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Tractable forms of the Bond Pricing Equation

J. Goard!, P. Broadbridge?, and G. Raina®

Abstract

So far, a small number of analytically tractable single-factor models have been devised
for the well-known Bond Pricing Equation (BPE). In this paper, new tractable models are
formulated in a systematic manner. First, the BPE is transformed to a standard canonical form
in which only one coefficient function appears. In some interesting cases, this single coefficient
function is identically zero, leaving nothing more to solve than the classical heat equation. In
many cases, the canonical form allows a general solution by standard mathematical techniques
such as separation of variables and Laplace transforms. In other cases, the general solution of
the BPE is reduced to a single inverse Laplace Transform.

KEY WORDS: bond pricing equation, short-rate, canonical form
1. INTRODUCTION

Over the last 25 years there has been great interest in the modelling of the term structure
of interest rates. The value of the interest rate derivatives, such as bonds and swaps, naturally
depends on the interest rates.

It can be shown (see e.g [1]) that when the short-term interest rate, r, follows a stochastic

differential equation of the form

dr = u(r,t)dt + w(r,t)dX,
where dX is an increment in a Wiener process and ¢ is time, then the price of a zero coupon bond
V(r,t; T) with expiry at t = T will satisfy the partial differential equation PDE

oV w? oV ov
-z _ . = 1.1
5 + > 92 + (u — \w) 5 rV 0, (1.1)

subject to V(r,T) = 1, where A(r,t) is the market price of risk. We shall refer to equation (1.1) as
the Bond Pricing Equation (BPE). Many of the proposed models describing the dynamics of the
short-rate take the form u(r,t) = a + Br and w(r,t) = or” where «, 3, 0,7 are constants. These

include those of Vasicek [2] (v = 0), Cox Ingersoll and Ross [3] (v = 1/2), Brennan and Schwartz
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[4] (v = 1) and Dothan [5] (v = 0). The empirical work of Chan, Karolyi, Longstaff and Sanders
[6] on such models, found that the most successful in capturing the dynamics of the short-rate
were those that allowed the volatility of interest rate changes to be highly sensitive to the level of
the interest rate, in particular, those with v > 1. Their unconstrained estimate of v was 1.5. They
also found only weak evidence of a long-run level of mean reversion, suggesting that the short-rate
may revert to a short-rate mean which may be time-dependent. However Ait-Sahalia [7] showed
that the linearity of the drift appeared to be the main source of misspecification.

Interest rate models such as those of Vasicek [2] and Cox, Ingersoll and Ross [3] are popular,
as they lead to analytic solutions of (1.1). Hence they can be used to provide models for the term

structure of interest rates by means of the relation

_ —logV
V=7 for r fixed.

However, as Chan et al [6] found, many of these well-known models perform poorly in their ability
to capture the actual behaviour of the short rate. Interest rate models such as those of Ho and
Lee [8]

dr = n(t)dt + ¢ dX, ¢ constant ,

Hull and White [9]
dr = (n(t) — yr)dt + ¢ dX, ¢ constant ,

and Goard [10]

dr = [*r(a(t) — qr)]dt + cr®/?dX, ¢, q constant |

incorporate time-dependent parameters, which have the added advantage of allowing yield-curves
to be fitted.

Another very popular method of modelling interest rates is the Heath, Jarrow and Morton
(HIM) forward rate model (see e.g [1]). Rather than modelling the short-term interest rate,
this model derives the whole forward-rate curve from which it is a simple matter to fit the yield
curve. However, in some places of the world, such as areas of India and Pakistan, derivatives on
bonds/interest rates do not exist due to regulatory restrictions. As HIM require market derivative
data for calibration, investors are forced to restrict themselves to only using the short rate and
hence the modelling of the short rate is still very important.

This paper lays emphasis on presenting new solutions to the BPE where the forms of the
coefficients are not as restricted as many of the other well-known one-factor models. We look for

specific forms for the risk neutral drift and volatility that lead to tractable forms of (1.1) in the case



where the volatility is a function of the interest rate alone. In all of our examples, our short-rate
follows the realistic volatility of the form ¢r? or ¢r®/2. As not many solutions are known to (1.1)
when the drift function depends on both r and ¢, we concentrate primarily on this case and present
new solutions in Section 2.2. We also take a brief look at the simpler case where the drift function

is independent of time in Section 2.3.

2. NEW TRACTABLE SOLUTIONS

This Section is organised as follows: In Section 2.1 we reduce the BPE to its canonical form.
Then Section 2.2 concentrates on the case where the drift function depends on r, the interest rate
and ¢, time, and constructs new analytic solutions to the BPE using separation of variables (Section
2.2.2), Laplace Transforms (Section 2.2.3) and by reducing it to the heat equation (Section 2.2.4).

