and preemp-

tively reject malformed ones without learning anything about the clients’ submissions

(i.e., in zero-knowledge).

12

Chapter 2

PRELIMINARIES

2.1 Models of Computation

There exist many different models of computation, some less powerful yet sim-

pler, while others are more sophisticated. In the context of this article, we delve into

two models that enable the execution of arbitrary computer programs: Turing machines

(TMs) and arithmetic circuits (ACs).

A Turing Machine is a model of computation that consists of an infinite tape, a

tape head, and a finite table of rules. At each step, the tape head reads a symbol from

the tape and determines which action to perform from the finite table and then either

moves one cell to the left or right or halts the computation. This abstract machine,

despite its simplicity, is capable of executing any algorithm given as a set of rules for an

input provided in the tape [218]. A universal Turing machine (UTM) is a TM whose

algorithm (table of rules) implements a simulator for any arbitrary TM with arbitrary

input tape. A fundamental difference between a TM and a UTM is that the former is

programmed with a rules table to evaluate a specific problem, while the latter works

with the description of any TM and thus can evaluate any program.

An Arithmetic Circuit over a field F consists of input and output gates that are

connected with intermediate gates through wires. The input values proceed through

a sequence of gates performing either addition (+) or multiplication (×); a simple

example is illustrated in Fig. 2.1. Transforming certain classes of programs into ACs

can be straightforward if they only involve the addition and multiplication of elements

of the finite field. Notably, this approach is equivalent to the evaluation of polynomials

13

Figure 2.1: Example of a computation using arithmetic circuits. The output can be
expressed using a polynomial expression.

over a field F, so the outputs of the arithmetic circuit can be expressed as a set of

polynomials over the input variables.

Turing machines and ACs are equivalent models of computation, i.e., given a

program and an input, both models can compute the same output. In fact, any Turing

machine can be unrolled into a circuit somewhat larger than the number of steps in

the computation [241]. Our abstract machine in Zilch offers a more flexible model of

computation since it is the equivalent of a UTM: its input is a program defined as a

sequence of instructions that can consume any given input.

2.2 Principles of ZKPs and VC

2.2.1 Verifiable Computation

The typical scenario in VC is that the verifier (V) sends a program description

Ψ and an input x for that program to the prover (P). Then, P computes and returns

the output y = Ψ(x) of the execution of that program on input x to V along with a

short proof which can be efficiently verified by V . In this case, both parties express

the computation Ψ as a set of constraints involving x and y. Those constraints are

essentially equations over a finite field F modulo a large prime. Consecutively, P solves

the constraints (i.e., finds a satisfying assignment), where a solution exists if and only

if y = Ψ(x). These constraints are equivalent to ACs [37, 195], where the gates are

operations in F and the wires are elements in F.

14

2.2.2 Zero-Knowledge Proofs

To also make the aforementioned short proofs privacy-preserving, P can pro-

vide her own private input w to the computation, referred to a witness. Thus, Ψ now

becomes a function of two inputs such as y = Ψ(x,w). If V can be convinced that the

statement y = Ψ(x,w) is True without learning anything about w, then the scheme is

a ZKP protocol; such protocols become more powerful when the witness is a solution

to an NP-hard problem. Most existing works leverage ACs where the algorithm is

transformed to constraints and the proof convinces V that there exists a witness sat-

isfying these constraints. Nevertheless, an important limitation of earlier works (e.g.,

[238]) is the need to know the target NP-hard algorithm beforehand, rendering them

non-universal. In a simple, yet powerful example, P wants to prove that she knows

a preimage (secret witness w) for a hash digest chosen by V , without revealing what

the preimage is [119]. To formalize the above statement, let us assume an algorithm

Ψ that implements a cryptographic hash function (e.g., SHA-256), compares the com-

puted output to a public input x (i.e., the hash digest chosen by V) and outputs a

Boolean value y whether the two hashes match or not:

y = Ψ(x,w) =

True, if SHA-256(w) ≡ x

False, otherwise

In a zero-knowledge protocol, P computes the value Ψ(x,w) locally without

revealing w, and provides strong cryptographic guarantees to V that Ψ was evaluated

faithfully. If the result is True, then V is convinced that P knows a correct witness

w to make SHA-256 return x. The most prominent ZKP constructions rely either on

arithmetic circuits [113,195] or on random access machines (RAM) [33,37]. The former

class requires an expensive, trusted pre-processing phase that binds the two parties to

a static arithmetic circuit for each different Ψ. Conversely, RAM-based protocols are

more powerful and flexible as they do not depend on a specific computation and can

verify any state transition in the RAM. Notably, we can also view the computation Ψ

as a state machine SM executing a procedure as a sequence of state machine transitions.

15

2.2.3 Properties of Proof Systems

Every proof system should satisfy two basic properties:

• Completeness. If the statement y = Ψ(x) is True, an honest P should be able

to convince an honest V . In other words, given the same set of inputs, V should

yield the same result y through the protocol as P .

• Soundness. If the statement y = Ψ(x) is False, a malicious P cannot convince

an honest V that it is True (except with negligible probability).

If the proof system also preserves the privacy of the prover’s inputs, then it would

satisfy the zero-knowledge property:

• Privacy. If the statement y = Ψ(x,w) is true, P can convince V without leaking

any information about w.

In ZKP systems, we have two additional desired properties:

• Transparency. The proof system does not require any trusted setup (e.g., [31,

34,61,239]); any randomness used by transparent frameworks is public coins.

• Scalability. The proof system can gracefully handle programs and inputs of

larger sizes, which makes it more practical. This property is applicable to both

the prover and the verifier: The scalability of P corresponds to the overhead of

generating the proof and convincing V , and it should be somewhat similar to the

time it would take to re-execute the target program. Likewise, the scalability

of V entails that verification times are exponentially smaller than the cost of

re-executing the target program (scalable verifiers are referred to as succinct).

A proof system that satisfies all the above properties is a Zero-Knowledge Scalable

Transparent ARgument of Knowledge (zk-STARK) [31, 34].

16

2.2.4 A Primer on zk-STARKs

Overview. Typically, a ZKPK involves (1) a witness input w (i.e. the piece of data

we want to prove knowledge for), and (2) verifiable execution of a public algorithm

that tests an assertion about w. For example, the latter can be an algorithm A that

“multiplies two integers and compares the result with a composite N ,” whereas the

witness can be a set of primes p, q. In ZKPK, we can prove knowledge of correct p

and q if we can prove that A was executed faithfully on the witness input. Likewise,

A can be a modular Fibonacci loop instantiated with integers a0, a1 so that each loop

computes ai = ai−1 + ai−2 mod p, where p is a large prime that defines a finite field.

In this case, if a0 = 1 and a1 = w is our witness, we can prove knowledge of a suitable

a1 that returns the anticipated output y′ after a large number of loops (i.e., aT = y′ at

step T).

The zk-STARK methodology enables proving the integrity of the computation

of algorithm A after T steps on input w that yields an output y; this is possible using

arithmetization and low-degree testing operations on polynomials over finite fields [31].

Specifically, arithmetization is the reduction of a computational problem (i.e., verifying

a computation) into an algebraic problem, such as checking that a certain polynomial

is of low degree. In zk-STARKs, arithmetization comprises three steps: (a) generating

the execution trace of algorithm A for T steps, (b) generating a set of polynomials

that express constraints for each execution step (e.g., if two values are multiplied, the

result equals their product), and (c) combining the execution trace and polynomial

constraints into a single polynomial Q. Finally, the zk-STARK approach shows that

it is possible to generate a ZKPK by employing error-correction methods (specifically

Reed-Solomon proximity testing [31]) and show that the generated polynomial Q is

actually low-degree. In this case, V is convinced that a polynomial is of low-degree

(and thus the integrity of the computation of A) with only a small number of queries

to P [31].

Low-Degree Extension and Commitment. In the first step in a zk-STARK proof,

17

P encodes the execution trace of algorithm A into a sequence of states. In our earlier

modular Fibonacci loop example, this would be the set {a0, a1, a2, . . . , aT} (note, P

knows the correct witness a1). P then generates a sequence {b0, b1, . . . } and pairs each

state in the trace with the corresponding bi (e.g., create (bi, ai) pairs). These pairs are

interpreted as (x, y) points and are used to efficiently compute the interpolating trace

polynomial F (B) across them with the Lagrange interpolation method. Knowing the

coefficients of the trace polynomial, P fixes an R so that R ≫ T computes its low-

degree extension (LDE), i.e., the values of F (B) for B = {bT+1, bT+2, . . . , bR}. Finally,

P computes a Merkle-tree over the sequence {F (b0), F (b1), . . . , F (bR)} and commits to

the tree root.

Arithmetization. zk-STARK employs a formal algebraic intermediate representation

(AIR) of the target algorithm A as a set of low-degree polynomials {P1, . . . , PK} that

encode K constraints about the execution trace of the computation [31]. In this case,

the transition from step T to step T + 1 in the computation is valid if and only if all

constraints are satisfied (i.e., P1 = · · · = PK = 0). In our Fibonacci example (with

interpolated trace polynomial F), our constraints are F (x+ 2)− F (x+ 1)− F (x) = 0

for x ∈ {b0, b1, . . . , bT−2}, F (x)− 1 = 0 for x = b0, and F (x)− y′ = 0 for x = bT , where

all operations are mod p.

By the polynomial remainder theorem, if b is a root of a polynomial Q(x), then

Q(x) = (x− b)P (x), i.e., P (x) = Q(x)/(x− b) is a polynomial. Therefore, we can can

compute the AIR polynomials by factorizing the constraints of the computation. In our

Fibonacci example we have P1(x) = (F (x)− 1)/(x− b0), P2(x) = (F (x)− 1)/(x− bT),

and P3(x) = (F (x + 2) − F (x + 1) − F (x))/[
∏T−2

i=0 (x − bi)]. Moreover, zk-STARK

computes the Composition Polynomial (CP) as the linear combination of all Pis and

applies an LDE up to R points.

Low-degree testing. The goal of this step is to convince V that the distance between

the computed CP and a low degree polynomial is relatively small, where the distance

between any function and a polynomial of degree d is defined as the number of x

18

inputs where their values are different. In zk-STARK, this is possible using the FRI

operation (Fast Reed-Solomon Interactive Oracle Proofs of Proximity), which reduces

the problem of proving that a function of domain size R is close to polynomial of

degree bounded by d into a new smaller problem where the function domain size is

R/2 and the polynomial degree is d/2 [31]. FRI is applied iteratively to CP (treated

as a function of domain size R after LDE) until d = 1; each iteration replaces every

polynomial power xi with x⌊i/2⌋ and the coefficients of same powers are added. Also,

after each FRI iteration, P computes a Merkle tree of the values of CP over its entire

domain and the tree root is committed.

Decommitment Step. In this step, V is convinced that the original execution trace

for algorithm A was computed faithfully by sending queries to P . Specifically, the

verifier selects a small set of bi values for i ∈ {0, 1, . . . , R} and for each one the prover

reveals the Merkle-tree path for her commitments for each FRI step and the LDE of

the trace polynomial F . V uses the values of F and reconstructs the corresponding CP

values (for each FRI step). If all commitments are correct, V is convinced the proof is

sound with very high probability [31].

2.2.5 Fiat-Shamir Heuristic

Fiat and Shamir introduced a method (known as the Fiat-Shamir heuristic) that

eliminates the interaction in public coin proof-of-knowledge protocols and make them

non-interactive [106]. Essentially, the Fiat-Shamir heuristic relies on the random oracle

model [28] in order to substitute the random challenge generated by the verifier with

a challenge that is the output of a hash function over the previous protocol messages.

The sequence of messages (and most importantly their commitments) in the protocol

are referred to as a transcript. Modeling the hash function as a random oracle ensures

the unpredictability of the verifier, and public coins are obtained from the hash digest

bits using the transcript as input. However, this construction is secure as long as the

hash function is indeed a random oracle that prevents the prover from guessing its

output before the commitments are generated.

19

Algorithm 1 Lightweight Collision-Resistant Hash Function

Input: k ∈ Zq, k
′ ∈ F2n , m = (m1,m2, . . . ,mℓ) ∈ Zℓ

q

1: procedure LCRHFk,k′(m)
2: H ← m1 · k mod q ▷ q is a prime
3: for i← 2 to ℓ do ▷ Horner’s method
4: H ← k · (H+mi) mod q ▷ ℓ− 1 iterations

5: return SpeckEncryptk′(H) ▷ Speck alg. [21]

2.3 Lightweight Pseudorandom Functions with Extended Input

A deterministic function that can be efficiently computed on an input block and

generate an output block that is computationally indistinguishable from an output

generated by a truly random function is called a pseudorandom function (PRF) [168].

In practice, PRFs can be instantiated using secure block ciphers (such as Speck [21]),

which combine a secret key with an input plaintext block to transform the plaintext into

a (randomly looking) ciphertext block. Leveraging a universal hash function (UHF),

the fixed input block size of a PRF can be extended to a secure PRF of arbitrary input

size by applying a UHF operation before invoking the PRF (i.e., a PRF (UHF (·))

composition) [217, Section 4.2].

Based on the blueprint of Carter and Wegman [67], a UHF U can be con-

structed as a polynomial of degree-ℓ modulo a prime number q that is evaluated at

input point k. As discussed in [230], U can be defined over ℓ input blocks m1 to mℓ

(treated as polynomial coefficients) and a secret key k. In this case, Uk(m1, . . . ,mℓ) =

m1k
ℓ +m2k

ℓ−1 + · · ·+mℓk mod q, with mi ∈ Zq, is a lightweight UHF with a collision

probability ε ≤ ℓ/q for any pair of distinct inputs [158]. Using Horner’s method, U

can be computed iteratively and can be encrypted using the Speck cipher with key k′

to construct an efficient, secure PRF with input extended over ℓ blocks. This PRF

prevents adversaries from detecting if a collision has occurred and is secure against

forgery attacks [147]. Alg. 1 computes the hash digest of message m with keys k, k′.

2.4 Paillier Cryptosystem

Homomorphic encryption allows performing certain mathematical operations on

encrypted data that correspond to applying related operations on unencrypted data,

20

without performing any decryptions. The Paillier partially homomorphic encryption

(PHE) scheme supports homomorphic addition of encrypted messages [194]. Pail-

lier uses a public/private key pair and supports probabilistic encryption (paired with

deterministic decryption); its additive homomorphic property can be summarized as

follows: Given two ciphertexts c1 = Encpk(m1) and c2 = Encpk(m2), one can compute

c = Encpk(m1+m2) without having to decrypt c1 or c2. (Here we omit the randomness

for clarity.) Below we outline the basic operations of the Paillier cryptosystem.

Key setup. Let N be the security parameter defined as the product of two large

primes p and q, such that GCD(pq, (p − 1)(q − 1)) = 1, and λ = LCM(p − 1, q − 1).

Select a random generator g in Z×N2 and ensure thatN divides the order of g by checking

whether µ = (L(gλ mod N2))−1 mod N exists, where L is defined as L(u) = (u− 1)/N.

The public key is pk = (N, g) and the secret key is sk = (λ, µ).

Encryption. Randomly select a value ρ from Z×N so that GCD(ρ,N) = 1. Paillier

encryption is defined as a unique correspondence between ρ and plaintext m ∈ ZN

with a value c ∈ Z×N2 so that c = Encpk(m, ρ) = gm · ρN mod N2.

Decryption. The decryption algorithm performs an inverse mapping from Z×N2 to ZN

and is defined as m = Decsk(c) = (L(cλ mod N2) · µ) mod N .

Homomorphic operations. The Paillier cryptosystem has a notable homomorphic

property that enables the product of two ciphertexts to decrypt to the sum of their

corresponding plaintexts, based on the following observation:

Encpk(m1, ρ1) · Encpk(m2, ρ2)

=
(
gm1 · ρ1N

)
·
(
gm2 · ρ2N

)
mod N2

= gm1+m2 · (ρ1 · ρ2)N mod N2

= Encpk(m1 +m2, ρ1 · ρ2).

(2.1)

In general, the product of P ciphertexts is equivalent to the encryption of the summa-

tion of the P corresponding plaintexts (again, we omit the randomness ρ):

P∏
i=1

Encpk(mi) = Encpk

(
P∑
i=1

mi

)
mod N2. (2.2)

21

Finally, the Paillier cryptosystem allows multiplication of a ciphertext with a constant,

which results in the encryption of the product of the plaintext with the constant, as

follows:

Encpk(m1, ρ)
m2 =

(
gm1 · ρN

)m2 mod N2

= gm1·m2 · ρN ·m2 mod N2 = Encpk(m1 ·m2, ρ
m2).

(2.3)

2.5 Commitment Schemes

A secure commitment scheme is a cryptographic primitive that uses an algorithm

Com to enable one party, called a sender S, to commit to a value x while keeping

it hidden. To do so, S publishes a value c = Com(x, r) that was generated using

randomness r; later, S can “open” the commitment by disclosing the used values x, r.

The algorithm Com binds S to the hidden value x and offers provable guarantees to

a receiving party R that the value revealed later was actually the same as the one S

originally committed to when c was first published. Early commitment schemes proved

that it is possible for example to have two parties play a card game or flip a coin via

the telephone without having to trust each other [43,58,213].

For any commitment scheme to be secure, it must satisfy two basic proper-

ties: binding and hiding. The first property guarantees that upon committing to a

secret value x, S cannot change x later. Formally, for all non-uniform probabilis-

tic polynomial-time algorithms that output (x1, r1) and (x2, r2), the probability that

Com(x1, r1) = Com(x2, r2) with x1 ̸= x2, is negligible. The second property requires

that the commitment c should not reveal any information about the value x before

opening, that is, for all non-uniform probabilistic polynomial-time algorithms, the

probability of extracting any information about x from c should be negligible. A

more recent commitment scheme, named after T. P. Pedersen, features an additive

homomorphic property so that for messages x1 and x2 with blinding factors r1 and r2

we have: Com(x1, r1) · Com(x2, r2) = Com(x1 + x2, r1 + r2) [197].

22

2.6 Secret Sharing

Secret sharing schemes allow a dealer to distribute shares of her data to multiple

parties so that each share does not reveal anything about the original data [25]. Secret

sharing allows any sufficient subset of parties to reconstruct the secret by combining

their shares and at the same time, any smaller subset of parties cannot reveal any

partial information about the secret. In MPC, each party creates secret shares of

their data and shares them with the other parties. MPC utilizes secret sharing to

compute arbitrary arithmetic functions as arithmetic circuits [25, 87, 148, 211]. After

the computation is done, the parties combine the shares to reconstruct the final output.

2.7 Distributed Point Functions (DPF)

Function secret sharing (FSS) [55] enables splitting the output of a function

f into additive shares, where each share of the function is represented by a separate

key. Each key allows the owner to efficiently generate an additive share of the output

f(x) on a given input x. DPFs are a special case of FSS where f is a point function

fα,β(x) := β if x = α, or 0 otherwise. A DPF consists of two algorithms: Gen and Eval.

The Gen algorithm takes as input the function fα,β and outputs two keys key0 and key1.

The Eval algorithm evaluates an input x such that Eval(0, key0, x)+Eval(1, key1, x) = β

for x = α, and 0 for x ̸= α. Privacy ensures (α, β) remains hidden from an adversary

in possession of one of the keys (but not both). We discuss DPFs and other stronger

notions, such as incremental DPFs (IDPF) [49] and verifiable DPFs (VDPF) [94].

2.7.1 Incremental DPF (IDPF)

An IDPF [49] generalizes the DPF notion by secret-sharing an “incremental

point function”, i.e., the “point” in DPF is now a path on a full binary tree from the

root to one of the leaves. Here we take α value is a bit string and fα,β(x) = β if x is

a prefix of α and 0 otherwise. Although using multiple DPFs could achieve the task

of having a path from the root to the leaves, IDPFs perform this task with linear cost

23

in the number of bits n for strings that share common prefixes [49]. Using standard

DPFs this cost would grow to O(n2).

Similarly to DPFs, an IDPF has two main operations, a key-generation algo-

rithm, and an evaluation algorithm. The key-generation algorithm takes as input the

function fα,β and outputs two keys key0 and key1. The evaluation algorithm takes as

input a candidate prefix string x and a key and returns a share of fα,β(x).

2.7.2 Verifiable DPF (VDPF)

The work of [94] considers efficient hashing-based verifiable properties to en-

sure that a DPF key is well-formed. Moreover, VDPFs enable a batched verification

procedure with communication proportional to the security parameter. However, the

verifiability property of VDPFs works only for DPF and not for IDPF. We present the

VDPF algorithms below:

• VDPF.Gen(1κ, fα,β)→ (key0, key1). Given the security parameter 1κ and a func-

tion f , output keys key0, key1.

• VDPF.BatchEval(b, keyb,X) → (Yb, πb) : For b ∈ {0, 1}, batch verifiable eval-

uation takes a set X := {x1, x2, . . . , xm}, where each xi ∈ {0, 1}n. It outputs

Yb := {yb,1, yb,2, . . . , yb,m}.

Correctness ensures that Y0 + Y1 = fα,β(X). Privacy ensures that an adversary in

possession of one of the keys (but not both) does not obtain any information about

the function f . The verifiability property of VDPF ensures that the proofs π0 and π1

are the same if and only if they have been generated from valid keys key0 and key1 of

a point function.

24

Chapter 3

ZILCH: A FRAMEWORK FOR DEPLOYING TRANSPARENT
ZERO-KNOWLEDGE PROOFS

As cloud computing becomes more popular, research has focused on usable

solutions to the problem of verifiable computation (VC), where a computationally

weak device (Verifier) outsources a program execution to a powerful server (Prover)

and receives guarantees that the execution was performed faithfully. A Prover can

further demonstrate knowledge of a secret input that causes the Verifier’s program to

satisfy certain assertions, without ever revealing which input was used. State-of-the-art

Zero-Knowledge Proofs of Knowledge (ZKPK) methods encode a computation using

arithmetic circuits and preserve the privacy of Prover’s inputs while attesting to the

integrity of program execution. Nevertheless, developing, debugging, and optimizing

programs as circuits remains a daunting task, as most users are unfamiliar with this

programming paradigm.

In this work, we present Zilch, a framework that accelerates and simplifies the

deployment of VC and ZKPK for any application transparently, i.e., without the need

for a trusted setup. Zilch uses traditional instruction sequences rather than static

arithmetic circuits that would need to be regenerated for each different computation.

Towards that end, we have implemented zMIPS: a MIPS-like processor model that

allows verifying each instruction independently and composing a proof for the execution

of the target application. To foster usability, Zilch incorporates a novel cross-compiler

from an object-oriented Java-like language tailored to ZKPK and optimizes our zMIPS

model, as well as a powerful API that enables integration of ZKPK within existing

C/C++ programs. In our experiments, we demonstrate the flexibility of Zilch using

25

two real-life applications and evaluate Prover and Verifier performance on a variety of

benchmarks.

3.1 Introduction

Cloud computing offers on-demand computational power, emerging as an ideal

solution for outsourcing computation from relatively weak devices (phones, laptops,

IoT). However, delegating computation to an untrusted third-party running unreliable

software, and potentially untested – or malicious [227, 228] – hardware, comes with

many risks [223]. Data may even be corrupted while at rest [170], or in transit. More-

over, cloud service providers may have monetary incentives to either skip computation

steps (e.g., skip computing all decimal points on a big number) or completely counter-

feit a result. How can we trust the results computed by the cloud and be assured that

the computation was carried out faithfully?

Verifiable Computation (VC) leverages mathematical and cryptographic primi-

tives, such as probabilistically checkable proofs (PCPs) [11, 12], interactive proofs [15,

123,124,169,212] and commitment-based argument schemes [41,58,112,113,151,175],

to provide strong guarantees to a client on the correct evaluation of a statement in

NP. In these schemes, one party P (the prover) generates and commits to a proof that

the computation was executed faithfully and another party V (the verifier) performs

unpredictable tests to efficiently check the integrity of the execution. Given an honest

P , these tests can convince V . Conversely, a faulty execution would be noticed by the

verifier with a very high probability. Intuitively, in such protocols the overhead for

the prover and the complexity of performing the tests for V should be less than the

whole execution on the computationally-weak device; i.e., the verifiable outsourcing is

practical. Numerous systems [236–238] strive to bring verifiable outsourcing one step

closer to practicality.

A notable extension to verifiable computation is to enable the prover to apply

the computation on a secret input – also called the witness – which is never revealed

to V . This approach, known as a zero-knowledge proof (ZKP), allows the prover to

26

convince the verifier that she knows a secret without actually disclosing it [33, 37, 84,

195]. For instance, ZKPs can be leveraged to log in to a website without typing a

password by simply sending a proof that you “know the valid password”. ZKP-based

authentication eliminates the need for maintaining server-side password databases,

sending passwords via unsafe channels, having to digitally sign challenge messages

that could later be misused, or even having to disclose an intellectual property for

functional verification [182].

Although ZKPs and VC have numerous applications, many state-of-the-art so-

lutions (e.g., [33, 37, 195, 222, 236]) suffer from a severe limitation: they require a

trusted authority to generate the public parameters for the system and then elimi-

nate any knowledge of the randomness used to generate them (referred to as toxic

waste). A malicious third party that obtains access to that toxic waste can forge

false proofs and trick an honest verifier. Having a single point of failure in VC and

ZKP systems that rely on cryptographic primitives seems contradictory. As a result,

systems that use public randomness and thus have a transparent setup have been pro-

posed [7,31,34,61,156,239,249]. Likewise, the works in [62,173] provide constructions

leveraging updatable common reference strings (CRS).

Another observation about the computational model followed by most VC and

ZKP systems is the need to express computer programs as arithmetic circuits, or equiv-

alently as a set of arithmetic constraints over a finite field F. Works such as [84,195,238]

provide a compiler from a high-level language (typically a subset of C) to arithmetic

circuits, however, they require the circuit to be fixed offline during the trusted setup

phase. Notably, this conversion is laborious as it is hard to express arbitrary algorithms

using arithmetic circuits and even harder to edit, debug, or optimize these VC circuits

without deep knowledge of cryptography and circuit design. Furthermore, these cir-

cuits are program-specific and cannot be reused to verify other programs, which renders

them non-universal. An alternative is to employ a Random Access Machine model that

provides a low-level language, such as TinyRAM [37], that can define a universal circuit.

However, program development using such esoteric machine models without high-level

27

toolchain support still requires significant effort from a programmer’s perspective.

Unfortunately, neither of these models of computation is natural for most non-

crypto-savvy programmers. Thus, an important objective of this work is to develop a

methodology for verifiable computation and zero-knowledge proofs of knowledge using

a convenient programming model that does not rely on any trusted third party. Our

approach is to leverage a programming model that is based on a sequence of instructions

instead of a circuit netlist. At the same, an additional goal is to optimize performance

while ensuring programming convenience.

The main contribution of this work is the development of Zilch1, a specialized

framework to facilitate the development of interactive zero-knowledge proofs for any

application. Zilch enables the development of algorithms used for VC and ZKPs using

our high-level language called ZeroJava, which is compiled into an intermediate repre-

sentation (IR) that is ultimately transformed into a set of mathematical constraints.

ZeroJava is an intricately chosen subset of Java specifically tailored for deploying zero-

knowledge arguments, while the IR statements are evaluated in our custom abstract

machine (called zMIPS) that is adopted from a MIPS processor. To generate and

verify proofs, Zilch leverages the state-of-the-art zk-STARK library [31] that does not

rely on any trusted third-party setup (i.e., contrary to other libraries [33, 37, 222]).

Moreover, zk-STARK is resilient against attacks by large-scale quantum computers2

and its security relies on collision-resistant hash functions [151] and the random oracle

model [106]. In addition to newly developed applications that can be developed in

ZeroJava, our Zilch framework offers a powerful API that is compatible with C/C++

programs to facilitate embedding VC and ZKPs into existing code. In all cases, Zilch

enables a prover to interact with a verifier automatically over a network.

Contributions. Our contributions are summarized as follows:

1 Zilch / zIltS / : zero; nothing. The search came up with zilch.

2 We refer to a system’s property of being resilient to known attacks by large-scale
quantum computers as plausible post-quantum secure.

28

• Design of zMIPS, an abstract machine that is adopted from the MIPS processor

with judiciously selected instructions that create arithmetic circuits and enable

zero-knowledge proofs for any target application,

• Design and implementation of the ZeroJava high-level language, with a cross-

compiler from ZeroJava to zMIPS and an assembly optimizer,

• Development of the Zilch framework and API to facilitate the construction of

ZKPs for existing C/C++ applications.

3.2 The Zilch Framework

3.2.1 Our Threat Model

Cheating Prover. To mitigate the risks applicable to our approach for computational

integrity, our threat model assumes an adversary given access to the prover’s capabil-

ities. The adversary succeeds if she produces a false statement that will convince V

to accept it. In the VC scenario, the cheating P has incentives to skip some steps or

completely forge the result, while in the ZKPK case, the adversary tries to convince V

that she knows the witness without actually knowing it. Zilch features a configurable

security parameter λ, which determines the probability (≤ 2−λ) that an adversary can

successfully deceive an honest verifier in the above experiments. Thus, λ defines the

soundness property of the proof system.

Cheating Verifier. On the other hand, a malicious verifier is assumed to behave

without restrictions and not necessarily follow the protocol specification in order to

extract any information about the secret input w. If P follows the protocol correctly

and the statement is true, V will never learn any (private) witness data from the inter-

action with the prover except the fact that the statement is true, (i.e., zero-knowledge

property). Moreover, we don’t consider trivial cases where V completely withdraws

from the protocol of the two parties.

Post-quantum resilience. Many different VC and ZKP frameworks rely on ellip-

tic curves and pairings [33, 36, 37, 112, 126, 129, 195, 210, 222], as well as the discrete

29

Figure 3.1: Zilch Framework Overview. Using our ZeroJava compiler, P provides the
assembly code to Zilch along with the private and public inputs. Zilch first determines
the steps bound T automatically and then computes the result y. Finally, P and V
interact over a limited number of rounds and the verifier either accepts the proof (i.e.,
she is convinced) or rejects it.

logarithm problem [51, 61]; this makes them susceptible to attacks using quantum

computers [39, 199, 215, 216]. Aurora [34], Ligero [7], and zk-STARKs [31] rely on

collision-resistant hash functions, which renders them resilient to known attacks from

quantum computers. Likewise, since Zilch utilizes zk-STARK as its back-end proof

system, it inherits the same post-quantum resilience property.

Transparency. Previous VC and ZKP solutions (e.g., [33,37,129,195,222,238]) require

a third party to set-up the system with non-public randomness. If that party is not

trustworthy, this secret randomness could be misused to generate false proofs and

compromise the system’s security. Zilch, like other state-of-the-art PCP-based systems

(e.g., [7, 31, 239]) is transparent as it relies only on public randomness and does not

need any trusted third party during its set-up phase.

3.2.2 Key Observations in our Methodology

Zilch aims to facilitate proving computational integrity statements; in partic-

ular, our goal is to convince a verifier that a computer program implemented as a

sequence of well-defined instructions returns an expected output for a set of inputs.

For our methodology, we observe that in order to verify the execution integrity of an

algorithm, it is sufficient to divide it into two parts, verify both individually and finally

verify a correct transition from the first part to the second. This observation can be

applied in a divide-and-conquer manner to recursively decompose any algorithm into

sub-algorithms until each becomes simple enough to be verified individually. Each

30

individual proof is then combined into a composable proof for the execution of the

original algorithm.

A second important observation about computational integrity in our case is

that it is sufficient to decompose the target algorithm up to the granularity of individual

assembly instructions and prove the integrity of each instruction directly using its

corresponding arithmetic circuit (AC). This offers great flexibility, as a predetermined

set of assembly instructions (each mapped to a small AC) can be combined to define

any arbitrary algorithm. Conversely, trying to verify any large program directly using a

large static AC would require generating a unique AC for each different program, which

is exactly the daunting task that we are trying to avoid in the first place. Notably, our

proposed method of verifying programs at the granularity of an assembly instruction

is beneficial, as it is relatively easy to translate any program written in a high-level

language into a set of assembly instructions using a compiler. To prove the integrity

of execution, we first verify the AC of each individual assembly instruction and finally

verify each state transition between consecutive instructions.

3.2.3 Overview of our Framework

To instantiate our methodology, we have developed Zilch: a transparent and

post-quantum resilient programming framework for creating ZKPK for any applica-

tion. Zilch is universal since it takes as input a description of a Turing Machine (TM)

(i.e., a computer program) and two input tapes, one private and one public. More

formally, Zilch implements a time-bounded Universal TM and can be used for any

arbitrary computation that is expressed as a sequence of instructions. Internally, Zilch

adopts a MIPS-like processor model (i.e., an abstract machine with memory, program

counter, registers, and fetch-decode-execution pipeline stages) called zMIPS; our ma-

chine supports a judiciously selected instruction set that can implement and verify any

computation in zero-knowledge.

31

Zilch consists of a front-end and a back-end. The front-end defines our cus-

tomized subset of Java specifically tailored to zero-knowledge arguments, called Ze-

roJava, and includes our compiler for translating the ZeroJava high-level code into

zMIPS assembly instructions. From a programmer’s perspective, ZeroJava is object-

oriented and strongly-typed like Java, while excluding Java features that complicate

the run-time system, such as exceptions and multi-threading. Our compiler comprises

four phases: (a) transforming the high-level code into an intermediate representation

(IR), (b) performing static analysis on the IR to optimize it, (c) performing register al-

location to minimize the number of required registers, and (d) generating the zMIPS

assembly. We elaborate more on the design choices of the Zilch front-end (i.e., the

ZeroJava language and the compiler) in Section 3.2.4.

The Zilch back-end defines the zMIPS abstract machine that consumes zMIPS

instructions to transition from one state to another; each state comprises the program

counter, K registers, and memory. A computation is expressed as a sequence of in-

structions or equivalently as a sequence of abstract machine states. Furthermore, each

assembly instruction generates individual constraints that must hold between each two

consecutive abstract machine states, and having a finite set of instructions renders

verification feasible. The sequence of states {S1, S2, ..., ST} forms an execution trace

of a program (also called a transcript) that is T steps long; in each step, an instruc-

tion is fetched, decoded and executed by our abstract machine. The transcript can be

represented as a two-dimensional table with T rows and K columns (Fig. 3.1), where

each row represents a single execution step and each column tracks one zMIPS register

through time. Two states Si and Si+1 are valid if the machine in state Si can transition

with some instruction to state Si+1 in the next step. Depending on the instruction that

operates on Si, the new Si+1 state is different, since each instruction performs a unique

transition from Si to Si+1. Given a time bound T , an execution trace tr of a specific

program Ψ is valid if there exist public and private inputs x, w, such that the gener-

ated trace of Ψ on inputs x and w is tr. Likewise, the integrity of the memory state is

ensured using a memory trace as will be discussed in Section 3.2.5. For each zMIPS

32

instruction, our Zilch back-end invokes the corresponding AIR constraints employing

the zk-STARK library [31] (described in Section 2.2.4); using this library, Zilch con-

sumes the transcript and the constraints, generates a low-degree polynomial, and then

P is able to convince V that all polynomial constraints are satisfied in the execution

trace for a secret witness w.

Benefits of Zilch. Expressing a computation as a transcript of state transitions

enables our abstract machine to generate universal ACs that do not require a different

setup each time a new program is executed since each instruction implements its own

AC. The only requirement is to provide an upper bound for the time steps of the

target program in order to generate an AC that simulates the entire execution. Zilch

can automatically determine the minimum number of execution time steps required for

a specific program Ψ to generate a result by first simulating the computation quickly

(without generating any constraints or proofs), and then checking if the output matches

the expected result y. If not, Zilch doubles the time steps bound T and repeats the

same check with the new bound. If the computation returns y using the new time steps

bound, Zilch generates the AIR constraints for the identified bound T and interacts

with the verifier.

The zk-STARK library enables the development of interactive proofs where the

prover and the verifier communicate over several rounds until the latter is convinced

of the correctness of a proof. As we illustrate in Fig. 3.2, P and V initially agree

on the polynomial constraints for the computation and then the prover generates the

transcript and sends its encoding to the verifier. As soon as the verifier confirms

the consistency of the encoding, the two parties interact over several rounds; in each

round V first sends a message to P comprising public random coin-flips, and then P

replies with an oracle (i.e., a long message comprising a proof) that the verifier can

query probabilistically at any index of her choice. As Zilch employs the zk-STARK

protocol for verification, we realize this oracle using Merkle tree commitments, and

the corresponding cost for V is poly-logarithmic in the time steps required to execute

33

Zilch Prover Zilch Verifier

Compute smallest T for
which Ψ(x,w) returns y

Generate transcript tr
for y = Ψ(x,w)

Convert public ZeroJava program to zMIPS

Generate constraints from zMIPS program

Send public tape x

Encode and send tr

Send randomness

Bundle constraints
into one polynomial

Generate composition
polynomial CP

Generate randomness
Bundle constraints
into one polynomialSend CP

Check CP
consistency

Accept/Reject

Generate randomnessReveal Merkle-tree
commitment path

Randomness r0

Proof π0

Reveal Merkle-tree
commitment path

...

Randomness rk

Proof πk

Random checks on
CP and π0, . . . , πk

Accept/Reject

Figure 3.2: Prover and Verifier Interaction. Starting from a public computation ex-
pressed in ZeroJava and a public tape, P and V agree on the polynomial constraints.
Next, P generates and encodes the transcript tr, and combines it with the polynomial
constraints into a single composition polynomial CP that is shared with V . Finally, the
two parties engage in the FRI protocol and V either accepts or rejects P ’s statement.

Ψ, which renders our framework succinct.3 Another important benefit of Zilch is its

ability to serialize all the rounds of interaction between P and V that are shown in

Fig. 3.2, which enables zero-knowledge proof verification over a network. In Section 3.4,

we present how the communication cost scales with an increasing number of zMIPS

instructions.

An overview of the Zilch framework is presented in Fig. 3.1, where a simple

ZeroJava program for addition is translated into zMIPS assembly instructions using

our compiler. Zilch then produces an execution trace that is ultimately transformed

into AIR constraints for the zk-STARK library, and P can interact with V . For an

3 Succinctness denotes short proofs and scalable verification time.

34

honest prover, the verifier is convinced (i.e., accepts the proof) that the program was

executed faithfully and that y = Ψ(x,w) after at most T steps. Conversely, if the prover

is malicious, the verifier will reject the proof with a very high probability.

3.2.4 Zilch Front-End Design

ZeroJava Language. To facilitate the development of ZKPK for any application,

we introduce a self-contained high-level language called ZeroJava, which enables im-

plementing arbitrary NP statements and is specifically tailored to VC and ZKPK.

Contrary to previous approaches on high-level languages for verifiable computation

(e.g., [84, 195, 238]), ZeroJava supports dynamic loop conditions without the need for

unrolling (i.e., mutable state and iteration, dynamic termination, and infinite loops are

supported). Moreover, ZeroJava supports ZKP-specific built-in functions that invoke

specific zMIPS assembly instructions (we elaborate on these methods in Section 3.2.5

that discusses the zMIPS ISA). The following paragraphs present our design choices

for ZeroJava.

ZeroJava is object-oriented and strongly typed, like Java. The basic types of Ze-

roJava are int for configurable W -bit signed integers (e.g., 32 bits), boolean for logical

values, and int[] for arrays of integers. Integers are represented using two’s comple-

ment, and overflows wrap around as in standard Java. Classes contain attributes and

methods with arguments and return types of basic or class types. ZeroJava supports

single inheritance without interfaces and function overloading (i.e., each method name

must be unique). In addition, all methods are inherently polymorphic so that a method

can be defined in a subclass if it has the same return type and arguments as in the

parent. Fields in the base and derived class are allowed to have the same names and are

essentially different fields. All ZeroJava methods are public and all fields are protected

so that a class method cannot access fields of another class, with the exception of its

parent; a class’s own methods can be called via this. Local variables can be defined

at the beginning of a method and can shadow the fields of the surrounding class with

the same name.

35

Table 3.1: ZeroJava Language Operators

Assignment
Increment

& Decrement
Arithmetic
& Bitwise

Logical
& Relational

a = b a++ a + b !a

a += b a-- a - b a && b

a -= b Arrays a * b a || b

a *= b a[b] a / b a == b

a /= b a.length a % b a != b

a %= b new int[a] a ^ b a < b

a ^= b Ternary a & b a > b

a &= b (a) ? b : c a | b a <= b

a |= b ∼a a >= b

a <<= b a << b

a >>= b a >> b

In ZeroJava, the new operator calls a default void constructor. In addition, there

are no inner classes and there are no static methods or fields. A ZeroJava program

begins with a special main class that does not have fields and methods and contains

the main method (i.e., public static void main(String[] args)). After the main

class, other classes may be defined that can have fields and methods. In Table 3.1 we

summarize all the ZeroJava supported operators.

Tapes. ZeroJava supports both public and private inputs via two read-only input

files called tapes. Each tape can be read sequentially using the READ built-in method

(the next word is consumed), or with the random access SEEK function (the word at a

given offset is read). These built-in methods have an one-to-one correspondence with

zMIPS instructions. In the case of ZKPK, the secret input (witness w) should be

provided in the private tape; for VC, only the public tape is required.

ZeroJava Example. In Fig. 3.3, we provide a ZeroJava program that implements

Wegner’s efficient algorithm [242] to compute the Hamming weight of a secret number

and then compare it with a public threshold. This example highlights various features

of ZeroJava, such as reading from the public and the private tape, performing loops,

as well as applying arithmetic, logical, and bitwise operations. Besides, a potential

36

1 class HammingWeightThreshold {

2 public static void main(String [] a) {

3 int threshold = PublicTape.read();

4 int num = PrivateTape.read();

5 int count = 0;

6 while (num > 0) {

7 num &= num - 1;

8 count++;

9 }

10 Prover.answer(count > threshold);

11 }

12 }

Figure 3.3: ZeroJava program to prove that a secret number has a Hamming weight
that is greater than a public threshold.

application of this algorithm could be to compute the Hamming weight of a private RSA

exponent in zero-knowledge and convince a verifier that it is greater than a threshold;

this could offer additional assurance against certain attacks (e.g., the authors of [111]

demonstrate a birthday attack on RSA private exponents with low Hamming weight).

ZeroJava Compiler. Using our ZeroJava compiler, programmers can translate NP

statements expressed in ZeroJava high-level code into optimized zMIPS machine code.

Since ZeroJava is a strongly typed language, the first step performed by our compiler is

to statically analyze the program and verify its type safety, i.e., ensure that the types

of expressions are consistent. For instance, a variable declared as an integer cannot be

assigned with a different data or class type on the same scope. To detect syntax errors,

our compiler performs multiple visits on the ZeroJava code to first extract the classes

information, then generate a symbol table, and finally check the static type-safety of all

the expressions in the high-level code. Our compiler also throws an error if an answer

function is missing, as this is required to halt the abstract machine. Consecutively,

the ZeroJava compiler parses the high-level code, and generates an IR that is in turn

consumed by the code optimizer. In particular, our code optimizer reduces the IR code

based on the results of static analysis, employing data-flow analyses and optimization

techniques including live-range, dead-code, constant- and copy-propagation [3]. Finally,

37

our compiler performs register allocation on the IR to further reduce the number of

registers and generates zMIPS assembly. Our optimizations based on IR static analysis

can be summarized as follows:

• Live range analysis. The liveness analysis determines which variables hold a

value that may be needed in the future (i.e., are live) for each instruction. This

is used for the dead code elimination optimization (discussed next).

• Dead code analysis. An assignment to a non-live variable is dead code; such

assignments can be removed, reducing the total size of the program.

• Constant propagation. For each program instruction, this analysis determines

which variables hold a constant value. In this case, the constant value is forwarded

to all subsequent uses of the variable.

• Copy propagation. Likewise, this analysis determines which program variables

are guaranteed to hold identical values. Both constant and copy propagation

analyses enable further dead code elimination optimizations.

These optimizations are executed until a fixed point is reached (i.e., a steady

state where two consecutive iterations result in the same code sequence); then, no fur-

ther optimizations can be detected by static analyses. In this work, we employ the

Datalog declarative logic programming language from within the IRIS framework [40].

Since Datalog naturally supports recursive relations, it is suitable for fixed-point al-

gorithms [219]. In our case, after the ZeroJava compiler has generated the IR, our

code optimizer parses the code and generates relation tables (e.g., simple-instruction,

jump-instruction, next-instruction, etc.) that are used for static analysis in Datalog.

Naturally, the object-oriented paradigm comes with a performance trade-off

when it is applied to zero-knowledge statements since instantiating new objects requires

creating virtual tables and accessing the memory. Therefore, our ZeroJava compiler

minimizes any unnecessary memory operations when objects are not used and the

statements are only in the main class. Furthermore, the combination of the static

38

analysis optimizations and register allocation techniques of the ZeroJava compiler are

crucial since they minimize the number of registers that are spilled (i.e., having to move

their values to and from memory). Moreover, as the number of instructions affects the

time steps bound, minimizing the total number of zMIPS instructions results in faster

proving time.

Debugging. ZeroJava also features a System.exit(int) method that can be

used to terminate the execution of a ZeroJava program and at the same time return

a status code for debugging purposes. Notably, the System.exit(int) method is

intended to be used solely for debugging and does not replace the answer method.

Additionally, to enable the advanced debugging techniques of Java, such as break-

points and the Java debugger (jdb), Zilch provides a preprocessor that automatically

transforms any ZeroJava program to pure Java code by converting any Zilch-specific

statements to the equivalent ones in Java. Specifically, our debugging preprocessor con-

verts the answer function to a System.out.println invocation followed by a return

statement, whereas the methods that read from the tapes are replaced with standard

Java methods that read from files.

3.2.5 Zilch Back-End Description

Instruction Execution. Each instruction can modify one or more registers, the

program counter, and the memory, populating a new row in the transcript, while

its corresponding AC defines constraints and assertions for these transitions (both

the prover and the verifier agree on these in advance). To ensure correct instruction

execution (i.e., code-consistency), for each step i the transition between consecutive

machine states (Si, Si+1) is verified by the AC corresponding to instruction i based

on the following assertion: Executing instruction i on state Si results in a new Si+1

state, where the destination register in instruction i, as well as the program counter,

are updated according to the instruction operation code and all the values on the

other registers are propagated to the next state. Each instruction increments the

39

program counter by one after it is executed, except for jump instructions that modify

the program counter based on the branch target.

Considering pairs of adjacent states in a time-sorted transcript, code consistency

can be checked by inspecting one pair at a time. For instance, after a move dst, src

instruction is executed, the value in the destination register (dst) should be equal to the

value of the source register (src) before executing the instruction, and all other registers

should remain the same. Such constraints should be satisfied between two consecutive

states at the execution trace for each move instruction. In a jump instruction, the

consistency of the program counter is asserted while all other registers should remain

the same. In a similar manner, we handle the constraints for all instructions that

do not involve memory. Initially, the program counter (PC) is set to 0 and the first

instruction is fetched; subsequently, each instruction i that is fetched is always pointed

by the PC.

Memory Accesses. The back-end of Zilch employs the zk-STARK library to trans-

form the execution trace and the polynomial constraints into a single low-degree poly-

nomial and convince the verifier of their satisfiability over the specific execution trace,

which guarantees computational integrity. Similar to code consistency, memory consis-

tency is ensured using constraints on pairs of adjacent states; these states are encoded

in a memory transcript sorted by ascending memory locations and then by time. If i is

a load instruction at a specific address, the value read by i should equal the last value

written to that address by the most recent store instruction.

By analyzing both the code and memory transcripts, it is possible to verify

the consistency of all instructions and memory locations respectively during execution.

Specifically, zk-STARK enables P to convince V that both transcripts correspond to

the same program execution (i.e., they encode the same computation) using a permu-

tation between the two traces [29,37]. This permutation is unknown to V and is verified

by zk-STARK via a back-to-back De Bruijn graph, as discussed in [31]. In general, if a

program does not use memory-type instructions, the proof comprises fewer constraints,

40

Table 3.2: zMIPS instructions: RD denotes the destination register, RS and RT denote
the source registers, A can be either a source register or an immediate value, while L
can be either an instruction number or a label.

