
MEMORY OPTIMIZATION IN CODELET EXECUTION MODEL ON

MANY-CORE ARCHITECTURES

by

Yao Wu

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Electrical and
Computer Engineering

Spring 2014

c© 2014 Yao Wu
All Rights Reserved

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1562437

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 1562437

MEMORY OPTIMIZATION IN CODELET EXECUTION MODEL ON

MANY-CORE ARCHITECTURES

by

Yao Wu

Approved:
Guang R. Gao, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
James G. Richards, Ph.D.
Vice Provost for Graduate and Professional Education

ACKNOWLEDGMENTS

First of all, I want to express my deep gratitude to my advisor Prof. Guang R.

Gao who guided and support in my research. His research attitude and enthusiasm

have influenced me greatly. Under his guidance, I gained a lot of knowledge and skills.

The experiences in CAPSL will benefit me for my future life.

I would like to acknowledge Dr. Chen Chen and Dr. Long Zheng who are my

mentors and gave great help on my research. Dr. Chen Chen introduced OpenMP,

SWARM, Cyclops-64 and parallel coding skills to me. I learned Hadoop and Java

coding from Dr. Long Zheng. He provided feedback to revise my thesis. I can not

accomplish my thesis without their help.

I also want to thank all CAPSL members who taught and helped me during my

study.

Finally, I would like to give thanks to my parents, wife, and son. They always

supported my work, understood me and gave me great patience.

This work is supported by the Department of Energy [Office of Science] under

Award Number DE-SC0008717.

This work is partially supported by European FP7 project TERAFLUX, id.

249013.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi
LIST OF FIGURES . vii
LIST OF ALGORITHMS . ix
ABSTRACT . x

Chapter

1 INTRODUCITON . 1

2 BACKGROUND . 5

2.1 Overview of Multi- and Many-core Systems 5
2.2 The Cyclops-64 Architecture . 6
2.3 Implementation of FFT on Cyclops-64 8
2.4 The Codelet Model . 10

3 MEMORY WORKLOAD BALANCE IN CODELET PXM 14

3.1 Methodology . 14

3.1.1 Motivating Example . 14
3.1.2 Three FFT Implementations 16
3.1.3 Randomization on DRAM Bank Accesses by Hashing 21

3.2 Experiment . 21

3.2.1 Task Size and Theoretical Peak Performance 21
3.2.2 Experimental Setup . 24
3.2.3 Major Observations . 25
3.2.4 Performance of the Various FFT Algorithms 26
3.2.5 Scalability and Speedup . 26

3.3 Related Work . 27
3.4 Discussion . 30

iv

4 LOCALITY EXPLOITATION IN CODELET PXM 33

4.1 Methodology . 33

4.1.1 Motivating Example . 33
4.1.2 Problem Statement . 36
4.1.3 Solution . 37

4.2 Algorithm . 37

4.2.1 Min-cost Flow Based Algorithm 38
4.2.2 Max First Algorithm . 40
4.2.3 Graph Partitioning Based Algorithm 42

4.3 Experiment . 43

4.3.1 Experimental Design . 43
4.3.2 Major Observations . 47
4.3.3 Experimental Result . 47

4.4 Related Work . 52
4.5 Discussion . 54

5 CONCLUSION AND FUTURE WORK 56

BIBLIOGRAPHY . 58

v

LIST OF TABLES

3.1 Description of the various methods used to perform FFT on
Cyclops-64. 24

4.1 The description of the four algorithms used to schedule codelets on
Cyclops-64 . 46

4.2 Energy consumption per instruction. 49

vi

LIST OF FIGURES

2.1 The Cyclops-64 node block-diagram. 7

2.2 The Cyclops-64 memory hierarchy. 8

2.3 An 8-point FFT butterfly . 9

2.4 Abstract machine for the codelet model. 13

3.1 Access rates of the 4 off-chip memory banks in the coarse-grain FFT
algorithm. 15

3.2 Access rates of the 4 off-chip memory banks in the fine-grain FFT
algorithm. 16

3.3 Access rates of the 4 off-chip memory banks in the fine-grain FFT
algorithm with randomized twiddle factor addresses. 22

3.4 The best execution time of the fine-grain FFT algorithm for 156
threads units running in parallel and a global input data set of 219. 23

3.5 The execution time of 5 versions of FFT algorithms on Cyclops-64. 25

3.6 Performance of 5 versions of FFT algorithms on Cyclops-64 for an
input size of 219 data elements and 64-point butterfly codelets. . . . 27

4.1 A motivating example of locality exploitation in the codelet model. 34

4.2 A simplified SWARM codelet program corresponding to the codelet
graph in Figure 4.1. 35

4.3 The flow network converted from the codelet graph in figure 4.1. . . 39

4.4 Experiment design. 44

vii

4.5 The best locality exploitation on the six applications by using the
three algorithms from Section 4.2. 48

4.6 The performance of the four algorithms on the six applications. . . 50

4.7 The overall energy consumption of the six applications by using the
four algorithms. 51

4.8 The dynamic energy consumption of the six applications by using the
four algorithms. 52

viii

LIST OF ALGORITHMS

1 The pseudo code of the coarse-grain 64-point FFT algorithm 17

2 The pseudo code of the fine-grain 64-point FFT algorithm 19

3 The pseudo code of the guided fine-grain 64-Point FFT algorithm . 32

4 Using min-cost flow to solve the Best Scheduling Problem 41

5 Max first algorithm . 42

ix

ABSTRACT

The upcoming exa-scale era requires a parallel program execution model capable

of achieving scalability, productivity, energy efficiency, and resiliency. The codelet

model is a fine-grained dataflow-inspired execution model which is the focus of several

tera-scale and exa-scale studies such as DARPA’s UHPC, DOE’s X-Stack, and the

European TERAFLUX projects.

Current codelet implementations aim to making fully use of computation re-

sources by balancing their workload in the multi-core and many-core systems. The

performance is improved by this method. However, by making use of the features

of the codelet model the memory optimization can be also implemented to improve

the performance as well as energy efficiency. In this thesis, we focus on the mem-

ory optimization on memory workload balance and locality exploitation in the codelet

model. As a case study, various versions of FFT algorithms are implemented on IBM

Cyclops-64 – a many-core system to demonstrate that the fine-grain codelet execution

model is able to execute the codelets that involve different workload on the memory

bandwidth in an appropriate order to reduce memory contention and thus improve per-

formance. The experiment result shows that our fine-grain guided algorithm achieves

up to 46% performance improvement comparing to a coarse-grain implementation on

Cyclops-64. To automatically exploit locality in codelet execution, we provide three

optimal or nearly optimal scheduling algorithms based on static information of codelet

graph and locality. They have different trade-offs in algorithmic complexity, locality

exploitation, program execution time, and energy efficiency. We test and analyze the

three algorithms on various applications on an emulation platform of Cyclops-64. The

experiment result shows that our algorithms reduce up to 59.7% of global memory ac-

cess by using local memory to buffer intermediate data between two adjacent codelets

x

on the same core and thus improve up to 68.1% performance improvement and 40.7%

energy saving comparing to the dynamic codelet scheduling approach.

xi

Chapter 1

INTRODUCITON

To achieve better performance, more and more cores are integrated into systems.

Multi-core and many-core systems are becoming popular and many have been available

on market [2, 6, 67, 20, 27, 65, 60]. Therefore, the approaches to effectively utilizing

these systems draw considerable attention. Conventionally, parallel execution in multi-

core and many-core systems is based on coarse-grain synchronization by using barriers

e.g. MPI and OpenMP that are the most prevailing parallel programming models

today. These coarse-grain models perform well on a system where the number of cores

is small, but tend to degrade as the core count increases [38, 58]. The reason is that the

contention for shared resources e.g. shared memory and floating-point units becomes

severer among cores as the number of cores increases.

For this reason, different execution models are required to achieve high-performance

computing for multi-core and many-core systems. The codelet model is designed to re-

alize fine-grain parallel execution for extreme-scale machines. This model is originated

from dataflow and also takes advantage of the Von Neumann model. In the codelet

model, the programs can be expressed by codelets and the dependencies among them.

Runtimes based on codelet execution model are able to schedule ready codelets to

run on available resources. Comparing to the coarse-grain model, the asynchronously

event-driven execution in the codelet model can achieve more balanced workload on

computation.

Moreover, by making use of the features of the codelet model the memory opti-

mization can be implemented to improve the performance as well as energy saving in

1

the mutli-core and many-core systems. In this thesis, we focus on the memory optimiza-

tion on memory workload balance and locality exploitation in the codelet execution

model.

In this thesis, we show that the fine-grain codelet execution model can achieve

more balanced workload on not only computation but also memory bandwidth than the

coarse-grain execution model can. The codelet execution model provide an opportunity

to control the order of the codelet execution. Because each codelet maybe has different

memory access patterns, the execution order can be controlled to provide a evenly

distributed access pattern among memory banks such that the system achieves better

workload balance on the memory bandwidth usage. We use FFT algorithm on the

IBM Cyclops-64 many-core architecture to demonstrate the advantage of the fine-grain

execution model by using codelet model.

Although the codelet model is able to exploit parallelism effectively to improve

workload balance, data locality is not well considered when scheduling codelet. In

some multi-core and many-core systems, system memory is organized hierarchically

by globally shared memory among cores and local memory for each core e.g. IBM

Cyclops-64 [21], IBM CELL Broadband Engine [1], and Intel UHPC straw-man [48].

Globally shared memory e.g. interleaved SRAM and DRAM are used to share data

and communicate/synchronize among cores. Local memory e.g. scratchpad SRAM is

used to store the data for further reuse. The access latency and energy consumption

of local memory is much lower than that of shared global memory. For such systems,

locality exploitation is very important, because it achieves better performance and

more efficient energy consumption. The conventional method to exploit data locality

highly relies on programmers to manually generate the scheduling plan. This process

is extremely time-consuming. In this thesis, our effort is to introduce a automatic

mechanism to guide codelet runtimes in exploiting locality by using the codelet graph

and locality information. This automatic approach can exploit best data locality as

well as keep the highest parallelism in programs by using static scheduling in codelet

runtimes.

2

The major contributions of this thesis are as follows:

• A fine-grain FFT algorithm based on codelet model is designed and implemented
on the IBM Cyclops-64 many-core architecture. With a heuristic order guiding
the execution of the codelets, the memory contention is reduced.

• The behavior of three versions of FFT on different granularity of synchroniza-
tion are compared: coarse-grain (using barriers), fine-grain (using point-to-point
synchronization), and guided fine-grain (fine-grain with the heuristic guidance).
The experiment result shows that our algorithm achieves up to 46% performance
improvement comparing to the coarse implementation on Cyclops-64.

• The fine-grain approach with an alternative solution that reduces memory con-
tention by randomizing memory addresses is implemented and compared. The
fine-grain approach outperforms the address randomization approach when the
input data size is large enough. Moreover, the performance gap will enlarge as
the input data size increases.

• A polynomial-time algorithm is proposed to statically scheduling codelets to
achieve best data locality while keeping the highest parallelism when there are
enough computation resources. The least computation resource requirement for
running parallel programs is also guaranteed by the algorithm.

• Other two widely used algorithms are analyzed and implemented to make a com-
parison. These three algorithms have different trade-offs in algorithmic complex-
ity, locality exploitation, program execution time, and energy efficiency. Theo-
retically and experimentally, our algorithm provides the best performance as well
as the most efficient energy consumption.

• These three algorithms are tested and analyzed on various applications including
matrix multiply, merge sort, and random generated codelet graphs with reason-
able assumptions. The experimental results show that our algorithm can reduce
up to 59.7% of global memory access by optimizing locality exploitation. Our al-
gorithm also improves up to 68.1% performance improvement and 40.7% energy
saving comparing to the dynamic codelet scheduling.

Our work described above has been published in the international conference and

workshop. In particular, this thesis is also based on the published papers [14, 12, 13].

The rest of the thesis is organized as follows. Chapter 2 provides the background

on the architecture, execution model, and FFT algorithm of our work in this thesis.

Chapter 3 demonstrates the memory workload balance optimization in the codelet

model by using FFT algorithm. Chapter 4 introduces the memory locality exploitation

3

optimization in the codelet model by comparing different scheduling algorithms on

various applications. Chapter 5 gives the conclusion and future work of our work.

4

Chapter 2

BACKGROUND

In this chapter, we introduce the evolution of multi- and many-core systems in

Section 2.1, the IBM Cyclops-64 many-core architecture that is used as the experimen-

tal platform in Section 2.2, the previous work on the FFT algorithm on Cyclops-64 in

Section 2.3, and the codelet model by which we implement various fine-grain algorithms

in Section 2.4.

2.1 Overview of Multi- and Many-core Systems

As the requirements for computation are drastically increasing, the manufac-

turers achieve the microprocessor performance mainly in two ways. One is based on

the frequency boost of a microprocessor, so that more cycles are in one second i.e.

more instructions can be executed in a second. On the other hand, as more transis-

tor can be integrated into a microprocessor (since a transistor is getting smaller and

smaller), Instruction Level Parallelism (ILP) is achieved to execute more instructions

in a cycle. Therefore, both approaches improve the performance of microprocessors.

Instruction Level Parallelism has been widely studied over many years, such as super

scale, out-of-order execution, long pipeline, multi-issue, branch prediction, and specu-

lation. However, high clock frequency brings in thermal problem and small transistor

tends to reach its physical limit. Therefore, the two methods are not suitable for

performance enhancement any more.

Recently, the microprocessor industry is tending toward multi-core and many-

core. It is an easier and more efficient way to improve the performance of micropro-

cessors by integrating more cores into a chip. Many multi-core and many-core archi-

tectures are designed to demonstrate the significant computation power. The CELL

5

Broadband Engine [1] processor is a heterogeneous multi-core microprocessor which

provides powerful graphics processing performance. It consists of a Power Processor

Element (PPE) which controls eight SIMD Synergistic Processor Element (SPE). IBM

Cyclops-64 [21] (see Section 2.2) contains 80 processors each of which has two thread

units. Intel UHPC straw-man [48] architecture is composed of three levels: chip, clus-

ter, and block. A chip consists of a group of clusters. A cluster contains many blocks.