In Section 2.3 we briefly look at the case where the drift function only depends on 7.

2.1 Reduction to Canonical Form

It is well-known (e.g. [11], [12]) that for any parabolic equation

8% v v
W+a(w,y)%+ﬂ(af,y)a—y +7(@,y)v = 0, (2.1)
there exists a point transformation of the form z; = z1(x,y),z2 = z2(z,y), and z = H(z,y)v,
such that (2.1) becomes

0%z 0z

4= = 2.2

for some function Q(x1,z2). This canonical form is much more convenient for analysis, since it
includes only one model-dependent adjustable coefficient function. We shall find special cases of
the coefficient function Q(z1,x2) that allow either a full general solution of (2.2) or reduction to

an inverse Laplace Transform. The BPE can be written as

o*V ov. 290V  2r

oz TGt G T w

where




noting that w = w(r) # 0, u = u(r,t) and A = A(r,t). Hence by substituting the point transfor-

mations
r1 = ri(r,t), ro = ra(r,t) and z = H(r,t)V
into
8%z 0Oz
= 2.4
6r1 + 5 s +Q(ri,m2)z = 0, (2.4)

and then equating the coefficients of the derivative terms of the resultant equation with those of

equation (2.3), we obtain the transformations that reduce (2.3) to (2.4) as

t = mro4+ar
1
——dr = /B ri+a
/ wir) i (2.5)
z = H(rt)V, where

H(r,t) = wY%¢(t)exp </ b(r, t)dr> ,

where a1, as and m(# 0) are arbitrary constants and ¢(t) is an arbitrary function of ¢. Then

Q(r1,72) in (2.4) is given by

Q(ri,ry) = —mr — mYw (b(r t) - W)
[a_g ~1 (Ww;g(wf) + (b(r t) — w_,)2] (2.6)

|3
(c((t))—i_at/brt )

2.2 The Drift Function Depends on Time

Bu 8b

In this section we assume and hence &’ are non-zero. We note firstly that if b and w were such

that Q could be written in the form Q(ry,r2) = qo(r2) + q1(r2)r1 + g2(r2)r? then (2.4) could be

transformed to a constant coefficient linear PDE (see [11]).

2.2.1 Preliminary Simplifications. In order to solve equation (2.4) by separation of variables

or by Laplace Transforms we choose @) to be of the form

Q(ri,r2) = F(r1) + G(r2)
and for simplicity take m = 2 in (2.6). We thus require for w = w(r)

w
Q(ry,r2) = —2r + - -2




and b(r,t) to satisfy

ob 0
2 272
w 6r+w b +26t/b(r,t)dr = (¢ (2.8)

where ( is the sum of a function of r and a function of ¢. For now we let ( = 0 and will consider a

more general form of ¢ in Section 2.2.4. Differentiating (2.8) with respect to r we get

o (w?[db ]\ b
5(7 |:§+b:|>+— = 0. (2.9)

Then letting b(r,t) = B~ 2B (2.9) becomes

Br
0 w? By, o (0
5(“§B>—a(5m@=

which on integrating with respect to r becomes

,w2

_7Brr =B+ g(t)Ba (210)

where g is an arbitrary function of t. Now letting B(r,t) = k(t)U (r, t), where k(t) = exp (— / g(t)dt) ,

equation (2.10) simplifies to

From (2.5) we have

1
" /w(f“)dr’ (2.11)

ro =

where we have set a1 = as = 0,m = 2, and

Vir,t) = =
(r:1) H(r.t) (2.12)
_ ()2
(U (rnt) "
Asb = B_I%—f = U _1%, then without loss of generality we let g(t) = 0 and hence B satisfies
0’°B 2 0B
—+—— = 0. 2.13
or? + w(r)? ot (2.13)
From (2.12) then
(w(r)'/22
= 2.14
V) = SR (214)
which needs to satisfy the final condition V(r,T) = 1, where T is the expiry time of the bond, so
that
(w(r))'/?
TY=1= —-"—- T/2). 2.15
V(T, ) c(T)B(r, T)z(rla / ) ( )



In the remainder of this section we will concentrate on constructing new analytic solutions to the

BPE (1.1) by solving (2.4) subject to (2.7), (2.13) (where b = B_l%) and (2.15).

2.2.2 Solution by Separation of Variables. Letting z = X(r1)T(r2), from (2.4) and (2.7)

we get
T(r2) = Be(2ra)e ™, (2.16)
and that
qu —2r+ w;w - (w;)Q =, (2.17)

where 3 is constant and p is the separation constant.
For convenience we let # = T'— ¢ so that (2.13) becomes

B 2 8B _

ar?2  w(r)? ot ’ (2.18)

which from (2.15) we solve subject to
B(r,0) = B(w(r))/2e T/2X (ry). (2.19)

We now consider two specific forms of w(r).