Arithmetic Operations

ADD RD, RS , A RD = RS +A
SUB RD, RS , A RD = RS −A
MULT RD, RS , A RD = RS ×A
DIV RD, RS , A RD = RS ÷A
MOD RD, RS , A RD = RS mod A
MOVE RD, A RD = A
LA RD, L RD = L

Bitwise Operations

AND RD, RS , A RD = RS &A
OR RD, RS , A RD = RS |A
XOR RD, RS , A RD = RS ⊕A
NOT RD, RS , A RD = ∼A
SLL RD, RS , A RD = RS<<A
SRL RD, RS , A RD = RS>>A

Jumps, Branches and Comparisons

BEQ RS , RT , L if RS = RT then goto L
BNE RS , RT , L if RS ̸= RT then goto L
BLT RS , RT , L if RS < RT then goto L
BLE RS , RT , L if RS ≤ RT then goto L
SEQ RD, RS , A RD ←True if RS = A
SNE RD, RS , A RD ←True if RS ̸= A
SLT RD, RS , A RD ←True if RS < A
SLE RD, RS , A RD ←True if RS ≤ A
J L goto instruction L
JR RS goto instruction denoted by RS

Load and Store Operations

LW RD, A(RS) RD = MEM [RS +A]
SW RS , A(RD) MEM [RD +A] = RS

I/O Operations

PUBREAD RD RD fetch next word from public tape
SECREAD RD RD fetch next word from private tape
PUBSEEK RD, A RD fetch word from public tape[A]
SECSEEK RD, A RD fetch word from private tape[A]
PRINT RS print RS

EXIT RS throw exception and return RS

ANSWER RS return RS and halt

and its execution overhead can be reduced. Conversely, if the program accesses mem-

ory, additional constraints are necessary to verify memory integrity, which can impact

41

performance; in fact, as the time-bound T increases, the execution time of a program

with memory accesses is dominated by the cost of verifying the aforementioned per-

mutation constraints. If all constraints hold during execution and the program finishes

within T steps, V would accept the proof.

zMIPS Assembly Language. In this work, our goal is to define an instruction set

architecture (ISA) for the abstract machine of Zilch that is specifically tailored to VC

and ZKPK. This means that our candidate instruction set should (a) be sufficiently

simple so that the arithmetic circuit corresponding to each instruction would be easy to

evaluate, and (b) have a reduced number of instructions so that the number of unique

ACs is also minimized. Some modern instruction set architectures, however, such as

the x86, implement a large number of instructions that define low-level or compounded

operations (e.g., load a value from memory, then multiply it by 2 and finally store it

back to memory), or even operate at multiple elements at once. Such complex ISAs

are not suitable candidates for our abstract machine; instead, our goal is to define a

reduced instruction set computer (RISC) architecture that is compatible with ACs in

VC and ZKPK.

For our zMIPS ISA, a natural candidate would be to adopt the MIPS ISA that

is sufficiently simple yet very expressive, open-source, and widely used [196]. Moreover,

since data memory accesses entail evaluation of additional constraints (as discussed in

the previous paragraphs), our ideal ISA should be register-to-register and follow the

Harvard paradigm with independent memory spaces for instructions and data. Towards

that end, we have developed a MIPS-like ISA that includes support for arithmetic, bit-

wise, comparison, conditional, memory, and I/O operations. In particular, the zMIPS

architecture extends the traditional MIPS ISA with a set of custom I/O instructions for

reading public as well as private (witness) data from the input tapes (both sequentially

and with random access), as well as instructions to print results and halt.

Instructions. In Table 3.2 we present a subset of the assembly instructions supported

by zMIPS. In our notation, register RD denotes the destination register, while RS

42

Table 3.3: ZeroJava Built-in Functions

Built-in function zMIPS instruction

Prover.answer(int) ANSWER RS

System.exit(int) EXIT RS

System.out.println(int) PRINT RS

int PublicTape.read() PUBREAD RD

int PrivateTape.read() SECREAD RD

int PublicTape.seek(int) PUBSEEK RD, A
int PrivateTape.seek(int) SECSEEK RD, A

and RT denote the source registers. Like in the MIPS architecture, our instructions

are divided into three broad categories: R-type that involves instructions with up to

three registers, I-type for instructions involving up to two registers and an immediate

value, and J-type for instructions involving up to two registers and a jump target. In

zMIPS, we simplified the MIPS ISA by merging the I and R types, however, we still

support the I-type instructions (not shown in Table 3.2) for backward compatibility

with MIPS programs. Most instructions operate on parameter A, which can be either

a source register or an immediate value; in this case, Zilch can distinguish R-type from

I-type automatically. In J-type instructions, L denotes either an instruction number

or a label. Overall, zMIPS supports arithmetic (i.e., +, -, *, /, mod), bitwise (&, |, ˆ,

∼, <<, >>), logical (!, &&, ||), relational (=, ̸=, >, <, ≥, ≤), branch/jump, memory

transfer and I/O instructions. Additionally, the 1-to-1 mapping between the ZeroJava

built-in methods and zMIPS instructions is summarized in Table 3.3.

Registers. Inspired by the MIPS ISA, zMIPS supports general-purpose ({$s0, $s1,

. . . } and temporaries {$t0, $t1, . . . }) and special-purpose registers (SPRs) such as:

the $zero (or $0) register that is hardwired to zero, the $ra register that holds return

addresses, the stack $sp and frame $fp pointer registers that are used to enable the

call stack of our abstract machine, $a0 – $a3 that store call arguments, and $v0 – $v1

that store return values. We further introduce the heap pointer $hp SPR that is used

to store the next free memory address; we utilize $hp to perform dynamic memory

43

allocation in our abstract machine instead of the MIPS system calls.4 Since zMIPS is

an abstract machine, we can increase its total number of registers to more than the 32

used in MIPS. Thus, the abstract machine state comprises a W -bit program counter

and up to K registers of size W bits (all initialized to zero); both the word size W and

the total number of registers K can be parameterized.

zMIPS Assembler. To enhance the expressiveness of zMIPS, we further introduce

the ability to define custom Macros, which are new user-defined instructions that are

not part of the original ISA. In this case, the zMIPS assembler treats a Macro as a

sequence of existing instructions. The latter can improve usability and avoid repetition

of instructions since functions and more complex constructions can now be defined as

Macros.

Likewise, another assembler enhancement is support for custom labels in the

code. Specifically, even though the abstract machine assembly instructions use instruc-

tion numbers as branch targets, the use of labels enables a convenient programming

paradigm for users. At the assembler level, our labels are alphanumeric tags that begin

and end with a double underscore (e.g., a label), while inside Zilch these labels are

converted to instruction numbers.

Finally, in our effort to make zMIPS as compatible as possible with the MIPS

ISA, we offer support for several assembler expressions, such as the text section (.text),

and the data section (.data). Although these are not used by the Zilch abstract

machine, their support renders the zMIPS code backward compatible with MIPS

simulators, save for the custom I/O instructions and the absence of system calls.

3.2.6 Application Programming Interface (API) for Zilch

ZeroJava and zMIPS assembly are powerful tools for developing new VC and

ZKPK applications; however, additional attention is necessary for existing applications

that rely on various system calls and standard library functions. Since our objective is

4 MIPS invokes syscall 9 to allocate heap memory. The number of bytes to allocate
is passed to the $a0 register, while $v0 contains the address of the allocated memory.

44

to improve the usability of VC and ZKPK in a broad range of scenarios, Zilch further

offers a convenient API that allows embedding computational integrity functionality

into the code-base of existing C/C++ programs. Using our API, a programmer can

independently invoke the prover and verifier of Zilch via C/C++ functions, where each

invocation can support arbitrary functionality by passing a zMIPS code snippet to

the parent function. In effect, it is not necessary to convert an existing C/C++ appli-

cation into ZeroJava/zMIPS, except for the specific parts that require computational

integrity. The next Section elaborates on our Zilch API, demonstrating two real-life

case studies.

3.3 Real Applications in Zilch

3.3.1 Vickrey Auction using Zilch API

To demonstrate the programming interface of Zilch, we implemented a Vickrey

auction protocol (also known as sealed-bid, second-price auction [233]), in which bidders

submit their private bids without knowing the bids of others. As in a traditional

auction, the highest bidder wins, but the price paid equals the second-highest bid

instead. In the Vickrey protocol, the auctioneer collects a bid and its cryptographic

commitment from each bidder, and all commitments must satisfy two basic properties:

• Binding. For all non-uniform probabilistic polynomial-time algorithms, the

probability of two messages m1 and m2 (where m1 ̸= m2) will generate the

same commitment c is negligible. Essentially, no bidder can find two different

bids with the same commitment.

• Hiding. For all non-uniform probabilistic polynomial-time algorithms, the prob-

ability of extracting any information about the bid from its commitment is neg-

ligible. Hiding ensures that a bidder does not learn anything about the bids of

others based on their commitments.

45

Participants C++ Application Zilch V

Commit #1

Bid #1

...

Commit #N

Bid #N
Bids to

private tape

Verification

Winner
& bid

Ask commit key

Key to
private tape

Verification

Success

Figure 3.4: Vickrey Auction Overview.

The binding and hiding requirements can be satisfied using a one-way collision-resistant

hash function so that recovering a pre-image from the hash output or finding two pre-

images with the same output would be intractable.

In our case study, we use the Davies-Meyer (D-M) one-way compression function

and implement a single-block Merkle-Damg̊ard hash construction [82] based on a block

cipher Ek; specifically, we employ the Speck cipher with 128 bits block-size and 128

bits key-size [21]. To construct a commitment C, each bid value (up to 64 bits, zero-

extended) is concatenated with the bidder’s commitment key (64 bits) and used as

Speck’s key input; the bidder’s 128-bit random ID (rID) is used as the cipher input

to be encrypted and also XORed with the resulting ciphertext, following the D-M

construction [82]:

C = rID ⊕ Ekey||bid(rID) (3.1)

For correct execution of the Vickrey scheme, although participants do not have

knowledge about the bids of others, at the end of the auction each participant should

be able to verify the correctness of the winning bid, even if the auctioneer is not

46

1 class RangeQuery {

2 public static void main(String [] args) {

3 int min , max , val;

4 val = PrivateTape.read();

5 min = PublicTape.read();

6 max = PublicTape.read();

7 if ((min <= val) && (val <= max)) {

8 Prover.answer(true);

9 }

10 Prover.answer(false);

11 }

12 }

Figure 3.5: ZK range query implemented in ZeroJava.

entirely trusted (e.g., the auctioneer may be colluding with a bidder to increase the

second-highest bid). Thus, a commitment scheme alone would not be sufficient and

computational integrity is necessary to verify the correctness of the protocol.

We implement the auctioneer as a C++ application that collects the individ-

ual bids and hash commitments (Eq. 3.1) from all participants, before executing the

Vickrey protocol to determine the winner and second-highest bid (Fig. 3.4). The C++

program employs our Zilch API to prove to each participant that the auctioneer func-

tion: (a) sorts all bids correctly to find the rID of the highest bidder, and (b) the

highest bidder pays the second-highest bid. The latter requires proving computational

integrity when the auctioneer opens the committed bids of the highest and second-

highest bidders (i.e., verify Eq. 3.1 using key||bid as the witness) and compares these

bids with the announced second highest bid; the highest bidder should be convinced

that the announced price was actually committed by someone, while the second-highest

bidder should be convinced the there is someone that committed a higher bid. During

this final step, the highest and second-highest bidder would send their commitment

keys to the auctioneer. Overall, the auctioneer’s code execution is verified and all bids

remain private, except for the second-highest corresponding to the final price.

47

1 secread $t0 # read private input (val)

2 pubread $t1 # read min

3 pubread $t2 # read max

4 move $v0 , 0 # result = false

5 bgt $t1 , $t0 , __end__ # if min > val

6 blt $t2 , $t0 , __end__ # if val < max

7 move $v0 , 1 # result = true

8 __end__:

9 answer $v0 # return result

Figure 3.6: ZK range query implemented in zMIPS.

3.3.2 Zero-Knowledge Range Proofs with ZeroJava

Determining interest rates (e.g., when applying for a mortgage) may require

disclosing the credit score of the applicant. Thus, another real-world application with

Zilch would be to determine interest rates or loan eligibility while maintaining the

privacy of credit scores. Likewise, Zilch can help proving that an account has enough

available balance for a transaction, or that an individual is older than 18 years and

younger than 65 years without disclosing the exact age. These examples belong to the

broader class of zero-knowledge range proofs [153], where Zilch can verify that a secret

number is within known bounds without actually disclosing it.

In Fig. 3.5 we illustrate the range query code implemented in ZeroJava, while

Fig. 3.6 shows the compiled and optimized zMIPS assembly. Line 1 of the assembly

reads the private value val (e.g., the age of an individual), while lines 2 and 3 read

the lower (min) and the upper bound (max) from the public tape (e.g., ages 18 and

65 respectively). Consecutively, the program checks that val is within the given range

(i.e., min ≤ val ≤ max) and returns either 0 or 1.

3.4 Experimental Evaluation

Experimental Setup. We implemented the ZeroJava compiler and optimizer in

Java, while the rest of the Zilch framework is implemented in C++.5 We measured

the runtime performance of Zilch using a variety of benchmarks described below. All

5 The Zilch framework and the ZeroJava compiler are available on GitHub at https:
//github.com/TrustworthyComputing/Zilch under the MIT license.

48

https://github.com/TrustworthyComputing/Zilch
https://github.com/TrustworthyComputing/Zilch

(a) Prover time (b) Verifier time (c) Communication complexity
size

Figure 3.7: P , V timings (seconds) and communication complexity size (KB) for a
variety of benchmarks for different input sizes and 2−60 soundness error. The commu-
nication overhead corresponds to the interactive protocol between P and V .

experiments are obtained on a t3.2xlarge AWS EC2 instance running with eight

virtual processors up to 2.5 GHz and 32 GB RAM on Ubuntu 20.04.

Multithreaded Prover. The back-end of the Zilch framework is highly parallelizable

using OpenMP. It can take advantage of all available threads on the host, and we

observe a 2x–4x speedup when using eight virtual cores on AWS.

3.4.1 Our Benchmarks

For our measurements, we adopt the TERMinator suite [185], which comprises

scientific benchmarks designed for abstract machines like zMIPS. In particular, the

TERMinator benchmarks are beneficial as they do not rely on OS features (such as

system calls) while covering a broad range of applications from kernel benchmarks to

complex bit manipulations. For our analysis, we implemented the Speck and Simon

lightweight block ciphers [21], where the former is oriented towards software imple-

mentations and the latter for circuit-based implementations: Speck is based on the

Add-Rotate-XOR (ARX) paradigm, while Simon is a balanced Feistel cipher, and both

support variable key and block sizes. Being symmetric encryption algorithms, Speck

and Simon are very demanding in bitwise operations. Our evaluations also include

the Factorial, Fibonacci, and Collatz sequences, as well as the matrix multiplication

benchmark, all of which are addition and multiplication intensive. Moreover, a private

information retrieval (PIR) program complements our set of benchmarks.

49

Figure 3.8: P ’s measured execution time for the Speck & Simon cipher benchmarks
using different security parameter sizes on the 32-bit and the 64-bit block sizes with
64-bit and 128-bit keys respectively.

3.4.2 Experimental Results

In our evaluation, we assess the performance of Zilch on a variety of regis-

ter word sizes (i.e., W = 8, 16, 32), as well as different soundness parameters (i.e.,

λ = 60, 80, 100, 120). For a soundness parameter λ, the probability that an untrusted

prover would violate computational integrity and remain undetected is at most 2−λ.

As expected and also confirmed in our benchmarks, larger values for W and λ increase

the execution overhead for both P and V .

In Fig. 3.7 we present the prover and verifier timings as well as the commu-

nication complexity sizes for the TERMinator benchmarks and how they scale with

an increasing number of instructions (note, while zMIPS is an abstract machine, its

instructions are judiciously chosen to map to the MIPS ISA). For each benchmark,

we vary the input size accordingly so that the total number of executed instructions

matches a power of 2 and show how the prover and verifier timings depend on the num-

ber of instructions in the program. Fig. 3.7a shows quasi-linear prover overheads to the

number of instructions (T ·polylog(T)), while Speck and Simon incur higher costs be-

cause bitwise operations require more complex constraints. Similarly, these two ciphers

require poly-logarithmic (polylog(T)) verification time to the number of instructions,

while the other benchmarks show constant overheads (Fig. 3.7b). Moreover, commu-

nication overheads increase linearly to the number of instructions (Fig. 3.7c).

Fig. 3.8 shows the prover’s performance on Speck and Simon for key sizes 64-

128 bits and varying security parameters. As expected, Speck is faster than Simon

50

Figure 3.9: P ’s measured execution time for the Fibonacci benchmark using different
word-sizes (8, 16, 32) and different security parameter sizes for a variety of inputs (22

to 26).

since the former has fewer instructions and is optimized for software. As λ grows larger,

the proving time incurs higher overheads, yet, after 2−80 the impact is minimized: using

Speck32/64 as an example, an increase of λ from 60 to 80 adds 0.7 seconds to the

proving time, whereas increasing λ from 80 to 120 adds only 0.1 seconds. Similar

behavior is observed for both ciphers across all configuration sizes.

An overview of the runtime performance of our Fibonacci benchmark for dif-

ferent sizes of W and λ is presented in Fig. 3.9. The bars for λ = 60 are shown in

front of those for λ = 120, and the exact values for the latter are reported. Our ex-

periments show how performance overheads increase with both the input size N (as

more instructions are required) and the wordsize W (as more complex constraints are

required).

(a) Prover time (b) Verifier time

Figure 3.10: Comparison between Zilch, Hyrax and Bulletproofs P and V timings
(seconds) for the matrix multiplication benchmark, as well as the native JVM baseline
execution (i.e., without generating a proof).

51

3.4.3 Comparison with Previous Works

We compare Zilch with 80-bit security with two state-of-the-art transparent

zero-knowledge systems: Hyrax [239] and Bulletproofs [61]. Both are based on elliptic

curve cryptography and thus their security parameter is not directly comparable with

Zilch’s. We instantiated them using the M191 elliptic curve [10] over a base field modulo

2191−19 giving approximately 90-bit security, based on their reference implementations

[235].

For our analysis, we instantiated the standard SHA-256 hash algorithm and

compared Zilch with Hyrax for an input block of 512 bits. Our results show that Zilch

can prove the correct computation of one SHA-256 block in 73.86 seconds, while Hyrax

requires 35.63 seconds; the V execution time was 1.55 and 1.19 seconds for Zilch and

Hyrax respectively. Moreover, in Figs. 3.10a and 3.10b we report the P and V timings

respectively using the matrix multiplication benchmark and matrix sizes varying from

4x4 to 12x12; as a baseline, Fig 3.10a also shows the native Java matrix multiplication

cost (without any proof). Our results show that Hyrax has the fastest performance

among the three systems, with Bulletproofs reporting similar timings; in comparison,

the P and V cost of Zilch is almost one order of magnitude higher than Bulletproofs

in matrix multiplication. Likewise, our comparison to the native Java execution shows

the performance cost for proving computational integrity across the three systems.

Discussion. The main reason for the observed performance differences between Hyrax,

Bulletproofs, and Zilch, is that the computations for the first two have been expressed

directly as arithmetic circuits, whereas, in Zilch, the computation was expressed in

ZeroJava and then translated to zMIPS using our compiler. While operating directly

on arithmetic circuits may achieve faster execution times, using a higher-level abstrac-

tion can significantly enhance usability. Notably, the authors’ experience working with

Hyrax and Bulletproofs showed that it is considerably hard, even for experienced pro-

grammers, to develop, debug and analyze any non-trivial program expressed using

large monolithic ACs. This limitation informs why our comparisons with these related

52

works focus on the two pre-compiled circuits already provided by these frameworks.

As we discuss in Section 3.5, many related works rely solely on arithmetic circuits.

Conversely, Zilch can easily be applied to any computation expressed in our high-level

ZeroJava language.

Another important observation is that Zilch inherits from zk-STARK the prop-

erty of plausible post-quantum security, which cannot be argued for either Hyrax and

Bulletproofs. From a security perspective, since Zilch does not require any trusted

setup and offers a broader threat model, it is not directly comparable with SNARK-

based systems (e.g., [33, 37, 195, 222, 236]) that need a trusted setup; in fact, the total

cost of having an offline trusted setup is not directly measurable, as it often includes

expensive steps to eliminate the toxic waste (e.g., by physically destroying hard drives

[248]). In Zilch, our goal is to move to a universal argument system that does not rely

on trusted third parties and offers a usable programming model. In Section 3.5, we

report further comparisons between Zilch’s programming model and those of related

works.

3.4.4 Zilch Experiments using our Real-life Case Studies

In this Section, we evaluate the performance and programming complexity for

the two real-life applications discussed in Section 3.3 with security parameter λ = 80

and varying register sizes W .

Vickrey Auction. This application was developed in C++ and linked to Zilch using

our C++ API; Speck128/128 was developed in ZeroJava and compiled to zMIPS

instructions using the ZeroJava compiler. The word size used for Speck128/128 is

W = 64 bits, so both the 128-bit key and the 128-bit input block can fit in two registers

each. Since this application is interactive across multiple participants, it entails multi-

ple invocations of Zilch using our API (Fig. 3.4): The first invocation iterates on every

bid stored in the private tape and performs comparisons to find the winner (highest

bid) as well as the amount of the second-highest bid, while additional invocations are

required to convince the first and second-highest bidders. In Table 3.4 we show how the

53

Table 3.4: Vickrey auction: P and V times for increasing number of participants with
security parameter λ = 80.

Participants Execution Steps P Time (sec.) V Time (sec.)

8 71 0.37 0.025
16 151 1.96 0.026
32 311 4.15 0.026
64 631 8.67 0.027

P and V times depend on the total number of auction participants; the former is linear

to the number of auction participants, while the latter is almost constant. In this case,

since we rely on Speck128/128 for computing each commitment C using in the D-M

construction (Eq. 3.1), P performs a new evaluation of Speck’s key scheduling for

each different key||bid value of each participant. Each key scheduling requires about

the same number of instructions as the Speck core.

Zero-Knowledge Range Proofs. In our experiments, the high-level ZeroJava code

for range-checking (Fig. 3.5) is compiled into zMIPS instructions (Fig. 3.6) using

our compiler. This example demonstrates how our programming paradigm in Zilch

abstracts all low-level complications and programming complexity for ZKPs, enabling

the programmer to express her intent using logical statements very similar to Java.

With respect to performance, in this range-checking example, we measured less than

0.1 seconds of prover overhead and negligible verification time, using 16 and 32-bit

register sizes.

3.5 Related Work

In the past few years, the interest of the academic community in VC and ZKPs

was renewed, leveraging sophisticated cryptography, and interactive and probabilistic

checkable proofs. In this section, we discuss several recent works in the area.

Trusted setup per computation. Gennaro et al. introduced in [113] quadratic

arithmetic programs (QAP) which inspired many recent works such as Pinocchio [195]

and other Succinct Non-Interactive Arguments of Knowledge (SNARKs) [16, 17, 36,

54

Table 3.5: Comparison of existing ZKP systems based on their cryptographic assump-
tions, the need for a trusted setup, their universality, and resilience against known at-
tacks from quantum computers. Regarding ease of programmability, each bar indicates
support for developing ZKPs using arithmetic circuits, assembly language, procedu-
ral and object-oriented programming, respectively. Among frameworks that support
high-level programming (i.e., those with three or four bars), only Zilch supports the
object-oriented paradigm.

ZKP System Protocol*
Crypto.

Assumptions¶
Trans-
parent

Univ-
ersal

Post-
Quantum
Resilient

Ease of Program.
ACs < ASM <
PP < OOP‡

Compiler
Available

Pinocchio [195] zk-SNARK KoE

Geppetto [84] zk-SNARK KoE

TinyRAM [33] zk-SNARK KoE

Buffet† [238] zk-SNARK KoE

ZoKrates† [101] zk-SNARK KoE

xJsnark† [157] zk-SNARK KoE

vRAM [251] zk-SNARG KoE N/A

vnTinyRAM [37] zk-SNARK KoE

MIRAGE [156] zk-SNARK GGM N/A

Sonic [173] zk-SNARK AGM N/A

Marlin [75] zk-SNARK KoE, AGM N/A

PLONK [110] zk-SNARK AGM N/A

SuperSonic [62] zk-SNARK ARA N/A

Bulletproofs [61] zk-ShNARK§ DL N/A

Hyrax [239] zk-SNARK DL N/A

Halo [53] zk-SNARK DL N/A

Virgo [249] zk-VPD CRHF N/A

Ligero [7] zk-SNARK CRHF N/A

Aurora [34] zk-SNARK CRHF N/A

zk-STARK [31] zk-STARK CRHF N/A

Zilch† (this work) zk-STARK CRHF

† These zero-knowledge proof systems focus on front-end optimizations and offer comprehensive programming inter-
faces.

* SNARK stands for Succinct Non-Interactive ARgument of Knowledge, STARK stands for Scalable Transparent
ARguments of Knowledge, SNARG stands for Succinct Non-interactive ARGuments, and VPD stands for Verifiable
Polynomial Delegation.

¶ KoE stands for Knowledge of Exponent, AGM stands for Algebraic Group Model, GGM stands for Generic Group
Model, ARA stands for Adaptive Root Assumption, DL stands for Discrete Logarithm, and CRHF stands for
Collision-Resistant Hash Functions.

‡ ACs stands for Arithmetic Circuits, ASM is Assembly language, PP is Procedural Programming, and OOP is Object-
Oriented Programming.

§ Bulletproofs is not considered a zk-SNARK because it is not succinct (i.e., has linear verification time). “Sh” stands
for short instead of succinct.

84, 129, 155, 236, 238, 241]. These protocols, in turn, formed the background for real-

world systems as ZeroCash [32]. The proof size is in these constructions is succinct

and verification depends on the size of the argument being proven. However, contrary

55

to Zilch, SNARKs require a trusted and expensive setup phase for every different

statement. In many cases, real-world applications that require computational integrity

cannot be founded on trusted third parties.

Universal trusted setup. Recent interactive proof-based techniques utilize universal

and updatable trusted setups that are based on common – or structured – reference

strings. Their advantage compared to the previous category is that they do not require

a trusted pre-processing for each circuit, but only a single setup for all circuits. Such

constructions include Sonic [173] that composes constant size proofs, as well as PLONK

and Marlin [75,110], which improve upon Sonic by constructing a different polynomial

interactive oracle proof (IOP). Although these systems minimize the number of trusted

setups to one, the random elements (toxic waste) that are used during this trusted phase

may still be used by a malicious prover to forge proofs and break soundness.

Transparent setup. To address the previous limitations, various constructions emerged

that are based on different cryptographic assumptions and do not require a trusted

setup phase. Bulletproofs [61] and Halo [53] are based on the discrete logarithm prob-

lem, while other works such as Ligero [7], zk-STARKs [31], Aurora [34], and Virgo [249]

leverage collision-resistant hashes, which can offer additional resilience against known

attacks from quantum computers. Likewise, the work in [76] provides a construction

that is secure in the quantum random oracle model. Other works such as [123] and

[239] are based on interactive proofs. Finally, SuperSonic [62] proposes a new poly-

nomial IOP that relies on groups of unknown orders and does not require a trusted

setup. However, a notable limitation of the aforementioned systems is the lack of a

practical programming model, which renders the development of ZKPs for arbitrary

applications a daunting task.

Random Access Machines. The authors of [33] introduced a random-access ma-

chine targeting SNARKs called TinyRAM, which is based on a Harvard architecture.

The work in [37] further introduced vnTinyRAM, which is a von Neumann alternative

to the original TinyRAM. These TinyRAM variants, as well as vRAM [251], required a

56

trusted pre-processing phase to generate parameters for verifying different arguments.

Conversely, Zilch supports transparent setups where any required randomness is always

public and can verify arbitrary programs for any given bound on the number of execu-

tion steps, leveraging the state-of-the-art zk-STARK library in its back-end. Notably,

our zMIPS ISA offers direct compatibility with existing MIPS programs and enables

non-crypto-savvy programmers to easily develop high-level object-oriented applications

for the zMIPS abstract machine using our ZeroJava compiler and API, whereas this

cannot be argued for other random access machines that build their own esoteric mod-

els. Lastly, zMIPS supports special-purpose registers, labels, and user-defined Macros,

rendering it a comprehensive ISA to ensure computational integrity in general-purpose

computation.

Ease of Programmability. In Table 3.5, we present comparisons between various

zero-knowledge proof systems. Our comparisons are based on the requirement for a

trusted setup, the universality of the ZKP system, the resilience to known attacks

from quantum computers, and the ease of developing zero-knowledge proofs from a

programmer’s perspective.

Pinocchio [195], Geppetto [84], and Buffet [238] provide compilers for translating

subsets of the C programming language to arithmetic circuits. In particular, these

front-ends cover only a small subset of C (e.g., they do not support pointers) and also

require the programmers to deviate from standard C code since they require defining

extra constraints, casting statements, and prover-specific types. For example, loops can

only have static termination conditions (i.e., cannot depend on non-constant variables)

since they are unrolled by the compiler; in effect, this prevents having loops with

early termination conditions and programmers must set a fixed bound for each loop.

Moreover, while Buffet supports a somewhat larger subset of C compared to Pinocchio

and Geppetto, it still lacks support for function pointers, goto, and loops with dynamic

termination. Likewise, TinyRAM [33] relies on circuit representations that can be

generated from C programs; however, the usability of this approach remains limited,

as no compiler has been released, and the underlying ZKP protocol does not support

57

a transparent setup. Similarly, ZoKrates [101] and xJsnark [157] provide front-ends to

libSNARK [222] and enable programmers to express a computation using high-level

programs that can be translated to arithmetic circuits. Their programming model,

however, does not offer support for classes, inheritance, or polymorphism, contrary

to the programming paradigm supported by Zilch. More importantly, as summarized

in Table 3.5, all aforementioned systems are based on zk-SNARKs and they require

a new key generation phase to be invoked by a trusted third party for each different

computation one wants to prove.

The works of vnTinyRAM [37] and vRAM [251] extend the random access ma-

chine introduced in [33] and enable universal circuits that can be used to verify any

program up to a given number of machine steps without needing a new setup each

time. Similarly, MIRAGE [156] proposes a universal circuit that consumes arithmetic

circuits of a bounded number of operations as inputs. Nevertheless, while the gener-

ated circuits can implement arbitrary programs, all these works still require an initial

trusted phase to set up the circuit. From a developer’s perspective, vnTinyRAM em-

ploys the same C compiler that TinyRAM does; however, since no implementation of

this compiler has been released, developers still have to resort to laborious assembly

programming to express their algorithm.

Employing an orthogonal approach, recent zero-knowledge proof systems are

also based on universal structured reference strings [75,110,173]. This approach allows

a single trusted setup to support all circuits of some bounded size. Contrary to Zilch,

these works can only support programming using arithmetic circuits and also require

a setup phase by a trusted third party (i.e., they are not transparent).

The bottom section of Table 3.5 includes zero-knowledge proof systems that are

transparent (like Zilch). Bulletproofs [61], Hyrax [239], and Halo [53] rely on the dis-

crete logarithm problem, while SuperSonic [62] relies on groups of unknown order and

the adaptive root assumption; as a result, these systems remain susceptible to attacks

from quantum computers. Regarding their programming model, these proof systems

58

support computations expressed as arithmetic circuits. Thus, to leverage these sys-

tems, a programmer has to manually implement the arithmetic circuit corresponding

to their intended algorithm. While the released implementation of Hyrax [235] offers

a set of custom scripts to automate this procedure for the arithmetic circuits of the

matrix multiplication and SHA-256 examples, the development of new scripts remains

as laborious as writing the arithmetic circuits directly. Contrary to Zilch, the pro-

gramming model of Virgo [249], Ligero [7], Aurora [34] and zk-STARK [31] also relies

on arithmetic circuits. While the reference implementation of zk-STARK offers partial

support for TinyRAM instructions, however, critical operations such as reading private

and public inputs are not supported [38]. Besides, zk-STARK does not offer any com-

piler to translate high-level programs into STARK proofs. Conversely, Zilch enables

programmers to express a computation using our object-oriented ZeroJava language.

3.6 Concluding Remarks

In this paper, we present Zilch, a framework to facilitate the deployment of

verifiable computation and zero-knowledge proofs of knowledge for any application.

Zilch is transparent (it does not rely on any trusted third-party setup), post-quantum

resilient, and using its easy-to-use programming model allows the automated generation

of universal circuits that can verify any arbitrary computation for a given time bound.

In Zilch, we reduce the problem of proving arguments of knowledge to the granularity

of an assembly instruction, so that we can verify instructions independently along with

valid transitions between consecutive abstract machine states.

We have designed and implemented the zMIPS abstract machine, a MIPS-like

processor model in which each instruction is intricately chosen and translated to a

small arithmetic circuit. We complement our framework with a high-level language

called ZeroJava and a compiler for translating ZeroJava code into optimized zMIPS

assembly instructions. To further improve usability, we have defined a convenient

programming API that allows integrating Zilch’s prover and verifier into any existing

59

C/C++ program. In our experiments, we demonstrate the performance of Zilch for a

variety of benchmarks, as well as two real-life case studies.

60

Chapter 4

PRIVACY-PRESERVING IP VERIFICATION

The rapid growth of the globalized integrated circuit (IC) supply chain has

drawn the attention of numerous malicious actors that try to exploit it for profit. One

of the most prominent targets of such parties is the third-party intellectual property

(3PIP) vendors and their circuit designs. With the increasing number of transactions

between vendors and system integrators, the threat of IP reuse and piracy has become

a significant consideration for the IC industry. What is more, the correctness of 3PIP

designs should be verified before integration, imposing another challenge for 3PIP ven-

dors since they have to prove the functionality of their designs to system integrators

while protecting the privacy of the circuit implementations. To eliminate this dead-

lock, we utilize the cryptographic technique of “zero-knowledge proofs” to enable 3PIP

vendors to convince system integrators about various functional properties of a circuit

(e.g., area, power, frequency) without disclosing its netlist (i.e., in zero-knowledge).

Our approach comprises a circuit compiler that transforms arbitrary netlists into a

zero knowledge-friendly format and a library of modules that provide cryptographic

guarantees for various properties of the netlist while hiding the actual gates. We eval-

uate our method using combinational and sequential circuits from the ISCAS and ITC

benchmark suites.

4.1 Introduction

The advent of the Internet of Things (IoT) has made possible an extensive set of

applications such as transportation systems, healthcare, home automation, and many

more [130]. Because of the demand for small-size and low-power IoT devices, manu-

facturers have adopted more compact and energy-efficient hardware design paradigms.

61

As a result, System-on-Chip (SoC) has conquered the market from multi-chip designs

by combining lower power and area consumption with increased reliability and func-

tionality, all into a single, integrated chip (IC). In the contemporary IC supply chain,

some components are designed in-house and are integrated with a variety of Intellectual

Property (IP) cores from third-party vendors in order to fabricate the IC [203].

The ever-growing demand for IC-based solutions results in an increase of third-

party IP (3PIP) vendors that try to maximize their profits by providing design stan-

dards and guidelines and also by making their IPs reusable so they can be utilized by

multiple design layouts [225]. 3PIP cores such as digital signal processors (DSPs) and

FFT engines are commonly adopted by chip designers to serve specific purposes in the

overall system. This widespread appropriation of 3PIP becomes an attractive target

for malicious users and rogue foundries that attempt to trick honest parties and steal

their IPs for financial gain [205]. Attackers continue to find novel and elaborate ways

to illegally pirate an IP, such as system-level analysis [226] and reverse engineering [69].

Thus, finding solutions to IP piracy and drawing the attention of the IC supply chain

to security instead of solely functionality and performance is a major concern.

In the modern IC business model, an essential step of SoC design is IP core

verification [72, 95]. First, system integrators (i.e., IP consumers) provide some func-

tional requirements to the 3PIP vendors, who in turn design circuits that meet these

specifications. The goal of IP core verification is to prove the functionality of the

generated 3PIP designs to system integrators. However, confirming that the circuit

complies with the specified properties while achieving high testability is a major chal-

lenge in the IC supply chain. Researchers have come up with various solutions, namely

application-specific instruction-set processors [221], formal logic verification [141], sat-

isfiability (SAT) solvers [149], and simulation-based methods [177]. Yet, all these so-

lutions focus more on the functional verification of IP designs rather than protecting

their privacy. Recent research directions leverage homomorphic encryption to securely

outsource the evaluation of the 3PIP netlist to a third party [125, 154, 229]. However,

these approaches only protect the input vectors: the netlist designs can still be visible

62

since homomorphic operations, in this case, do not provide functional privacy (i.e.,

only data privacy).

Motivated by the lack of netlist-level privacy preservation, we propose a novel

method that utilizes zero-knowledge (ZK) proofs to resolve the deadlock of mutual

distrust between 3PIP vendors and IP consumers. In this case, the former withholds

an IP until a financial agreement is made (due to the IP piracy risk), while the latter

refuses to purchase an IP without being convinced that it meets all of the agreed-

upon specifications. To instantiate our strategy, we developed the Pythia framework

that enables system integrators to verify that a potentially untrusted 3PIP vendor

possesses an IP that satisfies some agreed-upon properties without having access to it

(i.e., gaining “zero” knowledge about the IP). One key contribution in Pythia is the

conversion of a netlist into a zero knowledge-friendly format that can be evaluated with

public test input vectors and generate a public output along with a proof that verifies

that the output was computed faithfully.

The back-end of our framework relies on a state-of-the-art ZK protocol called

“Scalable Transparent ARgument of Knowledge” (zk-STARK) [31, 184] to implement

a library of special state machine modules. These state machine modules can evaluate

both combinational and sequential circuits in zero knowledge and further prove various

functional properties such as performance, area, and power. Developing these modules

as ZK state machines enables Pythia to argue about their computational integrity and

offer provable guarantees that the IC netlist properties are verified faithfully. Pythia

allows the evaluation of 3PIP netlists as Boolean circuits without revealing the netlist

itself by encoding input test vectors into a judiciously selected format compatible with

our ZK state machine modules. Each state machine consumes a 3PIP netlist as private

(i.e., secret) input and test vectors as public inputs; Pythia executes the corresponding

ZK state machine on these inputs and generates cryptographic proofs asserting that the

output of evaluating the private netlist with the public inputs is correct and computed

faithfully.

Overall, in this work, we claim the following contributions:

63

Figure 4.1: Overview of Pythia. (a) The 3PIP vendor (P) possesses an IP described in
a Hardware Description Language. (b) P synthesizes the IP and generates a gate-level
netlist. (c) P determines the evaluation order of the gates and transforms the IP into a
zero-knowledge friendly encoding for ZK state machines. (d) P minimizes the number
of intermediate wire values required to evaluate the netlist and divides the encoding
into independent shares that can be evaluated in parallel. (e) The 3PIP vendor executes
a module (e.g., functional, performance, area verification) with the circuit specification
as private input and public test vectors chosen by the IP consumer. (f) The two parties
interact and P convinces V about the computational integrity of the zero-knowledge
evaluation.

• Circuit compiler. Development of a compiler that can automatically translate

any Boolean circuit (combinational and sequential) into a serialized encoding that

can be interpreted by our ZK state machines. Our novel compiler resolves any

inter-dependencies between intermediate gate inputs and upstream gate outputs.

• ZK state machine modules. Design of a library of ZK state machines that can

evaluate Boolean circuits on any input test vector while preserving the privacy

of the netlist itself. On top of this functionality, the developed ZK modules can

also prove in zero-knowledge various properties of the netlist, such as estimated

area, critical path delay, and expected power consumption.

• Optimizer. Performance enhancements by utilizing bit-packing and graph-

coloring techniques for optimal allocation of the intermediate wires of Pythia’s

ZK state machine vector. Furthermore, Pythia automatically divides the com-

piled 3PIP netlist into independent shares that can be evaluated in parallel, while

cryptographically proving continuity between all these consecutive shares.

64

4.2 The Pythia Framework

zk-STARKs in Pythia. In this work, we generalize the SHA-256 example (discussed in

Section 2.2) and implement a library of custom ZK modules that can evaluate both

combinational and sequential circuits as the public computation A. Specifically, each

ZK module consumes a secret 3PIP netlist as the witness input w of A, and a public

input test vector x (provided by V); in effect, algorithm A simulates the private netlist

w on input x. Each module is tailored to prove different aspects of the target circuit,

such as functionality, max frequency, and estimated area/power. Pythia’s evaluation

output is a public vector y combined with a cryptographic proof of the correctness of

the computation.

4.2.1 Threat Model

In this Section, we elaborate on the different threat scenarios we consider in our

approach to address the problem of mutual mistrust between 3PIP vendors and system

integrators. Our threat model is twofold: on one hand, we assume a cheating prover

P that does not possess an IP and attempts to trick an honest verifier V , and on the

other hand, we assume a cheating verifier V that tries to learn any information from

the communication with P about the IP.

Cheating Prover. A cheating P is an adversary with access to the capabilities of a

3PIP vendor and has incentives to deceive the system integrator (V) while attempting

to sell an IP that does not meet the agreed-upon functionality. The buyer (system

integrator) is expected to test the IP using multiple input vectors and verify the cor-

rectness of the outputs, along with the attached ZK proof. The adversary succeeds if

she produces a false proof that will convince V to accept it. Pythia features a config-

urable security parameter λ that defines the soundness error as ϵ = 2−λ and determines

the probability that an adversary can successfully deceive an honest V in the above

interactions. Minimizing ϵ is possible by increasing the interaction rounds between P

and V [30, 31].

65

Cheating Verifier. Here, a malicious V is assumed to behave without restrictions

and not necessarily follow the protocol specification in order to extract any information

about the secret IP. For example, a cheating buyer (system integrator) may attempt to

learn the IP netlist before paying, even though the vendor (P) does not wish to disclose

the netlist until after payment is received. If P follows the protocol faithfully, V will

never learn anything about the private witness w from interacting with P , except the

fact that A(x,w) is true, which is guaranteed by the underlying ZK protocol. Lastly, we

don’t consider trivial cases where V completely withdraws from the protocol between

the two parties (e.g., by ignoring messages).

4.2.2 Overview of Pythia

In this work, we present the Pythia framework: a novel method for privacy-

preserving 3PIP verification. Pythia utilizes zero-knowledge proofs to enable IP ven-

dors to prove to IP consumers that they possess a 3PIP with some agreed-upon func-

tional specifications without revealing its design. In addition to functional verification,

Pythia enables proving in zero-knowledge various circuit properties, such as estimated

performance, area, and power. To that end, we have designed a library of ZK state

machine modules where each one consumes a netlist as private input and proves a

different property of the circuit. An overview of our framework is depicted in Fig. 4.1

and discussed in the following sections.

Privacy-Preserving Functional Verification. The fundamental idea of the Pythia

framework is to enable 3PIP vendors (who act as P) to prove to system integrators

(i.e., V) that they possess an IP with some predetermined specifications. In the first

step of our methodology, depicted in Fig. 4.1(a), the 3PIP vendor synthesizes an IP

described in a Hardware Description Language (HDL), such as Verilog, and creates a

gate-level netlist. Consecutively, P uses the circuit compiler of Pythia to determine the

evaluation order of the gates and resolve any inter-dependencies between gate inputs

and outputs from previous gates, before finally converting the IP into a ZK-friendly

format that can be evaluated by Pythia’s ZK state machine. In the next step, P utilizes

66

Pythia’s optimizer to minimize the number of intermediate wires required to evaluate

the circuit by employing bit-packing and graph coloring techniques. The optimizer

also splits the netlist into multiple parallel shares that can be evaluated independently

in ZK. Then, P and V agree on the algorithm A that P will execute (i.e., a state

machine that evaluates circuits), and the verifier provides test vectors for the IP that

are encoded as public inputs x. Finally, P executes A locally to simulate the private

netlist (input w) using the public test vector (input x) and computes a public output

y that is sent to V along with a secure cryptographic proof that the circuit simulation

was carried out faithfully.

Library of ZK Modules. Besides functional verification, Pythia supports various

algorithms as zero-knowledge state machines, dubbed ZK modules, that can be used

to prove different properties of the private netlist without revealing any details about

it. More specifically, we implemented a library of modules that can assess (a) the

expected performance of a circuit by estimating its critical path, (b) the area of a

circuit by analyzing the different types and numbers of gates, and (c) the estimated

power consumption based on the gate switching activity. Each module is implemented

as a different zero-knowledge computation (i.e., as a different A algorithm) that can be

executed within Pythia. Notably, in all aforementioned modules, the input IP netlist

always remains hidden from V .

Pythia back-end. The back-end of Pythia utilizes the zk-STARK protocol [31] to

argue about the computational integrity of its state machine that simulates a circuit

netlist and verifies different properties of it. Internally, Pythia leverages zk-STARK’s

programming interface to implement the arithmetization procedure and enable express-

ing a computation as a sequence of state machine transitions along with polynomial

constraints that should hold during that computation. Then, Pythia employs these

constraints to prove the correctness of the execution and all transitions of the state

machine.

In our approach, we implement a circuit simulator as a state machine, and its

67

state vector is initialized with all zeros. Each step of the circuit simulation algorithm

copies the previous state vector, modifies at most one value of it, and appends it

after the previous state vector. The generated sequence of state vectors comprises

a two-dimensional table that represents the computation (i.e., the execution trace in

Section 2.2.4). Each new state vector can be updated in a variety of different ways,

each of which corresponds to the desired operation that is performed in zero-knowledge.

These operations can be arithmetic such as addition and multiplication, bitwise (i.e.,

conjunction, disjunction, etc.), comparisons, as well as operations that affect the control

flow (e.g., a multiplexer). As discussed, our state machine supports two different

types of inputs, namely public (for the test vectors that V provides), and private

that correspond to the witness (i.e., the netlist that only P knows). Leveraging the

security guarantees of zk-STARK [31] in our back-end, Pythia asserts the validity of

each transition in the execution trace (each corresponding to a state machine transition)

by imposing polynomial constraints and asserts their satisfiability to the verifier V . In

effect, Pythia achieves the seemingly impossible task of convincing a system integrator

about the functionality and various properties of an IP core without ever revealing its

composition.

4.2.3 From IP Netlists to ZK-friendly Encoding

Pythia enables automatic compilation of IPs described as HDL programs into a

zero-knowledge-friendly format that can be interpreted and utilized by our back-end.

RTL Synthesis. As illustrated in Fig. 4.1b, Pythia synthesizes HDL (e.g., Verilog)

programs into netlists consisting of logic gates and primitive memory structures like

flip-flops. Without loss of generality, Pythia employs the Yosys Open SYnthesis Suite

framework that performs RTL synthesis on an IP implemented in Verilog and generates

the corresponding netlist in the Electronic Design Interchange Format (EDIF) [244].

During RTL synthesis, Pythia instructs Yosys to perform various optimizations, like re-

moving unused wires and mapping cells to standard logic gates and small multiplexers.

68

Combinational Circuits. The generated EDIF netlist is provided as an input to our

compiler (Fig. 4.1c), which parses the circuit and identifies all of its gates and wires.

Our compiler then performs a second pass in which it associates each gate with specific

input and output wires, and uses this information to determine the correct evaluation

order of the gates, and eliminate any dependencies between intermediate gate inputs

and upstream gate outputs by creating a directed acyclic graph (DAG). Pythia’s DAG

determines the evaluation order of the circuit’s gates by tracking which gates precede

each specific gate and then running a topological sort that resolves all of the dependen-

cies in the netlist. After eliminating all dependencies, our compiler serializes the circuit

so that Pythia’s ZK state machine can prove all gates in sequence. Our compiler also

transforms any gates of the circuit that take more than two inputs into a combination

of two-input gates; for instance, a three-input AND gate is transformed into a pair of

two-input AND gates. Finally, Pythia assigns a gate identifier to each logic gate (i.e.,

AND, OR, XOR, etc.) and writes the encoded IP to a file that is used as witness input w

by our ZK modules.

