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ABSTRACT 

The purpose of this thesis is to develop a relationship between the development 

of a rail defect and the presence of a geometry defect prior to the occurrence of the rail 

defect. This was done with the use of a Class 1 Railroad‟s geometry and rail defect 

data for their whole 22,000 mile system over a five year period. Regression analyses 

were performed using multilinear regression and multivariate adaptive regression 

splines (MARS) that showed that the occurrence of a geometry exception or defect 

resulted in approximately 30% loss in rail life. A Bayesian Network was then 

developed with the use of NETICA. This network showed that the presence of a single 

geometry defect increased the likelihood of a rail defect by approximately seven, with 

multiple geometry defects increasing this likelihood even more. These findings show 

that geometry defects do have an impact on the development of a rail defect. 
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Chapter 1 

INTRODUCTION 

The goal of this project was to determine and then develop engineering and/or 

statistical relationships between different types of geometry exceptions and the 

development of rail defects and failures. A detailed look at the relationships used can 

be seen in the BACKGROUND AND LITERATURE REVIEW chapter. The data 

used to determine these relationships was provided by a major US Class 1 railroad 

(CSX) to include rail and geometry defect data for a five year period. This data was 

correlated between the geometry exceptions and rail defects. The project focused 

primarily on developing statistical models with engineering reasoning behind their 

development. The project was broken into four different tasks. 

The first task was the collection, consolidation, and processing of the data. The 

data collected included the following: 

 2.5 years of CSX rail defect data 

 5 years of CSX rail defect data 

 5 years of annual CSX tonnage data 

 5 years of Vertical Track Interaction data 

 CSX track curvature data 

This data was consolidated and processed using a combination of Excel and 

MATLab. More information of data collection and processing can be found in the 

DISCUSSION OF DATA chapter. 
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The second task was to determine the key parameters to be considered in the 

analysis. The parameters were determined by performing different data correlations 

and with the use of different regression models. This can be seen in more detail in the 

MULTILINEAR AND MARS ANALYSES section. 

The third task was to develop statistical relationships and models using the 

constructed database and the determined key parameters. These models can be seen in 

the PROBABILITY ANALYSIS section. 

The forth task was using two separate data sets to validate the relationships and 

models developed in the previous task. The validation can be seen in the 

VALIDATION OF MODELS section. 
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Chapter 2 

BACKGROUND AND LITERATURE REVIEW 

Rail Stresses 

The relationship between rail stresses and the track support structure has been 

known since Winkler‟s [1] Beam on Elastic Foundation Theory in 1867. This theory 

over the years has been further refined by Hetenyi[2], Hay[3], and Kerr[4]. The 

relationship between rail stress, contact stresses, and thermal stresses has also been 

explored by Zarembski [5] and Steele [6]. 

The stress within the rail is complex and can involve several different load 

cases, such as thermal stress, contact stress, and bending stress. An illustration of these 

different stresses within the rail can be seen in Figure 1. Contact stress is the most 

important stress in terms of maintenance, since it can be most directly affected by 

maintenance decisions. 

 

Figure 1 Different Stresses in a Rail 
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Geometry Defect Effects on Dynamic Loading 

There are several different analyses that show the relationship between the 

presence of a surface defect, either geometry or rail, and the increase of dynamic 

loading on the rail. A particular analysis of interest performed by Jenkins et al. [7] 

focuses on the dynamic impact force created by a moving train on a track with a 

vertical geometry deviation. These dynamic impact forces can be split into two peaks 

which are called P1 and P2. Figure 2 shows the location of these values and how 

impactful they are. The P1 force, shown in the figure, has a larger amplitude with a 

shorter duration, where the P2 force has a lower amplitude with a longer duration. 

Since P2 duration is longer with the heightened dynamic impact load, it tends to cause 

more issues with track degradation. (P1 generates higher rail stresses)  

 

Figure 2 P1 and P2 Force Diagram 
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P1 and P2 forces are defined in Jekins et al. [7] and Ahlbeck [8] a as follows in 

Equations 1 and 2. 
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Where the terms are defined as: 

   P0 = Static Wheel Load, (lbs) 

a= Rail Joint Dip Angle, (rad) 

V= Vehicle Speed, (in/sec) 

Kh = Hertzian Contact Stiffness, (lb/in) 

M' = Effective Mass of Rail and Tie, (lb-sec
2
/in) 

Mu = Unsprung Vehicle Mass, (lb-sec
2
/in) 

 Track Effective Damping Ratio 

Kt = Effective Track Stiffness, (1b/in) 

To determine these input parameters and for a more detailed description of the 

parameters refer to Jekins et al. [7] and Ahlbeck [8]. 

Wheel/Rail Interaction 

As discussed earlier the contact stresses (wheel/rail contact) have an effect on 

the overall stress in the rail. These stresses have a larger impact on the development of 

detail fracture defects (TDD) in the surface and gage corner of the rail [9]. The values 

of these stresses can be determined by using Hertzian Contact Stress Theory [10]. 

Figure 3 below shows a more detailed look at the contact stress developed by the 

wheel/rail interaction.  
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Figure 3 Stresses induced by wheel/rail contact 

A photo-elastic look at the wheel/rail interaction, Figure 4, shows that the 

contact points of the wheel and rail is important when determining the magnitude of 

these stresses. This means the rail cant, and to some extent gage, directly affects the 

magnitude of the contact stresses being developed. This means changes in rail cant, 

due to the presence of a gage or other geometry defect, can impact the development of 

rail defects in the gage corners. This can be further seen in how rail grinding can 

reduce these defects by correcting or redefining the wheel/rail contact [9] 
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Figure 4 Photo-Elastic Wheel/Rail Contact Stress at Gauge Corner of Rail 

Multivariate Adaptive Regressions Splines 

Multivariate adaptive regressions splines (MARS) is a data driven analysis. 

The MARS analysis is based on developing a relationship between predictor variables, 

vector {X}, and a dependent variable, variable Y. This can be seen below in Equation 

3, where ε is the deviation of the dependent variable. 

   * +         Equation 3 

MARS uses a set of smooth continuous splines throughout the vector {X}. 

This shows the shift in the relationship of the variables. The locations of these shifts 

are known as “knots”. These knot locations are determined through a forward pass that 
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reduces the sum of squared residuals. Once these knots are located and formed, a 

series of functions are created. These functions are called basis functions. The basis 

functions are shown with one of two forms shown below: 

max(0,x-t) or max(0,t-x) 

With these functions formed, a backwards pass is performed. This backward 

pass deletes unimportant knots and basis functions, giving the final form of the MARS 

analysis. The knot selection and deletion can be seen in more detail in Friedman [11], 

Sephton [12], and Attoh-Okine [13] 

Bayes’ Theorem 

Bayes‟ Theorem is a theorem used to determine the conditional probability of 

an event to occur based off a different event occurring. It was first published by 

Thomas Bayes in 1763. Conditional probability is typically determined by using joint 

probability and the random probability of an event. This can be seen in Equation 2. 

 ( | )  
 (   )

 ( )
    Equation 4 

By using the multiplication rule and the definition of marginal probability, this 

conditional probability can be rewritten. This new form, shown below in Equation 3, 

is called Bayes‟ Theorem [14]. 

 ( | )  
 ( | )  ( )

 ( )
    Equation 5 

Bayes‟ Theorem can also be shown as: 

 

           
                  

         
     Theorem 1 

Where: 

           ( | ) 

            ( | ) 
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       ( ) 

          ( ) 

Bayes‟ theorem is the base of all Bayesian statistics and is used in both Naïve 

Bayes and Bayesian Network methods.  

Naïve Bayes 

Naïve Bayes, a Bayesian Classifier, is a very commonly used method to 

determine the likelihood of an event to occur based off the occurrence of different 

types of event occurring. This method is typically seen in spam filters for emails. 

Using Naïve Bayes, the Bayes‟ Theorem is rewritten, show in Equation 4. 

 ( | )  
 ( ) ∑  (  | )

 
 

{ ( ) ∏  (  | )
 
 } * (  ) ∏  (  |  )

 
 +

    Equation 6 

Using this method introduces an independence assumption into the interaction 

between the different events, as in the independent variable events (Ai) do not have an 

effect on the occurrence on other independent variable events. In the example of 

determining if email is spam or not, the occurrence of the word “Sir” does not increase 

the chance that the word “buy” would occur. If both words were to occur though, the 

probability, or likelihood, of the email being spam may increase. More can be seen on 

the uses of Naïve Bayes in Lewis [15] and Androutsopoulos et al. [16]. 

Bayesian Network 

Bayesian Networks are a probabilistic model where variables are shown with 

nodes and their relationships are shown with directed edges. Each nodes‟ value is 

determined by a conditional probability table that is attached to that variable and 

expresses the probability of an event (variable) occurring. The nodes are broken into 

two sets of variables. Parent variables are where the link (direct edge) starts from. 
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Child variables are where the link ends. The child variables probability is thus directly 

conditioned by the parents‟ probability. Due to these links, the independence 

assumptions made while using Naïve Bayes are minimized and controlled, giving a 

much better understanding of the relationships between all the different variables. 

Below in Figure 5 is an example of what a Bayesian Network looks like. These 

networks are typical created with the use of software such as NETICA. The use of 

NETICA is explained later with the data in the RESULTS AND DISCUSION chapter. 

A more detailed look of how Bayesian networks are formed can be seen in Catselletti 

[17] and Bielza [18]. 

 

Figure 5 Example Bayesian Network  
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Chapter 3 

DISCUSSION OF DATA 

As stated in the INTRODUCTION chapter, a large amount of data was 

collected and provided for this project. The majority of this data came from a major 

Class 1 Railroad (CSX) as well as from the FRA. The data that was received is listed 

below: 

 2.5 Years of CSX Rail Defect Data (Shown in Appendix A1) 

 5 Years of CSX Geometry Exception Data (Shown in Appendix A2) 

 5 Years of CSX Annual Tonnage Data (Shown in Appendix A3) 

 5 Years of CSX Vertical Track Interaction (Shown in Appendix A4) 

 5 Years of FRA Track Geometry Data (Shown in Appendix A5) 

The CSX data contained approximately 22,000 track miles. CSX has 11 

Divisions that were being examined. These divisions are as follows; Albany, 

Appalachian, Atlanta, Baltimore, C&O, Chicago, Florence, Great Lakes, Jacksonville, 

Louisville, and Nashville. Each division had a subset of subdivisions. The average 

annual traffic on the rail system, as defined in terms of Millions of Gross Tons of 

traffic or MGT was determined as 21.3 MGT.  

Preprocessing of Data 

The rail data provided was that of the whole system, approximately 22,000 

miles. A sample of the raw format of this data can be seen in Appendix A1. Below is a 

smaller sample in Figure 6. There was approximately 2.5 years‟ worth of rail data with 

a total of 50,000 rail defects. Each rail defect entry had a defect code which 
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represented which type of rail defect it is. Below in Figure 7 is a table showing what 

each code relates to in terms of rail defects.  
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Figure 6 Example of rail defect data 

 

DESCRIPTION 

RAIL 
TEST CAR 

CODES 
CSX DEFECT CODES 

Transverse Fissure  

 

Compound Fissure 

TDT 
 
TDC 

TDT 
 
TDC 

Detail Fracture TDD TDD 

Engine Burn Fracture  

 

Defective Plant Weld 

 

In-Track Electric Flash Butt Weld 

 

Defective Field Weld 

EBF 
 
DWE/DWG 
 
DWE 
 
DWF 

EBF 
 
EFBW/OAW 
 
EFBW 
 
TW 

Horizontal Split Head  

 

Vertical Split Head 

 

Split Web 

 

Piped Rail 

 

Head Web  Separation 

HSH 

 

VSH/VSJ 

 

SWO/SWJ 

 

PRO/PRJ 

 

HWO/HWJ 

HSH 

 

VSH/VSH 

 

SW/SW 

 

PIPE/PIPE 

 

HW/HW 

Bolt Hole Crack BHO/BHJ BHB/BHB 

Broken Base  BBO/BBJ BB/BB 

Flattened Head (Flattened out across the width of 

the rail head, occurrences have no repetitive 

regularity, does not include corrugations and has no 

apparent localized cause such as a weld or engine 

burn.) 

FH FH 
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LER 

(Loss of Expected Response is an area with 

contamination that causes a loss of ultrasonic signal) 

LER LER 

SSC  

Length of Track  

(due to Shells, Spalling, or Corrugation conditions 

that causes a loss of ultrasonic signal.) 

SSC SSC 

Crushed Head (Flattening and widening of the head 

for several inches, with entire head sagging, creep or 

bleeding under head and small cracks in the 

depression on the running surface.) 

CH CH 

Engine Burn –  

(Not fractured) 

 

Shelly Spots 

EB 

 

 

SD 

EB 

 

 

SD 

 

Shelly Spots in Dead Zone of Switch 

 

SDZ 

 

SDZ 

Figure 7 Description of rail defect codes 

Using the figure above, certain rail defect codes and entries were determined to 

be not of interest. These defects include; engine burn (EB or EBF), loss of expected 

response (LER or SSC), and shelly spots in dead zone of switch (SDZ). Once these 

rail defects were removed, the number of rail defects of interest came to 

approximately 26,000 rail defects. These remaining rail defects were separated into 

one of the 11 divisions for easier processing later on.  

A similar process of splitting the data into divisions was done for the geometry 

data, the tonnage data, and the VTI data. Samples of all these can be seen in Appendix 

A. It should be noted that the VTI data of interest was the measured dynamic impact 

forces, labeled as AXV1 and AXV2. This data  represents the measured  impact force, 

in pounds,  peaked over a 1sec period of time,  with a threshold  of  100 Kips. Since 
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these values were the only values of interest, less than 20% of the original 1,000,000 

records were used. 

Development of Database 

Once the data was preprocessed, the database was ready to be formed. In order 

to provide for initial data base construction and early assessment of data, the initial 

data entered into the database focused on CSX track geometry and rail defect data, 

together with tonnage data and location reference information. The initial set of data 

provided by CSX was for the Baltimore Division, which has approximately 1,040 

miles of track with an average annual tonnage of 24 MGT. The Baltimore Division 

consisted of 18 subdivisions ranging in size from less than 10 miles to 315 miles and 

with annual tonnage of less than 1 MGT to 42 MGT. The Baltimore Division had 

approximately 18,351 reported track geometry defects (over the five year period) and 

1,543 rail defects (over the two and a half year period noted above). Of the 18,351 

geometry defects, 11,462 were in unique locations (based on a 50 foot location 

resolution length). The remainder was repeat geometry defects at the same location, 

but with either a different date or multiple types of defects.  

For the Baltimore division, the database construction was done manually in 

Excel. The first step was to define the location of each defect, with the initial focus on 

the rail and geometry defects provided by CSX from its own database (for the 

Baltimore Division). The location for a rail defect was reported in two formats; mile 

post (which includes Division, Subdivision, milepost, footage and track number) and 

longitude/latitude coordinates. Geometry defects were reported with the same two 

formats, however since many of the geometry defects were of measurable length; 

these were also reported with the addition of start and ending locations of the reported 
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defect. Though longitude and latitude provide an accurate location, a large portion of 

rail defects did not have these coordinates, therefore milepost location was used. It 

was decided that for this analysis, the precision of location was set to be +/- 25 foot for 

a 50 foot defect length (approximately 0.01 miles). This was used for the matching of 

defects. 

Once each defect was located, the database was structured to determine what 

rail and geometry defects “matched” each other. In order to be considered matched, 

several conditions must be met.    

The first condition is location of both rail and geometry defects.  The location 

matching of the defects was based on the matching of several parameters. The division 

was the first parameter to be looked at. Since this first set of data was all from the 

same division this was easily handled. The second parameter was the subdivision. The 

subdivision location was defined for each of the provided defect data points. For the 

Baltimore Division, all of the defect data was separated by subdivision. A total of 18 

subdivisions were accounted for during this process. Once the defect data was 

separated by subdivision, it was then sorted by mile post location.  The location 

precision of 0.01 miles (approximately 50 feet) was used to determine if a geometry 

defect influenced a rail defect.  If these conditions were met then this constituted that 

the geometry defect is “near” the rail defect. 

Noting that geometry defects can have more than one defect at one specific 

location, this was noted with all matches recorded and filtered later on in the process. 

After the location condition is met, the time condition is analyzed, which in the 

case of both rail and geometry defects are the dates of inspection. In order for a 
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geometry defect to influence a rail defect and be considered a match, it must occur 

prior to the rail defect.  

