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ABSTRACT 

Indentation testing is widely used to determine the in situ biomechanical 

properties of articular cartilage, however, most curve-fitting solutions for indentation 

analysis require the deformation data of cartilage at the equilibrium state, which often takes 

the tissue hours to reach. The lengthy testing time reduces the efficiency of indentation, 

increases the chance of tissue deterioration, and prevents in vivo applications. Moreover, the 

constitutive models often involve multiple parameters. Determination of all mechanical 

properties by curve-fitting the indentation creep data is often complicated by over-fitting, local 

minima and multiple solutions. This thesis aimed to address these two particular problems. 

First, in order to shorten the indentation testing time, a novel technique based on principal 

component analysis (PCA) was developed, which can predict the full indentation creep curve 

based on the deformation data in a short time period. Second, by identifying the role of each 

mechanical property in the indentation response of cartilage, a highly efficient curve-fitting 

algorithm was designed, which can uniquely determine the nonlinear mechanical properties of 

cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation 

creep curve. Both of these two newly developed techniques have shown high accuracy and 

efficiency. 
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Chapter 1 

INTRODUCTION 

Indentation testing is a commonly-used technique to determine the mechanical 

properties of articular cartilage, as it is site-specific, non-destructive, and suitable for 

testing of small joints with a limited amount of tissue [1-4]. To obtain mechanical 

properties from indentation data, a specific constitutive model has to be employed to 

describe the cartilage mechanical behavior and its response under indentation test. Due 

to the complexity of the boundary conditions, theoretical indentation solutions can be 

difficult to develop, especially for comprehensive constitutive models [5]. When 

cartilage is treated as a linear elastic material, the Hertzian contact solution on an 

infinite half space is widely used, which is specifically suitable for nano- or micro-

indentation tests [6]. For larger-scale indenters, Hayes solution [1] is often used since 

it removes the infinite half-space assumption in the Hertzian contact problem. In the 

early 1980’s, Mow and coworkers [7] developed a porous elastic model for articular 

cartilage. An indentation solution was also developed based on the theory [8, 9]. Using 

this theoretical solution, a curve-fitting algorithm was established that can 

simultaneously determine the Young’s modulus, shear modulus, and permeability of 

the cartilage from a single indentation creep curve [9]. Besides these closed-form 

solutions, many other numerical solutions for cartilage indentation have been 

developed to account for the variety of experimental parameters, such as the geometry 
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of the indenter tip and the loading profile [10-14]. All of these linear solutions have 

been widely-used to extract the biomechanical properties of cartilage from indentation 

tests [3, 4, 12, 15-17]. 

The mechanical behavior of the cartilage’s solid matrix itself is nonlinear and 

strain-dependent due to the nature of the collagen networks and trapped proteoglycans. 

In particular, the tensile modulus of cartilage is found to be an order of magnitude 

higher than the compressive modulus [18, 19]. A few tension-compression nonlinear 

constitutive models have been proposed to account for this, including a conewise 

linear elastic (CLE) model with cubic symmetry and several fibril reinforced models 

[20-22]. Simulations based on these models show that the prominent nonlinearity in 

the stress-strain relationship of the solid matrix regulates the flow-dependent viscosity 

and is therefore an essential characteristic of the transient mechanical behavior [22, 

23]. A few recent studies have analyzed indentation or nano-indentation tests using 

these nonlinear constitutive models [24-26]. However, since these nonlinear models 

typically contain multiple parameters, determination of all the relevant cartilage 

properties by curve-fitting a single indentation curve is often complicated by over-

fitting, local minima, and multiple solutions [27]. For instance, to avoid local minima, 

multiple optimizations are often performed with different initial guesses of the tissue 

properties. However, little knowledge is available about the different roles of each 

individual mechanical property in shaping the creep behavior of cartilage, or whether 

these features can benefit or accelerate the curve-fitting algorithm. Indeed, no 

strategies are currently available that can uniquely determine the tensile and 
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compressive properties of cartilage based on a single indentation test. Moreover, most 

of these solutions for indentation require the equilibrium deformation data for curve-

fitting since the deformation-load correlation at equilibrium stage (with no fluid flow) 

can be defined by the closed-form Hayes solution [1]. Due to the significant 

viscoelastic behaviors of cartilage, however, it may take up to several hours for the 

tissue to reach a final steady state, where the required time depends upon the loading 

profile, indenter tip, indentation geometry, and the biomechanical properties of the 

cartilage [10, 12, 13]. Such a long testing time reduces the efficiency of indentation 

and hinders in vivo applications. For example, creep testing of five regions on a small 

animal joint could take a dozen hours [28], which considerably increases the 

possibility of tissue degeneration during testing. 

In this thesis, two particular problems in current methods are discussed and 

addressed. First, to shorten the indentation testing time, a data processing technique 

was developed using principal component analysis (PCA) to predict the full 

indentation creep curve based on the transient data obtained in the first few minutes of 

indentation testing. The accuracy of the prediction was verified using experimental 

data from two types of articular cartilage, bovine knee cartilage and condylar cartilage 

from the porcine temporomandibular joint (TMJ). Second, a highly efficient algorithm 

was developed to uniquely determine the nonlinear biphasic properties of cartilage 

from a single indentation creep test uniquely. This new algorithm was then applied to 

analyze experimental data from adult bovine knee cartilage. The results were validated 

by comparison with the classical biphasic linear elastic program. 
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In this thesis, Chapter 2 reviews the major technique developments in indentation 

analysis. Chapter 3 presents the technique developed to shorten the indentation testing 

time. Chapter 4 presents the algorithm to determine the tension-compression nonlinear 

mechanical properties of cartilage. Chapter 5 summarizes the thesis work and 

discusses the potential future directions. 
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Chapter 2 

REVIEW OF LITERATURES 

Articular cartilage is a thin layer of soft tissue that covers the bony ends in 

diarthrodial joints and functions as a cushion to provide load support with almost no 

friction. From an engineering perspective, the tissue is a porous collagen matrix (15-

22% wet weight) filled with water and proteoglycans (4-7% wet weight) [29] as 

shown in Fig. 2.1. Studying the mechanical behaviors of the articular cartilage is very 

critical for understanding the degeneration of the tissue during diseases as pointed out 

by Mow in [30].  

 

Figure 2.1 Schematic representation of the collagen network interacting with the 

proteoglycan network, forming a porous solid matrix in articular 

cartilage. From Lu [29], with permission. 
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To investigate the mechanical behaviors of cartilage under compression, three 

types of mechanical testings are generally adopted: unconfined compression [20, 21, 

23, 31-33], confined compression [7, 34] and indentation [1, 3, 22, 28, 35-37]. 

Compared with the other two, indentation testing has a few advantages. It is site 

specific, non-destructive, and suitable for testing on small joints when limited amount 

of tissue is available. A schematic configuration of indentation testing is shown in Fig. 

2.2. Since indentation problem has complicated boundary conditions, the analysis is 

not as straight forward as the other two methods. One of the earliest attempts to 

analyze the cartilage indentation problem was done by Sokoloff et al. [38], using the 

method developed by Hertzian studying non-adhesive elastic contact. By assuming the 

cartilage being linear elastic incompressible infinite half space and the cylindrical 

indenter tip being rigid, the elastic modulus of cartilage can be calculated by the 

equation 

 𝐸 =
𝐹

2.67𝑅𝑑
. (2.1) 

Here, F is the reaction force on the indenter, R is the radius of the indenter, and d is 

the indentation depth.  
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Figure 2.2 A schematic diagram of indentation test. From Lu [29], with permission. 

Since the articular cartilage thickness is often at the same scale of the indenter 

size, the infinite half-space assumption is in fact inappropriate and the Hertzian 

method overestimates the tissue stiffness. In the 1970s, Hayes et al. [1] developed the 

solution for indentation on a layered linear elastic material. The Young’s modulus of 

the material is given by 

 𝐸 =
𝐹(1−𝜈)(1+𝜐)

2𝑅𝑑𝜅(
𝑅

ℎ
,𝜈)

. (2.2) 

Here, h, is the thickness of the cartilage, and κ, is an integration function associated 

with the shape of the indenter tip. To determine the Young’s modulus, reaction force, 

F, indentation depth, d, indenter radius R, cartilage thickness, h, and Poisson’s ratio, ν, 

are needed. 