Sequential Circuits. Evaluating sequential circuits can be achieved similarly; how-

ever, due to complex structures such as the clock signal and flip-flops, they involve

a more complicated encoding than combinational circuits. In a software simulation

setting where each gate operation amounts to a function call and cannot be “re-used”

in the same way that hardware can, sequential evaluation is non-intuitive. The first

and most important problem is to deal with the clock. We address this by effectively

“unrolling” the circuit for each clock cycle and re-evaluating the gates when the clock

ticks. Specifically, on the first clock cycle we fully evaluate the circuit and when a

flip-flop is encountered, we set its output to 0 and buffer the input. At the start of the

next clock cycle, the buffered input to the flip-flop is propagated to the output, and

the circuit is re-evaluated. We observe, however, that this method of re-executing the

entire circuit on each clock cycle remains inefficient since many gate outputs remain

unchanged between consecutive clock cycles. To account for this, Pythia re-evaluates

69

Algorithm 2 State Machine for Circuit Evaluation

Input: Circuit C netlist (private), test-vector (public)
1: procedure EvaluateCircuit
2: H ← 0 ▷ Keeps track of the LCRHF of the IP

3: for idx ∈ Cprimary−inputs do
4: read t from test-vector ▷ Test vector input bit 0/1

5: S⃗[idx]← t ▷ Initialize the state vector (S⃗)

6: for gateID, in1, in2, out ∈ C do
7: H ← LCRHFk,k′(H, gateID, in1, in2, out) ▷ Alg. 1

8: if gateID = AND then
9: S⃗[out]← S⃗[in1] ∧ S⃗[in2]
10: else if gateID = XOR then
11: S⃗[out]← S⃗[in1]⊕ S⃗[in2]
12: else if gateID = . . . then . . . ▷ NAND, NOR etc.

13: return S⃗,H

only the gates that depend on upstream flip-flops in the dependency graph. This effec-

tively means that if a flip-flop is encountered on the same path as any given gate in the

circuit, this gate is re-evaluated for each clock cycle. This strategy ensures that any

gates not connected to and influenced by a sequential circuit element are not needlessly

re-computed.

4.2.4 Zero-Knowledge Circuit Evaluation

The fundamental operation of Pythia is the evaluation of Boolean circuits by

executing a zero-knowledge state machine on any input test vector while preserving

the privacy of the actual netlist. At a high level, Pythia first evaluates all these private

gates and also proves the integrity of the computation. The initial state of our ZK

machine corresponds to a vector filled with zeros and the state transitions denote the

evaluation of logic gates. In each step, Pythia reads a logic gate from the private input,

and depending on the type of gate, it determines what operation to perform on the two

input wires to compute the correct output. The first level of gates (i.e., the gates with

no dependencies) read circuit inputs directly, while intermediate gates depend on the

outputs of preceding gates; to evaluate such gates, Pythia further identifies where to

read their inputs from. Therefore, after each gate evaluation, we store the output at a

pre-determined index location of the state vector, which is also encoded in the private

70

input.

Gate evaluation. For each gate evaluation, Pythia encodes the gate identifier and

three state vector indices: two for the gate input values and one for the output of

the gate. Moreover, all test vectors and the state machine algorithm A that evaluates

Boolean circuits are public so that both P and V can access them; conversely, the gates

and the indices used to evaluate each one are only known to P . Although V is oblivious

to the target 3PIP netlist she verifies, V is convinced that P has correctly evaluated a

circuit using the public input vector, and generated the given public result.

Test vectors. System integrators would typically send many different input vectors to

verify that the 3PIP claimed by P satisfies the predetermined functional specifications.

Nevertheless, since our methodology hides the 3PIP from V by design, the verifier

cannot simply trust that P did not alter the target netlist across evaluations with

different test vectors. In other words, a malicious P could trick an honest V by using

a different netlist each time, in an effort to prove a single 3PIP satisfies the required

properties (across all test vectors), when such 3PIP may not actually exist. This is a

crucial concern that would violate our threat model (Section 4.2.1). To eliminate any

such risks for V , while still keeping the 3PIP private, Pythia employs a secure PRF

to generate authenticated digests from the circuit during each evaluation. Effectively,

this proves to V that the same exact IP is used across all evaluations with different

test vectors. Moreover, since proving the computation of a PRF in zero-knowledge

may increase the execution overhead, we employ a lightweight PRF to minimize this

impact on circuit evaluation; Pythia employs the PRF described in Alg. 1 with k, k′

pre-shared between P and V .

Circuit evaluation. Alg. 2 outlines the state machine used to prove functional prop-

erties of any circuit while evaluating it in zero knowledge. In line 2, we initialize the

hash digest H that Pythia generates during the evaluation of the 3PIP, while in lines

3 and 4 the state vector (S⃗), which stores the value of every wire in the netlist, is

71

Algorithm 3 Module to Prove Gate Distribution

Input: Circuit C netlist (private)
1: procedure AreaModule
2: H ← 0 ▷ Keeps track of the LCRHF of the IP

3: G⃗← [0, . . . , 0] ▷ Initialize gate vector (G⃗) with zeros

4: for gateID, in1, in2, out ∈ C do
5: H ← LCRHFk,k′(H, gateID, in1, in2, out) ▷ Alg. 1

6: G⃗[gateID]← G⃗[gateID] + 1 ▷ Gate type counter

7: return G⃗,H

initialized with the public test vectors selected by V . Then, the state machine iter-

ates until it evaluates every private gate: First, Pythia reads the gate identifier along

with input and output indices (line 6), and updates the hash digest using the PRF

from Alg. 1 (line 7). Next, depending on the type of gate, the state machine carries a

different operation on the inputs and updates the state vector at each out index with

the computed output. At the end of the evaluation, Pythia returns the resulting state

vector along with the hash digest of the IP as computed by the PRF.

4.3 Library of Modules

Using our state machine for circuit evaluation as a backbone (i.e., Alg. 2), we

design a library of auxiliary (AUX) modules that can prove in zero-knowledge various

properties of the target 3PIP. In this section, we elaborate on three such modules

that focus on area, power, and performance verification, without revealing any details

about the corresponding circuit. As discussed in Section 4.2.3, Pythia performs various

optimizations during RTL synthesis to remove redundant blocks or unused wires, as well

as transform any gates of the 3PIP that have more than two inputs into a combination

of two-input gates. Thus, all AUX modules operate on technology-independent reduced

netlists.

An important observation is that all our modules process all the gates of the

3PIP regardless of the inputs, resulting in a constant time execution across different

test vectors. To prove that the same 3PIP was used as private input for functional

verification across all AUX modules, Pythia computes a secure hash digest of the 3PIP

72

netlist while it parses it. This hash can then be compared against the hash computed

by the circuit evaluation module of Pythia, proving that P did not switch the 3PIP

across the different AUX modules.

4.3.1 Area Verification Module

The first AUX module we propose is an area verification state machine. In

computer-aided design (CAD) context, area complexity typically refers to the problem

of estimating the minimum number of gates required to implement a Boolean function

by only having access to the high-level description of the function [159,191]. Therefore,

previous works have focused on developing different techniques to estimate the area

before implementing a design. Nevertheless, our ZK use case is somewhat different

since P has access to both the HDL description and the EDIF netlist of the IP. In

particular, our approach focuses on proving to system integrators that P owns a 3PIP

that meets some functional specifications, and on top of that, it satisfies certain area

constraints.

In Pythia, we calculate the area of a circuit by tracking the different gate types

and the cardinality of each gate. Our starting point is the circuit evaluation process

discussed in Section 4.2.4. Our area verification module, summarized in Alg. 3, utilizes

different indices in a gate vector (G⃗) to track the number of flip-flops (FFs) and each

gate type comprising the private 3PIP netlist (e.g., AND, OR, NOT, XOR, NAND, NOR, and

XNOR). Each time a gate or FF is read from the private input, Pythia increases the

corresponding G⃗ counter by one and then continues to the next. When all gates and

FFs have been evaluated, Pythia outputs the hash digest and the G⃗ value. The former

is used to prove that the same private 3PIP was used in this module as in the functional

verification case, while the latter contains the values of all counters that can estimate

circuit area and track the gate type distribution.

73

Table 4.1: Logical Effort and Parasitic Delays of Common Logic Gates.

Logic Gate Num. of Inputs Logical Effort g Parasitic Delay p

NOT 1 1 1
NAND 2 4/3 2
NOR 2 5/3 2
AND 2 7/3 3
OR 2 8/3 3

XOR/XNOR 2 4 4

4.3.2 Performance Verification Module

The second property we can prove with Pythia using static analysis is the per-

formance of a circuit by calculating the path logical effort [220] between inputs and

outputs and locating the critical path of a circuit, which is the path with the longest

delay. Different gates introduce different delays: for instance, AND and OR gates have

approximately the same delay, whereas XOR gates incur higher delays since they may

be constructed by a combination of other basic gates [24]. All gate delays are expressed

in terms of a basic delay unit τ , which is the delay of an ideal fan-out-of-1 inverter

with no parasitic capacitance. We formalize the absolute gate delay as the product of

the normalized delay of the gate d and the basic delay unit τ . The normalized delay

of an individual gate can be broken down into the summation of the delay of the gate

that is dependent on the load f (i.e., stage effort), and the delay when the gate is

not driving any load p (i.e., parasitic delay). Additionally, the stage effort f consists

of logical effort g and electrical effort h (i.e., the fan-out), such that f = g · h. The

logical effort is the ratio of the input capacitance of a given gate to that of an inverter

capable of delivering the same output current, while the fan-out is the ratio of the input

capacitance of the load to that of the gate. Thus, the normalized delay of a single gate

can be calculated by the following equation:

d = g · h+ p. (4.1)

We summarize the parasitic delay and stage effort of different logic gates in Table 4.1.

Notably, these delays are part of our AUX module configuration and Pythia can easily

substitute them with new delays in order to model a specific technology.

74

In Pythia, we implement the path logical effort methodology as introduced in

[220], which is an extension of the aforementioned method for computing the delays

of single gates. Given a path, the path logical effort G equals the product of the

logical efforts of all the logic gates along the path (i.e., G =
∏

gi), whereas the path

electrical effort H is the ratio of the capacitance of the last logic gate of the path to

the input capacitance of the first gate in the path (i.e., H = Cout(path)/Cin(path)). We

also calculate the path branching effort B as the product of the branching efforts at

each of the stages along the path. The path effort F is defined as the product of the

logical, electrical, and branching efforts of the path (i.e., F = GBH) and is used to

minimize the delay of a certain path; the latter is minimized when the stage effort in

each stage along the path is the same. Finally, the minimum delay achievable along

the path is computed by

D̂ = NF 1/N + P, (4.2)

where P is the path parasitic delay and equals the sum of the parasitic delays of each

gate in the path (i.e., P =
∑

pi).

Our Heuristic Method. Minimizing the delay for every single path using the path

electrical effort method incurs exponential overheads due to the number of input-to-

output path combinations. For large circuits, this approach does not scale gracefully,

which motivates the need for tailored optimizations in the context of ZK performance

verification. Therefore, we introduce a novel and efficient heuristic that uses the single

gate logical effort method (i.e., Eq. 4.1) to cascade the delays of the gates of any netlist

in a single pass of the circuit and to identify the critical path. In particular, for each

gate on a path, our heuristic method propagates the maximum upstream delay of both

gate inputs and adds the normalized delay d of that gate. Since a forward parsing1 of

the netlist does not allow computing the exact electrical efforts h of each individual

gate, our heuristic assumes that h is an integer equal to the fan-out of the gate (i.e.,

1 We always analyze the netlist in the same way as with the other modules (i.e., using
a forward-pass), to prove the same netlist digest H is computed.

75

number of output wires). This assumption significantly reduces the computation cost

and makes this method a heuristic; our ISCAS experiments demonstrate the high

accuracy of our heuristic, as it can always correctly identify the critical path, while the

heuristically computed path delay incurs less than 5% error in all cases.

After we identify the critical path, we apply the exact path logical effort method

(i.e., Eq. 4.2) solely to the critical path. Pythia optimizes the aforementioned algorithm

to compute the path logical effort of a path by updating all necessary parameters

for Eq. 4.2 as we compute the heuristic delay, requiring only a single pass. Notably,

applying our heuristic method to all paths (Alg. 4, lines 1-3, 6-16, 19-20, 23-25) uses

significantly fewer state indices than the exact method of Eq. 4.2 (all lines in Alg. 4),

which effectively reduces the number of zero-knowledge operations required by our

AUX module.

Exact Method. Alg. 4 summarizes our ZK algorithm A for heuristically identifying

the critical path and calculating the exact path logical effort based on Eq. 4.2 and

the formulas from Table 4.1. The exact delay computation is highlighted in blue color

and complements the heuristic algorithm (i.e., the black text). Specifically, Pythia

processes the gates iteratively (line 9) and stores the heuristic delay in vector D⃗ (line

20), based on the propagated maximum delay of the two input wires (lines 15 and 16).

For exact delay computation, Pythia keeps track of: (a) the path logical effort G by

multiplying the logical efforts of single gates along the path (line 21), (b) the path

parasitic effort P by adding the parasitics of single gates in the path (line 22), (c) the

number of stages in the path N (line 17), and (d) the path branching effort B (line 18).

We initialize five vectors to track D, G, B, P , and N with unique counters for every

logic gate (lines 3–6). After Pythia has processed all netlist gates, we find the index

with the maximum heuristic delay and use it to return the exact path effort F = GBH

along with the path parasitic delay and the number of gates in the path.

To compute the path branching effort B, we augment the serialized 3PIP netlist

with the branching information provided by the Pythia compiler. This creates a unique

challenge that we have to address: “How can we prove that the branching effort that

76

Algorithm 4 Module to Compute Path Logical Effort

Input: Circuit C netlist (private), Path electr. effort H (public)
1: procedure PerformanceModule
2: H ← 0 ▷ Keeps track of the LCRHF of the IP.

3: D⃗ ← [0, . . . , 0] ▷ Initialize the heuristic delay vector.

4: G⃗, B⃗ ← [1, . . . , 1] ▷ Path logical and branching effort vectors.

5: P⃗ , N⃗ ← [0, . . . , 0] ▷ Path parasitic delay and gate counter vectors.

6: for idx ∈ Cprimary−inputs do
7: read b from C ▷ Read branching effort value b.

8: h⃗[idx]← b ▷ Initialize the fanout vector (⃗h) for primary wires.

9: for gateID, in1, in2, out, b ∈ C do
10: H ← LCRHFk,k′(H, gateID, in1, in2, out) ▷ Alg. 1

11: h⃗[in1]← h⃗[in1]− 1 ▷ in1 is used, decrease b for wire 1.

12: h⃗[in2]← h⃗[in2]− 1 ▷ in2 is used, decrease b for wire 2.

13: assert h⃗[out] = 0 ▷ Assert that b at index out was correct.

14: h⃗[out]← b ▷ Update b for current gate at index out.

15: if D⃗[in1] > D⃗[in2] then max← in1 ▷ Set max to

16: else max← in2 ▷ the wire with the maximum heuristic delay.

17: N⃗ [out]← N⃗ [max] + 1 ▷ Count gates in critical path.

18: B⃗[out]← B⃗[max] ∗ b ▷ Update path branching effort.

19: if gateID = AND then
20: D⃗[out]← D⃗[max] + 7b

3 + 3 ▷ Update heuristic delay.

21: G⃗[out]← G⃗[max] ∗ 7/3 ▷ Update path logical effort.

22: P⃗ [out]← P⃗ [max] + 3 ▷ Update path parasitic delay.

23: else if gateID = . . . then . . . ▷ cf. Table 4.1 for NAND etc.

24: idx← argmax(D⃗) ▷ Find the index of the maximum value in D⃗.

25: return D⃗[idx],H, ▷ Used by both heuristic and exact method.

26: G⃗[idx] ∗ B⃗[idx] ∗H, N⃗ [idx], P⃗ [idx] ▷ Exact method.

was read from the serialized encoding is correct?”. To convince V about this argument

in ZK, Pythia tracks the branching effort of each gate in a separate state vector (⃗h in

Alg. 4) and decrements the corresponding index every time the output of one gate is

used as input by another (lines 11 and 12). In lines 6–8 we read the branching effort of

all input wires and initialize h⃗. When a new gate is processed, we read the branching

effort (b) for this gate and check that the previous branching effort stored at that index

is indeed zero (line 13). Finally, we update the correct index with the new branching

effort (line 14). Alg. 4 proves the correct computation of G, B, P , and N to V , who in

turn can compute the path effort F based on the path electrical effort H, which yields

the exact path delay D̂ using Eq. 4.2. In addition to computing the critical path delay,

this module uses the private netlist input to construct a hash digest of the 3PIP, so

77

Figure 4.2: Path logical effort calculation. The table depicts how the path logical effort
G, path branching effort B, path parasitic delay P , and the number of logic stages in
the path N counters are used to estimate the delay of any circuit using the gate delays
from Table 4.1. G, B, P , and N are updated based on the type of logic gate and the
formulas in lines 17–22 in Alg. 4.

that V can ensure this hash equals those generated during functional verification and

area verification (i.e., the 3PIP was not switched by P).

Example. In Fig. 4.2 we demonstrate how Pythia computes G⃗, B⃗, P⃗ , and N⃗ based

on the two inputs and the delays from Table 4.1. On the left-hand side of Fig. 4.2, we

illustrate how G⃗ is calculated: Both input counters of gate #1 have an initial value of 1

and the output counter gets the value 4 since it is an XOR gate. Similarly, the branching

effort and parasitic delay of gate #1 are 2 and 4 respectively. Lastly, N tracks the

maximum number of gates along each path. Iterating in a similar manner with the rest

of the gates, our method computes the critical path with G = 24.9, B = 2, P = 10,

and N = 3. The path delays are then computed using the load capacitance H that V

chooses.

Net Delay Estimation. Our aforementioned performance estimation method is

based on circuit netlist IPs, so it does not incorporate net delays that depend on

placement and routing; as with the standard logical effort method, our module as-

sumes negligible wire capacitance and RC delay. Nevertheless, since interconnection

delays are becoming more and more impactful [80], Pythia provides a heuristic to ap-

proximate the net delay of the critical path by taking into account the total number of

78

Table 4.2: Logic Gates Switching Probabilities: Pi denotes that node i is 1 based on
input A and B probability being 1.

Gate Probability Pi

NOT PA

NAND 1− PA · PB

NOR PA · PB

AND PA · PB

OR 1− PA · PB

XOR PA · PB + PA · PB

XNOR 1− (PA · PB + PA · PB)

wires in the path as well as an optional distribution of wire delays. The latter is agreed

between P and V and can be derived from past designs of similar size and technology.

If no distribution is provided, we assume that all wires in the critical path are “short”

and have equal length. In this case, we adjust Alg. 4 output by adding the path net

delays based on the average delay per wire, as agreed by P and V .

4.3.3 Power Verification Module

Pythia also incorporates an AUX module for estimating the dynamic power

consumption of a netlist to convince system integrators. Apart from dynamic power

dissipation, circuits also draw static power. The former consists of the switching power

(i.e., charging and discharging load capacitances as gate outputs change), while the

latter is consumed through various circuit nodes and transistor leakages when a chip

is not switching. In this module, we focus on calculating the gate switching activity

of 3PIPs, since the static power dissipation is negligible compared to the dynamic

power consumption. Various previous works (e.g., [116,176]) propose different models

to estimate the dynamic power consumption of netlists, and the core idea in all of

these techniques is to predict the switching activity of the transistors in the circuits.

Specifically, the dynamic power of a circuit can be expressed as a function of the

probability that a gate transitions from 0 to 1, called activity factor α, and the clock

frequency f so that Pdynamic = α ·C ·V 2
DD ·f , where C is the load capacitance and VDD

is the positive voltage [243].

79

Gate switching highly depends on the inputs and thus, the activity factor pro-

vides a way to estimate the probability that a gate transitions from 0 to 1 (the reverse

transition does not consume any power [243, 5.1.2]), without exhaustively trying differ-

ent input-vectors, which in many cases is impossible. Since the activity factor depends

on the logic function, in Table 4.2 we provide the probabilities Pi that the output of gate

i is 1, based on the probabilities of its inputs A and B being 1. We also use P i = 1−Pi

to denote the complement probability (i.e., node i is 0). Using the probabilities of each

node, we can derive each activity factor as αi = Pi · P i.

Pythia’s power module processes the private 3PIP in a similar manner as in

the critical path calculation, yet instead of tracking the different delays, we calculate

the activity factor of each gate. All primary input probabilities are extracted from

the inputs that V has provided, and then depending on the gate that Pythia reads,

we compute the activity factor of each gate based on the formulas from Table 4.2.

For instance, if the input probabilities in Fig. 4.2 are PA = PB = PCin
= 0.5, Pythia

estimates the dynamic power consumption of the circuit as follows: The probability

that Gate #1 (i.e., XOR) outputs 1 is calculated as P1 = PA · PB + PA · PB = 0.5,

yielding an activity factor α1 = 0.5 · 0.5 = 0.25. Then, Pythia processes Gates #2 and

#3 (i.e., ANDs) and computes P2 = PB · PA = 0.25 and P3 = PCin
· P1 = 0.25 which

result in α2 = α3 = 0.25 · 0.75 = 0.1875. Likewise, P4 = P1 · PCin
+ P 1 · PCin

= 0.5,

and α4 = 0.25, while the probability that Gate #5 (i.e., OR) is 1 is computed as

P5 = 1− (P 3 ·P 2) = 0.4375, producing an activity factor α5 = 0.4375 · 0.5625 = 0.246.

Instead of arbitrarily setting the input probabilities, we employ a probabilistic model

that extracts the primary input probability distribution based on V ’s test vectors.

Essentially, the probability of each input is calculated as the average of a specific input

across multiple test vectors. As in all library modules, Pythia computes a secure hash

of the private netlist in ZK, so the Verifier can compare it with the one calculated

during functional verification to be convinced that the estimated power consumption

was calculated over the same 3PIP.

80

Figure 4.3: Adder evaluation. The numbers on the gates denote the evaluation order,
also illustrated by the row labels of the table (execution trace) on the right-hand side.
The green values represent which variable changed after the evaluation of the gate
denoted by the row number. The variables r0–r3 can be interpreted either as four
separate indices or as one 4-bit block. The serialized private input encoding a part of
the above circuit is depicted at the bottom.

4.4 Pythia’s Optimizer

In this Section, we propose a series of optimizations to effectively reduce the

size of the state vector, since a smaller state vector results in improved performance

for both P and V . Finally, we introduce a methodology to split the functional and

property verification modules to exploit parallelization.

4.4.1 Efficient Wire Placement Using Register Allocation

Apart from the area verification module that uses a constant number of state

indices to keep track of the numbers and types of gates for each different netlist,

the other modules require more indices as the total number of gates in the netlist

increases. For small circuits, assigning each wire to a unique state vector index is

feasible, however, for bigger circuits the size of the state vector required to hold all of

these wires grows significantly, impacting both the time required to generate a proof

and the time to verify it. Therefore, we apply a tailored register allocation technique

that utilizes graph coloring to minimize the number of unique indices needed to hold

81

the intermediate wires of a circuit. We incorporate this optimization in the Pythia

compiler during the IP transformation phase: instead of assigning unique indices to

each wire, Pythia deftly allocates and re-uses indices for the input, intermediate, and

output wires in the state vector.

Fig. 4.3 demonstrates how the register allocation technique effectively reduces

the number of unique indices and how they can be reused to prove the functionality

of an adder. Without this optimization, the circuit in Fig. 4.3 would require 3 input

(i.e., A, B, Cin), 2 output (i.e., S, Cout), and 3 intermediate wires (i.e., to hold the

results of gates 1, 2 and 3), resulting in a total of 8 different indices. In Fig. 4.3 we

demonstrate how our graph coloring technique allocates each wire to an index and

enables Pythia to evaluate the adder with solely 4 indices. The table on the right-hand

side of the figure depicts the execution trace of the adder (i.e., how the state changes

with each gate evaluation). In the first row of the execution trace the state vector is

initialized with the values of the primary inputs: A = 1, B = 0, and Cin = 1. In the

second row, gate #1 is evaluated and its output is written at the last index of the state

(highlighted in green). Each row corresponds to the evaluation of the next gate, while

the last row holds the two outputs of the adder. At the bottom of Fig. 4.3, we show a

part of the 3PIP witness input w that the Pythia compiler generated from the adder

circuit using register allocation. First, the state machine reads the XOR gate and the

two input variables (r0, r1), then it evaluates the gate using the contents of the two

indices (i.e., 0 and 1) and stores the result to the output variable (r3 = 1). Then, our

state machine continues to the next operation. This optimization significantly reduces

the total number of required indices, and as we show later in Section 4.5, this is crucial

for the performance of Pythia.

4.4.2 Bit-Packing

Large combinational and sequential circuits that consist of thousands of wires

and gates require a considerable amount of indices to hold intermediate wire values

even when register allocation has been applied. Register allocation techniques are not

82

as effective in circuits with many gates at the same level (i.e., circuits with large width)

since all these wires should hold their values at the same time. An important obser-

vation about our functional verification module is that each state index stores only a

binary value, which yields state vectors with many indices. Notably, increasing the

number of indices in the state vector impacts the number of zk-STARK operations,

which can affect performance. Therefore, to minimize the number of indices, yet con-

tinue storing the same amount of information, we employ a bit-packing optimization

that organizes multiple wires into multi-bit blocks under the same state vector index.

For instance, using this bit-packing optimization, the state in Fig. 4.3 becomes a single

4-bit register R0 instead of four 1-bit registers (r0 to r3). In this example, R0 will

transition as follows: 1011→ 0011→ · · · → 0101.

Specifically, the bit-packing scheme of Pythia can utilize uniquely indexed 64-

bit blocks, which reduces the number required by a factor of 64. Notably, Pythia

can still access individual bits within each 64-bit block. To enable this optimization,

Pythia’s compiler can encode both the block index within the state vector and the bit

index within the block for the inputs and output of each gate. Therefore, in addition

to the previous four inputs (i.e., gateID, in0, in1, out in line 6 of Alg. 2), each gate

evaluation includes three-bit indices as well (i.e., one for each input and one for the

output). Although this feature seemingly complicates Pythia’s state machine as it

incurs bit-shift operations to read/write individual bits within a block, this overhead

is negligible compared to the ZKP cost savings from having fewer state vector entries.

This optimization is mostly applicable to functional verification, as the power and

performance modules already store multiple bits in each index, while the area module

uses a constant state vector size so bit-packing does not impact its performance.

83

1100111001 10110 01001

Initial
State

Evaluation

Final
State

…

00000 11001 10110 00010

101011
001110
100110

001000
010101
010111

001010
101011
110011

011000
101000
010001

01001

Figure 4.4: Chaining execution to enable parallel verification. Pythia divides large
executions into multiple shares and pre-computes the intermediate states locally. The
simulator computes the PRF digest of the machine state and compares it with the
digest provided in the public input to verify its integrity. Each share can be verified
independently and in parallel.

4.4.3 Execution Parallelism

To further optimize the performance of our methodology, we augment Pythia’s

optimizer to enable parallelized proof generation and verification. Specifically, we ob-

serve that all four Pythia modules operate iteratively over a given netlist. The exe-

cution trace of each module is initialized with a zero state vector and transitions to

different states during the computation; given any intermediate state and a private

3PIP, Pythia can always continue the computation and converge to the correct output.

Therefore, we can break down the problem of proving one big execution trace into the

problem of proving the faithful execution of two smaller execution traces, along with a

provable transition between the two. We refer to each smaller execution trace that is

a part of a bigger trace as a share. We demonstrate this concept in Fig. 4.4, where the

sample initial state of the first share is 00000, and after the evaluation of the share its

state becomes 11001. The latter initializes the second share, which will produce a new

state 10110, and so on. The final state 11001 represents the result of the computation,

which can be either the output wires of a netlist (functional verification), or different

counters encoding the area, performance, or power estimations.

Although the shares in Fig. 4.4 are constructed honestly by the 3PIP vendor, V

is not able to immediately verify if the intermediate states are initialized correctly or

a malicious P has modified them. To convince V that these shares are actually parts

84

of the original execution trace, and also preserve the confidentiality of the intermedi-

ate state vectors, we compute integrity measurements of each state vector using the

lightweight PRF discussed in Section 2.3. The 3PIP vendor calculates these publicly

authenticated digests and shares them with V ; notably, only P knows the actual netlist

data that produced each digest. At last, the system integrator verifies that all PRF

digests at the end of each share are the same as the ones used at the beginning of each

next share.

So far, we demonstrated how to decompose a big execution trace into smaller

consecutive shares, and chain them in order to compute the correct output. Nev-

ertheless, to exploit parallelism in zero-knowledge we also need to pre-compute the

intermediate state vector values. In this case, Pythia quickly evaluates the netlist

without creating a ZK proof, and computes the starting and ending state vectors of

each share, along with their PRF digests. The offline execution overhead for P is neg-

ligible compared to the online proof generation timing. This method is not affected

by any dependencies between consecutive shares, as all intermediate state vectors and

their hash digests are precomputed, so proof generation of each share can take place

in parallel. Finally, V can verify that the public PRF digests at the end of each share

match the ones used to initialize the next share to ensure correctness.

4.5 Experimental Results

4.5.1 Experimental Setup

In this Section, we evaluate the applicability and performance of our framework

using selected benchmarks from the ISCAS’85, ISCAS’89, and ITC’99 suites. To verify

the correctness of our circuit evaluation (Alg. 2), we employ a variety of input-output

pairs for our benchmarks, as well as two arithmetic cores from [230]: an 8-bit high-radix

sequential multiplier and a 12-bit sequential fast modular reduction core for Mersenne

prime moduli. We synthesize the benchmarks to produce EDIF netlists using the Yosys

Open SYnthesis Suite framework [244]. We used Verilog and VHDL implementations

for the ISCAS and ITC benchmarks, respectively. Yosys features various parameters

85

that produce different netlists depending on the user’s preferences (e.g., optimize for

performance, space, etc.). In this work, we synthesized our benchmarks with the proc

and flatten flags. Notably, more sophisticated tools may result in more optimized

netlists, however, our goal in Pythia is to optimize the cost per gate for P and V ,

rather than to optimize the benchmarks themselves.

The core of the Pythia framework is implemented in C++, while Pythia’s com-

piler and optimizer are implemented in Python 3. To fully investigate parallelization,

we obtained our experimental results on an m5.24xlarge AWS EC2 instance with two

Intel Xeon Platinum 8175M cores running at 2.5 GHz and hyper-threading, resulting

in 96 virtual cores and 748 GB RAM. The system is running Ubuntu 18.04 with the

4.15.0 Linux kernel and the g++ 7.4.0 compiler.

4.5.2 Performance Evaluation.

The timing and memory overheads incurred by Pythia’s back-end highly depend

on both the length of the execution trace and the size of the state vector. As the

execution trace becomes bigger, both the execution timing and the memory required

for P increase. The verification timing is also affected by the same factors, however, it is

always poly-logarithmic (polylog(T)) to the size of the execution trace T . An important

property of Pythia’s back-end (inherited from zk-STARK) is that the proving cost for

any two execution traces whose size is less than the same power of 2 is approximately

the same [31]. For instance, a trace with 942 steps incurs roughly the same timing

and memory overheads as a trace that has 1020 steps since both have less than 210

transitions.

Splitting Shares Trade-off. In this experiment, we study the optimal size for our

shares by investigating the number of gates in each share. Increasing the number of

shares allows proving more shares in parallel, however, the cost of calculating the PRF

digest in every share will eventually dominate the proving time. Conversely, having

fewer shares makes the cost for the PRF negligible compared to the total cost of proving

the evaluation of each share, while the required memory increases as well. In Fig. 4.5

86

1 2 4 9 18 37 76 155 320 650
Gates per Share

1

2

Ti
m

e
(s

ec
.) Time per Gate

Memory

100

101

102

RA
M

 U
sa

ge
 (G

B)

Figure 4.5: Memory/Efficiency per gate trade-off for the prover. The horizontal axis
shows the maximum number of gates per share that can be evaluated in less than a
power of 2 state machine transitions.

we illustrate the aforementioned trade-off based on the proving time per gate for our

functional verification module: the left vertical axis shows the time per gate, while

the right vertical axis indicates the required memory for each splitting configuration.

While the time for P increases as the execution trace becomes longer, having more

gates in each share reduces the proving time per gate. The green triangle trend in

Fig. 4.5 indicates that increasing the number of gates per share (i.e., having fewer

shares) decreases the overall proving time; however, the associated memory cost (red

squares in Fig. 4.5) scales linearly with the number of gates per share. Therefore, the

cost for P depends on the number of shares that can fit in the available memory of the

target host. For our experimental setup, we identified that 9 gates per share strike a

good trade-off between proving time and required memory.

Two levels of Parallelization. Pythia is doubly parallelizable: (a) using multiple

independent shares, we can split the computation and evaluate the shares in parallel,

and (b) Pythia’s back-end utilizes multiple threads to parallelize the proof generation

in each share. This motivates our next experiment which investigates how we can

optimize parallelism in a multi-core host. The green triangles in Fig. 4.6 present the

proving time for 1 share using a different number of cores. We observe that having

more than 8 cores per share reduces the relative speedup (diminishing returns), so the

cores per share should be balanced with the number of shares processed in parallel on

all available cores.

87

1 2 4 8 16 32 96
Cores per Share

0

200

400

Ti
m

e
(s

ec
.) Time for 1 share

Total time for 96 shares

Figure 4.6: Time measurements for proving 1 and 96 shares with a different number
of threads per share. The red squares depict the timings for 1 core/share (prove all 96
in parallel) to 96 cores/share (prove shares sequentially).

c17 c499 c880 c1335 c1908 c3540 c5315 c7552 b14_C b15_C b17_C
Selected ISCAS'85 and ITC'99 combinational benchmarks

10 1

103

Ti
m

e
(s

ec
.)

4.2
30 56 95 156 252 334 280 784 1987 6462

0.3
3.8 8.7 14 22 41 58 46 62 139 472

0.2 0.7 1.1 1.9 2.9 5.1 7.0 5.5 22 65 223
Time for Offline time for Time for

Figure 4.7: P and V experimental results for selected benchmarks from the ISCAS’85
and ITC’99 suites.

Moreover, the red squares in Fig. 4.6 investigate the total cost for proving 96

shares by varying the number of allocated cores per share. On one extreme, we can

assign 1 core per share in order to verify all 96 shares in parallel (i.e., leftmost red

square in Fig. 4.6), while on the other extreme we can assign all 96 cores to verify 1

share at a time and repeat the process 96 times (rightmost red square). If we allocate

8 cores per share, we can verify 12 shares in parallel per iteration (note, we need 8

iterations to verify all 96 shares), our setup achieves the fastest overall time for P ,

which further confirms the finding of the previous paragraph.

Discussion of Experimental Results. We evaluate Pythia using the ISCAS’85,

ISCAS’89, and ITC’99 benchmark suites [59, 60, 81] with random input test vectors

(chosen by the IP consumer). Specifically, V is responsible for choosing multiple test

vectors to supply to Pythia and this selection does not impact the proving time. We

observe that each benchmark’s proving time depends on the total number of gates in the

netlist, rather than the distribution of the input pattern, even though different inputs

trigger different gates. In Figs. 4.7 and 4.8, we report our performance evaluation

88

s27 s382 s641 s838 s1488 s5378 s9234 s15850 b14 b15 b17
Selected ISCAS'89 and ITC'99 sequential benchmarks

10 1

103

Ti
m

e
(s

ec
.)

2.8
27 44 60 80 371 667 1119 1074 2118 6773

0.5
4.5 7.2 10 14 64 119 180 70 146 523

0.1 0.5 1.0 1.2 1.8 8.4 14 23 35 69 237
Time for Offline time for Time for

Figure 4.8: Amortized P and V evaluation time per cycle (over 10 cycles) using selected
benchmarks from the ISCAS’89 and ITC’99 suites.

results for a selection of benchmarks, using a splitting of 9 gates per share and 8 cores

allocated per share. In particular, Fig. 4.8 shows the amortized cost per cycle (over ten

clock cycles) for each of our sequential benchmarks. As discussed in Section 4.4.3, in

order to prove multiple shares in parallel, P needs to quickly compute the intermediate

state vectors offline (i.e., without generating a proof). Therefore, each benchmark in

Figs. 4.7 and 4.8 reports the aforementioned offline cost (using the yellow bars in the

middle), as well as the online costs for both P and V using the red (left) and green

(right) bars, respectively. All timings depend on the length of the execution trace,

which in turn depends on the number of gates in each netlist share; in this case, all

shares comprise exactly 9 gates, so the trace length is constant. Thus, the factor that

dominates Pythia’s performance is the number of shares in each benchmark (i.e., the

netlist size).

In the Verilog implementation of the ISCAS’85 benchmarks, c7552 comprises

more gates than c5315; however, after Pythia invokes Yosys to synthesize and trans-

form all the gates with more than two inputs into a series of two-input gates, c5315 has

the most gates compared to the other ISCAS’85 benchmarks, and thus incurs the higher

P and V costs. We report the number of gates and wires of our synthesized ISCAS

benchmarks in Table 4.3. One can observe that the proving time in Pythia scales lin-

early with the number of shares (i.e., ⌈#gates/9⌉) which is quasi-linear (T ·polylog(T))

in the number of state machine transitions T since each gate involves a fixed number

of transitions. Likewise, Pythia’s verification time is poly-logarithmic (polylog(T)) in

T .

Fig. 4.9 reports our experimental evaluations for both P and V using our area,

89

Table 4.3: Number of Gates and Wires Generated by Pythia Compiler and State Vector
Minimization After Applying Graph-Coloring and Bit-Packing Techniques for Selected
Benchmarks.

Combinational
Benchmark

c499 c880 c1355 c1908 c3540 c5315 c6288 c7552 b14 C b15 C b17 C

Gates 246 583 1006 1435 2349 3454 2922 2742 4447 7901 24246
Wires 287 643 1047 1468 2399 3632 2954 2949 4722 8384 25696
Vector Size 48 87 72 189 322 569 63 357 574 620 1791
64-bit Blocks 1 2 2 3 6 9 1 6 9 10 28

Sequential
Benchmark

s349 s382 s420 s444 s526 s641 s838 s1488 b14 b15 b17

Gates 234 292 322 346 382 455 658 843 4338 8322 25697
Wires 247 299 314 353 389 494 696 855 4369 8357 25733
Vector Size 57 78 83 82 132 78 170 242 772 1015 3756
64-bit Blocks 1 2 2 2 3 2 3 4 13 16 59

c17 s27 c499 s382 s641 s1488 c5315
ISCAS'85 and ISCAS'89 Selected Benchmarks

10 1

102

105

Ti
m

e
(s

ec
.)

3.8 3.2
29.4 27.7 49.3 65.3

309

6.8 7.9

472 952 1601 5485 14176

5.2 4.9
45.6 48.7 83.4 146 598

4.4 3.8
34.7 37.2 65.3 112

543

0.6 0.6 0.8 1.6 5.49.8 25.9 36.4 74.8 166

0.9 1.2 1.3 2.4
12.3

0.8 0.9 1.7
20.3 11.4

Time for Area
Time for Area

Time for Perf. (exact)
Time for Perf. (exact)

Time for Perf. (heuristic)
Time for Perf. (heuristic)

Time for Power
Time for Power

Figure 4.9: Timing results for P and V of the area, performance (for both exact and
heuristic methods), and power modules for selected ISCAS’85 and ISCAS’89 bench-
marks. The timings for ISCAS’89 netlists are amortized over 10 cycles. P ’s offline
costs are reported in Figs. 4.7 and 4.8 and are omitted from this plot. Our heuristic
method incurs less than 5% error in all cases, and offers significant performance bene-
fits compared to the exact method.

performance, and power estimation modules. As mentioned in Section 4.4.2, the bit-

packing optimization cannot be applied to the performance and power estimation mod-

ules since they already store multiple bits of information in each state index. As a result,

these two modules incur higher overheads than the functional verification module due

to the significantly larger state vectors they use. Our performance module using the

exact method for path delays requires significantly more state indices than any other

module to keep track of all wire delays and therefore incurs considerably higher over-

heads. Nevertheless, our heuristic method achieves highly accurate results (less than

90

5% error from the exact path delays of the ISCAS benchmarks), yet it is several or-

ders of magnitude faster. Likewise, across several ISCAS’85 benchmarks, our heuristic

incurs less than 4% error (on average) compared to the results from OpenTimer, a

popular open-source static timing analysis tool [133]. Finally, since the area verifica-

tion module has minimal requirements (i.e., small and constant number of indices for

all the netlists), it achieves the fastest performance across all the modules. Moreover,

as we observe in the results of Fig. 4.9, the overhead of our AUX modules scales with

the total number of gates in each netlist, while the prover’s performance also depends

on the number of indices of the state vector.

Bit-Packing. Table 4.3 summarizes the numbers of gates and wires for our ISCAS

benchmarks after Yosys synthesis and demonstrates how our register allocation and bit-

packing optimizations drastically reduce the number of intermediate wires. Notably,

register allocation is less impactful for very wide netlists, as Pythia maintains all wire

values at each circuit level using unique state indices, which attributes to increased

overheads. For narrower netlists that have smaller levels (regardless of their depth), our

register allocation can significantly reduce state indices and hence Pythia’s overheads.

For instance, the netlist of c6288 has 2954 wires, and register allocation can reduce

them to just 63, which is a decrease by almost 50× (c.f., row “Vector Size” in Table 4.3).

Conversely, netlist s526, which achieves a modest decrease of about 3× according to

Table 4.3, would benefit less from this optimization. When our bit-packing technique

minimizes the state vector size (c.f., row “64-bit Blocks” in Table 4.3) to a value less

than 10, the performance benefits are more noticeable.

4.6 Related Work

In this Section, we discuss the different categories of zero-knowledge proof sys-

tems and our choice of zk-STARK as the back-end cryptographic protocol of Pythia.

The first category involves systems that need a trusted setup phase for each different

computation they want to prove. This line of work started from the construction pro-

posed by Gennaro et al. [113] using quadratic arithmetic programs and continued with

91

the works in [33, 37, 195]. More recent proof systems utilize universal and updatable

trusted setups that are based on common reference strings (e.g., [75]). Their advantage

compared to the previous category is that they do not require a trusted pre-processing

phase for each circuit, but only a single setup for all circuits. Although this method

requires only one trusted setup, neither this nor the first category are applicable for

our threat model since a malicious party that gains access to the trusted setup phase

can always forge false proofs.

The last category includes systems with a transparent setup (i.e., no requirement

for a trusted third-party to initialize the system). This includes preliminary works in

[51, 61, 239], as well as zk-STARK-based systems [31, 184]. Pythia’s back-end relies

on zk-STARK as it supports universal, trustless setup in line with our threat model;

moreover, verifiers in zk-STARK protocols can achieve the best-in-class performance,

while the low-overhead proving times [31].

The authors of [154] proposed a novel technique that leverages homomorphic

encryption (a cryptographic primitive that allows performing meaningful operations

on encrypted data) to enable secure outsourcing and evaluation of 3PIP designs using

encrypted input vectors. In a similar direction, the authors of [125] propose a frame-

work that converts Verilog HDL programs into homomorphic circuits with equivalent

functionality, and evaluates them using encrypted input vectors. Both of these ap-

proaches allow untrusted third parties to evaluate an IP while preserving the privacy

of the input test vectors. Nevertheless, since homomorphic operations only protect

data privacy but not the applied function (i.e., Boolean gates remain unencrypted in

the source file), the netlist designs are not protected as in Pythia.

Previous work has also focused on proving the correctness and various proper-

ties of 3PIP designs using formal logic verification [141,150]. These techniques mostly

focus on formally checking the correctness of a netlist or a cryptographic protocol to

ensure the design is free of malicious logic, such as hardware Trojans (e.g., [227]). Yet,

such methods focus on comparing the netlist with a formal mathematical model of the

circuit and exclude any privacy protections for the IP. Conversely, the threat model

92

of this work (Section 4.2.1) assumes that cheating verifiers have incentives to extract

information about the IPs before a financial transaction is completed. In this con-

text, Pythia offers a novel privacy-preserving approach to such deadlocks, by enabling

system integrators to verify that 3PIP vendors possess an IP with certain functional,

performance, area, and power constraints.

Recent research directions have also focused on obfuscation methods that aim to

prevent IP theft of circuit designs, by inserting additional gates into the circuit in order

to hide its implementation [205]. Likewise, watermarking [144] and fingerprinting [64]

methods embed author signatures in the design to deter IP theft, as they allow tracking

the source of leakage in case of piracy violations. While such techniques mitigate the

risk of IP theft, they come with important limitations: First, these techniques only

make it harder for the attackers but do not guarantee that 3PIPs can not be leaked.

Furthermore, all the aforementioned techniques tamper with the IP design and, more

importantly, they assume that verification takes place after the IP is outsourced to the

system integrator. In contrast, Pythia is designed for privacy and makes it impossible

for such designs to be leaked in the first place, as system integrators never access

the IP while verifying its properties. Notably, in this work, we can prove both the

functionality of a 3PIP, as well as estimate important properties (area, performance,

and power) without altering the netlists in any way. To the best of our knowledge,

Pythia is the first framework that employs ZKPs in the context of privacy-preserving

IP verification, which is an exciting research direction for integrated circuits.

4.7 Concluding Remarks

In this paper, we have proposed the first-of-its-kind Pythia framework for privacy-

preserving IP verification. Pythia features a custom compiler that translates any circuit

into a specialized encoding that is then evaluated in zero-knowledge using public test

vectors; our method generates cryptographic proofs to attest the faithful evaluation of

test inputs on a netlist, yet the netlist itself remains a black box for the verifier. Secu-

rity is guaranteed by Pythia’s back-end that leverages the provably secure zk-STARK

93

protocol. Our methodology also supports different auxiliary modules that can further

estimate the area, performance, and power consumption of a netlist in zero knowledge.

Moreover, Pythia leverages authenticated hash digests to prove that the secret netlist

was not altered across different test vectors. Our methodology is complemented by

optimization techniques that reduce performance overheads and memory requirements

using register allocation and bit-packing. Notably, Pythia can automatically split a

given netlist into multiple shares that can be evaluated in parallel. Finally, we have

demonstrated Pythia’s versatility using combinational and sequential circuits and have

investigated the impact of the netlist size on Pythia’s performance.

94

Chapter 5

ZK-SHERLOCK: EXPOSING HARDWARE TROJANS IN
ZERO-KNOWLEDGE

As integrated circuit (IC) design and manufacturing have become highly global-

ized, hardware security risks become more prominent as malicious parties can exploit

multiple stages of the supply chain for profit. Two potential targets in this chain are

third-party intellectual property (3PIP) vendors and their customers. Untrusted par-

ties can insert hardware Trojans into 3PIP circuit designs that can both alter device

functionalities when triggered or create a side channel to leak sensitive information such

as cryptographic keys. To mitigate this risk, the absence of Trojans in 3PIP designs

should be verified before integration, imposing a major challenge for vendors who have

to argue their IPs are safe to use, while also maintaining the privacy of their designs

before ownership is transferred. To achieve this goal, in this work we employ mod-

ern cryptographic protocols for zero-knowledge proofs and enable 3PIP vendors prove

an IP design is free of Trojan triggers without disclosing the corresponding netlist.

Our approach uses a specialized circuit compiler that transforms arbitrary netlists into

a zero-knowledge-friendly format and introduces a versatile Trojan detection module

that maintains the privacy of the actual netlist.

5.1 Introduction

Integrated Circuit (IC) designs are embedded in most electronic equipment, and

as a result, IC security has become of crucial importance as the globalized economy

heavily relies on System-on-Chip (SoC) designs. The IC supply chain depends on

procuring a variety of Intellectual Property (IP) cores from third-party vendors (3PIP)

and integrating them with components that are designed in-house to fabricate the

95

IC [203]. However, the integrity of these externally developed IPs cannot always be

guaranteed, and as a result, malicious actors can potentially inject hardware Trojans

to the SoC designs. Such malicious modifications in hardware could be triggered under

certain conditions (e.g., user input, time-based, etc.) or be always on [146]. Rarely-

activated Trojans are typically programmed to engage only under a unique set of

circumstances created by an attacker and are hard to detect when in their dormant

state [224]. When activated, Trojans can alter device functionality by influencing

output wires or creating a side channel through which sensitive data can be leaked.