In a block, there are N execution engines (XE) and one control engine (CE). Net-

work processors contain tens of thousands of cores to enhance and optimize packet

processing in the networks [4]. GPU is widely used in graphics processing as well as

supports the general-purpose computation [44]. Nowadays, it can contain up to thou-

sands of cores. Different architectures involve different hardware features which can be

taken advantage to optimize specific computations. After the microprocessors evolve

into multi-core and many-core, not only Instruction Level Parallelism but also Thread

Level Parallelism (TLP) are used to enhance the performance. The difference between

multi-core and many-core is the number of cores integrated in a chip. In general,

multi-core refers to the systems with eight or less cores, such as most of the Intel x86

CPUs with a small number of cores. Many-core refers to the systems with more than

eight cores, such as Cyclops-64, Intel straw-man, and GPU. Nowadays, multi-core and

many-core are becoming the mainstream in computer systems. However, it also brings

in challenges to effectively make use of their computation power as well as improve

energy efficiency.

In this thesis, we focus on both performance and energy optimization on multi-

core and many-core architectures by using fine-grain codelet execution model (see

Section 2.4) instead of the conventional coarse-grain approaches, such as MPI and

OpenMP.

2.2 The Cyclops-64 Architecture

Figure 2.1 shows a block-diagram of a Cyclops-64 node. Each node runs at

500 MHz and contains 80 processors. Each processor contains 2 thread units (TU)

6

Crossbar Network

SP SP

TU TU

FP
SR

AM

B
an

k

SP SP

TU TU

FP

SP SP

TU TU

FP···
SR

AM

B
an

k

SR
AM

B

an
k

SR
AM

B

an
k

SR
AM

B

an
k

SR
AM

B

an
k

···

Processor 1 Processor 2 Processor 80

Host
Interface

A-Switch

DDR2 SDRAM
Controller

Chip
Node

Off-Chip
Memory

FPGA

Control
Network

Gigabit
Ethernet

HD

3D Mesh

Figure 2.1: The Cyclops-64 node block-diagram. A node has 80 processors each of
which contains 2 thread units (TU), a floating-point unit (FP), and local
scratchpad SRAM (SP). All processors access global SRAM and off-chip
DRAM through the crossbar network.

which share a floating-point unit (FP). A thread unit is an in-order 64-bit RISC core

with a register file composed of 64 64-bit registers. It does not support for con-

text switch, so each TU only runs one thread. Each FP is able to issue one fused

multiply-add instruction (FMA) per cycle. Hence, the theoretical peak performance of

a Cyclops-64 node is a 80 GFLOPS.

As shown in Figure 2.2, Cyclops-64 has a three layer memory hierarchy without

data cache: scratchpad SRAM, interleaved SRAM, and DRAM which are accessed by

all TUs through a 96-port crossbar switch. A Cyclops-64 node is equipped with about

5 MB on-chip memory SRAM, which is divided into 160 memory banks of 30 KB

each. By default, these banks are equally split into interleaved (global) SRAM which

can be accessed by all TUs and scratchpad (local) SRAM which is local to and can be

accessed much faster by the corresponding TU). Note that the amount of global SRAM

7

16GB/s (LDM/STM)

Th
re

ad
 U

ni
t

64
Registers

OffïChip
DRAM

1GB
~2.5MB

GMSPM
16KB

load: 2 cycles; store 1 cycle

write:1 cycle
read:1 cycle

latency
overall bandwidth

1.92TB/s

640GB/s

320GB/s
load: 31 cycles; store 16 cycles

load 57 cycles; store 29 cycles

Figure 2.2: The Cyclops-64 memory hierarchy. A node has a three layer memory
hierarchy without data cache: scratchpad SRAM, interleaved SRAM,
and off-chip DRAM. Each layer has different memory bandwidth and
access latency.

and scratchpad memory can be configured at boot time. The bandwidth to access

interleaved and scratchpad SRAM are 320 GB/s and 640 GB/s respectively. There

is 1 GB off-chip DRAM memory on a Cyclops-64 node. Off-chip DRAM accesses are

significantly slower from 16 GB/s for multiple-load / multiple-store instructions down

to 2 GB/s for sequences of single-load or single-store instructions. Off-chip memory is

only accessed through 4 banks. Workload imbalance on DRAM ports on Cyclops-64

becomes serious if the data does not distribute evenly on each bank. In this case, some

ports are so busy that causes contentions and access delay while others are free. Our

work shows that the codelet model provides the possibility to balance DRAM access

pattern to achieve better performance.

2.3 Implementation of FFT on Cyclops-64

Fast Fourier Transform (FFT) is a very useful algorithm in signal processing

area. Many different implementations of FFT on different architectures have been

8

Bitïreversal permutation Second stage Third stageFirst stage

W 0
8

W 0
8

W 0
8

W 0
8

-1

-1

-1

-1

W 0
8

W 2
8

W 0
8

W 2
8

W 0
8

W 1
8

W 2
8

W 3
8

-1

-1

-1

-1

-1

-1

-1

-1

X(7)

X(6)

X(5)

X(4)

X(3)

X(2)

X(1)

X(0)

x(3)

x(4)

x(5)

x(6)

x(7)

x(1)

x(0)

x(2)

Figure 2.3: An 8-point FFT butterfly, as demonstrated by Chen et al. [15]. Such
a task can be executed on a thread independently in 3 stages butter-
fly operations i.e. without communication or data exchange with other
tasks.

widely studied over the years. One of which, FFTW, is still considered among the

most efficient on multi-core and many-core systems. However, most of these parallel

implementations still take advantage of coarse-grain synchronization between cores.

There are only a few FFT studies driven by fine-grain execution models to achieve

better balanced workload on computation.

Chen et al. [15] demonstrated the implementation of 1D and 2D FFT algorithm

on Cyclops-64. Their method implemented the classical Cooley-Tukey algorithm in an

iterative instead of recursive way. The cores are synchronized by using the hardware

barrier provided by Cyclops-64 at the end of multiple stages which depends on the size

of butterfly computation i.e. task size. They only used SRAM and the register files

9

in FFT computation. As shown in Figure 2.3, 2-point butterfly in original Cooley-

Tukey algorithm was extended to 8-point butterfly. There is additional step i.e. bit

reversal permutation before all butterfly operations. It is used to change the input data

positions to guarantee the output data in correct positions. If we don’t apply such a

step before the butterfly computation, we can also involve it at end of the butterfly

computation to achieve the same effect. Such a step must be executed once and only

once in FFT implementation. They divided the whole computation into many small

parallel tasks which load the data the pre-computed twiddle factors from SRAM to

registers, apply butterfly computation, and store the intermediate or final results back

to SRAM in place [15]. Figure 2.3 shows a task whose input is 8 data points. Accord to

the feature of FFT algorithm, such a task can be executed on a thread independently

in 3 stages butterfly operations i.e. without communication or data exchange with

other tasks. We can see that as the task size increases the data exchange between

SRAM and registers reduces. It keeps cores busy for computation for a longer time.

Furthermore, it also makes the whole computation need less barriers. However, too

large task size hurts the parallelism and can not be implemented in their work because

the number of register on each core is limited on Cyclops-64. They stored all the data

are stored in the on-chip SRAM memory and found that when the task size is set as

an 8-point butterfly, the performance is the best.

However, because of the limited size, on-chip memory can not be fitted in for

a large input data size. Hence, we need to extend on-chip to off-chip memory data

storage and use scratchpad instead of registers for intermediate data. In this case, we

found that 64-point FFT performs better than the 8-point FFT due to the reduction

of off-chip memory accesses.

2.4 The Codelet Model

Our work is based on the codelet program execution model [75, 34]. The feature

of the codelet model provides us a chance to improve the performance and reduce energy

computation during parallel execution.

10

The codelet model takes both advantages of dataflow and Von Neumann models

[25]. It is a hierarchical fine-grain multithreading model that are based on the concepts

and semantics of codelets. According to the parallelism and data dependencies, the

programs are divided and capsulated into codelets i.e. a collection of instructions.

The codelet is the finest granularity of parallelism in the model. Inside a codelet, the

instructions are executed sequentially. A codelet run asynchronously without blocking

until it completes. Usually, a codelet runtime is involved to schedule each codelet to

the computation unit by the scheduling rules. Since codelets have a larger granularity

than instructions, it provides an opportunity to reduce runtime overhead by tuning the

size of codelet. Codelet execution is event-driven which means only when the required

data and resources are available, the codelets receive all synchronized signal and can

start execution.
Each codelet can have one of the following 4 status:

• Dormant: Not yet receive all required data.

• Enabled: Receive all the data required to execute the codelet.

• Ready: Enabled and all resources needed to execute the codelet are ready.

• Firing: Execution of a ready codelet when it is scheduled on a processing unit.

A codelet changes among the 4 status according to availability of data and computation

resources.

According to data dependencies, the codelets in a program are connected to-

gether into a graph called the codelet graph (CDG) which has its root in dataflow

graph [25]. If a codelet graph is well-behaved e.g. no deadlock caused by a cycle in

the codelet graph, the execution will be determinate i.e. the outputs always are the

same for a given input to the codelet graph. However, the execution order of codelets

in each run is not guaranteed to be the same, because the occurrence of the events

to trigger the codelets highly depends on runtime and hardware system. Our work in

fine-grain FFT algorithm makes use of the changeable execution order of codelets to

improve the memory bandwidth usage.

11

In general, the whole codelet graph is not required to statically construct. It is

started by setting up a part of codelets and their dependencies statically and then the

other subgraphs can be created dynamically by the running codelets. Our fine-grain

FFT algorithms produce the codelet graph at the beginning of the execution when the

input data size is known. Our work in locality exploitation in the codelet model also

takes advantage of a purely static codelet graph.

The codelet model can be mapped to corresponding abstract parallel computer

hardware and software system called abstract machine. As shown in Figure 2.4, the

codelet abstract machine is organized hierarchically with heterogeneous elements. It

consists of many nodes which are linked together by an interconnection network. Each

node has one or more many-core chips and shared node memory. Each chip contains

many clusters connected together by a chip interconnect and shared chip memory. Each

cluster contains a collection of computing units (CU) and one or more synchroniza-

tion and scheduling units (SU) which are linked together by an on-chip interconnect

and share cluster memory. Computing units, which can be any type of core, are in

charge of computation i.e. executing codelets. Synchronization units are responsible

for scheduling the codelets to available computing units based on the scheduling rules to

achieve performance and energy saving. Synchronization units also handle exceptions,

hardware interruption, memory request from or to out-of-cluster location, etc. Each

computing unit or synchronization unit has its own local memory. The hierarchical

feature of the codelet abstract machine can improve locality in programs by organizing

the codelets into specific levels of the machine.

12

ClusterCluster

Cluster Cluster

...

...

I/O

DRAM

Chip

Chip Chip...

interconnect

DRAM DRAM……….

I/O

Node

interconnect

CU CU

SU Cluster
Memory……….

……….

Cluster
Register
Window … Register

Window
Register
Window

Local Memory

Register
Window

CU

Interconnect

Node

NodeNode

Node

Register
Window … Register

Window
Register
Window

SU

Out-of-Cluster Communications

Local Memory

Register
Window

...

...

interconnect

Figure 2.4: Abstract machine for the codelet model. It is organized hierarchically
with heterogeneous elements. At cluster level, computing units (CU) exe-
cute ready codelets and synchronization units (SU) schedule the codelets
to available computing units. There is share memory at each level to
achieve the locality.

13

Chapter 3

MEMORY WORKLOAD BALANCE IN CODELET PXM

In this chapter, we demonstrate that the fine-grain execution models can im-

prove more balanced workload on not only computation but also memory bandwidth

usage than the coarse-grain execution models can. We implement FFT algorithm on

the IBM Cyclops-64 many-core architecture to show the advantage of the fine-grain

execution model by using codelet model. The related work is also provided.

3.1 Methodology

This section introduces and analyzes the methodology of our work. Section 3.1.1

uses an example to demonstrate the opportunity provided by the codelet model to

improve the memory bandwidth usage. Section 3.1.2 describes coarse-grain, fine-grain,

and guided fine-grain FFT algorithms with 64-point task size. Section 3.1.3 presents

our way to randomize the off-chip memory addresses in order to achieve balanced

memory bandwidth usage.

3.1.1 Motivating Example

We have described the coarse-grain FFT algorithm on Cyclops-64 in Section 2.3.

This algorithm shows very good performance when using on-chip memory [15]. How-

ever, when we extend this algorithm to using off-chip memory to store the data and

twiddle factors, it does not work well. We found that the problem is caused by the

unbalanced memory accesses to the off-chip memory banks.

As described in Section 2.2, there are only 4 ports connecting 4 off-chip memory

banks respectively on a Cyclops-64 node. From Figure 3.1, we can see that the memory

accesses only in the last few stages (about last 1/3 of the execution time) are evenly

14

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1
x 107

0

0.5

1

1.5

2 x 106 input size = 2^22 task size = 64 num of threads = 156

exe cycle

m
em

 a
cc

es
se

s
pe

r 3
e6

 c
yc

le
s

bank 0
bank 1
bank 2
bank 3

Figure 3.1: Access rates of the 4 off-chip memory banks in the coarse-grain FFT
algorithm. In early stages, Bank 0 is accessed three times more than the
other banks. It causes contention on Bank 0 and wastes the bandwidth
resource on other banks.

distributed to the four memory banks in the coarse-grain FFT algorithm. In early

stages (about first 2/3 of the execution time), Bank 0 is accessed three times more

than the other banks. It causes contention on Bank 0 and wastes the bandwidth

resource on other banks. Because the accessed elements in the twiddle factor array in

early stages have a stride that is a multiple of 64 in the memory address and the four

off-chip memory banks are interleaved on 64-byte boundaries as well (In a Cyclops-64

node, the first 64 bytes of data are stored on bank 0), the next 64 bytes on bank 1, and

so on so forth.), the accesses on the twiddle factor array in early stages always go to

bank 0. However, because the stride of the accessed addresses in the last few stages is

less than 64, the access rates of the four memory banks are more balanced.