Example-1: w(r) = r?: From (2.17) we have
X"+ (-p+2/r)X =0,
noting that from (2.11) 7, = —+. Hence (see e.g [13])

1 1
X(Tl) = e\/ﬁrlfrl |:Cl(b (1 + ﬁ’ 2, —2@’[’1) + Cz\I’ (1 =+ ﬁ, 27 —2\/'[_1/7‘1):| ,

where ¢; and cq are arbitrary constants and ®, ¥ represent the Kummer-M and Kummer-U func-

tions respectively (see e.g [14] ). A solution to equation (2.4) with w(r) = r? then is
z(ri,r2) = X(r)T(r2)
+ ¥ (1 + #;2; —2\/;77"1)] for uO0.

From (2.18) and (2.19) we now need to solve

0*°B 2 0B
s - 2.21
orz rt ot ’ (2.21)
subject to
1 2 1 2
B(r,0) = e #T/2¢=VHlT [c1<1> (1 +—2; ﬁ) + ¥ (1 +—;2; ﬁ)] , (2.22)
VE T N



for u0. Taking Laplace Transforms of (2.22) with respect to #, we get

d’B
’r‘4 —_

-7~ 2pB = —2B(r,0) (2.23)

where B(r,p) = L{B(r,)}. The solution to the corresponding homogeneous equation of (2.23) is
Be=r [A@)eV™/" + D(p)e V?/"] (2.24)

where A(p) and D(p) are arbitrary functions of the transform variable p. Writing B, = r (Bcl + BCZ) ,
where B., = A(p)e®VP and B, = D(p)e~*VP (with a = v/2/r), Table 2.1 outlines possible invert-
ible choices for B,, and B,, and their respective Inverse Laplace Transforms (see Oberhettinger
and Badi (1973)).

As an example suppose we choose A(p) = 0 and D(p) = ¢4 + csp~ /2. Then

C3 1

B.=r exp( )+ “ ex ( !
T VR P w2 T a2 P

)|, where t=T-—4t. (2.25)

To find B,,, a particular solution to (2.23) we use variation of parameters with the two inde-
pendent solutions of the corresponding homogeneous equations of (2.23).

After a little simplification we find

By(r,p)
—V2p/To—puT/2 T (V2p—/R)/T 1 2 1 2
=_re © ¢ 3 [01<I> <1+—;2;—\/ﬁ) + U <1+—;2; —\/ﬁ>] dr
\/2p 0 r VI r VI r

V2p/re—uT/2 T o—(V2p+v/)/T 1 2 1 2
g e ¢ [c1<1> (1+—;2;%ﬁ)+02@ <1+—;2;#>]dr.

V2p 0 r Vi VH
(2.26)
To find the Laplace inverse of B, we define
—VE/T 1,2 12
hr) = £ [c1<1> (1 +—:2 —‘/ﬁ> +c¥ (1 +—:2; —‘/ﬁ)] (2.27)
T VI T Vi r
and also rewrite B, as
B, = re_uT/2(Bp1 + Bm)a
where
. V2p/r V2p/r
b = € eV?/"h(r)dr, and B,, = € e~ V2PI"p(r)dr
V2p Jo v2p Jo



If we now let

\

e h (rs dT‘3}, and

B.(r,t) = L~ 1{

(2.28)
B,(r,t) = L7! / 5 h (r3 dr3}
where
he = %(h(r) + h(—r)), the even part of h, and
ho = %(h(r) — h(—r)), the odd part of h,
then
By(r,f) = re 5 {B.(r,f) + Bo(r,f) + B.(~1,) — B,(—r,1)}. (2.29)

We note firstly that

T —_
L1 {e% / ersphe(rg)drg}
0
With the substitution r4 = —%, we get

/ ) (t— (l — 1)) he(rs)drs ) (t+ T4+ 1) e (—l> lzdm
0 T3 T — o0 r T4 Ty

Il

LT v 1 [ 1 1 )°
Lt e / T3 he(rg)drs p = —— v /@he( = —1) ( ) d
{\/ﬁ 0 €7 helrs) T3} Vrt Jo ‘ [u+r] ut g !

1 [ .. 1 1\’
—u?/(20) 1.1
B,(r,t) = —th/ e ho ([u+ r] ) (u+ %> du.

Hence we have from (2.29) that

Bp(’l',ﬂ = Te_”T {

> 1 1 \?
s [Ty ([u—;]—l) (u ) du (2:30)
1 T
.