When the tissue is subject to compressive loading, a volumetric change could 

be induced within the tissue. As each component of the tissue, i.e. collagen, 

proteoglycan, water, can be assumed incompressible [7], the volumetric change results 

in the interstitial water being extruded from the tissue. Since the gaps between 
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collagen fibers are only hundreds of nano meters, the relative motion between the 

interstitial water and collagen matrix generates very high frictional drag forces, giving 

rise to the flow-dependent viscoelastic behavior of the cartilage. Due to this viscosity, 

the tissue could take a long time to reach equilibrium, e.g., 1 to 3 hours for indentation 

on adult bovine knee cartilage [3]. By far, the most successful theory to describe the 

flow-dependent behaviors of cartilage is the biphasic theory [7], which assumes the 

tissue to be a binary mixture of water and elastic solid. To characterize the time 

dependent response, an additional mechanical property, permeability, is adopted in 

this theory. Analytical solution of indentation on biphasic linear elastic (BLE) material 

is given in [8] and a numerical curve-fitting method [9] is developed to determine the 

Young’s modulus, Poisson’s ratio, and permeability from a single indentation creep 

curve, as shown in the right of Fig. 2.3 . 

 

Figure 2.3 An indentation creep curve fitted by nonlinear (left) and linear (right) 

elastic biphasic models 
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Cartilage is experimentally shown to have one order of magnitude difference in 

terms of the modulus under compression and tension. This difference has significant 

impact on the response of the cartilage under indentation. For example, at the very 

beginning of the creep test, according to the biphasic theory, the material is almost 

incompressible. Thus, the tensile modulus in lateral directions can directly contribute 

to the stiffness in the loading direction. By setting a higher modulus in tension, the 

difference between the BLE model and experiments can be reduced, as shown in Fig. 

2.3. Many models are available to catch this nonlinearity in tension and compression 

in cartilage. Among them, the CLE model and continuous fiber distribution (CFD) 

model are commonly used [21, 39]. In addition to the properties identified in the BLE 

model, a new material property, tensile modulus, is introduced for the solid matrix. In 

BLE model, the tensile and compressive moduli are the same. Due to the complexity 

of the nonlinear constitutive models, an analytical solution for indentation is difficult 

to obtain. Thus, the finite element (FE) method and curve-fitting are generally adopted 

to extract mechanical properties for the newly developed models. 
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Chapter 3 

USING PRINCIPAL COMPONENT ANALYSIS TO SHORTEN THE 

INDENTATION TESTING TIME 

3.1 Introduction 

The lengthy time required for the indentation testing of cartilage tissue not 

only reduces the efficiency of indentation and hinders in vivo applications, but also 

could possibly lead to tissue degeneration during the testing. In this chapter, a data 

processing technique is developed to predict the full indentation creep curve based on 

the transient data obtained in the first few minutes of indentation testing. The accuracy 

of the prediction is verified using experimental data from two types of articular 

cartilage - bovine knee cartilage and condylar cartilage from the porcine TMJ. The 

mechanical properties determined by biphasic theory, based on the predicted curves, 

are compared with those from full experimental data in order to validate the accuracy 

of this method. 

3.2 Method 

3.2.1 Experiments 

Indentation creep tests were performed on condylar cartilage from porcine 

TMJ and bovine knee joint cartilage, as described in previous studies [3, 28]. Briefly, 

seventeen 2 cm x 2 cm rectangular cartilage bone blocks were harvested from the 

trochlear groove of mature bovine knee joints. Samples were mounted onto a step-

loading indentation device equipped with a rigid flat-ended porous-permeable indenter 

tip (ϕ = 2.1 mm). At the start of the creep test, a 50 mN tare load was applied for 0.5 h, 

followed by a 200 mN step load for another 1 h to generate the creep data. 
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Additionally, eight TMJs, were harvested from mature porcine heads, and five regions 

(anterior, posterior, central, and lateral) on the condylar head were indented by a 

custom built micro-indenter with a porous-permeable indenter tip (ϕ = 1.6mm); using 

the same loading protocol detailed for bovine cartilage [28]. 

3.2.2 Principal component analysis 

The creep displacement of each sample was first resampled at 1 Hz by linear 

interpolation and denoted as an n x 1 vector t. Vectors from m samples were further 

combined into an m x n matrix. PCA [40] was then conducted on this matrix without 

centering, which generated m principal components. Each principal component is an n 

x 1 unit vector, denoted as PCi. Based on the PCA definition, the creep curve (vector 

t) can be decomposed by the principal component matrix PC as. 

 [

𝑡1
𝑡2
⋮
𝑡𝑛

] =

[
 
 
 
𝑃𝐶11

𝑃𝐶21

𝑃𝐶12
𝑃𝐶22

⋯
𝑃𝐶𝑚1

𝑃𝐶𝑚2

⋮ ⋱ ⋮
𝑃𝐶1𝑛

𝑃𝐶2𝑛 ⋯ 𝑃𝐶𝑚𝑛]
 
 
 

[

𝑐1

𝑐2

⋮
𝑐𝑚

] (3.1) 

 𝑜𝑟 𝑡𝑇 = ∑ 𝑐𝑖 ∗ 𝑃𝐶𝑖
𝑇𝑚

𝑖=1  𝑤ℎ𝑒𝑟𝑒 𝑐𝑖 = 𝑡 ∙ 𝑃𝐶𝑖 . (3.2) 

Here vector c includes coefficients with the same units as vector t. We now 

hypothesize that the principal components are consistent for the same type of cartilage 

tested with an identical protocol. Therefore the creep curves of the other samples, 

which are not initially included in the m samples for PCA, can also be decomposed by 

the above principal components PC. To verify this assumption, we performed PCA on 

50 different combinations of 5 indentation creep curves that were randomly selected 

from either bovine knee joint samples or TMJ samples, i.e. 50 PCA for each type of 

cartilage. The variances of 50 obtained PCs at each time point (n total points) were 

calculated to determine the consistency of PCs. 
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Based on the PCA consistency assumption, the short-term creep displacement 

𝑡̂ of a new sample can be decomposed by the principal component matrix PC as 

 

[
 
 
 
𝑡̂1
𝑡̂2
⋮
𝑡̂𝑘]

 
 
 
≈

[
 
 
 
𝑃𝐶11

𝑃𝐶21

𝑃𝐶12
𝑃𝐶22

⋯
𝑃𝐶𝑚1

𝑃𝐶𝑚2

⋮ ⋱ ⋮
𝑃𝐶1𝑘

𝑃𝐶2𝑘 ⋯ 𝑃𝐶𝑚𝑘]
 
 
 

[

𝑐̂1

𝑐̂2

⋮
𝑐̂𝑚

] (3.3) 

 𝑜𝑟  𝑡̂(1: 𝑘)𝑇 = ∑ 𝑐̂𝑖 ∗ 𝑃𝐶𝑖(1: 𝑘)𝑇𝑚
𝑖=1 , k < n. (3.4) 

Here vector 𝑡̂(1: 𝑘) contains only k components (k << n) since it represents only the 

first k seconds of a creep curve. 𝑃𝐶𝑖(1: 𝑘) denotes the first k components of PCi. If the 

shortened principal component matrix is denoted as B, the coefficient vector 𝑐̂ can be 

calculated as 

 𝑐̂ = (𝐵𝑇𝐵)−1𝐵𝑇 𝑡̂(1: 𝑘)𝑇 . (3.5) 

Note that 𝑐̂ is the coefficient vector with m components. The long term creep 

deformation of the sample after k seconds 𝑡̂(𝑘 + 1: 𝑛), can be estimated using 𝑐̂ and 

matrix PC. 