In fine-grain execution models, it is possible for a task in a later stage to be

executed prior to a task in an early stage. Therefore, the execution order of the tasks

can be guided to get more balanced workload on the memory banks. Some tasks in

early stages which only need the data on bank 0 can be delayed execution in order

to relieve the burden on bank 0. On the other hand, some tasks in late stages which

15

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1
x 107

0

0.5

1

1.5

2 x 106 input size = 2^22 task size = 64 num of threads = 156

exe cycle

m
em

 a
cc

es
se

s
pe

r 3
e6

 c
yc

le
s

bank 0
bank 1
bank 2
bank 3

Figure 3.2: Access rates of the 4 off-chip memory banks in the fine-grain FFT algo-
rithm. Compared to Figure 3.1, the memory access pattern is much more
balanced starting from the second half of the execution time. Contention
reduces on Bank 0 and the bandwidth resource on other banks can be
made use of earlier.

need the data on bank 1, 2, 3 can be advanced to execute so that the bandwidth of

bank 1, 2, 3 can be made use of when free. Figure 3.2 demonstrates the access pattern

of the off-chip memory banks in our designed fine-grain FFT algorithm. We can see

that the access pattern is more balanced by the access rate of bank 0 /bank 1, 2, 3

decreasing/increasing earlier (at about 1/2 of the execution time).

An alternative solution to balance the memory access workload is to randomize

the memory addresses of the elements in the twiddle factor array. However, the software

method of randomizing the memory addresses introduces big overhead. On the other

hand, the feature of randomizing the memory addresses by hardware is not supported

by all architectures, because such a feature breaks locality for regular applications. For

comparison, we also implement FFT algorithm with hashed twiddle factor array.

3.1.2 Three FFT Implementations

Coarse-Grain Algorithm

16

Algorithm 1 The pseudo code of the coarse-grain 64-point FFT algorithm
input: Array D with input data

Array W with pre-computed twiddle factors
output: Array D with final results
PSEUDO CODE:
Bit reversal(D) in parallel;
N←D.length;
last stage←dlog2N/6e − 1;
for stage = 0 to last stage do

if stage 6= last stage then
for t id = 0 to N/64− 1 in parallel do

FFT 64p kernel(D,W ,stage,t id);
end for

else
for t id = 0 to N/64− 1 in parallel do

FFT last stage kernel(D,W ,stage,t id);
end for

end if
barrier;

end for

The 64-point FFT coarse-grain algorithm can be viewed as an extension of Chen

et al.’s 8-point FFT algorithm that is described in Section 2.3.

The pseudo code of the coarse-grain 64-point FFT algorithm is shown in Al-

gorithm 1. As other Cooley-Tukey based FFT algorithms, the parallel bit-reversal

process before butterfly computations is required to change the input data position to

guarantee the output data in correct positions. Then, the whole FFT computation is

divided into dlog2N/6e stages, where N is the number of the input data. Without loss

of generality, we assume that N is a power of two because in FFT algorithm we always

append amount of zero data to make the input data size as a power of two. In each

stage, there are N/64 tasks. Each task is a 64-point FFT kernel that loads 64 data

points and 63 twiddle factors from the off-chip memory to scratchpad, applies butterfly

computation on 6 levels (the intermediate data are stored in scratchpad), and stores

64 computed data back to the off-chip memory in place. At the end of each stage, all

the threads are synchronized by a barrier. Tasks in the last stage may apply less than

6 levels of butterfly computation because log2N may not be a multiple of 6. In such a

17

case, tasks in the last stage only applies log2N mod 6 levels of butterfly computation.

Each task loads 64 data in the following way: Suppose that the task is the ith

one in stage j. The thread loads data0,...,data63 from the data array D where

datak = D[64j+1 × bi/64jc+ i mod 64j + k × 64j]

Moreover, the task also loads twiddle factors for each level of the FFT computation.

At level l, the mth butterfly computation needs the twiddle factor

ωlm = W [m mod 2l × 2log2N−l−1]

Fine-Grain Algorithm

We can see that each task only needs 64 data and 63 pre-computed twiddle

factors as input in the coarse-grain FFT algorithm,. The 64 inputs are generated by

the output of the 64 parent tasks in the previous stage. For example, a task in stage 1

can execute once its 64 parent tasks in stage 0 have completed. It provides an chance

to remove the barriers in the coarse-grain FFT algorithm. Therefore, we propose the

fine-grain FFT algorithm as shown in Algorithm 2.

The codelet model is used to represent the fine-grain FFT algorithm. Each task

in the coarse-grain FFT algorithm is a codelet in the fine-grain FFT algorithm. If

the total number of codelets are much more than the total number of threads, the

computation workload is balanced. A counter is associated with a codelet instead of

using a barrier to achieve the synchronization by updating the number of satisfied

dependencies. A concurrent codelet pool is used to store all the codelets that are ready

to be executed i.e. all the dependencies are satisfied. Initially, all the codelets in stage

0 are put in the pool since their input data are already available. During the execution,

once a thread completes a codelet, it will increase the dependency counters of all the

children of the codelet. The child codelet that reaches 64 on its counter becomes ready

and will be put into the codelet pool. The free thread then takes the next codelet from

the codelet pool. Once all the threads finish their work and there are no more codelets

in the pool, the whole computation completes.

18

Algorithm 2 The pseudo code of the fine-grain 64-point FFT algorithm
input: Array D with input data

Array W with pre-computed twiddle factors
output: Array D with final results
Data: Q is a codelet pool that stores all the ready codelets

cnt is a 2-D array that counts the satisfied dependency of each codelet
PSEUDO CODE:
Bit reversal(D) in parallel;
N←D.length;
last stage←dlog2N/6e − 1;
for t id = 0 to N/64− 1 do

Q← Q ∪ {(0, t id)};
end for
for each element e in cnt do

e←0;
end for
while Q 6= ∅ in parallel do

(stage, t id)←Q.pop();
if stage 6= last stage then

FFT 64p kernel(D,W ,stage,t id);
for child = 0 to 63 do

child id=Get child id(t id,child);
cnt[stage + 1, child id] + +;
if cnt[stage + 1, child id] == 64 then

Q←Q ∪ (stage + 1, child id);
end if

end for
else

FFT last stage kernel(D,W ,stage,t id);
end if

end while

Assume the parent codelet be the ith codelet in stage j, and its kth child be

the lth codelet in stage j + 1, then

l = b i

64j+1
c × 64j+1 + i mod 64j+1 mod 64j + k × 64j (3.1)

In this algorithm, every 64 children codelets share the same 64 parent codelets.

If codelets A0,. . . ,A63 are the 64 parent codelets of codelet B0, then there will be

another 63 codelets B1,. . . ,B63 whose parents are also A0,. . . ,A63. For example, the

80th codelet in stage 3 is the 0th child of its 64 parent codelets in stage 2, if we apply

j = 2, k = 0 and the following i to the above formula. The t id i.e. i in the above

19

formula of its 64 parents are 80 + 4096 ×m where m = 0, 1, . . . , 63. Using the above

formula again, we can verify that the 4176th codelet in stage 3 is the next child of the

same 64 parent codelets by applying j = 2, k = 1, and l = 4176. Therefore, every 64

codelets share a synchronization counter.

Guided Fine-Grain Algorithm

According to the property of the codelet execution model, the fine-grain FFT

algorithm is determinate (see Section 2.4). However, the execution order of the codelets

is not guaranteed in different runs. Both the initial arrangement of the codelets in the

codelet pool and the execution time of the codelets in runtime influence the execution

order. A good execution order may achieve more balanced memory accesses to the

off-chip memory banks. From the observations, the codelets in the early stage has

heavy memory contention on bank 0 and the codelets in the last few stages (especially

the last stage) have a balanced workload of memory bandwidth. Therefore, we should

break the stage order to make the late-stage codelets executed as early as possible.

However, due to the data dependency, children codelets can only be executed after

their parent and ancestor codelets complete.

We design a guided fine-grain FFT algorithm to guide the execution order to

improve the memory bandwidth usage. Firstly, we divide the stages into two parts.

We choose an integer i. Stages 0 to i are called early stages and the rest are called

late stages. Then we apply two steps of the fine-grain FFT algorithm. In the first

step, the codelets in the early stages are executed. Then a barrier is used to ensure the

completion of all codelets in early stages. In the second step, a last-in-first-out (LIFO)

codelet pool is used to store the codelets of stage i + 1 to arrange a proper order that

make the codelets in the last stage satisfy their dependencies as soon as possible. In

such a way, the codelets in the last stage are more likely to be executed earlier. As

a result, more balanced workload on the 4 DRAM banks are achieved. Algorithm 3

shows our guided fine-grain FFT algorithm using the last two stages as the late stage.

20

3.1.3 Randomization on DRAM Bank Accesses by Hashing

An alternative solution to balance the memory workload is to randomize the

memory addresses of the elements in the twiddle factor array W . Note that the data

are always accessed in a balanced pattern on the 4 banks by codelets in each level. The

randomization can be achieved by a perfect hash function

f : X → X

where X = {0, 1, ...,M − 1} and M is the total number of elements in W . Now the

ith element of W will be stored in W [f(i)]. In such a way, the addresses of all the

elements in W are randomized. The accesses to them have the balanced workload on

the four off-chip memory banks.

In practice, a perfect hash function is too expensive to implement. Instead, we

use the bit reversal function BR to replace f . Let i = (b0b1...bk)2, then BR is defined

as follows:

BR(i) = (bk...b1b0)2

Figure 3.3 shows the access rates of the 4 off-chip memory banks by random-

izing of the twiddle factor addresses using the bit reversal function. We can see that

the memory accesses on the 4 memory banks are balanced. However, because of the

overhead of the hash function, the memory address randomization method doesn’t al-

ways achieve better performance. The detailed experimental results will be shown in

Section 3.2.

3.2 Experiment

In this section, we provide and analyze the experimental results of different

implementations of FFT algorithm which are described in Section 3.1 .

3.2.1 Task Size and Theoretical Peak Performance

In this section, we calculate the theoretical peak performance of the FFT algo-

rithm on the Cyclops-64 node. We assume that the input data size is so large that both

21

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1
x 107

0

0.5

1

1.5

2 x 106 input size = 2^22 task size = 64 num of threads = 156

exe cycle

m
em

 a
cc

es
se

s
pe

r 3
e6

 c
yc

le
s

bank 0
bank 1
bank 2
bank 3

Figure 3.3: Access rates of the 4 off-chip memory banks in the fine-grain FFT al-
gorithm with randomized twiddle factor addresses. By using the hash
function, all banks are accessed in a uniform manner. The bandwidth
resource on each bank can be fully used.

the data array and twiddle factor array are stored in the off-chip memory. The task or

codelet size affects the theoretical peak performance because larger size leads to less

amount of off-chip memory accesses. We choose the task or codelet size as 64 point

butterfly computation, since too much on-chip memory is required and the scratchpad

limit is exceeded for larger task or codelet size.

Figure 3.4 shows the best execution time of the fine-grain FFT algorithm using

various codelet sizes. As we expected, 64-point FFT outperforms the algorithms with

smaller codelet sizes.

The theoretical peak performance can be calculated as follows:

peak =
of floating point operations

theoretical exectime

=
5×N × log2N

exectime per task ×# of tasks
(3.2)

of tasks =
N

64
× d log2N

log264
e (3.3)

22

8 16 32 640

2

4

6

8

10 x 106 input size = 2^19 num of threads = 156

codelet size

ex
ec

 ti
m

e
(c

yc
le

)

Figure 3.4: The best execution time of the fine-grain FFT algorithm for 156 threads
units running in parallel and a global input data set of 219. 64-point
FFT codelets perform best. The Y axis shows the execution time in
cycles. The X axis shows the number of data points given as input to
each codelet.

exectime per task =
(64 + 64 + 63)× 16Bytes

DRAM bandwidth
(3.4)

where N is the data size. To simplify the computation, we remove the ceiling function

in Equation 3.3. The removal does not reduce the theoretical peak performance because

it will decrease the denominator in Equation 3.2. Equation 3.4 is calculated as follows:

Each task needs to load 64 elements from the data array, load 63 elements from the

twiddle factor array, and store 64 elements to the data array. Each element takes

16 bytes because it is a double-precision complex number. If the off-chip memory

contention does not happen, we get the best execution time of a task as shown in

Equation 3.4. The DRAM bandwidth on Cyclops-64 is 16 GB/sec as shown in [37]. So

we get the following theoretical peak performance from Equations 3.2, 3.3, and 3.4.

peak =
5×N × log2N × 64× 6× 16G

N × log2N × (64 + 64 + 63)× 16

= 10GFLOPS (3.5)

23

As shown in Equation 3.5, the theoretical peak performance of the FFT algo-

rithm on Cyclops-64 is 10 GFLOPS when the data array and twiddle factor array are

stored in the off-chip memory.

3.2.2 Experimental Setup

We implement FFT on the FAST simulator [15] which is a functionally-accurate

simulator. It models the memory hierarchy of the Cyclops-64 architecture, including

the latencies and bandwidth of each memory segment. The input data are double-

precision complex numbers and put into off-chip DRAM. The twiddle factors are pre-

computed and stored in DRAM as well. We choose 64 as task size and vary input size

from 215 to 222 using 156 threads. Besides, 20, 40, . . . , 140, 156 threads are used to run

219 as the input size. We use 156 of the 160 threads because the remaining 4 thread

units are reserved for the OS kernel.

In the experiments, we tested 5 versions of the FFT algorithms, and we re-

port their results using 6 types of results. They are described in Table 3.1: coarse,

coarse hash, fine (divided between fine worst and fine best), fine hash and

Name Description
coarse Coarse-grain synchronization
coarse hash Coarse-grain synchronization with hashed

twiddle factor array
fine worst Worst execution time for fine-grain

synchronization
fine best Best execution time for fine-grain

synchronization
fine hash Fine-grain synchronization with hashed

twiddle factor array
fine guided Guided fine-grain synchronization

Table 3.1: Description of the various methods used to perform FFT on Cyclops-64.
fine best and fine worst are results reported for the fine algorithm.
Other results are named after the algorithm described in the right hand
side column.