- [ e, (- 1) ()




So a solution to (2.23), with B(r,0) as in (2.22) is

B(Taf) = BC(Tat_) + BP(Tat_);

(2.31)

where B, = L~ '{B.} which can be found from (2.24) and Table 2.1, (an example is given in

(2.25)) and B, is given in (2.30). Hence a solution of the BPE ( (1.1)), with the final condition

V(r,T)=1,1is
r 1 ¢
Vit = CoBrn? (_F’ 5) )

where

_ 1 1
2(r1,m2) = c(2ry)e H2 eV [01‘1’ (1 + ﬁ525_2\//—”'1> + ¥ (1 + \/_ﬁ;2; —2\/177’1)] ;

r1 = —21,ry = L and where B(r,1) is given by (2.31) noting that ¢ =T —¢.

The stochastic differential equation for the spot risk-neutral rate in this example takes the form

dr = r*b(r,t)dt + r?dX,

where b(r,t) = B~10B/0r.

We note that with the various solutions for B, we can obtain many possible forms for the

stochastic differential equation for r. Figure 2.1 shows our solution of the BPE for various param-

eters, the corresponding yield curve and a simulation of the risk-neutral interest rate over the life

of the bond.

Example-2: w(r) = 2r3/2: In this case from equation (2.7) we have

Q(ri,r2) = F(r1) +G(ra),

ww"  (w')? c(t)
R R R
! c(t)
- TaT T Ty

and from (2.11), (2.16) and (2.17), rq T(ry) = Be(2ra)e ™ and X (ry) satisfies

— =1

__\/F’
111

X”+ [—ZE —,U,:| XZO,

where p is the separation constant. The general solution of (2.33) (see e.g [13]) is

X(r) =" [e1 5(V=hr1) + 2 5(V=pr1)] ,p < 0

(2.32)

(2.33)

where J,, is the Bessel function of the first kind (see e.g [14]) and ¢y, ¢y are arbitrary constants.

Hence a solution to equation (2.4) is
z(r1,m2) = X(r1)T(r2)
= Be(2ry)e—Hrapl/? [erd 5(v/—=pr1) + e2d_ s(v/=pr)] -

(2.34)



From (2.18) and (2.19) we now need to solve

B 1 0B _

e 2.
or2  2r3 ot ’ (2.35)

subject to

B(r,0) = p1/2o—0T/2 [clJ\/g (—H—g) +ed_ s (—,/—5 ’] , for pu<O. (2.36)

Taking Laplace Transforms of (2.35) with respect to %, so that L{B(r,t)} = B(r,p) we get

B(r,0)
o

B=-

.
ad B _ ? (2.37)

dr?

The solution to the corresponding homogeneous equation of (2.37) is

A(p)y (—i\/?) +D(p)"y <—Z\/2rz>] ;

where A(p) and D(p) are arbitrary functions of the transform variable p and J, and Y, are Bessel

BC(T, p) =rl/?

functions of the first and second kind respectively. As an example if we let A(p) = c3K1(a./p) and
D(p) = c4K1(a\/p), a = —i, where K, is the modified Bessel function of order 1, then

Bc(r;p) = 7,1/2 |f3K1(04/5)J1 <—\/2Tzl> +C4K1(a\/5)Yl (—@)] ,

and hence (see [15]),
[-1+2/r]

plrz -2 1\/5 1\/5
= 4t ——4/= ——/2].
Bc(’f’;ﬂ 2F € [C3J1< 2\ 7 +C4Y’1 2\ r

To find f?p, a particular solution to (2.37) we use variation of parameters with the two independent
solutions of the corresponding homogeneous equation.

Hence

(2.38)

10



where

W= r1/2K1<—wﬁ>{J1 <— %)aél/“‘ 2 (‘\/@ )]

-Y; (— i—’%) % lrl/ZKl(—i\/ﬁ)Jl (— %)] } and
hr) = —2;/2('”/2 |:01J\/§ (—H) +ed s (—H)] :

Although it is not possible to find an exact Inverse Laplace Transform of (2.38), it may be done

numerically (see e.g [16]). In any case we have reduced the problem to quadratures. From (2.14)

and (2.34) a solution of the BPE (1.1) (with the final condition V(r,T) = 1) is

r3/4
t) = ——
V(T, ) C(t)B(T, t)z(rlaTQ)a
where
-1 t )
"= s 12 = g 2 r) = fe@r)e i [ed s (V=) + el s(V=pr)]

2

[=1+2/1]

B(r,t) = L 4t LBy},

1 /2 1 /2
ot (] o ()

where B,, is given in (2.38) and £ = T —t. We note that the stochastic differential equation for the

risk-neutral spot rate (when w(r) = 2r3/2) for this example takes the form
dr = 4r®b(r, t)dt + 2r*/?dX,

where b(r,t) = B~10B/0r.