It is critical for the IC supply chain to address security concerns, such as hardware

Trojans, instead of solely on functionality and runtime performance.

IP core verification is a crucial step of SoC design [95], during which IP con-

sumers provide functional requirements to the vendors and the 3PIP vendors design

circuits that meet these specifications.1 The goal of IP core verification is to convince

system integrators about the functionality of the generated 3PIP designs. Thus, en-

suring that the circuit is compliant with the specified constraints while achieving a

high degree of testability is a crucial consideration in the IC supply chain. Most com-

mon solutions include formal logic verification [141], simulation-based methods [177],

and application-specific instruction-set processors [221]. Previous solutions are mostly

geared toward IP functional verification, but fail to protect the privacy of the IP de-

signs. However, recent efforts have also focused on using cryptographic protocols such

as homomorphic encryption and zero-knowledge proofs (ZKP) to enhance the security

of transactions in the IC supply chain. [125, 154] securely outsource the evaluation of

3PIP netlists to third parties to ensure the confidentiality of the circuit inputs, how-

ever, the actual netlist is still visible since homomorphic encryption does not provide

functional privacy (only data privacy). [178,182] preserve the privacy of the netlist us-

ing ZKPs but only focus on functional verification and fail to address the increasingly

important issue of hardware Trojans. Indeed, existing solutions offer no support for

1 We use the terms IP consumer and system integrator interchangeably.

96

system integrators to confirm that the IP they are purchasing does not contain any

malicious modifications, without inspecting it themselves.

There are two classes of defenses against hardware Trojans that both require

access to the IP, namely invasive and non-invasive [203]. The former incurs signifi-

cant costs as it requires expensive equipment and renders the IP unusable afterwards;

the latter relies on functional and statistical IC testing, such as path-delay measure-

ments [140], and gate-level characterization [4]. Such defenses require unrestricted

access to the IP, as well as the statistical distribution of gate characteristics.

In this work, we propose zk-Sherlock, a novel framework for detecting hard-

ware Trojans in zero-knowledge (ZK), i.e., without allowing access to the circuit. Our

methodology introduces a custom ZK-friendly algorithm for Trojan detection that re-

solves the deadlock between 3PIP vendors and IP customers. This deadlock is created

by the mutual distrust between vendors and consumers: vendors may withhold an

IP before receiving payment from customers to avoid the risk of IP theft, while cus-

tomers may refuse to purchase an IP until they are convinced that it satisfies their

requirements. A key contribution of zk-Sherlock is the translation of a netlist into a

ZK-friendly format that enables testing using public input vectors to detect any gates

with the least switching activity and argue about the presence of potentially malicious

logic. Our main observation is that the majority of logic gates in a netlist would switch

for most input pairs. zk-Sherlock leverages this observation to tally the total number

of switched gates across multiple evaluations with different inputs and detect the ones

that have not switched. We evaluate our approach using multiple benchmarks from

ISCAS ’85 and ’89 [59,60] with judiciously injected Trojans following the methodology

of [86] (as in the TRIT benchmarks on Trust-Hub [206]).

5.2 Zero-Knowledge Trojan Detection

5.2.1 Threat Model

We assume threats in the IC supply chain, from the design to IP integration.

97

Figure 5.1: Overview of zk-Sherlock. (a) P possesses an IP described in a Hardware
Description Language that has some agreed-upon functional specifications. (b) The
3PIP vendor (P) synthesizes the IP and generates a gate-level netlist, determining the
correct evaluation order of the gates. (c) The 3PIP vendor transforms the IP into a
ZK-friendly encoding for the Trojan detection state-machine SM. (d) P executes SM
using the netlist as private input and public test vectors chosen by V . (e) The two
parties interact and P convinces V that the IP is Trojan-free and that SM was evaluated
correctly.

Cheating P. A cheating P (i.e., the IP vendor) has financial incentives to deceive the

consumer by falsely claiming that they possess an IP with certain functional specifi-

cations while the IP could be embedded with malicious circuitry at certain locations.

In one scenario, P may try to deceive an honest V by trying to sell an IP with a

Trojan that alters the agreed-upon functionality. In another case, P has performed

malicious gate modifications to the IP while still meeting the agreed-upon functional-

ity. The system integrator (i.e., buyer) has to test the IP with multiple input vectors,

and also verify the correctness of the ZKP. P succeeds if they can break the soundness

of the protocol with probability greater than 2−λ (where λ is zk-Sherlock’s security

parameter) by producing a fake ZKP that will convince an honest V to accept it.

Cheating V. We assume a cheating V (i.e., an IP consumer) that follows the protocol

but also have incentives to extract information about the private IP from an honest

P . More specifically, V may attempt to extract and learn the IP netlist before paying,

even though the vendor wants to keep that netlist secret until payment is received. In

other words, V wants to break the zero-knowledge property of the protocol and learn

the private IP w, which is infeasible if P follows the protocol faithfully. Notably, V can

only learn that SM(x,w) = y (in our case SM checks if the IP w is Trojan-free).

98

5.2.2 Overview of our Methodology

In this work, we present zk-Sherlock, a novel methodology for privacy-preserving

hardware Trojan detection. Our approach enables 3PIP vendors to prove to system

integrators that: a) they possess an IP with some predefined functional specifications,

and b) the IP is Trojan-free without revealing anything about its netlist. zk-Sherlock

utilizes zero-knowledge proofs to detect any hardware Trojan triggers by inspecting

the switching activity of every gate and identifying any non-switching logic without

sharing the netlist with the IP consumer. To that end, we have designed a specialized

ZK state machine SM that consumes a netlist as private input w and proves that

the circuit has not been embedded with malicious logic. More specifically, SM is a

public circuit simulator that evaluates gates and records their switching activity for

different input/output pairs. Most gates in a netlist will flip after relatively few input

sets unless these gates trigger a rarely-activated Trojan. Thus, our observation is

that after evaluating a small number of possible input pairs with zk-Sherlock, all gates

should have switched (with high probability), except for Trojan logic. zk-Sherlock then

offers provable guarantees on the computational integrity of SM, i.e., that the circuit

simulation was performed faithfully. A high-level overview of zk-Sherlock is depicted

in Fig. 5.1 and discussed in the following paragraphs.

Privacy-Preserving Functional Verification. To solve the mutual distrust be-

tween 3PIP vendors (P) and IP consumers (V), zk-Sherlock first needs to prove that

a secret IP adheres to some predetermined specifications. As shown in Fig. 5.1(a), the

untrusted 3PIP vendor synthesizes an IP described in a Hardware Description Lan-

guage (HDL),2 creates a gate-level netlist, and then uses the specialized compiler of

zk-Sherlock to transform it into a ZK-friendly encoding, as shown in Fig. 5.1(c). More

specifically, our compiler guarantees that this encoding can be evaluated sequentially

(i.e., one gate at a time) and does not have any inter-dependencies between the gate

inputs and the outputs from previous gates, thus it can be evaluated by zk-Sherlock’s

2 Without loss of generality, zk-Sherlock uses Verilog.

99

ZK state machine. During the third step (in Fig. 5.1(c)), we apply various optimization

techniques to minimize the total number of intermediate wires by employing graph-

coloring techniques. Next, P and V agree on the functional simulation algorithm SM,

shown in (d), and the latter provides public input vectors x. Finally, the 3PIP vendor

runs SM locally to simulate the private netlist w with inputs x and computes a public

circuit output y, which is then checked by V along with the cryptographic proof that

every step of SM was executed faithfully.

Privacy-Preserving Trojan Detection. After proving that the IP adheres to some

agreed-upon functional specifications, zk-Sherlock needs to prove that the netlist does

not contain any Trojan trigger logic. As malicious parties aim to leak sensitive infor-

mation or induce errors by inserting Trojans in circuits that are triggered under special

conditions, the gates that comprise the injected Trojan logic are nearly-unused and are

rarely activated on common inputs. Towards that end, we have expanded the state

machine SM to also analyze the gate-switching activity (i.e., when the output signal of

the gate flips) of all the gates in the circuit across multiple inputs in order to detect

malicious triggers. An important contribution of our work is that SM acts both as

a circuit simulator (to test the netlist functionality in ZK), and as a gate-switching

activity analyzer at the same time, combining functional verification and Trojan de-

tection. The circuit compiler of zk-Sherlock translates netlist gates into a sequence of

SM instructions that track which gates have low switching activity over different input

pairs and flags them as potentially malicious. Contrary to existing hardware Trojan

detection mechanisms, our ZKP approach hides the IP netlist from the verifier.

Fig. 5.2 demonstrates how a hardware Trojan can affect the functionality of a

circuit under only a single input combination. To clarify how this encoding is evaluated,

we show a two-dimensional table on the right-hand side of both (a) and (b) that

represent four SM registers (r0 – r3) and how the values in these registers change after

the evaluation of each gate. For example, all registers are initialized with “1” and after

the evaluation of G1, its output “1” is written to r0 (underlined in the table). In Fig. 5.2

(b), we observe that the trigger T of the Trojan is only activated when all inputs are

100

(a) Trojan-free circuit.

(b) Circuit embedded with a Trojan.

Figure 5.2: The gates are labeled by the evaluation order (first G1, then G2, etc.) and
are also shown on the rows of the tables (execution trace). The underlined values in
the tables show which simulation variable was overwritten after the evaluation of the
gate. The variables r0 – r3 represent four SM registers, also shown at the outputs of
the gates. (a) shows a circuit that outputs “1” when all four inputs are set to high
(note: there exist more combinations to output “1”). (b) shows the same circuit as (a)
after being injected with an example Trojan that is only activated when all inputs are
set to “1”.

“1”, which only happens in one out of 24 different input combinations, rendering gate

T the gate with the rarest switching activity. However, we do not observe similar

behavior for the payload gate P , which switches for various inputs (e.g., 1100). The

intuition of zk-Sherlock is motivated by the aforementioned observation, i.e., determine

the gates with a suspiciously low switching activity as they can potentially be part of

a Trojan trigger.

zk-Sherlock back-end. zk-Sherlock utilizes the Zilch framework [184] as the cryp-

tography back-end to argue about the correctness of SM. Internally, zk-Sherlock lever-

ages the MIPS-like assembly programming language of Zilch to implement the state

101

machine, which simulates the evaluation of a circuit and computes all gate-switching

activity. At a technical level, Zilch enforces different cryptographic constraints that

should hold during each SM transition and are used to prove the correctness of the

execution of SM in zero knowledge.

The initial state of the zk-Sherlock state machine is filled with multiple blocks,

each with 64 1-bit registers initialized to zero. With every gate evaluation, SM modifies

at most one register and copies all the blocks into a new state. The sequence of states

forms a two-dimensional table that represents the execution trace of the SM (Fig. 5.2).

The type and the index of the update on the SM state correspond to the different

operation that is performed in ZK. For instance, an arithmetic operation (e.g., addition)

will modify the state in a different way than a bitwise operation (e.g., AND, OR).

Our state machine consumes private inputs that correspond to the netlist de-

scription (known only to P) and public test vector inputs that V provides. Utilizing the

Zilch back-end, zk-Sherlock cryptographically asserts that all state machine transitions

were performed in accordance to the operation in the encoded netlist w; this is enforced

using polynomial constraints over the transitions that assert their satisfiability to V .

Effectively, zk-Sherlock convinces the IP consumer that a secret netlist has certain

functional specifications and that it is Trojan-free without revealing its composition.

5.2.3 Serialized Encoding for State Machine

To generate a proof, zk-Sherlock synthesizes HDL programs into netlists consist-

ing of Boolean gates and flip-flops. Our approach utilizes the Yosys Open SYnthesis

Suite for RTL synthesis to generate Electronic Design Interchange Format (EDIF)

netlists based on Verilog files [244]. We optimize the netlist during RTL synthesis with

Yosys by converting the entire circuit into standard two-input logic gates and remov-

ing unused wires. Next, zk-Sherlock associates each logic gate with specific input and

output wires (as shown in Fig. 5.2) with SM registers (e.g., r0 – r3). An important step

for our compiler is to identify gate dependencies by creating a directed acyclic graph,

running a topological sort to eliminate dependencies, and finally assigning unique SM

102

registers to the wires. For instance, in order to evaluate the gate G3 in Fig. 5.2(a),

gates G1 and G2 have to be evaluated first. Notably, our compiler applies an addi-

tional optimization to further reduce the total number of registers used, as the state

size (i.e., the total number of registers in SM) can impact the execution time of our

ZK back-end. Finally, the zk-Sherlock compiler serializes the circuit as a sequence of

MIPS-like instructions for Zilch, which is ultimately passed as the private input w to

SM, which evaluates the serialized netlist for a given test vector.

The approach depicted above is directly applicable to combinational circuits,

but sequential circuits need additional considerations. Since sequential circuits require

more than one clock cycle to evaluate completely, we need multiple iterations over

a given netlist. Thus, we unroll the circuit for the desired number of clock cycles

and when a flip-flop is encountered during evaluation, we propagate its input signal

to its output signal at the next clock cycle. While this approach correctly emulates

sequential circuits, it is suboptimal when used with our zk-Sherlock module. Often,

certain combinational logic segments do not change between clock cycles and do not

need to be re-evaluated every time. Therefore, we omit gates that are not connected

to an upstream flip-flop to account for this and avoid redundant computations.

Without loss of generality, Fig. 5.3 shows the serialized encoding for an IP

with 64 gates (we only show the first, second, and last gate for simplicity) and how

zk-Sherlock tracks the gate switching activity (shown as “Switching Gates”) across

different iterations. Our encoding consists of: gate type (e.g., AND), unique gate iden-

tifier (depends on the number of gates in the IP), register block ID#, and offset inside

the register block for the two input wires and the output wire. The state encoding is

organized into multiple blocks (each block holds 64 bits), and each bit represents one

SM register. For instance, the first line of the encoding reads the 10th and the 12th

bits of the first block as inputs and writes at the 13th bit of the first 64-bit block. For

simplicity, in Fig. 5.3 we only assume two register blocks: the “Switching Gates” block

tracks the gate identifiers that have switched, while the “Gate Outputs” block stores

the gate outputs. At the end of the first cycle simulation, some gates have switched and

103

this is reflected in the bottom left block, along with gate outputs in this cycle (bottom

right). As more cycles are evaluated, the “Switching Gates” blocks will continue to

reflect the number of gates that have encountered a state change. After a specified

number of iterations, the presence of a zero in this block suggests a potential Trojan

trigger. The total number of iterations is decided by V , so that more iterations offer

increased assurance against Trojans.

Figure 5.3: Abstraction of two cycles of an 64-gate circuit in zk-Sherlock. “Switching
Gates” block and “Gate Outputs” block keep track of the switched gates and the gate
outputs, respectively.

5.2.4 State Machine Evaluation

Output generation. We simulate the circuit as follows: First, zk-Sherlock reads a

Boolean gate from w and performs the corresponding Boolean operation on the two

input wires to compute the correct output. All gates with no dependencies (i.e., first

layer gates) get inputs directly from the public input x, while all intermediate and

output gates read their inputs from the outputs of preceding gates which are encoded

in different registers in the SM. Our compiler guarantees that the input and output SM

registers map to the correct gates. This way, SM can keep track of the identifiers of the

specific gates that have switched. Internally, we use multiple register blocks (depicted

in Fig. 5.3 as “Switching Gates”), where each register corresponds to the switching

activity of a particular gate.

Computational Integrity. To prevent a malicious P from deceiving an honest V by

switching the IP under test across different executions, zk-Sherlock applies a secure

104

hash function to compute two secure digests: one for the IP netlist itself and one for

the state registers. Then, at the beginning of each new cycle, P initializes the SM

registers with the previous execution state and computes the secure hash of the new

registers to prove that she propagated the state from the previous cycle. P evaluates

the circuit again, keeping track of which gates switched during the current and all

previous executions. At the same time, P recomputes the hash of the private IP and

proves to V that the same w was used across all the executions. Notably, V does not

learn any intermediate results about the gate switching activity as the intermediate

registers are stored at the beginning of w.

5.3 Experimental Results

We evaluate our methodology using selected benchmarks from the ISCAS’85

and ISCAS’89 suites [59, 60]. During synthesis, we used the proc, flatten, synth,

and abc -g simple flags in Yosys to generate circuits with standard 2-input logic

gates. Moreover, our zk-Sherlock compiler is implemented in Python 3, while the state

machine simulator is implemented in a MIPS-like assembly language for ZKPs. As the

back-end of zk-Sherlock can benefit from multiple threads to accelerate the proving

time, we used an m5.24xlarge AWS EC2 instance featuring two Intel Xeon Platinum

8175M processors at 2.5 GHz.

In a realistic scenario, zk-Sherlock uses multiple input test vectors chosen by V ,

which correspond to the functional properties the IP consumer wants to assert. The

input vector values do not impact the proving time, but affect how the gates switch.

Because V has no knowledge of the underlying circuit, the best method for choosing

input vectors is to generate them randomly. As shown in our experiments, random test

vectors cause all the gates in a circuit to flip relatively quickly with a high probability

when a Trojan is not present.

Fig. 5.4 shows the amortized execution time for both the prover and verifier for

a set of inputs. In the case of sequential circuits (from the ISCAS’89), the presented

time reflects the cost per cycle. In practice, multiple input vectors should be utilized

105

Figure 5.4: Experimental timings for P and V per input-pair for selected benchmarks.

at the discretion of V to minimize the risk of false positives (where one or more non-

malicious gates have yet to switch across all input sets provided). The timings for P

scale linearly with the number of logic gates per circuit and the execution time for V

scales logarithmically with increasing circuit sizes. In addition, the size of the execution

trace scales with the number of SM registers required to simulate the circuit, which can

impact the execution time. Generally, the wider the circuit, the more register blocks

are required; for instance, c17 requires 5 intermediate wires at its widest point, which

can fit into a single 64-bit packed block, while c880 requires 87 registers that fit into

two 64-bit blocks. Notably, the proving times for all circuits are independent of the

input pattern, as an identical set of gates is visited for each run.

Figure 5.5: Percentage of the total gates that switched over increasing number of input
pairs for selected Trojan-free benchmarks.

The verifier needs to choose enough test vectors to avoid false positives. While

each circuit’s gate switching activity will vary, in Fig. 5.5 we investigate the percentage

of possible input pairs required to flip all non-malicious gates in an assortment of eight

circuits with random input wire sets. We found that 32 input sets were sufficient to

flip all gates, and hence resulted in no false positives, in all eight Trojan-free circuits,

106

while all but one circuit had flipped earlier. However, random inputs assume that V

has no knowledge about the behavior of the circuit, whereas practically, the prospective

buyer of an IP is aware of the expected functionality. Thus, V can cleverly choose pairs

to cover a large number of cases in a small number of input pairs; for instance, in a

simple example with a 2-bit less-than-or-equal circuit, V can choose two sets of inputs

that will cause all of the gates to switch. If a Trojan is hidden in such a circuit, our

approach can detect it with just 2 input pairs.

To further assess our approach, we injected Trojans in c17, c432, c499, s27, and

s298 ISCAS circuits following the methodology of TRIT [86].3 We carefully modified

the benchmarks so that the Trojans get triggered with only a rare combination of

the input wires and alter specific output wires, similarly to Fig. 5.2. zk-Sherlock

successfully detected the Trojans in all cases; interestingly, we note that c499, the

largest combinational circuit tested, yielded the lowest probability of false negatives

for a given number of inputs, as there are 41 input wires and hence 241 possible inputs

and only 32 inputs were required to flip all benign wires. Therefore, since the Trojan

can only trigger on a very rare input combination, the chance of the Trojan flipping

during the tested input sets is approximately zero. For smaller circuits, such as c17

and s27, there are far fewer possible input pairs (32 and 128 respectively), so the

probability of false negative increases to approximately 6% for c17 and 1.5% for s27 as

each requires 2 input pairs to successfully flip all benign wires.

5.4 Related Work

zk-Sherlock focuses on hardware Trojans that are activated based on particular

user inputs and thus the trigger nodes are rarely executed. The authors of [192] use

an advised genetic algorithm to generate test vectors to detect Trojans based on rare

nodes. Similarly, FANCI [240] performs functional analysis to flag logic that is unlikely

to affect the circuit outputs, whereas VeriTrust [250] identifies potential Trojan wires

3 Precompiled TRIT benchmarks from Trust-Hub [206] are incompatible with Yosys
so we created equivalent benchmarks based on their ISCAS circuits.

107

by examining verification corner cases. All of these techniques assume that the circuit

design is available for inspection and that details such as the statistical distribution of

gate characteristics are known. A critical benefit of zk-Sherlock is that it proves to the

IP consumer that a netlist is Trojan-free without revealing anything about it.

Pythia [178, 182] describes an approach related to zk-Sherlock by introducing

the problem of functional IP verification in zero knowledge. However, these works

focus on ensuring that the IP has some functional properties and that it also satisfies

constraints related to area, performance, and power consumption by checking different

input-output pairs provided by IP consumers. Orthogonal to these earlier works, our

approach transforms the problem of IP verification to a zero-knowledge protocol and

introduces a powerful encoding and a versatile SM that allows tracking the switching

activity to offer assurance about hardware Trojan triggers.

5.5 Concluding Remarks

In this paper, we have proposed a unique methodology for detecting hardware

Trojans in zero knowledge (i.e., without having access to the IP netlist). zk-Sherlock

proposes a new encoding that enables evaluating both the circuit and computing the

gate-switching activity at the same time. Using this gate activity, our methodology

identifies the nodes that are triggered under rare conditions and thus flags them as

potentially malicious logic. In effect, zk-Sherlock enables 3PIP vendors to convince

system integrators that a netlist is Trojan-free so that integrators have only black-box

access to the IP by submitting test vectors. Additionally, as the system integrator

may provide inputs, zk-Sherlock employs a secure hashing to confirm that across dif-

ferent executions: (a) the same secret netlist was used, and (b) the gate-switching

activity counters were propagated correctly. Our experiments with ISCAS’85 and ’89

benchmarks demonstrate that our approach converges quickly to “Suspected Trojan”

or “Trojan-free” classification for an IP under test.

108

Chapter 6

MASQUERADE: VERIFIABLE MULTI-PARTY AGGREGATION
WITH SECURE MULTIPLICATIVE COMMITMENTS

6.1 Introduction

A variety of applications require gathering and aggregating data from different

organizations or individuals to perform studies, collect statistics, and mine interesting

patterns about the participating population. Common applications of data aggregation

can be found in finance, where financial institutions need to gain insights on customer

clusters, as well as in healthcare, where aggregated data are used to discover effective

treatments and track the spread of highly infectious diseases. In certain use cases,

all participants trust the entity conducting the study (called data curator) with their

personal data, which results in a straightforward solution. Nevertheless, in the case of

a curious curator that has incentives to peak into sensitive user data (e.g., for targeted

advertisements or even affect election results [135]), the problem becomes significantly

more challenging to both protect the privacy of each participant and compute the

desired statistics.

Common approaches to support privacy-preserving crowdsourcing rely on adding

noise to the collected data so that individual inputs cannot be deduced from the out-

put. Unfortunately, these techniques have limitations since data anonymization can be

bypassed [85, 189], while local differential privacy (DP) may generate excessive accu-

mulated noise. A practical alternative entails adding noise to the output of the queries

using DP techniques so that the presence or absence of a single user cannot be detected

from the query answers [98]. Unfortunately, such approaches assume a trusted curator

and mostly focus on output privacy, i.e., they do not protect the data privacy of each

individual user from the curator. The works in [42, 103, 214] provide strong privacy

109

Compute
Encrypted Sum

Bulletin Board
P1

PN

P2

Verify Correctness
& Decrypt

...

Curator AnalystParticipants

Encrypted Result

Commitments

Commitments

Commitments

Encrypted Data & Proofs

Figure 6.1: Overview of Masquerade. Each participant sends their encrypted data
along with a zero-knowledge proof that their ciphertext is well-formed to the curator,
who in turn performs the homomorphic aggregation. Participants also publish their
commitments on a bulletin board so that everyone can access them and verify the
correctness of the encrypted sum. Finally, the analyst decrypts and publishes the
result of the computation.

guarantees and high utility, however, they still add a non-negligible amount of noise to

the results.

We present a novel construction for private data aggregation (PDA) [214], a spe-

cial case of secure multiparty computation (MPC) in which multiple participants jointly

compute a function over their private data while keeping them private [120,246]. MPC

assumes that client data are distributed amongst two or more computing parties and

that the data are secure as long as these parties do not collude. While it is possible to

use general-purpose MPC to collect statistics from multiple individuals, however, this

comes with significant overheads due to support for arbitrary computation. Addition-

ally, many MPC frameworks [6, 148, 166] allow only the computing parties to provide

private inputs ; at the same time, since the input parties are allowed to send any input

to the aggregation, it is possible for a malicious participant to poison the result by

uploading invalid data. To defend against such attacks, specialized checks have to be

implemented within MPC that require additional communication and computation.

Finally, generic solutions do not provide public verifiability since data confidentiality

relies on the computing parties not publishing their shares.

110

Homomorphic encryption (HE) allows performing meaningful calculations di-

rectly on encrypted data without decrypting it, which enables outsourcing a com-

putation to semi-honest servers and returning the encrypted result to the party that

initiated the computation [114,174,229]. In particular, HE offers an elegant solution for

PDA: each participant encrypts and uploads their private data to a computing party

(curator) that performs the aggregation, which in turn returns the encrypted sum

to the requesting party (analyst), who decrypts the final sum. Partially HE (PHE)

schemes support only one mathematical operation (either addition or multiplication)

to be performed on ciphertexts, whereas fully HE (FHE) enables both, but incurs sig-

nificant overheads, especially for non-linear operations and comparisons. Nevertheless,

HE alone does not offer any integrity guarantees to the public on the correctness of the

computation. Therefore, the public has to rely on the assumption that all computations

are error-free and no party has introduced an invalid ciphertext to the homomorphic

sum. Without special integrity checks to enable public audits, relying solely on HE

allows computation errors to remain undetected.

Distributed ledgers (e.g., blockchains) can be used as public bulletin boards to

enhance transparency and enable public verifiability. However, most of them are either

public and reveal data patterns (e.g., Bitcoin [187]), or private without support for

public verifiability. The Zerocash protocol [32] builds an anonymous cryptocurrency

on top of Bitcoin by utilizing zk-SNARKs [33]. zk-SNARKs are non-interactive proofs

that are used to hide the transaction amounts, the senders, and the receivers and

still prove the integrity of the transactions. Unfortunately, zk-SNARKs require an

expensive pre-processing phase to be carried out by a trusted party to set up the

system and destroy any randomness used. If this randomness is leaked, any adversary

can forge false proofs and break the protocol’s soundness.

Our contribution. This work introduces Masquerade, a novel framework for comput-

ing statistics on private data by allowing multiple users to share their data points with

an oblivious curator, who is unable to deduce any information from the data (other

than what it is learned from the published result). In particular, Masquerade involves

111

one analyst (i.e., a party that originates the computation and will eventually reveal the

statistics), P participants that share their private data, and the curator who gathers

the encrypted data and performs the PDA. The participants also publish commitments

to their data to a public bulletin board, which can be used to verify the correctness of

the result by any auditor. Masquerade introduces a new multiplicative-homomorphic

commitment scheme that does not rely on any trusted party.

An overview of Masquerade is illustrated in Fig. 6.1: The analyst outsources the

PDA to the curator and verifies the correctness of the results (we remark that Mas-

querade enables public audits for detecting homomorphic computation errors). The

curator only learns the homomorphic ciphertexts of the participants’ messages, which

do not reveal anything about their sensitive data. Similarly, the curator shares with the

analyst only the encrypted result of the computation, rendering it impossible for the

analyst to learn anything except what can be inferred from the final output. Each par-

ticipant publishes commitments to their encrypted messages to a public ledger, and the

analyst combines them homomorphically to attest to the correctness of the encrypted

result (e.g., detect double-voting). Notably, our methodology addresses the problem

of malicious participants attempting to tamper with the aggregation by leveraging two

non-interactive zero-knowledge proof (ZKP) protocols. These protocols ensure that

the participants follow the protocol faithfully by proving to the curator that their en-

crypted data points lie either in a range or within a set of valid messages, without

disclosing the actual plaintexts. Therefore, malicious participants cannot corrupt the

homomorphic sum by sending encryptions of invalid messages.

Masquerade enables two classes of studies: Quantitative and Categorical. An

example of the former class includes privacy-preserving smart metering, where users

share their electricity consumption readings with a service provider over consecutive

time periods to calculate their bill. Smart metering imposes a potential risk to user

privacy since fine-grained readings may disclose sensitive information about the clients’

habits. Examples in the latter class include surveys where individuals select one cat-

egory among multiple options. For instance, a study that investigates if the juries in

112

federal courts come from a diverse group of socioeconomic status includes sensitive

personal information. This application can be instantiated natively using Masquerade,

where each jury provides a private categorical input representing their ethnicity. Then,

Masquerade privately generates a histogram that represents how diverse a group of ju-

ries is. Our scheme establishes a novel way for quantitative and categorical studies by

protecting each participant’s privacy.

Overall, our contributions can be summarized as follows:

• Design of a novel commitment scheme that enables homomorphic multiplication

between commitments. We leverage this scheme to generate a global commitment

over the encryption of the aggregation result using the individual commitments

of the participants and provide verifiable guarantees to the public that there was

no error in the homomorphic aggregation of the ciphertexts.

• Construct a privacy-preserving data aggregation protocol that is robust against

client dropouts and malicious participants who attempt to tamper with the ag-

gregation result.

• A data-encoding methodology to allow homomorphic aggregations for both quan-

titative variables (i.e., data that take numerical values) and categorical data

(i.e., data grouped into discrete classes), which enables a broad range of privacy-

preserving studies.

6.2 Our Problem Statement

6.2.1 Overview

Gathering and aggregating data from multiple parties enables powerful analyt-

ics. Companies can collect meaningful information about their clients’ behavior and

demographics, while healthcare researchers can discover more effective treatment meth-

ods to accelerate the overall healthcare facility. Such studies correspond to one of two

categories based on the type of data being used: The first class includes variables that

represent quantities (i.e., quantitative data) that take numerical values (such as age

and profit). The variables in the second class can take one value from a fixed set of

113

options and are called categorical data (such as age group, nationality, and employment

status). In a quantitative study, the curator applies a function f directly to the partici-

pants’ data (e.g., compute the average age of consumers or a weighted arithmetic mean

based on electricity cost), while in a categorical study, the curator applies f in each

different category to generate a histogram (e.g., find the total number of consumers

by nationality). The latter can be depicted as a bar graph that shows the frequency

distribution of the participants’ responses.

Private Data Aggregation (PDA) computes similar aggregations and frequencies

while tolerating a curious curator that has incentives to peek at sensitive data points

(e.g., to enable targeted advertisements) [214]. PDA enables many useful applications

by assuring the participants that their data will only be used towards the agreed

analysis and private data cannot be tracked back to each individual; notably, the

curator will never access the sensitive data. In this work, we are interested in defining

a secure PDA protocol for both quantitative and categorical studies. To motivate our

case study, we summarize an example from each of the two scenarios.

Categorical analysis. This class enables individuals to take part in surveys where

they choose their replies from fixed sets of answers. For example, course evaluations

include questions with categorical data, where each response is a one-hot encoding

from a set of possible answers (e.g., “The instructor used the time effectively.”, with

four possible responses a) Strongly Disagree, b) Disagree, c) Agree, d) Strongly Agree

on a Likert scale [163]). These evaluations comprise an essential indicator for faculty

and departments to get feedback and improve their classes. In course evaluations, it

is crucial that there is no link between the participant and their responses so faculty

are not biased towards individuals, and most importantly, individuals are more likely

to provide more accurate comments. In this case, public verifiability guarantees to the

students that their evaluations were counted and also the students can prove that they

only submitted one response.

Quantitative analysis. In this category, individuals can privately report numerical

114

values that will be used to compute a total sum, an average, or a weighted average.

A notable example is smart metering, which can be applied to multiple participating

households. Smart meters communicate the electrical usage almost in real-time to pro-

vide better system monitoring and customer billing than traditional meters. However,

there are inherent privacy concerns since fine-grained measurements (e.g., one every 15

minutes) may reveal personal information about the number of people in a household

and their activities [70, 90]. Masquerade solves this problem by aggregating data over

multiple participating households for a given period that would still be sufficient for

smart grid operators to perform enhanced monitoring and optimize prices but at the

same time will conceal private information. Public verifiability is essential to convince

all the households that the result was computed correctly. Masquerade naturally ex-

tends this application by computing the weighted arithmetic mean of the participating

households, as electricity rates can vary based on the area. This allows participants

and communities to compare their electricity consumption based on their (public) area

price and gain useful insights about their electricity rates.

6.2.2 Threat Model

The different applications supported by Masquerade require protection against a

variety of threats. Our threat model assumes malicious participants and auditors, and

a mixed model for the curator and the analyst that comprises the passive-corrupt (i.e.,

semi-honest) and the fail-corrupt models [107]. Our threat model is aligned with the

models of secure two-party computation and it assumes that the curator and the analyst

will not collude. Instantiating our protocol assuming two parties with mutual distrust

enables computing the aggregation without exposing sensitive information about the

participants’ data [145,246].

Curator. A passive-corrupt curator may have incentives to peek into the participants’

sensitive data to extract information about their encrypted messages. In our approach,

participants’ inputs are protected using a secure probabilistic PHE scheme (our pro-

tocol relies on the Paillier cryptosystem with a 2048-bit modulus N). A fail-corrupt

115

curator may stop the communication from the participants at an arbitrary time during

the protocol with a result of altering the final sum (e.g., by being offline for a certain

period of time and failing to aggregate all the ciphertexts). Under the fail-corrupt

model, the curator may introduce non-adversarial or random faults, which could affect

the integrity of the computation [207]. In this paper, we borrow the mixed model in-

troduced in [107], in which the adversary may passively corrupt and/or fail-corrupt the

curator. As PHE does not offer any native integrity protections, we introduce a novel

multiplicative homomorphic commitment scheme (section 6.3.1) that provides public

verifiability without compromising the participants’ privacy. The analyst also employs

these public commitments to verify the computational integrity of the homomorphic

result.

Participants. We assume malicious participants that may attempt to disproportion-

ately affect the analysis by encrypting invalid inputs (e.g., a large negative number).

To address this threat, we introduce two non-interactive ZKP protocols that allow

the participants to prove to the curator that the provided data encrypts a valid mes-

sage. The curator verifies the participants’ proofs and only considers the private inputs

for which the ZKP verification was successful. As soon as the private aggregation is

finished, the curator sends to the analyst the list of participants whose proof and com-

mitment were verified successfully to include their commitments for the verification of

the encrypted sum. This guarantees that each participant submits a valid input (i.e.,

within a pre-agreed range) and cannot detect if clients submitted valid but false data

(e.g., lie about their age).

Masquerade is also robust against participant dropouts who submit their inputs

and stop participating. Additionally, to defend against Sybil attacks that create a

large number of illicit clients to influence the result [96], both the curator and the

analyst agree on a list of identities. Active-adversary attacks can be further thwarted

using a Public-Key Infrastructure that issues certificates. Each participant signs their

message and the other participants (including the curator and the analyst) can verify

the message signatures to prevent forgeries [2]. Finally, to prevent clients from biasing

116

the result, we allow one private input per client. Our work focuses on protecting data

confidentiality, rather than participant anonymity.

Analyst. We assume a passive-corrupt and a fail-corrupt analyst that is interested

in learning the aggregation results but has incentives to extract information about

individuals’ data and may introduce non-adversarial errors. We consider the bulletin

board as an online append-only ledger that is auditable by anyone (e.g., public auditors)

and is maintained by the analyst using standard consensus methods [193] or using a

public blockchain network (e.g., Ethereum). The analyst posts a proof of correct

decryption to the bulletin board providing public verifiability. As long as at least one

auditor is honest, our protocol will detect a fail-corrupt analyst.

Auditors. Finally, we allow multiple auditors to inspect the correctness of the PDA

protocol and we tolerate all but one to behave maliciously.

6.3 Private Data Aggregation Protocol

In this section, we describe Masquerade, our novel cryptographic construction

for secure PDA. Our protocol supports quantitative data by design and we extend our

construction to support categorical data, as discussed in section 6.3.5. Each participant

(a) locally encrypts their private data using Paillier, (b) publishes in a bulletin board

a multiplicative commitment on the ciphertext, (c) generates a non-interactive ZKP

that enables its recipient to verify that the ciphertext is the encryption of a message

that lies in a range of valid messages, and (d) sends their encrypted data along with

a proof to the curator. The curator first verifies the validity of the ZKP and the

correctness of the commitment, and then homomorphically adds the participant’s data

to an encrypted accumulator if the proof and the commitment are correct; otherwise,

the curator rejects the participant’s data. As soon as all participants have sent their

data, the curator publishes the encrypted sum.

The analyst audits the protocol by accumulating the homomorphic commit-

ments from the ledger and verifying that they open with the encrypted sum. Since

the commitments and the final sum are public, any participant can repeat the same

117

process and be convinced that their private data were included in the computation,

as well as verify the correctness of the encrypted aggregation. We remark that the

need for public verifiability remains critical in real-world applications with potentially

untrusted participants. Therefore, Masquerade explicitly enables the participants to

verify that no errors were introduced in the aggregation result (e.g., by omitted inputs

or due to other random faults), since the analyst would not be able to successfully

open the commitment otherwise. Upon verifying that the curator’s result is correct,

the analyst decrypts and publishes the result along with a proof of correct decryption

of the final result.

Benefits. A crucial property of our scheme is that it does not require interactive com-

munication between the participants and the curator. Each participant generates and

sends encrypted data, the ZKPs, and the commitments locally and then disconnects

from the protocol. Since our commitment scheme does not reveal anything about the

participants’ data, any public ledger that does not rely on a trusted setup is sufficient.

Furthermore, if some clients deliberately stop participating in the protocol (i.e.,

participant dropout), our scheme remains resilient since we do not rely on any user

secret for the decryption of the final result. In contrast, in earlier PDA protocols

that are based on secret-sharing a single client can easily corrupt the protocol by just

withdrawing their participation.

6.3.1 Our Multiplicative Commitment Scheme

Recall from section 2.5 that the Pedersen commitment scheme has additive

homomorphism [197]. Here we propose a new commitment scheme based on RSA [202]

with multiplicative homomorphism. Let N be a public RSA modulus such that N =

pq, where p, q are secret primes, let e be a public prime that satisfies e > N2 and

GCD(e, ϕ(N2)) = 1, and let gm be a public element of maximal order in Z×N2 . To bind

to a secret message m ∈ Z×N2 , the sender S generates a random secret r ∈ Z×N2 and

calculates c as:

c = Com(m, r) = megrm mod N2. (6.1)

118

Assuming that the RSA problem with modulus N2 and public exponent e is hard to

invert, this commitment scheme (intuitively) satisfies the hiding and binding require-

ments. During the reveal phase, both the secret message m and the randomness r are

published, and the verifier checks if they produce the same commitment as c.

Theorem 1. The scheme with multiplicative homomorphism from Eq. 6.1 satisfies the

hiding and binding properties.

Proof. First, we show that the scheme is perfectly hiding. Sender S confirms that

N2 < e and e is a prime, so that GCD(e, ϕ(N2)) = 1 and e is invertible mod ϕ(N2).

We will show that c = megrm mod N2 is indistinguishable from random values: Since

gm is an element of maximal order in Z×N2 (by construction) and r is uniformly random

in Z×N2 , then grm mod N2 is uniformly distributed in a subgroup of Z×N2 with order |gm|.

Likewise, the product megrm mod N2 is also uniformly distributed in a subgroup of Z×N2

with high order |gm|, so it is indistinguishable from a random value; thus, nothing can

be learned about m from c.

Next, we prove that our scheme is computationally binding under the RSA

assumption (i.e., the problem of computing eth roots modulo a composite N2 is com-

putationally hard). Our goal is to show that if a S can find two different messages

m,m′ with corresponding randomness r, r′ that collide to the same commitment c = c′,

this would imply we can easily compute eth roots modulo N2 so that the RSA prob-

lem would be easy (contradiction). To show this, we assume it is possible to find

m ̸= m′ and r ̸= r′, so that c = megm
r = c′ = m′egm

r′ mod N2. In this case,

megm
r = m′egm

r′ mod N2 ⇐⇒ gr−r
′

m = (m′/m)e mod N2.

Using the fact that r, r′ ∈ Z×N2 and e is a prime larger than N2, it holds that

r − r′ < e and also GCD(r − r′, e) = 1. Thus, from Bèzout’s identity, there exist

integers A,B (that can be computed in polynomial time using the extended Euclidean

algorithm), so that A(r − r′) +Be = GCD(r − r′, e) = 1. Then, we have:

g1m = gA(r−r′)+Be
m = (g(r−r

′)
m)AgBe

m mod N2

= ((m′/m)e)A(gBm)
e mod N2 = (m′/m)AgBm)

e mod N2,

119

and thus, g
1/e
m = (m′/m)A gBm mod N2.

The above steps can efficiently compute the eth root of gm mod N2, which contra-

dicts the hardness assumption of RSA for a sufficiently large composite N2. Therefore,

the original assumption that S can bind a commitment c to more than one message is

false, as expected.

From Eq. 6.1 we observe that our commitment has a multiplicative homomorphic

property; we can compute a commitment for the multiplication of two messagesm1 and

m2 by knowing the individual commitments to these two messages. To open this new

commitment, the randomness r1 and r2 used for each individual commitment should

be added. Note that this is distributed identically to a fresh commitment to m1 ·m2.

More formally:

Com(m1, r1) · Com(m2, r2) mod N2 = (m1
egr1m) · (m2

egr2m) mod N2

= ((m1m2)
e · gr1+r2

m) mod N2

= Com(m1m2, r1 + r2),

which can be extended to P messages as follows:

∏P
i=1 Com(mi, ri) = Com(

∏P
i=1 mi,

∑P
i=1 ri) mod N2. (6.2)

Next, we describe how the analyst leverages this property to generate a commitment

over the encrypted sum without having access to the individual encrypted messages,

but only to the public commitments of each encrypted message. By the hiding property

(Theorem 1), each commitment to a message does not reveal anything to the analyst

about the message itself. Additionally, the binding property guarantees the computa-

tional integrity of ciphertext aggregation, as an error in the aggregation result would

prevent an auditor from successfully opening the aggregate commitment. Masquerade

offers public verifiability by publishing all the commitments to a ledger and enabling

any party to audit them.

120

Participant
i out of P

Ledger Curator Analyst

pk, gm, e
1

ci
2

Paimi , zi, ri

Paisum, rsum
3

sum, Pai0, ρ, ρ
′, z0

4

Figure 6.2: The Masquerade Protocol. The numbers 1-4 refer to the algorithms from
Fig. 6.3. (1) First, the analyst generates a Paillier key-pair and the public parameters
for the commitment scheme and posts the public key including N2, gm, and e. (2)
Each participant i encrypts their private data mi and generates a non-interactive ZKP
to prove the correctness of ciphertext Paimi

to the curator. Participants also commit
to Paimi

and publish the commitment values ci, while they send the random ri values
used for ci to the curator. (3) Upon verifying the proof and commitment, the curator
homomorphically adds Paimi

to the encrypted aggregation and also adds the ris. (4)
The analyst receives the encrypted sum and the sum of the random ris from the curator
and verifies that the commitment opens successfully. Finally, the analyst creates a non-
interactive ZKP that the final result sum is the correct decryption of Paisum.

6.3.2 Homomorphic Commitments on Homomorphic Data

We now discuss our novel PDA scheme, depicted in Fig. 6.2. First, the analyst

generates a Paillier key-pair sk, pk as well as the random prime e and the maximum-

order element g required for our commitment scheme (section 6.3.1) and publishes

the pk (including modulus N2), e, and gm. Notably, we use the same N2 both as

the public commitment modulus and as Paillier’s encryption modulus. Then, each

participant probabilistically encrypts their private message using Paillier and commits

to the generated ciphertext (recall, these commitments do not reveal anything about

either the ciphertext or the plaintext). Then, the participant sends their ciphertext

to the curator along with the randomness used for the commitment and publishes the

commitment value to the ledger. (We omit ZKPs for now.) The curator calculates the

homomorphic addition of the participants’ messages, adds the individual commitment

randomness ri, and publishes the Paillier ciphertext along with the sum of all ri’s to

121

1: 1 Key-Generation (Analyst)

2: sk, pk
$←− GenPai(security level in bits)

3: N2 = p2 · q2 using primes p, q ∈ sk
4: N2 is used both for Paillier and commitment
5: Random prime e, s.t. e > N2 and gcd(e, ϕ(N2)) =

1

6: gm
$←− Max-order Z∗

N2

7: Publish to the ledger pk, gm, e

1: 3 Aggregate (Curator)
2: Accept/Reject ←− V(pk, zi, Paimi) ▷ Verify the

proof

3: Verify ci
?
= C(Paimi , ri) ▷ Verify the

commitment
4: Paisum ←−

∏P
i=1 Paimi mod N2 ▷ Aggregate

ciphertexts
5: rsum ←−

∑P
i=1 ri ▷ Aggregate randomness

6: Publish to the ledger Paisum, rsum

1: 2 Encrypt-Prove-Commit (Participant)

2: Paimi ←− Encpk(mi, ρi) ▷ ρi
$←− Z∗

N2

3: zi
$←− P(Paimi ,mi) ▷ Prove Paimi is an

encryption of mi

4: ci = C(Paimi , ri) ▷ ri
$←− Z∗

N2

5: Publish to the ledger ci
6: Privately transmit to Curator Paimi , zi, ri

1: 4 Decrypt-Audit-Prove (Analyst)

2: Verify
∏P

i=1 ci mod N2 ?
= C(Paisum, rsum)

3: sum←− Decsk(Paisum) ▷ Decrypt result

4: Pai′sum ←− Encpk(sum, ρ) ▷ ρ, ρ′
$←− Z∗

N2

5: Pai0 ←− Paisum ∗ (Pai′sum)−1 ▷ Encryption of
zero

6: z0
$←− P(Pai0,Encpk(0, ρ

′)) ▷ Prove
Pai0 = Encpk(0, ρ

′)
7: Publish to the ledger sum, Pai0, ρ, ρ′, z0

1: 5 Public Verification (Auditor)

2: Verify
∏P

i=1 ci mod N2 ?
= C(Paisum, rsum)

3: Verify Pai′sum
?
= Encpk(sum, ρ) ▷ Verify Pai′sum

4: Verify Pai0
?
= Paisum ∗ (Pai′sum)−1 ▷ Verify

Pai0
5: Accept/Reject ←− V(pk, z0, Pai0) ▷ Verify the

proof

Figure 6.3: The four core algorithms of the Masquerade protocol. In the top right
corner (inside the parentheses), we indicate which party runs each algorithm. P , V ,
and C, stand for the prover, the verifier and the commitment algorithm, respectively.
Both P and V algorithms are discussed in Section 6.3.4.

the bulletin board. Finally, the analyst verifies the integrity of the homomorphic result

using the formula of Eq. 6.2 to ensure the multiplication of the client commitments

along with the aggregated randomness equals the commitment over the encrypted sum.

For example, given two participant messages m1 and m2, the curator receives

two ciphertexts Encpk(m1) and Encpk(m2) and computes Encpk(m1) ·Encpk(m2) mod N2

(here, we omit the randomness of Paillier encryption). Moreover, the curator sums the

commitments’ randomness (r1+ r2). The analyst reads the published commitments to

these two ciphertexts and can verify the commitment to the encrypted sum without

122

having access to the individual ciphertexts as:

Com
(
Encpk(m1), r1

)
· Com

(
Encpk(m2), r2

)
mod N2

=
(
Encpk(m1)

e · gr1m
)
·
(
Encpk(m2)

e · gr2m
)
mod N2

=
(
Encpk(m1) · Encpk(m2)

)e · (gr1+r2
m

)
mod N2

= Com
(
Encpk(m1) · Encpk(m2) mod N2, r1 + r2

)
= Com

(
Encpk(m1 +m2), r1 + r2

)
.