Once these conditions are met, the raw geometry defect and raw rail defect 

data are combined into one file containing all the matches for the division. After all 

matches are found, rail defects with more than one geometry defect must be filtered 

down into one unique geometry defect per unique rail defect. The order of importance 

for selecting a geometry defect to be used is as follows; priority critical, most recent 

defect, cant geometry defect, crosslevel geometry defect, and lastly profile geometry 

defect.  A new sheet is then created for unique locations of matches.  In addition, a 

record is kept of all “multiple” matches, i.e. rail defects that match with 2 or more 

track geometry defects at the same location, with the geometry defect dates always 

occurring prior the rail defect date. 

The final step before analyzing the data is determining the MGT that each 

track experiences.  Though several years of data for MGT was given it was determined 

to use only 2012‟s data due to inconsistency between the formats of each year and 

2012 having the best and most consistent overall format.  The MGT for each track was 

determined using a weighted average, with the weighting based on segment length and 

MGT on each segment.  The equation used for weighted MGT can be seen below in 

Equation 7. 

    (        )   

                      (       )                      Equation 7 

Using the hand developed data base for the Baltimore Division, a set of 

preliminary analyses were performed to allow for the development of data extraction 

techniques and the generation of Data Tables. This preliminary data analysis began 
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with a detailed breakdown of each division into a table format using a Microsoft Excel 

structure. Each subdivision was placed in this breakdown, even if it did not contain 

any matches. After the subdivision name is the total track miles that subdivision 

contains as well as its average MGT for all of its tracks. The track length and average 

MGT is then further broken down into each track number for that subdivision.  Placed 

next into this table is the total number of geometry and rail defects that occur in a 

subdivision, followed by a ratio of geometry defects to rail defects. To determine the 

number of defects a subdivision had, the original defect data was sorted by subdivision 

with the use of a filter tool. The original data was sorted by mile post, track number, 

and subdivision. Sorting in this fashion made it easy to count the number of defects 

that occurred within a subdivision. The number of defects in a subdivision was 

counted by selecting all the defects within the subdivision and then counting the 

number of defects that occurred. This value was recorded into the table. The unique 

matched defects were then sorted and counted in the same fashion as the raw data and 

placed in the table. 

One rail defect, detail fraction (TDD), was of particular interest, since it 

represented over 45% of all the rail defects in the Baltimore and was the single largest 

defect category by far.  To determine the number of TDD defects that occurred in a 

subdivision, another layer to the filter was applied. The unique matched and raw rail 

defect data was sorted by defect type. After being sorted, the number of defects was 

counted in the same manner as previously stated. The number of TDDs was also added 

onto this table. The number of matches of all rail defects and TDD defects that were 

located on a curve was also recorded in the table. For this analysis, the raw rail defect 

data and the unique match data was sorted by whether it was located on a curve or on 
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a tangent1. After being sorted this way, it was re-sorted by milepost, track number, and 

subdivision. This separated the curve and tangent locations apart from each other. The 

defects that were on a curve were then selected and counted. The last piece of data 

place on this table was the percent of the rail defects and TDD defects that were 

matched. A compressed example of this chart can be seen below in Figure 8. 

 
Sub 
Division 

Length 
in 
Miles 

Subdivision 
MGT 

Geometry 
Defects 

Rail 
Defects 

Ratio Matches # of 
TDD 
Match 

Repeat  % of 
Rail 
Defects 
Matches 

% of 
Match 
with 
Curves 

% of 
TDD 
on 
Curve 

% of 
Matched 
TDD 

BA 314.89 32.96 7271 520 14.0 86 60 21 17% 74% 50% 20% 

Figure 8  Example of Baltimore Division Summary Master Chart 

After this master chart for a division is created, it was noted that there were a 

large number of subdivisions and segments with low tonnage levels that would not 

generally generate a large number of rail defects. Using a threshold of 20 MGT (the 

actual threshold was set at 19.5 MGT), a MGT filter was applied to the Baltimore 

Division data. This filter was applied based on MGT of each track segment within a 

subdivision. Any track segment with a MGT of less than 19.5 MGT was removed 

from the chart along with all of its geometry and rail defects. The filtered summary 

chart, for Baltimore Division is presented in Table XX. Note, while the number of 

subdivisions is reduced from 18 to 7 and the total track miles is reduced from 1,043 to 

798, the number of rail defects is only reduced from 1543 to 1330, and geometry 

                                                 

 
1 Tangent refers to a section of straight track with no curvature. 

2 Also the majority of all defects 

3 Rail roll date is the date of manufacture of the rail which is usually close to the 
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defects from 18,351 to 16,207. Furthermore the number of matched defects is only 

reduced from 204 to 182. 

An additional data sort and comparison is made for comparison of defect type; 

specifically rail defect type vs. track geometry defect type. This is illustrated in 

Appendix B which shows rail defect type across the top vs geometry defect type along 

the vertical axis. A compressed example of this can be seen below in Figure 9, where 

TDD is detail fracture from shell and BRO is a broken rail outside joint area. 

 

DEFECTS TDD BRO 

CROSSLEVEL 14 1 

WARP 25 0 

PROFILE 5 1 

RAIL CANT 42 0 

GAGE 18 0 

TOTAL 104 2 

Figure 9 Example of Baltimore Division Defect Matrix 

After matching and initially analyzing the Baltimore Division by hand, a 

MATLab code was developed to perform the matching process automatically.  The 

code starts by pulling all of the raw data out of the original Excel data files and placing 

them into two cell arrays, one for rail defects and one for geometry defects. Once the 

data is in the cell arrays, the code moves to nested for loop in order to determine 

which two specific defects to compare. The first for loop is rail defects and the second 

for loop is geometry defects. Once in the nested for loop, the code determines if the 

defects are a match following the same procedure as the hand method in nested if 

statements. If a rail defect is determined to not have a match, it is moved to a separate 
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cell array and the code moves to the next rail defect. If a rail defect is determined to 

have a match, or multiple repeat matches, both the rail and geometry defects are 

moved into a new cell array. Once all rail defects were looked at, the cell arrays were 

transported back into the data format. Divisions were no longer broken into 

subdivisions prior to matching. This code allowed for quicker construction of the 

initial data base and easy manipulation of the data. A code was also developed for 

filtering out the multiple matches of geometry defects to rail defects. The code would 

start by converting the matched defect data file into a cell array. A nested for loop is 

used again to compare different matches. This comparison is done with if statements 

using the same method and order of importance as before to determine repeats and 

unique locations. The code also checks to make sure the rail defect being compared is 

the same. Once a defect is done being compared, the unique location is pulled out. A 

similar code to the filtering unique matches code was developed for filter just 

geometry defects. The code setup is near identical with the exception that it does not 

check rail defect type and the total number of geometry defects that are repeats are 

counted. This was done to find the total unique locations that had a geometry defect. 

To further quicken the data processing, the MGT of each track was added to the initial 

rail defect data. This allows for easier MGT filtering during the master chart filtering 

process. Skeleton versions of these codes can be found in Appendix C. 

Once every division was matched and a database was formed, new summary 

master charts were created for each subdivision. These charts were formatted in the 

same fashion as the Baltimore division. These master charts were then combined into 

a final master chart, which replaced subdivisions with divisions. This made comparing 

the different divisions easier. This chart followed the same format as the Baltimore 
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division chart with one exception; the track segments (SG track, Track 1, Track 2, and 

etc.) were not included. This master chart had the divisions in both a MGT filtered and 

non-filtered format. This format was used for when comparing individual division. A 

second master chart format was made that only included the combined values of the 

data. This master chart had the same information as the previous chart but with three 

changes. The first is that the data was broken into tangent, curve, and all track 

categories. The second change was the orientation in which the chart was presented. 

The last change was that this format also included more detailed information about the 

key geometry defects that are discussed later. Both of these charts can be seen in 

Appendix D. 

The VTI impact data was also matched with geometry and rail defect data to 

form another data base. This data was matched in the same manner as the geometry 

defect data, i.e. the VTI impact came prior to the rail defect. When the whole system 

was matched using the developed MATLab code, only three matches were found. It 

was determined from this low match amount that the VTI data was not important in 

these relationships. 
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Chapter 4 

RESULTS AND DISCUSSION 

This chapter discusses the relationships that were developed using the 

constructed databases. These relationships are based primarily off the statistical 

methods discussed earlier.  

Defect Correlation 

The initial analysis preformed on the data was a system wide correlation 

analysis between geometry defects and rail defects. After the initial formation of the 

database, it was observed that there was a large amount of rail defects with multiple 

geometry defects prior to it. These were called “repeats” and were looked at separately 

from the other matches. Figure 10 below has a breakdown of repeat matches for each 

division as well as each division with a 20 MGT filter. In the figure, it is shown that a 

large portion (38%) of the matches are made up of repeat geometry defect matches. 

This effect does not change much on the filtered track. As a result of these high 

amounts of repeat matches, 4.2% of all rail defects have multiple geometry defects 

prior to it occurring. These values vary depending on which division is being 

observed, though they tend to stay close to these values. This shows that multiple 

geometry defects have some impact on the development of rail defects. This effect is 

explored more in the next two chapters.  

Figure 11 is a summary of the total values for both the filtered and non-filtered 

data. This figure has the match values, repeat match values, as well as the percent 



 23 

make up of these values of the rail defect population. Figure 12 presents the same data 

for curve segments only. Looking at the curve specific data only, it was observed that 

that one fifth of all rail defects on curves had multiple geometry defects that occurred 

prior to the rail defect. This suggests that there is a relationship of some sort between 

multiple geometry defects and rail defects on curves. 

Divisions 
Length in 

Miles 
# of 

Repeats 
% of 

Repeats 
% Repeat 

Matches All 

Baltimore Full 1042.79 31 15.20% 2.01% 

Baltimore > 19.5 798.4 30 16.48% 2.26% 

Atlanta Full 2042.1 40 26.67% 1.75% 

Atlanta > 19.5 1405.9 33 27.50% 1.89% 

Albany 1871.05 50 31.85% 2.82% 

Albany >19.5 840.46 21 26.92% 2.25% 

Appalachian Full 2221.24 343 44.95% 7.17% 

Appalachian >19.5 952.44 191 41.08% 8.13% 

C&O Full 2051.42 234 47.18% 9.86% 

C&O >19.5 770.04 168 54.90% 13.50% 

Chicago Full 1630.73 53 41.41% 3.62% 

Chicago > 19.5 400.8 19 37.25% 3.11% 

Florence Full 3056.51 106 37.19% 2.64% 

Florence > 19.5 1125.85 61 38.61% 3.32% 

Great Lakes Full 2326.16 61 31.28% 2.42% 

Great Lakes > 19.5 1840.21 58 32.77% 2.52% 

Jacksonville Full 2920.07 64 35.96% 2.82% 

Jacksonville > 19.5 784.37 32 42.67% 4.33% 

Louisville Full 1406.79 65 41.67% 3.92% 

Louisville > 19.5 559.94 45 45.00% 4.58% 

Nashville Full 1658.86 72 34.95% 4.12% 

Nashville > 19.5 1202.42 37 34.26% 2.74% 

Total Full 22227.7 1119 38.35% 4.23% 

Total Filter 10680.8 695 38.19% 4.50% 

Figure 10 Summary of Repeat Matches 
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Length 
in Miles 

Annua
l MGT 

Reporte
d Geo 

Defects 

Unique 
Geo 

Defect
s 

Rail 
Defect

s 

Matche
s 

% of All 
Matche

d 

# of 
Repeat

s 

% of 
Repeat

s 

% 
Repeat 
Matche

s All 

Tota
l Full 

22227.
7 21.33 334937 

20234
1 26440 2918 11.04% 1119 38.35% 4.23% 

Tota
l 
Filte
r 

10680.
8 35.94 173314 

10495
2 15428 1820 11.80% 695 38.19% 4.50% 

Figure 11 Summary of Matched and Repeat Matched Rail Defects 

 

  

Rail 
Defects 

Rail 
Defects 

on 
Curves 

Matches 
Matched 

on 
Curves 

% of All 
Matched 

% of 

Repeat 

Matches 

on 

Curves  

% of 

Repeat 

Matches 

With 

Curves 

Total Full 26440 8870 2918 1871 21.09% 45.70% 9.60% 

Total 
Filtered 15428 5225 1820 1113 21.30% 43.10% 

9.20% 

Figure 12 Summary of Matched and Repeat Matched Rail Defects on Curves 

As part of the correlation analysis, the matched rail defects and geometry 

defects for the whole CSX system were correlated by the specific defect type, shown 

in full in Figure 13. As can be seen in this table, detail fracture defects (TDD) make up 

the majority of matched rail defects2 at 44% of the matched. Rail Cant and Warp 

defects make up the majority of the geometry defects. As shown in Figure 13, many of 

the geometry defect consist of geometry defects of the same type with slight 

                                                 

 
2 Also the majority of all defects 
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differences, such as rail cant left and rail cant right. There are also several rail defects 

that made up a small amount of the matched rail defects (1% of the matched defects). 

Taking these two observations in mind, Figure 13 was consolidated into Figure 14. 

This consolidation combined similar geometry defect types (such as rail cant left and 

rail cant right) into one geometry defect type (rail cant). This consolidation also 

removed the rail defects that made up a small portion of the matched rail defects. In 

this consolidated form, detail fracture defects (TDD), rail cant geometry defects, and 

warp geometry defects still make up a majority of the matched defects.  

 

Figure 15 presents an exploratory statistical cross-correlation between the rail 

defects, track geometry defects (consolidated defect classes), and the cumulative MGT 

of matched rail defects, which will later be presented in the form of multilinear 

regression equations, MARS equations, and Bayesian statistical models. In this cross-

correlation it is observed that there are strong initial indications of a negative 

relationship between several geometry defects and cumulative MGT of a rail defect, 

Warp being the highest. The negative correlation between the geometry defects and 

cumulative MGT indicates that the presence of a geometry defect will reduce the 

cumulative MGT of a rail defect. This correlation was done using 25 MGT frequency 

brackets. 
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DEFECTS TDD BB BHB BRO TDT TDC OAW EFBW TW HSH VSH SW HW FH CH SD TOTAL 

% of 
Total 

 ALINGME
NT 7 1 3 0 0 0 0 0 2 0 1 0 0 0 1 0 15 0.51% 

ALINGME
NT 

ALINGME
NT LEFT 22 0 8 2 1 0 0 1 8 2 3 0 3 1 0 5 56 1.92% 

ALINGME
NT LEFT 

ALINGME
NT RIGHT 18 0 6 0 0 0 0 2 7 0 0 0 4 0 0 4 41 1.41% 

ALINGME
NT RIGHT 

CLIM 18 1 41 3 3 0 1 2 2 1 13 4 24 1 1 0 115 3.94% CLIM 

CROSSLEV
EL 159 2 24 10 8 1 10 35 66 22 16 7 30 16 19 20 445 

15.25
% 

CROSSLEV
EL 

Curve 
Speed 3IN 5 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 7 0.24% 

Curve 
Speed 3IN 

EXECESS 
ELEVATIO
N 17 0 0 1 0 0 1 3 1 0 4 0 0 0 1 0 28 0.96% 

EXECESS 
ELEVATIO
N 

GWR 2ND 
LEVEL 13 0 0 1 0 0 0 0 2 0 1 0 1 0 0 0 18 0.62% 

GWR 2ND 
LEVEL 

LEFT RAIL 
CANT 301 2 15 9 3 4 4 31 33 10 20 3 20 4 7 55 521 

17.85
% 

LEFT RAIL 
CANT 

Left Vert 
ACC 4 0 3 0 0 0 0 0 2 0 0 0 1 1 0 1 12 0.41% 

Left Vert 
ACC 

LOADED 
GAGE 6 0 0 1 1 0 0 2 2 0 0 0 1 3 1 8 25 0.86% 

LOADED 
GAGE 

PLG 24 
2ND 
LEVEL 24 0 1 1 0 0 0 0 3 3 0 0 0 0 0 6 38 1.30% 

PLG 24 
2ND 
LEVEL 
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PROFILE 
LEFT 31 0 11 6 0 1 1 13 15 6 4 1 12 5 3 10 119 4.08% 

PROFILE 
LEFT 

PROFILE 
RIGHT 42 0 14 6 1 1 3 11 25 4 2 7 13 5 12 4 150 5.14% 

PROFILE 
RIGHT 

RIGHT 
RAIL CANT 205 1 12 9 3 1 2 21 28 5 12 2 4 2 4 34 346 

11.86
% 

RIGHT 
RAIL CANT 

TIGHT 
GAGE 11 0 4 0 2 0 0 1 4 1 0 2 1 0 0 0 26 0.89% 

TIGHT 
GAGE 

WARP 31 207 1 45 7 2 2 7 27 61 15 21 7 35 7 15 56 517 

17.72
% WARP 31 

WARP 62 65 0 18 3 6 0 3 10 30 8 7 4 38 4 5 7 208 7.13% WARP 62 

WIDE 
GAGE 131 1 5 5 2 2 1 13 16 4 17 2 8 2 5 10 224 7.68% 

WIDE 
GAGE 

TOTAL 1289 9 210 64 32 12 33 174 307 83 123 39 195 51 74 220 2918 
  

% of Total 
44.17

% 

0.31
% 

7.20
% 

2.19
% 

1.10
% 

0.41
% 

1.13
% 5.96% 

10.5
2% 

2.84
% 

4.22
% 

1.34
% 

6.68
% 

1.75
% 

2.54
% 

7.5
4% 

   

 

TDD BB BHB BRO TDT TDC OAW EFBW TW HSH VSH SW HW FH CH SD 
   

Figure 13 Rail defect vs. Geometry Defect Data (CSX full system) 
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DEFECTS TDD BHB EFBW TW VSH HW SD TOTAL % of Total % of TDD 

ALIGNMENT 47 17 3 17 4 7 9 104 4% 4% 

CROSSLEVEL 177 65 37 68 29 54 20 450 18% 14% 

ELEVATION 22 0 3 1 5 0 0 31 1% 2% 

LOADED GAGE 46 1 4 7 1 2 14 75 3% 4% 

RAIL CANT 506 27 52 61 32 24 89 791 32% 39% 

PROFILE 73 25 24 40 6 25 14 207 8% 6% 

GAGE 142 9 14 20 17 9 10 221 9% 11% 

WARP 272 63 37 91 28 73 63 627 25% 21% 

TOTAL 1285 207 174 305 122 194 219 2506 

  

 

51.3% 8.26% 6.94% 12.17% 4.87% 7.74% 8.74% 

   

Figure 14 Rail defect vs. Geometry Defect Data (CSX full system) Consolidated 
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Figure 15 Preliminary Cross-Correlation of Rail Defects vs. Geometry defects. 