2.2.3 Solution by Laplace Transforms. In this section we solve (2.4) by Laplace Transforms.

We first make the substitution 7> = T'/2 — ro, so that (2.4) becomes

8%z Oz

which we solve subject to
2(r1,0) = (w(r))*B(r, 1),

1
where r; = / Mdr, c(t) = 1, and B(r,t) satisfies (2.13).

11



Example-3: w(r) = r?: Equation (2.39) with @ as in (2.7) becomes

8_22:_2_{_32'—0
67’% OFa 1 e

Taking Laplace Transforms with respect to 75, we get

+£+ 2 —2(r1,0) (2.40)
dr? r1 b b )

where Z(r1,p) = L{z(r1,72)} and 2(r1,0) = —m B (—%,T) with B(r,t) any solution of

0’B 2 0B
— +—5— =0. 2.41
or? * rt Ot (241)
We list some solutions of (2.41) in Table 2.2 (obtained by Laplace Transforms, separation of vari-
ables and the classical Lie Symmetry Method (see [11])). Solving the corresponding homogeneous

equation of (2.40) we find

zZ(r1,p) = A(p)M 2\/1—)r1) + D(p)W ( 2\/1%1) ; (2.42)

(e 5
where M(-) and W (-) are Whittaker functions (see [14] for definition). To find Zp, the particular
solution to (2.40), we can use variation of parameters using the two independent solutions of the
corresponding homogeneous equation to (2.40).

Hence
2= L7 {z:(r1,p) + 5 (r1,p)} - (2.43)

Hence from (2.13) a solution of the BPE (1.1) is

where B(r,t) is any solution of (2.41) as outlined in Table 2.2, and z is given in (2.43). In this

example the stochastic differential equation for the risk-neutral spot rate takes the form
dr = r*b(r,t)dt + r’dX,

where b(r,t) = B~10B/or.

Example-4: w = 2r3/2;

Equation (2.39) now becomes

which we solve subject to



where B(r,t) is any solution of
0’B 4 1 0B _ 0
orz 23 9t

such as those in Table 2.3. Taking the Laplace Transform of (2.44) with respect to 7, we get

(2.45)

z

d’z 11 1\ _
- (p+ ) e = 20,0, (2.46)

Solving the corresponding homogeneous equation of (2.46), we get

Ze(r1,p) = 12 (A(P)J y5(v/Br1i) + D(p)Y.s5(/prii) (2.47)

where A(p) and D(p) are arbitrary. To find Z,, a particular solution to (2.46) we can use variation
of parameters using the two independent solutions of the corresponding homogeneous equation to
(2.46).
Then
2z =L {3.(r1,p) + Z,(r1,p)} . (2.48)
From (2.14), a solution of the BPE ( (1.1)) is

342 (ry, 1)

Vit = B(r,t)

where B(r,t) is any solution of (2.45) such as those outlined in Table 2.3 and z(r1,T/2 — r3) with

ri/2

the risk-neutral spot rate takes the form

t
ry = and ry = 3 is given in (2.48). In this example the stochastic differential equation for

dr = 4r®b(r, t)dt + 2r3/?dX,

where b(r,t) = B~10B/0r.

2.2.4 Reducing to the Heat Equation

In this section we choose ¢ in equation (2.7) and (2.8) to be a function of r so that Q(r1,r2) =0,

ie.
" 2
) = —2r+ 2 _ ) (2.49)
2 4

With the substitution 72 = T'/2 — 75 equation (2.4) becomes the classical heat equation

0%z 0z

- _ 22 = 2.

ar} O, 0 (2:50)

for which many solutions are known and tabulated (see e.g [17]). We solve (2.50) by the method

of Laplace Transforms which will incorporate the final condition

2(ry,0) = (w(r))~"Y?B(r,T). (2.51)

13



Without loss of generality we have taken c(t) to be 1. With V(r,t) as in (2.14) and b = B,./B
satisfying (2.8), by a similar calculation to that in Section 2.2.1, we find that B now needs to
satisfy

w? ¢(r)

Taking Laplace Transforms of (2.50) with respect to 72 we get

%3
— —PE = — : 2.
oz P~ 2(r1,0) (2.53)

for which the general solution to the corresponding homogeneous equation for p > 0 is

7, = A(p)evP™ + D(p)e VP™ (2.54)

There are many possible choices for the arbitrary functions A(p), D(p) of the transform variable
many of which are listed in Table 2.1 (with a = 71). As an example if A(p) = 0 and D(p) =

co + c1p1/? we find after inverting (2.54)

ze(r r_)—cilex —ri) __en ex -y (2.55)
c\"1,12) — (7_[_7_72)1/2 p 47‘—2 \/77_23 p 47‘_2 . .