(6.3)

Therefore, an auditor can compute and open the commitment for the encrypted sum

that they received from the curator by using the accumulated randomness. In our

implementation, the analyst plays the role of an auditor but we also enable any party

to further verify the protocol by inspecting the public ledger. With a successful com-

mitment opening, an auditor is assured that no errors occurred during the aggregation.

Additionally, we extend this core protocol to support computing the weighted

arithmetic mean based on both the participants’ private inputs and the public weights.

From Eq. 2.3, it follows that the curator can multiply encrypted participant inputs

with constant weight values wi, where i ∈ [1, P]. Based on the previous exam-

ple, for ciphertexts Encpk(m1) and Encpk(m2), the curator computes Encpk(m1)
w1 ·

Encpk(m2)
w2 mod N2 = Encpk(w1m1) · Encpk(w2m2) mod N2, and also sums the com-

mitments’ randomness. Finally, the analyst incorporates the weights in the com-

mitments received from the participants by applying the following formula: wi
e ·

Com
(
Encpk(mi), ri

)
=
(
wi · Encpk(mi)

)e
grim = Com

(
Encpk(wimi), ri

)
.

6.3.3 Public Verifiability for Aggregator

Masquerade enables the participants to audit not only the curator, but also

the analyst and efficiently verify that the published sum is the correct decryption of

the ciphertext that the curator published to the ledger. We adopt the ZKP proto-

col for proving ciphertext equality over N s+1 modulus with s = 1 from [88] and we

apply the Fiat-Shamir heuristic in the random oracle model to convert the ZKP to

123

a non-interactive variant. Let ctsum be the encrypted result and sum be the decryp-

tion published by the analyst. We further provide public verifiability that the analyst

decrypted and published the correct result: The analyst first encrypts sum using ran-

domness ρ into ct′sum. Consecutively, the analyst computes a ciphertext ct0, which

is the homomorphic result of ctsum minus ct′sum, and posts ct0, ct
′
sum, along with the

randomness ρ to the ledger. By construction, if ctsum is an encryption of sum, then ct0

is an encryption of zero. Finally, the analyst uses the aforementioned non-interactive

ZKP and provides public verifiability that ct0 is an encryption of zero, which means

that ctsum is an encryption of sum. Notably, it is not possible for the analyst to cheat

and publish a wrong sum as ct0 would not be an encryption of zero and this would

break the soundness of the ZKP [88].

6.3.4 Protecting Against Malicious Clients

As participants contribute their data encrypted, the curator has no way of de-

tecting if a malicious client performs a data pollution attack by sending an encryp-

tion of an overwhelmingly large number. Masquerade bounds the influence of each

participant in the aggregate results by restricting the values they can input into the

protocol. Specifically, to mitigate such attacks, we incorporate two non-interactive

ZKP protocols, namely a range proof and a set-membership proof. The former enables

the participants to prove that their Paillier ciphertext encrypts a message m that lies

within a valid range, i.e., m ∈ [0, ℓ] [52,164], while the latter proves that m lies within

a set of messages, i.e., m ∈ {m1,m2, . . . ,mk} [20,88]. In both cases, the client manages

to convince the curator by only showing the Paillier encryption of m without leaking

any additional information about m.

As discussed in Section 2.2.3, ZKP protocols must satisfy three basic properties:

completeness, soundness, and zero-knowledge. Completeness guarantees that an honest

participant (P) can always convince the curator (V) about a valid statement. Sound-

ness guarantees that if the curator is honest and the participant’s private data are

not well-formed (i.e., are not within a pre-specified range or a set of public messages),

124

then the curator will reject the proof with overwhelming probability. We formalize

the soundness by introducing a security parameter t: the probability of an adversary

convincing an honest verifier in range proofs is 2−t, and in set-membership proofs it

is A−t, where A is the size of the randomness used for the protocol. Finally, zero-

knowledge guarantees that if both the participant and the curator are honest, then the

proof does not reveal anything about the private participant’s data, except that they

are well-formed.

We utilize the zero-knowledge range proof protocol for quantitative aggregations,

while the set-membership proof is used to assert that the participants select a message

from some predefined categories (described in section 6.3.5). We instantiate these two

ZKP protocols as public coins in the random oracle model [28] via the Fiat-Shamir

heuristic to eliminate the interaction and transform the interactive proofs to their non-

interactive variants [106]. Therefore, the data curator verifies the correctness of the

proof for the ciphertext sent by each participant and homomorphically increments the

sum if and only if the proof was accepted. In Fig. 6.2, the proof for the participant i

is depicted as πi, whereas the prover and verifier algorithms are shown as Prove and

Verify, respectively.

6.3.5 Enabling Categorical Data Aggregation

Masquerade naturally supports the aggregation of quantitative data. On the

other hand, categorical variables represent types of data that may be divided into

groups, where each group should be encoded and accumulated separately. For in-

stance, an aggregation based on four age groups (e.g., “infant”, “child”, “adolescent”

and “adult”) requires four counters, one for each category. In categorical data, each

participant’s influence is limited since they can contribute at most one to the sum of a

category. For example, if the attribute type is “age group”, each participant may only

contribute to one of the categories and increment that counter (e.g., “adult”).

Taking these two requirements into account, we design a specialized encoding

to incorporate different categories into one encrypted message. A possible solution

125

00 . . . 00 . . . 00 . . . 00 00 . . . 00 00 . . . 01

00 . . . 00 . . . 00 . . . 00 00 . . . 01 00 . . . 00

00 . . . 00 . . . 00 . . . 01 00 . . . 00 00 . . . 00

00 . . . 01 . . . 00 . . . 00 00 . . . 00 00 . . . 00

C1

C2

C3

CK

...
...

EncodingsCategories

Paillier plaintext space (N bits)

(a) Encodings for K categories.

CK sum . . . C3 sum C2 sum C1 sum

Paillier plaintext space (N bits)

N/K bits

(b) Accumulated sums for each category.

Figure 6.4: Histograms Overview. We can divide the Paillier plaintext space into
different sections, each of which corresponds to a different category. Homomorphic
addition of ciphertexts will result into summing the bits from each category and end
up with individual accumulators.

for categorical variables would be to use multiple invocations of our quantitative PDA

protocol so that every invocation would aggregate one category. Each participant could

contribute an encryption of either a “one” or a “zero”, depending on their selection,

and also prove in zero-knowledge that the submitted ciphertext is an encryption of a

binary number. Unfortunately, in cases that the response should be “one-hot encoded”

(such as the “age group”), this solution is not sufficient since it would enable malicious

participants to contribute to more than one category and tamper with the aggregation

result. Although in each invocation they could submit a valid encryption and a proof,

the set of their responses could be invalid (e.g., submit multiple encryptions of True).

Masquerade introduces an encoding that enforces the participants to select 1-

out-of-K categories using a single message that encodes both the selected category as

126

well as the remaining K − 1 non-selected categories. We encode each category as a

power of 2N/K, where N are the bits of the plaintext: specifically, the first category

is represented as (2N/K)
0
= 1, the second category is represented as (2N/K)

1
= 2N/K,

and so on. In Fig. 6.4(a) we illustrate these encodings. We remark that performing

homomorphic addition between ciphertexts from the same category will increment the

N/K-bit counter for the specific category, and leave the counters for theK−1 remaining

categories unmodified. The accumulations for each selected attribute create a one-

dimensional histogram with K categories, as illustrated in Fig. 6.4(b). We complement

our protocol with the non-interactive set-membership proof described in section 6.3.4

to guarantee benevolent client behavior; in this case, each participant encrypts one of

K possible messages (i.e., powers of 2N/K) and creates a zero-knowledge set membership

proof that the ciphertext is the encryption of one of these powers.

Using the same number of plaintext bits, our protocol also supports responses

that enable the participants to select multiple categories at the same time, if those are

valid answers. To support such messages, the set-membership proof includes all the

possible combinations of valid responses. For instance, a response for both C1 and C3

from Fig. 6.4(a) would be in the form 00 . . . 00 | · · · | 00 . . . 01 | 00 . . . 00 | 00 . . . 01.

Adding the above response with another response for C1 will result in 00 . . . 00 | · · · |

00 . . . 01 | 00 . . . 00 | 00 . . . 10, which accumulates both responses.

Notably, by having large plaintext sizes our encoding can also support multidi-

mensional histograms. For instance, extending the example of age groups, the analyst

can also consider if a participant is a smartphone user. We use these two variables (i.e.,

“age groups” and “smartphone user”) to form a two-dimensional array with all com-

binations and encode each index in the array into a unique category from Fig. 6.4(a).

Since “age groups” has four possible values and “smartphone user” has two, the num-

ber of categories is K = 8. To increase the number of categories and preserve enough

bits for each accumulation, a larger plaintext space can be used by increasing N . This

introduces a trade-off between the number of categories and the performance of our

protocol since larger modulus sizes may increase performance overheads.

127

6.3.6 Security Sketch

Theorem 2. Assuming that Eq. 6.1 is a secure commitment scheme with multiplicative

homomorphism and satisfies the hiding and binding properties, the Paillier cryptosys-

tem is semantically secure against chosen-plaintext attacks (IND-CPA), and the ZKPs

satisfy the three properties from section 2.2.3, then Masquerade is a secure PDA pro-

tocol.

Participant is corrupt. A malicious participant may attempt to tamper with the

analysis by encrypting an invalid input. Observe that due to the ZKP soundness an

honest curator will always reject malformed proofs, except with negligible probability.

Additionally, a malicious participant cannot generate an invalid commitment (i.e., to

a different ciphertext) due to the binding property and the curator will always reject

invalid commitments. Thus, Masquerade preemptively rejects malicious clients.

Curator is corrupt. It is easy to observe that the participants’ data are protected

by a passive-corrupt curator since neither Paillier ciphertexts nor the ZKPs reveal

anything about the plaintexts. In the case of a fail-corrupt curator that introduces

non-adversarial or random faults, our homomorphic commitment provides public veri-

fiability without compromising the participants’ privacy and allows a semi-honest an-

alyst and any auditor to verify the integrity of the result.

Analyst is corrupt. Since the analyst only learns the encrypted sum (and thus the

final result) and nothing is revealed about each participant’s data points. Finally, the

analyst proves the correct decryption of ctsum, providing public verifiability.

Auditor is corrupt. Auditors only inspect the protocol and verify its correctness.

Malicious auditors cannot affect the protocol as they do not provide any inputs.

6.4 Experimental Evaluations

Our evaluations assess the performance of our protocol and understand how

it scales with an increasing number of participants. We expect Masquerade to scale

linearly to the number of clients and the zero-knowledge protocols to dominate the

128

execution time, especially as the soundness parameter t increases. Finally, the set-

membership proof is more computationally intensive than the range proof and thus we

expect the quantitative studies to be faster than categorical.

6.4.1 Experimental Setup

For our experimental evaluation of the curator and the analyst, we used two

t3.2xlarge AWS EC2 instances running with eight virtual processors up to 2.5 GHz

and 32 GB RAM. For the experiments evaluating the participants, we used a Lenovo

laptop with an i7-8650U CPU running at 1.90 GHz, and we have implemented our

Masquerade framework in Go 1.16. In our experiments, the latency between the curator

and the analyst was negligible (about 0.014 ms) as both are hosted in AWS instances.

The communication between the participants and the AWS instances (curator and

analyst) is 9.65 ms on average. The back-end of the curator is fully parallelizable and

can take advantage of all the available threads of the host. For every participant,

the curator spawns a new thread to verify the zero-knowledge proof of the participant

and aggregates their private data only if the ZKP verification was successful. This

optimization provides a speed-up proportional (roughly) to the number of parallel cores

of the curator. Without loss of generality, in our implementation the analyst maintains

a public append-only ledger. The ledger can also be maintained by any trusted third

party, or be distributed between the analyst and the curator. Moreover, Masquerade

supports ledgers deployed on a public blockchain: our implementation offers end-to-

end support for publishing commitments on Ethereum using the Ganache-CLI, and

was evaluated on the Ropsten testnet. Finally, both the Paillier cryptosystem and our

commitment scheme are instantiated with a 4096-bit modulus N2 following the key

size recommendations of [18].

6.4.2 Performance Evaluation

In Fig. 6.5 we present the online protocol costs of Masquerade assuming both

honest and malicious participants. In the former – baseline – case, the participants’

129

Figure 6.5: Masquerade Performance. Time measurements in seconds for an in-
creasing number of participants from 1 to 212. The timings for malicious participants
use t = 60 and K = 4 and depend on the type of study (quantitative or categorical),
while for honest participants the overheads do not depend on the type of study as
ZKPs are omitted. Finally, the ledger auditor performance is almost constant as it
involves fast modular multiplications.

ciphertexts are well-formed and the curator accepts all the encrypted data directly,

eliminating the need for creating and verifying ZKPs. We use the timings of this

simplified protocol as a baseline to demonstrate the trade-off of the zero-knowledge

protocols for the quantitative and categorical studies (note, the honest participant cost

does not depend on the type of study). Fig. 6.5 demonstrates the experimental timings

for quantitative variables (i.e., green triangles), categorical variables (i.e., red squares),

a baseline for honest participants (i.e., blue diamonds), and the timing for an auditor

(i.e., yellow circles) with an increasing number of participants and soundness parameter

t = 60 bits.

The experimental timings include the computation performed by the analyst

and the curator until the result of the aggregation is published by the analyst. We

note that Fig. 6.5 does not include the offline cost for key-generation or participant

cost (these are discussed later in this Section) since all the participants can pre-compute

their ciphertexts, proofs, and commitments before engaging in the protocol. Finally,

the timings also include the latency, which has negligible performance cost compared

to the ZK-related operations. For the reported cost of the categorical study in Fig. 6.5

we used a set with K = 4 classes. As expected, for both types of studies we observe

130

Figure 6.6: Zero-Knowledge Proofs Performance. Time measurements in seconds
for both range and set-membership proofs for the prover and the verifier with an
increasing soundness parameter t in bits and K = 4.

a linear increase to the total aggregation cost as the number of participants grows.

Additionally, for up to 8 participants the cost of the quantitative and categorical re-

mains somewhat constant, due to the thread parallelization in the curator’s back-end.

When we compare both trends that use ZKPs with the trend of “Honest Participants”,

we observe that protecting against malicious participants incurs about two orders of

magnitude additional overhead. Likewise, the quantitative study (i.e., green triangles)

is about half an order of magnitude faster than the categorical one (i.e., red squares),

which is attributed to the complexity of the set-membership [20]. Finally, we observe

that the time to audit the ledger is almost constant with an increasing number of

participants as it mostly comprises modular multiplications. Next, we analyze the in-

dividual performance of the participants, the curator, the analyst, and the auditor and

discuss how each one of them affects the total performance of our protocol.

Participant Perspective. The computation cost of each participant includes the

Paillier encryption cost, the ZKP cost, and the commitment cost. Our protocol enables

the participants to pre-compute everything offline. Both the Paillier encryption cost

and the cost of committing to encrypted data are negligible compared to the ZKP

generation. Fig. 6.6 shows the proof generation time for participants for both range

and set-membership proofs with varying soundness parameters t. Similarly, Table 6.1

shows the ZKP size in KBytes with an increasing t for range and set-membership

131

proofs.

Both the computation and space costs of the range proofs scale linearly to

the soundness parameter t. Similarly, the computation and space costs of the set-

membership proofs scale linearly to t, but are also affected by the number k of messages

in the set. In Table 6.2 we show the timings for P and V for the set-membership proof

with increasing set sizes. Our results show that the performance cost of both P and V

increases linearly to the set size.

Smartphone participants. We further evaluate the participant costs for soundness

t = 40 using a smartphone equipped with a Qualcomm Snapdragon 865 at 2.84 GHz.

As discussed, this cost is dominated by P : the cost for a range proof is 2.14 seconds

while a set-membership proof with K = 4 takes 4.78 seconds. In all cases, the commit-

ment cost was negligible at just 78 ms. This analysis shows using a modern smartphone

instead of a laptop (c.f. Fig. 6.6 prover costs for t = 60) incurs very similar overheads.

Curator Perspective. Assuming P participants, the total curator overhead corre-

sponds to: (1) the verification cost for P proofs, and (2) P homomorphic additions

(Eq. 2.2). Like the proof generation shown in Fig. 6.6, the verification cost of both

proof types scales linearly to the soundness parameter. As shown in Table 6.2, set-

membership verification incurs a linear overhead to the set of valid messages size.

Moreover, the verification cost for set-membership is about half an order of magnitude

higher compared to range ZKP due to the increased complexity of [20]. This difference

justifies why quantitative studies are faster than categorical (as reported in Fig. 6.5).

In either study type, the curator verifies one proof for each of the participants

and performs a homomorphic addition if the proof is correct. The overall communi-

cation cost of the curator is P times the proof size (Table 6.1), as well as the cost of

Table 6.1: Size of the Zero-knowledge Proof Protocols.

Soundness Parameter (t) 40 60 80 100 120 140

Range Proof (KB) 36.0 57.4 78.1 103.1 118.4 142.2
Set Proof (KB) 309.6 464.5 619.3 774.1 929.0 1083.9

132

Table 6.2: Set-Membership Proof Timings with an Increasing Number of Set Elements
for Soundness t = 60.

Set Size (K) 2 4 8 16 32 64

Prover Time (Lenovo) (sec.) 1.92 2.94 7.92 14.61 30.55 63.83
Verifier Time (EC2) (sec.) 2.08 2.61 6.97 13.26 31.93 65.14

transmitting the final results to the analyst (i.e., ctsum and rsum). Likewise, without

any optimizations, the curator’s performance overhead is P times the cost for one par-

ticipant; using 8 parallel threads, the curator’s performance is about 5.3 times faster.

Note that the total protocol performance is dominated by the curator’s overhead.

Analyst Perspective. The timing cost of the analyst can be attributed to: (1) the

Paillier key generation, (2) the P multiplications and additions of the commitments

and the random parameters, respectively, and (3) the constant costs of opening the

commitment and decrypting the aggregation result. The key generation offline cost

involves generating two large prime numbers and a group element of maximum order.

For 2048, 4096, and 8192-bit plaintexts (i.e., N bitsize), key generation takes 43.1

milliseconds, 202 milliseconds, and 1.27 seconds, respectively.

In our implementation of Masquerade, the analyst maintains the public ledger.

Thus, the communication cost of the analyst entails receiving the individual commit-

ments from each participant, as well as receive a list of identifiers from the curator

corresponding to the participants whose ZKPs were correct. Performance-wise, in ad-

dition to decrypting the encrypted sum, the only additional cost of the analyst is to

support public verifiability by aggregating all participant commitments and showing

that it correctly opens with the homomorphic sum (Alg. 4 in Fig. 6.3).

Auditor Perspective. Finally, any auditor can access a copy of the ledger in order

to verify that the protocol was executed correctly, which allows public verifiability.

The auditor uses the accumulated randomness and verifies that the participants’ ho-

momorphic commitments open with the encrypted sum. This verification is similar to

the one that the analyst performs in Fig. 6.3 Alg. (4), line 2. Lastly, as mentioned in

section 6.3.2, the auditor verifies that the published decrypted sum is indeed a correct

133

decryption of the ciphertext that the curator published to the ledger. We measured the

auditor timings in Fig. 6.5 (i.e., yellow circles) with modern Lenovo laptop (the same

machine was also used for the participants) and we observe almost constant overhead.

6.5 Related Work

In this section, we discuss several recent works in PDA that rely on crypto-

graphic techniques such as HE, secure multiparty computation (MPC), and differen-

tial privacy. Existing solutions introduce different trade-offs between computation and

communication costs, depending on the underlying privacy technique they employ. In-

terestingly, some protocols provide robustness against dropouts, while only a few are

secure against malicious clients that provide malformed inputs. Masquerade and only

two other works allow the participants to verify the outcome of the protocol. Next, we

discuss these existing works and how they compare with Masquerade.

In MPC, multiple parties want to jointly compute a function over their private

data while keeping those inputs private [120, 246]. Most common constructions are

either based on Yao’s garbled circuits or on HE and secret sharing [6,63,117,148,166].

The latter is more computationally efficient than the former but incurs high commu-

nication costs. Such generic MPC protocols can be used for PDA but since they are

not optimized solely for this task, they are not as efficient as customized PDA solu-

tions such as Masquerade. Likewise, generic schemes allow the participants to provide

any input to the aggregation, whereas Masquerade protects against malicious inputs

using the two non-interactive ZKPs discussed in section 6.3.4. Both MPC and the

works in [90, 161] that use thresholding-based cryptography (such as Shamir’s secret-

sharing [211]) remain susceptible to participant dropouts. Conversely, Masquerade

is immune by design to participants intentionally leaving the computation and offers

public verifiability, where third parties can audit the result.

Shi et al. [214] proposed a PDA methodology based on random shares and dis-

tributed noise generation. The authors of [71] and [142] extended Shi’s protocol by

handling client dropouts and enabling larger plaintext spaces, respectively. Likewise,

134

the work in [90] is also based on secret-sharing techniques for privacy-preserving smart

meter readings, yet it cannot tolerate participant dropouts. Leontiadis et al. [160]

extended [142] and eliminated some of the trust assumptions that the latter requires.

PUDA [161] is a pairing-based scheme that uses a trusted dealer to set up secret keys

and enables public verification using homomorphic tags. While these aforementioned

protocols support only quantitative variables and any client can corrupt the results,

Masquerade offers robust protection against malicious clients, as well as support for

both categorical and quantitative studies. The work in [47] features an efficient t-

out-of-n secret sharing protocol, however, like most related works, it cannot tolerate

malformed inputs from malicious participants. Trinocchio [209] outsources a computa-

tion from a single client to multiple workers in a privacy-preserving way and generates

verifiable guarantees of the correct computation. Trinocchio additionally describes a

multi-client version but this variant requires a special key generation and also is suscep-

tible to malicious inputs: if any client provides incorrect information, the computation

is aborted. Moreover, among the aforementioned works, only PUDA and Masquerade

offer public verifiability.

Prio [83] is based on multiple non-colluding servers and is the most closely

related to our scheme. It introduces a technique called secret-shared non-interactive

proofs (SNIPs) to validate that clients’ inputs are the encryption of either a “0” or

a “1”. To aggregate longer values than just one bit, Prio encodes the participants’

private data as a sequence of bits, where each bit is verified by a different SNIP, and

computes the sum of these encodings. Therefore, since SNIPs inherently prove one bit,

to prove messages of bigger sizes the proof size increases linearly to the number of bits.

Notably, the range proofs in Masquerade have constant size and time, whereas our set-

membership proofs scale linearly to the set elements. For very small client inputs, the

design of Prio enables fast participant timings: For instance, the authors report that

for one-bit up to four-bit integers, the participant timing varies from 0.01 to 1 second,

depending on the number of the multiplication gates on the SNIP circuit. We remark

that Masquerade offers better scalability, as our plaintext dynamic range is in the order

135

Table 6.3: A comparison with existing PDA schemes based on the cryptographic tech-
nique they utilize, the type of variables they support and their robustness against
dropping participants and malicious inputs.

Approach
Cryptographic

Technique
Quant.
Vars

Categ.
Vars

Robust
Against
Dropouts

Public
Verif.

Robust
Against
Malicious
Inputs§

Proof Scaling
Quantitative/
Categorical

Shi et al. [214] THE* & Diff. Privacy N/A

Chan et al. [71] THE & Diff. Privacy N/A

Joye et al. [142] THE N/A

Danezis et al. [90] THE N/A

Leontiadis et al. [160] THE N/A

Leontiadis et al. (PUDA) [161] THE N/A

Bonawitz et al. [47] Pairwise Masking N/A

Burkhart et al. (SEPIA) [63] Secret-Sh., Generic MPC Quadratic / N/A

Giannopoulos et al. [117] Secret-Sh., Generic MPC N/A

Narula et al. (zkLedger)† [190] Pedersen Commitments Quadratic / N/A

Corrigan-Gibbs et al. (Prio)‡ [83] Secret-Sh. Linear / Linear

This Work (Masquerade) PHE & Commitments Constant / Linear

† zkLedger is the only related work that achieves both public verifiability and being robust against malicious inputs, however, the
transaction verification is quadratic to the number of participants causing major scalability issues (the authors only experiment with
at most 20 participants). Additionally, zkLedger does not support categorical variables.

‡ Prio introduces a mechanism called affine-aggregatable encodings (“AFEs”) to encode a series of bits as quantitative or categorical
variables. Prio does not guarantee public verifiability and each client only communicates with the servers (no support for a distributed
ledger).

* Threshold Homomorphic Encryption (THE): The private key is shared between n participating parties and in order to decrypt a message
at least t-out-of-n parties are required.

§ Our protocol utilizes non-interactive zero-knowledge proof protocols to protect against malicious inputs.

of thousands of bits (e.g., 2048 bits in our experiments), which can encode significantly

more information. While the authors of Prio do not report any timings for categorical

studies (which can be theoretically supported with modified proofs), their approach

introduces additional overhead since each participant must prove that the sum of all

the bits is exactly one. Finally, Prio does not operate on a public ledger and does not

offer any public verifiability protections, contrary to our Masquerade protocol.

The work in [190] introduced zkLedger, a method that protects participants’

privacy and provides public verifiability. The participants in zkLedger rely on Ped-

ersen commitments [197] and Schnorr-type ZKPs [208] to publish their transactions

on a public ledger. Then an auditor can combine all the public commitments and

verify their correctness. Likewise, in Masquerade we allow the analyst to audit the

commitments, but since everything is public, any participant or third party can also

audit the committed result. Nevertheless, zkLedger incurs significant overheads since

136

transaction verification costs are quadratic to the number of participants, so practicality

is significantly impacted in studies with more than 10-20 participants. Conversely, our

experiments show that Masquerade scales gracefully for thousands of participants.

Table 6.3 summarizes all notable related works and compares with ours. In-

terestingly, these approaches use a broad range of cryptographic techniques, yet all of

them have homomorphic properties. We observe that most of these constructions are

tailored to quantitative studies, whereas only our protocol and Prio [83] provide en-

codings to represent categorical variables (e.g., Likert scales). Moreover, only PUDA,

zkLedger, and Masquerade allow practical auditing and public verifiability, which is an

important property for real-world applications. Although several works have focused

on malicious participants intentionally dropping out of the protocol, only our proto-

col, SEPIA, Prio, and zkLedger protect against malicious inputs using non-interactive

ZKPs; however, only Masquerade offers constant ZKP costs for quantitative studies.

The security and threat models of the aforementioned existing works vary based

on the number of computing parties, the types of studies they support, and their

robustness against malicious participants. The protocols in [71, 142, 214] use a single

untrusted aggregator, and assume the aggregator obliviousness model which ensures

that the aggregator learns only the sum of users’ inputs and nothing else. The authors

of [161] extended the aggregator obliviousness model and introduce the concept of

aggregate unforgeability, which assumes that one party performs the aggregation and

another party decrypts and publishes the final result. Aggregate unforgeability ensures

that the aggregator cannot convince the data analyzer to accept a bogus sum. Similarly

to our work, in this model the two parties should never collude. In [47], the authors

introduce three different security models, one which ensures security only against the

clients, one which ensures security only against the server, and a mixed security model

for a threshold of colluding clients with the server. The work in [63] uses the honest-

but-curious model and is secure as long as no more than half of the computing nodes

collude, while the authors of [117] use the Sharemind MPC framework with three

honest-but-curious non-colluding nodes. Lastly, the protocol in [190] is secure against

137

malicious input providers (e.g., banks) and keeps the transactions private as long as

that the sender, the receiver, and the auditor do not collude, whereas the authors

of [83] use a small set of servers (e.g., three) and protects the client privacy if not

all the servers collude. Like Masquerade, most related works rely on two or more

non-colluding servers. However, as shown in Table 6.3, only Masquerade offers public

verifiability while protecting against malicious inputs and scales with an increasing

number of participants.

6.6 Concluding Remarks

We presented Masquerade, a new scheme for private data aggregation that en-

sures that participants’ inputs are kept private and the analyst only learns the final

aggregate result. We extended our protocol to work both with quantitative and cate-

gorical variables, enabling a variety of different studies. Our two non-interactive ZKP

protocols complement our scheme to defend against malicious participants by veri-

fying that the encrypted data are well-formed and that each participant has limited

influence on the protocol. Masquerade publishes our novel multiplicative homomorphic

commitments on a ledger to enable public verifiability, which is an essential property

for real-world applications where participants need to assess the correctness of the en-

crypted sum and verify that their response is included in the final result. Moreover,

our protocol’s public verifiability allows the analyst to prove that the announced de-

cryption of the encrypted aggregate is correct, which allows any participant to audit

the final results. Our experiments demonstrate that Masquerade scales gracefully to

thousands of participants, and further supports smartphone clients.

138

Chapter 7

PLASMA: PRIVATE, LIGHTWEIGHT AGGREGATED STATISTICS
AGAINST MALICIOUS ADVERSARIES

7.1 Introduction

In today’s technology-driven world, companies are constantly collecting user

data to perform analysis, compute statistics, expose patterns in user behaviors, and

apply them to improve their products [68,103,134,162,198]. Common analysis practices

resort to histograms, where client data are aggregated together in predefined and non-

overlapping buckets. Each bucket may represent a quantitative range (e.g., salary) or

a categorical value (e.g., profession). The resulting histogram displays the frequencies

of each bucket based on multiple aggregated participant responses.

Private Histograms. When computing histograms, it is crucial to maintain client pri-

vacy, such as preventing data collection servers from inferring additional information

about the clients. Existing solutions for privacy-preserving histograms solve this prob-

lem efficiently [27, 49, 83], given a relatively small number of buckets. Nevertheless,

histograms are resource-intensive on the server side when the goal is to find popular en-

tries among the clients’ inputs. For instance, assume clients that hold GPS coordinates

of their location and servers aiming to discover crowded areas without compromising

client privacy. The naive solution of creating a histogram over all possible inputs re-

sults in sparsely populated sets, which wastes server-side computational power due to

sparse inputs. Conversely, in an optimal solution, the server computation should scale

with the most popular inputs, instead of all possible ones.

Private Heavy-Hitters. This problem is addressed by the concept of “heavy hitters”.

T -heavy hitters allow computing the T most popular responses (for a given threshold

139

T) among clients’ inputs and have a broad range of applications: from finding popular

websites that users visit or malicious URLs that cause browsers to crash [49, 132], to

discovering commonly used passwords [188], learning new words typed by users and

identifying frequently used emojis [105], to name a few. Private heavy-hitters allow

computing these results while also preserving client privacy. Existing protocols (such

as [8, 46, 49, 188]) only focus on the “popular” inputs and disregard other inputs that

appear less than T times (i.e., they are pruned by the protocol). This renders private

heavy hitters a suitable candidate for finding the most common client entries, such as

computing crowded areas using client-provided GPS coordinates.

Table 7.1: Threat model comparisons, client input validation, and server-to-server
communication.

Protocol

Correctness & Privacy
Against Malicious Corruption Client Input

Validation

Low
Server-to-Server
Communication

No. of
Servers

Clients Server Server & Clients

DPF [55, 56,118] † 2+

Poplar (IDPF) [49] † 2

Bucketization (DP) [8] † 2-3

MPC-based [46] ‡ † 3

Sorting-based [13, 138] 3

PLASMA (this work) 3

† These works only preserve privacy against a malicious server but not correctness.
‡ [46] is susceptible to data poisoning attacks by malicious clients or malicious servers. Privacy of honest clients
is preserved.

Different Approaches. The literature considers the setting where two or more servers

collect client inputs and run the private heavy-hitters protocol. A notable approach

based on differential privacy (DP) is [8] (we discuss DP-based solutions in Section 7.1.2).

While these protocols are computationally fast, they are limited to DP-based privacy

guarantees for the client. Likewise, MPC-based solutions [46] employ general-purpose

secure computation frameworks (e.g., MP-SPDZ [148], SCALE-MAMBA [5], Share-

mind [45]), so these methods fall short in terms of practicality. Thus, recent works

introduced custom MPC-based techniques for private heavy-hitters [13, 139]. The un-

derlying protocols perform secure sorting of client inputs under MPC [13,139] and then

140

aggregate the sorted data, guaranteeing that private inputs remain hidden when a ma-

jority of the servers are honest. However, the communication of all aforementioned

solutions is linearly dependent on the number of clients, resulting in high server-to-

server communication costs.

Distributed point functions (DPFs) [55] offer an alternative approach for private

histograms. Informally, DPFs allow a client to send succinct shares of a point function

corresponding to their private inputs to two or more servers. The servers then use

these shares to locally evaluate the function over the entire input space and add the

resulting outputs to obtain additive shares of a histogram.

Poplar [49] builds upon the DPF approach by introducing incremental DPFs

(IDPF). It provides an IDPF-based solution for private heavy-hitters in the two-server

setting, and their server-to-server communication depends on the input string length

in semi-honest security. For security against malicious clients, the servers validate

every client’s input so that malformed inputs are preemptively discarded from the

computation. This is referred to as client input validation and it prevents malicious

clients from causing an abort in the protocol. To do so, Poplar requires additional

checks, which cause the server-to-server communication to scale linearly with the total

number of clients. As a result, their concrete server-to-server communication is large.

Sabre [232] uses multi-verifier MPC-in-the-head that attests to the well-formedness of

DPFs but does not focus on heavy hitters.

Motivation. Since all aforementioned solutions incur server-to-server communication

that scales linearly with the number of clients, where the concrete communication cost

is large, they are prohibitive for most real-world applications that require millions of

clients for data collection. Hence, it is desirable that the concrete server-to-server

communication is low, even for a large number of clients. Likewise, neither Poplar

nor the DP-based solutions [8] tolerate additive attacks from a malicious server, which

results in incorrect outputs when one of the servers does not follow the protocol steps.

More formally, they fail to provide both correctness and privacy against the collusion of

a malicious server and malicious clients. In this regard, we ask the following motivating

141

question:

Can we obtain a private heavy-hitters protocol with low concrete server-to-server

communication that is secure against malicious clients and a malicious server?

7.1.1 Our Contributions

We answer the aforementioned question by proposing PLASMA, a framework

for private and lightweight statistics that provides security against a malicious server

and malicious clients. Our main contributions are summarized as follows:

Verifiable incremental DPF (VIDPF). First, we introduce a new primitive called

VIDPF, which builds upon incremental DPFs (IDPF) [49] and verifiable DPFs (VDPF)

[94]. VIDPF allows us to verify that clients’ inputs are valid by relying on hashing while

preserving the client’s input privacy. We also propose a novel way to verify that IDPF

keys are “one-hot” - i.e., they have a single non-zero evaluation path (containing the

same value along the path) by solely relying on hashing. This is of independent in-

terest and can be used to improve earlier results in [49, 92, 93]. Previous protocols

solved this problem using Fully-Linear Proofs (FLPs) [48, 93] or expensive sketching

that involves information-theoretic MACs [49,50,92]. More specifically, [93] uses FLPs

in each level to verify that the client’s input is one-hot, resulting in significant commu-

nication overhead as each FLP entails a large proof. Conversely, our checks for one-hot

vectors do not require field multiplications, only additions and hashes which allow us

to batch-verify multiple inputs together.

Batched Consistency Check. Next, we introduce a novel batched consistency check

that allows us to drastically reduce server-to-server communication. At a high level,

we validate the inputs of ℓ clients using a Merkle tree and identify the malformed

ones using logarithmic (in the total number of clients denoted as ℓ) communication.

This optimization reduces the dependency of our server-to-server communication on

the total number of clients from O(ℓ) to O(ℓ′(log2 ℓ
ℓ′
)) number of hashes where there

are ℓ′ malicious clients, yielding a concrete improvement over the state-of-the-art (as

142

reported in our experiments), even in the presence of malicious clients. Here, ℓ′ is the

number of corrupt clients who provide malformed inputs during the protocol execution

and it does not need to be a priori bounded. In case ℓ′ = 0, then our servers only

exchange a pair of hashes. Our communication cost remains low even when a constant

fraction (e.g., 10%) of the clients are malicious.

PLASMA framework. We combine these new primitives to construct PLASMA, a

protocol for private histograms and heavy hitters in the three-server setting that guar-

antees security against a malicious server and malicious clients while maintaining low

server-to-server communication. PLASMA relies only on efficient hashing and cheap

field additions rather than expensive general-purpose MPC or field multiplications.

Due to our novel VIDPF primitive, PLASMA outperforms Poplar with regard to run-

time by a factor of 5− 10× over WAN for T = 1% of the clients. In the same setting,

our batched consistency check optimization enables us to drastically outperform both

Poplar and the sorting-based protocol of [13] in terms of server-to-server communica-

tion by a factor of 35× and 45×, respectively. For these conditions, we further analyzed

the monetary cost of PLASMA, [13], and Poplar and report that PLASMA is more

than 2.5× and 4× cheaper than these works, respectively.

Applications. We evaluate PLASMA for two applications: a) detecting frequently

visited URLs, and b) identifying popular coordinates.

Popular URLs. A prominent application (discussed both in [13] and [49]) is

identifying which URLs crash the clients’ browsers more frequently. Each client has

a string of n bits that represents the last URL that crashed their browser. In our

evaluations (Section 7.6), we consider n = 256 bits, which is sufficient for standard

domain names, and compute the heavy hitter URLs that caused more than 1% of

client browsers to crash. We perform the task over WAN in approximately 5 minutes

for 106 clients, while incurring less than 1 GB of server-to-server communication (less

than $1 in total cost).

143

Popular GPS coordinates. We demonstrate a new application where PLASMA

identifies popular geographic locations without sacrificing user privacy. This can be

beneficial with traffic avoidance, restaurant recommendations, as well as advertising

(e.g., businesses may identify crowded shopping areas and target their marketing ef-

forts), while ensuring the GPS coordinates of the users remain private to the servers.

Likewise, ride-sharing services can enhance vehicle distribution in busy areas and proac-

tively dispatch more drivers during rush hour. This is possible by encoding GPS co-

ordinates as 64-bit strings using plus codes [167]. We compute the heavy hitter plus

codes for a threshold T = 1% in under 2 minutes over WAN across 106 clients, while

incurring very minimal server-to-server communication with $0.3 in total monetary

costs.

Extensions. We also discuss how to extend PLASMA to obtain fairness against

a malicious adversary that corrupts one server and an arbitrary number of clients.

PLASMA is the first work to consider different thresholds for heavy hitters based on

pre-agreed prefixes by the servers, allowing for more elaborate private statistics, such as

the GPS application, where different coordinates (e.g. highways and suburban roads)

have different congestion thresholds.

7.1.2 Related Work

We now discuss relevant works for private heavy hitters. They can be classified

into four main groups: those based on DPFs, those based on differential privacy (DP),

those based on MPC sorting, and finally those based on general-purpose MPC. A

comparison of our protocol with related works can be found in Table 7.1.

DPF-based. Distributed point functions [55] offer a straightforward solution for pri-

vate histograms but they fail for heavy hitters due to the blowup in key size, as the

client would need to send new keys for each level. This was addressed by Poplar [49],

which uses two non-colluding servers and introduces the notion of IDPFs to allow ef-

ficient evaluation of strings based on prefixes. Poplar’s threat model is robust against

malicious clients but remains susceptible to additive attacks by a malicious server.

144

Therefore, as the servers reconstruct the output, a malicious server can add arbitrary

noise to the result without the honest server realizing it. The recent work of [93] pro-

poses a framework for secure data aggregation and they improve the clients’ consistency

checks in Poplar and Prio [83]. However, their threat model does not address additive

attacks from a malicious server either. In contrast, PLASMA provides security against

both a malicious server and malicious clients by adding one additional server. Also,

Poplar still leaks some information about the heavy hitter prefixes to the servers as

they reconstruct the roots of the paths before they prune them. On the other hand,

PLASMA performs a secure comparison over the secret shares and either keeps the

node with its subtree if T > count, or prunes the subtree.

Differential Privacy-based. There is also a body of work based on local DP and

randomized responses for heavy hitters [19, 200, 253]. These techniques use a single

server to collect data from clients. Therefore, this method introduces a trade-off be-

tween utility and privacy, as it leaks some information about clients’ private data to

the server. In contrast, other methods that provide stronger privacy guarantees require

at least two not-colluding servers. Notably, secure computation-based solutions can be

modified to achieve DP either by using local DP or by adding a smaller amount of

noise in MPC and achieving higher data utility while maintaining privacy.

Likewise, bucketization [8] computes approximate statistics on a permuted ver-

sion of the clients’ data combined with dummy data that are sampled as differentially

private noise. Bucketization ensures security against malicious clients, and similarly to

Poplar, it can only guarantee privacy without correctness in the presence of a malicious

server. In contrast, PLASMA focuses on exact statistics and provides both correctness

and privacy against both malicious clients and one malicious server.

Sorting-based. Recent works that rely on secure sorting algorithms construct private

heavy-hitter protocols [13, 139] or private ad attribution measurement [68] based on

the sorted data. They provide security against malicious servers and clients in the

three-server setting, where one of the servers can be malicious. These protocols are

145

computationally fast over LAN. However, they perform secure sorting under MPC,

and as a result, they incur heavy communication overheads and their performance

degrades significantly over realistic WAN networks. Notably, PLASMA achieves a 45×

improvement in server-to-server communication compared to [13] as shown in Fig. 7.19

for T = 1%. Moreover, our PLASMA protocol allows different thresholds for heavy

hitters based on pre-agreed prefixes (allowing for more elaborate statistics), this is not

possible for sorting-based heavy-hitter protocols.

General MPC-based. One could use generic MPC in the honest majority [74, 109]

or dishonest majority setting [148] to compute heavy hitters, but an efficient represen-

tation of the heavy-hitters problem in terms of addition and multiplication gates is not

known. In fact, the work by Böhler and Kerschbaum [46] provides a generic MPC-based

protocol for computing differentially private heavy hitters. They use MPC frameworks

like MP-SPDZ [148] and SCALE-MAMBA [5] to achieve semi-honest and malicious

security, but their solution suffers from high communication and slow runtime.

3-Party Computation (3PC) based. Multiple customized 3PC protocols [13, 139]

aim to solve the problem of heavy-hitters. These works consider a third server to

exploit the faster computation guarantees in the honest majority. Using a third server

is realistic setup and it is widely considered both in the industry and academia as

it ensures practical deployments with malicious security. Notable examples include

the Interoperable Private Attribution (IPA) proposal by Meta and Mozilla [68], JP

Morgan’s PrimeMatch [198], NTT’s heavy-hitters protocol [13], protocols for private

advertisement measurement [180], Duoram [231], and Sabre [232], among others. The

servers are meant to run across different organizations; for example, they can be hosted

by companies and non-profit organizations as mentioned in Section 5 of Google-Apple’s

Covid Exposure system [9]. Table 7.1 compares our work with state-of-the-art results.

Multiple Sessions. Combining these to achieve both performance and malicious

security is an exciting future direction.

146

7.2 Technical Overview

Threat Model. Our threat model assumes three non-colluding servers (S0,S1,S2)

that run the histogram/heavy-hitters protocol, as well as ℓ clients. The clients provide

inputs to the servers and the servers do not have any private input. We assume that

an adversary A maliciously corrupts one of the servers and ℓ′ < ℓ clients.

Clients. Malicious clients may try to deviate from the protocol in order to

disproportionally influence the result or even completely corrupt the output of the pro-

tocol. PLASMA is robust against malicious clients and PLASMA servers preemptively

reject any malformed client input before incorporating it into the computation. The

privacy of honest clients is always preserved.

Servers. Similarly, a malicious server may try to deviate from the protocol

steps and attempt to learn private user inputs; PLASMA always protects input pri-

vacy against one malicious server. Another possible attack for a malicious server would

be to over-influence or corrupt the result of the protocol. The semi-honest model does

not protect correctness against malicious behavior by a server, which is problematic in

real-world applications, like advertisement measurements [68] between two companies,

where one company may benefit from reporting inflated measurements by introduc-

ing undetectable errors. Malicious security ensures that such malicious behaviors are

caught. Therefore, parties are forced to behave honestly, hence fostering a transpar-

ent environment for computation. Poplar has this limitation while PLASMA protects

correctness against a malicious server. Hence, PLASMA is robust against a malicious

server, since it protects both correctness and privacy.

Notation. We denote the computational and statistical security parameters by κ and

µ, respectively. Let PRG : {0, 1}κ → {0, 1}2(κ+1) be a pseudorandom generator and

Convert : {0, 1}κ → G be a map converting a random κ-bit string to a pseudorandom

group element of G, where G is an additively homomorphic group of size |G| > ℓ. We

use := for assignment, ← D for sampling from distribution D, = for checking equality,

and ∥ for concatenation. For histograms, wedefine a public set X with m n-bit strings

147

as X := {x1, x2, . . . , xm} where the ith string is denoted as xi for i ∈ [m] and the jth

bit in xi ∈ {0, 1}n is denoted as xi,j for j ∈ [n]. We denote the first L bits of xi as

xi,≤L := (xi,1, xi,2, . . . xi,L) for L ≤ n. Let Sb denote the bth server, for b ∈ {0, 1, 2}; we

consider b+1 := (b+1) mod 3 and b+2 := (b+2) mod 3. We assume ℓ clients, each

denoted as Ci for i ∈ [ℓ]. For an n-bit string a we represent its bit decomposition as

a1, . . . , an ∈ {0, 1}. In histograms, each client Ci has an n-bit input string αi ∈ X, for

i ∈ [ℓ], while αi ∈ {0, 1}n in the case of heavy-hitters. We use αi,1, . . . αi,n ∈ {0, 1} to

denote the bit representation of the client’s input αi.

7.2.1 Histogram Protocol of Poplar

Poplar first considers the problem of computing private subset histograms. Each

client holds an n-bit string α and the servers S0 and S1 have a small set X :=

{x1, x2, . . . , xm} of m n-bit strings. Each client secret shares their input α ∈ X using

a DPF as (key0, key1) := DPF.Gen(1κ, α, 1,G). The client sends key0 to S0 and key1 to

S1. Upon receiving the client key, each server Sb evaluates the DPF on all m strings of

X as yb := {DPF.Eval(b, keyb, xi)}xi∈X and computes a vector of output shares yb ∈ Fm,

where Fm represents m field elements. The servers repeat this for multiple clients and

aggregate the yb vectors in a counter vector Yb. Finally, the servers exchange Y0 and Y1

to compute the output histogram as Y := Y0 + Y1. This protocol requires the client to

communicate one key to each server and the server-to-server communication is inde-

pendent of the number of clients since Y0 and Y1 are aggregated values. This protocol

preserves client privacy.

However, a malicious client can double vote by generating the DPF keys ma-

liciously such that it contains more than one non-zero point or the DPF output at

α is greater than 1. To tackle this, Poplar introduces a malicious sketching protocol

to ensure that the client inputs are well-formed. It also preserves the client’s privacy

against a malicious server. However, Poplar allows a malicious server to add an error

to its shares of the output without the honest server realizing it. For instance, say S0
is malicious and introduces additive errors (e.g., δ ∈ Fm) in Y ′0 := Y0 + δ. That way,

148

the output Y of the histogram would be biased by δ as Y := Y ′0 + Y1 = Y0 + Y1 + δ.

The honest server S1 cannot detect such an additive attack, leading to an error in the

correctness of the protocol. Moreover, Poplar’s server-to-server communication scales

linearly with O(ℓ) due to the malicious sketching protocol.

7.2.2 Our Basic Histogram Protocol

We address Poplar’s limitations by (1) introducing one additional server, (2)

building upon the primitive of verifiable DPF [94], and (3) introducing novel consistency

checks in the three-party setting. We claim the following benefits over Poplar:

(a) Robustness against collusion of a malicious server and malicious clients,

(b) Lightweight consistency checks for malicious behavior (using only symmetric op-

erations and field additions),

(c) Server-to-server communication depends logarithmically on the total number of

clients.

Our work provides the first maliciously secure protocol whose server-to-server com-

munication is logarithmic in the total number of clients ℓ. Our servers communicate

O(ℓ′(log2 ℓ
ℓ′
)) hashes for consistency checks, where ℓ′ is the number of corrupt clients.

