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As an Integral-Operator Problem in a Plane Region

Allan G. Dallas

Abstract. Motivated by a desire to simplify the design of numerically stable and efficient
approximation schemes for boundary-operator problems, we develop a framework in which an
integral equation set on the boundary of a domain in R® can be systematically reformulated as an
integral-operator problem set in a region in the plane; some geometric restrictions are imposed
on the shape of the (smooth) boundary. When the plane region is chosen to be a rectangle, the
necessary Sobolev-space structures can be handled numerically rather easily in the new simpler
geometry, in contrast to the situation on the original boundary. Moreover, familiar trial- and test-
functions can then be employed in the construction of approximate solutions of the reformulated
problems. We show for two examples how a well-posed problem can be transferred from the
domain-boundary setting to the plane-region setting. We describe a numerical implementation
of these ideas to a lower-dimensional example involving the approximate solution of a first-kind
integral equation associated with the Helmholtz equation that is originally set on the boundary

of a domain in R?.
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1. Introduction.

Frequently, a boundary-value problem in partial differential equations can be reformulated in one
way or another as an equivalent operator problem that is well posed in certain (usually, fractional-
order) Sobolev spaces of functions or distributions on the boundary T' := 09 of a domain Q in R?
or R3. Once such a well-posed reformulation has been found, the next task involves the selection or
design of a convergent, stable, and easily implemented numerical scheme for approximate solution
of the new boundary-operator problem. At that stage, it can be very helpful if one is actually
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able to “manipulate numerically” the pertinent Sobolev structures, i.e., if one is able to compute
norms, inner products, the action of duality operators, etc., in the Sobolev spaces between which the
boundary operator is an isomorphism. For example, supposing that the prerequisites for convergence
are fulfilled by the operator and the trial- and test-subspaces, the successful design of a Galerkin
procedure that is numerically stable and features “effectively sparse” (or “compressible”) system
matrices depends entirely on an intelligent selection of the particular basis-functions for the trial-
and test-subspaces. Thus, as shown in [4], numerical stability—by which we mean the boundedness
of the sequence of condition numbers of the Galerkin-system matrices—will be assured if the families
of trial and test basis-functions are well conditioned in the respective Sobolev inner products, i.e., if
the sequences of Gram matrices of the trial and test basis-functions in the respective Sobolev inner
products have bounded condition numbers. Now, in [5] we discuss a scheme that appears, at least
in a number of important cases, to produce a family well conditioned in a fractional-order Sobolev
space of our choice by the isometric mapping and “back-projection” of a family that is already
known to be well conditioned in the associated L,-space, provided that the underlying geometry is
so simple that we can numerically manipulate the Sobolev structures in the sense indicated. For
example, this can be carried out for problems set in various Sobolev spaces of functions/distributions
in an interval in the line or a rectangle in the plane; two cases in the one-dimensional setting are
worked out in [5]. One can also consider working on a sphere, since the Sobolev structures can
be handled numerically for that geometry, as well, but some difficulties enter there because of the
differing topology.

Thus, we are motivated by the idea that it is easier to design a numerically well-behaved
Galerkin scheme for a problem posed in a geometrically simple setting, such as a plane rectangle,
than for a problem posed in a relatively complicated geometric setting, such as the boundary of a
domain in R®, just because one can numerically manipulate the structure of Sobolev spaces asso-
ciated with the simpler geometry. Accordingly, we set up here a framework within which one can
systematically study the replacement of an original boundary-integral operator problem by a new
integral-operator problem that is set in a region in the plane; in applications, the plane region will be
chosen to be a rectangle. Of course, this is to be done in such a way that the desired solution of the
original problem can be easily constructed (or approximated) once the solution of the new problem
is known (or approximated). As an additional advantage in this approach, well-known families of
trial/test functions (splines, wavelets, etc.) can be used in constructing approximate solutions in the
new geometry. Effectively, we aim at trading a problem that would be solved approximately by a
“boundary-element method” for a problem to be solved approximately by a “finite-element method”
in a rectangle.