The Effect of Geometry Defects on Rail Life 

The CSX annual tonnage data was used in combination with the rail defect 

data to determine the cumulative MGT (life of rail) of a given rail defect. This was 

based on the rail roll date3 and was calculated using the equation below in Equation 8. 

The annual MGT term was determined from the provided tonnage data discussed in 

the DEVELOPMENT OF DATABASE section. The 2012 data was used since it had 

the most consistency. The annual MGT was calculated by Equation 7.Equation 8 

assumes a 2% growth in tonnage per year.  

    (        )                         (       )                    

 Equation 7 

 

           (    
                    

   
)  (               )

 Equation 8 

                                                 

 
3 Rail roll date is the date of manufacture of the rail which is usually close to the 

installation date of the rail in track. 

               CUM.MGT      BHB       EFBW         HW         SD        TDD         TW        VSH

ALIGNMENT   -0.7147892  0.7199338  0.5594119  0.6002987  0.5834144  0.7139453  0.5499209  0.3811537 

CROSSLEVEL  -0.7694986  0.7622581  0.6513747  0.7448449  0.5043068  0.7409107  0.6660712  0.6418097

ELEVATION   -0.3552777  0.4122566  0.3306969  0.3912977  0.2968832  0.3380639  0.2385682  0.2751114

GAGE        -0.7707247  0.8124716  0.6223919  0.7033230  0.6213678  0.7968176  0.6293880  0.6661253

LOADED.GAGE -0.4577462  0.3755918  0.3528237  0.3538483  0.2689030  0.4545979  0.2232836  0.2040405

PROFILE     -0.6193273  0.5896705  0.6133353  0.5984654  0.5174390  0.6251029  0.6553790  0.4071633

RAIL.CANT   -0.7860837  0.6775659  0.6350637  0.4191745  0.8812645  0.9130556  0.6665193  0.5509936

WARP        -0.8847520  0.8037898  0.6833681  0.7229649  0.7494663  0.8916384  0.7541711  0.5358121

ALL DEFECTS 25 MGT FREQ
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Where: 

    (           (             ) 

It should be noted that this equation does not capture the true life of the rail for 

relayed rail4, since the original location of that rail is unknown. This gives an 

underestimation of the life of these rails. This was acceptable since only a small 

portion of the rail was relayed. By knowing the life of the rail, in MGT, rail defects 

with and without geometry defect matches can be compared to see if geometry defects 

have an overall effect on rail life. It should also be noted that there were some cases 

where the life of the rail could not be calculated due to a missing term in the original 

data. Figure 16 below is a table that shows a comparison between matched, matched 

with repeats, and none matched rail defects. The table also shows a comparison 

between tangent, curve, and all tracks. 

                                                 

 
4 Relay rail is rail that has been moved from one location to another, after an extended 

period of time in the original or first position. 
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Avg. Cum. MGT For All Division By Rail Defects 

 
Tangent Curve ALL 

Defe
ct 

Match 
Repea
ts 
Tange
nt 

Match 
Uniqu
e 
Tange
nt 

Not 
Match
ed 
Tangen
t 

Reduc
tion 
Repea
t 
Tange
nt 

Reducti
on 
Unique 
Tangen
t 

Match 
Repeats 
Curve 

Matc
h 
Uniq
ue 
Curve 

Not 
Match
ed 
Curves 

Reducti
on 
Repeat 
Curve 

Reduc
tion 
Uniqu
e 
Curve 

Match 
Repeats 
All 

Matc
h 
Uniq
ue All 

Not 
Match
ed All 

Reducti
on 
Repeat 
All 

Reducti
on 
Unique 
All 

BB 135.65 171.26 572.36 -76% -70% 267.41 419.7 439.71 -39% -5% 188.35 295.5 541.96 -65% -45% 
BHB 330.07 292.35 481.67 -31% -39% 308.61 298.3 380.77 -19% -22% 319.07 295.2 468.46 -32% -37% 
BRO 325.67 395.12 713.61 -54% -45% 385.27 491.5 368.91 4% 33% 359.19 442.0 610.47 -41% -28% 
CH 869.83 812.66 807.81 8% 1% 1019.5 525.9 766.35 33% -31% 922.65 683.4 800.42 15% -15% 
EFB
W 666.83 599.16 799.34 -17% -25% 356.38 407.9 576.29 -38% -29% 428.45 482.8 759.09 -44% -36% 
FH 652.95 705.29 854.78 -24% -17% 395.67 773.6 735.24 -46% 5% 573.79 726.7 838.42 -32% -13% 
HSH 511.96 520.42 699.92 -27% -26% 570.06 430 464.51 23% -7% 536.86 477.2 671.21 -20% -29% 
HW 302.16 313.31 598.31 -49% -48% 235.92 273.1 483.96 -51% -44% 268.62 295.0 576.73 -53% -49% 
OAW 613.61 490.25 733.86 -16% -33% 363.86 428.9 493.14 -26% -13% 502.61 467.2 717.29 -30% -35% 
SD 660.68 564.5 624.7 6% -10% 394.86 390.5 414.78 -5% -6% 428.8 430.6 519.88 -18% -17% 
SW 503.62 401.23 578.44 -13% -31% 451.71 327.7 404.55 12% -19% 477.66 373.4 547.69 -13% -32% 
TD NA NA NA NA NA 691.27 691.2 526.92 31% 31% 691.27 691.2 526.92 31% 31% 
TDC NA 377.2 657.42 NA -43% 377.2 368.3 371.44 2% -1% 377.2 504.8 569.19 -34% -11% 
TDD 508 519.67 690.01 -26% -25% 404.23 423.5 434.35 -7% -2% 477.68 448.7 506.31 -6% -11% 
TDT 240.4 155.64 750.5 -68% -79% 322.78 315.6 662.92 -51% -52% 263.93 207.2 729.77 -64% -72% 
TW 584.95 635.09 775.46 -25% -18% 469.24 475.4 542.5 -14% -12% 515.3 553.8 741.97 -31% -25% 
VSH 427.64 528.93 658.06 -35% -20% 336.39 407.6 561.74 -40% -27% 356.92 445.4 621.33 -43% -28% 
TOT
AL 488.11 

503.6
4 703.70 -31% -28% 396.04 413.2 477.15 -17% -13% 423.82 446.7 646.19 -34% -31% 

Figure 16 Comparison of rail life by rail defect type 
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As shown above, there is a significant loss of rail life associated with the 

presence of a geometry defect, 31% for all matches and 34% for all repeat matches. 

From this it is noted that multiple geometry defects do have an impact on reducing rail 

life, but the decrease in rail life from multiple geometry is not much more than the 

decrease in rail life from one geometry defect. To better understand the life of the rail, 

distribution plots were made. These plots were based off a 25 MGT bracket shown in 

Figure 17. Figure 18 shows the percentage of defect in each bracket and Figure 19 

shows the cumulative percentage of defects. 
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Figure 17 Distribution of Rail Life by 25MGT Brackets 

CUM MGT ALIGNMENT CROSSLEVEL ELEVATION LOADED GAGE RAIL CANT LEFT VERT ACC PROFILE RUN OFF GAGE WARP Total %

50 4 34 3 6 34 2 9 1 21 39 153 5.4%

100 18 39 3 10 56 0 15 0 22 41 204 7.2%

150 5 40 1 9 77 0 10 0 23 47 212 7.5%

200 11 47 2 19 38 0 15 0 20 57 209 7.4%

250 9 35 0 3 55 0 16 0 12 49 179 6.3%

300 9 11 1 3 73 1 8 0 7 40 153 5.4%

350 9 17 1 2 62 0 22 0 14 46 173 6.1%

400 4 22 1 3 59 1 7 0 13 34 144 5.1%

450 8 21 2 5 105 1 10 0 22 31 205 7.3%

500 3 18 2 2 47 1 10 0 8 39 130 4.6%

550 3 35 2 1 47 0 13 0 13 40 154 5.4%

600 2 21 0 2 33 2 9 0 11 32 112 4.0%

650 4 27 2 0 16 1 17 0 7 33 107 3.8%

700 2 18 4 1 24 0 13 0 7 31 100 3.5%

750 2 27 0 3 28 1 10 0 10 23 104 3.7%

800 1 26 1 2 18 0 10 0 9 25 92 3.3%

850 3 19 0 2 18 0 18 0 8 17 85 3.0%

900 1 9 0 5 9 0 4 0 1 10 39 1.4%

950 1 8 0 3 4 0 3 0 1 8 28 1.0%

1000 2 5 0 1 9 0 4 0 4 11 36 1.3%

1050 1 11 3 0 7 0 2 0 4 10 38 1.3%

1100 0 9 4 3 7 0 6 0 1 16 46 1.6%

1150 1 10 0 0 4 0 2 0 1 8 26 0.9%

1200 0 6 0 0 4 0 2 0 0 6 18 0.6%

1250 1 3 0 1 1 0 4 0 0 4 14 0.5%

1300 2 2 0 0 0 0 1 0 1 1 7 0.2%

1350 1 5 0 0 1 1 1 0 1 2 12 0.4%

1400 0 3 0 0 0 0 5 0 0 0 8 0.3%

1450 0 3 0 0 1 0 1 0 0 2 7 0.2%

1500 0 1 0 0 1 0 2 0 0 2 6 0.2%

1550 0 5 0 0 3 0 3 0 0 2 13 0.5%

1600 0 1 0 0 1 0 3 0 0 1 6 0.2%

1650 0 2 0 0 0 0 2 0 0 0 4 0.1%

1700 0 0 0 0 0 0 0 0 0 2 2 0.1%

1750 0 0 0 0 0 0 1 0 0 0 1 0.0%

Total 107 540 32 86 842 11 258 1 241 709 2827 100.0%

3.8% 19.1% 1.1% 3.0% 29.8% 0.4% 9.1% 0.0% 8.5% 25.1% 1
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Figure 18 Percentage of defects in each MGT bracket 

 

Figure 19 Cumulative Percentage of Defects by MGT 

As can be observed in the above figures, approximately 50% of matched rail 

defects had a MGT life of less than 400 MGT. This further suggests that geometry 

defects have a large impact on the overall life of a rail defect, since matches occur at a 

much lower rail life than the average of both matched and non-matched rail defects. 
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Multilinear and Mars Analyses 

Once it was determined that geometry defects had an impact on rail life, a 

series of multilinear regression analyses were performed. The first of these analyses 

was done with basic multilinear analysis function in R looking at all the geometry 

defect types and their impact on rail life. Equation 6 below shows the results of this 

analysis. The value of the rail life for any given geometry defect is shown in Figure 

20. The ai value is a constant value that is determined by which geometry defect (GDi) 

is being observed. Though multiple defects can be used in this equation, as in more 

than one defect type can be entered, it is best suited for one geometry defect at a time. 

 

 

 

   =1750(0.8435+ Σ   𝐷 )       Equation 9  

 𝐷         
Alignment  -0.1585 

Cant   -0.3565 

Cross-level  -0.1585 

Elevation  -0.0252 

Loaded Gage  -0.0718 

Warp                 -0.3719 

Run-off     -0.2552 

Profile          -0.0569 

Gage   +0.2341 

R2 = 92.86% 
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Figure 20 Reduction in Rail Life due to Track Geometry Defects 

As shown in Figure 20, the type of geometry defect can greatly impact the life 

of a rail defect. To better understand the effects of certain geometry defects on rail life, 

and their interactions with each other, the MARS approach is used. As discussed 

earlier, MARS shows which predictive variable (geometry defect) are the most 

important and impactful. The MARS function can be shown as follows: 

          * 𝐷+      Equation 10 

Using this approach the following MARS analysis was performed: 

MGT = 447.37+86.60(BF2)+28.65(BF4)-47.90(BF5)  Equation 11 
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Where: 

BF2 =max(0,6-WARP) 

BF4 =max(0,18-Rail Cant) 

BF5 =max(0,Alignment-0) 

The results of this analysis show that the geometry defects that have an 

important impact on the MGT life of the rail are Warp, Rail Cant, and Alignment 

defects. Below in Figure 21 is the sensitivity rail life has to different amounts of the 

specified geometry defects within the MARS analysis. It should be noted that with 

zero geometry defects, the MGT life of a rail is approximately 1500 MGT, which is a 

typically accepted value for the life of a rail. 

 

Figure 21 MARS Sensitivity to Geometry Defects  

After the initial analysis of the data using MARS, it was determined that a 

more in depth look of the impact of geometry defects on tangent and curve defects 

should be performed. To get a better understanding of the impact of geometry defects 

for these two cases, Warp defects were split into Warp 31 defects and Warp 62 
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defects. After splitting the Warp defects, the MARS analysis was rerun for both 

tangent and curve track. The results for both can be seen below in Equations12 and 13. 

Equation 12 MARS Analysis for Tangent Track 

CUM.MGT =   355.9443   +  69.37212 * max(0, 5 - CROSSLEVEL)  

-  156.74 * max(0, GAGE - 1)    

+  213.68* max(0, 2 -  RAIL.CANT)    

+  188.87 *  max(0, 2 -    Warp.62)  

 

 Equation 13 MARS Analysis for Curve Track 

CUM.MGT =  258.4052   +  172.4302 * max(0,  2 - ALIGNMENT)  

  +  115.71 * max(0, 2 - CROSSLEVEL)  

  +  66.55 * max(0, 5 -  RAIL.CANT)  

  +  94.52 * max(0, 4 -    WARP.31)  

 

From these analyses, it can be observed that rail cant and warp are still very 

important for determining the MGT life of a rail. Tangent track is more impacted by 

Warp 62 where curve track is more impacted by Warp 31. A Warp 31 defect is a warp 

defect measured with a 31ft cord where a Warp 62 is measured with a 62ft cord. Warp 

31 are more likely to occur on curve track compared to Warp 62. This is illustrated in 

Figures 22 through 24 in the form of distributions of these specific geometry defects. 