24

2^15 2^16 2^17 2^18 2^19 2^20 2^21 2^220

1

2

3

4

5 x 107 task (or codelet) size = 64 num of threads = 156

input size

ex
ec

 ti
m

e
(c

yc
le

)

coarse
coarse hash
fine worst
fine best
fine hash
fine guided

Figure 3.5: The execution time of 5 versions of FFT algorithms on Cyclops-64. The
X axis shows the various input sizes of FFT. The Y axis shows the
execution time. Lower is better.

fine guided. In the fine-grain algorithm, we found that the initial order of the ready

codelets in the concurrent pool may affect the performance a lot. So we show both the

worst case and the best case of the fine-grain algorithm in Figure 3.5 and 3.6 as fine

worst and fine best, respectively.

3.2.3 Major Observations

From our experimental results, the major observations are shown as below:

1. The performance of fine best, fine hash, and fine guided are close and out-
performs coarse, coarse hash and fine worst which also perform close;

2. fine best performs the best and coarse hash performs the worst;

3. When the input data size is small, fine hash outperforms fine guided. How-
ever, when input data size is large, fine guided outperforms fine hash.

The detailed experimental results and analysis are described in the following

sections.

25

3.2.4 Performance of the Various FFT Algorithms

Figure 3.5 shows the performance of the 5 versions when the input data size

varies from 215 to 222. From Figure 3.5, we see that:

1. fine guided always performs between fine best and fine worst and close to
fine best. The reason is that fine guided takes advantage of a proper codelet
execution order that improves the memory access balance.

2. fine hash performs better than fine guided when the data input size is small.
For example, when the data input size is 218, fine hash is 7% faster than fine

guided. However, when the data size increases the fine guided becomes faster
(e.g., 1% faster for 222 input size) than fine hash. The reason is that the
overhead of the bit reversal function increases on larger input sizes due to the
work of handling more bits for each element. So our conjecture is that the
performance gap between the fine guided and the fine hash will increase as
the input data set gets higher. However, we are unable to test larger input sizes
due to the time it takes to run our program on the simulator.

3. coarse hash always performs the worst, because of the combined overheads of
the hash function and of the barrier which lead to unnecessary stalls in the codelet
execution.

3.2.5 Scalability and Speedup

Figure 3.6 shows the performance of the 5 versions of FFT algorithms on various

number of working thread units. We tested from 20 to 156 thread units on the data

input size 219. We do not test with fewer than 20 threads units or with larger input

sizes due to the limitations of real-life execution time when using the simulator. From

the figure we can see that:

• The fine hash and fine guided scale better than the other algorithms. They
reach near linear speedup in our tests. fine hash and fine guided perform
almost the same, with less than 1% difference. This is because both of the
algorithms have more balanced workloads on the off-chip memory banks than the
others. In fact, fine hash has an almost perfect balanced workload. However,
it does not outperform fine guided due to the overhead of the hash function.

• coarse and coarse hash perform worst. For example, fine guided is about
46% faster than coarse whatever number of thread units we use. The reason
are analyzed in Section 3.1. coarse suffers from memory contention on bank 0
in the early stages of the computation. coarse hash, however, suffers from the

26

20 40 60 80 100 120 140 1600

1

2

3

4

5
task (or codelet) size = 64 input size = 2^19

num of threads

G
FL

O
PS

coarse
coarse hash
fine worst
fine best
fine hash
fine guided

Figure 3.6: Performance of 5 versions of FFT algorithms on Cyclops-64 for an input
size of 219 data elements and 64-point butterfly codelets. The X axis
represents the number of thread units used in the computation. The Y
axis features the resulting performance (in GFLOPS). Higher is better.

overhead of the hash function computation. Moreover, both algorithms suffer
from the overhead of the barriers.

• fine exhibits unstable performance. When we exchange the initial order of the
codelets, the performance fluctuates a lot. We found that fine best reaches
more or less the same performance as fine hash and fine guided. Moreover,
fine worst has more or less the same performance as coarse and coarse hash.
This is because the different initial order affects the workload balance of the
off-chip memory banks.

3.3 Related Work

Sequential and parallel implementations of FFT have been widely studied in the

past. FFTW [31, 30, 32] is one of the most famous work on FFT implementation. In

FFTW, a planner is used to efficiently divide the whole one- or multi- demensional FFT

computation into codelets. Although the name is the same, the concept of the codelet

in FFTW is different from that is described in section 2.4. The codelets in FFTW

are only some straight-line code that performs a part of the whole FFT computation.

However, the codelets in the codelet model is based on dataflow and involve relationship

27

represented by data dependencies among them to synchronize the execution. Based on

FFTW, UHFFT [55, 3], and PFFT [62] are developed to make the FFT computation

work efficiently on multi- and many- core systems.

Choi et al. described the parallel implementation of FFT algorithm on a specific

multi-core system which includes an array of SIMD processing elements [17] to achieve

better performance and energy consumption. Takahashi demonstrated an implementa-

tion of the block two-dimensional FFT algorithm using vectorization by SIMD instruc-

tions to reduce cache miss on general purpose multi-core processors [70]. Franchetti et

al. presented a multi-core extension of Spiral program generator to achieve workload

balance and avoid false sharing [29].

FFT algorithm have also been studied in Network-on-Chips (NoC) environment.

Bahn et al. presented parallel FFT implementations to maximize the data parallelism

and minimize the communication overhead by exploiting data locality in NoC [17].

Therefore, their algorithms improve workload balance. Mattson et al. implemented a

two-dimensional FFT kernel on Intel 80-core NoC Terascale Processor based on Pease

FFT algorithm [54].

The research of FFT computation on GPU is performed extensively. Moreland

et al. demonstrated an early study of FFT implementation for GPU before Cuda and

OpenCL emerge [56]. They used index magic technique i.e. bit reversal permutation as

described in Section 2.3 to reduce amount of data copying and frequency compression

technique for real input data to improve the computation efficiency. Volkov et al.

presented an implementation of FFT algorithm on G80 architecture. The hardware

resources e.g. large register files on the GPU and small on-chip local memory are fully

used to achieve good performance. Govindaraju and Lloyd implement hierarchical

mixed radix FFT algorithms on GPU [53, 41]. In order to efficiently use memory

bandwidth, their algorithms are based on a radix-2 Stockham formulation of FFT to

avoid bit-reversal process. Garland et al. used Cuda programming model to implement

parallel algorithms including FFT on NVIDIA GPU [39]. Dotsenko et al. designed an

auto-tuning FFT kernel to accommodate different input parameters by also using Cuda

28

on NVIDIA GPU [26].

The implementation of FFT algorithm on IBM Cell Broad Engine have been

studied in [5, 7, 18, 52]. The memory hierarchy of IBM Cell Broad Engine is very

similar with that of Cyclops-64. Therefore, both need the data transfer between global

and local memory. Bader et al. implemented FFT iteratively on IBM Cell Broad

Engine by applying barriers using chain-like inter-SPE communication at every stage.

The input data are stored in the main memory and fetched into local store of each

SPE for computation by DMA transfer in a non-blocking manner. Therefore, memory

latency can be hidden by computation by applying double-buffering [5].

FFT algorithm have also been ported on FPGA systems [8, 46]. Kamalizad

et al. mapped the FFT computation onto M2 efficiently by making use of its unique

hardware features [46].

Following their work on UHFFT, Franchetti et al. gave an overview of imple-

menting FFT algorithm on various multi- and many-core architectures, including IBM

Cell, GPUs, FPGAs, and Intel-compatible multi-cores [28]. They also provided the

approaches to optimize the performance for each architecture.

All the works described above map the computation units to hardware stat-

ically and use coarse-grain synchronization by barriers to ensure the data integrity

between stages. Therefore, the workload tends to be imbalance among the compu-

tation elements. On the other hand, our approach takes advantage of the fine-grain

codelet model to execute asynchronously regarding to data dependencies among tasks

i.e. 64-point butterfly computations as well as hardware availability. Besides, our im-

plementation is based on dynamic scheduling at run-time which makes the utilization

of computation resource more efficiently as well. Other three works which are very

related to our study are introduced as below.

Saybasili et al. gave a solution to implement FFT based on the radix-2 Cooley-

Tukey algorithm on fine-grain XMT architecture [66]. The fine-grain concept in their

work is different from that in our approach. Their fine-grain method is based on the

XMT support for short threads i.e. not operating system threads. On the other hand,

29

our fine-grain approach relies on the codelet model that removes barriers by applying

event-driven synchronization mechanism. In their algorithm, two-dimensional FFT is

implemented by applying parallel one-dimensional FFT on each dimension. However,

their parallel one-dimensional FFT computation still uses coarse-grain synchronization

by applying barriers at the end of every stage. Besides, the XMT architecture supports

hardware randomization on whole memory address space while our work use software

hashing on the twiddle factor array. Therefore, the memory workload on XMT is

balanced. Note that the FPGA prototype of XMT only supports fixed-point arithmetic

and uses on-chip memory.

Thulasiraman et al. designed and compared two fine-grain approaches to imple-

ment FFT algorithm based on the EARTH model [71] which also finds its roots in the

classical dataflow model and can be viewed as the ancestor of the codelet model [75].

The major difference of the two approaches: Receive-Initiated and Sender-Initiated in

[71] is the direction to establish dependency. However, both algorithms can only prop-

agate one level at a time which is the same as our algorithm when task size is two. Due

to the multi-level propagation in our algorithm, it saves remote accesses between two

adjacent levels. Furthermore, our work not only guarantees good workload-balancing,

but also efficient memory access balancing.

Finally, Chen et al. effort on optimizing FFT on Cyclops-64 has already been

discussed in Section 2.3. In order to compute FFT for large input data size, our

work extended their work from calculating 8-point to 64-point FFT kernel using off-

chip instead of on-chip memory for data storage. We also use scratchpad instead of

registers for intermediate data. Furthermore, our work uses fine-grain synchronization

while their work relies on coarse-grain synchronization.

3.4 Discussion

In this thesis, we show that by achieving more balanced workload on compu-

tation as well as memory bandwidth the fine-grain codelet execution model provides

better performance than the coarse-grain approach does. In fact, the codelet model

30

is also able to improve the energy efficiency. The overall energy consumption includes

static and dynamic parts. The static energy consumption is decided by the performance

i.e. the execution time. Therefore, the codelet model consumes less static energy than

the coarse-grain model. The experiment is based on the Cyclops-64 FAST simulator

which can only give the program execution time. However, we can not compare the

dynamic energy consumption which depends on the number and type of the executed

instructions by this simulator.

Fortunately, we have fsim simulation platform which simulates the Intel straw-

man architecture [48] in the UHPC project. Although this simulator is not cycle-

accurate, it can provide the dynamic energy consumption of a program. In future, we

will implement FFT using the fine-grain codelet and coarse-grain model on fsim and

prove that the codelet model also achieves better dynamic energy efficiency. According

to the hardware feature, there may be other optimization can be made in the Intel

straw-man architecture based on the codelet model.

31

Algorithm 3 The pseudo code of the guided fine-grain 64-Point FFT algorithm
input: Array D with input data

Array W with pre-computed twiddle factors
output: Array D with final results
Data: Q is a codelet pool that stores all the ready codelets

cnt is a 2-D array that counts the satisfied dependency of each codelet
PSEUDO CODE:
Bit reversal(D) in parallel;
N←D.length;
last stage←dlog2N/6e − 1;
last early stage←last stage− 2;
for t id = 0 to N/64− 1 do Q← Q ∪ {(0, t id)}; end for
for each element e in cnt do e←0; end for
while Q 6= ∅ in parallel do

(stage, t id)←Q.pop();
FFT 64p kernel(D,W ,stage,t id);
if stage 6= last early stage then

for child = 0 to 63 do
child id=Get child id(t id,child);
cnt[stage + 1, child id] + +;
if cnt[stage + 1, child id] == 64 then

Q←Q ∪ (stage + 1, child id);
end if

end for
end if

end while
barrier;
for every 64 codelets t id0,...t id63 in (last stage − 1) that have the same child codelets
do

Q← Q ∪ {(last stage− 1, t id0), ..., (last stage− 1, t id63)};
end for
for each element e in cnt do e←0; end for
while Q 6= ∅ in parallel do

(stage, t id)←Q.pop();
if stage 6= last stage then

FFT 64p kernel(D,W ,stage,t id);
for child = 0 to 63 do

child id=Get child id(t id,child);
cnt[stage + 1, child id] + +;
if cnt[stage + 1, child id] == 64 then

Q←Q ∪ (stage + 1, child id);
end if

end for
else

FFT last stage kernel(D,W ,stage,t id);
end if

end while

32

Chapter 4

LOCALITY EXPLOITATION IN CODELET PXM

In this chapter, we introduce the locality exploitation problem and our solu-

tion in the codelet model. Three different algorithms are provided to automatically

exploit locality in the codelet model. On an emulation platform of Cyclops-64 architec-

ture, we apply and compare these three algorithms on various applications including

matrix multiply, merge sort, and random generated codelet graphs with reasonable as-

sumptions. Our approach provides maximum locality exploitation as well as maximum

parallelism. The related work is also provided.

4.1 Methodology

In this section, we present and analyzes the locality exploitation problem in the

codelet model and the methodology of our work. Section 4.1.1 gives an example to

motivate the locality exploitation in the codelet model. In Section 4.1.2, the local-

ity exploitation problem is formalized as the Best Scheduling Problem. Section 4.1.3

provides our approach to solving the Best Scheduling Problem.