Let us summarize the organization and steps of the development. In Section 2 we specify the
geometric restrictions on the original domain in R®, fix a parameter-domain O in the plane, and
introduce notation for codrdinate patches and a partition of unity. Section 3 is concerned with a
review of the definitions of the Sobolev spaces for the boundary I', along with the definitions and
properties of the operators connecting the structures on I' and on 0. The “admissible” integral
operators on I' are introduced in Section 4, where we also explain how such an operator generates
a corresponding one in a product space on the region 0, and examine relations between the two.
Two typical well-posed boundary-operator problems are considered in Section 5, one of the “second
kind” and one of the “first kind,” in the classical terminology. For each, we show how to formulate
a corresponding well-posed operator problem in a product of Sobolev spaces on O, with provision
for constructing (an approximation of) the solution of the original problem from (an approximation
of) the solution of the new problem. Moreover, we discuss the applicability of the Bubnov-Galerkin
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method to the new operator problem in each case. In Section 6 we give some orientation on the
Bubnov-Galerkin method in a product space, and expand on some aspects of the application of the
method to the reformulated first-kind problem of Section 5. We have begun the numerical work in a
simplified two-dimensional setting, to gain some experience in the application of the idea, including
the arrangement of the codrdinate patches, the use of the partition of unity, and the selection
of a “coupling constant” introduced in Section 5 for the first-kind problem. Section 7 contains a
description of such an initial application to a first-kind integral equation arising in a two-dimensional
acoustic scattering problem. We display or cite some numerical results confirming that the whole
apparatus works.

Certain other points should be made clear at the outset.

(1.1) Our “framework for systematic reformulation” is really just a careful exploitation of the
classical constructions of the Lebesgue measure and integral for the boundary I" and of the Sobolev
spaces H®(T") associated with I" (for appropriate real s depending on the smoothness of I'). Both
of these constructions employ a covering collection of cordinate patches for the description of the
boundary along with a subordinate partition of unity to set up mappings from the boundary into
the plane which permit the definitions of the structures on the boundary to be made in terms of
structures already in place in the plane, viz., the Lebesgue measure for R? and the scale of Sobolev
spaces available for R?. A review of these definitions reveals the presence of certain isometric
operators from spaces on the boundary into corresponding spaces on an appropriate subset of the
plane, and it is these operators which permit the transfer of problems posed on the boundary to
problems posed in the plane.

(1.2) In addition to some smoothness for the boundary I', we impose a further geometric restriction
by requiring that I" can be covered with just two codrdinate patches, a condition that is not neces-
sary but apparently becomes practically essential when one comes to implement the reformulations
numerically. That is, if one supposes an n-patch covering and follows through the developments,
then the reformulated problems will emerge in an n-fold product of Hilbert spaces; we have presented
the arguments in the case n = 2, and so our new problems here are set in a product of two Hilbert
spaces.

(1.3) The new unknown in the plane region will vanish in a boundary strip, owing to the use of
the partition of unity, so that the new problem can always be set up in some H§-space and its dual
(although the H§-space may coincide with the H®-space if the positive s is small enough). However,
wanting to leave some flexibility for the later applications, we permit the spaces in which we set the
new problems to be possibly larger.

(1.4) The two example reformulations that we present here involve only integral operators bounded
in the usual space L,(T"), e.g., operators with (at most) a weak singularity. The treatment of, say,
operators with more severe singularities in their kernels, such as operators generated by derivatives
of double-layer potentials for the Laplace or the Helmholtz equation, is deferred to a subsequent
note.

(1.5) We are giving here only the basic ideas underlying the reformulations, and omit mention of a
number of analytical issues, such as error estimation and, especially, the effect on the error that is
caused by selecting a “small” or “large” overlap of the two codrdinate patches. In the program for
the lower-dimensional case that we have set up, the size of the overlap is an adjustable parameter,
so that we do have the ability there to conduct some numerical experiments for assessment of this
effect. We should also point out that we have presently no useful estimates for the permissible size of
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the “coupling constant” that is introduced in the reformulation of the first-kind problem examined
in Section 5, although we do have some preliminary numerical indications from the few experiments
that we have performed.

(1.6) By the same token, we are ignoring some numerical aspects which may become important if
large-scale applications are undertaken. For example, there are questions of economy raised not only
by the use of overlapping codrdinate patches, but also by the fact that a portion of the discretization
of the plane region will be “wasted,” since the support of the solutions of the new problems will, in
the usual implementations that we envision, be contained in a disc.

