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Abstract. This article studies the use of moving, deforming elliptical Gaussian basis functions
to compute the evolution of passive scalar quantities in a two-dimensional, incompressible flow field.
We compute an evolution equation for the velocity, rotation, extension and deformation of the com-
putational elements as a function of flow quantities. We find that if one uses the physical flow velocity
data calculated from the basis function centroid, the method has only second order spatial accuracy.
However, by computing the residual of the numerical method, we can determine adjustments to
the centroid data so that the scheme will achieve fourth-order spatial accuracy. Simulations with
nontrivial flow parameters demonstrate that the methods exhibit the properties predicted by theory.

1. Introduction. This manuscript examines a category of high spatial order
particle methods using moving, deforming elements to capture passive scalar quan-
tities in a two-dimensional, incompressible fluid flow. Grid-free numerical methods
using moving basis functions are appealing to many engineers, scientists and math-
ematicians because of the advantages they offer for certain flow problem. In par-
ticular, they are considered naturally adaptive because they dedicate computational
effort where field values are nontrivial and nowhere else. For example, many investi-
gators use Lagrangian methods to approximate passive scalar fields governed by the
convection-diffusion equations. Also, vortex methods which use moving basis func-
tions to capture the vorticity field in the nonlinear Navier-Stokes equations are in
common use by scientists and engineers. Finally, astrophysicists have found smooth
particle hydrodynamics (SPH), where moving basis functions are used to represent
density, momentum and other quantities, to be effective tools for studying large-scale
astrophysical flows. In the latter two cases, the flow velocity is calculated from the
representation of the computed fields. While the latter two families of methods are
necessarily nonlinear, any computational issues with the linear convection-diffusion
equation are issues of concern for the nonlinear schemes as well. This paper examines
issues related to using deforming basis functions for the linear convection-diffusion
problem, but all results pertain to nonlinear applications as well. In fact, the work
discussed in this manuscript is presented with an eye toward developing a full vortex
method using deforming basis functions, but results related to the determination of the
velocity field from the computed field are beyond the scope of this paper. This paper
examines deforming elements when the velocity field is a given feature of the problem
and challenges the conventional wisdom that particle trajectories should follow physi-
cal streamlines. When we analyze the consistency of deforming elliptical Gaussians, a
particularly suitable category of deforming basis function for the convection-diffusion
equations, we find that one can improve the accuracy of the method by adding a
correction to the particle velocity. The adjustment is related to the core size of the
computational element and the curvature of the velocity field, and arises as a com-
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pensation for the fact that the convection of the scalar quantity is a nonlocal property
shared among overlapping elements. These issues apply to Lagrangian methods re-
gardless of how the velocity field is determined, and so are relevant to both the linear
convection-diffusion equations and nonlinear methods.

While deforming blobs are the focus of this article, it should be noted that many
investigators have studied the accuracy of rigid moving basis functions. When using
rigid basis functions, the convection-diffusion equation is split into convective and dif-
fusive steps. Accuracy for each operation has been explored with substantial progress
in both areas. Different shaped basis functions achieve different orders of accuracy
in the convective step in vortex methods, and surveys on this topic can be found in
sources like [1] and [32]. In another approach, Lowengrub and Shelley have boosted
the order of Lagrangian schemes by coupling point vortex dynamics to an underlying
curvilinear coordinates system that does not necessarily move with the fluid velocity
as Lagrangian methods do [13]. Later, with Merriman, they expanded this work by
incorporating high-order corrections on a rectangular grid to achieve fourth-order spa-
tial accuracy [14]. To capture diffusive processes, there have been significant activities
for both passive scalar quantities and vorticity, for example [3, 4, 21, 31]. The use
of deforming elements is a different approach which seeks to capture both convective
and diffusive terms in a single semi-discrete system of equations.

Many investigators have explored both non-axisymmetric and deforming basis
functions in the hopes that they would adaptively resolve passive scalar fields or other
nonlinear fields. Meiburg developed a scheme in which radially symmetric blobs rep-
resenting sections of a vortex sheet would expand or contract based on normal flow
deviations, but this scheme violates incompressibility and is specialized for vortex
sheets [16]. Marshall and Grant have used highly anisotropic elements to satisfy the
no-slip, no normal flow boundary conditions efficiently. Teng originally used rigid
elliptical patches to resolve boundary layers more efficiently and later used deforming
elliptical patches to simulate the evolution of vortex sheets [28, 29, 30]. He establishes
a theoretical O(l2 log l) rate of convergence for his method. Kida et. al. have used
simple core spreading and a second-order core spreading method. The second order
method is similar to that of Lu and Ross based on an integral correction and continual
regridding of the computational elements [15]. This group has shown that core spread-
ing without refinement or corrections is reasonable for small times while the corrected
method is valid for all finite times [7, 8, 9]. Earlier, Rossi developed a corrected core
spreading vortex method (CCSVM) which refines elements that have grown beyond
a specified core size [22]. This maintains spatial resolution for all finite time at a cost
of introducing more computational elements though the problems size growth can be
mitigated through a merging algorithm [23]. Ojima and Kamemoto propose a scheme
using deforming vortex elements that stretch with local flow deviations, but the result-
ing element is replaced with an isotropic element of equal volume at the end of each
timestep, thus avoiding having to calculate the Biot-Savart integral for anisotropic
elements [20]. To simulate the convection and diffusion of passive scalar quantities,
Leonard used deforming elliptical Gaussian basis functions, noting that they remain
self-similar under the linearized convection-diffusion equations [11]. Also, Moeleker
and Leonard propose using anisotropic elements with velocity field corrections based
on subgrid scale for when computing Gaussian filtered scalar quantities [17].

Along these lines, there have been a small number of investigations aimed at
modifications to the velocity field in Lagrangian schemes to improve the quality of
the computation. Leonard noted many years ago that a vorticity weighted velocity
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computation for vortex methods would conserve total energy while using the velocity
field measured at the centroid would not [10]. Monaghan has performed investigations
with a method called XSPH, a variant of SPH computations where velocity fields
are averaged over nearby particles. He finds that the averaging process increases
dispersion and “keeps the particles orderly in the absence of viscosity” [18, 19].