4.1.1 Motivating Example

Figure 4.1 gives a simple example to illustrate the locality exploitation in the

codelet model. There are 6 codelets which are connected based on their data depen-

dencies. The starting and ending codelets which are used for initialization and cleanup

respectively do not affect the locality exploitation. The 4 codelets i.e. A, B, C and D

are working codelets. The edges from A and B to C and D indicate data dependencies

between the codelets. According to the fire rule in the codelet model, a codelet can

be executed when the data dependencies are satisfied. For example, C is able to run

33

A

20KB 10KB

E

S

B

DC

15KB

16KB

S E Xstarting codelet working codeletending codelet

Figure 4.1: A motivating example of locality exploitation in the codelet model. The
weight on an edge represents the amount of locality that can be exploited
by scheduling the two ends of the edge on the same core. The best plan
exploits 31KB locality by scheduling AD to one core and BC to another.

after the completion of both A and B. The weight on each edge provides the amount

of data i.e. locality information produced by the upstream codelet and consumed by

the downstream one. For example, the edge between A and C means that A generates

20KB data for C to use. In general, A has to store this 20KB data into the shared

memory, since it guarantees that C is able to access the data no matter where C is

executed. However, if A and C are scheduled to the same core, A does not need to

store the 20KB data into the shared memory. Instead, A is able to store the data into

the local memory of the core for future access of C. In such a way, we exploit the

locality between A and C.

Figure 4.2 shows a simplified codelet program written in SWARM [49]. The pro-

gram creates the codelet graph in Figure 4.1 without the starting and ending codelets.

In the program, line 1 and 2 set up the dependencies for C and D that have two parents

34

/*Define # of parents for codelets C & D*/

1: dep_t depC=swarm_Dep_INITIALIZER(2,&C,...);

2: dep_t depD=swarm_Dep_INITIALIZER(2,&D,...);

3: CODELET_IMPL_BEGIN(A) //Begin of codelet A

4: ... //A’s work;

/*Satisfy A’s dependencies for C & D*/

5: swarm_Dep_satisfyOnce(&depC);

6: swarm_Dep_satisfyOnce(&depD);

7: CODELET_IMPL_END; //End of codelet A

8: CODELET_IMPL_BEGIN(B) //Begin of codelet B

9: ... //B’s work;

/*Satisfy B’s dependencies for C & D*/

10: swarm_Dep_satisfyOnce(&depC);

11: swarm_Dep_satisfyOnce(&depD);

12: CODELET_IMPL_END; //End of codelet B

13: CODELET_IMPL_BEGIN(C) //Begin of codelet C

14: ... //C’s work;

15: CODELET_IMPL_END; //End of codelet C

16: CODELET_IMPL_BEGIN(D) //Begin of codelet D

17: ... //D’s work;

18: CODELET_IMPL_END; //End of codelet D

Figure 4.2: A simplified SWARM codelet program corresponding to the codelet graph
in Figure 4.1. Note that starting and ending codelets are omitted. The
SWARM runtime handles the codelet graph creation (line 1 and 2) and
dependency satisfaction (line 5,6,10,and 11).

respectively. Line 5 and 6 satisfy the dependencies of A’s children i.e. C and D as soon

as A completes. Similarly, line 10 and 11 satisfy the dependencies of B’s children i.e.

C and D, when B finishes. According to the program, SWARM runtime synchronizes

codelets by handling the dependencies, and schedules the ready codelet to the free core

dynamically.

Normally, we are able to make use of locality in different ways. For example, if

there are two cores, AC can be scheduled on one core and BD on the other. In this case,

35

30KB locality in total is exploited. However, the best scheduling plan for this example

is to schedule AD on one core and BC on the other. Therefore, we can exploit 31KB

locality. In a complicated codelet graph involving many codelets and dependencies,

exponential amount of scheduling plans may exist. In general, it is impossible for

a programmer to manually design a schedule plan to guarantee exploiting maximum

locality. We will present and analyze three algorithms which automatically generate

an optimal or nearly optimal schedule plan for locality exploitation in Section 4.2.

4.1.2 Problem Statement

In this section, we formalize the problem of locality exploitation as the Best

Scheduling Problem. We assume that the codelet graph is created statically and the

locality information among the codelets is known. All the codelets in the static graph

are divided into several groups with respect to the locality information. A group of

codelets must schedule to the same core. Note that the execution of the codelets in the

same core is must to be ordered by the data dependencies among them. Hence, the

static scheduling method must be used in the runtime system based on the generated

schedule plan which aims to exploit the maximum amount of locality. In order to

achieve locality, the data generated by a codelet (only the part of data which can be

reused by its downstream codelet) is temporary stored in the local memory of the

same core for the downstream codelet. After consuming the data in local memory,

the codelet can vacuum the local memory space for saving data which can be used

by its downstream codelet. In this way, both the latency of the memory access and

energy consumption are reduced because local memory access spends much less time

and energy than global memory access. Therefore, the Best Scheduling Problem can

be defined as below:

(Best Scheduling Problem) Given a weighted codelet graph G =< V,E,W > and a

positive integer n, where V represents the codelets, E represents the dependencies, W

represents the potential locality, and n represents the total number of cores, find a

mapping

36

f : V → {1, . . . , n}

to satisfy the following requirement:

Maximize : {
∑

W (v1, v2)|f(v1) = f(v2) ∧ v1 ↔ v2}

Subject to : ∀f(v1) = f(v2), v1
P−→ v2 ∨ v2

P−→ v1

,where v1 ↔ v2 means that v1 and v2 are adjacent (executed one after the other) in the

same group, and v1
P−→ v2 means that there exists a path in G from v1 to v2.

4.1.3 Solution

We propose three algorithms to solve the Best Scheduling Problem. The three

algorithms have different trade-off in the algorithmic complexity, locality exploitation,

program performance, energy efficiency, and required computation resources. The

features of the three algorithms are as follows:

• Min-cost flow based algorithm: This algorithm converts the Best Scheduling
Problem to a min-cost flow problem. It guarantees an optimal solution. The time
complexity is O(knmlog(n)) where k is the number of cores, n is the number of
codelets, and m is the number of dependencies in the codelet graph.

• Max first algorithm: This is a heuristic algorithm that provides a nearly
optimal solution in practice. Its time complexity is O(nlog(n) + m) which is the
lowest in the three algorithms.

• Graph partitioning based algorithm: This algorithm converts the Best
Scheduling Problem to a graph partitioning algorithm. The time complexity
is O(mlog(k)) which is lower than the min-cost flow based algorithm.

We will discuss the three algorithms in detail in Section 4.2.

4.2 Algorithm

In this section, three algorithms used to exploit locality automatically in the

codelet model are explained in Section 4.2.1, 4.2.2, and 4.2.3, respectively.

37

4.2.1 Min-cost Flow Based Algorithm

The Best Scheduling Problem can be converted to a min-cost flow problem.

Given the weighted codelet graph, a flow network can be created such that: (1) Each

scheduling plan can be viewed as a flow in the flow network; and (2) The sum of the

available weights in a scheduling plan associates with the cost of the corresponding flow

in a anticorrelated manner. Therefore, a min-cost flow algorithm can be used to find

the corresponding scheduling plan which has the maximum sum of available weights

i.e. maximum locality exploitation among all possible scheduling plans.

Algorithm 4 demonstrates how to convert a given weighted codelet graph G into

a flow network N and how to map the solution of the min-cost flow problem to the

solution of the Best Scheduling Problem. The steps are shown as follows:

In the algorithm, two super vertices src1 and src2 are created in the network.

Then create an edge from src1 to src2. The capacity of the edge is set as the total

amount of computation resource i.e. the number of cores, which indicates that the

network cannot over consume the computation resource. The cost of the edge is 0.

For each vertex v in the codelet graph, create two corresponding vertices in the

network as v1 and v2. Then create an edge from v1 to v2. The capacity of the edge is

set as 1, which guarantees that each codelet can be scheduled to only one processor to

be executed only once. The cost of the edge is set to −∞, which guarantees that the

codelet v must be executed since min-cost flow must go through such a low cost edge.

In practice, we use a large negative number −M to replace −∞. It does not affect the

optimal solution.

For each edge (u, v) in the codelet graph, create an edge (u2, v1) in the network.

The capacity of the edge will be set as 1, which indicates that the reuse data between

codelet u and v will happen at most once. The cost of the edge is set as a negative

number −w(u, v), where w(u, v) is the weight of the edge (u, v) in the codelet graph.

It means that the solution actually gains w(u, v) data reuse if u and v are assigned to

the same processor.

For each node v in the codelet graph, create an edge (src2, v1) in the network.

38

A1

Sink

Src2

B1

D1C1

(2,0,2)

Src1

A2 B2

C2 D2

(1,-15,1)

(1,0,1) (1,0,1)

(1,-M,1) (1,-M,1)

(1,-16,1)
(1,-10,0)(1,-20,0)

(1,-M,1) (1,-M,1)

(1,0,1)

(1,0,0)(1,0,0)

(1,0,1)

(1,0,0) (1,0,0)

Parameters on
each edge (c,w,f)
 c: capacity
 w: cost
 f: min-cost flow

no-zeroflow
zero flow

Figure 4.3: The flow network converted from the codelet graph in figure 4.1. The
resulting min-cost flow is consist of two paths: Src1Src2A1A2D1D2Sink
and Src1Src2B1B2C1C2Sink. The two paths correspond to the best
scheduling plan that schedules codelet AD on one core and BC on the
other.

The capacity of the edge is set as 1, which indicates that codelet v will be issued at

most once. If the capacity is reached, the codelet v is the first codelet on some core.

The cost of the edge is 0.

Create a super vertex sink in the network. Then for each node v in the codelet

graph, create an edge (v2, sink) in the network. The capacity of the edge is set as

39

1, which indicates that codelet v will be terminated at most once. If the capacity is

reached, the codelet v is the last codelet on some core. The cost of the edge is 0.

On the network, we will apply the min-cost network flow algorithm to find the

optimal solution. There are a number of existing min-cost network flow algorithms

such as cycle canceling and shortest path. We choose shortest path algorithm due to

its lower time complexity.

Figure 4.3 shows the flow network converted from the codelet graph of Figure 4.1.

The min-cost flow is represented by thick arrows. The min-cost flow goes through

two paths: (src1, src2, A1, A2, D1, D2, sink) and (src1, src2, B1, B2, C1, C2, sink). That

means the corresponding best scheduling plan will schedule AD on one core and BC

on the other when the number of cores equals two.

From Figure 4.3, we can see that the min-cost flow based algorithm supports

any given number of cores by setting up the edge capacity on (src1, src2). Note that

the optimal solution corresponds to the given number of cores. For different given

numbers of cores, the optimal solutions and scheduling plans might be different.

4.2.2 Max First Algorithm

In this section, we introduce a heuristic algorithm called max first algorithm

to provide nearly optimal solution for the Best Scheduling Problem. The main idea

of the algorithm is to choose the two codelets with maximum potential locality to be

executed contiguously on the same core at every step.

The algorithm is shown in Algorithm 5. Initially, all the edges are put into an

edge pool. Then the algorithm selects the edge with largest weight from the pool. The

two vertices of the edge are scheduled to the same core in some adjacent position. This

scheduled edge is removed from the edge pool. The process of selecting and removing

repeats until the edge pool is empty.

As a heuristic algorithm, the max first algorithm does not guarantee providing

an optimal solution. As shown in Figure 4.1, the max first algorithm exploits 30KB

locality by scheduling AC on one core and BD on the other. However, the optimal

40

Algorithm 4 Using min-cost flow to solve the Best Scheduling Problem
input: Total number of cores n

A weighted codelet graph G =< V,E,W >
output: A vector par stores the parent of each codelet. Codelets par[i] and i will be
scheduled to the same core and executed one after the other. If codelet i is the first codelet
scheduled to some core, then par[i] equals -1.
Data: N =< V,E,W,C > is the flow network that corresponds to G, where

W is the weight i.e. cost of each edge
C is the capacity of each edge in N
−M is a big negative number to represent −∞
F is the min-cost flow

PSEUDO CODE:
N ← ∅;
N.V ← N.V ∪ src1 ∪ src2 ∪ sink;
N.E ← N.E ∪ (src1, src2);
N.W (src1, src2)← 0;
N.C(src1, src2)← n;
for each v ∈ G.V do

N.V ← N.V ∪ v1 ∪ v2;
N.E ← N.E ∪ (v1, v2) ∪ (src2, v1) ∪ (v2, sink);
N.W (v1, v2)← −M ;
N.W (src2, v1)← 0;
N.W (v2, sink)← 0;

end for
for each (u, v) ∈ G.E do

N.E ← N.E ∪ (u2, v1);
N.W (u2, v1)← −w(u, v);

end for
for each (u, v) ∈ N.E − (src1, src2) do

C(u, v)← 1;
end for
F ← MinCostFlow(N);
for each v ∈ G.V do

par[v]← −1;
end for
for each u, v ∈ G.V do

if F (u2, v1) == 1 then
par[v]← u;

end if
end for

solution can exploit 31KB locality by scheduling AD on one core and BC on the other.

In our experiments, we observe that the max first algorithm always gives nearly optimal

solution (no more than 7.0% worse). We will dissuss the details in Section 4.3.

41

Algorithm 5 Max first algorithm
input: A weighted codelet graph G(V,E,W)
output: A vector par stores the parent of each codelet. Codelets par[i] and i will be
scheduled to the same core and executed one after the other. If codelet i is the first codelet
scheduled to some core, then par[i] equals -1.
Data: P is an edge pool stored in a binary heap
PSEUDO CODE:
P ← G.E;
for each v in G.V do

par[v]← −1;
end for
while P 6= ∅ do

(u, v) ← MaxElement(P);
P ← P − (u, v);
par[v]← u;
for (u, z) in P do

P ← P − (u, z);
end for
for (z, v) in P do

P ← P − (z, v);
end for

end while

However, the max first algorithm has lower time complexity than the min-cost

flow based algorithm. If we use a heap as the data structure to store the edge pool, its

time complexity is O(nlog(n) + m) where n is the total number of codelets and m is

the total number of dependencies.

Note that the max first algorithm does not support any given number of cores.

This is because the number of the generated groups is fixed for a given codelet graph

no matter how many cores are available.