 

[
 
 
 
𝑡̂𝑘+1

𝑡̂𝑘+2

⋮
𝑡̂𝑛 ]

 
 
 
≈

[
 
 
 
𝑃𝐶1𝑘+1

𝑃𝐶2𝑘+1

𝑃𝐶1𝑘+2
𝑃𝐶2𝑘+2

⋯
𝑃𝐶𝑚𝑘+1

𝑃𝐶𝑚𝑘+2

⋮ ⋱ ⋮
𝑃𝐶1𝑛

𝑃𝐶2𝑛 ⋯ 𝑃𝐶𝑚𝑛 ]
 
 
 

[

𝑐̂1

𝑐̂2

⋮
𝑐̂𝑚

] (3.6) 

 𝑜𝑟 𝑡̂𝑇(k + 1: n) =  ∑ 𝑐̂𝑖 ∗ 𝑃𝐶𝑖
𝑇(𝑘 + 1: 𝑛)𝑚

𝑖=1 . (3.7) 

Thus PCA of the full creep curves from a small group of samples can generate the 

principal component matrix, and then the long-term creep data of the other samples 

can be predicted by their short term response using this matrix.  

3.2.3 Accuracy of predicted data 

To test the accuracy of the predicted curve, eight sets of full indentation data 

were randomly selected for each type of cartilage to generate the corresponding 
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principal components, and the first 10 minutes of data from the unselected samples 

were used to predict their long-term response with PCA. The predicted curves were 

directly compared with the actual long-term experimental data. Moreover, the 

mechanical properties (aggregate modulus, Poisson’s ratio, permeability) were 

obtained for both the predicted curve and the actual experimental data using a biphasic 

curve-fitting program [9]. The agreement between the two sets of mechanical 

properties was then examined [41]. 

3.3 Results 

To understand the effectiveness of PCA for predicting cartilage indentation 

data, PCA of all the creep curves was performed to obtain the contribution to the total 

variance of each principal component (Fig. 3.1). The first PC alone contributes 98.5% 

and 99.8% to the total variance for TMJ and knee cartilage, respectively. The first and 

second PCs contribute over 99.5% of the variance for both tissues. Thus, in the 

following PC consistency analysis, only the first two PCs were presented, as the third 

and higher PCs contribute little to the total variance. For each type of tissue, average 

and standard deviation of the first two PCs from 50 analyzed groups are shown in Fig. 

3.2. The standard deviations are close to 0 for PC1 at all points, i.e., PC1 remains 

constant for any five randomly selected indentation curves. The standard deviations of 

PC2 are larger than PC1, but PC2 accounts for only 1.4% and 0.1% of variance for 

TMJ and knee cartilages, respectively. Therefore, it can be concluded that the 

principal components are consistent for the same type of cartilage. In contrast to this, 

indentation curves of TMJ and knee cartilage have drastically different PCs in terms 

of magnitude and distribution over time (Fig. 3.2). 
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Figure 3.1 Contribution of principal components to the total variance of indentation 

creep curves. The first principal component (PC1) explains 98.5% and 

99.8% of the total variance for TMJ cartilage and knee joint cartilage, 

respectively. The third principal component contributes less than 0.5%. 

 

Figure 3.2 Average principal components of 50 random combinations of 5 

indentation creep curves for (a) TMJ condylar cartilage and (b) knee joint 

cartilage. The first principal component (PC1) of any five creep curves 

remains highly consistent with low standard deviations at all time. The 

second principal component (PC2) is not as consistent as PC1. 
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Two typical experimental creep curves for each cartilage are plotted in Fig. 3.3 

together with the PCA prediction. The first 10 minutes of data and the PCs based on 

eight creep curves are able to provide an accurate prediction of the long-term 

indentation responses for both types of cartilage. The average difference of 

equilibrium deformation between experiment and PCA is 4.5 ± 1.1% for bovine knee 

cartilage and 5.1 ± 1.3% for porcine TMJ cartilage. This difference was also 

determined for varying numbers of creep curves used to obtain the PCs (Fig. 3.4). For 

both types of cartilage, PCs from 11 or more creep curves generate similar prediction 

errors. 

 

Figure 3.3 PCA predicted indentation creep curves of two samples for each type of 

cartilage, using the experimental data in the first 600 seconds. The 

corresponding full experimental curves are also plotted for comparison. 
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Figure 3.4 The PCA predication errors are correlated with the number of full tests 

used for PC matrix construction and the length of initial testing data 

available for predication. 

The mechanical properties determined by biphasic curve-fitting based on the 

experimental and predicted data are summarized in Fig. 3.5. The magnitudes of all 

properties are consistent with those reported in the literature [3, 28, 42]. The data 

points are clustered around the line Y=X in each plot, and the coefficient of 

determination is close to 1 for all three mechanical properties, displaying excellent 

agreement between both data sets. The errors (mean±standard deviation) of the 

estimated mechanical properties of TMJ condylar cartilage are 3.3 ± 3.3%, 2.0 ± 2.0% 

and 3.2 ± 3.2% for aggregate modulus, permeability and shear modulus, respectively. 

For bovine knee joint cartilage the corresponding errors are 2.2 ± 3.1%, 7.4 ± 12.4% 
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and 3.1 ± 4.3%, respectively. The mean difference of the aggregate moduli is close to 

zero, and the 95% confidence interval of the differences (mean ± 2 x SD) is less than 

20% of the average (Fig. 3.6), showing excellent agreement between the two data sets. 

In addition, the differences show no dependency on the magnitude of the aggregate 

modulus [41]. 

 

Figure 3.5 Comparison of mechanical properties determined by indentation curve-

fitting using experimental and PCA predicted curves, (a-b) aggregate 

modulus, (c-d) permeability, and (e-f) shear modulus. Line Y=X is 

plotted for reference. 
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Figure 3.6 The difference of aggregate modulus determined from predicted and 

experimental data is plotted against their average value. For most 

samples, the difference is smaller than 5% of the average value, and the 

mean of the difference is close to zero (-0.003Mpa for TMJ and 

0.012Mpa for knee). In addition, the difference between two data sets is 

not dependent on their average values. All these factors indicate that the 

two data sets have a good agreement. 

3.4 Discussion 

PCA, for the first time, is employed to analyze cartilage indentation creep 

curves for two types of cartilage with different ultrastructure and mechanical 

properties [28, 43]. The creep deformation of cartilage under indentation can be 

accurately decomposed by PCs, and the first two PCs contribute over 99.5% of the 

variance. More importantly, the PCs are consistent for the same type of cartilage 

tested with identical protocols, which provides the theoretical foundation to predict the 

full deformation curve using PCA based on the transient data of the first few minutes. 

As expected, the predicted creep curves match the actual experimental data well, and 

the mechanical properties determined from the two sets of curves agree with each 

other. 
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Unlike hyaline cartilage in knee joints, the TMJ condylar cartilage is a 

fibrocartilaginous tissue with a unique dense fibrous zone composed of large type I 

collagen bundles covering the articular surface [44]. PCs of the creep curves from 

these two distinct cartilages are completely different. This implies that PCA could be a 

powerful method to compare the mechanical behaviors of different cartilages. In this 

study, PCs from 100 combinations of 5 samples were consistent. Comparison of the 

first PC alone can reveal significant differences between the mechanical properties of 

healthy and degenerated cartilages (Fig. B.4). 

Adding more PCs or full tests can be helpful at low sample numbers. 

Meanwhile, for both knee cartilage and TMJ condyle in our experiments, any number 

of full tests beyond eight will not lead to an increase higher than 1% in the accuracy 

(Fig. 3.4). In addition, the average error increases 2% when only 300 seconds’ data is 

used for prediction instead of 600 seconds, and this gap cannot be reduced by 

increasing the number of full tests used to generate the PC. 
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Chapter 4 

DETERMINING THE TENSION-COMPRESSION NONLINEAR 

MECHANICAL PROPERTIES WITH FINITE ELEMENT ANALYSIS 

4.1 Introduction 

In this chapter, we aimed to develop a technique to uniquely determine the 

nonlinear biphasic properties of cartilage from a single indentation creep test. First, the 

roles of permeability, tensile and compressive moduli in the indentation response of 

cartilage were analyzed and identified. Second, an optimization algorithm was 

designed based on these findings, which can simultaneously and uniquely determine 

the three properties by fitting a single indentation curve. Third, the new algorithm was 

applied to analyze the experimental data from adult bovine knee cartilage, and the 

results were validated by comparison with the classical biphasic linear elastic 

program. 