This article is a companion to [5], where we show how one can work within a simple Sobolev-
space structure to generate Galerkin procedures that appear to be numerically stable, by the con-
struction of families of trial- and test-functions that are evidently well conditioned in a selected
fractional-order Sobolev space. In fact, the ideas described there provided the initial motivation for
seeking a reformulation device of the sort that is the main topic of the present article.



2. Geometry.

Let Q C R® be a bounded regularly open set with boundary I := 8 of class C™, m > 2. We place
some additional restrictions on I'. First, we suppose that we can find an atlas for I' comprising two
charts, ¢.e., that we can describe I' with just two codrdinate patches (F o h +) and (I‘_, h_); one
can permit descriptions with greater than two patches, but it will become clear that the resultant
numerical schemes are correspondingly more complicated, as explained in the introduction. Thus,
I, and I'_ are open subsets of I’ with ' =T, UT_, while the maps hy : Ty — hy (I'}) C R? are
C™-diffeomorphisms onto open sets in R?. Moreover, the compositions

hyoh™ :h (T,NT_)—h,(C,NT_) and h_ohi' :h (T,NT_)—=h ([.NT)

are C™-diffeomorphisms between the indicated open subsets of R?. We also assume that there is a
class-C™ partition of unity {¢*, ¢~} for I' subordinate to {I',,I'_} with the property that there
is some open rectangle (0 C R? for which

hy(supppt) Uh_(suppy~) € O C h (T, )Nnh_(T_).

Actually, the plane domain O need not be a rectangle, but can be merely an open subset of R2. How-
ever, for the reasons already outlined, we shall eventually take O to be rectangular in applications,
and so we shall continue to refer to it as a rectangle.

If T is starlike with respect to some enclosed point P, the imposed conditions will be fulfilled. In
fact, in that case one can generate codrdinate patches with the required properties by first mapping
T" onto a sphere centered at P and then using the two stereographic projection maps into the plane
that are associated with the respective poles of the sphere. If Q is convex, acceptable patches can
be constructed even more simply by the direct use of two stereographic projection maps.

We shall describe the developments by continuing to suppose that Q@ C R3, although every
statement will have an analog in the situation where O C R?. Thus, the example discussed in
Section 7 is set in the latter lower-dimensional geometry.



3. The spaces H*(T') and H *(0)?; connecting operators.

Since our reformulation is closely connected with the relations between the definitions of the Sobolev
spaces H®(I") and the form of the integral over T, it is pertinent to recall briefly the constructions.
At the same time, we introduce several naturally occurring operators that are indispensable for
our transfer of problems set in spaces of functions on I' to corresponding problems set in spaces of
functions on the rectangle [OJ.

For the definitions and fundamental properties of Sobolev spaces (in particular, Sobolev spaces
associated with the boundary I'), antiduality, and constructions of “spaces of negative order,” we
rely on the developments to be found in, e.g., AUBIN[1], [2], BEREZANSKII[3], GRISVARD [7], and
LIONS & MAGENES [10],

The usual surface measure for I that is induced by Lebesgue measure A\; on R® we denote by Ar;
the associated spaces L, (T) are constructed in the familiar way. In particular, the integral [ udAr
of an appropriate complex function u over I' with respect to A\ has meaning; the integral is defined
(and computed) with the help of a partition of unity such as {¢F, o™}, introduced in the preceding
section. In the present case, by recalling the properties listed in Section 2 for the codrdinate patches
and the partition of unity, we find that

/udAF :/ (pTu) o ' TnT'dA, +/ (p7u)ohZ' JnZ'd\,  for we Ly(T), (3.1)
r O O

in which Jh;l denote the generalized Jacobians; in the special case when the support of the integrand
is contained in a codrdinate patch, this can be written as, e.g.,

/ud)\r = / wo h' Jh' d), for we L(') with suppucCT,. (3.2)
r hy(Ty)

H(T) denotes the usual (complex) Hilbert space obtained by equipping L, (T) with the familiar
inner product given by