To find Z,, the particular solution to (2.53), we use variation of parameters with the independent

solutions of Z.,

y1 = A(p)eV?" and  y, = D(p)e” V™.

Example-5: w(r) = r?: Using variation of parameters with r; = —2 we get
A e [T &
Zp = 7 o e~ 73 H(rs)drs — 7 /0 e™s H(r3)drs (2.56)
where H(r) = % . To find 2, = L71(2,) we let
Y/ )
ze(r1,73) = L7t e\/}) /0 e 73 Hy(r3)drs p and

N

T
.
2o(r1,72) = L7t e\/;—)/e_T;HO(T3)dT3 ,
0

where
H,(r) w, the even part of H and
H,(r) = w, the odd part of H
then

zp(rh'ré) = ze("&;”é) + 20(7’1,’!‘72) + ze(_rlaﬁ) - Zo(—ﬁ,fz)-

14



We note firstly that

L1 {eg / e:;He(rg)drg} = Lt eip(%fé)He(rg) drs
0 0
= / ) <r_2 - (l - 1)) H,(r3)drs.
0 T3 T
With the substitutions r4 = —% and r; = —1, we get

1 1
/ 0(ra +r4 —r1)H, (——) —dry,
Ta) Ty

(i) (5 2)

which evaluates to

Hence,

VP T
o VP
Ze(r1,m2) = L—l{e\/l_)/ e’“:iHe(T3)d7‘3}
0

P | e T Ho(rs)drs | d

W ° L[/ (’"3“3]”
1 2

= — _:7"2 e — -1 du.

\/77_2/0 e H, ([u—r] )<u—7‘1) u

Similarly it can be shown that

2
u?2 1
2o(r1,72) = '_777“2 e 2 H, (lu—r]") (u—ﬁ) du.
Hence .
1 2
= — 47‘2 _ 1
zp(r1,72) = W e 2 H (lu—mr]") (U—7’1>2du
1
41‘2H 1 d
\/ﬁ e [u+r1] )<u+r1>2u
1
_ 47‘2H 1 d A
\/ﬁ/ e ([u+r1] )<u+r1) u
Then

Z(Tlar_Q) = ZC(Tlar_Q) + ZP(TIJT_Q)J

(2.57)

(2.58)

where an example of 2. is given in (2.55) and 2, is given in (2.57). We now need to look for suitable

functions B(r,t). From (2.49) and (2.52), B(r,t) needs to satisfy

r*9’B OB

—rB.
S Tar "

By separation of variables we find one possible solution as

B

X(r)T'(t)

(2.59)

(2.60)



where ® and ¥ are the Kummer-M and Kummer-U functions respectively (see e.g [14]). Hence a
solution to the BPE which satisfies the final condition is given as

T z(_la T_t)

Vint) = g

where B(r,t) is given by (2.60) and z is given by (2.58). The stochastic differential equation for

the risk-neutral rate takes the form
dr = r*b(r,t)dt + r’dX,

where b(r,t) = B~ '0B/0r.
Example-6: w(r) = 2r3/2: In order to find z, for this case we perform a similar calculation to

that in the previous example and find that

2p(T1,72) = \/77 e 4T2H (r1 —u)du
= e 4T2H r —u)du 2.61
Vg_/oo ) (261
- — e~ Hy(—ry — u)du.
7T7’2 0

Notation is as in the previous example with H(ry) = @. Then
2(r1,72) = 2e(r1,72) + 2p(r1,72) (2.62)

where z. is given in (2.55) and z, is given in (2.61). To find B(r,t), from (2.49) and (2.52) we find
that it needs to satisfy
w?d*B 0B 11

S5z te = “g'B (2.63)

Some possible solutions to (2.63) are listed in Table 2.4.

Hence a solution to the BPE (1.1) is

V(r,t)

(2.64)

where the solution for z(ry,r2) is outlined in (2.62),with z(ry, 0) satisfying (2.51), and where B(r,t)
satisfies (2.63) such as those solutions in Table 2.4. The stochastic differential equation for the

risk-neutral spot rate takes the form
dr = 4r3b(r, t)dt + 2r*/?dX,

where b(r,t) = B~10B/0r.
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2.3 The Drift Function is Independent of Time

With w and b functions of r alone, from equation (2.6),

n 1\2
Q(ry) = —2r — buw? + % — w2b? — (“’4) , (2.65)

and so using b = .5, where we take A = 0, we have

2uw’  ww”  u? (w')?
— — 9 — ! - - 2.
Q(r) r—u + 5 - 1 (2.66)
Letting 7> = £ — 3, we could then try and solve
0%z 0z
_ = =0 2.67
87‘% oFs + Q(Tl)z ) ( )

for particular 4 and w function, subject to

(r,0) = \/ﬁexp ( / b(r)dr)
ul,@«) o </ wld)

with ry = [ mdr. We note that if for particular functions u and w of r we could write (2.66) as