There are two important issues related to spatial accuracy which are beyond
the scope of this paper. The Biot-Savart integral over an elliptical Gaussian basis
function is essential if one were to develop a vortex method using these deforming
basis functions. These issues have been resolved for both direct computations [24]
and fast multipole summation, but will not be treated here. Also, this paper will not
discuss the remeshing, refinement and merging of elements due to particle distortion
effects. These methods are important if one wants to maintain spatial accuracy over
extended periods of time. However, remeshing, refinement and merging all involve
additional sources of spatial error which must be controlled and add nothing to the
discussion of the basic spatial accuracy associated with using deforming elements.

This article is structured in the following manner. In §2, we describe spatial
accuracy and develop an approach that is particularly helpful when working with
heterogeneous distributions of anisotropic particles. In §3, we examine the spatial
accuracy of deforming elliptical Gaussian basis functions if one uses centroid velocity
data. In §4, we find that the spatial accuracy can be improved if one corrects the
velocity field. In §5, we attempt to continue this process and will come to understand
why one cannot bootstrap the spatial accuracy of Lagrangian methods with elliptical
Gaussians indefinitely. In §6, we will derive the specific dynamics of elliptical Gaus-
sian basis functions necessary to implement the scheme. Finally, in §7, nontrivial
experiments will verify the convergence properties determined in §3-§5. In addition
to summary remarks, §8 includes some discussion of issues relevant to this work but
beyond the scope of this paper.

2. Interpretations of particles and measuring spatial accuracy. This
paper examines a class of particle schemes for approximating the incompressible,
convection-diffusion equations:

∂tρ+ (~u · ∇)ρ =
1

Pe
∇2ρ, (2.1a)

∇ · ~u = 0, (2.1b)

where ρ is a passive scalar quantity that moves and diffuses with the flow. The ~u is
the known fluid velocity field and Pe is the Peclét number which is a dimensionless
quantity expressing the ratio of convective to diffusive effects in the flow.

To simulate solutions to this partial differential equation (PDE), we approximate
the field as a linear combination of N moving basis functions or blobs,

ρ̂ =

N∑

i=0

γiφ(~x− ~xi, . . .) (2.2)

where N is the total number of basis functions, γi is the amplitude of the ith basis
function and ~xi is the centroid of the ith basis function. Each basis function may have
other parameters as well, indicated by the . . . ’s. In a systematic manner, evolution
equations for the ~xi’s and perhaps other parameters (indicated by . . . ) are determined,
reducing the PDE (2.1) to a finite system of ordinary differential equations (ODEs).
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The interpretation of the basis function φ and its role is critical to this discussion.
In the particle tracking literature, the common interpretation is that the computa-
tional element represents a finite amount of the passive scalar substance concentrated
at a single point. A large number of elements are used to generate a statistical de-
scription of the passive scalar field, and the structure of φ plays no role at all. Thus,
ρ̂ has no pointwise meaning at all, but 〈γi〉 represents the computation field where 〈·〉
represents an average over an area with a sufficiently large number of particles. These
techniques have low spatial accuracy, but the computations are embarrassingly par-
allel, so there is no motivation to improve the spatial accuracy. For vortex methods,
the structure of φ plays a more important role because one must compute the veloc-
ity field from the vorticity field, and there has been a substantial amount of activity
investigating different structures for φ. For most in the vortex methods community,
the interpretation is still that the computational element represents a small amount
of circulation concentrated at a single point in the fluid flow [2]. The justification for
using a function φ that is something other than a delta distribution δ(~x) is that it
yields greater spatial accuracy in the velocity computation, but the vorticity field is
still interpreted as 〈γi〉.

To analyze any numerical method, we must quantify its ability to approximate
the PDEs which are satisfied by the exact solution. In this paper, we shall use ρ̂ as
an induced prolongation for the numerical approximation of ρ. Therefore, we shall be
comparing ρ̂ to ρ directly and studying the distance between these two functions as
a measure of the convergence of the particle method. To measure this distance, we
consider the residual

Rf = ∂tf + ~u · ∇f −
1

Pe
∇2f (2.3)

where ~u is the fluid velocity field. Necessarily, the residual of the exact solution of
(2.1) is zero: Rρ = 0. It can be shown that Rρ̂ is a measurement of the spatial
error of a particle method if one treats ρ̂ as the induced prolongation of the numerical
representation [22]. This residual is analogous to the notion of consistency for a finite
difference scheme where one measures the extent to which the exact solution satisfies
the difference equation for the approximate method [27]. Also, it can be contrasted
with finite element methods where one satisfies a weak formulation over a class of
functions over a finite element [12]. For particle methods, one measures the extent to
which the prolongation satisfies the exact PDE via the residual. There is an analog for
stability that is related to the well-posedness of the exact and approximate systems,
but this will not be explored here. Some discussion can be found in [12, 22].

If we consider a simple scheme where basis functions move but do not deform, we
would have (2.2) together with the autonomous system

d~xi
dt

= û(~x). (2.4)

For most particle methods, computational elements move with the velocity of the fluid
û = ~u, but we shall see later that there are distinct advantages to using an altered
velocity field.

If 1
Pe = 0, we see that

Rρ̂ =

N∑

i=0

γi∇~xφ(~x− ~xi, . . .) · [û(~xi)− ~u(~x)] . (2.5)
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If h represents the typical distance between elements and σ is the radius of support of
φ, then when h

σ
¿ 1, the residual can be expressed as a Riemann sum. In this limit,

~xi becomes a continuous spatial variable ~t and γ(~t) can be interpreted as a continuous
extension of γi:

Rρ̂ ≈

∫∫ ∞

−∞

γ(~t)

h2
∇~xφ(~x− ~t, . . .) ·

[
û(~t)− ~u(~x)

]
d~t. (2.6)

We observe that γ
h2 is an appropriate macroscopic quantity analogous to a passive

scalar density, and one expects this function to have a finite regular limit as h → 0.
Since the flow field is incompressible and φ is a function of the difference ~x − ~t and
there are no other spatial dependencies.