4.2 Method 

4.2.1 Experiment 

Seventeen cartilage bone blocks, without removing the superficial layer, were 

harvested from the trochlear groove of two skeletally mature (18 months old) bovine 

knee joints, in a region where the articular surface has relatively small curvature. 

Indentation testing was performed as described previously [3]. In brief, samples were 

submerged in PBS supplemented with protease inhibitors and tested on an indentation 

device equipped with a rigid, porous, flat-ended cylindrical indenter tip (ϕ = 2.1 mm). 

A 50 mN tare load was first applied for 0.5 h to ensure full contact between the 

indenter and cartilage surface. Then a 200 mN step load was applied and maintained 
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for another 1 h or until the creep deformation reached equilibrium. The cartilage 

thickness at the testing spot was later measured using the needle penetration method 

[9]. 

4.2.2 Nonlinear constitutive models 

In the numerical simulations, the cartilage is modeled as a biphasic material 

with a tension-compression nonlinear solid matrix, which is treated as a compressible 

isotropic neo-Hookean ground matrix reinforced with fibers. The fibers can only 

sustain tensile stress, therefore the compressive modulus of the material is defined to 

be the Young’s modulus of the neo-Hookean background at small strain [22]. When 

the fibers are organized in three orthogonal directions, this constitutive model displays 

mechanical behaviors similar to a CLE material with cubic symmetry and henceforth 

is referred to as the CLE model. Based on earlier experimental results [18], the strain 

energy density function of the fiber bundles is defined as [39] 

 Ψ =
𝜉

𝛼𝛽
(𝑒𝛼(𝐼𝑛−1)𝛽 − 1) (4.1) 

and the Cauchy stress of the fiber is given by 

 𝝈 = 𝐻(𝐼𝑛 − 1)
2𝐼𝑛

𝐽

𝜕Ψ

𝜕𝐼𝑛
𝒏⨂𝒏 (4.2) 

 𝐼𝑛 = 𝜆𝑛
2 = 𝐍 ∙ 𝐂 ∙ 𝐍 and 𝒏 =

𝐅∙𝐍

𝜆𝑛
2 . (4.3) 

In these equations, N is the unit vector in the fiber direction, C is the right Cauchy-

Green deformation tensor, λn is the stretch ratio, F is the deformation gradient, J is the 

Jacobian of the deformation, and H is a Heaviside function used to ensure zero 

resistance of the fibers under compression. The parameter ξ is nonlinearly correlated 

with the fiber stiffness, and is referred to as the fiber modulus in this model. Constants 

α and β are set to 0 and 2 to render an almost linear stress-strain relationship at small 
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strains [39], in which case the tissue tensile modulus Ef in the fiber direction can be 

written as 

 𝐸𝑓 ≈ 4𝜉 (4.4) 

Alternatively, a number of studies assume the fibers are continuously distributed, as 

known as a CFD model. In this case, the strain energy density function of the fibers is 

still given by Eq. 4.2, while the Cauchy stress is integrated over all possible fiber 

directions [39]. 

 𝝈 = ∬𝐻(𝐼𝑛 − 1)𝝈𝑛(𝒏)sinφdφdθ (4.5) 

 𝝈𝑛(𝒏) =
2𝐼𝑛

𝐽

𝜕Ψ

𝜕𝐼𝑛
𝒏⨂𝒏 (4.6) 

Here, φ and θ are the spherical angles of the fiber orientation in the local coordinate 

system [45]. 

In this study, the hydraulic permeability of the cartilage is assumed to be 

constant, homogeneous, and isotropic. Poisson’s ratio of the neo-Hookean ground 

matrix is assumed to be 0 as suggested in the literature [18, 21]. Two 3D FE models 

for the indentation creep test were built in FEBio 2.0 [45], based on the biphasic CLE 

and CFD models respectively. Taking advantage of the axisymmetric nature of the 

indentation test, a 1° wedge of the cartilage and indenter (modeled as rigid) was 

analyzed with symmetry boundary conditions applied on the circumferential faces. 

The other boundary conditions are defined to be consistent with the actual 

experimental conditions (Fig. 4.1). The FE mesh was biased in order to capture the 

rapid variation of the strain field and fluid pressure near the cartilage indenter 

interface. A mesh convergence study was performed and the resulting mesh contained 

2627 nodes and 1250 elements, including 1225 HEX8 type and 25 PENTA6 type 

elements. In the FE simulation, a constant force is applied on the indenter as a 
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Heaviside function, and the displacement of indenter tip is calculated to generate the 

creep deformation curve. The results of the FE program serve as the basis for the 

curve-fitting technique to determine the mechanical properties from the indentation 

experiments. 

 

Figure 4.1 A one-degree wedge of cartilage and indenter is meshed and analyzed 

based on the axial symmetric nature of indentation tests. The bottom of 

the cartilage is impermeable and fixed in all directions to mimic the 

cartilage-bone interface. Deformation of the contact surface is associated 

with the movement of the indenter tip, and the fluid pressure is set to be 

zero (porous indenter). ux, uy, and uz represent the displacement in x, y, 

and z directions, respectively, and P is the fluid pressure. 

4.2.3 Optimization algorithm 

As an initial step toward developing the curve-fitting algorithm, the FE models 

were used to perform parametric studies to identify the effect of individual mechanical 

properties on the indentation creep deformation. Each of the three key parameters 
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(compressive modulus E, permeability k, and fiber modulus ξ) was varied within the 

physiological range while keeping the other two constant. Results based on the 

biphasic CLE model are plotted over time on a logarithmic scale in Fig. 4.3. The CFD 

model displayed the same trends (results not shown). The compressive modulus E has 

a significant effect on the equilibrium deformation (Fig. 4.3a), while the fiber modulus 

mainly regulates the transient deformation in the early portion of the curve (Fig. 4.3c). 

Varying the permeability does not change the overall slope of the curve or the 

equilibrium deformation, but shifts the deformation curve along the time axis (Fig. 

4.3b). 

In light of these observations, three defining characteristics of the creep curve 

are identified (Fig. 4.2a): the equilibrium deformation μ, the deformation ratio γ, and 

the half deformation time τ. Equilibrium deformation μ is the deformation at steady 

state. The deformation ratio γ represents the ratio between the initial jump and 

equilibrium deformation, where the initial jump equals the indenter displacement at 5 s 

after the onset of loading. Half deformation time τ is the time at which the deformation 

reaches the halfway point between the initial jump and equilibrium deformation, and is 

an indication of the viscoelastic relaxation time of the tissue. The correlations between 

these parameters (i.e., μ, γ, and τ) and the mechanical properties (i.e., E, k, and ξ) were 

plotted in Fig 4.3d-f. Both the fiber modulus and compressive modulus are negatively 

correlated with the tissue equilibrium deformation, and they have opposite effects on 

the deformation ratio (Fig. 4.3d, f). The permeability is positively correlated with the 

deformation ratio and negatively correlated with the half deformation time (Fig. 4.3e). 



 25 

 

Figure 4.2 (a) A typical indentation creep curve from tests on bovine knee cartilage 

and the definition of three curve-related parameters, including the initial 

jump, equilibrium deformation, and half deformation time. (b) When the 

equilibrium deformation and half-deformation time are fixed, the initial 

jump of the curve is regulated by the fiber modulus. 