4.2.3 Graph Partitioning Based Algorithm

The Best Scheduling Problem can also be converted to a graph partitioning

problem. A graph partitioning algorithm [47] partitions the vertices of a weighted

graph into multiple groups with respect to minimizing the sum of inter-group weights

i.e. the weights of edges that go across groups. The graph partitioning algorithm can

be used to partition a codelet graph into n groups of codelets. n is the total number

42

of cores. All codelets in the same group are scheduled to the same core. In such a way,

the inter-core locality is minimized

As the max first algorithm, the graph partition algorithm also can not guarantee

giving an optimal solution. The reason is that it only aims to minimizing the inter-

core locality instead of maximizing the intra-core locality. In our experiments, we find

that the graph partition based algorithm always exploits least locality among the three

algorithm. Moreover, the graph partition algorithm does not guarantee to utilizing the

parallelism in the codelet graph. The reason is that it is possible to classify the codelets

with no dependencies into the same group in its solution. Therefore, some meaningless

dependencies have to be forced to fix the execution order on the same core. On the

other hand, the graph partition based algorithm is able to handle arbitrary number of

cores.

4.3 Experiment

We evaluate the three algorithms on the Cyclops-64 architecture using the

codelet model. In Section 4.3.1, we introduce the experimental design. In Section 4.3.2,

the major experimental observations are presented. In section 4.3.3, the experimental

results are provided and analyzed.

4.3.1 Experimental Design

Figure 4.4 shows the overview of our experiment design. In the system, there

are the two modules explained as follows.

• Scheduling plan generator: This module uses the three algorithms in Sec-
tion 4.2 to automatically generate the codelet scheduling plan for locality ex-
ploitation. The inputs of the module are the static codelet graph, the potential
locality information among the codelets, and the total number of cores. Ac-
cording to Cyclops-64 architecture, we assume that each core executes only one
codelet at a time. The output of the module are the scheduling plans generated
by the three algorithms.

• Runtime scheduling emulator: This module emulates the codelet runtime
that schedules the codelet on a Cyclops-64 node. The emulator uses either the
default scheduling approach or the input scheduling plan. The default scheduling

43

Scheduling
Plan

Generator

Runtime
Scheduling
Emulator

Codelet Graph Potential
Locality Info Num of Cores

Num & Type
of Inst on

Each Codelet

Exploited Locality,
Performance, &

Energy Consumption

Scheduling
Plan

Figure 4.4: Experiment design. The system consists of two components. Schedul-
ing plan generator uses the three algorithms in Section 4.2 to automati-
cally generate the codelet scheduling plan for locality exploitation. Run-
time scheduling emulator emulates the codelet runtime that schedules
the codelet on a Cyclops-64 node.

approach focuses on workload balancing but it is not aware of locality, which
matches the dynamic codelet scheduling approaches. The input scheduling plan is
able to exploit locality to some extent depending on the algorithm that generates
the plan. The other inputs of the module are the codelet graph, the total number
of cores, and the numbers and types of instructions in each codelet. The output
of the module are the exploited locality, performance, and energy consumption
by using the different scheduling plan on the codelet graph, respectively.

We implement the following six applications in our experiments:

• mm (matrix multiplication kernel): This application is based on the previous study
of matrix multiplication on Cyclops-64 [38]. It computes C = A×B where A,B,
and C are all 192 × 192 matrices whose elements are double precision floating
point numbers. C is further partitioned into many 6 × 6 tiles. Each codelet

44

works on the multiplication of a 6× 192 matrix and a 192× 6 matrix to generate
a 6 × 6 tile in C. Therefore, there are 1024 codelets corresponding to 1024
tiles in C. Each codelet executes 6 × 6 × 192 = 6912 float multiply-add and
192 × 6 × 2 = 2304 load instructions on A and B in total. If a codelet shares
the data e.g. a 6 × 192 matrix in A with its precedent codelet on the same
core, it can load the shared data from local memory instead of global memory by
6× 192 = 1152 load instructions. Therefore, the potential locality between them
is 8Bytes×192×6 = 9216Bytes. Note that Matrix multiplication is a very special
case, because There are no dependencies but potential locality among codelets.
It is obvious to find an solution to achieve the maximum locality exploitation. In
our case, all three scheduling algorithms divide themm codelet graph into exactly
the same execution flows. Therefore, from Figure 4.5, Figure 4.6, Figure. 4.7, and
Figure 4.8, we can see that all the three scheduling algorithms perform the same.
Note that mm is the most suitable case for GP on the six applications, because
GP algorithm divides codelets into groups regardless of the codelet dependencies
while the inter-group locality is minimized.

• ms (merge sort kernel): The merge sort application is implemented on 10K in-
tegers using 7 merging levels. Therefore, the codelet graph is constructed as a
binary tree with 7 levels. In the graph, there are 27−1 = 127 codelets. If a codelet
is in level l (0 ≤ l ≤ 6), it needs to execute 10K/2l integer comparison, load,
and store instructions respectively. The data that a codelet in level l requires
comes from its two leaf codelets (each produces half of the data) in level l + 1.
Therefore, if a codelet in level l is scheduled to the same core as one of its leaf
codelet in level l+ 1, the amount of the potential locality is 4Bytes×10K/2(l+1).

• rt ci (random tree with computation-intensive codelets): In this application, a
codelet graph is randomly generated as a tree with 160 codelets and 160 depen-
dency edges. Each codelet is computation-intensive. That means the amount of
computation instructions is 6 times of the amount of memory access instructions
in a codelet. Because mm is a typical computation-intensive application, it also
matches this ratio.

• rt mi (random tree with memory-intensive codelets): This application also pro-
duces tree-structure codelet graph with 160 codelets 160 dependency edges in a
random way. However, each codelet is memory-intensive which means the amount
of computation instruction equals to the amount of memory access instructions
in a codelet. As ms is a typical memory-intensive application, it also matches this
ratio.

• rg ci (random graph with computation-intensive codelets): This application is
similar to rt ci. However, the codelet graph is a randomly generated graph
with 160 codelets and 320 dependency edges. In our observation, most codelet
graphs have low average fanout e.g., around 2 for a codelet graph that represents
a parallel for loop. That is why we set the average fanout to be 2.

45

• rg mi (random graph with memory-intensive codelets): This benchmark is similar
to rt mi. However, the codelet graph is a randomly generated graph with 160
codelets and 320 dependency edges.

We assume that the data of all the applications is stored in the off-chip memory

initially. In computation-intensive applications i.e. mm, rt ci, and rg ci, we assume

that the latency of memory accesses can be fully hidden by computation. Therefore,

each memory access instruction only takes one cycle to issue and zero cycle delay. In

memory-intensive applications i.e. ms, rt mi, and rg mi), we assume that the latency

of memory accesses can not be hidden by computation. Therefore, according to the

Cyclops-64 instruction timing, a load instruction from the scratchpad memory takes 1

cycle issue and 2 cycles delay and from the off-chip memory takes one cycle issue and 57

cycles delay. Since a store instruction on Cyclops-64 does not need acknowledgement,

it takes one cycle issue and zero cycle delay. We also assume that all the computation

instruction delay in a codelet can be hidden i.e. it takes cycle issue and zero cycle

delay to execution a computation instruction.

In our experiments, we tested 4 scheduling algorithms. They are described in

Table 4.1: Base, MCF, MF, and GP. Base focuses on workload balancing but are not aware

of locality exploitation, which matches the dynamic codelet scheduling approaches. In

Base, the codelet runtime maintains a global codelet queue. When a codelet satisfies

all the dependencies, the codelet runtime puts it into the codelet queue. The runtime

selects an available core to execute the ready codelet. If more than one available cores

Table 4.1: The description of the four algorithms used to schedule codelets on
Cyclops-64

Name Description
Base Basic scheduling without locality exploitation
MCF Min-cost flow based algorithm (see Section 4.2.1)
MF Max-first algorithm (see Section 4.2.2)
GP Graph partitioning based algorithm (see Section 4.2.3)

46

exist, the runtime pick one in a random way. The other three algorithms have different

tradeoffs on locality exploitation, algorithm complexity, program execution time, and

energy efficiency. We assume that the codelet scheduling takes very small overhead,

because in general the execution time of a codelet is much larger than the overhead of

the scheduling.

4.3.2 Major Observations

From our experimental results, the major observations are shown as below:

• MCF always provides best locality exploitation. It reduces up to 59.7% of global
memory accesses. MF is in the second place and within 7.0% of difference com-
paring to MCF.

• MCF outperforms the other scheduling algorithms on all the applications. MCF

achieves up to 68.1% of performance improvement comparing to Base. MF is in
the second place and within 9.1% of difference comparing to MCF.

• MCF provides best energy saving on both overall and dynamic energy consump-
tions. It reduces up to 40.7% overall energy and 59.2% dynamic energy comparing
to Base. MF is in the second place and within 8.5% of difference on overall energy
and 3.6% on dynamic energy comparing to MCF.

4.3.3 Experimental Result

In this section, we present and analyze the experimental results of the four

scheduling algorithms from locality exploitation, performance, and energy efficiency

aspects.

Locality exploitation
Figure 4.5 shows the best locality exploitation of three algorithms including MCF,

MF, and GP used on the six applications. The result of Base is not shown, because it
is not aware of locality. In the figure, the x-axis represents the six applications. The
y-axis represents the locality exploitation by the percentage of global memory accesses
that have been reduced by buffer in local memory. From Figure 4.5, we can see that:

• MCF exhibits best locality exploitation among the three algorithms. It reduces up
to 59.7% of global memory accesses. The reason is that MCF guarantees optimal
solution that maximizes the locality exploitation. The other two algorithms may
not reach optimal solution because they are heuristic algorithms.

47

application

re
du

ct
io

n
on

 g
lo

ba
l m

em

mm ms rt_ci rt_mi rg_ci rg_mi0 %

10%

20%

30%

40%

50%

60%

MCF
MF
GP

Figure 4.5: The best locality exploitation on the six applications by using the three
algorithms from Section 4.2. X-axis represents the six applications. Y-
axis represents the percentage of global memory accesses that have been
reduced by each algorithm. Higher is better. MCF exhibits best locality
exploitation. It reduces up to 59.7% of global memory accesses on ap-
plication rt ci and rt mi. MF provides a good quality solutions (within
7.0% of difference comparing to MCF). GP is the worst.

• MF provides nearly optimal solutions. The difference of locality exploitation is
within 7.0% between MF and MCF. The worst case of MF happens on rg ci and
rg mi because the codelet graphs are too complicated. The other four applica-
tions have simpler codelet graphs (either tree structure or uniformed weight).
Therefore, MF finds optimal or nearly optimal solutions for them.

• GP finds worst solutions among the three algorithms. The reason is that GP tends
to minimize the inter-core locality at the expense of the intra-core locality which
is the real target of locality exploitation.

Performance
Figure 4.6 shows the performance of the four algorithms used on the six applica-

tions. The x-axis represents the six applications. The y-axis represents the normalized
execution time of each application by using the four scheduling algorithms, respectively.
To make the comparison fair, all the algorithms use the same number of cores. We set
the amount to be equivalent to the requirement of MF because it is the only algorithm
that does not support any given number of cores. From Figure 4.6, the observations
are shown as below:

• MCF performs the best among the four algorithms. It achieves up to 68.1% of
performance improvement comparing to Base on rg mi. The latency of global

48

memory i.e. DRAM accesses are much longer than that of local storage i.e.
scratchpad memory accesses. For memory-intensive applications, the latency of
memory can not be hidden by computation. Therefore, we can take advantage of
the locality exploitation to reduces execution time of each codelet greatly. The
performance of these applications are improved remarkably. However, we can
see that the performance of computation-intensive applications is not improved
by sheduling the codelets based on locality exploitation. This is because the
latency of memory accesses no matter on DRAM or scratchpad memory can be
hidden completely. Therefore, DRAM and scratchpad memory access take the
same execution time i.e. one cycle to issue and zero cycle delay.

• MF is in the second place. The reason is that its locality exploitation is worse
than MCF. In special cases, better locality exploitation may not guarantee better
performance. However, in our experiments we haven’t observed such a special
case.

• GP performs worse than MCF and MF. There are two reasons: (1) GP performs the
worst in locality exploitation among the three algorithms; and (2) GP does not
consider the dependencies during partitioning and may introduce unnecessary
dependencies into the codelet graph, which may reduce the parallelism of the ap-
plication. However, GP still outperforms Base for memory-intensive applications
because the locality exploitation reduces the latency of memory accesses. For
computation-intensive applications, GP may perform worse than Base due to the
parallelism reduction e.g. rg ci.

Energy efficiency

Table 4.2: Energy consumption per instruction.

Instruction Energy (pJ/Operation)
ldddram 48924.10
stddram 51488.99
lddsram 964.65
stdsram 548.31

mov 105.48
lddspm 535.065
stdspm 326.895
fmad 245.27
add 127.65

49

application

no
rm

al
iz

ed
 e

xe
c

tim
e

mm ms rt_ci rt_mi rg_ci rg_mi0

0.2

0.4

0.6

0.8

1

Base
MCF
MF
GP

Figure 4.6: The performance of the four algorithms on the six applications. X-axis
represents the six applications. Y-axis features the normalized execution
time of the applications by using the four scheduling algorithms. Lower
is better. MCF outperforms the other algorithms (up to 68.1% of perfor-
mance improvement comparing to Base). MF is the second best (no more
than 9.1% slower comparing to MCF). Base is the worst in most of the
cases but it outperforms GP on rg ci.

The overall energy consumption of an application consists of static and dynamic

energy consumptions. The static energy consumption is determined by the execution

time. On Cyclops-64, it is 64.11W as explained in [36]. The dynamic energy is de-

termined by the number and type of the executed instructions. Table 4.2 shows the

energy consumption of various instructions on Cyclops-64. Most of the data comes

from the early energy study on Cyclops-64 [36]. ldddram, lddsram, and lddspm are

double-word load instructions on DRAM memory, SRAM memory, and SPM, respec-

tively. Correspondingly, stddram, stdsram, and stdspm are the store instructions. mov

is the access on a double-word register. fmad is the multiple and add computation on

double precision floating point numbers. We use add to represent integer and logical

operations because they consume almost the same amount of energy. However, the

energy consumption of scratchpad memory operations i.e. lddspm and stdspm is not

previously provided in [36]. The following formula is used to estimate them.