Q(r1) = ap +a1ry + ozgrf; o, 01, a2 constants,

then we could transform (2.67) to a constant coefficient linear PDE (see e.g [11] ) before proceeding

to solve it. As well, functions v and w for which Q(r;) = 0 satisfy the Airy equation

W = (%) u— (%) u? + (w;”" - (w;)Q - Zr) . (2.68)

Letting v = exp ([ %dr), equation (2.68) becomes

1 (ww" (w')?
UH_E( 5~ 4 —2r v =0, (2.69)

and the initial condition for z becomes

1

w(r)

z(r1,0) = v(r). (2.70)

Example-7: w(r) = cr®/2:  From (2.69) we get that Q(r;) = 0 when

3 2
2,1 9 4 —
v +<16+02>v 0,

so that for
c?> 32

(2.71)
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and so
AEr3[Amyir™ ! + Bmyrm2—1]

“= Arm™ 4 Brme ’ (272)
c? < 32
v =r'?[Acos(alnr) + Bsin(alnr)], a= 32T—027 (2.73)
and so
= e e ) e
c? =32
v=r2[A+ Blnr] (2.75)
and so
. 16r%/2 [(A + 2B) + Br'/?1n r] (2.76)

A+ Blnr
Taking Laplace transforms of (2.67), with respect to 72, with Q(r;) = 0, requires then that we
solve
dr?
where Z(r1,p) = L{z(r1,72)} and from (2.70)

1

1
cz2r

z(r1,0) = v(r), (2.77)

with r; = % As before we write Z = %, + %, and find
= A(p)eVP™ + B(p)e VP, (2.78)

where A(p) and B(p) are arbitrary functions of p. Many choices of these functions are possible for
which Laplace inverse functions are known (see Table 2.1 with a = ;).

Using variation of parameters

\/17T1 r1 7\/57‘1
21) = _6 67\/:5713H(’I“3)d’l“3 -+ €
VP Jo

where H(ry) = @ with the initial condition for z given by (2.77) and with v(r) as in (2.71),

/ eVP" H (r3)drs (2.79)
0

(2.73) or (2.75). Performing similar calculations as in previous examples, we find

e 4T2H (r1 —u)du

ZP(T17T_2) = \/77

+ Tr / e 4T2H (=r1 —u)du (2.80)

e 4’2H o(—r1 — u)du,

Tre 0
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Finally, the solution to the BPE (1.1) can be found by

c/2p3/4 -2 T—t
Voo = S (e )

Figures 2.2 and 2.3 show our solution of the BPE for various parameters (Figure 2.2 in the case

c? > 32, Figure 2.3 in the case ¢? < 32), the corresponding yield curves and simulations of the

risk-neutral interest rate over the life of the bond.

3. CONCLUSION

There exist at the moment a small number of analytically tractable models for the Bond Pricing
Equation (BPE). From solutions to this equation we are then able to build yield curves, giving
investment return as a function of waiting time to expiry. In this paper we have shown how reducing
the BPE to its standard canonical form, in which only one model-dependent adjustable coefficient
function is left, and then finding special cases for this coefficient function that allows either a full
general solution of the BPE or the reduction to a single inverse Laplace transform, we are able to
expand the class of analytically solvable models. In some of our cases, the coefficient function was
identically zero, leaving nothing more to solve than the classical heat equation. Unlike many of the
current models, most of our solutions to the BPE use short-rate models which incorporate time in
the drift function and all our solutions incorporate a realistic r% or r2 dependence on interest rate
volatility. The new solutions that we present, naturally satisfy the required final condition, namely
that the solutions should uniformly reach the expiry value 1, independent of r. Some solutions
to the BPE and their corresponding yield curves have been plotted, along with simulations of the
associated short-rate.

While some interest rate data may be fitted to one particular interest rate model, other interest
rate data may not. As such, there is always a need for new solvable models to the BPE. It is hoped
that the new solvable models, introduced here, may allow a better match to the term structure of

some real interest rate data.
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possible choices Inverse Laplace Transforms