(u,v)or == / wod\r  for wu,v € Ly(T). (3.3)
r

It is helpful to point out an equivalent definition for the space H°(T). For this, corresponding to a
complex function u on T let Ku := (K*u, K~u), in which K+u and K~u are constructed on the
rectangle [0 as the restrictions

Ktu:= {\/Jh?( oFu) oh;l} ‘D
Ku:= {\/E(\/go_—u)ohzl}‘ﬂ

note that the respective (compact) supports satisfy supp K*u C hy (supp cpi) cOchy (I‘i).
Then we again realize H°(T) as the set of all complex functions defined a.e. on I" and such that both

; (3.4)

K*u and K~u belong to H°((J). Moreover, it is easily checked that the inner product displayed in
(3.3) is also given by
(U:U)O,F = (K+U7K+U)0,D + (K_UaK_U)o,EIa

with (-, -), g indicating the inner product in H%(0). Consequently, by setting
Kyu:= (Ktu,K~u)  for ue H'T), (3.5)
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we obtain an isometry K, : HO(T') — H°(O)? carrying H°(T') onto a (closed) subspace of H°(O)?
comprising function-pairs with compact supports in OJ.

By relying again on the Sobolev structures already in place on [, corresponding steps can be
followed in defining the spaces H*(T') for 0 < s < m. As we wish to preserve some flexibility in the
choice of the spaces in which the eventual reformulations of boundary-operator problems are set, it
proves convenient to single out a subspace H*(0) of H*(O) containing H§(O), the closure in H*(O)
of C§°(0). Thus, H*(O) is a Sobolev-Hilbert space of functions on [ satisfying

Hi@) c H'(@) c H*@)  (0<s<m) (3.6)

and equipped with the structure inherited from H*(O) (so that the natural injections in (3.6) are
continuous). If 0 < s < 1/2 this requires that H*(0) = H*(O), since we know that HE(O) = H*(O)
for such s. For example, we may take H*(0) to be H§(O) or HS,.(O), the closure in H*(O) of
the restrictions to O of the appropriate doubly-periodic C*°-functions on R?; the selection will be
dictated by the desire to use one or another family of co6rdinate functions in the implementation of
a Galerkin procedure. The inner product of H*(0) we denote by (-, -), o, while (-, - ), o indicates

the usual corresponding inner product for H*(0)2.

Definition 3.1. Let 0 < s < m. H*(T) is the set of all complex functions defined a.e. on T" and
such that both Ktu and K~ u belong to H*(O) (in which case they will be in H§(O), so also in
H?(O)). H*(T) is equipped with the inner product given by

(u,0)5p = (KTu, K*v), 0+ (K u, K v), 0.
The linear operator K, : H*(T') — #°(0)? is defined by

Ku:=Ku= (K"u, K u) for ue H*(T). (3.7)

It follows that each H*(T") is complete, while K, is an isometry; the range of K is then closed
in H*(0)? and contained in H(O)2. It is also important to note that K, = K | H*(T), i.e., that
each K is simply the appropriate restriction of K.

Since each K| is injective and has closed range, it is left-invertible. In seeking a left inverse
for K, one is led to consider the operation X mapping function-pairs U defined on O to functions
defined on T' according to

_: pt€) ot v~ (£) -
%0 = |5, @ U ), <m0, eer
for U=(U*,U7):0— C?; (3.8)
here the notation [-]F+ indicates, for example,
et (U (hy (9) if & €supppt
[reutn@) = { : (39)
+ 0 otherwise

(vecall that h, (supp ™) C O), while [-]r  has the similar meaning. In fact, simple manipulations
show that
KKu=u whenever u:T'—» C (3.10)
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and

KXU = ((woh {\/go"‘ jh_ t U oh_ }oh+1,

h_
(¢ ohZH U~ +{\/<p+cp — o U+oh+}oh:1>

Jh oh,
whenever U= (UT,U"):0—-C2.  (3.11)

Let 0 < s < m: by appealing to well-known results about the operations on Lebesgue and Sobolev
spaces formed from multiplication by a sufficiently regular function and composition with a suffi-
ciently regular transformation, it is clear from (3.11) and Definition 3.1 that the operation U — XU
takes H*(0)? into H*(T) and is bounded in that setting; accordingly, it is legitimate to define X,
to be the restriction of this operation to H*()?2:

Definition 3.2. For 0 < s <m, X, : H°(0)? - H*(T) is defined by

KU :=KXKU for UeH(O):2

As indicated, the resultant operators X, are bounded. Moreover, we obviously have X, =
Ko | H*(D)? for 0 < s < m.