Figure 22 shows how Warp 31 is much more dominant on curves as compared to 

tangent track. This is reversed for Warp 62 in Figure 23. This agrees with the MARS 

analyses assessments of these defects, since no basis functions for Warp 31 were kept 

on tangent track and no Warp 62 were kept on curve track. Figure 24 shows that Rail 

Cant is more prominent on curve track, but more impactful per occurrence on tangent 

track. This also agrees with the MARS analyses. The tangent analysis shows that Rail 

Cant occurring has a large impact on life (200 MGT per occurrence) were the curve 

analysis shows that Rail Cant needs to occur often to have the same impact on life. It 
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should also be noted that Crosslevel, Gage, and Alignment are also impactful in 

determining the cumulative MGT of a rail. 

 

 

Figure 22 Distribution of Warp 31 
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Figure 23 Distribution of Warp 62 

 

Figure 24 Distribution of Rail Cant 
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These six geometry defects were determined, based off the MARS analyses, to 

be the most important and impactful geometry defects. With this the multilinear 

regression analysis was revisited. Five new equations based off these six parameters 

were created. Their equations and sensitivity to geometry defects can be seen below. 

 

Rail life for Tangent Track using six key geometry variables as identified by MARS 

Equation 14 

MGT=1750(0.739+ΣaiGDi)   

 𝐷           
Alignment  +0.0198   

Cant   -0.4576   

Cross-level  -0.2583   

Warp  31           -0.1579  

Warp  62              -0.3583    

Gage   -0.2583 

 

Rail life for Tangent Track using four key geometry variables as identified by MARS 

Equation 15 

MGT=1750(0.7156+ΣaiGDi)   

 𝐷           
Cant   -0.4902   

Cross-level  -0.2909   

Warp  62              -0.4902    

Gage   -0.2249 

 

Rail life for Curve Track using six key geometry variables as identified by MARS 

Equation 16 

MGT=1750(0.7777+ΣaiGDi)   

 𝐷           
Alignment  -0.1985   

Cant   -0.1342   

Cross-level  -0.1949   

Warp  31           -0.4987  

Warp  62              -0.0162    

Gage   -0.0813 

 

 

 

Rail life for Curve Track using four key geometry variables as identified by MARS 

Equation 17 
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MGT=1750(0.7704+ΣaiGDi)   

 𝐷           
Alignment  -0.1661   

Cant   -0.2211   

Cross-level  -0.1661   

Warp  31           -0.5193  

 

Rail life for All Track using six key geometry variables as identified by MARS 

Equation 18 

MGT=1750(0.784+ΣaiGDi)   

 𝐷           
Alignment  -0.2305   

Cant   -0.2566   

Cross-level  -0.291   

Warp  31           -0.3808  

Warp  62              -0.1255    

Gage   -0.0012 

 

Tangent All 1750 

  Intercept 0.739 

Alignment 0.0198 0 1 0 0 0 0 0 

Crosslevel -0.2582 0 0 1 0 0 0 0 

Gage -0.2583 0 0 0 1 0 0 0 

Rail Cant -0.4576 0 0 0 0 1 0 0 

Warp 31 -0.1579 0 0 0 0 0 1 0 

Warp 62 -0.3583 0 0 0 0 0 0 1 

  MGT 1293.25 1327.9 841.4 841.225 492.45 1016.925 666.225 

Reduction in 
Life     2.68% -34.94% -34.95% -61.92% -21.37% -48.48% 

Figure 25 Rail life for Tangent Track using six key geometry variables as identified 

by MARS 
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Tangent Specific 1750 

  Intercept 0.7156 

Gage -0.2249 0 1 0 0 0 

Crosslevel -0.2909 0 0 1 0 0 

Rail.Cant -0.4902 0 0 0 1 0 

Warp 62 -0.4239 0 0 0 0 1 

  MGT 1252.3 858.725 743.225 394.45 510.475 

Reduction in 
Life     -40.65% -68.50% -59.24% -39.96% 

Figure 26 Rail life for Tangent Track using four key geometry variables as 

identified by MARS 

Curve All 1750 

  Intercept 0.7777 

Alignment -0.1985 0 1 0 0 0 0 0 

Crosslevel -0.1949 0 0 1 0 0 0 0 

Gage -0.0813 0 0 0 1 0 0 0 

Rail Cant -0.1342 0 0 0 0 1 0 0 

Warp 31 -0.4987 0 0 0 0 0 1 0 

Warp 62 -0.01618 0 0 0 0 0 0 1 

  MGT 1360.975 1013.6 1019.9 1218.7 1126.125 488.25 1332.66 

Reduction in 
Life     -25.52% -25.06% -10.45% -17.26% -64.12% -2.08% 

Figure 27 Rail life for Curve Track using six key geometry variables as identified 

by MARS 
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Curve Specific 1750 

  Intercept 0.7704 

Alignment 
-

0.16614 0 1 0 0 0 

Crosslevel -0.2747 0 0 1 0 0 

Rail Cant -0.2211 0 0 0 1 0 

Warp 31 -0.5193 0 0 0 0 1 

  MGT 1348.2 1057.455 867.475 961.275 439.425 

Reduction in 
Life     -21.57% -35.66% -28.70% -67.41% 

Figure 28 Rail life for Curve Track using four key geometry variables as identified 

by MARS 

All Track 1750 

  Intercept 
0.7839

9 

Alignmen
t -0.2305 0 1 0 0 0 0 0 

Crossleve
l -0.291 0 0 1 0 0 0 0 

Gage -0.0012 0 0 0 1 0 0 0 

Rail Cant -0.2566 0 0 0 0 1 0 0 

Warp 31 -0.3808 0 0 0 0 0 1 0 

Warp 62 -0.1255 0 0 0 0 0 0 1 

  MGT 
1371.98

3 
968.607

5 
862.732

5 
1369.88

3 
922.932

5 
705.582

5 
1152.35

8 

Reductio
n in Life     -29.40% -37.12% -0.15% -32.73% -48.57% -16.01% 

Figure 29 Rail life for All Track using six key geometry variables as identified by 

MARS 
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Probability Analysis 

Probability Analysis examines the probability of a rail defect occurring given a 

geometry defect preceding it. The probability analysis approaches used in this study 

include: 

 Random Analysis 

 Conditional Probability Analysis 

 Bayes‟ Theorem probability analysis 

 Naïve Bayes probability analysis 

 Bayesian network analysis 

This section will look at multiple statistical (probability) approaches for 

predicting the probability of that a rail defect will occur given that there is a geometry 

defect at that same location that is present before the rail defect, i.e. the geometry 

defect precedes the rail defect. While there are many contributing factors into the 

development of a rail defect, this section addresses the effect of a geometry exception 

(geometry defect) in the likelihood (probability) of the development of a rail defect. 

Conditional Probability Analyses (Bayesian methods) are used to show this 

relationship. 

The first step in defining the relationships between the two types of defects is 

to determine the random probability of a defect, either rail or geometry, occurring at 

any given location on the track. This was done using Equation 19 and Equation 20 

below.  

 ( 𝐷)   
                        

                       
    Equation 19 

 ( 𝐷)   
                            

                     
    Equation 20 
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These equations give the random probability that a rail defect P(RD) or 

geometry defect P(GD) would occur in any one location on track independent of any 

other factors. A length of 39 feet was used for determining the length of track with one 

defect. The rail defect equation is divided by two to account for two rails per track. 

The complements were also determined for these defects. These are the probability 

that a defect type would not occur at a given location. Table 1 below has the results of 

these equations for the entire railroad (CSX). The geometry defects shown in Figure 

30 were determined in a previous analysis to be the most significant. 

 

Entire Railroad 

P( RD ) 0.180% 

P(GD) 1.19% 

P(Alignment) 0.054% 

P(Crosslevel) 0.30% 

P(Gage) 0.15% 

P(Rail Cant) 0.37% 

P(Warp 31) 0.22% 

P(Warp 62) 0.095% 

Figure 30 Random Probability of Rail and Geometry Defects. 

As shown in the table above, the random probability of a defect of any type 

occurring is very low. For a rail defect, the probability of the rail defect occurring in 

any one location randomly is 0.18%. For a geometry defect, this probability that the 

geometry defect will occur in any one location randomly is 1.19%. Note, this higher 

probability is due to the larger number of geometry defect that occur vs. rail defects, 

per CSX data presented previously. Also shown in Figure 30 are the probabilities for 

any specific geometry defect occurring on a random basis.  
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However, as seen from the previous analyses, rail defects do not occur 

randomly, but have an increased probability of occurring if preceded by a geometry 

defect, i.e. there is some relationship between geometry and rail defects. In order to 

evaluate this increased probability, a condition probability analysis with a conditional 

probability, P(R|G), calculated using Bayes‟ Theorem (Bayes‟ Rule). 

The most common and basic method of determining conditional probability is 

given below in Equation 13 for the probability of a geometry defect given a rail defect 

follows it [P(GD/RD)]. The joint probability [P(GD RD)] used in Equation 21 was 

calculated using Equation 21, but replacing annual rail defect occurrences with annual 

matched rail occurrences.  

 ( 𝐷| 𝐷)  
 (     )

 (  )
    Equation 21 

The results of the conditional probability for different geometry defects are 

shown below in Figure 31. 

Entire Railroad 

P(Alignment|RD) 0.418% 

P(Crosslevel|RD) 2.097% 

P(Gage|RD) 0.933% 

P(Rail Cant|RD) 3.227% 

P(Warp 31|RD) 1.925% 

P(Warp 62|RD) 0.776% 

P(GD|RD) 9.38% 

Figure 31 Conditional Probabilities for specific geometry defects given a rail defect 

followed. 

The P(GD|RD) was first found so it could be used in Bayes‟ Theorem 

(Theorem 1) to calculate the conditional probability of a rail defect when a geometry 

defect preceded it.  
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     Theorem 1 

Thus, the equation for P(RD|GD), the conditional probabilities for a rail defect 

to occur given a geometry defect preceded it, is calculated using Bayes‟ Theorem and 

is rewritten as shown in Equation 22. 

 ( 𝐷| 𝐷)  
 (  |  )  (  )

 (  |  )  (  )  (  |   )  (   )
   Equation 22 

This conditional probability of a rail defect, P(RD/GD), was calculated in 

terms of each geometry defect as well as any geometry defect. The results from the 

Bayes‟ analysis are shown below in Figure 32. From this table we can determine that a 

rail defect is about eight times more likely to occur given there is a geometry defect 

that precedes it, as compared to it occurring randomly (0.18%). 

Entire Railroad 

  

P(RD|GD) 

Likelihood  

   more  

 to occur 

P(RD|Alignment) 1.41% 7.84 

P(RD|Crosslevel) 1.24% 6.91 

P(RD|Gage) 1.12% 6.21 

P(RD|Rail Cant) 1.59% 8.83 

P(RD|Warp 31) 1.57% 8.75 

P(RD|Warp 62) 1.47% 8.17 

P(RD|GD) 1.44% 8.01 

Figure 32 Conditional probabilities for a rail defect to occur given a geometry 

defect preceded it from Bayes‟ Theorem 

The Bayes‟ Theorem methodology applied above looks at the condition where 

one geometry defect occurs prior to a rail defect. The conditional probability of a rail 

defect occurring after two or more geometry defects must also be considered, since 

this is a condition that was observed repeatedly in the actual data. To do this a 

different method must be used. One approach that can be used to determine the 
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conditional probability of a rail defect after multiple geometry defects is Naïve Bayes. 

This is an extension of Bayes‟ Theorem to cover the situation where multiple 

conditions precede an event and the likelihood and evidence functions used in Bayes‟ 

Theorem can be rewritten as shown in Equation 23 and Equation 24. 

            ( 𝐷 | 𝐷)   ( 𝐷 | 𝐷)     ( 𝐷 | 𝐷)   ( 𝐷)   Equation 23 

 

          ( 𝐷 | 𝐷)   ( 𝐷 | 𝐷)     ( 𝐷 | 𝐷)   ( 𝐷)   Equation 24 

                ( 𝐷 |  𝐷)   ( 𝐷 |  𝐷)     ( 𝐷 |  𝐷)   (  𝐷)  

Where n is the number of geometry defects present prior to the rail defect. 

Using the same inputs as already discussed when applying Bayes‟ Theorem, the 

results from the Naïve Bayes analysis is presented in Figure 33 for several different 

geometry defect combinations. 
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Entire Railroad 

  Alignment Crosslevel Gage Rail Cant Warp 31 Warp 62 P(RD | GD) 
#
 o

f 
d

ef
ec

ts
 

1 0 0 0 0 0 1.41% 

0 1 0 0 0 0 1.24% 

0 0 1 0 0 0 1.12% 

0 0 0 1 0 0 1.59% 

0 0 0 0 1 0 1.57% 

0 0 0 0 0 1 1.47% 

1 1 0 0 0 0 9.08% 

1 0 1 0 0 0 8.23% 

1 0 0 1 0 0 11.36% 

1 0 0 0 1 0 11.26% 

1 0 0 0 0 1 10.59% 

0 1 1 0 0 0 7.32% 

0 1 0 1 0 0 10.13% 

0 1 0 0 1 0 10.05% 

0 1 0 0 0 1 9.44% 

0 0 1 1 0 0 9.19% 

0 0 1 0 1 0 9.11% 

0 0 1 0 0 1 8.56% 

0 0 0 1 1 0 12.53% 

0 0 0 1 0 1 11.79% 

0 1 1 0 0 1 39.52% 

0 1 0 1 1 0 50.01% 

1 0 0 1 1 0 53.19% 

0 1 1 1 0 1 85.41% 

1 1 0 1 1 0 88.81% 

Figure 33 Results of different geometry defect combinations using Naïve Bayes 

The Naïve Bayes analysis shows that multiple geometry defects prior to a rail 

defect have a dramatic impact on the occurrence of a rail defect. Thus while the 

probability of a rail defect occurring after a Warp 31 defect is 1.6% ( as compared to 

the random probability of 0.18%) , the probability of a rail defect occurring after a 

Cross-level and Warp 31 defect increases to 10%, the  probability of a rail defect 

occurring after a Cross-level, Cant and Warp 31 defect jumps to 50%, and the 
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probability of a rail defect occurring after an alignment, Cross-level, Cant and Warp 

31 defect increases to 88.8%. 

However, it should be noted that the Naïve Bayes method is still relatively 

simple and furthermore has some built-in independency assumptions in the interaction 

of the geometry defects. This can introduce an error into the conditional probability 

analysis. To further improve the analysis, reduce these errors, and to develop a more 

accurate conditional probability model for the relationship between multiple geometry 

defects and associated rail defects, a Bayesian Network was constructed. 

Bayesian networks are a graphical probabilistic model used for a set of random 

variables and their conditional probability. The variables are represented by nodes and 

the dependencies between variables are represented by an arc or a directed edge. Each 

node has a conditional probability attached to it. These conditional probabilities are 

calculated using Bayes‟ Theorem.  Nodes with conditional probability attached to 

them are called „Child‟ nodes. These nodes are conditioned by „Parent‟ nodes. A 

parent node is a node with no arcs or direct edges leading to it. These nodes have a 

single probability distribution.    

In order to apply this Bayesian Network approach, and to develop a model 

based on the CSX data, a program called NETICA was used. Figure 34 illustrates the 

structure of the Bayesian Network developed within NETICA. The RailAll node is the 

only parent node in this network, and represents the conditional probability of a rail 

defect occurring after one or more geometry defects.  The geometry defect nodes are 

all child nodes of the RailAll node. This means their values are conditioned by the 

RailAll node. The variables used for this network are discrete variables. 
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Figure 34 Bayesian network in NETICA; Random Case. 

The RailAll node is the pure random probability of a rail defect occurring 

anywhere on the railroad. Thus, as can be seen in Figure 35, the random probability of 

having a rail defect is 0.18%, as calculated previously. The other nodes are the 

conditional probability of a specific geometry defect will occur based on the RailAll 

node. This value is calculated from a set of inputs placed into a true/false table in 

NETICA shown in Figure 33.  

 

Figure 35 Input table for Alignment Defect in NETICA  

RailAll

True
False

0.18
99.8

Alignment

True
False

.054
99.9

Crosslevel

True
False

0.30
99.7

Gage

True
False

0.15
99.8

Cant

True
False

0.37
99.6

Warp31

True
False

0.22
99.8

Warp62

True
False

.095
99.9
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The values put into the table in Figure 33 are the conditional probabilities of a 

geometry defect occurring if followed by a rail defect and a geometry defect occurring 

if not followed by a rail defect.  