Similar to Poplar, we ensure input validation against malicious clients (i.e., honest

servers preemptively detect inconsistent inputs and discard them). We present the

ideas of our histogram protocol, which are crucial for our heavy-hitters protocol in

Section 7.2.4.2.

Robustness Against a Malicious Server. The histogram protocol of Poplar is

not robust against a malicious server. Hence, we consider a third server S2 to allow an

honest majority to obtain security against one malicious server with improved efficiency.

Each client runs three DPF sessions, one between each pair of servers, with independent

randomness, but the same input α (i.e., the pairwise evaluation of the DPF keys on

point α outputs secret shares of one).

149

However, adding a third server significantly complicates things as we need to

ensure consistency between the three sessions. For instance, we need to check that a

malicious client submitted the same input α to all three sessions without revealing it.

The client sends the DPF keys for the sessions to the servers and each server obtains

two keys. Upon obtaining the DPF keys, each server evaluates the DPF on all input

points in X. It is ensured that if the client behaved honestly then at least one of the

three sessions will be evaluated honestly since two of the servers are honest. After

aggregating all the clients’ inputs, the output histogram is reconstructed across the

three sessions. If the output is the same between each pair of servers then the servers

behaved honestly and that is considered as the output. If the output is inconsistent

across a pair of servers then one of the servers behaves maliciously (by launching an

additive attack) and the honest servers abort, which provides robustness against the

malicious server.

Reducing Server-to-Server Latency. We empirically observed that the server-to-

server latency increases if there is pairwise communication between the three servers

for consistency checks. There are three server-to-server sessions for each client, and

the third server S2 is involved in two of the three sessions: specifically, sessions S1−S2
and S2−S0. The client generates (key(0,1), key(1,0)) for session S0−S1, (key(1,2), key(2,1))

for session S1 − S2, and (key(0,2), key(2,0)) for session S2 − S0. S0 receives key(0,1) and

key(0,2) from the client for sessions S0−S1 and S2−S0, respectively. S1 receives key(1,0)
for session S0 − S1 and key(1,2) for S1 − S2, while S2 receives key(2,1) and key(2,0) for

sessions S1 − S2 and S2 − S0, respectively.

In our optimization, instead of running two sessions in each server, we run all

three sessions between S0 and S1 and use S2 as the attestation server. By doing that,

we significantly reduce the latency due to the synchronization overhead of the three

servers. To enable that, our protocol instructs the client to send key(2,1) to server S0
and key(2,0) to server S1 respectively. The key distribution process by the client is

illustrated in Fig. 7.1.

Our optimization allows S0 to replicate the computation of S2 in session S1−S2

150

key(0,1), key(0,2), key(2,1)

key(1,0), key(1,2), key(2,0)

key(2,1), key(2,0)

Ci S1

S0

S2

Figure 7.1: Distribution of session keys by client Ci.

(because they both have key(2,1)) and S2 acts as an attestator by just sending hashes

to S1 for the same messages that S0 should send. These hashes prevent S0 from acting

maliciously. Similar protocol steps are run by S2 to attest the S2 − S0 session and

prevent S1 (who is replicating S2) from acting maliciously. This optimization, shown

in Fig. 7.2, allows us to batch-verify all three sessions as a single session between S0
and S1 using hashes.

key(0,1) (S0 − S1) session key(1,0)

key(0,2) (S2 − S0) session key(2,0)

key(2,1) (S1 − S2) session key(1,2)

hashes for
(S2 − S0)

hashes for
(S1 − S2)

S0 S1

S2

Figure 7.2: Session keys and attestation by S2.

Client Input Validation. The above protocol assumes that the client computes the

DPF evaluation keys honestly and sends them to the servers. A malicious client could

construct malformed DPF keys such that the client’s input gets counted more than

once. To prevent this class of attacks, we propose a novel consistency check that only

relies on inexpensive symmetric operations, like hashing.

We first ensure that the DPF output is non-zero only at a single point. The

work of [94] introduces the primitive of verifiable DPF (VDPF). This is a stronger

notion of DPF, where the servers obtain a correctness proof π upon evaluating a pair

of DPF keys on a given input point. The two servers obtain the same proof π if the

client generates the DPF keys honestly (i.e., the DPF output is non-zero only at a

151

single point α). Multiple proofs corresponding to different evaluation points are batch-

verified. Next, we ensure that the DPF output value at the non-zero point is indeed 1.

Our protocol instructs the servers to sum up all the output shares (corresponding to

each point in X) of the client and reconstruct the output. If the reconstructed output

is not well-formed (i.e., is not 1), then the client’s input is discarded. If the output is 1

(i.e., the client behaved honestly), then the DPF output shares are aggregated by the

server in the histogram share.

Client Input Consistency Across Sessions. A malicious client can provide in-

consistent inputs across the three server sessions by providing DPF keys for different

points α1, α2, and α3 in each session respectively. The verifiability of the VDPF fails

to detect this attack since each individual VDPF in each session is valid.

To address the challenge, we propose a novel consistency check that relies on a

single hash verification. Let us denote Y(0,1), Y(0,2), and Y(2,1) be the output of the

VDPF evaluation by S0 on keys key(0,1), key(0,2), and key(2,1) corresponding to sessions

S0 − S1, S0 − S2, and S2 − S1, respectively. Similarly, let us denote Y(1,0), Y(2,0), and

Y(1,2) be the output of the VDPF evaluation by S1 on keys key(1,0), key(2,0), and key(1,2)

corresponding to sessions S0 − S1, S0 − S2, and S2 − S1, respectively. By definition,

reconstructing each pair of secret shared outputs (e.g., Y(0,1), Y(1,0)) results in a vector

of zeros except a single location. Note that the client has also sent key(2,1) to S0 and

key(2,0) to S1 respectively. Server S0 sends hash h := H(Y(0,1)−Y(0,2)∥Y(0,2)−Y(2,1)) to

S1, who verifies that h = H(Y(2,0)−Y(1,0)∥Y(1,2)−Y(2,0)). The verification of the hash h

ensures that the client’s input is consistent between: (1) the sessions S0−S1 and S0−S2,

as well as (2) the sessions S0 − S2 and S2 − S1. By transitivity, all three sessions are

consistent if the hash verification succeeds. Observe that if the servers acted honestly,

Y(0,1)+Y(1,0) = Y(0,2)+Y(2,0) = Y(1,2)+Y(2,1) and thus, Y(0,1)−Y(0,2) = Y(2,0)−Y(1,0)

and Y(0,2) −Y(2,1) = Y(1,2) −Y(2,0). Our novel check requires additions (without any

multiplications) and a cheap hash computation. The communication cost is one hash

of size κ bits. This leads to O(κℓ) server-server communication for ℓ clients, but it

is optimized to logarithmic communication by applying batched client verification,

152

described in Section 7.5.

Limitations. The above histogram protocol is a building block for our heavy-hitters

protocol and is not our final protocol. It suffers from the limitation that the client’s

input should lie in the subset X that the servers evaluate, i.e., αi ∈ X for i ∈ [ℓ]. This

leaks whether the client’s input lies in X or not based on whether the evaluated DPF

output in the consistency check is 0 or not. Our final histogram protocol addresses

this issue by using techniques from Section 7.2.4, mainly replacing the VDPF with a

VIDPF, and using the four consistency checks discussed in Section 7.2.4. The final

histogram protocol is omitted for the sake of brevity.

7.2.3 Heavy-Hitters from T -Prefix Count

Poplar reduced the problem of computing heavy hitters to the problem of com-

puting prefix count queries for a given prefix p ∈ {0, 1}∗ over client inputs. Then, they

implemented prefix count queries by relying on incremental DPFs. However, their pro-

tocol leaks the count of strings that contain the T heavy-hitting prefix p due to the

reliance on a prefix-count query oracle that outputs the exact count. To mitigate this

leakage, we introduce the notion of T -threshold prefix-count queries that return 1 if at

least T of clients’ input strings contain prefix p, otherwise, it returns 0. We define it

as follows:

Definition 1 (T -Prefix-count Query Oracle Ωα1,...,αℓ
(p, T)). Return 1 (on input prefix

p ∈ {0, 1}∗) if prefix p appears at least T times in the clients’ input strings α1, α2, . . .,

αℓ ∈ {0, 1}∗ where client Ci has input string αi for i ∈ [ℓ], otherwise, return 0.

T -Heavy hitters. The T -heavy hitters algorithm (for threshold T) is provided with

oracle Ωα1,...,αℓ
(p, T) for computing T -prefix count for prefix p over the client input

strings α1, . . . , αℓ. The initial prefix is the empty string ϵ. At each level k, it considers

the heavy-hitter prefixes p ∈ {0, 1}k of length in set HHk, which contains the list of

k-bit strings that appear at least k times. The algorithm performs a breadth-first

search of the prefix tree. It includes k + 1 bit length strings p ∥ 0 in HHk+1 if p ∥ 0

153

occurs at least T times in the input strings (α1, . . . , αℓ), otherwise it gets pruned along

its subtree. This is performed by querying the oracle Ωα1,...,αℓ
(p ∥ 0, T). The same

process is repeated for p ∥ 1. The algorithm repeats this for all k-bit strings in HHk

(which updates HHk+1 based on the search and pruning of set HHk). At the end of

the breadth-first search and pruning, the algorithm outputs the set of strings that are

T -heavy hitters. Our formal algorithm is presented in Fig. 7.3.

T -Heavy Hitters from T -prefix count queries

Parameters: Threshold T ∈ N and string length n ∈ N.

Inputs: The algorithm has no explicit input. It has access to t-prefix count query oracle
Ωα1,...,αℓ

(p, t) for securely computing t-prefix-count queries over prefix p for strings α1, . . . , αℓ.

Outputs: The set of T -heavy-hitter strings in α1, α2, . . . , αℓ.

Algorithm:

• Init. HH≤n := {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}, where HH0 contains empty string ϵ and
HH1, . . .HHn are empty sets.

• For each prefix p ∈ HHk of length k-bits in set HHk (where k = 0, 1, 2, . . . n−1) and b ∈ {0, 1}:
If Ωα1,...,αℓ

(p ∥ b, T) = 1, HHk+1 := HHk+1 ∪ {p ∥ b}.

• Output T -heavy hitters HH≤n = {HH0,HH1, . . .HHn}.

Figure 7.3: Algorithm for computing T -heavy hitters.

Cost Analysis. There are ℓ input strings in total. For any string of length k, there

are at most ℓ/T candidate heavy hitter strings. At each level k, the algorithm makes

at most one oracle query per heavy hitter string. Hence, the algorithm makes at most

nℓ/T prefix-count oracle queries for n levels. If we set the threshold to be a constant

fraction of all input strings (e.g., T = 0.01ℓ), then the number of prefix-count queries

are independent of the number of input strings (e.g., nℓ/T = nℓ/0.01ℓ = 100n).

7.2.4 T -Prefix Count Queries Oracle from VIDPF

We realize the T -Prefix Count Query Oracle Ω(·, T) from Def. 1 by relying on

a new verifiable incremental DPF (VIDPF) primitive and using an ideal functionality

FCMP (Fig. 7.10) for secure comparison.

154

7.2.4.1 Verifiable Incremental DPF (VIDPF)

A DPF allows a client to succinctly share a vector of size 2n with a single

non-zero point. Meanwhile, an incremental DPF (introduced by Poplar and denoted

as IDPF) allows the client to succinctly secret share a path in the binary tree (used

for representing 2n leaves in binary format) and each node in the path can hold non-

zero values. Our novel VIDPF primitive offers strong integrity guarantees over IDPFs

since the evaluation of the client keys also provides proofs (π1, . . . , πn) to the servers

ensuring that the VIDPF output is non-zero along a single path in the binary tree.

It also allows incremental evaluation of the VIDPF over an input x ∈ {0, 1}k, given

state stk−1b and proof πk−1
b , corresponding to VIDPF evaluation of the first k − 1 bits

of x. The incremental evaluation enables the party possessing keyb to process one level

and obtain the secret sharing of output f(x), a new state stkb , and a new proof πk
b

corresponding to the VIDPF evaluation of the path involving x. More formally, we

capture the high-level ideas of VIDPF using the following two algorithms:

• Gen(1κ, 1n, α, (β1, β2, . . . , βn),G) → (key0, key1) : Given security parameter κ,

input size n, input string α ∈ {0, 1}n, and values β1, . . . , βn, the key generation

algorithm outputs two VIDPF keys key0 and key1.

• EvalPref(b, keyb, x, st
k−1
b , πk−1

b) → (stkb , yb, π
k
b) : Given a VIDPF key keyb and an

input string x ∈ {0, 1}k of length k ≤ n bits, the evaluation algorithm outputs

an internal state stk, secret-shared value yb ∈ G, and a proof πk
b ∈ {0, 1}∗.

Correctness of the VIDPF ensures that for all input points α ∈ {0, 1}n, out-

put values β1, . . . , βn ∈ G, VIDPF keys generated as (key0, key1) ← Gen(α, β1, β2,

. . . , βn,G) and all values x ∈ {0, 1}k, where k ≤ n, the following holds for all k ≤ n:

πk
0 = πk

1 and y = (y0 + y1) =

βk, if x is a prefix of α,

0, otherwise,

155

where (stk0, y0, π
k
0) := EvalPref(0, key0, x, st

k−1
0 , πk−1

0) and (stk1, y1, π
k
1) := EvalPref(1, key1,

x, stk−11 , πk−1
1). For security guarantees, we require two additional properties from the

VIDPF primitive:

• Input Privacy. The security of VIDPF guarantees that an adversarial evaluator

in possession of either key0 or key1 (but not both), does not learn anything about

the input α or the outputs β1, . . . , βn of the client.

• Verifiability. This property states that if two proofs (e.g., πk
0 and πk

1) are the same,

then there is at most one path of length k in the binary tree whose evaluation

with (key0, key1) outputs (β1, β2, . . . , βk). More formally, for any k ∈ [n] there

exists a single k-bit string x̃ ∈ {0, 1}k such that if πk
0 = πk

1 , then the following

holds:

(stk0, y0, π
k
0) := EvalPref(0, key0, z, st

k−1
0 , πk−1

0)

(stk1, y1, π
k
1) := EvalPref(1, key1, z, st

k−1
1 , πk−1

1)

y0 + y1 =

βk, if z = x̃,

0, if z = {0, 1}k \ {x̃},

where stk−10 , πk−1
0 and stk−11 , πk−1

1 are obtained by running the EvalPref algorithm

on k−1 bits of z. The evaluators initialize st00 := st01 := 0 and π0
0 := π0

1 := 0. It also

implicitly captures the requirement that x̃ ∈ {0, 1}k−1 is a prefix of x̃ ∈ {0, 1}k

for k ∈ [n].

We provide a construction of VIDPF in Figs. 7.4 and 7.5 based on length doubling PRG

in the random oracle model. The security of our protocol is summarized in Theorem 3.

Theorem 3. Assuming (PRG,PRG′,PRG′′) are pseudorandom generators, and (H1,H2)

are random oracles then πVIDPF = (Gen, EvalPref) in Figs. 7.4 and 7.5 is a VIDPF.

Proof. Input privacy of our VIDPF follows from the input privacy of the underlying

IDPF protocol from Poplar, which in turn relies on the pseudorandomness of PRG.

156

Adding cs(i) in steps 16-17 does not affect the input privacy of the client in the random

oracle model since cs(i) = π̃
(i)
0 ⊕π̃

(i)
1 is an XOR of two random oracle outputs. Each server

will know the preimage of either π̃
(i)
0 or the preimage of π̃

(i)
1 by evaluating the given

VIDPF key. The server breaks input privacy if it computes both preimages. However,

to compute the other preimage it needs to invert the random oracle on π̃
(i)
1−b′ (assuming

it obtained the preimage of π̃
(i)
b′ by evaluating the VIDPF key).

A malicious client breaks the verifiability property if there are two non-zero

paths, say u and v in the evaluation tree such that the client still passes the verification

check performed by the servers on cs(i). This means the servers obtain si0(u), s
i
1(u),

si0(v) and si1(v) from Step 11 of EvalNext (Fig. 7.5) by evaluating on u and v such that

the following holds:

si0(u) ̸= si1(u) and si0(v) ̸= si1(v)

cs(i) = π̃
(i)
0 (u)⊕ π̃

(i)
1 (u) = π̃

(i)
0 (v)⊕ π̃

(i)
1 (v),

where π̃
(i)
b (u) := H1(u, s

i
0(u)) and π̃

(i)
b (v) := H1(v, s

i
0(v)) for b ∈ {0, 1}. However, this

is not possible in the random oracle model since it breaks the XOR-collision-resistance

property of the random oracle H1. The adversary cannot find such a set of si0(u),

si1(u), s
i
0(v) and si1(v) values. Lemma 3 of [94] captures the formal details. In addition,

we also rely on the collision resistance property of H2 for arguing verifiability when

multiple proofs are iteratively hashed together in step 12 of the EvalNext algorithm.

Next, we outline our protocol for securely implementing T -prefix count queries

using VIDPF and the comparison functionality FCMP.

7.2.4.2 Implementing T -Prefix Count Queries

Each client generates three pairs of VIDPF keys, one for each pair of servers,

with independent randomness but the same input point α and output values (1, . . . , 1).

The client sends the keys for the sessions to the respective servers (Fig. 7.1) as in our

histogram protocol.

157

Notation: We denote the private n-bit string α and its bit decomposition as α1, . . . , αn ∈ {0, 1}n.
Primitives: PRG : {0, 1}κ → {0, 1}2κ+2 is a pseudorandom generator. H1 : {0, 1}∗ × {0, 1}κ → {0, 1}2κ and
H2 : {0, 1}2κ → {0, 1}2κ are random oracles.

Gen(1κ, 1n, α, (β1, β2, . . . βn),G): ▷ Generate DPF keys.

1: Sample s
(0)
b ← {0, 1}κ for b ∈ {0, 1} ▷ Secret seeds.

2: Let t
(0)
0 := 0 and t

(0)
1 := 1

3: for i := 1 to n do ▷ For each bit of α.

4: sLb ∥ t
L
b ∥ s

R
b ∥ t

R
b

:= PRG(s
(i−1)
b) for b ∈ {0, 1}▷ Parse the output of PRG as a sequence of (κ ∥ 1 ∥κ ∥ 1) bits.

5: if αi = 0 then Diff := L, Same := R ▷ Set right children to be equal.

6: else Diff := R, Same := L ▷ Set left children to be equal.

7: scw := sSame
0 ⊕ sSame

1

8: tLcw := tL0 ⊕ tL1 ⊕ αi ⊕ 1 ▷ Left control bits not equal if αi = 0.

9: tRcw := tR0 ⊕ tR1 ⊕ αi ▷ Right control bits not equal if αi = 1.

10: s̃
(i)
b

:= sDiff
b ⊕ t

(i−1)
b · scw for b ∈ {0, 1} ▷ Correction.

11: t
(i)
b

:= tDiff
b ⊕ t

(i−1)
b · tDiff

cw for b ∈ {0, 1} ▷ Correction.

12: s
(i)
b ∥W

(i)
b

:= Convert(s̃
(i)
b) for b ∈ {0, 1}

13: W
(i)
cw := (−1)t

(i)
1 · [βi −W

(i)
0 +W

(i)
1] ▷ Output correction.

14: cw(i) := scw ∥ tLcw ∥ tRcw ∥W
(i)
cw ▷ Correction word for level i.

15: π̃
(i)
b = H1(α≤i ∥ s

(i)
b)

16: cs(i) = π̃
(i)
0 ⊕ π̃

(i)
1 .

17: keyb := (s
(0)
b ∥ cw(1) ∥ . . . ∥ cw(n) ∥ cs(1) ∥ . . . ∥ cs(n)) for b ∈ {0, 1} ▷ Key for party b.

18: return keyb for b ∈ {0, 1}

ConvertG(s):

1: Let u← |G|.

2: if u = 2m for an integer m then:

3: Return the group element represented by PRG′(s) mod u,

4: where PRG′ : {0, 1}κ → {0, 1}m.

5: else:

6: Let n = ⌈log2 u⌉+ κ.

7: Return the group element represented by PRG′′(s) mod u,

8: where PRG′ : {0, 1}κ → {0, 1}n.

Figure 7.4: Protocol πVIDPF for Verifiable Incremental DPF (continues in Fig. 7.5).

158

EvalNext(b, i, st(i−1), cw(i), cs(i), x≤i, π): ▷ Evaluate xi.

1: Parse st(i−1) as (si−1 ∥ ti−1).

2: scw ∥ tLcw ∥ tRcw ∥W
(i)
cw := cwi ▷ Parse correction word.

3: s̃L ∥ t̃L ∥ s̃R ∥ t̃R := PRG(s(i−1)) ▷ Parse the output of PRG as a sequence of (κ ∥ 1 ∥ κ ∥ 1) bits.

4: τ (i) := (s̃L ∥ t̃L ∥ s̃R ∥ t̃R)⊕ (t(i−1) · [scw ∥ tLcw ∥ scw ∥ tRcw])

5: sL ∥ tL ∥ sR ∥ tR := τ (i) ▷ Parse τ (i).

6: if xi = 0 then s̃(i) := sL, t(i) := tL ▷ Keep left path.

7: else s̃(i) := sR, t(i) := tR ▷ Keep right path.

8: s(i) ∥W (i) := Convert(s̃(i)) ▷ New seed and output for level i.

9: st(i) := s(i) ∥ t(i) ▷ Save the state.

10: y(i) := (−1)b · [W (i) + t(i) ·Wcw] ▷ Compute output at level i.

11: π̃(i) = H1(x≤i ∥ s(i)).

12: π = π ⊕H2(π ⊕ (π̃(i) ⊕ t(i) · cs(i))).

13: return (st(i), y(i), π)

EvalPref(b, key, x ∈ {0, 1}n, st(d−1), d, π): ▷ Evaluate one public bitstring x on all it’s bits xi for i ∈ [n].

1: Parse key as s(0) ∥ cw(1) ∥ . . . ∥ cw(n) ∥ cs(1) ∥ . . . ∥ cs(n). ▷ Parse key for party b.

2: if (d ̸= 1) then parse st(d−1) as (s(d−1) ∥ t(d−1)),

3: else t(0) := b, st(0) := s(0) ∥ t(0).

4: for i := d to n do ▷ For each bit of x.

5: (st(i), y(i), π) := EvalNext(b, i, st(i−1), cwi, csi, x≤i, π).

6: return (st(n), y(n), π)

Figure 7.5: Protocol πVIDPF for Verifiable Incremental DPF (continuing from Fig. 7.4).

159

Basic Protocol. As depicted in Fig. 7.2, S1 replicates S2 in the S2 − S0 session and

S2 behaves as an attestator for S1 by sending hashes of the messages that S1 should

send. The hash prevents server S1 from acting maliciously corresponding to the S2−S0
session. Similar protocol steps are run by S2 for the session S1 − S2, where S2 sends

hashes to S1. Hence, S0 and S1 run three sessions, and S2 runs two of those sessions

in parallel. Next, we describe the protocol to compute a T -prefix count query on a

string p ∥ 0 ∈ {0, 1}k (note, the same process can be repeated for query string p ∥ 1).

The servers S0 and S1 evaluate the VIDPF keys for the three sessions on p ∥ 0 and

obtain a secret share of the output yp∥0 and proof π. Ideally, yp∥0 should be βk = 1 for

an honest client. However, a malicious client could construct malformed VIDPF keys

such that the client’s input gets counted more than once.

Client Input Validation. We introduce the following consistency checks to validate

a client’s input. Checks 1-3 ensure that the VIDPF keys are “one-hot”, i.e., they have

a single non-zero evaluation path (containing 1 in this case, along the path), and check

4 ensures that the client input is consistent across the sessions:

• Check 1: The servers S0 and S1 first verify that the proofs π are the same for

all three sessions. This ensures that there is at most one path in the binary tree

that is non-zero.

• Check 2: For the root level (i.e., k = 0), the servers evaluate the VIDPF keys on

the empty string ϵ and verify it is 1.

• Check 3: Finally, at the kth level, the servers need to verify that yp∥0 is either 0 or

1, without reconstructing the output. We perform this check by observing that

the output of the parent p should be the sum of the outputs of p ∥ 0 and p ∥ 1.

The servers evaluate the VIDPF keys on the parent string p and sibling (of p ∥ 0)

string p ∥ 1 to obtain secret shares of the output of yp and yp∥1 respectively. The

servers reconstruct yp−(yp∥0+yp∥1) and verify that it is 0. The first check ensures

that at most one of yp∥0 or yp∥1 is non-zero. Combining the two checks, we can

160

conclude that either (yp∥0 = 0, yp∥1 = 1) or (yp∥0 = 1, yp∥1 = 0), since at most

one child can equal 1 when the parent holds a value of 1. Iterating this for all k

levels ensures that yp∥0 = 1 if and only if yp = 1 and yp∥1 = 0, else yp∥0 = 0. The

servers also verify (using check 1) the corresponding proofs π generated during

the VIDPF evaluation along the path, to ensure there is at most one non-zero

path in the entire binary tree.

• Check 4: The servers also need to ensure that the client input is consistent

across the three server sessions. This is ensured by computing the difference of

the reconstructed outputs across the sessions and verifying that they are equal

to 0 by matching their hash values. For more details, we defer to Section 7.3.

Output Phase. Once the client’s VIDPF output yp∥0 is verified, the secret shares of

yp∥0 are aggregated into counter cntp∥0. The servers repeat the above steps for all the

clients in parallel to obtain secret shares of cntp∥0. The servers invoke the comparison

functionality FCMP (Fig. 7.10) with the secret shares of cnt and threshold T . FCMP

reconstructs cnt and it outputs 1 if cnt ≥ T , otherwise, it outputs 0. This is returned

by the servers as the output of the T -prefix count oracle query response to the string

p ∥ 0. Similar steps are run for p ∥ 1. The comparison functionality FCMP is securely

implemented using the state-of-the-art protocol of Rabbit [171].

Robustness Against a Malicious Server. Note that the above validation check

assumes that both servers are honest. Otherwise, malicious behaviour is detected as

described next. The third server ensures that if the client behaves honestly then at

least one of the three sessions will be evaluated correctly since two of the servers are

honest. After aggregating all the client’s inputs, cnt is reconstructed across the three

sessions by FCMP. If cnt is inconsistent across any pair of servers then FCMP returns ⊥

indicating that one of the servers behaved maliciously by launching an additive attack.

This causes the honest servers to abort, providing robustness against the malicious

server. We observe that our protocol satisfies fairness (which is a stronger security

notion than selective abort) if FCMP is implemented using a fair protocol.

161

Batched Client Verification. In our final protocol, we verify multiple client inputs

at each level in one batch. We batch all the clients’ VIDPF evaluations using a Merkle

tree that has ℓ leaves for ℓ clients. First, the servers check the equality of ℓ leaves by

asserting that the Merkle roots are the same. If the roots match then the leaves are

the same, while if they differ then the servers recursively repeat the same process for

each of the two children of the parent node. Proceeding this way, the servers identify

the malformed leaves on which the two trees differ. This reduces the dependency of

our server-to-server communication to O(ℓ′(log2 ℓ
ℓ′
)), for ℓ′ malicious clients, instead of

O(ℓ), while when ℓ′ = 0 our communication is down to O(1). Formal details can be

found in Section 7.5.

Functionality FHH

Parameters: Servers S0, S1, and S2, and ℓ clients Ci for i ∈ [ℓ]. Servers S0, S1, and S2 agree
upon:

• A bound ℓ on the number of client submissions.

• A bound T on the threshold for heavy hitters.

Inputs: Servers S0,S1,S2 do not have any input. Clients Ci: A point αi ∈ {0, 1}n for i ∈ [ℓ]. αi,j

represents the jth bit of αi.

Outputs: Init. HH≤n := {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}. Repeat for length of k bits, where
k ∈ [0, . . . , n− 1] and for each prefix p ∈ HHk:

• Update HHk+1 := HHk+1 ∪ (p ∥ b) if∑ℓ
i=1

∣∣(αi,≤k+1 = (p ∥ b))
∣∣ ≥ T , for b ∈ {0, 1}.

FHH outputs the following:

• Servers S0,S1,S2: Set of T -heavy hitters HH≤n.

• Clients Ci: No output for i ∈ [ℓ].

Corruption: Adversary A maliciously corrupts one server and multiple clients together. A can
perform the following:

• If A instructs the functionality to discard the jth client’s input then FHH discards αj from
the output computation.

• If A instructs the functionality to abort at level k + 1 by sending (⊥, k + 1), then the
functionality returns HH≤k to A and the honest servers; additionally, the functionality
instructs the honest servers to abort by sending ⊥.

Figure 7.6: The ideal FHH functionality for T -heavy hitters.

162

7.3 Private Heavy Hitters

We provide the ideal functionality FHH for heavy-hitters between three servers

and ℓ clients in Fig. 7.6. Adversary A maliciously corrupts any one of the servers and

multiple clients. Note that this corruption can easily happen; if A has maliciously

corrupt a server, then A can spawn multiple malicious clients. Additionally, if A

controls a server, it can instruct FHH to discard an honest client’s input. It can also

instruct the functionality to abort at a particular level k + 1. In this case, A and the

honest servers receive the set of all (that have not been discarded by A) k-bit heavy-

hitting prefixes as output, and the functionality instructs the honest servers to abort.

We remark that FHH never leaks the honest client’s inputs.

Our detailed protocol πHH that implements FHH appears in Figs. 7.7 and 7.8,

while high-level ideas of our protocol can be found in Sections 7.2.3 and 7.2.4. Our πHH

protocol privately computes all the T -heavy-hitting strings (and their heavy-hitting

prefixes) given the input data of ℓ clients, while protecting the privacy of the individual

data points. πHH runs on three servers (S0,S1,S2) that utilize our verifiable incremental

DPF (VIDPF) protocol to privately aggregate the clients’ data points. Specifically, πHH

runs three VIDPF sessions, which guarantees security against a malicious server. Our

protocol proceeds in three phases: a client computation phase, a server computation

phase, and an output phase.

Client Computation. During the client computation phase, each client C prepares

three pairs of VIDPF keys for their private data point α ∈ X, and output value

(β1, . . . , βn) := (1, . . . , 1) along the path to α, using independent randomness for each

key generation. Employing three pairs of keys essentially allows us to run three separate

VIDPF sessions. S0 and S1 each have one key for each of the three sessions, while S2
acts as a consistency checking server and shares one key with each of the other two

servers. More specifically, the client generates (key(0,1), key(0,2)) for S0, (key(1,0), key(1,2))

for S1, and (key(2,1), key(2,0)) for S2. The client sends (key(0,1), key(0,2), key(2,1)) to S0,

(key(1,0), key(1,2), key(2,0)) to S1, and (key(2,1), key(2,0)) to S2 as shown in Fig. 7.1.

163

• Input: Each client Ci has an input point αi ∈ X for i ∈ [ℓ].

• Output: The servers Sb (for b ∈ {0, 1, 2}) output the set of T -heavy hitters HH≤n := FHH(ℓ, T , {αi}i∈[ℓ]).

• Primitive: VIDPF := (Gen,EvalPref,EvalNext) is a verifiable incremental DPF. H1,H2 : {0, 1}∗ → {0, 1}κ are
random oracles.

Client C Computation. (Repeated for ℓ clients, each of which has their own private input α)

1. Client C with input α prepares three pairs DPF keys with independent randomness
u, v, w ← {0, 1}κ, as: (key(0,1), key(1,0)) := Gen(1κ, 1n, α, (1, . . . , 1),G), (key(1,2), key(2,1)) :=

Gen(1κ, 1n, α, (1, . . . , 1),G), (key(2,0), key(0,2)) := Gen(1κ, 1n, α, (1, . . . , 1),G)

2. The client sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0)) to S2.

Server Computation.

The servers initialize HH≤n = {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}, where HH0 contains empty string ϵ and
HH1, . . .HHn are empty sets.

For k ∈ [0, . . . , n− 1] repeat the following steps: ▷ n is the number of bits.

1. Initialization. For prefix p ∈ HHk
b , servers initialize the aggregation variables for prefixes γ ∈ {p ∥ 0, p ∥ 1}

as follows: S0 sets cntγ
(0,1)

:= cntγ
(0,2)

:= cntγ
(2,1)

:= 0, S1 sets cntγ
(1,2)

:= cntγ
(1,0)

:= cntγ
(2,0)

:= 0, and S2 sets

cntγ
(2,0)

:= cntγ
(2,1)

:= 0.

2. VIDPF Evaluation. For prefix p ∈ HH≤k
b , Server Sb computes: (Repeated for ℓ clients)

(a) If p = ∅ then S0 sets st∅
(0,1)

:= π∅
(0,1)

:= st∅
(0,2)

:= π∅
(0,2)

:= st∅
(2,1)

:= π∅
(2,1)

:= ∅, S1 sets st∅
(1,2)

:= π∅
(1,2)

:=

st∅
(1,0)

:= π∅
(1,0)

:= st∅
(2,0)

:= π∅
(2,0)

:= ∅. S2 sets st∅
(2,0)

:= π∅
(2,0)

:= st∅
(2,1)

:= π∅
(2,1)

:= ∅.

If p ̸= ∅ then each server Sb retrieves the following states from memory corresponding to the internal states
of πVIDPF computation for prefix p: S0 retrieves (stp

(0,1)
, yp

(0,1)
, πp

(0,1)
), (stp

(0,2)
, yp

(0,2)
, πp

(0,2)
) and (stp

(2,1)
,

yp
(2,1)

, πp
(2,1)

). S1 retrieves (stp
(1,2)

, yp
(1,2)

, πp
(1,2)

), (stp
(1,0)

, yp
(1,0)

, πp
(1,0)

) and (stp
(2,0)

, yp
(2,0)

, πp
(2,0)

). S2
retrieves (stp

(2,0)
, yp

(2,0)
, πp

(2,0)
) and (stp

(2,1)
, yp

(2,1)
, πp

(2,1)
).

(b) Each server Sb evaluates the VIDPF on prefixes γ ∈ {p ∥ 0, p ∥ 1} and stores them in memory:

S0 computes (stγ
(0,1)

, yγ
(0,1)

, πγ
(0,1)

) := EvalPref(0, key(0,1), γ, st
p
(0,1)

, k, πp
(0,1)

) and stores it.

S0 computes (stγ
(0,2)

, yγ
(0,2)

, πγ
(0,2)

) := EvalPref(1, key(0,2), γ, st
p
(0,2)

, k, πp
(0,2)

) and stores it.

S1 computes (stγ
(1,2)

, yγ
(1,2)

, πγ
(1,2)

) := EvalPref(0, key(1,2), γ, st
p
(1,2)

, k, πp
(1,2)

) and stores it.

S1 computes (stγ
(1,0)

, yγ
(1,0)

, πγ
(1,0)

) := EvalPref(1, key(1,0), γ, st
p
(1,0)

, k, πp
(1,0)

) and stores it.

S2 and S1 compute (stγ
(2,0)

, yγ
(2,0)

, πγ
(2,0)

) := EvalPref(0, key(2,0), γ, st
p
(2,0)

, k, πp
(2,0)

) and store them.

S2 and S0 compute (stγ
(2,1)

, yγ
(2,1)

, πγ
(2,1)

) := EvalPref(1, key(2,1), γ, st
p
(2,1)

, k, πp
(2,1)

) and store them.

(c) If k = 1 then the servers compute the proof that the VIDPF evaluation at the root sums up to 1:

S0 sets h∅
(0,1)

:= H1(∅, 1− y0(0,1) − y1(0,1)) and h∅
(0,2)

:= H1(∅, y0(0,2) + y1(0,2),),

S1 sets h∅
(1,2)

:= H1(∅, 1− y0(1,2) − y1(1,2)) and h∅
(1,0)

:= H1(∅, y0(1,0) + y1(1,0)),

S2 and S1 set h∅
(2,0)

:= H1(∅, 1− y0(2,0) − y1(2,0)), S2 and S0 set h∅
(2,1)

:= H1(∅, y0(2,1) − y1(2,1)).

Figure 7.7: Private T -Heavy Hitters Protocol πHH (continues in Fig. 7.8).

164

2. (c) VIDPF Evaluation. ▷ (Continued from Fig. 7.7)

If k ̸= 1 then the servers compute the proof that (VIDPF output on prefix p) = (VIDPF output on prefix
p ∥ 0) + (VIDPF output on prefix p ∥ 1):

S0 computes hp
(0,1)

:= H1(p, y
p
(0,1)

− y
p∥0
(0,1)

− y
p∥1
(0,1)

) and hp
(0,2)

:= H1(p,−(yp(0,2) − y
p∥0
(0,2)

− y
p∥1
(0,2)

))

S1 computes hp
(1,2)

:= H1(p, y
p
(1,2)

− y
p∥0
(1,2)

− y
p∥1
(1,2)

) and hp
(1,0)

:= H1(p,−(yp(1,0) − y
p∥0
(1,0)

− y
p∥1
(1,0)

))

S2 and S1 compute hp
(2,0)

:= H1(p, y
p
(2,0)

− y
p∥0
(2,0)

− y
p∥1
(2,0)

),

S2 and S0 compute hp
(2,1)

:= H1(p,−(yp(2,1) − y
p∥0
(2,1)

− y
p∥1
(2,1)

)).

(d) S0 and S1 ensure that the client input is consistent across the sessions:

S0 computes ĥp∥0 = H1(y
p∥0
(0,1)

− y
p∥0
(0,2)

, y
p∥0
(0,2)

− y
p∥0
(2,1)

) and ĥp∥1 = H1(y
p∥1
(0,1)

− y
p∥1
(0,2)

, y
p∥1
(0,2)

− y
p∥1
(2,1)

).

S1 computes hp∥0 := H1(y
p∥0
(2,0)

− y
p∥0
(1,0)

, y
p∥0
(1,2)

− y
p∥0
(2,0)

)) and hp∥1 := H1(y
p∥1
(2,0)

− y
p∥1
(1,0)

, y
p∥1
(1,2)

− y
p∥1
(2,0)

))

(e) Client State Accumulation: The servers accumulate their local state for each client session:

S0 sets Rk
(0,1) := H2

(∣∣∣∣
p∈HHk

(
p, hp

(0,1)
, π

p∥0
(0,1)

, π
p∥1
(0,1)

))
and Rk

(0,2) := H2

(∣∣∣∣
p∈HHk

(
p, hp

(0,2)
, π

p∥0
(0,2)

, π
p∥1
(0,2)

))
S1 sets Rk

(1,2) := H2

(∣∣∣∣
p∈HHk

(
p, hp

(1,2)
, π

p∥0
(1,2)

, π
p∥1
(1,2)

))
and Rk

(1,0) := H2

(∣∣∣∣
p∈HHk

(
p, hp

(1,0)
, π

p∥0
(1,0)

, π
p∥1
(1,0)

))
S2,S1 set Rk

(2,0) := H2

(∣∣∣∣
p∈HHk

(
p, hp

(2,0)
, π

p∥0
(2,0)

, π
p∥1
(2,0)

))
,

S2,S0 set Rk
(2,1) := H2

(∣∣∣∣
p∈HHk

(
p, hp

(2,1)
, π

p∥0
(2,1)

, π
p∥1
(2,1)

))
3. Batch-Verification. The servers batch-verify the client inputs for all sessions by invoking πcheck (Fig. 7.15):

(a) S0 sets ui :=
{
(Rk

(0,1)
, Rk

(0,2)
, Rk

(2,1)
, ĥp∥0, ĥp∥1) for client i ∈ [ℓ]

}
. S1 sets vi :={

(Rk
(1,0)

, Rk
(2,0)

, Rk
(1,2)

, hp∥0, hp∥1) for client i ∈ [ℓ]
}
. S0 sets u := {ui}i∈[ℓ] and S1 set v := {vi}i∈[ℓ].

S0 and S1 batch-verify all client inputs by computing ver and list L (comprising of invalid client inputs) by
running πcheck with inputs u and v, respectively as (ver, L) := πcheck(u,v).

ver := 0 if ∃ a client whose (Rk
(0,1)

̸= Rk
(1,0)

)∨(Rk
(0,2)

̸= Rk
(2,0)

)∨(Rk
(2,1)

̸= Rk
(1,2)

)∨(ĥp∥0 ̸= hp∥0)∨(ĥp∥1 ̸=

hp∥1), and L := {list of invalid clients’ since they failed to pass the above check}. If ver = 1, then all the
clients’ inputs are valid.

(b) S2 possesses Rk
(2,0)

, Rk
(2,1)

values for each client. S2 verifies that S2’s version of Rk
(2,1)

matches with

S0’s version of Rk
(2,1)

. S2 also attests that S2’s version of Rk
(2,0)

matches with S0’s version of Rk
(0,2)

by

computing (ver′, L′) as follows:

(ver′, L′) := πcheck({Rk
(2,1), R

k
(2,0)}ℓ clients of S2, {Rk

(2,1), R
k
(0,2)}ℓ clients of S0).

(c) S2 verifies that S2’s version of Rk
(2,0)

matches with S1’s version of Rk
(2,0)

. S2 also attests that S2’s version

of Rk
(2,1)

matches with S1’s version of Rk
(1,2)

by computing (ver′′, L′′) as follows:

(ver′′, L′′) := πcheck({Rk
(2,0), R

k
(2,1)}ℓ clients of S2, {Rk

(2,0), R
k
(1,2)}ℓ clients of S0).

After batch verification, the servers identify the list of bad clients as L := L ∪ L′ ∪ L′′. The servers ignore the
inputs of all clients in L.

Figure 7.8: Private T -Heavy Hitters Protocol πHH (continues in Fig. 7.9).

165

4. Aggregation. Aggregate the VIDPF outputs for prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows: (Repeated for all
validated clients in [ℓ] \ L) ▷ (Continued from Fig. 7.8)

S0 sets cntγ
(0,1)

:= cntγ
(0,1)

+ yγ
(0,1)

, cntγ
(0,2)

:= cntγ
(0,2)

+ yγ
(0,2)

, and cntγ
(2,1)

:= cntγ
(2,1)

+ yγ
(2,1)

S1 sets cntγ
(1,2)

:= cntγ
(1,2)

+ yγ
(1,2)

, cntγ
(1,0)

:= cntγ
(1,0)

+ yγ
(1,0)

, and cntγ
(2,0)

:= cntγ
(2,0)

+ yγ
(2,0)

S2 sets cntγ
(2,0)

:= cntγ
(2,0)

+ yγ
(2,0)

and cntγ
(2,1)

:= cntγ
(2,1)

+ yγ
(2,1)

The servers have aggregated the VIDPF evaluations (over all the ℓ clients) for all candidate (k + 1)-bit strings.

5. Pruning. Prune the non-heavy hitter strings. For every (k + 1)-bit string γ, the servers perform the following:

The servers invoke FCMP functionality (Fig. 7.10) with the additive shares of the node frequency.

S0 invokes FCMP(cnt
γ
(0,1)

, 0, cntγ
(0,2)

, cntγ
(2,1)

, cntγ
(0,2)

, T),

S1 invokes FCMP(cnt
γ
(1,0)

, cntγ
(1,2)

, 0, cntγ
(1,2)

, cntγ
(2,0)

, T),

S2 invokes FCMP(0, cnt
γ
(2,1)

, cntγ
(2,0)

, 0, 0, T)

The servers abort if FCMP aborts. If FCMP outputs 1 set HHk+1 := HHk+1 ∪ γ. Otherwise, the servers ignore γ
since it is a non-heavy hitter.

Servers have successfully computed the HHk+1 set. Servers repeat “Server Computation” steps on k + 1 bit
prefixes.

Output Phase.

The servers output HH≤n as the set of T -heavy hitter strings.

Figure 7.9: Private T -Heavy Hitters Protocol πHH (continuing from Fig. 7.8).

166

Server Computation. Each server first initializes a set of sets for heavy-hitter com-

putation as HH≤n := {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}, where HH0 contains empty

string ϵ, HH1, . . . ,HHn are empty sets and HHk corresponds to the kth level. The

servers start accepting VIDPF keys from the clients. As in our histogram protocol, S2
acts as an attesting server for the sessions involving keys key(2,0) and key(2,1) by sending

hashes (depicted in Fig. 7.2). Next, for k ∈ [n] the servers perform the following:

Initialization. For each k-bit heavy-hitting prefix p ∈ HHk, the servers initialize

to 0 a cntp∥0 (resp. cntp∥1) variable for each session to count the frequency of prefix

p ∥ 0 (resp. p ∥ 1). Each server aggregates for each of the three sessions their additive

shares of each frequency in their local cnt variables and uses them for pruning.

VIDPF Evaluation. Next, the servers retrieve from memory the states for

VIDPF evaluation in all three sessions corresponding to prefix p ∈ {0, 1}k for each

client. These states are used to incrementally evaluate the VIDPF on prefix strings

γ ∈ {p∥0, p∥1} for every client in all three sessions. For each client, the servers obtain

new evaluation states (corresponding to prefix γ), VIDPF output for prefix string γ,

and proof strings. The states are stored in memory for future VIDPF evaluations on

γ ∥0 and γ ∥1 in the (k+1)th level. More formally, the servers compute a secret shared

vector yγ(b1,b2) and a hash πγ
(b1,b2)

that is used for consistency checking by relying on the

verifiability property of the VIDPF. Next, the servers validate the client’s input. If

k = 1, then the servers reconstruct y0 + y1 for each client to verify that y0 + y1 = 1.

If k ̸= 1, then the servers reconstruct yp − (yp∥0 + yp∥1) and verify that it is 0. This

ensures that the subtrees involving p ∥ 0 and p ∥ 1 are valid. The servers also need to

ensure that the client has provided a consistent input across the three sessions. This is

ensured by computing the difference of the reconstructed outputs across the sessions

and verifying that they equal 0 by matching their hash values with the other servers’

hash in Step 2b(v) of Fig. 7.7.

Batch-Verification. The servers need to check: (1) that the hashes they possess

for a client are equal, and (2) that yp = (yp∥0 + yp∥1). Both these checks are reduced

to checking the equality of a string (corresponding to each client) held by servers.

167

Let u (resp. v) be the list of ℓ (one for each client) strings held by the first (resp.

second) server. Then, the servers perform a batch verification of u and v strings by

invoking the subprotocol πcheck(u,v) in Fig. 7.15. If the two lists u and v are equal

then πcheck returns ver = 1, else it returns ver = 0 and a list L containing the indices

of elements where the lists differ. This is performed for all three sessions. S2 also

attests the sessions that it is involved in. This is performed using batch-verification,

yielding output lists L′ and L′′. Finally, the servers identify the list of bad clients as

L = L ∪ L′ ∪ L′′ and their VIDPF output is ignored. The servers consider the rest of

the clients as “validated” and they are moved to the aggregation phase.

Aggregation. Once a client’s VIDPF output yγ is validated for γ ∈ {p ∥ 0, p ∥ 1},

it is aggregated into cntγ := cntγ + yγ. This is locally performed by each server (for

all three sessions) using the secret shares of yγ since it only involves addition. The

servers perform this over every validated client output, and at the end of this phase,

the servers possess a secret share of the frequency of p∥0 and p∥1 as cntp∥0 and cntp∥1.

Pruning. The servers proceed to pruning and invoke FCMP (Fig. 7.10) on the

secret shares of cntγ (for γ ∈ {p ∥ 0, p ∥ 1}) for all sessions and threshold T . Based on

the output of FCMP the following occurs:

• FCMP returns 1 if cntγ ≥ T (i.e., γ is a heavy-hitter string). In this case, the

prefix γ is added to the list of k+1-bit heavy-hitter set (i.e., HHk+1 := HHk+1∪γ).

• FCMP returns 0 if cntγ < T (i.e., γ is a non heavy-hitter string). In this case, the

prefix γ is ignored.

• If FCMP returns ⊥, then one of the servers behaved maliciously and the hon-

est servers abort. This occurs if the malicious server has provided an incorrect

threshold as input (condition 1 in FCMP) or it provided incorrect client output

shares as input (condition 4 in FCMP).

This computation is performed in parallel for all (k + 1)-bit prefixes in consideration,

and after the pruning phase, HHk+1 contains the list of (k+1)-bit heavy hitter strings.