The composition of K and X, produces a third operator Q, which is also important for present
purposes,
Q, := K,X, : H°(D)> —» H*(D)?, (3.12)
along with its restrictions
Q,:=9, | H*(O)? = K, X, : H°(0)? = H°(0)°.
We shall show that Q, is a projector in H*(0J)? onto the range of K, (which is a “copy” of H*(T)
in H*(0)?).
The (Hilbert-space) adjoints of K, X,, and Q, we denote by K* : H*(0)?> —» H*(T), X :

H(T) — H*(O)?, and Q} : H*(O)? — H*(O)?, respectively. The important properties of the
operators are summarized in

Lemma 3.1. Let 0 < s < m. Recall the definitions of the bounded operators K, : H*(T') — H*(0)?,
K, : H°(0)? — H*(T), and Q, : H*(0)? — H*(0)>2.

(i.) X, is a left inverse of K, i.e., we have

K,Ku=u  forevery ue H*(T); (3.13)

in particular, the range R(X,) = H*(T').

(i5.) We have Q> = Q,, so that Q, is a bounded projector in H*((0)?; moreover, the range of Q,
coincides with the range of K :

R(Q)=R(K) (=N(-9,)), (3.14)



so that
KX,U=U  forevery Ue€R(K,). (3.15)

Further, the null space of Q, is given by

N(Q) =N(K,)  (=REI-9,). (3.16)

(#i.) KrK, is the identity operator on H*(T'); it follows that K ,K¥ = P, the orthoprojector
onto the range R(K,) in H*(0)?, while the complete relation between X, and K* is given
by K¥ = X,P,.
Proof . (i). Equality (3.13) is just (3.10) rewritten for v € H*(T"), while the surjectivity of X, follows
immediately from (3.13).
(4). With (3.13), we get Q> = K, X,K,X, = K,X, = Q,, so that Q, is indeed a projector; the
equalities R(Q,) = V(I — Q,) and N'(Q,) = R(I — Q,) therefore hold, as they do for any projector.
Since R(X,) is all of H*(T'), it is clear that the range of Q, = K,X, must coincide with the range
of K,. Thus, (3.14) is proven, and now it is obvious that (3.15) just expresses the fact that the
projector Q, is the identity map on its range. Finally, N'(Q,) = N (X,) holds since K, is injective.

(#7). From

(K3 Kyu,v)r = (Kgu, K)o = (4,0), 0 whenever u, v € H*(T)
we see that KFK, is the identity operator on H*(I'). Then K,K;K K; = K K}, so that P, :=
K_K* is a bounded projector in 3*(0)?; since P, is clearly self-adjoint, it is an orthoprojector. K,
is injective and has closed range, which implies that its adjoint K} has closed and dense range, i.e.,

is surjective; it follows that R(P,) = R(K,). The final assertion follows directly from the equality
%, K,K* = K*, which holds by (3.13). [

Remark. A characterization of the range of K| is given by

R(K,) = { (U*,U7) € H3(O)? ‘ supp U~ C h (suppp®) and
(3]
Ih5" (R (8))

Since we do not use this result in the sequel, we omit the simple algebraic manipulations required
to check it.

ot (§)

Ut (hy () - (@)

U~ (h (€) =0 forevery €€l NT_}.

For 0 < s < m, we denote by H™*(0)? the realization of the antidual of H*(0J)? which is
obtained by regarding the latter as “positive space” and H°(0)? = H(O)? as “zero space,” or “pivot
space.” In case 3*(0)? is taken to be Hg(0)?2, the antidual 3 *(0)? is the space usually indicated
by H~%(0)2; one can always identify H~°(0)? as the quotient of the antidual of H*(0)2 modulo
the annihilator of H°(00)2, but it usually proves more convenient to resort to other realizations.
By Jo, : H*(O)? — H™°(0)? we denote the antiduality operator, while the antiduality pairing on
H™?(O)? x H*(O)? is indicated with (-, -)[D]. We shall usually employ without special comment
relations such as