With the Bayesian Network model, the conditional probability of a rail defect 

given a geometry defect can be determined. This is done by setting the geometry 

defect(s) that occurred as true (100%)  and the rest as false (0%). This will calculate 

the probability of a rail defect occurring given the selected geometry defect(s). The 

results of several different cases are shown in the following figures.  

Figure 36 represents a Warp 31 defect; where the conditional probability of a 

rail defect following a Warp 31 defect is 1.48%.   

Figure 37 represents Warp 31 and Rail Cant defects; where the conditional 

probability of a rail defect following a Warp 31 and Cant defect is 12.1%..   

Figure 38 represents Warp 31, Rail Cant, and Cross-level defects; where the 

conditional probability of a rail defect following a Warp 31, Cant and Cross-level 

defect is 49.6%.   

 Figure 39 represents Warp 31, Rail Cant, Cross-level, and Alignment defects; 

where the conditional probability of a rail defect following these four defects is 88.6%.   
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Figure 36 Bayesian Network for a Warp 31 Defect. 

 

Figure 37 Bayesian Network for a Rail Cant and a Warp 31 Defect. 
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Figure 38 Bayesian Network for a Warp 31, a Rail Cant, and a Crosslevel Defect. 

 

Figure 39 Bayesian Network for a Warp 31, a Rail Cant, a Crosslevel, and an 

Alignment Defect. 

Note, the Bayesian Network model gives a very similar answer to that given by 

the Naïve Bayes‟ model shown earlier. The key difference is that the Bayesian 
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network is assuming that only those two geometry defects had an effect on the 

development of the rail defect. The Naïve Bayes model assumes that the other 

geometry defects could have had an effect, increasing the likelihood of a rail defect 

slightly. A comparison of the two models can be seen below in Figure 40. As can be 

seen, the differences are relatively small but distinct. 
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Entire Railroad 

  
Alignmen
t 

Crossleve
l 

Gag
e 

Rail 
Cant 

Warp 
31 

Warp 
62 

P(RD | GD) 
Naïve 

P(RD|GD) 
Network 

# 
o

f 
d

e
fe

ct
s 

1 0 0 0 0 0 1.41% 1.30% 

0 1 0 0 0 0 1.24% 1.17% 

0 0 1 0 0 0 1.12% 1.04% 

0 0 0 1 0 0 1.59% 1.51% 

0 0 0 0 1 0 1.57% 1.48% 

0 0 0 0 0 1 1.47% 1.36% 

1 1 0 0 0 0 9.08% 8.54% 

1 0 1 0 0 0 8.23% 7.66% 

1 0 0 1 0 0 11.36% 10.80% 

1 0 0 0 1 0 11.26% 10.60% 

1 0 0 0 0 1 10.59% 9.87% 

0 1 1 0 0 0 7.32% 6.94% 

0 1 0 1 0 0 10.13% 9.82% 

0 1 0 0 1 0 10.05% 9.63% 

0 1 0 0 0 1 9.44% 8.96% 

0 0 1 1 0 0 9.19% 8.82% 

0 0 1 0 1 0 9.11% 8.64% 

0 0 1 0 0 1 8.56% 8.04% 

0 0 0 1 1 0 12.53% 12.10% 

0 0 0 1 0 1 11.79% 11.30% 

0 1 1 0 0 1 39.52% 38.30% 

0 1 0 1 1 0 50.01% 49.60% 

1 0 0 1 1 0 53.19% 52.20% 

0 1 1 1 0 1 85.41% 85.10% 

1 1 0 1 1 0 88.81% 88.60% 

Figure 40 Comparison of Naïve Bayes and Bayesian networks models for select 

geometry defects. 
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Tangent and Curve Comparison 

The previous analysis included all track, both curve and tangent. A comparison 

between tangent and curve track conditional probabilities was also performed to see 

which geometry defects had a larger impact on curve track and tangent track. The 

same process was carried out with each set of tangent and curve track data. Figure 41 

presents a comparison of the random probabilities of rail and geometry defects 

occurring on tangent, curve, and all tracks. Equations 19 and 20 were both used to 

calculate these values.  

 

  TANGENT CURVE ALL 

P( RD ) 0.186% 0.152% 0.18% 

P(GD) 0.527% 2.743% 1.19% 

P(Alignment) 0.012% 0.151% 0.05% 

P(Crosslevel) 0.324% 0.242% 0.30% 

P(Gage) 0.028% 0.441% 0.15% 

P(Rail Cant) 0.048% 1.120% 0.37% 

P(Warp 31) 0.017% 0.705% 0.22% 

P(Warp 62) 0.098% 0.084% 0.10% 

Figure 41 Tangent, Curve, and All random probability of a defect 

As can be seen in Figure 41, the curve track has a larger random probability of 

a geometry defect occurring (for all defects except Warp 62) than the tangent track. 

The tangent track has a larger random probability of a rail defect occurring (and also 

of a Warp 62 defect occurring). 

Figure 42 presents the conditional probabilities of the geometry defects given a 

rail defect ,which are used as input into Bayes‟ Theorem.  
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  TANGENT CURVE ALL 

P(Alignment|RD) 0.101% 1.377% 0.42% 

P(Crosslevel|RD) 2.287% 1.647% 2.10% 

P(Gage|RD) 0.202% 3.144% 0.93% 

P(Rail Cant|RD) 0.547% 11.334% 3.23% 

P(Warp 31|RD) 0.223% 7.067% 1.93% 

P(Warp 62|RD) 0.875% 0.524% 0.78% 

P(GD|RD) 4.236% 25.094% 9.38% 

Figure 42  Conditional probabilities of geometry defects 

With the geometry defect‟s conditional probabilities calculated, per Figure 42, 

Bayes‟ Theorem can be applied to calculate the conditional probability of rail defects 

occurring after a geometry defect. The results of Bayes‟ Theorem Conditional 

probability analyses are shown below in Figure 43. 

Bayes' Theorem 

  TANGENT CURVE ALL 

  P(RD|GD) 
Likelihood 
more to 

occur 
P(RD|GD) 

Likelihood 
more to 

occur 
P(RD|GD) 

Likelihood 
more to 

occur 

P(RD) 0.186%   0.15%   0.18%   

P(RD|Alignment) 1.50% 8.34 1.37% 9.13 1.41% 7.84 

P(RD|Crosslevel) 1.29% 7.18 1.02% 6.81 1.24% 6.91 

P(RD|Gage) 1.34% 7.43 1.07% 7.13 1.12% 6.21 

P(RD|Rail Cant) 2.06% 11.44 1.51% 10.08 1.59% 8.83 

P(RD|Warp 31) 2.44% 13.54 1.50% 9.99 1.57% 8.75 

P(RD|Warp 62) 1.63% 9.05 0.94% 6.26 1.47% 8.17 

P(RD|GD) 1.49% 8.01 1.39% 9.26 1.44% 8.01 

Figure 43 Conditional probability of a rail defect occurring after a geometry defect 

occurred from Bayes‟ Theorem 
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Figure 43 above suggests that over all, geometry defects have a larger impact 

on the likelihood of the development of a rail defects on curve track compared to 

tangent track. This was also reconfirmed using the Naïve Bayes method show in 

Figure 44. Multiple defects on curve track likewise had a much larger impact of the 

probability of a rail defect on the curve track when compared to the tangent track. 

Still, tangent track had a higher overall probability then curve track. It should be noted 

that both Rail Cant and Warp 31 have the largest increase in likelihoods for rail 

defects for both tangent and curve track.  
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TANGEN
T 

CURVE ALL 

  
Alignme
nt 

Crosslev
el 

Gag
e 

Rail 
Cant 

Warp 
31 

Warp 
62 

P(RD | 
GD) 

P(RD | 
GD) 

P(RD | 
GD)  

# 
o

f 
d

e
fe

ct
s 

1 0 0 0 0 0 1.50% 1.37% 1.41% 

0 1 0 0 0 0 1.29% 1.02% 1.24% 

0 0 1 0 0 0 1.34% 1.07% 1.12% 

0 0 0 1 0 0 2.06% 1.51% 1.59% 

0 0 0 0 1 0 2.44% 1.50% 1.57% 

0 0 0 0 0 1 1.63% 0.94% 1.47% 

1 1 0 0 0 0 9.69% 8.61% 9.08% 

1 0 1 0 0 0 10.00% 8.99% 8.23% 

1 0 0 1 0 0 14.69% 12.30% 11.36% 

1 0 0 0 1 0 16.99% 12.20% 11.26% 

1 0 0 0 0 1 11.95% 7.97% 10.59% 

0 1 1 0 0 0 8.71% 6.84% 7.32% 

0 1 0 1 0 0 12.89% 9.45% 10.13% 

0 1 0 0 1 0 14.95% 9.37% 10.05% 

0 1 0 0 0 1 10.44% 6.05% 9.44% 

0 0 1 1 0 0 13.28% 9.85% 9.19% 

0 0 1 0 1 0 15.39% 9.77% 9.11% 

0 0 1 0 0 1 10.76% 6.32% 8.56% 

0 0 0 1 1 0 22.01% 13.33% 12.53% 

0 0 0 1 0 1 15.76% 8.74% 11.79% 

0 1 1 0 0 1 45.91% 31.42% 39.52% 

0 1 0 1 1 0 66.51% 51.09% 50.01% 

1 0 0 1 1 0 69.81% 58.41% 53.19% 

0 1 1 1 0 1 90.56% 82.24% 85.41% 

1 1 0 1 1 0 94.21% 90.51% 88.81% 

Figure 44 Naive Bayes analysis of tangent, curve, and all track. 

Figures 45 through 48 show the results from the Bayesian Network model to 

include both the tangent and curve models. The Bayesian Network model results agree 
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with the previous two analyses showing that geometry defects on tangent track have a 

larger impact then on curve track in the development of rail defects. 

 

Figure 45 Bayesian Network Model for Warp 31 with Tangent on Top and Curve 

on Bottom. 
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Figure 46 Bayesian Network Model for Warp 31 and Rail Cant with Tangent on 

Top and Curve on Bottom. 
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Figure 47 Bayesian Network Model for Warp 31, Rail Cant, and Cross-level with 

Tangent on Top and Curve on Bottom. 
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Figure 48 Bayesian Network Model for Warp 31, Rail Cant, Cross-level, and 

Alignment with Tangent on Top and Curve on Bottom. 

Figure 49 below shows the comparison of the results from the Bayesian 

Network model and the Naïve Bayes model for various geometry defect combinations. 

Again note the results are close but with a distinct difference. The Bayesian Network 

model is considered the more “accurate” model because of the way it handles 

interactions between variables.  
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  TANGENT CURVE ALL 

  
Alig
nme
nt 

Cros
slev
el 

G
ag
e 

Rail 
Can
t 

Wa
rp 
31 

Wa
rp 
62 

P(RD | 
GD) 
Naïve 

P(RD|GD
) 
Network 

P(RD | 
GD) 
Naïve 

P(RD|GD
) 
Network 

P(RD | 
GD) 
Naïve 

P(RD|GD
) 
Network 

# 
o

f 
d

e
fe

ct
s 

1 0 0 0 0 0 1.50% 1.45% 1.37% 1.10% 1.41% 1.30% 

0 1 0 0 0 0 1.29% 1.27% 1.02% 0.82% 1.24% 1.17% 

0 0 1 0 0 0 1.34% 1.29% 1.07% 0.87% 1.12% 1.04% 

0 0 0 1 0 0 2.06% 1.99% 1.51% 1.34% 1.59% 1.51% 

0 0 0 0 1 0 2.44% 2.35% 1.50% 1.27% 1.57% 1.48% 

0 0 0 0 0 1 1.63% 1.58% 0.94% 0.75% 1.47% 1.36% 

1 1 0 0 0 0 9.69% 9.54% 8.61% 7.11% 9.08% 8.54% 

1 0 1 0 0 0 10.00% 9.69% 8.99% 7.52% 8.23% 7.66% 

1 0 0 1 0 0 14.69% 14.30% 12.30% 11.10% 11.36% 10.80% 

1 0 0 0 1 0 16.99% 16.50% 12.20% 10.60% 11.26% 10.60% 

1 0 0 0 0 1 11.95% 11.60% 7.97% 6.51% 10.59% 9.87% 

0 1 1 0 0 0 8.71% 8.59% 6.84% 5.71% 7.32% 6.94% 

0 1 0 1 0 0 12.89% 12.70% 9.45% 8.53% 10.13% 9.82% 

0 1 0 0 1 0 14.95% 14.80% 9.37% 8.14% 10.05% 9.63% 

0 1 0 0 0 1 10.44% 10.30% 6.05% 4.93% 9.44% 8.96% 

0 0 1 1 0 0 13.28% 12.90% 9.85% 9.02% 9.19% 8.82% 

0 0 1 0 1 0 15.39% 15.00% 9.77% 8.61% 9.11% 8.64% 

0 0 1 0 0 1 10.76% 10.50% 6.32% 5.23% 8.56% 8.04% 

0 0 0 1 1 0 22.01% 21.50% 13.33% 12.70% 12.53% 12.10% 

0 0 0 1 0 1 15.76% 15.40% 8.74% 7.83% 11.79% 11.30% 

0 1 1 0 0 1 45.91% 45.70% 31.42% 27.50% 39.52% 38.30% 

0 1 0 1 1 0 66.51% 66.30% 51.09% 49.90% 50.01% 49.60% 

1 0 0 1 1 0 69.81% 69.20% 58.41% 57.30% 53.19% 52.20% 

0 1 1 1 0 1 90.56% 90.50% 82.24% 81.00% 85.41% 85.10% 

1 1 0 1 1 0 94.21% 94.20% 90.51% 90.20% 88.81% 88.60% 

Figure 49 Comparison of Naïve Bayes and Bayesian Network Models for Tangent, 

Curve, and All Track. 
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As seen in both the Naïve Bayes and Bayesian Network, the presence of 

multiple geometry defects can be observed to drastically increase the probability of a 

rail defect occurring up to 80-95%. Figure 50 below shows the increased likelihoods 

of a rail defect occurring after a geometry defect based off the Bayesian Networks. It 

is noticed that the likelihood of a rail defect occurring on curve track is reduced much 

more than on tangent track. This is due to being able to control the independence of 

the occurrence of geometry defects. In both the Bayes‟ Theorem and Naïve Bayes 

analyses, it is assumed that a geometry defect could have occurred even though it was 

not recorded. This assumption raises the likelihood of a rail defect occurring since 

multiple geometry defects is shown to increase the probability of a rail defect as 

indicated in Figure 49. As shown earlier, curve track is much more prone to having 

repeat geometry defects, making this increase much more noticeable on curve track 

due to this assumption. By setting the defects to just one defect no matter the situation 

in the Bayesian Network, a clearer value of the likelihood of a rail defect occurring 

due to a geometry defect is obtained. 
Bayesian Network 

  TANGENT CURVE ALL 

  P(RD|GD) 

Likelihood 

more to 

occur 

P(RD|GD) 

Likelihood 

more to 

occur 

P(RD|GD) 

Likelihood 

more to 

occur 

P(RD) 0.186%   0.15%   0.18%   

P(RD|Alignment) 1.45% 7.80 1.10% 7.33 1.30% 7.22 

P(RD|Crosslevel) 1.27% 6.83 0.82% 5.47 1.17% 6.50 

P(RD|Gage) 1.29% 6.94 0.87% 5.80 1.04% 5.78 

P(RD|Rail Cant) 1.99% 10.70 1.34% 8.93 1.51% 8.39 

P(RD|Warp 31) 2.35% 12.63 1.27% 8.47 1.48% 8.22 

P(RD|Warp 62) 1.58% 8.49 0.75% 5.00 1.36% 7.56 

P(RD|GD) 1.44% 7.74 1.10% 7.33 1.31% 7.28 

 

Figure 50 Bayesian Network Probability and Likelihood.  
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Figure 51 presents a comparison of rail life reduction for tangent and curve 

track. Note, tangent track shows a reduction in life, when a geometry defect is present, 

of 28%, twice the life reduction in MGT when compared to curve track (13%). This, 

may be related to the shorter rail life on curved track with a stronger rail wear effect, 

but can also be related to this increased probability of a rail defect occurring after a 

geometry defect on tangent track. 