Rρ̂ ≈

∫∫ ∞

−∞

γ(~t)

h2
∇~xφ(~x− ~t, . . .) ·

[
û(~t)− ~u(~x)

]
d~t

=−

∫∫ ∞

−∞

γ(~t)

h2
∇~tφ(~x− ~t, . . .) ·

[
û(~t)− ~u(~x)

]
d~t

=

∫∫ ∞

−∞

φ(~x− ~t, . . .)
∇~tγ(~t)

h2
·
[
û(~t)− ~u(~x)

]
d~t

=−

∫∫ ∞

−∞

φ(~t, . . .)
∇~tγ(~x− ~t)

h2
·
[
û(~x− ~t)− ~u(~x)

]
d~t (2.7)

We assume that the flow field and all its derivatives decay to zero at infinity. Therefore,
we see that integral in (2.7) governs the order of accuracy of the method.

From this expression, one can see that the shape of the basis function can affect the
accuracy of the method. If one considers that the term ∇~tγ(~x−~t) ·

[
û(~x− ~t)− ~u(~x)

]

can be written as a Taylor series in ~t, the order of accuracy of the method depends
upon the moments of φ. To determine the spatial accuracy, we define p to be the
smallest integer such that |~k| = p and

∫∫ ∞

−∞

φ(~t)~t
~kd~t 6= 0 (2.8)

where ~k = [k1, k2]
T , k1, k2 > 0 is a multi-index, |~k| = k1 + k2 and ~t

~k = sk1

1 s
k2

2 . Since
the first p − 1 moments arising from the Taylor series will vanish, we see that the
method converges like σp where σ is the width of the basis function φ. For instance,
it is well known that Gaussian basis functions,

φ(~x) =
1

4πσ2
exp

(
−
|~x|2

4σ2

)
, (2.9)

will yield a second order method if û = ~u. In this case, the core width is σ. A
Gaussian has a nontrivial zeroth moment, but if û = ~u, then

lim
~t→~0
∇~tγ(~x− ~t) ·

[
û(~x− ~t)− ~u(~x)

]
= 0,

so the zeroth moment will not contribute to the spatial error. In other words, the
zeroth order coefficient of ∇~tγ(~x − ~t) ·

[
û(~x− ~t)− ~u(~x)

]
is zero. This is true for any

basis function shape. Since the Gaussian is radially symmetric, the first moments are
zero. The second moments are not zero and make the leading order contribution to
the error, so the method has a spatial accuracy of O(σ2). Of course, a high order
method is not necessarily highly accurate, and an effective scheme is one that realizes
a high order convergence rate and is accurate in typical parameter regimes.
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3. Deforming basis functions. If we wish to include diffusion ( 1
Pe 6= 0), par-

ticle methods become much more complex, and there are two basic approaches. The
first and most common among practitioners of Lagrangian methods is operator split-
ting where one divides each time integration step into a convective step and a diffusive
step. The second approach is the focus of this work where we capture diffusion and
convection together in one system of ordinary differential equations by using deform-
ing basis functions.

The best studied of these methods are the core spreading methods and corrected
core spreading methods [7, 8, 9, 22, 23]. The approach is based on the observation
that there are known exact solutions to the partial differential equation,

∂tρ+ û · ∇ρ =
1

Pe
∇2ρ, (3.1)

where û ≡ û(t) is a spatially constant vector. The solutions have the form of a moving
spreading blob.

φ(~x, t) =
1

4πσ2
i

exp

[
−
|~x− ~xi|

2

4σ2
i

]
, (3.2a)

dσ2
i

dt
=

1

Pe
, (3.2b)

d~xi
dt

= û. (3.2c)

Such elements have an additional degree of freedom corresponding to the core size.
This additional degree of freedom allows one to capture the diffusion term in (3.1).
To simulate a flow, one would arrange a number of such elements to approximate the
initial scalar field by specifying initial conditions for the position and width of every
basis function described by (3.2). Since the basis functions for a particle method
are localized, we presume that the centroid velocity field is close to uniform over the
support of the basis function. Thus, if we are trying to solve (2.1), the conventional
wisdom is to set û for basis function i equal to centroid velocity field, ~u(~xi). Of course,
~u does vary in general over the support of each of the basis functions, and this is the
fundamental source of spatial error in the method. After a little analysis, one finds
that the accuracy of the method (3.2) is O(σ2).

Since the core spreads at a constant rate, the accuracy has a finite lower bound
independent of the initial conditions on the basis functions. This property leads to
the conclusion that the method, if uncorrected, is fundamentally inconsistent [5]. For
vortex calculations, the method was corrected by introducing a spatial refinement
procedure which replaces elements that grow beyond any specified tolerance with a
configuration of thinner elements [22]. Also, a technique for replacing nearly overlap-
ping elements with a single element as long as the operation induces an error below
a specified tolerance was developed to control the growth of N through refinement
[23]. An alternative to spatial refinement is to use remeshing techniques discussed in
some generality in [1]. The fundamental goal with all of these methods is to replace a
configuration of particles with undesirable properties with a configuration of particles
with desirable properties while disturbing the field ρ̂ as little as possible. Kida et. al.
remind us that the lower bound on the error may be quite small and that meaningful
computations can be performed for short times without correcting the method at all.
With this is mind, we restrict our discussion to spatial accuracy with the understand-
ing that the Peclét number limits the accuracy of the method and that remeshing or
refinement could be introduced to augment the method.
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i

σi /a i

σ

i

a i

θ

Fig. 3.1. A schematic diagram of an elliptical Gaussian basis function as defined in (3.5). The
ellipse is representative of a single level set.