 

Figure 4.3 Roles of each individual mechanical property in shaping the indentation 

creep curve in biphasic CLE model. Creep curves are plotted by varying 

one of the three properties in the physiological range and keeping the 

other two constant (compressive modulus = 2MPa, fiber modulus = 

2MPa, permeability = 0.001mm4•N-1•s-1)): (a) compressive modulus, (b) 

permeability, and (c) fiber modulus. (d-f) Monotonic correlations 

between the mechanical properties and the deformation ratio, half 

deformation time, and equilibrium deformation are observed. 
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In order to determine the individual mechanical properties (E, k, and ξ) from a 

single indentation experiment, the FE prediction is curve-fitted to the experimental 

creep curve. First, a fiber modulus ξ  at the middle of the search range, which is set to 

be 0 ~ 5MPa for the CLE model, and 0 ~ 2 MPa for the CFD model based on previous 

studies [21, 39, 46], is selected as the starting value. The equilibrium deformation μ is 

a function of both the compressive modulus, E, and fiber modulus, ξ, but not the 

permeability, k. When ξ is fixed, μ decreases monotonically with increasing E (Fig. 

4.3d), 

 (
𝜕𝜇

𝜕𝐸
)

< 0. (4.7) 

Therefore, a value for E corresponding to the assumed ξ can quickly be determined 

using a binary search based on μ. Next, a similar process is used to find the 

appropriate value of k corresponding to the assumed value of ξ. According to Fig 4.3e, 

an increase in the permeability, k, shifts the creep curve to the left with no effect on 

the equilibrium deformation, 

 (
𝜕

𝜕𝑘
)
𝐸,

< 0. (4.8) 

Thus k can also be determined using a binary search based on the half deformation 

time, τ.  

What remains is to check the accuracy of the assumed magnitude of ξ, which 

can be done by considering the remaining parameter of the creep curve, the 

deformation ratio, γ. With fixed values of E and k, variations in ξ significantly change 

the initial jump (Fig. 4.3c), which in turn affects the deformation ratio, γ. When 𝜇 and 

τ are fixed, ξ is found to be monotonically related to the deformation ratio, γ (Fig. 



 27 

4.2b). Thus another binary search can be used to find the value of ξ corresponding the 

experimentally determined 𝜇 and τ, 

 (
𝜕𝛾

𝜕
)
,𝜇

< 0. (4.9) 

This updated value of ξ is then used as the new starting value, and the entire 

process is repeated. The overall curve-fitting strategy is a two-level, embedded binary 

search as illustrated in Fig. 4.4. At the lower level, the compressive modulus and 

permeability are searched sequentially to match the equilibrium deformation and half 

deformation time for an assumed fiber modulus, ξ. At the higher level, ξ is optimized 

to match the deformation ratio of the creep curve. Since the calculation of the 

equilibrium deformation is merely a static mechanics problem with no time dependent 

integration, the computational cost of this step is negligible. Moreover, all three 

parameters are determined using a binary search algorithm. The running time of the 

algorithm is O(log2n), where n is the number of partitions in the search range. 

Therefore, the optimization strategy runs efficiently and avoids the possible 

optimization complications of multiple solutions and local minima. 
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Figure 4.4 The optimization scheme involves two levels of binary search. At the 

lower level, given a fiber modulus, the compressive modulus and 

permeability are optimized to fit the equilibrium deformation and half 

deformation time of the curve. At the higher level, the fiber modulus is 

searched to match the deformation ratio. Adjustment of fiber modulus 

requires a new search of compressive modulus and permeability. 

The optimization program is implemented in MATLAB 2013a (The 

MathWorks Inc.), where indentation creep simulations are handled by calling the 

FEBio program for each iteration. The error tolerance in the optimization was chosen 

at 0.5%. The creep data from the indentation tests on bovine cartilage have been 

analyzed using both the CLE and CFD models, and the accuracy of the fit is measured 

by 
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 𝑅2 = 1 −
∑(𝑓𝑖−𝑦𝑖)

2

∑(𝑦𝑖−𝑦̅)2
, (4.10) 

where fi and yi are the ith simulation and ith experimental data point, respectively, and 𝑦̅ 

is the mean of y. The corresponding mechanical properties in the CLE and CFD 

models are correlated using a linear regression test, and they were also compared with 

those given by the classic curve-fitting program based on the BLE model [9, 42]. The 

aggregate moduli, which is defined as the modulus under confined compression, and 

permeability from the three models were compared by one-way ANOVA with 

Tukey’s post hoc test (p<0.05) on repeated measures. 

4.3 Results 

Two typical experimental indentation creep curves fitted by the optimization 

technique using both biphasic CLE and CFD models, as well as the classical BLE 

curve fitting program, are shown in Fig. 4.5a. The CLE and CFD models generate 

nearly overlapping curves that match the experiments well over the entire time 

domain. The BLE fits the equilibrium deformation accurately, but not the short-term 

transient response since it is based on the elastic Hayes solution. In the actual 

experiment, immediately after the step loading, the cartilage behaves like an 

incompressible material, due to the interstitial fluid pressurization [23]. Thus the 

compressive deformation in the loading direction has to be associated with tissue 

expansion in the radial direction. However, the relatively high tensile stiffness of the 

tissue provides resistance to this radial expansion, which in turn constrains the initial 

axial deformation. The high tensile stiffness featured in the CLE and CFD models 

allows these models to capture this short-term response and significantly improves the 

curve-fitting accuracy by reducing the initial jump. The average R-squared value of 

the fitted curves is 0.988±0.014 for the CLE model, 0.988±0.013 for the CFD model, 
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and 0.781±0.082 for the BLE model. To determine the three mechanical properties 

using an experimental creep curve, ~600 seconds computing time is required on a 

personal computer (Intel i5 3rd generation processor, 4 cores @ 3.4 GHz, and 16 GB 

memory). A typical optimization process is plotted in Fig 4.5b, which shows that four 

iterations may be enough to obtain a satisfactory fit to the fiber modulus ξ. 

 

Figure 4.5 (a) Typical indentation creep displacement history of adult bovine knee 

cartilage and the curve-fittings based on BLE and biphasic CLE and CFD 

models. (b) Typical searching process for fiber modulus ξ. The dashed 

lines are simulated curves over different ξ values after fixing equilibrium 

deformation and half deformation time. 

The mechanical properties determined from the curve-fits using the three 

different constitutive models are listed in Table 3.1. The aggregate moduli were 

0.438±0.253 MPa, 0.415±0.248 MPa, and 0.451±0.228 MPa for the CLE, CFD, and 

BLE models, respectively. One-way ANOVA shows that all three models differ from 

each other and the BLE model generates the highest compressive modulus, which is 

expected as the BLE model lumps the effect of the high tensile stiffness into the 
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aggregate modulus and therefore increases the calculated value of the compressive 

modulus. The compressive moduli from the two nonlinear models are linearly 

correlated with each other, with a correlation coefficient R of 0.99 (Fig 4.6a). The 

slope of the linear fit is 1.02, and the offset is 0.01 MPa. The aggregate moduli from 

both nonlinear models are highly correlated with those from the BLE model (r > 0.99) 

(Fig. 4.7a). 

Table 3.1 Mechanical properties determined by BLE, CLE, and CFD models (*: 

different from CFD; +: different from CLE). 

 CFD model CLE model BLE model 

Aggregate modulus 

(MPa) 
0.415 ± 0.248 0.438 ± 0.253* 0.451 ± 0.228*+ 

Fiber modulus  

(MPa) 
0.288 ± 0.209 1.519 ± 1.099* / 

Permeability 

(10−15m4/(N ∗ s)) 

5.041 ± 2.154 5.597 ± 3.559 4.626 ± 2.322+ 

R-squared 0.988 ± 0.014 0.988 ± 0.013 0.781 ± 0.082*+ 

 

The permeability determined from the curve-fits is 5.597±3.559×10-15 m4/(Ns), 

5.041±2.154×10-15 m4/(Ns) and 4.626±2.322×10-15 m4/(Ns) for the CLE, CFD and 

BLE models, respectively. A significant difference is only detected between the CLE 

and BLE models (p = 0.007). Similar to the aggregate moduli, the permeability values 

from the three models are highly correlated with each other in a linear relationship (r > 

0.96) (Fig. 4.6b, 4.7b). As the fiber moduli in the two nonlinear models have different 

physical meanings, their magnitudes are not comparable with each other, but 

nevertheless they are linearly correlated (r = 0.98) (Fig. 4.6c). 
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Figure 4.6 Correlations between mechanical properties determined by biphasic CLE 

and CFD models. (a) Aggregate modulus, (b) permeability, and (c) fiber 

modulus. 