 

 

Defec
t 

Match  
Tangen
t 

Not 
Matche
d 
Tangent 

Reductio
n 
Tangent 

Matc
h 
Curve 

Not 
Matche
d 
Curves 

Reductio
n Curve 

Matc
h  All 

Not 
Matche
d All 

Reductio
n All 

TOTA
L  503.64 703.70 -28% 

413.2
3 477.15 -13% 

446.7
7 646.19 -31% 

Figure 51 Average MGT Life of Rail Comparison for Tangent, Curve, and All 

Track. 

From these analyses, it is shown that geometry defects have a significant 

impact on the development of a rail defect. As it can be seen in Figure 50, geometry 

defect increases the probability of a rail defect by more than seven times and reduces 

the life of the rail significantly, as seen in Figure 51. This increase in probability is 

even higher with the presence of multiple geometry defects, up to a range of 85-95% 

depending on the geometry defects present 

The Bayesian network model can be used to help predict the development of a 

rail defect given a geometry defect occurred prior. This model is very simple to use 

and only requires the user to set which geometry defects were true (occurred) and 

which were false (did not occur). In the future, this model can be extended to other 

pieces of data, such as Ground Penetrating Radar Data (GPR). 
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Chapter 5 

VALIDATION OF MODELS 

Validation of the statistical model was performed using two sets of data while 

validation of the regression models was done with the original data set. The first set of 

data was the BA division using two different years of rail data (2013 and 2014). This 

data represented approximately 5% of the initial data and therefore not the best for 

validation. Even though it is a small size, it still represents the overall data well since 

it is using the same exception measurements. The second set of data was provided by 

BNSF and is approximately 10% of the initial data. This is a far better size for 

validation than the BA data and helps validate the work done across different 

exception measurements and track conditions. Figure 52 below has a breakdown of the 

BNSF subdivision mileage, MGT range, and percent wood tie for a specific MGT 

range.  

Figure 53 presents the breakdown of the defects in all three cases. Defect rates 

are shown in defects/mile/year. The length in miles for the BNSF is assumed to be 

75% tangent and 25% curved rail based on other BNSF data and CSX data. This was 

seen as a safe assumption. Warp 31 is not reported as such within the BNSF data set 

and is instead placed into the twist category.  The table also contains a comparison of 

rail life lost. Figures 54 and 55 below have a comparison of the likelihoods and 

probability of a rail defect occurring after a geometry defect, BA division and BNSF 

respectively.  
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Subdivision 

Miles 
of 

wood 
ties 

w/ 20 
- 40 
MGT 

Other 
miles 

% Miles of 
wood ties 
w/ 20 - 40 

MGT 

MENDOTA 220 20 0.92 

LAMPASAS 239 0 1 

DOUGLASS 30 0 0.99 

SLATON 131 78 0.63 

HASTINGS 173 54 0.76 

BELLINGHAM 44 41 0.51 

COLUMBIA 
RIVER 

122 68 0.64 

SCENIC 102 82 0.55 

SEATTLE 188 161 0.54 

AFTON 47 37 0.56 

CHEROKEE 102 102 0.5 

CREEK 162 12 0.93 

CASCO 49 25 0.66 

HILLSBORO 74   1 

HINCKLEY 124   1 

MARSHALL 222   1 

WAYZATA 87 0 1 

Figure 52 BNSF Subdivision Breakdown. 
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Tangent  Curve All 

  All Div 
Length in 

Miles 

15725.12 6502.6 22227.72 
  BA Val 580 462 1042 
  BNSF 2102.805 700.935 2803.74 
  All Div 

Unique Geo 
70287 132054 202341 

  BA Val 2442 5262 7704 
  BNSF 17898 16221 34119 
  All Div Unique Geo 

Rate 
Def/M/Y 

0.89 4.06 1.82 
  BA Val 0.84 2.28 1.48 
  BNSF 1.70 4.63 2.43 
  All Div 

Rail Defects 
19761 6679 26440 

  BA Val 880 372 1252 
  BNSF 1664 139 1803 
  All Div Rail Defects 

Rate 
Def/M/Y 

0.50 0.41 0.48 
  BA Val 0.76 0.40 0.60 
  BNSF 0.79 0.20 0.64 
  All Div 

Matches 
1047 1871 2918 

  BA Val 43 33 76 
  BNSF 189 57 246 
  All Div Matches 

Rate 
Def/M/Y 

0.027 0.115 0.053 
  BA Val 0.037 0.036 0.036 
  BNSF 0.090 0.081 0.088 
  All Div 

% of Defects 
Matched 

5.3% 28.0% 11.0% 
  BA Val 4.9% 8.9% 6.1% 
  BNSF 11.4% 41.0% 13.6% 
  All Div 

Unique Gage 
Defects 

2952 19414 22366 
  BA Val 47 811 858 
  BNSF 9937 12513 22450 
  All Div 

Unique Warp 
31 Defects 

1762 31017 32779 
  BA Val 70 1651 1721 
  BNSF 174 50 224 
  All Div 

Unique Warp 
62 Defects 

10451 3693 14144 
  BA Val 274 119 393 
  BNSF 351 341 692 
  All Div Unique 

Crosslevel 
Defects 

34529 10657 45186 
  BA Val 1382 425 1807 
  BNSF 3456 885 4341 
  All Div Unique 

Alignment 
Defects 

1312 6629 7941 
  BA Val 32 170 202 
  BNSF 137 664 801 Below is % 

Matched for 
specific Geo 

Defects (Matches 
for a geo/Rail 

Defects) 

All Div 

Unique Cant 
Defects 

5139 49293 54432 
BA Val 202 1415 1617 

BNSF 786 874 1660 
All Div 

Matched 
Gage Defects 

40 210 250 0.9% 
 BA Val 0 2 2 0.2% 
 BNSF 83 43 126 7.0% 
 All Div Matched 

Warp 31 
Defects 

44 472 516 2.0% 
 BA Val 1 11 12 1.0% 
 BNSF 2 1 3 0.2% 
 All Div Matched 

Warp 62 
Defects 

173 35 208 0.8% 
 BA Val 11 0 11 0.9% 
 BNSF 3 0 3 0.2% 
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All Div Matched 
Crosslevel 

Defects 

452 110 562 2.1% 
 BA Val 18 4 22 1.8% 
 BNSF 48 4 52 2.9% 
 All Div Matched 

Alignment 
Defects 

20 92 112 0.4% 
 BA Val 0 1 1 0.1% 
 BNSF 3 4 7 0.4% 
 All Div 

Matched 
Cant Defects 

108 757 865 3.3% 
 BA Val 8 13 21 1.7% 
 BNSF 6 3 9 0.5% 
 All Div Unique Gage 

Defects Rate 
Def/M/Y 

0.038 0.597 0.201 
  BA Val 0.016 0.351 0.165 
  BNSF 0.945 3.570 1.601 
  All Div Unique Warp 

31 Defects 
Rate 

Def/M/Y 

0.022 0.954 0.295 
  BA Val 0.024 0.715 0.330 
  

BNSF 0.017 0.014 0.016 
  All Div Unique Warp 

62 Defects 
Rate 

Def/M/Y 

0.133 0.114 0.127 
  BA Val 0.094 0.052 0.075 
  

BNSF 0.033 0.097 0.049 
  All Div Unique 

Crosslevel 
Defects Rate 

Def/M/Y 

0.439 0.328 0.407 
  BA Val 0.477 0.184 0.347 
  

BNSF 0.329 0.253 0.310 
  All Div Unique 

Alignment 
Defects Rate 

Def/M/Y 

0.017 0.204 0.071 
  BA Val 0.011 0.074 0.039 
  

BNSF 0.013 0.189 0.057 
  All Div Unique Cant 

Defects Rate 
Def/M/Y 

0.065 1.516 0.490 
  BA Val 0.070 0.613 0.310 
  BNSF 0.075 0.249 0.118 
  All Div 

Not Matched 
MGT 

703.7 477.15 646.19 
  BA Val 570.55 490.429 546.39 
  BNSF 685.41 536.02 679.08 
  All Div 

Matched 
MGT 

503.64 413.23 446.77 
  BA Val 386.84 359.36 368.52 
  BNSF 653.65 499.47 617.78 
  All Div 

Loss of MGT 
28.4% 13.4% 30.9% 

  BA Val 32.2% 26.7% 32.6% 
  BNSF 4.6% 6.8% 9.0% 
  

Figure 53 Breakdown of All Three Data Sets. 
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Bayes Comparision 

  TANGENT CURVE ALL 

  
P(RD|GD
) 

Likelihoo
d more 
to occur 

ALL 

P(RD|GD
) BA Val 

Likelihoo
d more 
to occur 

BA 

P(RD|G
D 

Likelihoo
d more 
to occur 

ALL 

P(RD|GD
) Val 

Likelihoo
d more 
to occur 

P(RD|GD
) 

Likelihoo
d more 
to occur 

ALL 

P(RD|GD
)  Val 

Likelihoo
d more 
to occur 

P(RD) 0.186%   0.352%   0.150%   0.119%   0.180%   0.222%   

P(RD|Alignmen
t) 

1.50% 8.34 
0.00% 0.00 

1.37% 9.13 0.73% 6.19 1.41% 7.84 0.62% 2.78 

P(RD|Crossleve
l) 

1.29% 7.18 
1.62% 4.60 

1.02% 6.81 1.17% 9.89 1.24% 6.91 1.52% 6.83 

P(RD|Gage) 1.34% 7.43 0.00% 0.00 1.07% 7.13 0.31% 2.60 1.12% 6.21 0.29% 1.31 

P(RD|Rail Cant) 2.06% 11.44 4.90% 13.91 1.51% 10.08 1.15% 9.66 1.59% 8.83 1.62% 7.28 

P(RD|Warp 31) 2.44% 13.54 1.78% 5.05 1.50% 9.99 0.83% 7.01 1.57% 8.75 0.87% 3.91 

P(RD|Warp 62) 1.63% 9.05 4.97% 14.09 0.94% 6.26 0.00% 0.00 1.47% 8.17 3.47% 15.63 

P(RD|GD) 1.49% 8.01 2.28% 6.46 1.39% 9.26 0.84% 7.10 1.44% 8.01 1.30% 5.87 

Figure 54 BA Validation Comparison. 
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Figure 55 BNSF Validation Comparison.

Bayes Comparision 

  TANGENT CURVE ALL 

  
P(RD|GD
)   

Likelihoo
d more 
to occur 

ALL 

P(RD|GD
)   BNSF 
Val 

Likelihoo
d more 
to occur 

BNSF 

P(RD|GD
)   

Likelihoo
d more 
to occur 

ALL 

P(RD|GD
)   BNSF 
Val 

Likelihoo
d more 
to occur 

BNSF 

P(RD|GD
)   

Likelihoo
d more 
to occur 

ALL 

P(RD|GD
)   BNSF 
Val 

Likelihoo
d more 
to occur 

BNSF 

P(RD) 0.186%   0.308%   0.150%   0.073%   0.180%   0.251%   

P(RD|Alignmen
t) 

1.50% 8.34 
5.30% 18.14 

1.37% 9.13 1.49% 20.38 1.41% 7.84 
0.31% 1.31 

P(RD|Crossleve
l) 

1.29% 7.18 
3.40% 11.64 

1.02% 6.81 1.12% 15.32 1.24% 6.91 
2.43% 10.23 

P(RD|Gage) 1.34% 7.43 2.06% 7.06 1.07% 7.13 0.85% 11.67 1.12% 6.21 2.02% 8.50 

P(RD|Rail Cant) 2.06% 11.44 1.89% 6.46 1.51% 10.08 0.85% 11.66 1.59% 8.83 1.50% 6.32 

P(RD|Warp 31) 2.44% 13.54 2.82% 9.67 1.50% 9.99 4.85% 66.28 1.57% 8.75 1.18% 4.98 

P(RD|Warp 62) 1.63% 9.05 2.11% 7.22 0.94% 6.26 0.00% 0.00 1.47% 8.17 1.80% 7.56 

P(RD|GD) 1.49% 8.01 2.41% 8.24 1.39% 9.26 0.89% 12.18 1.44% 8.01 2.00% 8.40 
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The comparison between the BA validation data and the CSX data, shown in 

Figures 53 and 54, show similar trends in increase likelihood of a rail defect occurring 

and decrease life of the rail when a rail defect occurs after a geometry defect. When 

looking at the specific of the increase likelihoods, it can be seen that some geometry 

defects have a zero in them.  This is due to having no matches, which is a result in of 

the too small sample size.  Because of this, looking at specific geometry defects can be 

somewhat misleading and the all case is what should be observed. In the BA 

validation case, it is seen that the likelihood of a geometry defect occurring is between 

5.87 and 7.1, with curve being the highest. This is slightly lower than the CSX data 

set, which is from 8 to 9.26 increase likelihood with curve being the highest. Though 

different it follows the same trends. This difference in likelihoods can be explained 

with the small sample size and that some geometry defect rates vary greatly. 

The comparison between the BNSF validation data and the CSX data, shown 

in Figures 53 and 54, also show similar trends in increased likelihood and, to a lesser 

degree, loss of rail life.  The rail life loss is a lot less in the BNSF data set than the 

CSX data set. Even though it is lower, there is still a significant loss of life (40 to 60 

MGT). This difference in loss of rail life might be explained by the BNSF data that 

was used. It was limited to 20-40 annual MGT and had less variance when compared 

to the CSX data which had a much larger range of annual MGT. The likelihoods for 

the all geometry cases are very similar for the BNSF and CSX data. The curve data is 

somewhat skewed by the Warp 31 (twist for BNSF) which can be explained by the 

fact the two defects being reported are similar but not exactly the same.  

Comparing both validation sets of data (BNSF and CSX BA Division) with the 

CSX data set, it can be seen that the likelihood of a rail defect occurring after a 
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geometry defect, as defined by the Bayesian analyses, show similar relationships, with 

all the probability of a rail defect occurring after a geometry defect increasing  by 

approximately a factor of 8 for all three analyses ( base and two validations) . Since 

the random probability of a rail defect differed between track types and track location, 

the probability of a rail defect following a geometry defect also varied. However, the 

comparable increase in risk (a factor of 8) strongly supports the validity of this 

analysis. 

The multilinear regression models validity were determined by a k-fold cross-

validation method applied to the full CSX data set. This method removes values from 

the learned data set, refits the model, and then predicts the removed values.  Once the 

removed values are predicted, an error term is made for the model. This error term is 

shown in the same unit as the predicted value (MGT). These error terms show how 

well the multilinear model fits. Figure 56 below has the associated error terms from 

the validation of the five main multilinear equations for rail life reduction in terms of 

MGT. 

 

K-Fold Cross-Validation 

 

SE of 

Estimation in 

MGT 

Tangent 

All 
76.19 

Tangent 73.16 

Curve All 44.69 

Curve 44.24 

ALL 

TRACK 52.63 

Figure 56 Standard Error of Estimation in MGT 
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The k-fold validation shows that the overall fitness for the curve and all track 

is adequate but that the overall fitness of the tangent track needs improvement. To 

improve these error terms the lead coefficients of the equations were adjusted so that if 

no geometry defect is reported, the equation would equal the average reported MGT of 

a not matched rail defect. The adjusted lead coefficients for each equation and its new 

error term can be seen below in Figure 57.  

 

K-Fold Cross-Validation 

  

Lead 
Coefficient in 

MGT 

SE of 
Estimation in 

MGT 

Tanget 
All 952 

41.46 

Tangent 983 41.11 

Curve All 614 15.67 

Curve  619 15.66 

ALL 
TRACK 824 24.79 

Figure 57 Standard Error of Estimation with New Lead Coefficient. 

With the new coefficient, the standard error is reduced making the model fit 

the data much better.  Tangent track is still the least fit, even though its overall fitness 

was increased. The curve and all track models fitness was measurably increased with 

this change. Since tangent track consists of more track, the difference between MGT 

values will be greater. This explains the larger standard error for the tangent track, and 

to a less extent, the all track.  

Using these revised lead coefficients results in the use average rail life for 

tangent, curve and all track as opposed to the maximum rail life of 1750 MGT used 
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before. The resulting regression equations and sensitivity figures that correspond to 

these revised coefficients are as follows: It should be noted that the average decrease 

of rail defect life while using one of the six key geometry defects is approximately 

30%. 