If core spreading achieves second order accuracy for (2.1) by taking a zeroth order
approximation to the velocity field (3.1), one can seek improvements by using basis
functions that solve (2.1) with a linear approximation to the velocity field. Suppose we
have a basis function φ that is an exact solution to the convection-diffusion equations
with a linear flow field

∂tρ+ {û+ F[~x]} · ∇ρ−
1

Pe
∇2ρ = 0, (3.3)

where v̂ ≡ v̂(t) is a vector valued function as before, and F is a 2 × 2 linear operator.
Assuming that a deforming basis function φ can be found that will satisfy (3.3),
conventional wisdom suggests that we should let û = ~u(~xi) and F = D~u(~xi) where
D~u is the matrix of partial derivatives of the flow velocity,

F =

[
ux(~xi) uy(~xi)

vx(~xi) vy(~xi)

]
, where ~u =

[
u
v

]
. (3.4)

The linearized convection-diffusion equation (3.3) permits solutions that take the
form of elliptical Gaussians.

φ(~x; ~xi, σi, ai, θi) =

1

4πσ2
i

exp

{
−
[ci(x− xi) + si(y − yi)]

2/a2
i + [−si(x− xi) + ci(y − yi)]

2a2
i

4σ2
i

}
, (3.5)

where ~x =

[
x
y

]
, ci = cos(θi) and si = sin(θi). In addition to the usual parameters of

amplitude (γi), position (~xi) and width (σi), these basis functions have an orientation
(θi) and an aspect ratio (a2

i ) as shown in Figure 3.1. The evolution of all of these
parameters is discussed in detail in §6. While the evolution equations are central to
any implementation of the method, one does not need to know them to study the
spatial accuracy of the system; one only needs to know that the basis function is an
exact solution to the approximate PDE (3.3).

If we compute the residual using deforming elliptical Gaussians following the same
procedures as described above, we find

Rρ ≈ −

∫∫ ∞

−∞

φ(~t, . . .)
∇~tγ(~x− ~t)

h2
· [û(~x− ~t) + F(~x− ~t)[~t]− ~u(~x)]d~t. (3.6)
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In addition to using a continuation of the amplitudes γi as before, this form also em-
ploys continuations of θi, a

2
i and σi because one must permit inhomogeneous collec-

tions of basis functions. If we were to use the centroid velocity and velocity derivatives
for û and F, respectively, and seek the leading order term from the residual, we find

Rρ ≈ −

∫∫ ∞

−∞

φ(~t)
∇~tγ(~x− ~t)

h2
·

{
1

2
D2~u(~x)[~t,~t] + . . .

}
d~t,

≈ −

∫∫ ∞

−∞

φ(~t)
∇γ(~x)

h2
·

{
1

2
D2~u(~x)[~t,~t] + . . .

}
d~t, (3.7)

where D2~u is the bilinear operator of second partial derivatives of the velocity field.
For instance, if f(x) is a scalar function, Df is its gradient. Thus, if one were to write
out all the components, one would have

D2~u(~x)[~t,~t] =



uxxt

2
x + 2uxytxty + uyyt

2
y

vxxt
2
x + 2vxytxty + vyyt

2
y


 , where ~t =

[
tx
ty

]
. (3.8)

To compute these moments, we will treat this integral as if the basis function pa-
rameters do not vary over the support of the computational element. This is not an
additional source of error because inhomogeneities in a2, σ or θ could be included
in the ∇γ function which has no requirements placed upon it. When examining the
residual, it is redundant to calculate terms involving both ~u components (u and v)
because ∇γ can be anything. Therefore we will replace the vector field ~u with the
scalar function u for the remainder of this manuscript with the understanding that
results for u can be applied directly to v by substituting one function for the other.
For the leading order moment in (3.7), we find that

∫∫ ∞

−∞

φ(~t)D2u(~x)[~t,~t]d~t = 2σ2 (uxxMxx + 2uxyMxy + uyyMyy) , (3.9)

where

Mxx = c2a2 + s2/a2, (3.10a)

Mxy = cs(a2 − a−2), (3.10b)

Myy = c2/a2 + s2a2. (3.10c)

Thus, we see that using deforming basis functions that move and deform based solely
on the linearization of the centroid velocity field offers no improvement in the order of
spatial accuracy, and one might as well use the simpler core spreading method in (3.2)
and save the trouble of implementing a more complex system. However, we will not
admit defeat when we have a good grip on the leading order source of error. Instead,
we will determine a û and F such that this leading order term will disappear.

4. Improvements using corrected velocity fields. We shall define,

û = u+ w, (4.1)

F = Du+Dw, (4.2)

as altered velocity data to improve the spatial accuracy of the deform basis functions.
The functions w and Dw are considered corrections to the linearized velocity field

8
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at the basis function centroid. Note that Dw is so designated for consistency of
notation, but it is not necessarily equivalent to Dw. Substituting these into (3.6) and
calculating Taylor series for the u component,

Rρ ≈ −
1

h2

∫∫ ∞

−∞

φ(~t)



∂γ

∂x
(~x)

︸ ︷︷ ︸
(c)

−D
∂γ

∂x
(~x)[~t] + . . .


×




u(~x)︸︷︷︸
(a)

−Du(~x)[~t]︸ ︷︷ ︸
(b)

+
1

2
D2u(~x)[~t,~t]
︸ ︷︷ ︸

(c)

−
1

3!
D3u[~t,~t,~t] +

1

4!
D4u(~x)[~t,~t,~t,~t] + . . .

w(~x)︸ ︷︷ ︸
(c)

−Dw(~x)[~t] +
1

2
D2w(~x)[~t,~t]−

1

3!
D3w(~x)[~t,~t,~t] + . . .

Du(~x)[~t]︸ ︷︷ ︸
(b)

−D2u(~x)[~t,~t]︸ ︷︷ ︸
(c)

+
1

2
D3u(~x)[~t,~t,~t]−

1

3!
D4u(~x)[~t,~t,~t,~t] + . . .