 

Figure 4.7 (a) Aggregate modulus and (b) permeability obtained from CLE and CFD 

models are linearly correlated with those from the BLE model. 

To evaluate the effect of different Poisson’s ratios of the solid matrix 

background on the outcome of our curve-fitting program, a parametric study was 

performed by varying the Poisson’s ratio from 0 to 0.45 (Fig. 4.8). Over this range, the 

R-squared value of the curve-fitting varies from 0.996 to 0.998, indicating that the 

assigned magnitude of Poisson’s ratio has little effect on the goodness of curve-fit. 

When the Poisson’s ratio is varied from 0 to 0.15, the calculated permeability and 
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fiber modulus change 5% and 7%, respectively, and the aggregate modulus increases 

by 1%. 

 

Figure 4.8 Curve-fitting is performed with different Poisson’s ratios of the ground 

matrix on a single creep curve, and its effect on the determined 

mechanical properties is plotted. All the mechanical properties are 

normalized by their maximum value. 

4.4 Discussion 

In the present study, the uniqueness of the curve-fit is a result of the distinct 

role that each of the three mechanical properties plays in shaping the simulated creep 

curve. The monotonic correlations between the curve characteristics and the 

mechanical properties shown in the parametric studies (Fig. 4.2 and 4.3) contribute to 

this uniqueness and improve the efficiency of the optimization. An essential 
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observation that makes this curve-fitting technique viable is that variation in the 

permeability only shifts the half deformation time of the simulated creep curve along 

the logarithmic time scale. The same phenomenon has been noted previously and 

served as an important constraint in the indentation curve-fitting program based on the 

BLE model. Our current study shows that this useful phenomenon is retained when 

tension-compression nonlinearity is incorporated into the constitutive law. Moreover, 

the permeability values determined from the curve-fitting based on the BLE and CFD 

models (Table 4.1) displayed no statistical difference, which implies that the 

permeability in linear and nonlinear models may play similar, if not identical, roles in 

controlling the cartilage response under indentation. 

The compressive moduli from the two nonlinear models are highly correlated 

with the modulus from the classic BLE model (r > 0.998), which helps confirm the 

accuracy of the FE program and the curve-fitting strategy. The determined mechanical 

properties of the bovine trochlear groove cartilage are consistent with other 

experimental measurements as well, which showed the aggregate modulus and the 

permeability to be 0.37 ± 0.02 MPa and ~10-15 m4/(Ns) respectively. In addition, the 

aggregate moduli from the CLE and CFD models are linearly correlated to each other 

with a slope close to 1, which confirms that the compressive modulus in the two 

nonlinear models are comparable with each other. 

It should be noted that the tensile parameters in the two models have very 

different physical meanings. The fiber modulus ξ is correlated nonlinearly with the 

tensile modulus of the cartilage measured in the experiments, which itself is strain-

dependent [37, 39]. According to the correlation in Eq. 4.4, the CLE model gives an 

approximate tensile modulus of 6 MPa in this study, which is consistent with the 



 35 

physiological range of adult bovine knee cartilage [46, 47]. However, the tensile 

modulus of the superficial tangential zone in cartilage has been shown to be 

approximately 2 times higher than that in the middle-deep zone [19]. Since the 

deformation field in cartilage under large-scale indentation is heterogeneous, with 

higher tensile strains in the superficial layer, the tensile property determined by 

indentation could be affected more by the superficial tangential zone rather than the 

deep zone cartilage. The fiber modulus ξ in the CFD model has an implicit correlation 

with the engineering tensile modulus. Due to the continuous angular distribution of 

fibers, unidirectional tension will induce different levels of stretching among the fibers 

oriented in different directions. Therefore, the fiber modulus ξ has drastically different 

physical meaning in two models, and should only be compared directly with the 

values obtained from the same model as indicated previously [39]. For healthy hyaline 

cartilage, the CFD model has been shown to explain the observed tissue behaviors, 

especially the strain-dependent Poisson’s ratio, better than the CLE model [39]. 

Consequently, the CLE model is more suited for some fibrous cartilage tissues with 

collagen fibers uniformly aligned in one or two directions, such as meniscus [48], the 

superficial zone of cartilage [49] and some fibrous cartilage [50, 51]. 

The effective compressive Poisson’s ratio of cartilage as a whole, measured 

directly by optical techniques [18, 31-33], is inherently small for a tension-

compression nonlinear material, because the high tensile modulus confines the 

expansion of the tissue in the lateral direction. Since the tensile modulus is nonlinearly 

strain-dependent, the measured effective Poisson’s ratio demonstrates a similar trend 

[18, 39]. The effective Poisson’s ratio is higher at small compressive strains and 

sharply decreases to a value close to zero (~0.03) as the compressive strain becomes 
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higher than 4% [18]. The Poisson’s ratio used in both the CLE and CFD models, 

however, is assigned to the non-fibril ground matrix. Therefore the value chosen 

should be slightly higher than the tissue’s effective Poisson’s ratio [37]. Since there is 

no existing measurement of this parameter, it has been assumed to be somewhere 

between 0 and 0.15 in literature [21, 24, 37]. Since Poisson’s ratio decreases 

significantly from the deep zone to the superficial zone of cartilage [33] and the 

indentation response of cartilage is primarily regulated by the top layer, its value was 

fixed at 0 for this study. 

A number of limitations in this study should be noted. First, the two nonlinear 

constitutive models employed are based on the continuum assumption, i.e., the basic 

assumption of porous elastic theory, which assumes there is a mixture of solid and 

fluid phases in any infinitesimal small volume. Since commercial nano-indenters have 

recently become readily available, nano-indentation has been widely used for the 

characterization of cartilage [5, 13, 52]. When the indenter size is on the same scale as 

collagen fibrils or chondrocytes [53], the continuum assumption is no longer valid, 

and the technique developed here is therefore not suitable for estimation of mechanical 

properties at the nano-scale. Secondly, articular cartilage has a much more 

complicated structure than that described by the two nonlinear models here. For 

example, the collagen fibers are organized heterogeneously across the cartilage, 

mainly aligned in the horizontal directions in the superficial zone and vertically in the 

deep zone. The hydraulic permeability is anisotropic and nonlinearly dependent on the 

dilatation of the solid matrix. In addition, the osmotic pressure induced by negatively 

charged proteoglycans contributes to the compressive stiffness. None of these is 

accounted for in the two tension-compression nonlinear models. Furthermore, the 
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intrinsic viscoelasticity of the solid matrix, which is a key factor regulating the short-

term response of cartilage [54], is not considered in the two constitutive models. As 

the contribution of the intrinsic viscoelasticity is lumped into the elastic properties of 

solid matrix, the tensile moduli determined using the CLE and CFD models may be an 

overestimation and higher than the actual values. Therefore, although the two current 

models can describe the overall transient mechanical behaviors of cartilage better than 

the linear isotropic theory, they represent simplifications of the real structure of the 

tissue. Thirdly, the tensile modulus in the nonlinear model can significantly affect the 

initial deformation or “jump” of the creep curve. To be consistent, we defined this 

“jump” at a specific time after the step loading. A parametric study showed that any 

time in the range of 1-15 seconds gave identical curve-fitting results. This selection 

disappears if a ramp loading is employed, in which case the initial jump can be 

defined as the deformation at the end of the loading phase. 
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Chapter 5 

SUMMARY AND FUTURE DIRECTIONS 

5.1 Summary 

In this thesis, a novel technique based on PCA was developed, which can predict the 

full indentation creep curve based on the first few minutes of deformation history. 