(A dol) g = (A U) g = (g A U)oy for AeHT°(D)?, U edt(D)™
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The spaces H *(T') with 0 < s < m can be introduced in various equivalent ways, but each way
derives ultimately from the structure and properties of the spaces already in place on the rectangle
O. For example, one can define H *(T') to be the completion of L,(T') with respect to the inner
product (u,v) — (Kyu, Ko”)[_s,u]- Instead, we shall rely (as before) on the standard construction of
H~=*(T') as the “negative space” corresponding to the “zero space” H°(T') and the “positive space”
H?#(T). That is, with f, denoting the adjoint of the natural injection map ¢y, : H*(T') — HO(T),
L,(T') is equipped with the new inner product (-, -)_,  given by

(u,v)_s’r = (thsu, thsv)S,rﬂ u, v € Ly(T);

H~=#(T) is then defined to be the completion of (L, (T), (-, ')75,F)' The adjoint ¢f, extends to an
isometric isomorphism of H~*(T') onto H?(T'); the inverse of this map is denoted by J., : H*(T') —
H=*(I') and termed the “antiduality operator.” The sesquilinear form (u,v) = (u,(f,v)or on
L,(T) x H*(T) is bounded when regarded as densely defined in H~*(T') x H*(T'); its bounded
extension to the latter space is denoted by (-, - )r and called the “antiduality pairing,” since every
element of the antidual of H*(T') is of the form (u_, - ) for a uniquely determined u_ € H~*(T).
In this way, one identifies H—*(T") as the antidual of H*(T').

Besides the adjoint of an operator in a Hilbert space, we may also use its (Banach-space)
transpose, according to convenience in particular instances. We denote by K’ : H~*(0)% — H*(T),
K. H=*(T) —» H*(0)?, and Q, : H~*(0)% — H*(0)? the respective transposes of the bounded
operators K, X, and Q,. For example, the defining relation for K is

(KU_,uy ), =(U_, Kqu,) for each U_ € H™*(O)?, wu, € H¥(T),

]
which is legitimate because u, — (U_,K,u +>[D] is a bounded antilinear functional on H?*(T").
We recall that the adjoint and the transpose of an operator are related through the appropriate
antiduality operator(s). For example, we have the equality K* = J; ! K!Jo, connecting K’ and K.

From the properties of, and relations amongst, the three operators K, X, and Q,, e.g., those
established in the preceding Lemma 3.1, we can immediately deduce dual results for the transposes.
For example, we see that K’ has closed range in H~*(T') [resp., X has closed range in H *(0)?]
since the range of K [resp., K,] is closed; then we can conclude that R(K) = H~*(I') because K,
is injective, while X, is injective because R(X,) = H*(T'). The remaining needed facts concerning
the transpose Q are collected in

Lemma 3.2. Let 0 < s < m. The operator K’ is a left inverse of K., i.e., KX, = Iy—e(rys the
identity operator on H—*(T'). We have Q, = X. K, whence it follows that Q) is a bounded projector
in H~*(0)? with

R(Q) =R(K,) (=N(I-9)) and N(@)=N(K) (=R(I-2)); (317)

in particular, we have

K,KA=A  forall AeR(X).
Proof . The equalities KX, = Iy, and Q; = K, K] follow by transposition from X, K, = I,
and Q, = K,X,, respectively. Then a trivial computation shows that (Q})* = Q', i.e., that Q! is a
projector. The equality R(Q;) = R(X}) follows from Q) = X K and the surjectivity of K}; the
equality V' (Q;) = N(K7) follows from Q) = K, K/ and the injectivity of K. The final assertion

10



simply expresses the fact that the restriction of the projector Q! to its range is the identity operator
on that range. []

2

We close this section by establishing the self-adjointness of the projector Q, in H°(O)? and

deriving the implications of that self-adjointness which appear in Lemma 3.5. The latter results are
used at various points; for example, they are essential for the actual execution of certain steps in
the numerical implementation of Galerkin procedures for our reformulated operator problems.