Dw(~x)[~t]−DDw(~x)[~t,~t] +
1

2
D2Dw(~x)[~t,~t,~t] + . . .− u(~x)︸︷︷︸

(a)




d~t. (4.3)

One can see that terms (a) and (b) cancel exactly, but term (c) does not unless we
choose w(~x) such that it cancels the other terms. To nullify expression (c), we observe
that

∫∫
φ(~t)d~t = 1 and define

w(~x) =

∫∫
φ(~t)

1

2
D2u(~x)[~t,~t]d~t,

= σ2 [uxx(~x)Mxx + 2uxy(~x)Mxy + uyy(~x)Myy] . (4.4)

Thus, we see that using velocity data at the centroid hobbles a deforming blob method
to second order, and the correction w from (4.4) in the velocity field allows the method
to achieve fourth-order spatial accuracy. The adjustment Dw plays no role at this
point.

5. “Please Sir, may I have some more [accuracy]?”. There is no apriori
reason why the corrections should stop at this point. In fact, one could anticipate a
series of corrections of the form,

w(~x) = σ2w1(~x) + σ4w2(~x) + . . . (5.1a)

Dw(~x) = σ2Dw1(~x) + σ4Dw2(~x) + . . . (5.1b)

We know from (4.4) that

w1(~x) = uxx(~x)Mxx + 2uxy(~x)Mxy + uyy(~x)Myy. (5.2)

With this correction, we can cancel terms from (4.3) and write down the leading
order errors if the velocity field is corrected with w1. Things become slightly more

9
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complicated because errors arise through interactions with derivatives of ∂γ
∂x

:

Rρ ≈ −
1

h2

∫∫ ∞

−∞

φ(~t)



∂γ

∂x
(~x)

︸ ︷︷ ︸
(c,d)

−D
∂γ

∂x
(~x)[~t]

︸ ︷︷ ︸
(e)

+
1

2
D2 ∂γ

∂x
(~x)[~t,~t]

︸ ︷︷ ︸
(X)

+ . . .


×





1

2
D2u(~x)[~t,~t]
︸ ︷︷ ︸

(c),(X)

−
1

3!
D3u[~t,~t,~t]

︸ ︷︷ ︸
(e)

+
1

4!
D4u(~x)[~t,~t,~t,~t]

︸ ︷︷ ︸
(d)

+ . . .

σ4w2(~x)︸ ︷︷ ︸
(d)

−σ2Dw1(~x)[~t]︸ ︷︷ ︸
(e)

+σ2 1

2
D2w1(~x)[~t,~t]

︸ ︷︷ ︸
(d)

+ . . .

−D2u(~x)[~t,~t]︸ ︷︷ ︸
(c),(X)

+
1

2
D3u(~x)[~t,~t,~t]
︸ ︷︷ ︸

(e)

−
1

3!
D4u(~x)[~t,~t,~t,~t]

︸ ︷︷ ︸
(d)

+ . . .

σ2Dw1(~x)[~t]︸ ︷︷ ︸
(e)

−σ2DDw1(~x)[~t,~t]︸ ︷︷ ︸
(d)

+ . . .




d~t. (5.3)

Here we see that there are three groups that contribute to fourth order spatial
accuracy, but there are only two functions w2 and Dw1 available. A proper choice
for w2 and Dw1 will cancel terms (d) and (e) respectively.

σ2

∫∫
Dw1(~x)[~t]sxd~t =

∫∫ {
−
1

3
D3u[~t,~t,~t] + σ2Dw1(~x)[~t]

}
sxd~t (5.4a)

σ2

∫∫
Dw1(~x)[~t]syd~t =

∫∫ {
−
1

3
D3u[~t,~t,~t] + σ2Dw1(~x)[~t]

}
syd~t (5.4b)

σ4w2(~x) =

∫∫ {
1

8
D4u(~x)[~t,~t,~t,~t]− σ2DDw1(~x)[~t,~t]− σ

2 1

2
D2w1(~x)[~t,~t]

}
d~t

(5.4c)

The solution to this system is

Dw1(~x) = −

[
uxxx(~x)Mxx + 2uxxy(~x)Mxy + uxyy(~x)Myy

uxxy(~x)Mxx + 2uxyy(~x)Mxy + uyyy(~x)Myy

]
(5.5a)

w2(~x) =
5

2
[uxxxx(~x)M

2
xx + 4uxxxy(~x)MxxMxy+

2uxxyy(~x)(MxxMyy + 2M2
xy) + 4uxyyy(~x)MyyMxy+

uyyyy(~x)M
2
yy

]
.

(5.5b)

However, term (X) lends a nontrivial contribution, and there are no undetermined
functions remaining to eliminate it. Thus, we see that exact cancellations like (a) and
(b) in (4.3) are critical because the velocity correction method has strict limitations.
Of course, higher order spatial accuracy would be possible if one used a class of basis
functions that more closely solves (2.1). For instance, one could use basis functions
that solve (2.1) for quadratic flows in which case exact cancellations would eliminate
all terms at second order and we anticipate that corrections to the velocity field
evaluations could be applied at fourth order.

10
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6. The dynamics of deforming elliptical Gaussian basis functions. We
begin by choosing the origin to be the center of the basis function and orienting (3.5)
along the principal axes (θ = θi) which we shall refer to as X and Y . We force
this coordinate system to satisfy the local equation (3.3). We denote the X and Y
components of û as u and v respectively. Expanding in powers of X and X, we can
equate each coefficient with zero to derive the appropriate dynamical system, and set
θ = 0. In the interest of brevity, we drop all indices so that we can focus on the
dynamics of an individual basis function except where ~x and ~xi is used to distinguish
between the independent variable and the position of the vortex element.