Furthermore, an efficient curve-fitting technique was developed which can uniquely 

and simultaneously determine the tensile modulus, compressive modulus and 

permeability of cartilage based on a single indentation creep curve. The new curve-

fitting program can easily be applied for various experimental loading profiles, e.g. 

step loading, ramp loading and some specific loading functions. In addition, the type 

and geometry of indenter tip could also be easily adjusted in the program. 

5.2 Future directions 

The material behavior of articular cartilage has been studied in detail for 

decades. Anisotropy, inhomogeneity and tension-compression nonlinearity of the 

cartilage are now well-understood [30]. However, the 3D modeling of the tissue is still 

simplified in terms of both geometry and constitutive relations [5, 25]. The deviation 

between the computational model and natural tissue makes the simulation less reliable 

in clinical applications [55]. A current trend is to build patient specific finite element 

models from imaging techniques such as CT or MRI. However, current techniques do 

not have enough resolution to provide sufficient signal-to-noise ratio for constructing 

accurate 3D models. In addition, the model construction process can take tremendous 

efforts finishing segmentation and mesh generation. The difference in time scale 

between clinical application and modeling requirements, and the inability of the 



 39 

current imaging technology to provide sufficient resolution for constructing accurate 

subject-specific 3D models are potential future directions.  
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Appendix A 

VERIFICATION OF THE NONLINEAR MODELS 

A.1 Experimental verification of the predictive ability of the nonlinear models 

Three cartilage-bone blocks, without removing the superficial layer, were 

harvested from the tibia plateaus of calf knee joints. As similar protocol to that in the 

manuscript was adopted to conduct the indentation testing. First, the cartilage was 

preloaded with 50mN force by a flat-ended porous cylindrical indenter tip ( = 2.1 

mm) for 0.5h to ensure full contact between the indenter and cartilage surface. Then a 

50mN step load was applied and maintained for 1 h. After the first indentation test, the 

sample was left to recover for 3h. Then a second indentation test was conducted with 

150mN step load at the same location on the cartilage for 1h. The thickness of the 

cartilage was later measured using the needle penetration method. 

The creep curve generated under the 150mN load was first fitted by the CLE 

and CFD models, and then the cartilage’s response under 50mN was predicted by the 

parameter set obtained from the curve-fitting. The results are shown in Fig. A.1. (CFD 

model generates similar results thus only results from CLE are shown). 

 

Figure A.1 Creep curves generated by 150 mN load were first fitted, and the 

response of cartilage under 50 mN load was predicted with the 

parameters obtained through curve-fitting 
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In general, the predictions match the experimental data, but have lower 

equilibrium deformations and take longer time to reach equilibrium (the curve shifts to 

the right). These differences are mainly due to the strain dependent permeability and 

modulus of the solid matrix, which are not considered in the two current models. At 

small strain, both the tensile and compressive moduli of the solid matrix should be 

lower due to the existence of a toe region in the stress-strain curves at small strain. 

Therefore the modulus determined under the 15 gram force loading is an over-

estimation of the actual tissue modulus under 5 gram force, and the predicted 

deformation is smaller than the experimental data. In contrast, the permeability of the 

solid matrix should decrease when the matrix is compressed with negative dilatation. 

The permeability under the 15 gram force loading is smaller than that under the 5 

gram force, and the predicted curve reaches equilibrium slower than the experimental 

data under 5 gram force. Moreover, the current two models did not consider the 

heterogeneous structure of cartilage layer, the osmotic pressure induced by 

proteoglycans, and the intrinsic viscoelasticity of the solid matrix. All these 

assumptions may affect the predictive abilities of the two models. Nevertheless, the 

comparison results from this extra study demonstrated the predictive predictions of 

these two widely used constitutive models for articular cartilage. Whether such 

abilities are acceptable is highly dependent on the requirements of the particular 

applications. Incorporation of a nonlinear stress-strain curve and strain-dependent 

permeability may increase the accuracy of the models with the cost of increased 

complexity. 
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A.2 Comparison with standard heuristic optimization method 

To illustrate the efficiency enhancement from adopting the new optimization 

method, the Nelder-mead simplex method, which features a low number of 

evaluations, was used for comparison by analyzing the same indentation data. The 

number of evaluations obtained from the Nelder-mead method and our new method 

are compared and listed in the table below. The two methods give almost the same 

properties, and the compressive modulus, is shown in the table. While the simplex 

method takes significantly more evaluations, the mechanical properties determined 

from the two methods are almost the same (difference < 2%). Furthermore, in practice, 

several optimizations with different initial values have to be used to eliminate the 

potential local minima for the Nelder-mead method, which will double or triple the 

evaluation times. 

Table A.1 The number of evaluations and compressive modulus obtained by two 

optimization methods are compared. 

 Binary search method* Nelder-mead method 

Sample Compressive 

modulus 

(MPa) 

No. of static 

evaluations** 

No. of 

evaluations 

Compressive 

modulus 

(MPa) 

No. of 

evaluations 

#1 0.503 42 36 0.495 214 

#2 0.282 42 36 0.271 226 

#3 0.303 42 36 0.295 155 

#4 0.140 42 36 0.142 197 

#5 0.263 42 36 0.258 183 

#6 0.202 42 36 0.197 149 

#7 0.259 42 36 0.248 233 

#8 0.238 42 36 0.237 251 

#9 0.236 42 36 0.233 113 

#10 0.393 42 36 0.390 134 

#11 0.255 42 36 0.253 183 

#12 0.498 42 36 0.486 211 

#13 0.659 42 36 0.666 197 



 47 

#14 0.868 42 36 0.871 181 

#15 0.704 42 36 0.718 148 

#16 0.990 42 36 1.019 277 

#17 0.654 42 36 0.669 156 

* In this comparison, the error tolerance was set to 0, meaning that every search 

cannot be terminated early by being close enough to the target. Therefore the number 

of evaluations is the same across different samples. 

** Static evaluation only calculate the steady-state deformation. Being a time-

independent evaluation, this process only takes 1~2 seconds, which is small compared 

with the regular evaluation (~20s). 
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Appendix B 

METHOD FOR COMPARING THE PRINCIPAL COMPONENTS 

B.1 Two factors in PCA prediction accuracy 

PCs generated from more full creep curves can provide better prediction of the 

long-term responses. Meanwhile, the accuracy of prediction is also proportional to the 

length of transient data available for reconstruction. To investigate the effects of these 

two factors on PCA predication, parametric studies were performed using the TMJ 

data. PCA is conducted on 2 to 20 (denoted as N) full creep curves randomly selected 

from the 37 TMJ condyle samples, and the obtained PCs are used to predict the long-

term responses of the 17 remaining samples based on their initial data in the first 300 

or 600 seconds of testing. The average of the absolute values of the error between the 

predicted and actual equilibrium creep deformation are plotted against the numbers of 

full tests used to generate the PC (Fig. B.1). As expected, the error decreases as the 

number of full tests increases, especially at low N numbers. The improvement of 

accuracy diminishes as more full tests are included. No significant difference can be 

detected after N is larger than 12. The average error increases 2% when 300-seconds 

data is used for prediction instead of 600-seconds, and this gap cannot be reduced by 

increasing the number of full tests used to generate the PC. 
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Figure B.1 The PCA predication errors are correlated with the number of full tests 

used for PC matrix construction and the length of initial testing data 

available for predication. 

It is important to note that the result in Fig. B.1 does not necessarily suggest a 

minimum 12 full indentation tests for constructing the principal components. Indeed, 

in the present study, only 8 samples are used to extract the PC matrix for prediction. 

The remaining creep curves (9 knee joint creep curves, 32 TMJ creep curves) can be 

well predicted, and the mechanical properties obtained are consistent with those from 

full testing data. In the following sections, it is shown that this low number of tests can 

even be used to capture the regional differences in mechanical properties on the 

articular surface. The N number could be even smaller in practice if the requirement 

for precision is lower. Reasonable results can be obtained when 5 full tests were used. 
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As shown in Fig. B.1, the length of the base data is more important for reducing errors 

than increasing the number of full tests. When the first 600s of data is used, the error 

from merely four full tests is lower than the combination of 300s of data and 20 full 

tests. Therefore, if high precision is desired, such as when the difference between two 

comparison groups are marginally significant, a longer base data (e.g., an extra 5 

minutes of testing) can be much more efficient to improve the accuracy than doing 

more full tests. In consideration of the constitutive assumptions in linear biphasic 

theory and the accuracy of biphasic curve-fitting, we recommend the N number to be 5 

for most applications, which should be enough to provide reasonable prediction of the 

creep curves. 