for B.,, B.,
ok -1
ce vt Serarm 1T Bexp(~a2/(4)
1
cipze P* Leym=3(a? — 20)t 3 exp(—a?/(4%))
1 .
cp~ e o1 ()~ 2exp(—a?/ (41))
1
cipe” P’ ferar 315 (a?/(20) — 3)exp(—a?/(4F))
1 _
clpflefalﬂ clErfc(%atff)
1 —
c1pte=ap? Leym= 3T %(3 — 302/ (20) + o/ (47))
1 _ —
cip~ie P? 2¢y (/)2 exp(—a? ) (4F)) — aErfc(%at*%)
1 _
phn=de-(on? c1(20)~4 ()~ exp(— ka/DHen (2¢/a) 4
where He,,(r) is the Hermite’s polynomial of
order n defined as He,(r) = (-1)" esr”’ d" 4" =31’
c1 ”e*‘“’% 2 v=3cim2F Y Lexp(—a?/(8%)) Doy [a(2) 2
p p +

where D, (r) is the parabolic cylindrical function

defined as D, (r) = e~i" He,(r), » = 0,1,2, ...
cre= %% (pz +b)~! ¢y (wf) " zexp(—a?/(4f)) — c1b exp(ab + bzf)Erfc(%at__% + biz)

1 1
cip2e P’ (pr +b)7! crexp(ab + b*)Erfe(3at = + bt2)

cp~t(p? +b)~te—w? c1b™ Erfe(Lat=7) — e;b~'exp(ab + b%f)Erfe(at~3 + bt?)

c1p? (pb +b)Teap? e1(nf) % (La/T — b) exp(—La2/i)
+clb2exp(ab + b*D)Erfe(Lat—% + bi3)

ap(p? +b)"teor? cim 3T 3(PT— L — Lab + La? /%) exp(—1a?/?)
—clb3exp(ab + b?1)Erfe(at~ 2 4 bi2)

cip (pt +b)te vt c1b 1 [2(/) % exp(—}a?/f) — (a + b~ !)Erfe(Lat %)
+b~texp(ab + bzﬂErfc(%af_% + bE%)]

M=

c1(2b8% + ab + 1)exp(ab + b?t)Erfc(Lat~ 7 + biz)
—2¢,b(E/m)t exp(—La?/)

c1p” i (ph + b)2emoP” 2¢, (£/m) % exp(—4a? /)

—c1(2bt + a) exp(ab + b%)Erfc(%af_% + btz)

c1(p? +b) 2e 9P

erpt(p} + b)~2e—ar? e1b2Erfe(baf ) — 26,6~ (F/7) exp(—La? /)
+ c1(28 - b72%) exp(ab + b%‘)Erfc(%af_% + bEz)

Table 2.1: Possible choices for B,, = A(p)e®V? and B., = D(p)e~ VP in (2.24), (2.54) and (2.78)

with their corresponding Laplace inverses.
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b L (- 2) o (2 ) (22 ) o ()| oz 2

Note: that in the above solutions we can have +r added to these (when B(r,0) =r B, =r/p)

5). e M

2,/— 2,/—
Asin (Q) + B cos <Q)] for p <0
L
6). art'/?e2r?t

7). air+ as
1

arr (6%) 9,27

Table 2.2: Solutions to equation (2.41) for B(r,t) by Laplace Transforms, separation of variables

and the classical Lie symmetry method.
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1
1). cire2rt + E—Zeﬁ
L
2). Q(rt) where Q(z) =a [ e2zdz+

Art/2 (%) + Br'/?v; (%)] , for pp <0

a® —2/r
172 /

4). Te_T [Jl (\/_—Ti) Y, (\/__Tjt)],for a> —?

3). e H

Table 2.3: Some solutions to equation (2.45) for B(r,t).

1). e Htpl/2 |:C3J\/ﬁ (—\/ _f“) +C4J7g (—\/_Tzu>]
2

2). rtes [CyW (1, Y, JL) + CoM (1, Y24, (L))

> 2rt

where M(-) and W(-) are Whittaker functions
3). YIEU [0 cos(YLIn(rt2)) + Cosin(%Lin(rt?))]

Table 2.4: Some solutions to equation (2.63) for B(r,t).
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Figure 2.1: Example-1 solutions for (i) the bond price, (ii) the corresponding yield curve and (iii)
the simulated interest rate model over the life of the bond, with the parameters T = 10,y =1,¢; =

1,0 = 0,7 = 0.04 and B, as in (2.25) with ¢3 = 10,¢4 = 1.

25



1 2 3 2
().
/
//
Y,
1 2 3 2 5

(ii).
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Figure 2.2: Example-7 solutions for (i) the bond price, (ii) the corresponding yield curve and (iii)
the simulated interest rate model over the life of the bond, with the parameters T = 5,¢ =6, A =

0.0001, B = —0.5,m; = 2,ms = %, r = 0.04.
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Figure 2.3: Example-7 solutions for (i) the bond price, (ii) the corresponding yield curve and
(iii) the simulated interest rate model over the life of the bond, with the parameters T' = 10,¢ =

0.1,A=1,B =0,r = 0.04.
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