Lemma 3.3. The projector Q, is self-adjoint in H°(O)?, i.e., Q, is the orthogonal projector onto
R(K,) in HO(O)2.
Proof . From (3.11) we find that the operator Q, is described by

oft qf U+

QU := KyKoU = for U= U*,U")e H(O)?,
Q;t 95~ U-

in which the elemental operators Q4”, bounded in H(O), are given by

o fu = (p*tohi')u

Tu = (y/(p pt - uOh_) Oh_T_l,

th

h
Qou—<\/cpcp ohuh>h1,

and

Q u:=(p ohl')u, for we H°(O).

To verify that Q, is self-adjoint in H°(0)?, we must check that Qf * and Qj ™ are self-adjoint while
Qf ~ and Q" are mutually adjoint in H°(0), i.e., are connected by (Q[)F_)* =09y ". But 9t and
Q, ~ are simply operators of multiplication by smooth real-valued functions with compact support
in 0, and so are clearly self-adjoint in H°(0). Thus, it remains to examine the relation between
Qf~ and Q, *

Accordingly, let v and v € H°(0) and consider
Jh oh, _ _
(@ )y = [ (Voror [t ueh ) ohite) o) dhy ()
since
supp ((p* 0 hi?) (¢~ o hit)) = hy (suppp* Nsupp ™),
we can replace the set of integration O here by the subset A (supp @t Nsupp cp_). In the resultant

integral we make the transformation

y=F(z) :=hyohZ'(z) for z € h_(supppt Nsuppy),
having inverse given by

x=F"'(y) =h_ohi'(y) for yeh, (suppyp™ Nsuppy);

11



with JF denoting the Jacobian determinant of the transformation F, this produces

(Q(J{_u,v)om:/ (\/go ot + U0h+) x) |3F (z)| dAy(z)
’ h_ (supp ¢t Nsupp o~ )

Jh

we may replace the set of integration h_ (supp ¢t Nsupp cp_) C O here by O itself, since

supp ((pT oA ") (¢~ 0oh™")) =h_(suppe™ Nsuppy™).

Evidently, to establish the desired equality (Qf u,v) 00 = (u, Qg +v)0,|:|> we must show that
'Jh h
° + h 1 |3F| h: ,
JhZ' o h_
or
Jhloh
F|="—=——oh_' h N -)-
|aF | T Toh, oh” on h_(suppyt Nsuppy )

But the relation h7' o F = hZ", holding on the latter set, gives (Jh;" o F) (JF) = JhZ", so

Ih" Jh! Ih=" o h
F=5Tor ™ — = ————oh™ h N -).
’ ThiloF  Thioh,ohl Ihiloh, 0 n- (supp ¢ Nsupp ™)

As noted, this effectively completes the proof. [J

Corollary 3.1. K, and X, are mutually adjoint:

X5 = K, (3.18)
and

K& =%, (3.19)

Proof . From the self-adjointness of Q it follows that XgK§ = Q5 = Q) = KX,; then K;K§K, =
K X,K,, which implies (3.18) because each of KK, and X K, is the identity operator on H°(T)
(Lemma 3.1). Similarly, the equality KgKgKg = K§KX, gives (3.19), since KZK§ = (KoK,)" is
also the identity on H(T). [

We shall couple these facts with the simple observations made in

Lemma 3.4. For k =1 and 2, let Hy, and H;, be Hilbert spaces with H,, C H,,, H,, dense
in H,,, and the natural injection map continuous; let H,  be the corresponding negative space,
identified as the antidual of H, , with respect to H, as pivot space. Suppose that Ly : H;q — Hy,
is a bounded linear operator such that the restriction L, := L, |H1 4 maps Hy into H,, and is
bounded in that setting.

Then the adjoint L : Hyy — H,, is bounded when regarded as L : {H,o, C H,_} — H,_, i.e., as
densely defined in H,_ and mapping into H,_, and the bounded extension of the latter operator to
all of H,_ is the transpose L', : H,_ — H,_. In particular, L, maps H,, into H,, and

L ug = Lu, for each wugy € Hy. (3.20)

12



Proof . Tt is clear that the remaining assertions will follow once we have established (3.20). Ac-
cordingly, let u, € Hyy. Denoting the antiduality pairing on H,  x H,, by (-, -), and the inner
product for H,, by (-, -).q, we compute

(Llyug,uy), = (ug, Liug), = (uO,Loul)O’2 = (Lguo,ul)o’1 = (Lgug,uy),  forevery wu; € Hy,.