B.2 Comparison between principal components from two groups of samples 

An important finding in this work is that PC1 is consistent within the same 

type of cartilage, which is the foundation of the proposed prediction technique. PC1 

should represent an intrinsic pattern of the cartilage creep behavior, which could be 

dependent on the ultrastructure and composition of the tested tissue. Meanwhile, 

principal components are directly generated from the original indentation raw data, 

which is not affected by the assumptions in any constitutive models. Therefore, 

comparison of the first PC alone may reveal significant differences between the 

mechanical behaviors of different cartilage tissues.  

B.2.1 Method 

To quantitatively compare two dimensionless unit vectors, a non-parametric 

multivariate analysis method is introduced and tested (Anderson, Marti J. "A new 
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method for non‐parametric multivariate analysis of variance." Austral ecology 26.1 

(2001): 32-46.). 

B.2.1.1 Create observations 

To compare the PC1 between two groups of curves (e.g., curves from TMJ 

cartilage and knee joint cartilage), 5 curves are randomly selected from each group to 

generate the PCs. Fifty observations are obtained by permutation of the selection from 

each group, and then an observation matrix is formulated, in which each row is an 

observation of PC1. The first 50 rows are from group A, and the next 50 rows are from 

group B. 

B.2.1.2 Calculate the F-ratio 

The following steps are used to calculate the F-ratio: 

Distance matrix D is constructed. Element 𝑑𝑖𝑗 in matrix D is defined to be the 

distance between observation i=1,2,…,100 and observation j=1,2,…,100. Euclidean 

distance is used. 

Calculate the overall distance for the 100 observations from both groups: 

 𝑆𝑆𝑇 =
1

100
∑ ∑ 𝑑𝑖𝑗

2100
𝑗=𝑖+1

99
𝑖=1  (B.1) 

Calculate the within-group distance using the 50 observations from each group: 

 𝑆𝑆𝑊 =
1

50
∑ ∑ 𝑑𝑖𝑗

250
𝑗=𝑖+1

49
𝑖=1  (B.2) 

Calculate the F-ratio: 

 𝐹 =
98(𝑆𝑆𝑇−𝑆𝑆𝑊)

𝑆𝑆𝑊
 (B.3) 

Note that this F ratio is based on the within-group distance and overall distance. 
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B.2.1.3 Comparison 

By shuffling the observation matrix by exchanging rows, i.e., the first 50 rows 

of matrix could include observations (PC1) from both groups, a new F-ratio can be 

calculated and denoted as 𝐹𝜋. The shuffling is repeated 1000 times by permutation of 

rows, and 1000 𝐹𝜋 values were obtained. Note that the F ratio here, called mixed F 

ratio, is based on the distance of 50 mixed observations and the overall distance. 

Calculating the p value and performing the comparison: 

 𝑃 = (𝑁𝑜. 𝑜𝑓 𝐹𝜋 ≥ 𝐹)/1000 (B.5) 

gives a P value which represents the possibility that the F ratio based on the 50 mixed 

observations is larger than the F ratio based on the within-group observations. If the 

two groups have no difference, i.e., the 50 mixed observations (PC1) are similar with 

the 50 within-group observations (PC1), this possibility will be close to 0.5 or 50%. If 

the two groups are significantly different, this possibility will be a small value or close 

to 0. The significance level can be selected as necessary. Using this non-parametric 

multivariate analysis method, comparisons are performed between the PC1s from 

different tissues in the present study. 

B.2.2 Results 

B.2.2.1 Comparison between TMJ and knee joint samples 

The F ratio based on the within-group distance is 5647.7, and the possibility 

that the 1000 mixed F ratio is higher than 5647.7 is 0. The PC1 from TMJ and knee 

joint samples are significantly different with each other. 
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Figure B.2 Distribution histogram of the 1000 mixed Fπ. The average of F ratio is 

around 100. 

B.2.2.2 Comparison between randomly divided TMJ samples 

For verification, the 37 TMJ samples were randomly divided into two groups, 

and a comparison of the PC1s of these two groups was conducted. In theory, the PC1s 

from the two groups should have no significant difference. The F ratio based on the 

within group distance is 99.1, while the possibility that the mixed F ratio is higher than 

99.1 is 0.521, which is close to 0.5. The PC1s from the two groups are not 

significantly different. This confirms the efficiency of the non-parametric multivariate 

analysis in the comparison of principal components. 
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Figure B.3 Distribution histogram of 1000 mixed Fπ. 

B.2.2.3 Comparison between healthy and degenerated knee joint samples 

PCA is first performed on 100 groups of creep curves, where each group 

includes curves from 5 healthy knee joint samples which are randomly selected from 

17 samples. The average of PC1 is shown as the solid line, and the range of the 100 

PC1 values is marked by the shadowed region (Fig. B.4). PCA is then performed on 

the creep curves from 7 degenerated samples, which were also harvested from 3-year-

old adult bovine knee joint and identified as degenerated tissue using Indian ink 

staining. Indentation creep tests were performed on the seven samples using the same 

protocol as that on healthy tissue. PC1 of degenerated cartilage, shown by the dashed 

line, shifts significantly away from those of healthy samples. According to the non-
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parametric multivariate analysis, the F ratio based on the within-group distance is 

369.9, and the possibility that the mixed F ratio is higher than 369.9 is 0 (Fig. B.5). 

Therefore the PC1 from healthy and degenerated knee joint samples are significantly 

different. This example indicates that the principal components could be used as a new 

parameter for the comparison of mechanical behaviors between healthy and 

degenerated cartilages. 

 

Figure B.4 The first principal component (PC1) of indentation creep curves from 

healthy and degenerated bovine knee cartilage. 
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Figure B.5 Distribution histogram of 1000 mixed Fπ for the comparison between 

healthy and degenerated knee joint samples 

B.2.3 Predicting the regional difference in mechanical properties on articular 

cartilage 

To further verify the accuracy of the PCA prediction, we revisited the data 

published in a previous TMJ study [28]. In this study, the creep curves of TMJ 

condyle cartilage were generated by 2 gram force instead of 20 gram force. Five 

regions on the condyle surface were indented. The principal components are first 

obtained from 8 randomly selected full tests which could belong to any of the five 

regions. For all the other tests, the full creep curves were predicted based on 600-

second data using the PCs. The absolute value of errors in the predicted equilibrium 

deformation is 4.2%, while the average error is 0.4%. Biphasic curve fitting was 
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performed on all the predicted curves to obtain the mechanical properties. The 

aggregate moduli at five regions are summarized in Fig. B.6, side by side with the 

values from full indentation data. The two sets of aggregate moduli are consistent with 

each other, and the trend between the different regions was preserved. Results from 

further statistical analysis are summarized in Table B.1. The two sets of data 

demonstrated the same regional difference. Therefore, the PCA prediction successfully 

preserved the regional difference in mechanical properties on the same articular 

surface. The result also demonstrated that in this particular situation, for cartilage from 

the same joint surface, different sets of PC components are not required for the 

prediction of creep curves at different sites. 
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Figure B.6 Aggregate modulus from the TMJ indentation test data presented in [28]. 

The moduli were obtained by biphasic curve-fitting the full experimental 

data and PCA predicted creep data. 

Table B.1 Paired t-test results of three groups: anterior & central, lateral & central, 

anterior and medial. 

 Anterior & Central Lateral & Central Anterior & Medial 

Experiment P = 0.0048 P = 0.0016 P = 0.0921 

Prediction P = 0.0049 P = 0.0057 P = 0.0972 

 
 

 

 