50

application

no
rm

al
iz

ed
 o

ve
ra

ll
en

er
gy

mm ms rt_ci rt_mi rg_ci rg_mi0

0.2

0.4

0.6

0.8

1

Base
MCF
MF
GP

Figure 4.7: The overall energy consumption of the six applications by using the four
algorithms. X-axis represents the six applications. Y-axis represents the
normalized overall energy consumption of each algorithm applied to the
six applications. Lower is better. MCF achieves the most efficient energy
consumption. It reduces up to 40.7% of overall energy comparing to
Base. MF is in the second place (within 8.5% difference comparing to
MCF).

lddspm (or stdspm) = (lddsram (or stdsram)−mov)× ratio + mov

We choose ratio as 1/3 because the energy consumption of SPM accesses is closer to

register accesses than SRAM accesses.

Figure 4.7 and Figure 4.8 show the normalized overall and dynamic energy

consumption of the six applications by using the four algorithms, respectively. From

the two figures, the observations are made as below:

• MCF performs the most efficiently on energy consumption. It reduces up to 40.7%
of overall energy and 59.2% of dynamic energy compared to Base. The reason is
that MCF provides the best locality exploitation as well as the best performance.

• MF is in the second place because it always produces a nearly optimal solution for
locality exploitation as well as performance.

• GP is worse than the other two algorithm because it gives the worst solution for
locality exploitation as well as performance.

51

application

no
rm

al
iz

ed
 d

yn
am

ic
 e

ne
rg

y

mm ms rt_ci rt_mi rg_ci rg_mi0

0.2

0.4

0.6

0.8

1

Base
MCF
MF
GP

Figure 4.8: The dynamic energy consumption of the six applications by using the four
algorithms. X-axis represents the six applications. Y-axis represents the
normalized dynamic energy consumption of each algorithm applied to
the six applications. Lower is better. MCF achieves the most efficient
dynamic energy consumption. It reduces up to 59.2% of dynamic energy
comparing to Base. MF is in the second place (within 3.6% difference
comparing to MCF).

Note that if the application involves more memory accesses and the correspond-

ing codelet graph gets more complicated the performance gap among the algorithms

gets bigger.

4.4 Related Work

The codelet execution model [75] is inspired by the classical dataflow model

proposed by Dennis [22]. It is hybrid model which incorporates the advantages of

macro-dataflow [68] and the Von Neumann model [25]. The codelet execution is driven

asynchronously by events which can be data dependency and resource requirement.

That is main difference between the codelet model and its ancestor i.e. the EARTH

system [71] which expresses the parallelism in a data-driven manner. All codelets are

organized as a DAG to represent these relations. Inside a codelet, the program is exe-

cuted in a control flow manner. The codelet execution model provides an opportunity to

52

maximize the parallelism while minimize the overhead of resource utilization. As multi

and many-core systems are becoming popular, codelet based execution model is drawn

more and more attention. The works based on the codelet model include ParalleX ex-

ecution model [33], SWift Adaptive Runtime Machine (SWARM) [49], TIDeFlow [59],

and FreshBreeze [24]. The proposed scheduling algorithm to exploit locality can be

applied on these systems to achieve better performance and energy saving. To properly

exploit the techniques proposed, these systems would require a adequate facilities to

analyze the generated dataflow graph and schedule them accordingly. Moreover there

are multiple efforts to exploit the fine-grained parallelism offered by dataflow. The

EU’s Teraflux project has explored Data-Driven Multithreading (DDM) where a col-

lection of instructions called data-driven threads are connected by data dependencies

to form a Synchronization Graph [19]. In addition there are multiple pragma based

dataflow systems including StarSs [63] and OpenMP-based OpenStream [64]. These

models also pose to benefit from our proposed technique.

Lee et al. propose utilizing static scheduling in the synchronous dataflow model

[51]. However, synchronous dataflow is not equivalent to the codelet model. Syn-

chronous dataflow requires a priori knowledge of the number of inputs on a single arc

before invoking an actor. It is typically used in signal processing applications and is

not related to our work.

There exists a very similar problem called program allocation in the data-flow

processor design [23, 43, 61]. The aim is to maximize inherent parallelism while mini-

mizing communication overhead. To solve the problem, Lee et al. provide a heuristic

approach based on static scheduling [50]. In this work, the compromised allocation

plan is generated by making use of execution time and communication cost informa-

tion. Our approach is different from their work by applying to the codelet model

instead of the original dataflow model. The codelets are more complicated than the

dataflow actors. The execution time of a codelet may vary in each run, because of the

contention on hardware resources e.g. memory. Our approach can also guarantees to

exploit maximum concurrency in a application even if the execution time information

53

for all codelets in a graph is not provided.

The partitioned global address space (PGAS) is a parallel programming model

that supports locality exploitation to improve the performance in an abstracted share

address space. Based PGAS, several languages are developed to address locality: Uni-

fied Parallel C (UPC) [9], Co-Array Fortran (FAF) [57], and Titanium [73] are PGAS

extensions to C, Fortran, and java, respectively. In these three languages, the ref-

erences to global and local memory are explicitly distinguished by the type system.

As High Productivity Computing Systems program (HPCS) languages, X10 [11] and

Chapel [10] use a variant of the PGAS model, asynchronous partitioned global address

space (APGAS) to support locality optimization in shared data structures. The local-

ity abstractions i.e. X10’s places[11] and Chapel’s locales[10] are provided to associate

computation elements with data locations. As NUMA is prevalent in multi-core and

many-core systems, locality optimization can greatly improve the performance. Huang

et al. propose the extension to OpenMP with locality awareness [45]. In addition,

locality optimization also involves in work stealing in SLAW [42], CATS [16]. Locality

exploitation can also be utilized in compiler optimization to improve the performance.

Gao et al. and Govindarajan et al. propose the approach to reuse the register and

cache with the help of compiler [35, 40].

4.5 Discussion

In this thesis, we introduce three scheduling algorithms to exploit locality by

using the codelet graph and locality information. The experiment is based on a runtime

scheduling emulator which emulates the codelet runtime that schedules the codelet on

a Cyclops-64 node. To make the experiment more convincing, we should deploy and

compare the three scheduling algorithms on the real codelet runtimes e.g. SWARM

[49] and DARTS [69]. To explore the locality, the codelet runtimes must support

static scheduling based on the plan generated by the algorithms. Between two adja-

cent codelets on the same core, the codelet runtimes must provide a locale to store the

54

reusable data and a mechanism to pass the address of the locale. The locale manage-

ment e.g. allocation and de-allocation is better to be handled by the codelet runtimes

instead of users.

The three algorithms can only work on the static codelet graph. To make them

more useful, the algorithms should be extended to the case that the codelet graph can

not be statically determined e.g. recursion. At least, the algorithms can be used in a

Thread Procedure (TP) which is static and acyclic in such a case.

55

Chapter 5

CONCLUSION AND FUTURE WORK

In this thesis, we focus on the memory optimization on memory workload bal-

ance and locality exploitation in the codelet execution model. As an case study, various

versions of FFT algorithms are implemented on Cyclops-64 to demonstrate that the

fine-grain codelet execution model is able to execute the codelets that involve different

workload on the memory bandwidth in a guided order to achieve good memory usage as

well as performance. The experiment result shows that our fine-grain guided algorithm

achieves up to 46% performance improvement comparing to a state-of-the-art imple-

mentation on Cyclops-64. To exploit locality in codelet execution, three scheduling

algorithms are proposed and compared. They have different trade-offs in algorithmic

complexity, locality exploitation, program execution time, and energy efficiency. We

test and analyze the three algorithms on various applications on Cyclops-64. The ex-

periment result on shows that our algorithms reduce up to 59.7% of global memory

access and improve up to 68.1% performance improvement and 40.7% energy saving

comparing to the state-of-the-art codelet scheduling approach.

In the future, we intend to extend the codelet execution model from multi-core

and many-core system to cluster computing system for distributed processing of large

data sets. By taking the advantage of the codelet model, the cluster computing system

tends to achieve better task synchronization and resource utilization including CPU and

memory than other existing systems e.g. Hadoop [72], Spark [74], etc. Therefore, the

system performance can be improved. Moreover, we also plan to extend the traditional

MapReduce programming style to more flexible codelet graph programming style that

is able to implement a complicated problem in a more efficient way. Hence, the codelet

56

model could be a good solution for both batch and real time processing for large data

sets.

57

BIBLIOGRAPHY

[1] IBM Cell Broadband Engine, http://www-01.ibm.com
/chips/techlib/techlib.nsf/products/cell broadband engine.

[2] A. Agarwal. The Tile Processor: A 64-core Multicore for Embedded Process-
ing. In Proceedings of the 11th Annual Workshop on High Performance Embedded
Computing (HPEC-07) (Presentation), Lexington, MA, USA, September 18-20,
2007.

[3] A. Ali, L. Johnsson, and J. Subhlok. Scheduling FFT Computation on SMP and
Multicore Systems. In Proceedings of the 21st Annual International Conference on
Supercomputing (ICS-07), pages 293–301, Seattle, Washington, USA, June 17-21,
2007.

[4] J. R. Allen, B. M. Bass, C. Basso, R. H. Boivie, J. L. Calvignac, G. T. Davis,
L. Frelechoux, M. Heddes, A. Herkersdorf, and A. Kind et al. IBM PowerNP Net-
work Processor: Hardware, Software, and Applications. IBM Journal of Research
and Development, 47(2.3):177–193, 2003.

[5] D. A. Bader and V. Agarwal. FFTC: Fastest Fourier Transform for the IBM Cell
Broadband Engine. In Proceddings of the 14th International Conference on High
Performance Computing (HiPC-07), pages 172–184, Goa, India, December 18-21,
2007.

[6] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
Liewei Bao, J. Brown, M. Mattina, C. Miao, C. Ramey, D. Wentzlaff, W. Ander-
son, E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook.
TILE64 - Processor: A 64-Core SoC with Mesh Interconnect. In Proceedings of
IEEE International Solid-State Circuits Conference (ISSCC-08), Digest of Tech-
nical Papers, pages 88–598, San Francisco, CA, USA, February 3-7, 2008.

[7] P. Bientinesi, N. P. Pitsianis, and X. Sun. Parallel 2D FFTs on the Cell Broadband
Engine. Department of Computer Science Duke University Technical Report CS-
2007-03, 2007.

[8] M. Butts. Synchronization through Communication in a Massively Parallel Pro-
cessor Array. IEEE Micro, 27(5):32–40, 2007.

58

[9] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. Warren.
Introduction to UPC and Language Specification. IDA Center for Computing
Sciences Technical Report CCS-TR-99-157, 1999.

[10] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel Programmability and
the Chapel Language. International Journal of High Performance Computing
Applications, 21(3):291–312, 2007.

[11] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. Von Praun, and V. Sarkar. X10: An Object-Oriented Approach to Non-uniform
Cluster Computing. ACM SIGPLAN Notices, 40(10):519–538, 2005.

[12] C. Chen, Y. Wu, J. Suetterlein, L. Zheng, and G. R. Gao. Towards An Energy-
Efficient Scheduler in the Codelet Model. In IEEE Symposium on Low-Power and
High-Speed Chips (IEEE COOL Chips XVI) (Poster), Yokohama, Japan, April
17-19, 2013.

[13] C. Chen, Y. Wu, J. Suetterlein, L. Zheng, M. Guo, and G. R. Gao. Automatic
Locality Exploitation in the Codelet Model. In Proceedings of the 11th IEEE
International Symposium on Parallel and Distributed Processing with Applications
(ISPA-13), pages 853–862, Melbourne, Australia, July 16-18 2013.

[14] C. Chen, Y. Wu, S. Zuckerman, and G. R. Gao. Towards Memory-Load Balanced
Fast Fourier Transformations in Fine-grain Execution Models. In Proceedings
of the 2013 IEEE 27th International Symposium on Parallel and Distributed Pro-
cessing Workshops and PhD Forum (IPDPSW-13), pages 1607–1617, Washington,
DC, USA, May 24, 2013.

[15] L. Chen, Z. Hu, J. Lin, and Guang R. Gao. Optimizing the Fast Fourier Trans-
form on a Multi-core Architecture. In Proceedings of Workshop on Performance
Optimization for High-Level Languages and Libraries in the 21st IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPSW-07), pages 1–8,
Long Beach, CA, USA, March 26-30, 2007.

[16] Q. Chen, M. Guo, and Z. Huang. Cats: Cache Aware Task-Stealing based on
Online Profiling in Multi-socket Multi-core Architectures. In Proceedings of the
26th ACM International Conference on Supercomputing (ICS-12), pages 163–172,
New York, NY, USA, June 25-29, 2012.

[17] J. Choi, J. Kim, and C. Kim. Parallel Implementation of the FFT Algorithm Using
a Multi-core Processor. In 2010 International Forum on Strategic Technology
(IFOST), pages 19 –22, University of Ulsan, Ulsan, South Korea, October 13-15,
2010.

[18] A. C. Chow, G. C. Fossum, and D. A. Brokenshire. A Programming Example:
Large FFT on the Cell Broadband Engine. In Global Signal Processing Expo
(GSPx), 2005.

59

[19] C. Christofi, G. Michael, P. Trancoso, and P. Evripidou. Exploring HPC Paral-
lelism with Data-Driven Multithreating. In Proceedings of Data-Flow Execution
Models for Extreme Scale Computing (DFM-12), pages 10–17, Minneapolis, MN,
USA, September 19-23, 2012.

[20] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation and Improvements of
Programming Models for the Intel SCC Many-core Processor. In Proceedings of In-
ternational Conference on High Performance Computing and Simulation (HPCS-
11), pages 525–532, Istanbul, Turkey, July 4-8, 2011.

[21] J. Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. TiNy Threads: a Thread Virtual Ma-
chine for the Cyclops64 Cellular Architecture. In Proceedings of the Fifth Work-
shop on Massively Parallel Processing, in conjuction with 19th International Par-
allel and Distributed Processing Symposium (IPDPSW-05), pages 8–15, Denver,
CO, USA, April 4-8, 2005.