168

Next, the above computation is repeated for (k + 1)-bit strings to compute (k + 2)-

bit heavy hitters, until we reach k = n − 1. As already mentioned, FCMP is securely

implemented using the state-of-the-art protocol of Rabbit [171].

Functionality FCMP

Inputs: Party P0 has input (a0, b0, c0, d0, e0, T0), Party P1 has input (a1, b1, c1, d1, e1, T1), and
Party P2 has input (a2, b2, c2, d2, e2, T2).
Outputs: Compute a := a0 + a1, b := b1 + b2, c := c0 + c2, d := d0 + d1, e := e1 + e2, and proceed
as follows:

1. If T0 ̸= T1 ̸= T2, then FCMP aborts. Else, set T := T0.
2. If a = b = c = d = e and a < T output 0.

3. If a = b = c = d = e and a ≥ T output 1.

4. Else, FCMP aborts (i.e. a, b, c, d or e strings are not equal).

Corruption: Adversary A maliciously corrupts one server. If A instructs the functionality to
abort by sending ⊥, the functionality instructs the honest servers to abort.

Figure 7.10: The ideal FCMP functionality for comparison.

Output Phase. At the end, the servers output HH≤n = {HH0, HH1, . . . ,HHn} as the

set of T -heavy hitter strings.

This completes the description of πHH (Figs. 7.7, 7.8). Security of our protocol

is captured in Theorem 4 and proven next.

7.4 Proof of Heavy-Hitters Protocol πHH

Theorem 4. Assuming VIDPF is a verifiable incremental DPF and H1,H2 are random

oracles, FCMP is a secure comparison functionality (Fig. 7.10), and H (in πcheck) is

collision-resistant, then πHH (Figs. 7.7 and 7.8) implements FHH in the (random oracle,

FCMP)-model against malicious corruption of one server and ℓ′ ≤ ℓ clients.

7.4.1 Proof Sketch

Proof. The adversary is allowed to corrupt ℓ′ ≤ ℓ clients and one of the servers. The

other two servers are honest. We discuss the ways a malicious client can attempt to

inject an error and we demonstrate our consistency checks for them:

169

• Client VIDPF keys are malformed. A malicious client can attempt to provide

malformed VIDPF keys which are non-zero in more than one path in the binary

tree (of 2n leaves). This gets detected in the session involving the honest servers

due to the verifiable property of the VIDPF at each level when the servers verify

the proofs generated during the VIDPF evaluation. If the checks pass, then it is

ensured that the VIDPF keys provided by the client are valid.

• Client VIDPF input is malformed. Next, a malicious client can try to double-vote

on an input point, say p∥0 ∈ {0, 1}k+1 by constructing the VIDPF on (p∥0, β̃k),

i.e., f(p ∥ 0) = β̃k, where β̃k > 1, instead of (p ∥ 0, 1). This is detected by the

honest servers since they perform a local subtree verification by reconstructing

the value yp− (yp∥0− yp∥1) and verifying that it equals 0 for all k > 0. For k = 0,

the servers verify that yϵ = 1. Combining all k checks ensures that yp∥0 = 1 if

and only if yp = 1 and yp∥1 = 0, else yp∥0 = 0.

• VIDPF input is inconsistent across sessions. Finally, a malicious client can try

to provide different VIDPF keys in different sessions. For example it constructs

VIDPF keys for input (α1, 1) for the S0 − S1 session and (α2, 1) for the S1 − S2
session and (α3, 1) for the S2 − S0 session, where α1 ̸= α2 ̸= α3 and α1, α2, α3 ∈

{0, 1}k. The above two checks would still pass since they ensure client input

validation within each session but not client input consistency across the sessions.

To ensure this, the servers match the difference of the reconstructed output of

S0 − S1 and S2 − S0 session, and the difference of the reconstructed output of

S2 − S0 and S1 − S2 session, to verify that they are all 0. By transitivity, it

is ensured that if and only if this check passes then the output of the VIDPF

evaluation would be the same across the three sessions, ensuring that α1 = α2 =

α3. This is performed by computing the ĥp∥0 and ĥp∥1 hashes for every heavy-

hitting prefix p computed by πHH.

A malicious server could collude with malicious clients. It can be observed that the

honest clients’ inputs are always hidden from the adversary due to input privacy of

170

VIDPF, since no server possesses more than one VIDPF key. Next, A malicious server

could attempt to incorporate an erroneous VIDPF evaluation (from a malformed client

input key) or inject additive errors into the output. We show how this is tackled in the

protocol based on the server corruption:

• S0 is corrupt. In this case, the session between S1 − S2 is honest. S0 runs this

session with S1 since it obtained key(2,1) from the client. However, S2 behaves as

an attestator by sending hashes of the messages that S0 is supposed to send. This

forces S0 to act honestly in the S1−S2, otherwise, it leads to an abort. Another

way a malicious S0 can behave badly is by colluding with a malicious client. The

client could provide malformed inputs in S0 −S1/S2 −S0 session or inconsistent

inputs across the three sessions. In such a case, a malicious S0 could compute

an incorrect hash ĥp∥0 := H1(y
p∥0
(0,1)

′
− y

p∥0
(0,2)

′
, y

p∥0
(0,2)

′
− y

p∥0
(2,1)) and ĥp∥1 := H1(y

p∥1
(0,1)

′
−

y
p∥1
(0,2)

′
, y

p∥1
(0,2)

′
− y

p∥1
(2,1)) where y

p∥0
(0,1)

′
, y

p∥0
(0,2)

′
, y

p∥1
(0,1)

′
, y

p∥1
(0,2)

′
are incorrect. This would

allow S0 to introduce an additive error into the frequency for p ∥ 0 and p ∥ 1 (for

the S0 −S1 and S2 −S0 sessions) by incorporating the client’s malformed input.

However, this gets detected when the output count is secretly reconstructed by

the FCMP functionality for all three sessions and compared. The reconstructed

count won’t match and the ideal functionality would return a⊥message detecting

that one of the servers behaved maliciously, leading to an abort in the πHH.

• S1 is corrupt. This case is very similar to the above one where S0 was corrupt.

In this case, the session between S2 − S0 is honest. S1 runs this session with S0
since it obtained key(2,0) from the client. However, S2 behaves as an attestator

by sending hashes of the messages that S1 is supposed to send. This forces S1
to act honestly in the S2 − S0, otherwise, it leads to an abort. Another way a

malicious S1 can behave badly is by colluding with a malicious client. The client

could provide malformed inputs in S0−S1/S1−S2 session or inconsistent inputs

across the three sessions. In such a case, a malicious S1 simply ignores the hash

values ĥp∥0 and ĥp∥1 sent by S0. This would allow the S1 to introduce an additive

171

error into the frequency for p ∥ 0 and p ∥ 1 (for the S0 −S1 and S1 −S2 sessions)

by incorporating the client’s malformed input. However, this gets detected when

the output count is secretly reconstructed by the FCMP functionality for all three

sessions and compared. The reconstructed count won’t match and the ideal

functionality would return a ⊥ message detecting that one of the servers behaved

maliciously, leading to an abort in the πHH.

• S2 is corrupt. In this case, the session between S0−S1 is honest. If S2 behaves as a

malicious attestator by sending incorrect hashes for the S1−S2 or S2−S0 sessions

then the honest servers abort. Another way a malicious S2 can behave badly is

by colluding with a malicious client. The client could provide malformed inputs

in the three sessions. If the client provides malformed inputs in S0 − S1 session

then it gets detected due to verifiability of the VIDPF and the local subtree

verification, since both S0 and S1 are honest. It could provide malformed (allows

double voting) VIDPF keys key′(2,0) and key′(2,1) to S1 and S0 for the sessions

involving S2. However, that again gets detected since the server S0 computes the

hashes ĥp∥0 and ĥp∥1 honestly and the S1 verifies them honestly.

7.4.2 Formal Proof Details of Theorem 4

Security of our protocol relies on the correctness of πcheck. πcheck is a protocol

where two honest parties commit to their inputs using Merkle-tree-based commitments

and then they decommit based on whether the root commitments match or not. Cor-

rectness of πcheck follows in a straightforward manner from the binding property of the

Merkle-tree commitment, which in turn follows from the collision-resistance property

of the hash function used in πcheck.

Next, we prove the security of our protocol in the real-ideal world paradigm

of Canetti [66]. Let A denote the real-world adversary corrupting one of the servers

and ℓ′ clients maliciously in the real-world execution of the protocol. Let realA,πHH

172

denote A’s view after participating in the real-world execution. Let simulator Sim be

the ideal-world adversary, which given access to the algorithm of A and functionality

FHH, produces the ideal world adversarial view as idealSim,FHH
.

We prove that our protocol πHH securely implements FHH functionality by pro-

viding an ideal world PPT simulator Sim for all PPT adversaries A, and show that the

real and ideal world view are indistinguishable, i.e., realA,πHH

c
≈ idealSim,FHH

. We use

a sequence of hybrids (i.e., HYB0 - HYB4) to prove the indistinguishability argument.

Proof. We first consider the case where A corrupts server S2 along with ℓ′ clients.

Then, we consider the case where A corrupts either S0 or S1 along with ℓ′ clients.

S2 is corrupt. We provide the formal simulator in Fig. 7.11 and argue indistin-

guishability as follows.

HYB0 : The real world execution of the protocol.

HYB1 : Same as HYB0, except Sim aborts if a malicious client i has provided inconsis-

tent ui and vi inputs to S0 and S1 and yet passed the batched consistency check

πcheck. The two hybrids are indistinguishable due to the correctness of πcheck.

HYB2 : Same as HYB1, except the Sim extracts the corrupt client’s inputs using the

three pairs of DPF keys. Then Sim runs Step c of simulated Batch-Verification,

i.e., Sim aborts if 1) the client’s input αi is k-bits heavy-hitting, 2) αi ∥ 0 or

α1 ∥1 is invalid, and 3) client evaded the Batch-Verification check for the sessions

run between honest servers. The two hybrids are indistinguishable due to the

verifiability property of VIDPF in the random oracle model. This occurs when

the client successfully evades the input extraction process of VIDPF by providing

malformed VIDPF keys and yet passes the batch verification checks.

HYB3 : Same as HYB2, except Sim invokes FHH with the extracted inputs to obtain the

HH≤n set and simulates FCMP based on whether a prefix γ is in HH≤n or not. The

two hybrids are indistinguishable against a corrupt server S2 in the FCMP-model.

173

Simulator Sim for maliciously corrupt ℓ′ number of clients and server S2

• Corruption: Server S2 and ℓ′ number of clients are maliciously corrupt. The rest ℓ−ℓ′ clients and servers (S0,S1)
are simulated by simulator Sim.

• Primitive: VIDPF := (Gen,EvalPref,EvalNext) is a verifiable incremental DPF. H1,H2 : {0, 1}∗ → {0, 1}κ are
random oracles.

Client C Computation. (Repeated for ℓ clients)

1. If the client is honest: Sim simulates the client by preparing three pairs of DPF keys with input 1 and
output values (1, . . . , 1) as follows: (key(0,1), key(1,0)) := Gen(1κ, 1n, 1, (1, . . . , 1),G), (key(1,2), key(2,1)) :=

Gen(1κ, 1n, 1, (1, . . . , 1),G), (key(2,0), key(0,2)) := Gen(1κ, 1n, 1, (1, . . . , 1),G).

Sim sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0)) to S2 on behalf
of the client.

2. If the client is corrupt: Client sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and

(key(2,1), key(2,0)) to S2.

Server Computation.
(Simulator Sim initializes a list Lext = {} and Linp = {}, and simulates S0 and S1)
For each corrupt client i, the simulator performs the following for input extraction: (Repeated for ℓ′ corrupt
clients)

1. Sim extracts the corrupt client’s input (α′
i, β

′
i,1, . . . , β

′
i,n) from the three pairs of DPF keys - key(0,1) and key(1,0),

key(0,2) and key(2,0), and key(2,1) and key(1,2), provided by client i. If the extracted values differ, then Sim takes
the necessary steps below.

2. If the corrupt client has not provided a valid input at level j, i.e., 1) ∃j ∈ [n] s.t. β′
j ̸= 1 (for the smallest j), or

2) the extracted inputs α′
i (from the three sessions) in the previous step differ in the jth bit, i.e., α′

i,j , then Sim

truncates the extracted input of client i to the first j bits of αi as αi := αi,≤j−1. Sim sets Lj−1
ext = Lj−1

ext ∪{i, j−1}
and updates Lext = Lext ∪ Lj−1

ext to denote that the ith client’s input is valid only till level j − 1.

3. Sim stores the extracted input (after necessary truncation) αi for client i in a list Linp as Linp := Linp ∪ {i, αi}.

After running the above extraction process for all corrupt clients, Sim invokes FHH with the input list Linp to obtain

the output set of T -heavy hitting prefixes as HH≤n. The functionality FHH waits for further instructions from the
ideal world adversary Sim.

For k ∈ [0, . . . , n− 1] repeat the following steps: ▷ n is the number of bits.

1. Initialization. For prefix p ∈ HHk, Sim initialize server S0’s and S1’s aggregation variables for prefixes γ ∈
{p ∥ 0, p ∥ 1} as follows: Simulated S0 sets cntγ

(0,1)
:= cntγ

(0,2)
:= cntγ

(2,1)
:= 0 and Simulated S1 sets cntγ

(1,2)
:=

cntγ
(1,0)

:= cntγ
(2,0)

:= 0.

2. VIDPF Evaluation. For prefix p ∈ HH≤k, Sim simulates S0 and S1 by running the original protocol steps.
(Repeated for ℓ clients)

3. Batch-Verification.

(a) Sim simulates S0 and S1 by computing u and v following the original steps of the protocol and Sim adds the
ith client to the list L of discarded clients if ui ̸= vi. If client i is not detected as bad by running the original
protocol steps of πcheck on u and v then Sim aborts.

(b) Sim runs the honest protocol steps to simulate the interaction between S2 − S0 and S2 − S1 to obtain the
update list L.

(c) Sim aborts if ∃ client i s.t. 1) its input is k-bits heavy-hitting (i.e., αi ∈ HHk), 2) αi ∥ 0 or αi ∥ 1 is not valid,
i.e., {i, k} ∈ Lkext, 3) client i evaded the consistency check, i.e., i /∈ L.

If Sim did not abort then for all corrupt parties in list L at level k, Sim invokes FHH to discard the parties from
the output computation of k + 1-bit heavy-hitting prefixes. Sim obtains an updated HH≤n set from FHH.

Figure 7.11: Simulation Algorithm against malicious corruption of server S2 and ℓ′

clients. Continues in Fig. 7.12.

174

4. Aggregation. Sim simulates this step for prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows: (Repeated for all validated
clients in [ℓ] \ L)

Simulated S0 sets cntγ
(0,1)

:= cntγ
(0,2)

:= cntγ
(2,1)

:= 0, Simulated S1 sets cntγ
(1,2)

:= cntγ
(1,0)

:= cntγ
(2,0)

:= 0.

5. Pruning. For every (k + 1)-bit string γ, Sim simulates the pruning step as follows:

If γ ∈ HHk+1 then Sim invokes the simulator of FCMP with output 1 s.t. FCMP returns 1 as output to the servers,
s.t. γ is included in the list of heavy-hitting strings.

If γ /∈ HHk+1 then Sim invokes the simulator of FCMP with output 0 s.t. FCMP returns 0 as output to the servers,
s.t. γ gets pruned.

If the simulator of FCMP aborts, then Sim instructs FHH to abort at level (⊥, k+1) and Sim aborts this simulated
execution. Sim has successfully simulated the HHk+1 set. Sim repeats “Server Computation” steps (starting from
Step 2b) on k + 1 bit prefixes.

Output Phase.

Sim outputs HH≤n as the set of T -heavy hitter strings on behalf of simulated S0 and S1, and instructs FHH to send
output to the honest servers S0 and S1.

Figure 7.12: Continuing the simulation from Fig. 7.11. Algorithm against malicious
corruption of server S2 and ℓ′ clients.

HYB4 : Same as HYB3, except Sim simulates the DPF key generation for the honest

clients with input (α, (β1, . . . , βn)) = (1, (1, . . . , 1)) and sets the counters to 0s

in the aggregation step. Indistinguishable due to VIDPF input privacy. The

0-valued counters in the aggregation step are identically distributed to the actual

aggregation counters since HYB3 and HYB4 are in the FCMP-model. This is the

ideal world execution of the protocol, completing our simulation algorithm.

Either S0 or S1 is corrupt. Next, we consider the case where either server S0 or

S1 is corrupted along with ℓ′ clients. We provide the simulator in Fig. 7.13 and argue

indistinguishability as follows. (This case is similar to the case where S1 is corrupted

along with ℓ′ clients.)

HYB0 : The real world execution of the protocol.

HYB1 : Same as HYB0, except Sim aborts if a malicious client i has provided values

(Rk
(2,0), R

k
(2,1)) to S2 and values (Rk

(2,0), R
k
(1,2)) to S1 such that they are not equal,

and yet client i passed the batched consistency check πcheck. The two hybrids are

indistinguishable due to the correctness of πcheck.

175

Simulator Sim for maliciously corrupt ℓ′ number of clients and server S0

• Corruption: ℓ′ number of clients and server S0 are maliciously corrupt. The rest ℓ−ℓ′ clients and servers (S1,S2)
are simulated by simulator Sim. Without loss of generality, we will assume that S0 is corrupt; the case where S1
is corrupt is symmetric.

• Primitive: VIDPF := (Gen,EvalPref,EvalNext) is a verifiable incremental DPF. H1,H2 : {0, 1}∗ → {0, 1}κ are
random oracles.

Client C Computation. (Repeated for ℓ clients)

1. If the client is honest: Sim simulates the client by preparing three pairs of DPF keys with input
1 and output values (1, . . . , 1). (key(0,1), key(1,0)) := Gen(1κ, 1n, 1, (1, . . . , 1),G), (key(1,2), key(2,1)) :=

Gen(1κ, 1n, 1, (1, . . . , 1),G), (key(2,0), key(0,2)) := Gen(1κ, 1n, 1, (1, . . . , 1),G)

Sim sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0)) to S2 on behalf
of the client.

2. If the client is corrupt: Client sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and

(key(2,1), key(2,0)) to S2.

Server Computation.
(Simulator Sim initializes a list Lext = {} and Linp = {}, and simulates S1 and S2)
For each corrupt client i, the simulator performs the following for input extraction: (Repeated for ℓ′ corrupt
clients)

1. Sim extracts the corrupt client’s input (α′
i, β

′
i,1, . . . , β

′
i,n) from the pair of DPF keys - key(1,2) and key(2,1), provided

by client i.

2. If the corrupt client has not provided a valid input at level j, i.e., ∃j ∈ [n] s.t. β′
j ̸= 1 (for the smallest j), then Sim

truncates the extracted input of client i to the first j bits of αi as αi := αi,≤j−1. Sim sets Lj−1
ext = Lj−1

ext ∪{i, j−1}
and updates Lext = Lext ∪ Lj−1

ext to denote that the ith client’s input is valid only till level j − 1.

3. Sim stores the extracted input (after necessary truncation) αi for client i in a list Linp as Linp := Linp ∪ {i, αi}.

After running the above extraction process for all corrupt clients, Sim invokes FHH with the input list Linp to obtain

the output set of T -heavy hitting prefixes as HH≤n. The functionality FHH waits for further instructions from the
ideal world adversary Sim.

For k ∈ [0, . . . , n− 1] repeat the following steps: ▷ n is the number of bits.

1. Initialization. For prefix p ∈ HHk, Sim initialize server S1’s and S2’s aggregation variables for prefixes γ ∈
{p ∥ 0, p ∥ 1} as follows: Simulated S1 sets cntγ

(1,2)
:= cntγ

(1,0)
:= cntγ

(2,0)
:= 0 and simulated S2 sets cntγ

(2,0)
:=

cntγ
(2,1)

:= 0.

2. VIDPF Evaluation. For prefix p ∈ HH≤k, Sim simulates S1 and S2 by running the original protocol steps.
(Repeated for ℓ clients)

Figure 7.13: Simulation Algorithm against malicious corruption of server S0 and ℓ′

clients. Continues in Fig. 7.14.

176

3. Batch-Verification.

(a) Sim simulates the interaction between corrupt server S0 and honest server S1 by following the protocol steps
to update list L.

(b) Sim simulates the interaction between corrupt server S0 and honest server S2 by following the protocol steps
to update list L.

(c) For each client i: Sim verifies that S2’s version of (Rk
(2,0)

, Rk
(2,1)

) matches with S1’s version of (Rk
(2,0)

, Rk
(1,2)

).

If they don’t match then Sim adds ith client to the list L of discarded clients. If client i is not detected as
bad by running the original protocol steps of πcheck between S1 and S2 then Sim aborts.

(d) Sim aborts if ∃ client i s.t. 1) its input is k-bits heavy-hitting (i.e., αi ∈ HHk), 2) αi ∥ 0 or αi ∥ 1 is not valid,
i.e., {i, k} ∈ Lkext, 3) client i evaded the consistency check, i.e., i /∈ L.

If Sim did not abort then for all corrupt parties in list L at level k, Sim invokes FHH to discard the parties from
the output computation of k + 1-bit heavy-hitting prefixes. Sim obtains an updated HH≤n set from FHH.

4. Aggregation. Sim simulates this step for prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows: (Repeated for all validated
clients in [ℓ] \ L)

Simulated S1 sets cntγ
(1,2)

:= cntγ
(1,0)

:= cntγ
(2,0)

:= 0, Simulated S2 sets cntγ
(2,0)

:= cntγ
(2,1)

:= 0.

5. Pruning. For every (k + 1)-bit string γ, Sim simulates the pruning step as follows:

If γ ∈ HHk+1 then Sim invokes the simulator of FCMP with output 1 s.t. FCMP returns 1 as output to the servers,
s.t. γ is included in the list of heavy-hitting strings.

If γ /∈ HHk+1 then Sim invokes the simulator of FCMP with output 0 s.t. FCMP returns 0 as output to the servers,
s.t. γ gets pruned.

If the simulator of FCMP aborts, then Sim instructs FHH to abort at level (⊥, k+1) and Sim aborts this simulated
execution. Sim has successfully simulated the HHk+1 set. Sim repeats “Server Computation” steps (starting from
Step 2b) on k + 1 bit prefixes.

Output Phase.

Sim outputs HH≤n as the set of T -heavy hitter strings on behalf of simulated S1 and S2, and instructs FHH to send
output to the honest servers S0 and S1.

Figure 7.14: Continuing the simulation from Fig. 7.13. Simulation Algorithm against
malicious corruption of server S0 and ℓ′ clients.

177

HYB2 : Same as HYB1, except Sim extracts the corrupt client’s inputs following the

extraction algorithm using the pair of DPF keys. Then Sim runs Step 3d in

simulated Batch-Verification, i.e., Sim aborts if 1) the client’s input αi is k-bits

heavy-hitting, 2) αi ∥ 0 or α1 ∥ 1 is invalid, and 3) client evaded the Batch-

Verification check for the sessions run between honest servers. The two hybrids

are indistinguishable due to the verifiability property of VIDPF in the random

oracle model. This occurs when a malicious client successfully evades the input

extraction process of VIDPF by providing malformed VIDPF keys and yet passes

the batch verification checks performed on the VIDPF proofs.

HYB3 : Same as HYB2, except Sim invokes FHH with the extracted inputs to obtain

HH≤n set and simulates the FCMP functionality based on whether a prefix γ is in

HH≤n or not. The two hybrids are indistinguishable against a corrupt server S0
in the FCMP-model.

HYB4 : Same as HYB3, except Sim simulates the DPF key generation for the honest

clients with input (α, (β1, . . . , βn)) = (1, (1, . . . , 1)) and sets the counters to 0s

in the aggregation step. Indistinguishable due to VIDPF input privacy. The

0-valued counters in the aggregation step are identically distributed to the actual

aggregation counters since HYB3 and HYB4 are in the FCMP-model. This is the

ideal world execution of the protocol, completing our simulation algorithm.

7.5 Batched Consistency Check

We now present our batched consistency check πcheck that enables two parties,

P0 and P1, to verify the equality of lists u and v containing ℓ strings using Merkle

trees. If the two lists are equal then πcheck returns ver = 1, else it returns ver = 0 and a

list L containing the indices of elements where the lists differ. Correctness follows from

the collision resistance property of the hash function H.

178

πcheck

Inputs: Party P0 has ℓ input strings u = {ui}i∈[ℓ]. Party P1 has ℓ input strings v = {vi}i∈[ℓ].

Outputs: πcheck outputs (ver, L) as follows:

• If u = v: ver := 1 and L := ∅,
• If u ̸= v: ver := 0 and L := {i}ui ̸=vi for i∈[ℓ].

ver = 1 (resp. ver = 0) denotes that the Merkle roots of u and v are equal (resp. unequal). List L
is a list of indices where u and v differ.

Parameters: H : {0, 1}κ → {0, 1}κ is a collision-resistant hash. K = ⌈log2 ℓ⌉ denotes number of
levels in the Merkle tree for ℓ leaves.

Algorithm:
Root Computation: Party P0 (resp. P1) locally computes the Merkle R0 (resp. R1) on u (resp. v).
For b ∈ {0, 1}, party Pb performs:

• If b = 0: set NK
0 := {NK

0,i}i∈[ℓ] := {H(K, i, ui)}i∈ℓ as the list of leaf nodes in the Merkle tree
containing u.

• If b = 1: set NK
1 := {NK

1,i}i∈[ℓ] := {H(K, i, vi)}i∈ℓ as the list of leaf nodes in the Merkle tree
containing v.

• Initialize ℓ′ := ℓ as the number of nodes in level K.

• For level k ∈ {K− 1,K− 2, . . . , 1} :

– Set ℓ′ := ⌈ ℓ
′

2 ⌉ as the number of nodes in level k.

– For i ∈ [ℓ′] : Compute list of nodes at level k by hashing the nodes at level k + 1 as
Nk

b := Nk
b ∪H(k,Nk+1

b,2i ,N
k+1
b,2i+1).

• Set Merkle Rb := N1
b .

Root Verification: Parties P0 and P1 exchange R0 and R1. If R0 = R1 then set ver := 1, L := ∅, and
parties output (ver, L). Else, set ver := 0 and continue the computation.

Unequal Leaf Identification: For b ∈ {0, 1}, party Pb sets N
1

b := Rb as the unequal node at level 1.

For level k ∈ {2, . . . ,K}: For each unequal node n ∈ N
k−1

b at level k − 1, parties identify unequal
nodes at level k:

• Party Pb fetches left and right child of n as childLb and childRb respectively, for b ∈ {0, 1}.

• Parties exchange childL0, child
L
1, child

R
0 and childR1 , and performs the following for b ∈ {0, 1}:

N
k

b := N
k

b ∪ childLb if childL0 ̸= childL1, N
k

b := N
k

b ∪ childRb if childR0 ̸= childR1

Pb possesses N
K

b as list of unequal leaf nodes. Pb sets L as the list of indices of N
K

b w.r.t. initial leaf

nodes NK
b as L := L ∪ {i : NK

b,i = NK
b,i}. Party Pb outputs (ver, L).

Figure 7.15: Equality verification of ℓ strings between two parties and identification of
unequal strings.

179

As summarized in Fig. 7.15, πcheck requires K + 1 rounds of communication,

where K = ⌈log2 ℓ⌉. The total communicated hashes are roughly 4ℓ′(log2
ℓ
ℓ′
+2), where

u and v differ on ℓ′ elements. It can be further optimized to 2ℓ′(log2
ℓ
ℓ′
+2), where only

one of the parties sends its hashes instead of both. We provide a detailed analysis of

the protocol in Section 7.7. In case ℓ′ = 0, then our communication is a pair of hashes.

7.6 Experimental Evaluations

We implement our heavy-hitters protocol πHH in Rust and use the tarpc frame-

work by Google for asynchronous Remote Procedure Calls (RPC). PLASMA is fully

parallelized: all sessions in each server run in parallel and we employ parallel iterators

to process multiple client requests concurrently. (We apply the same parallelization

for benchmarking Poplar.) We instantiate the PRG for VIDPF using the AES-NI

hardware instructions for AES encryption with a seed of κ = 128 bits. We used rings

in PLASMA (instead of fields) since our checks rely on the security of VIDPF (i.e.,

XOR-collision resistant property that is provided by the random oracle). Conversely,

the security of Poplar relies on a statistical check for the client’s input validation. This

check relies on the underlying group size and needs 62 bits for the statistical failure

probability to be 2−60 for intermediate levels; for the leaves, we use the default size of

a finite field of 2κ = 256 bits as mentioned in Poplar.

Experiment Details. Our experiments vary the number of clients between ℓ = 103

and ℓ = 106 with two different bit-string sizes, n = 64 and n = 256 bits. We configured

the threshold T to be 1% of the clients’ strings, and we report the client and server costs,

while empirically comparing with Poplar. Then, we compute the total monetary costs

(due to runtime and communication) incurred by PLASMA servers, and we compare

it with [13] (since the code of [13] is not open-source) based on the monetary cost.

Experimental Setup. We performed both LAN and WAN1 experiments on AWS

EC2 machines (c5.9xlarge) each with 36 vCPUs at 3.60 GHz. PLASMA is compiled

1 We used one server in Oregon, one in Ohio, and one in N. Virginia. For Poplar, we
used one in Oregon and the other one in N. Virginia.

180

using Rust 1.74, and client-side experiments are carried out using a standard laptop

with an Intel i7-8650U CPU (1.90 GHz).

Performance Evaluation. In our experiments, our goal is to answer the following

questions:

• How efficient is PLASMA for each client and server?

• How does PLASMA compare with similar works (such as Poplar) that leverage

DPFs?

• How does PLASMA compare with the related works that provide similar security

guarantees, such as [13]?

Client costs. The PLASMA client generates three pairs of DPF keys. Meanwhile, the

Poplar client generates two pairs of DPF keys but also computes a malicious sketching

operation. As a result, both PLASMA and Poplar clients are extremely fast, running

in the order of 20−24 microseconds on 256-bit inputs. A detailed comparison of client

runtime can be found in Fig. 7.16 (a).

32 64 128 256 512
Bit-string size (n)

10

20

30

40

Cl
ie

nt
 R

un
tim

e
(μ

s.) PLASMA
Poplar

(a) Client Runtime

32 64 128 256 512
Bit-string size (n)

25

50

75

100

Cl
ie

nt
 C

om
. (

KB
) PLASMA

Poplar

(b) Client Communication

Figure 7.16: Comparisons of client costs for PLASMA and Poplar (KB is Kilobytes
and µs is microseconds).

181

In terms of client communication, PLASMA transmits eight DPF keys, whereas

Poplar transmits four DPF keys plus the correlated randomness for the sketching op-

eration. We observed that the clients in both protocols incur the same communication

overhead, roughly around 55 KB for 256 bits. Detailed comparisons can be found in

Fig. 7.16 (b).

Server costs. In this experiment, we run PLASMA with randomly distributed ma-

licious clients and compare it with Poplar. We set the malicious clients ℓ′ to be 0,

0.01, 0.1, and 0.3 of the total clients ℓ. We observed that running with ℓ′ = 0.01ℓ has

slightly faster performance than 0.1ℓ, while 0.3ℓ exhibits slightly worse performance

than 0.1ℓ. Still, these differences are marginal compared to the total runtime, so we

opt for reporting the 0 and 0.1ℓ for the sake of making the figures clearer.

LAN Server Runtime. PLASMA outperforms Poplar in terms of server runtime

by 2.7× (64 bits) and 5× (256 bits) for ℓ = 106 clients and T = 1% of the clients. This

improvement is largely attributed to our efficient VIDPF-based client input validation.

Although the presence of malicious clients has an impact on PLASMA’s performance,

it still remains significantly faster than Poplar as presented in Fig. 7.17. Meanwhile,

Poplar servers validate clients’ inputs using an expensive malicious secure sketching

protocol.

103 104 105 106

Number of clients (ℓ)

0

100

200

300

Ru
nt

im
e

(s
ec

.)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar

(a) Bit-string size (n = 64)

103 104 105 106

Number of clients (ℓ)

0

500

1000

1500

2000

Ru
nt

im
e

(s
ec

.)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar

(b) Bit-string size (n = 256)

Figure 7.17: Server runtime (over LAN) for an increasing number of clients.

182

WAN Server Runtime. We benchmarked PLASMA and Poplar over WAN for

n = 64 bits and we report our findings in Fig. 7.18. While the total latency is increased

for both frameworks, we observe that the server WAN runtime for PLASMA increased

by roughly 5-10% compared to server LAN runtime, whereas for Poplar the runtime

increases by roughly 50%. We observe almost 5− 10× improvement in terms of server

WAN runtime for PLASMA compared to Poplar since PLASMA incurs significantly

less communication for T = 1%.

103 104 105 106

Number of clients (ℓ)

0

200

400

600

Ru
nt

im
e

(s
ec

.)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar

(a) Bit-string size (n = 64)

103 104 105 106

Number of clients (ℓ)

0

1000

2000

3000

Ru
nt

im
e

(s
ec

.)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar

(b) Bit-string size (n = 256)

Figure 7.18: Server runtime over WAN.

Server-to-Server Communication. We compare the total communication costs

incurred by all servers for an increasing number of clients, T = 1%, and n = 256 in

Fig. 7.19. Poplar servers incur 35 GB of communication, whereas, PLASMA servers

communicate less than 1 GB of data when considering ℓ′ = 0 and 0.1ℓ corrupt clients,

hence yielding a 35× improvement over Poplar. The protocol of [13] communicates 45

GB of data to compute heavy-hitters over 106 client submitted 256-bit inputs. This

yields a 45× improvement of PLASMA over [13].

Server Monetary Cost. To obtain fair comparisons between Poplar, [13], and

PLASMA, we perform cumulative monetary cost analysis for a varying number of

clients, assuming $0.05/GB and $1.53/hour. To estimate monetary costs, we run

PLASMA and Poplar in a similar setup as [13] and compare it with the runtime

183

103 104 105 106

Number of clients (ℓ)

0

5

10

15

To
ta

l C
om

. (
GB

)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(a) Bit-string size n = 64

103 104 105 106

Number of clients (ℓ)

0

10

20

30

40

To
ta

l C
om

. (
GB

)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(b) Bit-string size n = 256

Figure 7.19: Comparisons with Poplar [49] and the sorting-based approach of [13] in
terms of total server-to-server communication (in GB).

provided in [13]. Note that Poplar runs two servers while PLASMA runs three. The

monetary cost incurred by Poplar is two times the cost incurred by a single Poplar

server, while for PLASMA it’s three times a single PLASMA server. We present our

findings in Fig. 7.20 for T = 1% of the clients. Computing the T most popular

strings among 1 million clients with n = 256 bit strings, costs $4.7 with Poplar, while

PLASMA incurs $0.6-$0.9 costs for 0 to 0.1ℓ malicious clients. Meanwhile, [13] costs

at least $2.2 to perform the same task, so PLASMA yields a 2.5− 3.5× improvement

over [13] despite having a 15× runtime slowdown. This is largely due to the commu-

nication incurred by [13] for performing secure sorting under MPC. When considering

input strings of smaller size, like n = 64, PLASMA is 4× cheaper than Poplar and 2×

cheaper than [13].

Applications. We discuss two realistic applications:

Popular URLs. Each URL is represented as a 256-bit string and 10000 most pop-

ular URLs are computed among 1 million client-submitted URLs, assuming T = 1%.

Server runtimes of PLASMA and Poplar are reported in Figs. 7.17 (b) and 7.18 (b),

while the client communication costs in Figs. 7.16 (a) and (b) for n = 256. This bench-

mark is completed in under 5 minutes with less than 1 GB of data of communication

184

105 2 × 105 4 × 105 106

Number of clients (ℓ)

0.0

0.5

1.0

1.5

Co
st

 (U
SD

)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(a) Bit-string size n = 64

105 2 × 105 4 × 105 106

Number of clients (ℓ)

0.0

1.5

3.0

4.5

Co
st

 (U
SD

)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(b) Bit-string size n = 256

Figure 7.20: Comparisons with Poplar and the sorting-based approach of [13] in terms
of total monetary cost (in USD).

for PLASMA, while Poplar servers incur more than 5× additional runtime costs and

communicate 35 GB.

Popular GPS coordinates. We employ plus codes [167] to efficiently encode the

client GPS coordinates using 64 bits. This approach uses a grid system aligned on top

of the world map, assigning specific codes to each area. Areas with similar codes are

located in proximity to each other and a code that is a prefix of another encompasses

the area of the latter. For instance, code 87 represents the North East US region, while

code 87G8 represents a part of New York City. PLASMA uses plus codes to compute

the most popular locations (submitted by more than T = 1% of the clients) among a

set of client-provided inputs using 64-bit strings in roughly 2 minutes for 106 clients,

as shown in Fig. 7.18 (a). Client cost is shown in Figs. 7.16 (a) and (b) for n = 64.

7.7 Analysis of Batched Consistency check

We recall the batched consistency check in Fig. 7.15. P0 and P1 hash their

individual leaves and verify the equality of their Merkle tree roots R0 and R1. If the

roots are equal then all the leaves are equal. Otherwise, the parties verify the equality

of the left children and the right children of the root node. If the left (resp. right)

185

children are equal across the parties then the left (resp. right) subtrees are equal. If

the left (resp. right) children are different, then the parties apply the above algorithm

to the left (resp. right) subtree. Proceeding this way in an iterative manner down

the tree, the parties identify the malformed leaves as N
K

0 and N
K

1 where the two trees

differ. Then they match them with their initial lists of input sets u and v to identify

the indices where they differ and then store those indices in L.

πcheck requires K + 1 rounds of communication, where K = ⌈log2 ℓ⌉. Next,

we demonstrate that if ℓ′ out of ℓ leaves differ, then the total communication is

O(ℓ′(log2 ℓ
ℓ′
)) hashes. The Root Computation is local and Root Verification communi-

cates two hashes. During Leaf Identification, the parties communicate 4 hashes for each

unequal node. At the root layer, only the roots are different. At the next layer, both

children can differ. More generally, at layer k ∈ [K], there can be at most min(2k, ℓ′)

unequal nodes. The total communicated hashes are as follows:

2 + 4× (min(20, ℓ′) + . . .+min(2⌈log2 ℓ⌉, ℓ′))

= 2 + 4× (1 + 2 + . . . 2⌈log2 ℓ
′⌉ + ℓ′ + ℓ′ + . . .+ ℓ′)

≤ 2 + 4× (2ℓ′ + ℓ′ × (⌈log2 ℓ⌉ − ⌈log2 ℓ′⌉))

≈ 8ℓ′ + 4ℓ′(log2 ℓ− log2 ℓ
′) = 4ℓ′(log2

ℓ
ℓ′
+ 2).

We observe that the current version of πcheck communicates roughly 4ℓ′(log2
ℓ
ℓ′
+

2) hashes. This can be further optimized to 2ℓ′(log2
ℓ
ℓ′
+ 2) where only one server

communicates at each level.

7.8 Heavy Hitters with different Thresholds

Our protocol allows us to consider different heavy hitter thresholds Ti based on

some pre-agreed strings xi ∈ X by the servers. This can be beneficial for traffic avoid-

ance since different roads may have different traffic densities. For example, highways

are busier than smaller suburban roads. The servers can take that into consideration

during evaluation, and use higher T s for highways (since there are more vehicles), and

lower thresholds for smaller roads.

186

Different Threshold Heavy Hitters from T -prefix count queries

Parameters: Threshold Ti ∈ N, for string xi ∈ X where |X| = m, and string length n ∈ N.

Inputs: The algorithm has no explicit input. It has access to t-prefix count query oracle
Ωα1,...,αℓ

(p, t) for securely computing t-prefix-count queries over prefix p for strings α1, . . . , αℓ.

Outputs: The set of heavy-hitter strings in α1, α2, . . . , αℓ.

Algorithm:

• Initialize HH≤n = {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}, where HH0 contains empty string ϵ
and HH1, . . .HHn are empty sets.

• Set T := min(T1, T2, . . . Tm).

• For each prefix p ∈ HHk of length k-bits in set HHk (where k = 0, 1, 2, . . . n− 2) :

– If Ωα1,...,αℓ
(p ∥ 0, T) = 1, HHk+1 := HHk+1 ∪ {p ∥ 0}.

– If Ωα1,...,αℓ
(p ∥ 1, T) = 1, HHk+1 := HHk+1 ∪ {p ∥ 1}.

• For each prefix p ∈ HHn−1, perform the following:

– If ∃xi ∈ X such that (p ∥ 0) = xi and Ωα1,...,αℓ
(p ∥ 0, Ti) = 1, then set

HHn := HHn ∪ (p ∥ 0).
– If ∃xi ∈ X such that (p ∥ 1) = xi and Ωα1,...,αℓ

(p ∥ 1, Ti) = 1, then set
HHn := HHn ∪ (p ∥ 1).

• Output T -heavy hitters HH≤n := {HH0,HH1, . . .HHn}.

Figure 7.21: Algorithm for computing heavy hitters with different thresholds from
T -prefix count queries.

We present our algorithm to compute heavy-hitters with different thresholds Ti
for string xi ∈ X from T -prefix oracle query in Fig. 7.21. The prefix oracle query

with different thresholds can be computed using a simple modification to protocol πHH,

where the pruning at the leaf layer is performed based on the threshold Ti for a given

string xi ∈ X instead of a fixed threshold T .

7.9 Compatibility with Differential Privacy

It is straightforward to complement PLASMA with ϵ-differential privacy tech-

niques and ensure that the presence or absence of a single client does not reveal any-

thing about their data [100]. In this case, running two instances of PLASMA, one with

ℓ − 1 clients and another just by adding client C, should protect the private data of

the new client from anyone observing the outputs of the two protocols. Additionally,

187

honest clients should not be able to be identified when a malicious server attempts to

ignore honest client data to infer their inputs based on the protocol output. Therefore,

PLASMA is directly compatible with the well-studied techniques from [99, 102] and

can adopt a similar approach as Poplar to bound the amount of information that an

adversary A can deduce from PLASMA’s output. Like Poplar, we need to ensure that

the outputs of these prefix-count oracle queries are differentially private, which can

be achieved by introducing noise on the oracle’s output with parameter 1/ϵ from a

Laplace distribution.

7.10 Concluding Remarks

In this work, we present PLASMA: a framework to privately identify the most

popular strings – or heavy hitters – among a set of client inputs without revealing the

client data points. Previous works for private heavy hitters, such as Poplar, consider se-

curity against malicious clients and were prone to additive attacks by a malicious server,

compromising the correctness of the protocol. To address this challenge, PLASMA in-

troduces a novel hash-based primitive, called verifiable incremental distributed point

functions, which allows the servers to validate client inputs using inexpensive opera-

tions. Additionally, we introduce a new batched consistency check that uses Merkle

trees to validate multiple client sessions in a batch. This drastically reduces the con-

crete server-to-server communication, incurred during the heavy-hitters computation.

188

Chapter 8

CONCLUSION

In conclusion, this thesis has delved into the realm of Privacy Enhancing Tech-

nologies (PETs) and various real-world applications of PETs in safeguarding sensitive

data. More specifically, we focus on private and verifiable computation; i.e., to per-

form meaningful computations while both protecting data privacy and also providing

guarantees that the computation was executed correctly.

We started by introducing Zilch, our framework for deploying transparent Zero-

Knowledge Proofs (ZKP) from high-level Java-like code. Zilch incorporates a novel

cross-compiler from an object-oriented Java-like language tailored to ZKPs as well as

a powerful API that enables integration of ZKPs within existing C/C++ programs.

Zilch is transparent, in that it does not need a trusted setup, and fosters usability by

making ZKPs more accessible and efficient.

Next, we utilized Zilch to address a critical concern in the Integrated Circuits

(IC) industry, i.e., to verify Intellectual Properties (IP) without compromising the pri-

vacy of circuit implementations. The first work in this area, dubbed Pythia, allows

third-party intellectual property (3PIP) vendors to prove to system integrators the

functional properties of their circuit designs while protecting the privacy of the circuit

implementations. We continued this line of work with zk-Sherlock, a framework that

enables 3PIP vendors to prove an intellectual property (IP) design is free of hardware

Trojans (i.e., malicious circuit modifications that alter device functionalities or leak

sensitive information when triggered) without disclosing the corresponding netlist. To-

gether, Pythia and zk-Sherlock can mitigate the threat of IP piracy in the IC industry.

In our next line of work, we focused on computing private statistics while ensur-

ing data privacy and integrity against malicious inputs. We introduced two protocols

189

for privacy-preserving statistics, Masquerade and PLASMA. Both works focus on data

aggregation and statistics based on inputs from multiple participants while preserv-

ing the privacy of the participant data. Additionally, as participants may misbehave

and either try to glean information about other participants’ data or attempt to af-

fect the correctness of the computation, Masquerade and PLASMA provide verifiable

guarantees that such malicious behavior is detected.

This dissertation has contributed both theoretical and practical solutions to real-

world challenges, from protecting sensitive IP designs in the IC industry to preserving

integrity and privacy in large-scale statistics. It is evident that PETs hold immense

promise in ensuring the security and privacy of data in an increasingly digital world.

The path forward involves further refinement, collaboration, and the integration of

these techniques into a wide range of applications.

190

BIBLIOGRAPHY

[1] Accountability Act. Health insurance portability and accountability act of 1996.
Public law, 104:191, 1996.

[2] Carlisle Adams and Steve Lloyd. Understanding PKI: concepts, standards, and
deployment considerations. Addison-Wesley Professional, 2003.

[3] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, principles, tech-
niques. Addison wesley, 7(8):9, 1986.

[4] Yousra Alkabani and Farinaz Koushanfar. Consistency-based characterization
for ic trojan detection. In 2009 ICCAD, pages 123–127, 2009.

[5] Abdelrahaman Aly, K Cong, D Cozzo, M Keller, E Orsini, D Rotaru, O Scherer,
P Scholl, N Smart, T Tanguy, et al. Scale–mamba v1. 12: Documentation, 2021.

[6] Abdelrahaman Aly, Marcel Keller, Dragos Rotaru, Peter Scholl, Nigel Smart,
and Tim Wood. SCALE–MAMBA Documentation, 2021.

[7] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. Ligero: Lightweight sublinear arguments without a trusted setup. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 2017, pages 2087–2104. ACM Press, October / November 2017.

[8] Erik Anderson, Melissa Chase, F. Betul Durak, Esha Ghosh, Kim Laine, and
Chenkai Weng. Aggregate measurement via oblivious shuffling. Cryptology
ePrint Archive, Report 2021/1490, 2021. https://eprint.iacr.org/2021/

1490.

[9] Apple and Google. Exposure Notification Privacy-preserving Analytics (ENPA)
white paper, 2021.

[10] Diego F. Aranha, Paulo S. L. M. Barreto, Geovandro C. C. F. Pereira, and
Jefferson E. Ricardini. A note on high-security general-purpose elliptic curves.
Cryptology ePrint Archive, Report 2013/647, 2013. https://eprint.iacr.org/
2013/647.

[11] Sanjeev Arora et al. Proof verification and the hardness of approximation prob-
lems. Journal of the ACM, 45(3):501–555, 1998.

191

https://eprint.iacr.org/2021/1490
https://eprint.iacr.org/2021/1490
https://eprint.iacr.org/2013/647
https://eprint.iacr.org/2013/647

[12] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new char-
acterization of NP. Journal of the ACM (JACM), 45(1):70–122, 1998.

[13] Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof, Benny
Pinkas, Katsumi Takahashi, and Junichi Tomida. Efficient secure three-party
sorting with applications to data analysis and heavy hitters. In Heng Yin, An-
gelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages
125–138. ACM Press, November 2022.

[14] N. Asokan. Hardware-assisted trusted execution environments: Look back, look
ahead. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, page 1687. ACM Press, November 2019.

[15] László Babai. Trading group theory for randomness. In 17th ACM STOC, pages
421–429. ACM Press, May 1985.