O(1) : −
1

σ2

d

dt
(σ2) +

1

Pe

(
a−2 + a2

)

2σ2
= 0, (6.1a)

O(X) : a−2(
d

dt
xi − u) = 0, (6.1b)

O(Y ) : a2(
d

dt
yi − v) = 0, (6.1c)

O(X2) :
d

dt
(σ2)a−2 + σ2a−4 d

dt
(a2)− 2σ2F11a

−2 −
1

Pe
a−4 = 0, (6.1d)

O(Y 2) :
d

dt
(σ2)a2 − σ2 d

dt
(a2) + 2σ2F11a

2 −
1

Pe
a4 = 0, (6.1e)

O(XY ) : −σ2 dθ

dt
(a−2 − a2)− σ2[F12a

−2 + F21a
2] = 0, (6.1f)

where

F =

[
F11 F12

F21 −F11

]
. (6.2)

From these expressions, we can write down evolution equations for the basis function
parameters.

d~xi
dt

= û, (6.3a)

dσ2

dt
=

1

2Pe
(a2 + a−2), (6.3b)

da2

dt
= 2a2F11 +

1

2σ2Pe
(1− a4), (6.3c)

dθ

dt
=
F12a

−2 + F21a
2

a2 − a−2
. (6.3d)

For practical applications, we must transform ~xi, û, F into a laboratory reference
frame so that

F← RθFR(−θ), (6.4)

11



DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT 

where Rθ is a standard rotation matrix. Then, we can rewrite (6.3):

d

dt
~xi = û, (6.5a)

d

dt
(σ2) =

1

2Pe
(a2 + a−2), (6.5b)

d

dt
(a2) = 2[F11(c

2 − s2) + (F12 + F21)sc]a
2 +

1

2σ2Pe
(1− a4), (6.5c)

d

dt
θ =

F21 − F12

2
+

[
F21 + F12

2
(s2 − c2) + 2F11sc

]
(a−2 + a2)

(a−2 − a2)
. (6.5d)

The decomposition of the evolution equation for orientation into rotational and strain-
induced motions in equation (6.5d) is accomplished through further algebraic manip-
ulation.

From system (6.5), we observe certain properties in these elliptical Gaussians. The
first equation is no surprise. From the second equation, we see that elongation of the
basis functions augments spreading as one might expect. As with all core spreading
methods, the width, σ, must be numerically controlled by adaptive refinement or
remeshing, but this is beyond the scope of this paper.

In (6.5c), one can see that in the absence of viscosity, basis functions can elongate
exponentially, and the growth of the aspect ratio is bounded above by

a2 ≤ e2λM t, (6.6)

where λM is the largest positive value of λi over a relevant spatial or temporal domain
and

λi = F11,i(c
2
i − s

2
i ) + (F12,i + F21,i)sici. (6.7)

(Indices are included because λM represents a bound over all basis functions.) We
assume û and its derivatives are known and bounded, so one can be certain that λM
exists. Deforming basis functions can be used for infinite Pe calculations, but it is
important to note that unlimited growth in the aspect ratio as t→∞ is catastrophic
for spatial accuracy. In §7, we shall present examples with finite and infinite Peclét
number.

To analyze this method, the typical domain is the trajectory of a computational
element through the flow, or perhaps the entire flow over all space and time. The
bound, λM , is valid for all indices, i and all time and assumes unit initial aspect ratios.
If 1

Pe 6= 0, viscosity naturally regulates the elongation, and there is an upper bound,
a2
i ≤ a

2
M :

a2
M = 2PeλM l

2 +

√
4Pe2λ2

M l
4 + 1 = PeE +

√
Pe2E + 1. (6.8)

Thus, the maximum elongation of each basis function is controlled by the dimension-
less quantity

PeE = 2PeλM l
2, (6.9)

which from this point on shall be referred to as the basis function Peclét number
somewhat related to the grid Peclét number used to analyze finite difference schemes.

We know that the spatial accuracy of the method depends upon l where σ ≤ l
and a2 − a−2. Here, we find that if the Peclét number is finite, diffusion can check

12



DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT 

the growth of a2. Thus, an investigator might be tempted to use two numerical
parameters to control l and a2−a−1, respectively. In fact, we have just seen that this
is not necessary. For small l (and therefore small PeE), we can expand (6.8) as

a2
M ≈ 1 + PeE +

1

2
Pe2E + . . . = 1 +O(l2). (6.10)

Thus, a2−a−2 = O(l2), and l is the only relevant numerical parameter for this scheme,
and no additional remeshing based on aspect ratio is required to allow the method to
converge.

In (6.5d), we see that rotation is induced through two distinct mechanisms. The
first term on the right hand side corresponds to revolution due to pure rotation in F.
The second term corresponds to rotation induced by strain that is not aligned with
the major or minor axis. This latter term can be a source of stiffness in the system
if ai is close to 1. If ai is not close to unity, the evolution equations can be solved
directly.

Since one expects some aspect ratios to remain close to 1 in some flow regimes,
it is crucial that one deal with this stiffness when solving the evolution equations
(6.5) for the vorticity field. When ai is close to unity, the orientation of the element
rapidly moves toward an equilibrium where the two terms in the evolution equation
balance one another. Dropping indices from this point onward, we can calculate these
equilibria by setting d

dt
θ = 0 in (6.5).

F21 − F12

2
(a−2− a2)(c2 + s2)+

[
F21 + F12

2
(s2 − c2) + 2d11sc

]
(a−2 + a2) = 0 (6.11)

Collecting like terms in c and s and dividing by c2, one arrives as a quadratic equation
for tan θ. Solving this equation, one finds that the four equilibria (two from the
quadratic plus two from the twofold symmetry of the basis function) are described by

tan(θ±) = −k ±

√
k2 +

a−2F12 + a2F21

a2F12 + a−2F21
,

k =
F11(a

2 + a−2)

a2F12 + a−2F21
. (6.12)

Of course, one root corresponds to a stable equilibrium and the other corresponds
to an unstable equilibrium. If a is close to unity and the problem is very stiff, one
can effectively and accurately integrate (6.5) by assuming that the orientation of
the computational element is evolving through stable, local equilibrium so that θ ≡
θ(F, a), found by solving (6.12). Therefore, one integrates only a and σ in time. After
treating the potential stiffness in θ, we can use standard methods, such as “Adams
family” integrators, to solve (6.5).