[22] J. B. Dennis. First Version of a Data Flow Procedure Language. In Program-
ming Symposium Lecture Notes in Computer Science, volume 19, pages 362–376.
Springer, 1974.

[23] J. B. Dennis. Data Flow Supercomputers. Computer, 13(11):48–56, 1980.

[24] J. B. Dennis. Fresh Breeze: a Multiprocessor Chip Architecture Guided by Mod-
ular Programming Principles. ACM SIGARCH Computer Architecture News,
31(1):7–15, 2003.

[25] J. B. Dennis, J. B. Fosseen, and J. P. Linderman. Data Flow Schemas. In Inter-
national Sympoisum on Theoretical Programming, pages 187–216, 1972.

[26] Y. Dotsenko, S. S. Baghsorkhi, B. Lloyd, and N. K. Govindaraju. Auto-tuning
of Fast Fourier Transform on Graphics Processors. In Proceedings of the 16th
ACM Symposium on Principles and Practice of Parallel Programming (PPoPP-
11), pages 257–266, San Antonio, TX, USA, February 12-16, 2011.

[27] D. Foley, P. Bansal, D. Cherepacha, R. Wasmuth, A. Gunasekar, S. Gutta, and
A. Naini. A Low-Power Integrated x86-64 and Graphics Processor for Mobile
Computing Devices. IEEE Journal of Solid-State Circuits, 47(1):220 –231, 2012.

[28] F. Franchetti, M. Puschel, Y. Voronenko, S. Chellappa, and J. M. F. Moura.
Discrete Fourier Transform on Multicore. IEEE Signal Processing Magazine,
26(6):90–102, 2009.

[29] F. Franchetti, Y. Voronenko, and M. Püschel. FFT Program Generation for Shared
Memory: SMP and Multicore. In Proceedings of the ACM/IEEE Conference on
High Performance Networking and Computing (SC-06), pages 51–65, Tampa, FL,
USA, November 11-17 2006.

60

[30] M. Frigo. A Fast Fourier Transform Compiler. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI-99),
pages 169–180, Atlanta, GA, USA, May 1-4, 1999.

[31] M. Frigo and S. G. Johnson. FFTW: An Adaptive Software Architecture for the
FFT. In Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP-98), pages 1381–1384, Seattle, WA, USA, May 12-15
1998.

[32] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3. Pro-
ceedings of the IEEE, 93(2):216–231, 2005.

[33] G. R. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu. Parallex: A study of
a new parallel computation model. In Proceedings of IEEE International Parallel
and Distributed Processing Symposium (IPDPS-07), pages 1–6, Long Beach, CA,
USA, March 26-30 2007.

[34] G. R. Gao, J. Suetterlein, and S. Zuckerman. Toward an Execution Model for
Extreme-Scale Systems - Runnemede and Beyond. Technical Memo 104, April
2011.

[35] R. G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective Loop Fusion for Array
Contraction. In Proceedings of the 5th International Workshop on Languages and
Compilers for Parallel Computing (LCPC-92), pages 281–295, New Haven, CT,
USA, August 3-5, 1992.

[36] E. Garcia, D. Orozco, and G. R. Gao. Energy Efficient Tiling on a Many-core
Architecture. In Proceedings of the 4th Workshop on Programmability Issues for
Heterogeneous Multicores (MULTIPROG-11), Heraklion, Crete, Greece, January
23, 2011.

[37] E. Garcia, D. Orozco, R. Khan, I. Venetis, K. Livingston, and G. R. Gao. Dynamic
Percolation: A Case of Study on the Shortcomings of Traditional Optimization
in Many-core Architectures. In Proceedings of ACM International Conference on
Computer Frontiers (CF-12), pages 245–248, Cagliari, Italy, May 15-17, 2012.

[38] E. Garcia, I. E. Venetis, R. Khan, and G. R. Gao. Optimized Dense Matrix Mul-
tiplication on a Many-core Architecture. In Proceedings of International European
Conference on Parallel and Distributed Computing (EuroPar-10), pages 316–327,
August 31-September 3, 2010.

[39] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,
E. Phillips, Y. Zhang, and V. Volkov. Parallel Computing Experiences with
CUDA. IEEE Micro, 28(4):13–27, 2008.

61

[40] R. Govindarajan, H. Yang, J. N. Amaral, C. Zhang, and G. R. Gao. Minimum
Register Instruction Sequence Problem: Revisiting Optimal Code Generation for
DAGs. In Proceedings 15th International Parallel and Distributed Processing Sym-
posium (IPDPS-01), pages 8–15, San Francisco, CA, USA, April 23-27, 2001.

[41] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High
Performance Discrete Fourier Transforms on Graphics Processors. In Proceedings
of the ACM/IEEE Conference on High Performance Computing (SC-08), pages
2–13, Austin, TX, USA, November 15-21 2008.

[42] Y. Guo, J. Zhao, V. Cave, and V. Sarkar. SLAW: a Scalable Locality-aware
Adaptive Work-stealing Scheduler. In Proceedings of International Parallel and
Distributed Processing Symposium (IPDPS-10), pages 1–12, Atlanta, GA, USA,
April 19-23 2010.

[43] J. R. Gurd, C. C. Kirkham, and I. Watson. The Manchester Prototype Dataflow
Computer. Communications of the ACM, 28(1):34–52, 1985.

[44] M. Harris. GPGPU: General-purpose Computation on GPUs. SIGGRAPH 2005
GPGPU COURSE, 2005.

[45] L. Huang, H. Jin, L. Yi, and B. Chapman. Enabling Locality-aware Computations
in OpenMP. Scientific Programming, 18(3):169–181, 2010.

[46] A. H. Kamalizad, C. Pan, and N. Bagherzadeh. Fast Parallel FFT on a Reconfig-
urable Computation Platform. In Proceedings of the 15th Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD-03), pages 254–259,
Sao Paulo, Brazil, November 10-12, 2003.

[47] G. Karypis and V. Kumar. Multilevel Algorithms for Multi-constraint Graph
Partitioning. In Proceedings of the ACM/IEEE Conference on Supercomputing
(SC-98), pages 1–13, Orlando, FL, USA, November 7-13 1998.

[48] R. Knauerhase, R. Cledat, and J. Teller. For Extreme Parallelism, Your OS is
Sooooo Last-millennium. In Proceedings of the 4th USENIX conference on Hot
Topics in Parallelism (HotPar-12), pages 3–3, Berkeley, CA, USA, June 7-8, 2012.

[49] C. Lauderdale and R. Khan. Towards a Codelet-based Runtime for Exascale
Computing: Position Paper. In Proceedings of the 2nd International Workshop
on Adaptive Self-Tuning Computing Systems for the Exaflop Era (EXADAPT-12),
pages 21–26, London, United Kingdom, March 3, 2012.

[50] B. Lee, A. R. Hurson, and T. Y. Feng. A Vertically Layered Allocation Scheme for
Data Flow Systems. Journal of Parallel and Distributed Computing, 11(3):175–
187, 1991.

62

[51] E. A. Lee and D. G. Messerschmitt. Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing. IEEE Transactions on Computers, C-
36(1):24 –35, 1987.

[52] Y. Li, J. R. Diamond, X. Wang, H. Lin, Y. Yang, and Z. Han. Large-scale Fast
Fourier Transform on a Heterogeneous Multi-core System. International Journal
of High Performance Computing Applications, 26(2):148–158, 2012.

[53] D. B. Lloyd, C. Boyd, and N. Govindaraju. Fast Computation of General Fourier
Transforms on GPUs. In Proceedings of the IEEE International Conference on
Multimedia and Expo (ICME-08), pages 5–8, Hannover, Germany, June 23-26,
2008.

[54] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming the Intel
80-core Network-on-a-chip Terascale Processor. In Proceedings of the ACM/IEEE
Conference on High Performance Computing (SC-08), pages 38–48, Austin, TX,
USA, November 15-21, 2008.

[55] D. Mirković, R. Mahasoom, and L. Johnsson. An Adaptive Software Library for
Fast Fourier Transforms. In Proceedings of the 14th International Conference on
Supercomputing (ICS-00), pages 215–224, Santa Fe, NM, USA, May 8-11, 2000.

[56] K. Moreland and E. Angel. The FFT on a GPU. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS-03),
pages 112–119, San Diego, CA, USA, July 26-27 2003.

[57] R. W. Numrich and J. Reid. Co-array Fortran for Parallel Programming. ACM
SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[58] D. Orozco, E. Garcia, R. Khan, K. Livingston, and G. R. Gao. Toward High-
throughput Algorithms on Many-core Architectures. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 8(4):49:1–21, 2012.

[59] D. Orozco, E. Garcia, R. Pavel, R. Khan, and G. R. Gao. TIDeFlow: The Time
Iterated Dependency Flow Execution Model. In Proceedings of the 1st Workshop
on Data-Flow Execution Models for Extreme Scale Computing (DFM-11), pages
1–9, Galveston, TX, USA, October 10, 2011.

[60] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips.
GPU Computing. Proceedings of the IEEE, 96(5):879 –899, 2008.

[61] G. M. Papadopoulos and D. E. Culler. Monsoon: an Explicit Token-Store Archi-
tecture. ACM SIGARCH Computer Architecture News, 18(3a):82–91, 1990.

[62] M. Pippig. An Efficient and Flexible Parallel FFT Implementation Based on
FFTW. In Proceedings of International Conference on Competence in High Perfor-
mance Computing (CiHPC-10), pages 125–134, Schloss Schwetzingen, Germany,
June 22-24, 2012.

63

[63] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical Task-Based
Programming with StarSs. International Journal of High Performance Computing
Applications, 23(3):284–299, 2009.

[64] A. Pop and A. Cohen. OpenStream: Expressiveness and Data-Flow Compilation
of OpenMP Streaming Programs. ACM Transactions on Architecture and Code
Optimization (TACO), 9(4):53:1–53:25, 2013.

[65] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote, S. Vangal,
G. Ruhl, and N. Borkar. A 2 Tb/s 6 × 4 Mesh Network for a Single-Chip Cloud
Computer With DVFS in 45 nm CMOS. IEEE Journal of Solid-State Circuits,
46(4):757 –766, 2011.

[66] A. B. Saybasili, A. Tzannes, B. R. Brooks, and U. Vishkin. Highly Parallel Multi-
Dimensional Fast Fourier Transform on Fine-and Coarse-Grained Many-Core Ap-
proaches. In Proceedings of the 21st IASTED International Conference on Parallel
and Distributed Computing and Systems (PDCS-09), pages 107–113, Cambridge,
MA, USA, November 24, 2009.

[67] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Han-
rahan. Larrabee: A Many-Core x86 Architecture for Visual Computing. ACM
Transactions on Graphics, 27(3):1–15, 2008.

[68] J. Silc, B. Robic, and T. Ungerer. Asynchrony in Parallel Computing: From
Dataflow to Multithreading. Journal of Parallel and Distributed Computing Prac-
tices, 1(1):3–30, 1998.

[69] J. Suettlerlein, S. Zuckerman, and G. R. Gao. An Implementation of the Codelet
Model. In Proceedings of the 19th International European Conference on Parallel
and Distributed Computing (EuroPar-13), Aachen, Germany, August 26-30, 2013.

[70] D. Takahashi. Implementation and Evaluation of Parallel FFT Using SIMD In-
structions on Multi-core Processors. In Proceedings of International Workshop on
Innovative Architecture for Future Generation High-performance Processors and
Systems (IWIA-07), pages 53–59, Maui, HI, USA, January 11-13, 2007.

[71] K. B. Theobald. EARTH: An Efficient Architecture for Running Threads. PhD
thesis, McGill University, Montreal, Quebec, Canada, May 1999. AAINQ50269.

[72] T. White. Hadoop: the definitive guide. O’Reilly, 2012.

[73] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,
P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A High-
performance Java Dialect. Concurrency Practice and Experience, 10(11-13):825–
836, 1998.

64

[74] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
cluster computing with working sets. In Proceedings of the 2nd USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud-10), pages 10–16, Boston, MA,
USA, June 22-25, 2010.

[75] S. Zuckerman, J. Suetterlein, R. Knauerhase, and Guang R. Gao. Using a
”Codelet” Program Execution Model for Exascale Machines: Position Paper. In
Proceedings of the 1st International Workshop on Adaptive Self-Tuning Computing
Systems for the Exaflop Era (EXADAPT-11), pages 64–69, San Jose, CA, USA,
June 5, 2011. ACM.

65

	Table of Contents
	List of Tables
	List of Figures
	LIST OF ALGORITHMS
	Abstract
	1 INTRODUCITON
	2 BACKGROUND
	2.1 Overview of Multi- and Many-core Systems
	2.2 The Cyclops-64 Architecture
	2.3 Implementation of FFT on Cyclops-64
	2.4 The Codelet Model

	3 Memory Workload Balance in Codelet PXM
	3.1 Methodology
	3.1.1 Motivating Example
	3.1.2 Three FFT Implementations
	3.1.3 Randomization on DRAM Bank Accesses by Hashing

	3.2 Experiment
	3.2.1 Task Size and Theoretical Peak Performance
	3.2.2 Experimental Setup
	3.2.3 Major Observations
	3.2.4 Performance of the Various FFT Algorithms
	3.2.5 Scalability and Speedup

	3.3 Related Work
	3.4 Discussion

	4 Locality Exploitation in Codelet PXM
	4.1 Methodology
	4.1.1 Motivating Example
	4.1.2 Problem Statement
	4.1.3 Solution

	4.2 Algorithm
	4.2.1 Min-cost Flow Based Algorithm
	4.2.2 Max First Algorithm
	4.2.3 Graph Partitioning Based Algorithm

	4.3 Experiment
	4.3.1 Experimental Design
	4.3.2 Major Observations
	4.3.3 Experimental Result

	4.4 Related Work
	4.5 Discussion

	5 CONCLUSION AND FUTURE WORK
	Bibliography