[16] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk. AD-
SNARK: Nearly practical and privacy-preserving proofs on authenticated data.
In 2015 IEEE Symposium on Security and Privacy, pages 271–286. IEEE Com-
puter Society Press, May 2015.

[17] Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delegation
of computation on outsourced data. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 863–874. ACM Press, November
2013.

[18] Elaine B. Barker, William C. Barker, William E. Burr, W. Timothy Polk, and
Miles E. Smid. Recommendation for Key Management: Part 1 Rev. 5. National
Institute of Standards and Technology, Technology Administration, Gaithers-
burg, MD, USA, 2007.

[19] Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Guha Thakurta. Prac-
tical locally private heavy hitters. Advances in Neural Information Processing
Systems, 30:1–32, 2017.

[20] Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and
Guillaume Poupard. Practical multi-candidate election system. In Ajay D.
Kshemkalyani and Nir Shavit, editors, 20th ACM PODC, pages 274–283. ACM,
August 2001.

[21] Ray Beaulieu et al. The SIMON and SPECK lightweight block ciphers. In DAC,
pages 1–6. ACM/EDAC/IEEE, 2015.

[22] Donald Beaver. Efficient multiparty protocols using circuit randomization. In
Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 420–432.
Springer, Heidelberg, August 1992.

192

[23] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In 22nd ACM STOC, pages 503–513. ACM
Press, May 1990.

[24] Peter A Beerel and Teresa H-Y Meng. Automatic gate-level synthesis of speed-
independent circuits. In ICCAD, pages 581–586. IEEE/ACM, 1992.

[25] Amos Beimel. Secret-sharing schemes: A survey. In International Conference on
Coding and Cryptology, pages 11–46, Berlin, Heidelberg, 2011. Springer.

[26] Amos Beimel and Benny Chor. Universally ideal secret sharing schemes (prelim-
inary version). In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS,
pages 183–195. Springer, Heidelberg, August 1993.

[27] James Bell, Adrià Gascón, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Mari-
ana Raykova, and Phillipp Schoppmann. Distributed, private, sparse histograms
in the two-server model. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi, editors, ACM CCS 2022, pages 307–321. ACM Press, November 2022.

[28] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93, pages
62–73. ACM Press, November 1993.

[29] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin,
Matan Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran
Tromer, and Madars Virza. Computational integrity with a public random string
from quasi-linear PCPs. In Jean-Sébastien Coron and Jesper Buus Nielsen, ed-
itors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 551–579.
Springer, Heidelberg, April / May 2017.

[30] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-
solomon interactive oracle proofs of proximity. In Ioannis Chatzigiannakis, Chris-
tos Kaklamanis, Dániel Marx, and Donald Sannella, editors, ICALP 2018, vol-
ume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl, July 2018.

[31] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable
zero knowledge with no trusted setup. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
701–732. Springer, Heidelberg, August 2019.

[32] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 459–474. IEEE Computer Society Press, May 2014.

193

[33] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. SNARKs for C: Verifying program executions succinctly and in zero
knowledge. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 90–108. Springer, Heidelberg, August 2013.

[34] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS.
In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 103–128. Springer, Heidelberg, May 2019.

[35] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle
proofs. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II,
volume 9986 of LNCS, pages 31–60. Springer, Heidelberg, October / November
2016.

[36] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable
zero knowledge via cycles of elliptic curves. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 276–
294. Springer, Heidelberg, August 2014.

[37] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct
non-interactive zero knowledge for a von neumann architecture. In Kevin Fu
and Jaeyeon Jung, editors, USENIX Security 2014, pages 781–796. USENIX
Association, August 2014.

[38] Eli Ben-Sasson et al. libSTARK: a C++ library for zk-STARK systems. https:
//github.com/elibensasson/libSTARK, 2018. [Online].

[39] Daniel J Bernstein. Introduction to post-quantum cryptography. In Post-
Quantum Cryptography, pages 1–14. Springer, 2009.

[40] Barry Bishop and Florian Fischer. Iris-integrated rule inference system. In Inter-
national Workshop on Advancing Reasoning on the Web: Scalability and Com-
monsense (ARea 2008). sn, 2008.

[41] Nir Bitansky et al. From extractable collision resistance to succinct non-
interactive arguments of knowledge, and back again. In ITCS, pages 326–349.
ACM, 2012.

[42] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-
nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bern-
hard Seefeld. Prochlo: Strong Privacy for Analytics in the Crowd. In Proceedings
of the 26th Symposium on Operating Systems Principles, SOSP ’17, page 441–459,
New York, NY, USA, 2017. Association for Computing Machinery.

[43] Manuel Blum. Coin flipping by telephone. In Proc. IEEE Spring COMPCOM,
pages 133–137, 1982.

194

https://github.com/elibensasson/libSTARK
https://github.com/elibensasson/libSTARK

[44] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir Wierzyn-
ski. nGraph-HE2: A high-throughput framework for neural network infer-
ence on encrypted data. Cryptology ePrint Archive, Report 2019/947, 2019.
https://eprint.iacr.org/2019/947.

[45] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In Sushil Jajodia and Javier López, editors,
ESORICS 2008, volume 5283 of LNCS, pages 192–206. Springer, Heidelberg,
October 2008.

[46] Jonas Böhler and Florian Kerschbaum. Secure multi-party computation of differ-
entially private heavy hitters. In Giovanni Vigna and Elaine Shi, editors, ACM
CCS 2021, pages 2361–2377. ACM Press, November 2021.

[47] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practi-
cal secure aggregation for privacy-preserving machine learning. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1175–1191. ACM Press, October / November 2017.

[48] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
Zero-knowledge proofs on secret-shared data via fully linear PCPs. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 67–97. Springer, Heidelberg, August 2019.

[49] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
Lightweight techniques for private heavy hitters. In 2021 IEEE Symposium on
Security and Privacy, pages 762–776. IEEE Computer Society Press, May 2021.

[50] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
Arithmetic sketching. In CRYPTO 2023, Part I, LNCS, pages 171–202. Springer,
Heidelberg, August 2023.

[51] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. Efficient zero-knowledge arguments for arithmetic circuits in the dis-
crete log setting. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357. Springer, Heidel-
berg, May 2016.

[52] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 431–444.
Springer, Heidelberg, May 2000.

[53] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition
without a trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019.
https://eprint.iacr.org/2019/1021.

195

https://eprint.iacr.org/2019/947
https://eprint.iacr.org/2019/1021

[54] Joan Boyar, Carsten Lund, and René Peralta. On the communication complexity
of zero-knowledge proofs. Journal of Cryptology, 6(2):65–85, June 1993.

[55] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 337–367. Springer, Heidelberg, April 2015.

[56] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1292–1303.
ACM Press, October 2016.

[57] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-
momorphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS
2012, pages 309–325. ACM, January 2012.

[58] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs
of knowledge. Journal of computer and system sciences, 37(2):156–189, 1988.

[59] Franc Brglez. A neural netlist of 10 combinational benchmark circuits. IEEE
ISCAS: Special Session on ATPG and Fault Simulation, pages 151–158, 1985.

[60] Franc Brglez, David Bryan, and Krzysztof Kozminski. Combinational profiles of
sequential benchmark circuits. In ISCAS, pages 1929–1934. IEEE, 1989.

[61] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and
more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE
Computer Society Press, May 2018.

[62] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs
from DARK compilers. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706. Springer, Heidel-
berg, May 2020.

[63] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropou-
los. SEPIA: Privacy-preserving aggregation of multi-domain network events and
statistics. In USENIX Security 2010, pages 223–240. USENIX Association, Au-
gust 2010.

[64] Andrew E Caldwell et al. Effective iterative techniques for fingerprinting design
IP. IEEE TCAD, 23(2):208–215, 2004.

[65] Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modular de-
sign and composition of succinct zero-knowledge proofs. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 2075–2092. ACM Press, November 2019.

196

[66] Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, January 2000.

[67] J Lawrence Carter and Mark N Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences, 18(2):143–154, 1979.

[68] Benjamin Case, Richa Jain, Alex Koshelev, Andy Leiserson, Daniel Masny, Ben
Savage, Erik Taubeneck, Martin Thomson, and Taiki Yamaguchi. Interoper-
able Private Attribution: A Distributed Attribution and Aggregation Protocol.
Cryptology ePrint Archive, Report 2023/437, 2023. https://eprint.iacr.org/
2023/437.

[69] Encarnacin Castillo et al. IPP@HDL: Efficient Intellectual Property Protection
Scheme for IP Cores. IEEE TVLSI, 15(5):578–591, 2007.

[70] Ann Cavoukian, Jules Polonetsky, and Christopher Wolf. Smart privacy for the
smart grid: embedding privacy into the design of electricity conservation. Identity
in the Information Society, 3(2):275–294, 2010.

[71] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Privacy-preserving stream
aggregation with fault tolerance. In Angelos D. Keromytis, editor, FC 2012,
volume 7397 of LNCS, pages 200–214. Springer, Heidelberg, February / March
2012.

[72] Pankaj Chauhan et al. Verifying IP-core based system-on-chip designs. In ASIC/-
SOC, pages 27–31. IEEE, 1999.

[73] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomor-
phic encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and
Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS,
pages 409–437. Springer, Heidelberg, December 2017.

[74] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda
Lindell, and Ariel Nof. Fast large-scale honest-majority MPC for malicious ad-
versaries. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 34–64. Springer, Heidelberg, August 2018.

[75] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and up-
datable SRS. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

[76] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in
the quantum random oracle model. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019, Part II, volume 11892 of LNCS, pages 1–29. Springer, Heidelberg,
December 2019.

197

https://eprint.iacr.org/2023/437
https://eprint.iacr.org/2023/437

[77] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster
packed homomorphic operations and efficient circuit bootstrapping for TFHE. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume
10624 of LNCS, pages 377–408. Springer, Heidelberg, December 2017.

[78] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE:
Fast fully homomorphic encryption over the torus. Journal of Cryptology,
33(1):34–91, January 2020.

[79] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Im-
proved programmable bootstrapping with larger precision and efficient arith-
metic circuits for TFHE. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part III, volume 13092 of LNCS, pages 670–699. Springer, Hei-
delberg, December 2021.

[80] I. Ciofi et al. Impact of Wire Geometry on Interconnect RC and Circuit Delay.
IEEE Transactions on Electron Devices, 63(6):2488–2496, 2016.

[81] F. Corno, M.S. Reorda, and G. Squillero. RT-level ITC’99 benchmarks and first
ATPG results. IEEE Design Test of Computers, 17(3):44–53, 2000.

[82] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damg̊ard revisited: How to construct a hash function. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 430–448. Springer, Heidel-
berg, August 2005.

[83] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable com-
putation of aggregate statistics. In Proceedings of the 14th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI’17, page 259–282,
USA, 2017. USENIX Association.

[84] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin
Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versa-
tile verifiable computation. In 2015 IEEE Symposium on Security and Privacy,
pages 253–270. IEEE Computer Society Press, May 2015.

[85] Scott E. Coull, Charles V. Wright, Fabian Monrose, Michael P. Collins, and
Michael K. Reiter. Playing devil’s advocate: Inferring sensitive information
from anonymized network traces. In NDSS 2007. The Internet Society, Febru-
ary / March 2007.

[86] Jonathan Cruz et al. An automated configurable trojan insertion framework for
dynamic trust benchmarks. In DATE, pages 1598–1603, 2018.

[87] Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 501–520.
Springer, Heidelberg, August 2006.

198

[88] Ivan Damg̊ard and Mats Jurik. A generalisation, a simplification and some ap-
plications of Paillier’s probabilistic public-key system. In Kwangjo Kim, editor,
PKC 2001, volume 1992 of LNCS, pages 119–136. Springer, Heidelberg, February
2001.

[89] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662.
Springer, Heidelberg, August 2012.

[90] George Danezis, Cédric Fournet, Markulf Kohlweiss, and Santiago Zanella-
Béguelin. Smart meter aggregation via secret-sharing. In Proceedings of the
first ACM workshop on Smart energy grid security, pages 75–80, 2013.

[91] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed
Maleki, Madanlal Musuvathi, and Todd Mytkowicz. Chet: An optimizing com-
piler for fully-homomorphic neural-network inferencing. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2019, page 142–156, New York, NY, USA, 2019. Association
for Computing Machinery.

[92] Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion Stoica. Waldo: A
private time-series database from function secret sharing. In 2022 IEEE Sympo-
sium on Security and Privacy, pages 2450–2468. IEEE Computer Society Press,
May 2022.

[93] Hannah Davis, Christopher Patton, Mike Rosulek, and Phillipp Schoppmann.
Verifiable Distributed Aggregation Functions. PoPETs, 2023(4):578–592, July
2023.

[94] Leo de Castro and Antigoni Polychroniadou. Lightweight, maliciously secure
verifiable function secret sharing. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 150–179.
Springer, Heidelberg, May / June 2022.

[95] Anil Deshpande. Verification of IP-Core based SoC’s. In ISQED, pages 433–436.
IEEE, 2008.

[96] John R Douceur. The Sybil Attack. In International workshop on peer-to-peer
systems, pages 251–260. Springer, 2002.

[97] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to en-
crypted data with high throughput and accuracy. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning -
Volume 48, ICML’16, page 201–210. JMLR.org, 2016.

199

[98] Cynthia Dwork. Differential privacy: A survey of results. In International confer-
ence on theory and applications of models of computation, pages 1–19. Springer,
2008.

[99] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. Our data, ourselves: Privacy via distributed noise generation. In
Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 486–
503. Springer, Heidelberg, May / June 2006.

[100] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors,
TCC 2006, volume 3876 of LNCS, pages 265–284. Springer, Heidelberg, March
2006.

[101] Jacob Eberhardt and Stefan Tai. ZoKrates - Scalable Privacy-Preserving Off-
Chain Computations. In iThings/GreenCom/CPSCom/SmartData, pages 1084–
1091. IEEE, 2018.

[102] Tariq Elahi, George Danezis, and Ian Goldberg. PrivEx: Private collection of
traffic statistics for anonymous communication networks. In Gail-Joon Ahn, Moti
Yung, and Ninghui Li, editors, ACM CCS 2014, pages 1068–1079. ACM Press,
November 2014.

[103] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Random-
ized aggregatable privacy-preserving ordinal response. In Gail-Joon Ahn, Moti
Yung, and Ninghui Li, editors, ACM CCS 2014, pages 1054–1067. ACM Press,
November 2014.

[104] David Evans, Vladimir Kolesnikov, and Mike Rosulek. A pragmatic introduction
to secure multi-party computation. Found. Trends Priv. Secur., 2(2–3):70–246,
dec 2018.

[105] Giulia Fanti, Vasyl Pihur, and Úlfar Erlingsson. Building a RAPPOR with the
Unknown: Privacy-Preserving Learning of Associations and Data Dictionaries.
Proc. Priv. Enhancing Technol., 2016(3):41–61, 2016.

[106] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86,
volume 263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987.

[107] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for pri-
vacy in unconditional multi-party computation (extended abstract). In Hugo
Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 121–136. Springer,
Heidelberg, August 1998.

200

[108] Lars Folkerts, Charles Gouert, and Nektarios Georgios Tsoutsos. REDsec: Run-
ning encrypted DNNs in seconds. Cryptology ePrint Archive, Report 2021/1100,
2021. https://eprint.iacr.org/2021/1100.

[109] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput
secure three-party computation for malicious adversaries and an honest majority.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 225–255. Springer, Heidelberg, April / May
2017.

[110] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permuta-
tions over lagrange-bases for oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/
2019/953.

[111] Steven D. Galbraith, Chris Heneghan, and James F. McKee. Tunable balancing
of RSA. In Colin Boyd and Juan Manuel González Nieto, editors, ACISP 05,
volume 3574 of LNCS, pages 280–292. Springer, Heidelberg, July 2005.

[112] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 465–482. Springer, Heidelberg,
August 2010.

[113] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
626–645. Springer, Heidelberg, May 2013.

[114] Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme. Stanford
university Stanford, 2009.

[115] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013.

[116] Abhijit Ghosh et al. Estimation of average switching activity in combinational
and sequential circuits. In DAC, volume 29, pages 253–269. ACM/EDAC/IEEE,
1992.

[117] Thanos Giannopoulos and Dimitris Mouris. Privacy preserving medical data
analytics using secure multi party computation. an end-to-end use case. Master’s
thesis, National and Kapodistrian University of Athens, 2018.

201

https://eprint.iacr.org/2021/1100
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953

[118] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 640–658. Springer, Heidelberg, May 2014.

[119] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for NP. Journal of Cryptology, 9(3):167–190, June
1996.

[120] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

[121] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. Journal
of the ACM, 38(3):691–729, July 1991.

[122] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology, 7(1):1–32, December 1994.

[123] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating com-
putation: interactive proofs for muggles. In Richard E. Ladner and Cynthia
Dwork, editors, 40th ACM STOC, pages 113–122. ACM Press, May 2008.

[124] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[125] Charles Gouert and Nektarios Georgios Tsoutsos. ROMEO: Conversion and
Evaluation of HDL Designs in the Encrypted Domain. In DAC, pages 1–6.
ACM/EDAC/IEEE, 2020.

[126] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, Heidelberg, December 2010.

[127] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

[128] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers.
Updatable and universal common reference strings with applications to zk-
SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 698–728. Springer, Heidelberg, August
2018.

[129] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowl-
edge from simulation-extractable SNARKs. In Jonathan Katz and Hovav

202

Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 581–
612. Springer, Heidelberg, August 2017.

[130] Jayavardhana Gubbi et al. Internet of Things (IoT): A vision, architectural
elements, and future directions. Future generation computer systems, 29(7):1645–
1660, 2013.

[131] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved RNS variant of the
BFV homomorphic encryption scheme. In Mitsuru Matsui, editor, CT-RSA 2019,
volume 11405 of LNCS, pages 83–105. Springer, Heidelberg, March 2019.

[132] Justin Hsu, Sanjeev Khanna, and Aaron Roth. Distributed Private Heavy Hit-
ters. In Proceedings of the 39th International Colloquium Conference on Au-
tomata, Languages, and Programming - Volume Part I, ICALP’12, page 461–472,
Berlin, Heidelberg, 2012. Springer-Verlag.

[133] Tsung-Wei Huang and Martin DF Wong. OpenTimer: A high-performance tim-
ing analysis tool. In ICCAD, pages 895–902. IEEE, 2015.

[134] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. On Deploy-
ing Secure Computing: Private Intersection-Sum-with-Cardinality. In EuroS&P,
pages 370–389, Genoa, Italy, 2020. IEEE.

[135] Jim Isaak and Mina J Hanna. User data privacy: Facebook, Cambridge Analyt-
ica, and privacy protection. Computer, 51(8):56–59, 2018.

[136] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 145–161. Springer, Heidelberg, August 2003.

[137] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on
oblivious transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 572–591. Springer, Heidelberg, August 2008.

[138] Pranav Jangir, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj
Gopal, and Somya Sangal. Vogue: Faster computation of private heavy hitters.
Cryptology ePrint Archive, Paper 2022/1561, 2022. https://eprint.iacr.org/
2022/1561.

[139] Pranav Jangir, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj
Gopal, and Somya Sangal. Vogue: Faster computation of private heavy hitters.
Cryptology ePrint Archive, Report 2022/1561, 2022. https://eprint.iacr.

org/2022/1561.

203

https://eprint.iacr.org/2022/1561
https://eprint.iacr.org/2022/1561
https://eprint.iacr.org/2022/1561
https://eprint.iacr.org/2022/1561

[140] Yier Jin and Yiorgos Makris. Hardware trojan detection using path delay fin-
gerprint. In IEEE International Workshop on Hardware-Oriented Security and
Trust (HOST), pages 51–57. IEEE, 2008.

[141] Yier Jin and Yiorgos Makris. Proof carrying-based information flow tracking for
data secrecy protection and hardware trust. In VTS, pages 252–257. IEEE, 2012.

[142] Marc Joye and Benôıt Libert. A scalable scheme for privacy-preserving aggrega-
tion of time-series data. In Ahmad-Reza Sadeghi, editor, FC 2013, volume 7859
of LNCS, pages 111–125. Springer, Heidelberg, April 2013.

[143] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho
Lee. Over 100x faster bootstrapping in fully homomorphic encryption through
memory-centric optimization with gpus. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 114–148, 2021.

[144] Andrew B Kahng et al. Watermarking techniques for intellectual property pro-
tection. In DAC, pages 776–781. IEEE/ACM, 1998.

[145] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-
party computation. Cryptology ePrint Archive, Report 2011/272, 2011. https:
//eprint.iacr.org/2011/272.

[146] Ramesh Karri et al. Trustworthy hardware: Identifying and classifying hardware
Trojans. IEEE Computer, 43(10):39–46, 2010.

[147] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chap-
man and Hall/CRC, 2014.

[148] Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM
CCS 2020, pages 1575–1590. ACM Press, November 2020.

[149] Brian Keng and Andreas Veneris. Path-Directed Abstraction and Refinement for
SAT-Based Design Debugging. IEEE TCAD, 32(10):1609–1622, 2013.

[150] Christoph Kern and Mark R Greenstreet. Formal verification in hardware design:
a survey. ACM TODAES, 4(2):123–193, 1999.

[151] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In 24th ACM STOC, pages 723–732. ACM Press, May 1992.

[152] Miran Kim, Xiaoqian Jiang, Kristin Lauter, Elkhan Ismayilzada, and Shayan
Shams. Secure human action recognition by encrypted neural network inference.
Nature Communications, 13(1):4799, 2022.

[153] Tommy Koens, Coen Ramaekers, and Cees Van Wijk. Efficient Zero-Knowledge
Range Proofs in Ethereum. Technical report, Technical Report, 2018.

204

https://eprint.iacr.org/2011/272
https://eprint.iacr.org/2011/272

[154] Charalambos Konstantinou, Anastasis Keliris, and Michail Maniatakos. Privacy-
preserving functional IP verification utilizing fully homomorphic encryption. In
DATE, pages 333–338. EDAA, 2015.

[155] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, Mah-
moud F. Sayed, Elaine Shi, and Nikos Triandopoulos. TRUESET: Faster verifi-
able set computations. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security
2014, pages 765–780. USENIX Association, August 2014.

[156] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, and
Dawn Song. MIRAGE: Succinct arguments for randomized algorithms with ap-
plications to universal zk-SNARKs. In Srdjan Capkun and Franziska Roesner,
editors, USENIX Security 2020, pages 2129–2146. USENIX Association, August
2020.

[157] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark: A frame-
work for efficient verifiable computation. In 2018 IEEE Symposium on Security
and Privacy, pages 944–961. IEEE Computer Society Press, May 2018.

[158] Ted Krovetz. Message authentication on 64-bit architectures. In Eli Biham
and Amr M. Youssef, editors, SAC 2006, volume 4356 of LNCS, pages 327–341.
Springer, Heidelberg, August 2007.

[159] Fadi J Kurdahi and Alice C Parker. PLEST: a program for area estimation of
VLSI integrated circuits. In DAC, pages 467–473. ACM/EDAC/IEEE, 1986.

[160] Iraklis Leontiadis, Kaoutar Elkhiyaoui, and Refik Molva. Private and dynamic
time-series data aggregation with trust relaxation. In Dimitris Gritzalis, Aggelos
Kiayias, and Ioannis G. Askoxylakis, editors, CANS 14, volume 8813 of LNCS,
pages 305–320. Springer, Heidelberg, October 2014.

[161] Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva. PUDA
- privacy and unforgeability for data aggregation. In Michael Reiter and David
Naccache, editors, CANS 15, LNCS, pages 3–18. Springer, Heidelberg, December
2015.

[162] Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu.
Private join and compute from PIR with default. In Mehdi Tibouchi and Huax-
iong Wang, editors, ASIACRYPT 2021, Part II, volume 13091 of LNCS, pages
605–634. Springer, Heidelberg, December 2021.

[163] Rensis Likert. A technique for the measurement of attitudes. Archives of psy-
chology, 1932.

[164] Yehuda Lindell. Fast secure two-party ECDSA signing. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages
613–644. Springer, Heidelberg, August 2017.

205

[165] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. In Moni Naor, editor,
EUROCRYPT 2007, volume 4515 of LNCS, pages 52–78. Springer, Heidelberg,
May 2007.

[166] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi.
ObliVM: A programming framework for secure computation. In 2015 IEEE Sym-
posium on Security and Privacy, pages 359–376. IEEE Computer Society Press,
May 2015.

[167] Google LLC. Open Location Code. https://github.com/google/open-location-
code, 2019.

[168] Michael Luby and Charles Rackoff. How to construct pseudo-random permu-
tations from pseudo-random functions (abstract). In Hugh C. Williams, editor,
CRYPTO’85, volume 218 of LNCS, page 447. Springer, Heidelberg, August 1986.

[169] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic
methods for interactive proof systems. In 31st FOCS, pages 2–10. IEEE Com-
puter Society Press, October 1990.

[170] Prince Mahajan et al. Depot: Cloud storage with minimal trust. ACM TOCS,
29(4):12, 2011.

[171] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh. Rab-
bit: Efficient comparison for secure multi-party computation. In Nikita Borisov
and Claudia Dı́az, editors, FC 2021, Part I, volume 12674 of LNCS, pages 249–
270. Springer, Heidelberg, March 2021.

[172] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure
two-party computation system. In Matt Blaze, editor, USENIX Security 2004,
pages 287–302. USENIX Association, August 2004.

[173] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKs from linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press, November 2019.

[174] Oleg Mazonka, Nektarios Georgios Tsoutsos, and Michail Maniatakos. Cryp-
toleq: A heterogeneous abstract machine for encrypted and unencrypted compu-
tation. IEEE Transactions on Information Forensics and Security, 11(9):2123–
2138, 2016.

[175] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000.

206

[176] José Monteiro et al. Estimation of average switching activity in combinational
logic circuits using symbolic simulation. IEEE TCAD, 16(1):121–127, 1997.

[177] Gabe Moretti et al. Your Core – My Problem? Integration and Verification of
IP. In DAC, pages 170–171. IEEE/ACM, 2001.

[178] Dimitris Mouris, Charles Gouert, and Nektarios Georgios Tsoutsos. Privacy-
Preserving IP Verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 41(7):2010–2023, 2021.

[179] Dimitris Mouris, Charles Gouert, and Nektarios Georgios Tsoutsos. zk-Sherlock:
Exposing Hardware Trojans in Zero-Knowledge. In 2022 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 170–175, 2022.

[180] Dimitris Mouris, Daniel Masny, Ni Trieu, Shubho Sengupta, Prasad Bud-
dhavarapu, and Benjamin M Case. Delegated Private Matching for Compute.
Proceedings on Privacy Enhancing Technologies, 2024(2):1–24, July 2024.

[181] Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos. PLASMA:
Private, lightweight aggregated statistics against malicious adversaries with full
security. Cryptology ePrint Archive, Report 2023/080, 2023. https://eprint.
iacr.org/2023/080.

[182] Dimitris Mouris and Nektarios Georgios Tsoutsos. Pythia: Intellectual Property
Verification in Zero-Knowledge. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), pages 1–6, 2020.

[183] Dimitris Mouris and Nektarios Georgios Tsoutsos. Masquerade: Verifiable multi-
party aggregation with secure multiplicative commitments. Cryptology ePrint
Archive, Report 2021/1370, 2021. https://eprint.iacr.org/2021/1370.

[184] Dimitris Mouris and Nektarios Georgios Tsoutsos. Zilch: A Framework for De-
ploying Transparent Zero-Knowledge Proofs. IEEE Transactions on Information
Forensics and Security, 16:3269–3284, 2021.

[185] Dimitris Mouris, Nektarios Georgios Tsoutsos, and Michail Maniatakos. TERMi-
nator Suite: Benchmarking Privacy-Preserving Architectures. IEEE Computer
Architecture Letters, 17(2):122–125, 2018.

[186] David Naccache and Jacques Stern. A new public key cryptosystem based on
higher residues. In Li Gong and Michael K. Reiter, editors, ACM CCS 98, pages
59–66. ACM Press, November 1998.

[187] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical
report, Manubot, 2019.

207

https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2021/1370

[188] Moni Naor, Benny Pinkas, and Eyal Ronen. How to (not) share a password:
Privacy preserving protocols for finding heavy hitters with adversarial behavior.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, pages 1369–1386. ACM Press, November 2019.

[189] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large
sparse datasets. In 2008 IEEE Symposium on Security and Privacy, pages 111–
125. IEEE Computer Society Press, May 2008.

[190] Neha Narula, Willy Vasquez, and Madars Virza. zkLedger: Privacy-Preserving
Auditing for Distributed Ledgers. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages 65–80, 2018.

[191] Mahadevamurty Nemani and Farid N Najm. High-level area and power estima-
tion for VLSI circuits. IEEE TCAD, 18(6):697–713, 1999.

[192] MA Nourian, Mahdi Fazeli, and David Hély. Hardware trojan detection using
an advised genetic algorithm based logic testing. JETTA, 34(4):461–470, 2018.

[193] Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14),
pages 305–319, 2014.

[194] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages
223–238. Springer, Heidelberg, May 1999.

[195] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Security
and Privacy, pages 238–252. IEEE Computer Society Press, May 2013.

[196] David A Patterson and John L Hennessy. Computer Organization and Design
MIPS Edition: The Hardware/Software Interface. Newnes, 2013.

[197] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS,
pages 129–140. Springer, Heidelberg, August 1992.

[198] Antigoni Polychroniadou, Gilad Asharov, Benjamin E. Diamond, Tucker Balch,
Hans Buehler, Richard Hua, Suwen Gu, Greg Gimler, and Manuela Veloso. Prime
Match: A Privacy-Preserving Inventory Matching System, 2023.

[199] John Proos and Christof Zalka. Shor’s Discrete Logarithm Quantum Algorithm
for Elliptic Curves. Quantum Info. Comput., 3(4):317–344, July 2003.

208

[200] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. Heavy
hitter estimation over set-valued data with local differential privacy. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 192–203. ACM Press, October 2016.

[201] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks
and privacy homomorphisms. Foundations of secure computation, 4(11):169–180,
1978.

[202] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications of the
Association for Computing Machinery, 21(2):120–126, February 1978.

[203] Masoud Rostami et al. Hardware security: Threat models and metrics. In
ICCAD, pages 819–823. IEEE/ACM, 2013.

[204] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. A primer on hardware
security: Models, methods, and metrics. Proceedings of the IEEE, 102(8):1283–
1295, 2014.

[205] Jarrod A Roy, Farinaz Koushanfar, and Igor L Markov. EPIC: Ending piracy of
integrated circuits. In DATE, pages 1069–1074. ACM, 2008.

[206] Hassan Salmani, Mohammad Tehranipoor, and Ramesh Karri. On design vul-
nerability analysis and trust benchmarks development. In ICCD, pages 471–474.
IEEE, 2013.

[207] Fred B Schneider. Byzantine generals in action: Implementing fail-stop proces-
sors. ACM Transactions on Computer Systems (TOCS), 2(2):145–154, 1984.

[208] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252.
Springer, Heidelberg, August 1990.

[209] Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. Trinocchio:
Privacy-preserving outsourcing by distributed verifiable computation. In Mark
Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors, ACNS 16, volume
9696 of LNCS, pages 346–366. Springer, Heidelberg, June 2016.

[210] Srinath Setty, Andrew J Blumberg, and Michael Walfish. Toward practical and
unconditional verification of remote computations. In USENIX HotOS, vol-
ume 13, pages 29–29, 2011.

[211] Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

209

[212] Adi Shamir. IP = PSPACE (interactive proof = polynomial space). In FOCS,
pages 11–15. IEEE, 1990.

[213] Adi Shamir, Ronald L Rivest, and Leonard M Adleman. Mental poker. In The
mathematical gardner, pages 37–43. Springer, 1981.

[214] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn
Song. Privacy-preserving aggregation of time-series data. In NDSS 2011. The
Internet Society, February 2011.

[215] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press, Novem-
ber 1994.

[216] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[217] Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. Cryptology ePrint Archive, Report 2004/332, 2004. https://eprint.

iacr.org/2004/332.

[218] Michael Sipser et al. Introduction to the Theory of Computation, volume 2.
Thomson Course Technology Boston, 2006.

[219] Yannis Smaragdakis and Martin Bravenboer. Using Datalog for fast and easy pro-
gram analysis. In International Datalog 2.0 Workshop, pages 245–251. Springer,
2010.

[220] Robert F Sproull and Ivan E Sutherland. Logical effort: Designing for speed on
the back of an envelope. IEEE Advanced Research in VLSI, 9:219, 1991.

[221] Manfred Stadler et al. Functional verification of intellectual properties (IP): a
simulation-based solution for an application-specific instruction-set processor. In
IEEE ITC, pages 414–420, 1999.

[222] Succinct Computational Integrity and Privacy Research (SCIPR Lab). libsnark.
https://github.com/scipr-lab/libsnark, 2014. [Online].

[223] Hassan Takabi, James BD Joshi, and Gail-Joon Ahn. Security and privacy chal-
lenges in cloud computing environments. IEEE S&P, 8(6):24–31, 2010.

[224] Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hardware trojan
taxonomy and detection. IEEE Design & Test of Computers, 27(1):10–25, 2010.

[225] Mohammad Tehranipoor and Cliff Wang. Introduction to hardware security and
trust. Springer Science & Business Media, 2011.

210

https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://github.com/scipr-lab/libsnark

[226] Randy Torrance and Dick James. The state-of-the-art in IC reverse engineering.
In CHES, pages 363–381. Springer, 2009.

[227] Nektarios Georgios Tsoutsos, Charalambos Konstantinou, and Michail Mani-
atakos. Advanced techniques for designing stealthy hardware trojans. In DAC,
pages 1–4. ACM, 2014.

[228] Nektarios Georgios Tsoutsos and Michail Maniatakos. Fabrication attacks: Zero-
overhead malicious modifications enabling modern microprocessor privilege esca-
lation. IEEE TETC, 2(1):81–93, 2013.

[229] Nektarios Georgios Tsoutsos and Michail Maniatakos. The HEROIC framework:
Encrypted computation without shared keys. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 34(6):875–888, 2015.

[230] Nektarios Georgios Tsoutsos and Michail Maniatakos. Efficient Detection for
Malicious and Random Errors in Additive Encrypted Computation. IEEE Trans-
actions on Computers, 67(1):16–31, 2017.

[231] Adithya Vadapalli, Ryan Henry, and Ian Goldberg. Duoram: A Bandwidth-
Efficient Distributed ORAM for 2- and 3-Party Computation. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 3907–3924, Anaheim, CA,
August 2023. USENIX Association.

[232] Adithya Vadapalli, Kyle Storrier, and Ryan Henry. Sabre: Sender-anonymous
messaging with fast audits. In 2022 IEEE Symposium on Security and Privacy,
pages 1953–1970. IEEE Computer Society Press, May 2022.

[233] William Vickrey. Optimal auctions. The American Economic Review, 71(3):381–
392, 1981.

[234] Paul Voigt and Axel Von dem Bussche. The EU general data protection reg-
ulation (GDPR). A Practical Guide, 1st Ed., Cham: Springer International
Publishing, 10(3152676):10–5555, 2017.

[235] Riad SWahby et al. Reference implementation of Hyrax and Bulletproofs. https:
//github.com/hyraxZK/hyraxZK, 2018. [Online].

[236] Riad S. Wahby, Max Howald, Siddharth J. Garg, abhi shelat, and Michael Wal-
fish. Verifiable ASICs. In 2016 IEEE Symposium on Security and Privacy, pages
759–778. IEEE Computer Society Press, May 2016.

[237] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, abhi shelat, Justin Thaler, Michael
Walfish, and Thomas Wies. Full accounting for verifiable outsourcing. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 2017, pages 2071–2086. ACM Press, October / November 2017.

211

https://github.com/hyraxZK/hyraxZK
https://github.com/hyraxZK/hyraxZK

[238] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and
Michael Walfish. Efficient RAM and control flow in verifiable outsourced com-
putation. In NDSS 2015. The Internet Society, February 2015.

[239] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.
Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium on
Security and Privacy, pages 926–943. IEEE Computer Society Press, May 2018.

[240] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. FANCI: iden-
tification of stealthy malicious logic using boolean functional analysis. In CCS,
pages 697–708. ACM, 2013.

[241] Michael Walfish and Andrew J Blumberg. Verifying computations without reex-
ecuting them. Communications of the ACM, 58(2):74–84, 2015.

[242] Peter Wegner. A technique for counting ones in a binary computer. Communi-
cations of the ACM, 3(5):322, 1960.

[243] Neil HE Weste and David Harris. CMOS VLSI Design: A Circuits and Systems
Perspective. Pearson Education India, 2015.

[244] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys - A Free Verilog
Synthesis Suite. In Austrian Workshop on Microelectronics (Austrochip), 2013.

[245] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. Libra: Succinct zero-knowledge proofs with optimal prover compu-
tation. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 733–764. Springer, Heidelberg, August
2019.

[246] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).
In 23rd FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

[247] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended ab-
stract). In 27th FOCS, pages 162–167. IEEE Computer Society Press, October
1986.

[248] ZCash. Parameter Generation Ceremony and Destruction of Toxic Waste. https:
//z.cash/technology/paramgen/, 2016.

[249] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent
polynomial delegation and its applications to zero knowledge proof. In 2020 IEEE
Symposium on Security and Privacy, pages 859–876. IEEE Computer Society
Press, May 2020.

[250] Jie Zhang et al. VeriTrust: Verification for Hardware Trust. IEEE TCAD,
34(7):1148–1161, 2015.

212

https://z.cash/technology/paramgen/
https://z.cash/technology/paramgen/

[251] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. vRAM: Faster verifiable RAM with program-
independent preprocessing. In 2018 IEEE Symposium on Security and Privacy,
pages 908–925. IEEE Computer Society Press, May 2018.

[252] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang, Jiangfeng Cao, Boyan
Zhao, Zhongpu Wang, Yuhui Zhang, Jiameng Ying, Lixin Zhang, and Dan Meng.
Enabling rack-scale confidential computing using heterogeneous trusted execu-
tion environment. In 2020 IEEE Symposium on Security and Privacy, pages
1450–1465. IEEE Computer Society Press, May 2020.

[253] Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei Li.
Federated Heavy Hitters Discovery with Differential Privacy. In Silvia Chiappa
and Roberto Calandra, editors, Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of
Machine Learning Research, pages 3837–3847, Online, 26–28 Aug 2020. PMLR.

213

Appendix A

PUBLICATIONS INCLUDED IN THIS THESIS

Chapter 3: D. Mouris and N.G. Tsoutsos, “Zilch: A Framework for Deploying Trans-

parent Zero-Knowledge Proofs.” IEEE Transactions on Information Forensics

and Security, vol. 16, pp. 3269-3284, 2021. [184]

Chapter 4: D. Mouris and N.G. Tsoutsos, “Pythia: Intellectual Property Verification

in Zero-Knowledge.” 57th ACM/IEEE Design Automation Conference (DAC),

San Francisco, CA, USA, pp. 1-6, 2020. [182]

Chapter 4: D. Mouris, C. Gouert, and N.G. Tsoutsos, “Privacy-preserving IP veri-

fication.” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 41, no. 7, pp 2010–2023, 2021. [178]

Chapter 5: D. Mouris, C. Gouert, and N.G. Tsoutsos, “zk-Sherlock: Exposing Hard-

ware Trojans in Zero-Knowledge.” IEEE Computer Society Annual Symposium

on VLSI (ISVLSI), Nicosia, Cyprus, pp. 170-175, 2022. [179]

Chapter 6: D. Mouris and N.G. Tsoutsos, “Masquerade: Verifiable Multi-Party Ag-

gregation with Secure Multiplicative Commitments.” Cryptology ePrint Archive,

Report 2021/1370, 2021. [183]

Chapter 7: D. Mouris, P. Sarkar, and N.G. Tsoutsos, “PLASMA: Private, Lightweight

Aggregated Statistics against Malicious Adversaries.” Cryptology ePrint Archive,

Report 2023/080, 2023. [181]

214

Appendix B

PERMISSIONS

Chapter 3: The contents of this chapter have been published in [184].

Permission: © 2021 IEEE. Reprinted, with permission, from Dimitris Mouris

and Nektarios G. Tsoutsos, “Zilch: A Framework for Deploying Transparent

Zero-Knowledge Proofs,” IEEE Transactions on Information Forensics and Se-

curity, 22 April 2021.

Chapter 4: The contents of this chapter have been published in [182].

Permission: © 2020 IEEE. Reprinted, with permission, from Dimitris Mouris

and Nektarios G. Tsoutsos, “Pythia: Intellectual Property Verification in Zero-

Knowledge,” 57th ACM/IEEE Design Automation Conference (DAC), 20-24 July

2020.

Chapter 4: The contents of this chapter have been published in [178].

Permission: © 2021 IEEE. Reprinted, with permission, from Dimitris Mouris

and Nektarios G. Tsoutsos, “Privacy-Preserving IP Verification,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 24 August

2021.

Chapter 5: The contents of this chapter have been published in [179].

Permission: © 2022 IEEE. Reprinted, with permission, from Dimitris Mouris

and Nektarios G. Tsoutsos, “zk-Sherlock: Exposing Hardware Trojans in Zero-

Knowledge,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI),

04-06 July 2022.

215

Chapter 6: The contents of this chapter have been published in [183].

Permission: © 2021. Reprinted, with permission, from Dimitris Mouris and

Nektarios G. Tsoutsos, “Masquerade: Verifiable Multi-Party Aggregation with

Secure Multiplicative Commitments,” Cryptology ePrint Archive.

Chapter 7: The contents of this chapter have been published in [181].

Permission: © 2023. Reprinted, with permission, from Dimitris Mouris, Pratik

Sarkar, and Nektarios G. Tsoutsos, “PLASMA: Private, Lightweight Aggregated

Statistics against Malicious Adversaries,” Cryptology ePrint Archive.

216

Appendix C

ADDITIONAL PUBLICATIONS

• C. Gouert, D. Mouris and N.G. Tsoutsos, “SoK: New Insights into Fully Ho-

momorphic Encryption Libraries via Standardized Benchmarks.” Proceedings on

Privacy Enhancing Technologies (PoPETS), vol. 2023, issue. 3, pp. 154-172,

2023

• D. Mouris, C. Gouert and N.G. Tsoutsos, “MPℓ ◦ C: Privacy-Preserving IP

Verification Using Logic Locking and Secure Multiparty Computation.” IEEE

29th International Symposium on On-Line Testing and Robust System Design

(IOLTS), 2023

• C. Gouert, D. Mouris and N.G. Tsoutsos, “HELM: Navigating Homomorphic

Encryption through Gates and Lookup Tables.” Cryptology ePrint Archive, Re-

port 2023/1382, 2023

• D. Mouris and N.G. Tsoutsos, “NFTs For 3D Models: Sustaining Ownership

In Industry 4.0.” In IEEE Consumer Electronics Magazine, 2022

• D. Mouris, C. Gouert, N. Gupta and N.G. Tsoutsos, “Peak Your Frequency:

Advanced Search of 3D CAD Files in the Fourier Domain.” In IEEE Access, vol.

8, pp. 141481-141496, 2020

• P. Cronin, C. Gouert, D. Mouris, N.G. Tsoutsos, and C. Yang, “Covert Data

Exfiltration Using Light and Power Channels.” IEEE 37th International Confer-

ence on Computer Design (ICCD), 2019

217

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Privacy-Enhancing Technologies (PETs)
	1.2 Problem Statement
	1.3 Contributions
	1.3.1 General-Purpose Transparent Zero-Knowledge Proofs
	1.3.2 Functional and Security Verification of Intellectual Property (IP)
	1.3.3 Privacy-Preserving Analytics

	2 Preliminaries
	2.1 Models of Computation
	2.2 Principles of ZKPs and VC
	2.2.1 Verifiable Computation
	2.2.2 Zero-Knowledge Proofs
	2.2.3 Properties of Proof Systems
	2.2.4 A Primer on zk-STARKs
	2.2.5 Fiat-Shamir Heuristic

	2.3 Lightweight Pseudorandom Functions with Extended Input
	2.4 Paillier Cryptosystem
	2.5 Commitment Schemes
	2.6 Secret Sharing
	2.7 Distributed Point Functions (DPF)
	2.7.1 Incremental DPF (IDPF)
	2.7.2 Verifiable DPF (VDPF)

	3 Zilch: A Framework for Deploying Transparent Zero-Knowledge Proofs
	3.1 Introduction
	3.2 The Zilch Framework
	3.2.1 Our Threat Model
	3.2.2 Key Observations in our Methodology
	3.2.3 Overview of our Framework
	3.2.4 Zilch Front-End Design
	3.2.5 Zilch Back-End Description
	3.2.6 Application Programming Interface (API) for Zilch

	3.3 Real Applications in Zilch
	3.3.1 Vickrey Auction using Zilch API
	3.3.2 Zero-Knowledge Range Proofs with ZeroJava

	3.4 Experimental Evaluation
	3.4.1 Our Benchmarks
	3.4.2 Experimental Results
	3.4.3 Comparison with Previous Works
	3.4.4 Zilch Experiments using our Real-life Case Studies

	3.5 Related Work
	3.6 Concluding Remarks

	4 Privacy-Preserving IP Verification
	4.1 Introduction
	4.2 The Pythia Framework
	4.2.1 Threat Model
	4.2.2 Overview of Pythia
	4.2.3 From IP Netlists to ZK-friendly Encoding
	4.2.4 Zero-Knowledge Circuit Evaluation

	4.3 Library of Modules
	4.3.1 Area Verification Module
	4.3.2 Performance Verification Module
	4.3.3 Power Verification Module

	4.4 Pythia's Optimizer
	4.4.1 Efficient Wire Placement Using Register Allocation
	4.4.2 Bit-Packing
	4.4.3 Execution Parallelism

	4.5 Experimental Results
	4.5.1 Experimental Setup
	4.5.2 Performance Evaluation.

	4.6 Related Work
	4.7 Concluding Remarks

	5 zk-Sherlock: Exposing Hardware Trojans in Zero-Knowledge
	5.1 Introduction
	5.2 Zero-Knowledge Trojan Detection
	5.2.1 Threat Model
	5.2.2 Overview of our Methodology
	5.2.3 Serialized Encoding for State Machine
	5.2.4 State Machine Evaluation

	5.3 Experimental Results
	5.4 Related Work
	5.5 Concluding Remarks

	6 Masquerade: Verifiable Multi-Party Aggregation with Secure Multiplicative Commitments
	6.1 Introduction
	6.2 Our Problem Statement
	6.2.1 Overview
	6.2.2 Threat Model

	6.3 Private Data Aggregation Protocol
	6.3.1 Our Multiplicative Commitment Scheme
	6.3.2 Homomorphic Commitments on Homomorphic Data
	6.3.3 Public Verifiability for Aggregator
	6.3.4 Protecting Against Malicious Clients
	6.3.5 Enabling Categorical Data Aggregation
	6.3.6 Security Sketch

	6.4 Experimental Evaluations
	6.4.1 Experimental Setup
	6.4.2 Performance Evaluation

	6.5 Related Work
	6.6 Concluding Remarks

	7 PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries
	7.1 Introduction
	7.1.1 Our Contributions
	7.1.2 Related Work

	7.2 Technical Overview
	7.2.1 Histogram Protocol of Poplar
	7.2.2 Our Basic Histogram Protocol
	7.2.3 Heavy-Hitters from T-Prefix Count
	7.2.4 T-Prefix Count Queries Oracle from VIDPF
	7.2.4.1 Verifiable Incremental DPF (VIDPF)
	7.2.4.2 Implementing T-Prefix Count Queries

	7.3 Private Heavy Hitters
	7.4 Proof of Heavy-Hitters Protocol ΠHH
	7.4.1 Proof Sketch
	7.4.2 Formal Proof Details of Theorem 4

	7.5 Batched Consistency Check
	7.6 Experimental Evaluations
	7.7 Analysis of Batched Consistency check
	7.8 Heavy Hitters with different Thresholds
	7.9 Compatibility with Differential Privacy
	7.10 Concluding Remarks

	8 Conclusion
	Bibliography
	A Publications Included In This Thesis
	B Permissions
	C Additional Publications