7. Demonstration of convergence properties. The most useful examples of
exact solutions to mixing problems involve steady flows with closed streamlines. If
1
Pe = 0 and ρ is constant on streamlines initially, the initial scalar field will remain
unchanged for all time. Even though computational elements will move and deform
substantially, the exact solution will not. As an aside, it is tempting to perform
computations with an arbitrary reversible flow field so that the exact scalar field
returns to its initial configuration after some time T . The weakness of diagnostics
such as these is that the evolution equations for the particles are also reversible, so
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Fig. 7.1. Velocity and turnover time for the flow field described by ψ in (7.1) with δ = 1

10
,

c1 = −
7

2
and c2 = 3. Rigid body rotation is shown for comparison.

the particle method will appear suspiciously accurate. However, this test is really a
measurement of the temporal accuracy of the time integration routines being used
and not the spatial accuracy of the particle method.

When 1
Pe 6= 0, one can follow a similar approach and use flows with closed circular

streamlines. Since convective mixing has been eliminated for the exact problem, one
can determine an exact solution easily by convolving the initial distribution with a
Green’s function for the diffusion equation. For sample calculations, we shall study
the flow field induced by the stream function

ψ =
π

4
r2 + δ(r2 + c1r

4 + c2r
6) (7.1)

where r = |~x|. If δ = 0, the streamfunction corresponds to rigid body rotation with a
turnover time of T = 4. In this case, the basis functions will not deform because local
velocity deviations will correspond to rotation only, and the method is extremely close
to exact. When we perturb the rigid body rotation, we introduce differential rotation
and shearing while retaining the circular streamlines. For initial conditions, we select

ρ(r, 0) = 4 exp
(
−4r2

)
. (7.2)

Since ρ ≡ ρ(r), we can write down the exact solution for all time by evaluating a
convolution with the Green’s function for the diffusion equation with the initial data
(7.2),

ρex(r, t) =

(
1

16
+

t

Pe

)−1

exp

(
−

r2

1
16 + t

Pe

)
(7.3)

For the perturbation, we choose δ = 1
10 , c1 = − 7

2 and c2 = 3. The properties of
this flow field are shown in Figure 7.1. For the disturbed velocity profile, turnover
times vary considerably over the support of the passive scalar field and there are large
induced shears.

The initial conditions are generated by laying down particles on a regular grid
inside a disk of radius 5/4. The amplitude is chosen using the exact-deregularization
procedure described in [25], so that the initial L2 error is less than 10−6 for all
experiments. Initial core sizes (σ2) were chosen to be 2.56 × 10−2, 1.28 × 10−2,
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6.4× 10−3, 3.2× 10−3, 1.6× 10−3 and 8.0× 10−4. The initial distance between each
basis function is σ

h
= 2 to ensure reasonable overlap, and we find that increasing this

ratio has no significant impact on spatial error or convergence rates.
The evolution of the scalar quantity was simulated for one unperturbed turnover

time (T = 4) and compared with the exact solution (7.3). The results are shown in
Figure 7.2. The simulations included Peclét numbers Pe =∞, Pe = 104 and Pe = 103

with and without the velocity field corrections. We solve the system of ordinary
differential equations (6.5) with third order Adams-Bashforth time-stepping. The
time step is chosen to be very small (∆t = 10−3) so that method can be considered
semi-discrete for all intents and purposes. On a desktop machine, a single timestep
required between 1

50 of a second and 1
3 of a second of cpu time depending upon

the core size and number of particles required. While there is some advantage to
canceling the two fourth-order terms described in §5 for short times (see Figure 7.3),
this advantage disappears quickly as seen in Figure 7.2. This is a generic property with
many different concentric flow fields. There are two obvious explanations. The first is
that some cancellation is occurring between the fourth-order terms, and removing two
might remove beneficial cancellations. The second is that the dynamics are different
for the two fourth-order methods because the corrected velocity fields are different.
For instance, where there is no diffusion, the scalar-weighted average aspect ratio over
all of the particles is more than 6.4 at T = 4 when the two fourth-order terms are
eliminated while it is slightly more than 5.5 when the fourth-order terms are left in
place. Since the size of the error terms depends upon quantities like a2 − a−1, these
effects can muddy the waters slightly. As noted in §6, diffusion damps growth in the
aspect ratio so the effects are less noticeable.

When applying corrections to the velocity field, the centroid velocity data can
be very different from velocity data that is adjusted to achieve fourth order accuracy.
Both are incompressible flow fields and therefore preserve volumes. However, particles
need not follow the physical flow field as can be seen in Figure 7.4. Similar behavior
is observed at all Peclét numbers and initial core sizes, though less so for smaller core
sizes.

While it can be difficult to quantify the core size of heterogeneous, non-isotropic
elements, we propose using

〈σ2〉 =

∑N
n=1 γiσ

2
i∑N

n=1 γi
, (7.4)

as a reasonable assessment. In Figure 7.2, we see that the fourth-order scheme pro-
posed in this manuscript does in fact achieve fourth order convergence, and represents
a significant improvement over second order computations with centroid velocity data.
For some quantitative perspective on the size of the errors, one should consider that
the maximum height of the initial data (7.2) is 4 and that the

∫∫
ρd~x = π. In Figure

7.5, one can see the differences with contrasted contour plots. Similar behavior is
observed for all Peclét numbers that were computed.

8. Conclusions, future work and related projects. In this manuscript, the
following ideas have been presented and verified.

• Deforming elliptical Gaussian basis functions can be used to achieve four-
order spatial accuracy for the convection-diffusion equations.