 

Rail life for Tangent Track using six key geometry variables as identified by MARS 

Equation 25 

MGT (Tangent) =952 (0.739+ΣaiGDi)    

 𝐷          
Alignment  +0.0198   

Cant   -0.4576   

Cross-level  -0.2583   

Warp  31           -0.1579  

Warp  62              -0.3583    

Gage   -0.2583 

 

 

Rail life for Tangent Track using four key geometry variables as identified by MARS 

Equation 26 

MGT (Tangent) =983 (0.7156+ΣaiGDi)   

 𝐷           
Cant   -0.4902   

Cross-level  -0.2909   

Warp  62              -0.4902    

Gage   -0.2249 
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Rail life for Curve Track using six key geometry variables as identified by MARS 

Equation 27 

MGT (Curve) =614(0.7777+ΣaiGDi)   

 𝐷           
Alignment  -0.1985   

Cant   -0.1342   

Cross-level  -0.1949   

Warp  31           -0.4987  

Warp  62              -0.0162    

Gage   -0.0813 

 

Rail life for Curve Track using four key geometry variables as identified by MARS 

Equation 28 

MGT=619 (0.7704+ΣaiGDi)   

 𝐷           
Alignment  -0.1661   

Cant   -0.2211   

Cross-level  -0.1661   

Warp  31               -0.5193  

 

Rail life for All Track using six key geometry variables as identified by MARS 

Equation 29 

MGT=824(0.784+ΣaiGDi)  

 𝐷           
Alignment  -0.2305   

Cant   -0.2566   

Cross-level  -0.291   

Warp  31           -0.3808  

Warp  62              -0.1255    

Gage   -0.0012 
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Tangent 
All 952.23 

  Intercept 0.739 

Alignment 0.0198 0 1 0 0 0 0 0 

Crosslevel 
-

0.2582 0 0 1 0 0 0 0 

Gage 
-

0.2583 0 0 0 1 0 0 0 

Rail Cant 
-

0.4576 0 0 0 0 1 0 0 

Warp 31 
-

0.1579 0 0 0 0 0 1 0 

Warp 62 
-

0.3583 0 0 0 0 0 0 1 

  MGT 
703.

7 
722.554

2 
457.833

5 
457.738

3 
267.958

3 
553.342

4 
362.51

5 

Reduction 
in Life     2.68% -34.94% -34.95% -61.92% -21.37% 

-
48.48% 

Figure 58 Rail Life for Tangent Track using Six Key Geometry Variables with New 

Coefficient. 

Tangent Specific 983.37           

Intercept 0.7156           

Gage -0.2249 0 1 0 0 0 

Crosslevel -0.2909 0 0 1 0 0 

Rail Cant -0.4902 0 0 0 1 0 

Warp 62 -0.4239 0 0 0 0 1 

  MGT 703.7 482.54 417.6375 221.6517 286.8492 

Reduction in 
Life     -40.65% -68.50% -59.24% -39.96% 

Figure 59 Rail life for Tangent Track using Four Key Geometry Variables with 

New Coefficient. 
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Curve All 
613.539

9 

  Intercept 0.7777 

Alignme
nt -0.1985 0 1 0 0 0 0 0 

Crosslev
el -0.1949 0 0 1 0 0 0 0 

Gage -0.0813 0 0 0 1 0 0 0 

Rail Cant -0.1342 0 0 0 0 1 0 0 

Warp 31 -0.4987 0 0 0 0 0 1 0 

Warp 62 
-

0.01618 0 0 0 0 0 0 1 

  MGT 
477.1

5 
355.362

3 
357.571

1 
427.269

2 
394.812

9 
171.177

6 
467.222

9 

Reductio
n in Life     -25.52% -25.06% -10.45% -17.26% -64.12% -2.08% 

Figure 60 Rail Life for Curve Track using Six Key Geometry Variables with New 

Coefficient. 

Curve Specific 619.3536 

  Intercept 0.7704 

Alignment -0.16614 0 1 0 0 0 

Crosslevel -0.2747 0 0 1 0 0 

Rail Cant -0.2211 0 0 0 1 0 

Warp 31 -0.5193 0 0 0 0 1 

  MGT 477.15 374.2506 307.0136 340.2109 155.5197 

Reduction in 
Life     -21.57% -35.66% -28.70% -67.41% 

Figure 61 Rail Life for Curve Track using Four Key Geometry Variables with New 

Coefficient. 
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All Track 
824.232

5 

  Intercept 0.78399 

Alignme
nt -0.2305 0 1 0 0 0 0 0 

Crosslev
el -0.291 0 0 1 0 0 0 0 

Gage -0.0012 0 0 0 1 0 0 0 

Rail Cant -0.2566 0 0 0 0 1 0 0 

Warp 31 -0.3808 0 0 0 0 0 1 0 

Warp 62 -0.1255 0 0 0 0 0 0 1 

  MGT 
646.1

9 
456.204

4 
406.338

4 
645.200

9 
434.69

2 
332.322

3 
542.748

8 

Reductio
n in Life     -29.40% -37.12% -0.15% 

-
32.73% -48.57% -16.01% 

Figure 62 Rail Life for All Track using Six Key Geometry Variables with New 

Coefficient. 
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Chapter 6 

SUMMARY 

The initial results from the correlation analysis for the whole CSX system, 

which is approximately 22,000 miles of track with an average annual tonnage of 21.3 

MGT, showed that there was a significant relationship between geometry defects and 

the occurrence of rail defects. Overall, approximately 11% of all rail defects were 

matched to at least one preceding geometry defect, with 38% of these matches (4.2% 

of total rail defects) have two or more geometry defects preceding it. 

When this correlation was done for curved track, the amount of rail defects 

matched to a preceding geometry defect was increased to 21%, with 46% of these 

matches having two or more geometry defects. 

These same correlation analyses were performed on the high traffic density 

tracks (annual MGT > 19.5). This consisted of approximately 10,600 miles of track 

with an annual tonnage of 36 MGT. Looking at the matched rail defects to a preceding 

geometry defect, there was a slight increase in percent of rail defects match to 12%. 

Approximately 38% of these matches had repeat geometry defects. The same was 

done again for curved track. Curve tracks percent match stayed the same at 21% where 

the amount of those matches that were repeats dropped slightly to 43%.  

These correlations indicate that there is a correlation between geometry defects 

and the occurrence of a rail defect after the geometry defect. The correlation analyses 

on the high traffic density lines shows that geometry defects on high traffic density 

tracks have a similar relationship with rail defects.  
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The next set of correlations was performed between specific geometry defects 

and rail defects. From this correlation, it was observed that a large portion of all 

matched rail defects were matched with either a rail cant defect or a warp defect of 

some sort. Also in this initial correlation it was shown that detail fracture defects 

(TDD) made up a large majority of the rail defects. From this initial correlation, a 

compressed version of geometry and rail defects was created. This combined 

geometry defects of the same type (alignment left and alignment right- combined into 

alignment) and removed low occurring rail defects (such as pipe defects). With this 

compressed comparison and with the addition of the cumulative MGT of a matched 

rail defect, a cross-correlation was performed. This cross-correlation showed that there 

was a strong negative correlation between the presence of a geometry defect and the 

cumulative life (in MGT) of a rail defect, which indicates a rail life reduction. With 

these relationships in mind, several analyses were performed, first on the effects of 

geometry defects on rail life. 

A series of different analyses were performed on the effects of geometry 

defects have on the life of a rail defect. The first analysis showed that a rail defect that 

was matched to a geometry defect preceding it had approximately 30% less life (in 

MGT) then a rail defect that had no geometry defects prior to it. Based on this first 

analysis of rail life two different regressions were performed to further determine the 

effects of geometry defects on rail defect life and to determine which geometry defects 

where the most crucial. 

The first regression analysis performed was a general multilinear regression 

analysis. This analysis showed the importance of warp, alignment, and rail cant 

defects. To get a better understanding of the effects of specific geometry defects on the 
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life of a rail defect, a MARS analysis was performed. The MARS analysis was 

performed on tangent and curve track, to further refine the importance of certain 

geometry defects. The MARS analysis showed the following geometry defects as key 

defects in determining the life of a rail defect. 

For Tangent: 

 Crosslevel 

 Gage 

 Rail Cant 

 Warp 62 

For Curve: 

 Alignment 

 Crosslevel 

 Rail Cant 

 Warp 31 

With these key geometry defects in mind, a new set of multilinear regression 

analyses were performed. Tables to show the sensitivity of each geometry defect were 

then produced for each regression equation developed. With the key geometry defects 

that affect the occurrence of a rail defect determined, probability analyses to determine 

the increased likelihood of finding a rail defect after a geometry defect were 

performed. 

Various Bayesian statistical analyses were performed to determine the increase 

likelihoods of a rail defect occurring given the presence of a geometry defect prior. 

First was determining the random probability of a rail defect occurring. For all track 

this value was 0.18%, for tangent it was 0.186%, and for curve it was 0.15%. After 
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determining the random probability of the rail defects, Bayes‟ Theorem was applied to 

the data. This showed a serious increase in likelihood of a rail defect occurring. This 

increase ranged from 6 times to 13 times more likely to occur. If the presence of a 

geometry defect and rail defect were independent from each other, there would be no 

noticeable increase in likelihood. Since repeat geometry defects are of some interest, 

further analyses were performed to determine the effects of multiple geometry defects. 

Naïve Bayes and Bayesian Networks were applied to the data to get an 

understanding of the impact in probability that multiple geometry defects have on the 

development of a rail defect. With the presence of multiple geometry defect prior to a 

rail defect, the likelihood a rail defect increased drastically, in some case to increase of 

over 600 increasing the probability of a rail defect to approximately 90% in the case of 

4 key geometry defects occurring. This showed the importance of multiple geometry 

defects in the development of a rail defect, even though it did not greatly affect the 

MGT life of the defect.  

These statistical analyses were validated with the use of more recent BA 

division data from CSX and data provided by BNSF. The CSX data was slightly too 

small for true validation purposes (5% of actual data set) but still provided good 

results since it used the same measurements as the original data. The BNSF data was 

of appropriate size (approximately 10% of the data) but used different measurements 

and naming convention compared to the original data. This led to only looking at the 

overall data.  In both cases of the data, the overall trends were similar with roughly all 

three sets of data having around an increased likelihood of a rail defect by 8.  

The multilinear analyses were validated with the use of a k-fold validation, the 

standard validation method used for multilinear regression. After using this validation 
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method it was noted that the error terms were slightly higher than desired. With this in 

mind, the lead coefficients in the multilinear analyses were changed so that with zero 

geometry defects present, the rail life would be the “average” reported rail life of a 

non-matched rail defect. After this change, the error terms were reduced to more 

acceptable levels. 

In conclusion, it can be said that there is a significant relationship between the 

presence of a geometry defect and the occurrence of a rail defect following the 

geometry defect. 
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Chapter 7 

FUTURE WORK 

There are several recommendations for future work that can be made. One 

recommendation is to further extend the Bayesian Network model to include 

additional parameters. Such parameters include, but are not limited to, Ground 

Penetrating Radar (GPR) data, degree of curvature of track, track class, track tonnage, 

ballast information, and traffic type. These can be added as more child nodes, with 

their parent nodes being the geometry defects.  

Another recommendation that can be made for future research is to expand the 

geometry data to beyond just exception reports. By examining the whole geometry 

history of the rail at the location of a rail defect, a similar set of analyses can be 

performed. From these analyses, a new set of geometry errors can be found that have a 

large impact of the development of rail defects, even though these parameters do not 

create a known geometry exception.  Lastly, these approaches can be used to relate 

other parameters to rail defects, such as rail wear or ballast condition.  
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Appendix A 

RAW DATA FORMAT SAMPLES 

A1 Sample Rail Defect Data 

  
DIVI
SIO
N 

SUBDI
VISION 

PR
EFI
X 

MIL
EPO
ST 

TRAC
K 
TYPE 

TRAC
K 
CODE 

SI
D
E 

DE
FE
CT 
 
TY
PE 

SI
Z
E 

DATE 
FOUN
D 

CU
RV
E 
-
TA
NG 

ROLL
ED 
YEAR 

M
IL
L 

WE
IGH
T 

  HU 
JAMES 
RIVER 

CA
B 

185.
7 SG M R 

TD
D 

1
0 

09/03/
2010 T 1988 

T
H 

 
136 

  HU 
JAMES 
RIVER 

CA
B 

205.
3 SG M R 

TD
D 

5
0 

11/01/
2010 H 2001 

O
T 

 
141 

  HU 
JAMES 
RIVER 

CA
B 

209.
25 SG M L 

TD
D 

4
0 

11/03/
2010 H 1989 

O
T 

 
132 

  HU 
JAMES 
RIVER 

CA
B 

213.
7 SG M L BB 

 

11/07/
2010 T 1988 

O
T 

 
132 

  AY 
MONTR
EAL QM 

187.
45 SG M R 

BH
B 4 

11/09/
2010 T 1943 

B
L 

 
100 

  AT 
M AND 
M 000 

553.
92 SG M L 

OA
W 

4
0 

09/01/
2010 T 1971 

U
T 

 
132 

  HU 
NORTH
ERN CA 

541.
89 1 M L 

TD
D 

1
0 

09/01/
2010 T 1979 UI 

 
122 

  HU 
NORTH
ERN CA 

540.
97 1 M R 

TD
D 

1
0 

09/01/
2010 T 1973 

K
L 

 
122 

  HU 
NORTH
ERN CA 

538.
83 1 M R CH 

1
2 

09/01/
2010 T 1973 UI 

 
122 

  HU 
NORTH
ERN CA 

536.
81 1 M R EB 0 

09/01/
2010 T 1974 UI 

 
122 

  HU 
NORTH
ERN CA 

535.
51 1 M R 

TD
D 

1
0 

09/01/
2010 T 1974 UI 

 
122 

  HU 
NORTH
ERN CA 

534.
53 1 M L EB 0 

09/01/
2010 H 1974 UI 

 
122 

  BA 

METRO
POLITA
N BA 

78.5
4 2 M R 

TD
D 

2
5 

09/01/
2010 H 1948 

U
C 

 
140 
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PRE
FIX 

LOCATI
ON MP 

LOCATION 
OFFSET 

EXCEPTIO
N DATE 

EXCEPTION 
TYPE 

CLASS_
EX_C 

CLASS_
SV_C 

LEN
GTH 

MAX
VAL 

000 3.00 -2,250 3/19/2008 WIDE GAGE 2 1 1 1 

000 3.00 -2,256 3/19/2008 WIDE GAGE 2 1 2 1 

000 3.00 -2,247 3/19/2008 
ALIGNMENT 
RIGHT 2 1 1 2 

000 3.00 -2,240 3/19/2008 
ALIGNMENT 
RIGHT 2 1 2 3 

000 3.00 -2,200 3/19/2008 
CROSSLEV
EL 2 1 3 1 

000 3.00 -2,184 3/19/2008 WARP 31FT 2 0 41 2 

000 4.00 -4,954 2/5/2008 
CROSSLEV
EL 2 1 1 -2 

000 4.00 -4,954 2/5/2008 
CROSSLEV
EL 2 1 2 -2 

000 4.00 -4,954 2/5/2008 
PROFILE 
LEFT 62FT 2 1 1 -2 

000 4.00 -4,991 2/5/2008 WARP 62FT 2 1 12 2 

000 4.00 -4,971 2/5/2008 
CROSSLEV
EL 2 1 1 -2 

000 4.00 -4,971 2/5/2008 
PROFILE 
LEFT 62FT 2 1 1 -3 

000 6.00 -896 2/5/2008 
TIGHT 
GAGE 2 0 2 -1 

000 7.00 -360 2/4/2008 
TIGHT 
GAGE 1 0 1 -1 

000 8.00 -4,802 2/4/2008 
TIGHT 
GAGE 1 0 2 -1 

000 8.00 -4,568 2/5/2008 
CROSSLEV
EL 4 3 1 1 

000 8.00 -3,882 2/4/2008 
TIGHT 
GAGE 1 0 10 -1 

000 8.00 -3,639 2/4/2008 CLIM 1 0 72 0 

000 8.00 -3,603 2/4/2008 CLIM 1 0 36 0 

000 8.00 -3,541 2/4/2008 CLIM 1 0 106 0 

000 8.00 -3,481 2/4/2008 CLIM 1 0 33 0 

000 8.00 -3,463 2/4/2008 CLIM 1 0 109 0 

 

  

  Table A2:  Sample Geometry Defect Data (CSX) [partial 1 of 3] 
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BE
GI
N 
M
P 

BEGIN 
OFFS
ET 

END 
MP 

END_
OFFS
ET_F
EET_I 

C
U
R
V
E 

FR
IE
GH
T_
MP
H_
Q 

PAS
SEN
GE
R_
MP
H_Q 

T
R
A
C
K 

ACTI
ON 
DATE 

AUTHO
RIZED 
INSPEC
TOR 

APP
ROV
ED 
DAT
E 

APP
RO
VED 
BY 

LATI
TUD
E 

LON
GIT
UDE 

3.0
0 -2,250 3.00 

-
2,251 C 20 20 2 

7/8/20
08 C7048 

7/8/2
008 

C70
48 

38.2
1036
4000

00 

85.7
5693
9000

00 

3.0
0 -2,256 3.00 

-
2,258 C 20 20 2 

7/8/20
08 C7048 

7/8/2
008 

C70
48 

38.2
1037
7000

00 

85.7
5692
7000

00 

3.0
0 -2,247 3.00 

-
2,248 C 20 20 2 

7/8/20
08 C7048 

7/8/2
008 

C70
48 

38.2
1035
9000

00 

85.7
5694
3000

00 

3.0
0 -2,240 3.00 

-
2,242 C 20 20 2 

7/8/20
08 C7048 

7/8/2
008 

C70
48 

38.2
1034
1000

00 

85.7
5695
9000

00 

3.0
0 -2,199 3.00 

-
2,202 C 20 20 2 

7/8/20
08 C7048 

7/8/2
008 

C70
48 

38.2
1025
3000

00 

85.7
5704
2000

00 

3.0
0 -2,174 3.00 

-
2,214 C 20 20 2 

7/8/20
08 C7048 

7/8/2
008 

C70
48 

38.2
1021
8000

00 

85.7
5707
6000

00 

4.0
0 -4,954 4.00 

-
4,955 T 20 20 2 

10/23/
2008 C7048 

10/23
/2008 

C70
48 

38.2
0252
3000

00 

85.7
6041
9000

00 

4.0
0 -4,954 4.00 

-
4,956 T 20 20 2 

7/8/20
08 C7048 

7/8/2
008 

C70
48 

38.2
0252
3000

00 

85.7
6041
9000

00 

4.0
0 -4,954 4.00 

-
4,955 T 20 20 2 

7/8/20
08 C7048 

7/8/2
008 

C70
48 

38.2
0252
3000

00 

85.7
6041
9000

00 

4.0
0 -4,991 4.00 

-
5,003 T 20 20 2 

7/8/20
08 C7048 

7/8/2
008 

C70
48 

38.2
0262
4000

00 

85.7
6044
6000

00 

4.0
0 -4,971 4.00 

-
4,972 T 20 20 2 

7/8/20
08 C7048 

7/8/2
008 

C70
48 

38.2
0257
0000

00 

85.7
6043
2000

00 

4.0
0 -4,971 4.00 

-
4,972 T 20 20 2 

7/8/20
08 C7048 

7/8/2
008 

C70
48 

38.2
0257
0000

00 

85.7
6043
2000

00 

 

  Table A2:  Sample Geometry Defect Data (CSX) [partial 2 of 3] 
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LATITUDE 
LONGITUD
E 

ENGINEER 
MILEPOST 

DIVISIO
N SUBDIVISION 

PRIOI
RTY 

EXCEPTION 
ACTION 

38.210364
00000 

85.756939
00000 2.57 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL PR1 Repaired 

38.210377
00000 

85.756927
00000 2.57 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL PR1 Repaired 

38.210359
00000 

85.756943
00000 2.57 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL PR1 Repaired 

38.210341
00000 

85.756959
00000 2.58 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL PR1 Repaired 

38.210253
00000 

85.757042
00000 2.58 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL PR1 Repaired 

38.210218
00000 

85.757076
00000 2.59 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL PR1 Repaired 

38.202523
00000 

85.760419
00000 3.04 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL CRT Repaired 

38.202523
00000 

85.760419
00000 3.04 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL PR1 Repaired 

38.202523
00000 

85.760419
00000 3.04 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL PR1 Repaired 

38.202624
00000 

85.760446
00000 3.04 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL PR1 Repaired 

38.202570
00000 

85.760432
00000 3.04 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL PR1 Repaired 

38.202570
00000 

85.760432
00000 3.04 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL PR1 Repaired 

38.163156
00000 

85.749788
00000 5.83 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL CRT Repaired 

38.148208
00000 

85.745229
00000 6.93 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL CRT Repaired 

38.146607
00000 

85.744799
00000 7.09 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL CRT Repaired 

38.144337
00000 

85.744774
00000 7.14 

LOUISV
ILLE 

LOUISVILLE 
TERMINAL PR1 

Exception 
Not Found 

  

  Table A2:  Sample Geometry Defect Data (CSX) [partial 3 of 3] 
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DI
V SUB 

PREF
IX 

BEGIN_MILEP
OST 

END_MILEP
OST 

TRA
CK 

TONNAGE_MEASUREM
ENT_D 

MG
T 

A
P 

BIG 
SANDY CMG 1 2 1 01/14/2013  

25.3
6 

A
P 

BIG 
SANDY CMG 1 2 2 01/14/2013  

20.4
9 

A
P 

BIG 
SANDY CMG 2 2 1 01/14/2013  

25.4
6 

A
P 

BIG 
SANDY CMG 2 2 2 01/14/2013  

20.6
8 

A
P 

BIG 
SANDY CMG 2 2 1 01/14/2013  

25.5
2 

A
P 

BIG 
SANDY CMG 2 2 2 01/14/2013  

20.8
0 

A
P 

BIG 
SANDY CMG 2 3 1 01/14/2013  

24.8
9 

A
P 

BIG 
SANDY CMG 2 3 2 01/14/2013  

20.7
0 

A
P 

BIG 
SANDY CMG 3 5 1 01/14/2013  

24.2
0 

A
P 

BIG 
SANDY CMG 3 5 2 01/14/2013  

20.5
2 

A
P 

BIG 
SANDY CMG 5 5 1 01/14/2013  

24.0
5 

A
P 

BIG 
SANDY CMG 5 5 2 01/14/2013  

20.5
9 

A
P 

BIG 
SANDY CMG 5 7 1 01/14/2013  

23.8
3 

A
P 

BIG 
SANDY CMG 5 7 2 01/14/2013  

20.6
0 

A
P 

BIG 
SANDY CMG 7 8 1 01/14/2013  

23.5
1 

A
P 

BIG 
SANDY CMG 7 8 2 01/14/2013  

20.5
8 

A
P 

BIG 
SANDY CMG 8 9 1 01/14/2013  

23.1
0 

  

  Table A3:  Sample MGT Data (CSX) 
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ID 
SUB_DIV_
NAME 

LINEC
ODE 

GPS_S
PEED 

MPDEC
IMAL 

RUN_DAT
E 

LATIT
UDE 

LONGI
TUDE 

EXCEP
TION 
_VALU
E 

EXC_T
YPE 

SEVE
RITY 

 
329
997 

KANAWH
A CA 48 448 

11/1/2008 
1:03 

38.28
629 

-
81.570

3 1.07 
CBV-
PEAK 

Priori
ty 

 
330
095 

KANAWH
A CA 47 457 

11/1/2008 
1:15 

38.36
4 

-
81.691

8 
10972

0.5 
AXV2-
PEAK 

Priori
ty 

 
330
827 

ST LOUIS 
LINE QS 56 41 

11/1/2008 
2:41 

39.64
739 

-
86.891

4 
12634

6 
AXV2-
PEAK 

Near 
Urgent 

331
338 

ST LOUIS 
LINE QS 58 55 

11/1/2008 
2:58 

39.59
249 

-
87.166

9 
11273

9.1 
AXV2-
PEAK 

Priori
ty 

 
331
348 

ST LOUIS 
LINE QS 58 55 

11/1/2008 
2:58 

39.59
231 

-
87.168

4 
11055

6.4 
AXV1-
PEAK 

Priori
ty 

 
331
023 

FITZGERA
LD ANB 46 656 

11/1/2008 
3:00 

31.70
806 

-
83.218

1 
13145

4.4 
AXV1-
PEAK 

Urge
nt 

 
331
085 

ST LOUIS 
LINE QS 47 61 

11/1/2008 
3:03 

39.56
319 

-
87.262

2 1.03 
CBV-
PEAK 

Priori
ty 

 
331
206 

ST LOUIS 
LINE QS 19 75 

11/1/2008 
3:58 

39.46
99 

-
87.452

4 
11208

8.9 
AXV1-
PEAK 

Priori
ty 

 
331
255 

ST LOUIS 
LINE QS 49 80.7 

11/1/2008 
4:11 

39.46
898 

-
87.545

1 
11863

7 
AXV1-
PEAK 

Near 
Urgent 

331
330 

ST LOUIS 
LINE QS 47 91 

11/1/2008 
4:23 

39.40
144 

-
87.706 

12295
5.9 

AXV2-
PEAK 

Near 
Urgent 

331
514 

ST LOUIS 
LINE QS 57 112 

11/1/2008 
5:20 

39.27
107 

-
88.077 

10725
9.2 

AXV1-
PEAK 

Priori
ty 

 
331
663 

FITZGERA
LD ANB 41 717 

11/1/2008 
6:10 

32.21
425 

-
83.912

4 
11571

1.2 
AXV1-
PEAK 

Near 
Urgent 

331
961 

FITZGERA
LD ANB 46 758.9 

11/1/2008 
7:08 

32.56
043 

-
84.443

6 
12588

1.6 
AXV1-
PEAK 

Near 
Urgent 

332
195 

ST LOUIS 
LINE QS 58 217 

11/1/2008 
7:53 

38.71
465 

-
89.806

7 
10414

7.7 
AXV1-
PEAK 

Priori
ty 

 
332
147 LINEVILLE ANJ 44 825 

11/1/2008 
10:05 

33.03
239 

-
85.120

5 
10029

3.2 
AXV2-
PEAK 

Priori
ty 

 
332
868 

S & N A 
NORTH 

 
40 366 

11/1/2008 
22:28 

33.85
456 

-
86.747

3 
11654

7.2 
AXV2-
PEAK 

Near 
Urgent 

  

  Table A4:  Sample VTI Data (CSX data) 
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Run ID  Date 

 
Railr
oad  Unit 

 
M
P 

 MP 
Foot  Type 

 
Val
ue 

 
Len
gth 

 
Latit
ude 

 
Longi
tude 

 
Posted 
Class 

 Actual 
Class 

 
Tra
ck 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 

4
0 666 

Twist 
31ft* 

2.0
01 8 

39.7
3215 

-
76.84

95 2 0 5 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 

5
6 9120 

Rockoff 
Hazard 

1.9
97 118 

39.8
0444 

-
76.98

5 2 1 5 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 

5
0 4036 

R Cant 
POS* 5 6 

39.8
2379 

-
76.89

74 2 0 5 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 

4
7 3730 

L Prof 
62 

2.9
63 3 

39.7
9923 

-
76.86

13 2 1 5 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 

4
6 3203 

Warp 
62 

2.6
55 62 

39.7
8915 

-
76.85

11 2 1 5 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 

2
1 9439 

L Prof 
62 

-
2.8
94 2 

39.4
735 

-
76.81

77 2 1 5 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 1 5035 

Warp 
62 

3.1
56 19 

39.2
6684 

-
76.64

07 1 0 1 

20080
10702 

1/7/
2008 CSXT 

DOT
X 220 0 2342 

Gage 
Wide 

57.
988 7 

39.8
3283 

-
77.23

86 2 1 5 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 

4
7 3730 

R Prof 
62 

2.9
85 3 

39.7
9923 

-
76.86

13 2 1 5 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 9 2426 

Crosslev
el 

-
2.3
93 3 

39.3
5389 

-
76.70

94 2 1 5 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 

3
8 3616 

Warp 
62 

2.5
79 61 

39.7
0721 

-
76.82

61 2 1 5 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 

4
5 3992 

Warp 
62 

2.4
29 57 

39.7
7759 

-
76.83

56 2 1 5 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 

2
1 9435 

Gage 
Wide 

57.
992 13 

39.4
7351 

-
76.81

77 2 1 5 

20080
10703 

1/7/
2008 CSXT 

DOT
X 220 4 1855 

Lmt 
Speed 3 22 396 

39.3
0588 

-
76.65

92 2 0 5 

  Table 5:  Sample FRA Track Geometry Inspection Data (CSX) 
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Appendix B 

CSX Baltimore Division Rail and Geometry Defects By Type 
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Appendix C 

SKELETON CODE 

clear all 

%Input Geometry defect file 

[~, ~, raw] = xlsread('Baltimore_Geo.xlsx'); 

%Asign to geo matrix 

geo = raw; 

%Input Rail Defect file 

[~, ~, raw] = xlsread('BA_Divisions_2010_2012.xlsx'); 

%Assign to matrix 

rail = raw; 

%Creat zero matrix to store matchs 

matches = mat2cell(zeros(length(rail),39)); 

n=1; 

m=1; 

p=1; 

o=1; 

%For loop to pick row in rail defect 

for k=2:length(rail) 

    %For loop to pick row in geometry defect 

    for i=2:length(geo) 

        %Find difference in milepost decmial formate 

        if strcmp(rail{k,2}, geo{i,1}) 

        mileg=geo{i,31}; 

        miler=str2num(rail{k,3}); 

        dist = abs(mileg-miler); 

        %For loops to for matching 

        if dist < .005 

            m=m+1; 

            if strcmp(rail{k,5},geo{i,22}) 

                p=p+1; 

                if datenum(geo{i,4}) < datenum(rail{k,10}) 

                    %Store matched rows 

                    for w=1:37 

                        matches{n,w} = geo{i,w}; 

                    end 

                    for w=1:17 

                        matches{n,w+37} = rail{k,w}; 

                    end 

                    n = n+1; 

                    break 

                end 

            end 

        end 

        end 

    end 

end 
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Appendix D 

MASTER CHARTS 



 

 

1
0
1
 

MASTER CHARTS 

Column Tangent  Curve TOTAL FULL 

Length in Miles 15725.12 6502.6 22227.72 

Annual MGT 21.33 21.33 21.33 

Reported Geo Defects 87532 247405 334937 

Geo Defect Density 5.57 38.05 15.07 

Reported Gage Defects 4306 36116 40422 

Gage Defect Density 0.27 5.55 1.82 

Reported Warp 31 Defects 2289 48594 50883 

Warp 31 Defect Density 0.15 7.47 2.29 

Reported Warp 62 Defects 16775 6104 
22879 

Warp 62 Defect Density 1.07 0.94 1.03 

Reported Crosslevel Defects 52613 14393 
67006 

Crosslevel Defects Density 3.35 2.21 3.01 

Reported Alignment Defects 2029 13175 
15204 

Alignment Defect Density 0.13 2.03 0.68 

Reported Cant Defects 7557 75645 83202 

Cant Defects Density 0.48 11.63 3.74 

Reported Rail Defects 19761 6679 26440 

Rail Defect Density 1.26 1.03 1.19 

Reported TDD Defects 5487 3091 8578 

TDD Defects Density 0.35 0.48 0.39 

Matches 1047 1871 2918 

Matches Density 0.07 0.29 0.13 

Matched TDD 337 952 1289 

Matched TDD Density 0.02 0.15 0.06 

Repeat Matches 343 784 1127 

Repeat Matches Density 0.02 0.12 0.05 



 

 

1
0
2
 

Gage Matches 40 210 250 

Gage TDD Matches 15 127 142 

Repeat Gage Matches 14 94 108 

Repeat Gage TDD Matches 5 58 63 

Crosslevel Matches 452 110 562 

Crosslevel TDD Matches  146 34 180 

Repeat Crosslevel Matches 125 43 168 

Repeat Crosslevel TDD Matches 43 16 59 

Warp 31 Matches 44 472 516 

Warp 31 TDD Matches  9 197 206 

Repeat Warp 31 Matches 14 168 182 

Repeat Warp 31 TDD Matches 5 66 71 

Warp 62 Matches 173 35 208 

Warp 62 TDD Matches  47 18 65 

Repeat Warp 62 Matches 65 15 80 

Repeat Warp 62 TDD Matches 17 5 22 

Cant Matches 108 757 865 

Cant TDD Matches 52 454 506 

Repeat Cant Matches 28 310 338 

Repeat Cant TDD Matches 18 191 209 

Alignment Matches 20 92 112 

Alignment TDD Matches  6 41 47 

Repeat Alignment Matches 11 63 74 

Repeat Alignment TDD Matches 5 28 33 

 