• There is a systematic procedure for determining the spatial accuracy of meth-
ods using deforming basis functions based on the residual of the computed
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field, and this residual can be used to determine useful velocity field correc-
tions.

• We have presented the evolution equations for a tumbling, diffusing elliptical
basis function in a linear flow field.

• The predicted spatial accuracy for the method using deforming elliptical
Gaussian blobs is realized in nontrivial flows with and without diffusion.
• There may be some advantages to canceling some of the fourth order terms,

but generally it is better to leave them in place.

Still, more remains to be done, particularly if one wishes to use methods like these
for nonlinear problems for extended simulation times.

• Remeshing and conditioning issues: There are several reasons why one
would be interested in remeshing. First, we have seen the accuracy of the
method depends upon the aspect ratio of the elements in addition to the
core width. Second, if the Peclét number is infinite, we will require a means
of replacing a configuration of deformed elements with a configuration of
axisymmetric elements from time to time because aspect ratios can grow
without bound. If the Peclét number is finite, the core width will grow with
time and creates a situation where there is a lower bound on the spatial error,
rendering it inconsistent for any initial core width.
Since this method has a high spatial accuracy, a priority should be placed
on using high accuracy remeshing as well, or the benefit of the Lagrangian
method will be lost to effort devoted to remeshing with large numbers of
elements. There are two main methods for treating this problem. The first
requires global remeshing where all elements are replaced with a new reg-
ular configuration of elements. A survey of such methods can be found in
[1]. Perhaps the most suitable technique is a least-squares remeshing method
for elliptical Gaussians in 2D developed by Moeleker and Leonard [17]. The
second is a local refinement method where individual elements that exceed a
particular tolerance are replaced with a configuration of elements that approx-
imate the original single element. The growth in problem size is mitigated
by a local merging algorithm for nearly overlapping elements. These ideas
were first proposed as a correction to axisymmetric core spreading by the
author [22, 23] and have been explored by Shiels as well [26]. Recently, the
author has determined a class of refinement methods that achieve successively
higher order spatial accuracy and hopes to find practical methods to employ
them. The local merging ideas originally used for axisymmetric core spread-
ing have been substantially improved using weak estimates to achieve good
problem size reduction for any user-specified tolerance. This merging method
is unpublished at present but is fully implemented in the current version of
BlobFlow, an open source vortex code with deforming elements. This imple-
mentation along with a variety of related tools is available at no cost at the
following World Wide Web site:

http://www.math.udel.edu/∼rossi/BlobFlow
The fourth order velocity field corrections have not been added to the current
version at this time.

• Direct Biot-Savart interactions for elliptical Gaussian elements for
vortex computations: To use these ideas for vortex computations, one
must be able to compute the velocity field (and its derivatives) induced by an
elliptical Gaussian basis function. While there is no known representation for
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Biot-Savart integral of a anisotropic elliptical Gaussian in terms of elementary
functions, there is a very accurate fourth-order, asymptotic approximation in
ε where

ε =
a− 1

a+ 1
. (8.1)

This approximation for the velocity field and its derivatives compares favor-
ably with exhaustive numerical integrations even for large aspect ratios [24].

• Fast multipole summation for elliptical Gaussian elements for vor-
tex computations: To effectively implement vortex methods, one must re-
duce the element-element velocity interactions that require a time complexity
of O(N2). While the original Greengard-Rohklin algorithm is inapplicable to
nonsingular kernels like the anisotropic elements discussed in this paper, their
ideas can be adapted for anisotropic elements to achieve O(N) complexity [6].
Again, this is implemented in the latest version of BlobFlow, but the velocity
corrections have not be incorporated at the time of this writing.

To summarize, Lagrangian methods using deforming elliptical Gaussian basis
functions can achieve fourth order spatial accuracy for the full convection-diffusion
equations. More work lies ahead in fundamental areas such as refinement and remesh-
ing, and areas related to nonlinear studies such as velocity computations.
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Fig. 7.2. Improved spatial convergence properties for the convection diffusion equations at three
different Peclét numbers. The characteristic core width 〈σ2〉 is the scalar weighted average core width
at T = 2 and T = 4, respectively. These correspond to the field after one half and one full turnover
time. These graphs demonstrate the improved spatial accuracy when using corrected velocity fields
(2’s) compared to using centroid velocity data (©’s). The third curve (3’s) is data when some of
the fourth order terms are eliminated using (5.4). It is impossible to eliminate all of them using
elliptical Gaussian basis functions with the velocity correction technique proposed in this paper.
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Fig. 7.3. Slight advantages in partial error cancellation for short times. We see that canceling
two of the fourth order terms offers some improvement. However, the advantages are slight and
disappear for larger T .
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Centroid velocity data: <σ2> = 6.4 × 10−3, Pe=∞, T=4
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Fig. 7.4. Typical basis function positions at T = 4. When using centroid data, basis functions
follow streamline. However, the higher spatial order method need not do so. Similar behavior is
seen for all experiments though to a lesser extent when 〈σ2〉 is smaller. Blobs are shown as ×’s
where the arm lengths are 1

5
σiai and

1

5

σi
ai
, and we see that aspect ratios vary considerably over the

domain due to variations in the local shear. Contour lines of ρ̂ are superposed at intervals of 0.4,
and the L2 error for this choice of core size is about the same for both methods. On the left, the
simulation uses centroid velocity data and the particle densities remain uniform. On the right, the
simulation uses adjusted velocity data to achieve fourth-order accuracy. In this case, particles no
longer follow the concentric streamlines, and density variations occur. In both plots, skinnier basis
functions can have aspect ratios of 15 or more.
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Fig. 7.5. Comparison of scalar fields with second- and fourth-order schemes at Pe = ∞. The
exact solution (dashed) is shown together with the computed (solid) contours. The second-order
results are in the left column and the fourth-order results are in the right. Each row represents
different core sizes, diminishing from top to bottom. The contour increments are 0.4 scalar units.
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