Thus, (3.20) is true. [J
Immediately, we get the desired results in

Lemma 3.5. For 0 < s < m the following equalities hold:

KQUO = K3U, = KUy
for each U, € H°(O)?, (3.21)
leUo = QSUO = QU
and

Kiug = Kgug = Kyug for each ug € HO(T). (3.22)

Proof. Apply Lemma 3.4 and (3.20) three times, successively taking L, there to be K, Q,, and
K, (with obvious identifications of the spaces), and appealing to (3.19), the selfadjointness of Q,
and (3.18), respectively.  [J

Now, if we should need to compute the action of K’, Q. or X! on H°-functions, we may appeal
to (3.21) or (3.22), which says that we should merely compute the corresponding action of X, Q,,
or K, respectively.
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4. Associated integral operators for I' and .

Recall that our goal is the replacement of an integral-operator problem set on the boundary T" of
a domain in R® by an integral-operator problem set in the rectangle O in the plane. Accordingly,
in this section we shall explain how an integral operator acting in spaces of functions on I' can be
expressed in terms of an integral operator acting in spaces of functions on 0. The operators K, and
X, developed in the preceding section, are instrumental in this construction, since they provide the

connections between spaces on I' and spaces on .

We shall consider here only operators that are rather well-behaved, such as operators with
kernels having at worst a weak singularity, deferring to a later development the examination of
other cases involving, e.g., operators generated by derivatives of double-layer potentials and other

singular integral operators.

Besides the boundary I itself, the data determining a boundary-integral operator comprise a
kernel E for T', i.e., a complex-valued map (,() — E(() defined a.e. on I' x I'. As our minimum

standing hypothesis, we suppose that we are given a kernel E for T" such that

the formula

Eru(§) := / Ecud)\p for aa.£eTl, foreach ue HO(T) (H.I)
r
generates a bounded linear operator & : HO(T') — H°(T).

Recalling the definition of H°(T'), the hypothesis (H.I) requires (1) that K,€ru be defined a.e. on O
and belong to H°(O)? whenever u is a complex measurable function defined a.e. on I' such that Kyu
belongs to H°(O)?, and (2) the existence of a positive M such that IKoErull,o < Ml Kqullig o
holds for every such u. In various examples we may impose other conditions on the kernel, but any

such hypotheses shall be always in addition to (H.I).

Since K|, is an isometry with left inverse I, the definition
o = KyérXK, (4.1)

produces a bounded linear operator £q : H%(0)? — H°(O)? whose restriction to R (K,) is a “copy”
of & acting down on [; in all of our reformulated problems, E5 will figure as the replacement for

€p. Clearly, we have
N(Q) =N (X) CN(en) and  R(En) € R(K,) = R(Qy). (4.2)
Moreover, &, can be recovered from €., since (4.1) and (3.13) give
& = KoenK,. (4.3)

In the remainder of this section we shall examine some other useful relations between, and
factorizations of, £ and €4, and display the explicit form of €, which is essential for a numerical

implementation. We shall also consider relations between extensions of & and € to larger spaces.
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By recalling the form (3.1) of the integral over T' and accounting for the definitions of the
operators K+, we can display the action of the operator &p:

Eru(®) = /D (" Beu) o byt 9hy dx, + /D (¢ Eeu) o h='9hZ" ax,

- /D (VoTEe) oy ot Ktudn, +/D (Vi Be) on= \J3n=" K-ua,,
for a.a. €T, for uwe HY). (44)

Directly, we shall show that the recipe

eu(e) ::/D(\/go_JrEg)ohjrl\/EU+d)\2+/D(\/<p_*Eg)oh:1 ThZ' U~ d),

for aa. £el, for U= (U*,U")e H'O)? (4.5)
produces a bounded linear operator & : H°(0)2? — H%(T'), indeed, that
€ = &.%,; (4.6)
once this has been verified, we shall have from (4.4) the important factorization
& = EK,. (4.7)

We shall prove (4.6) by the direct computation of &K U for U € H°(0O)?, to show that the
expression appearing on the right in (4.5) results. Choosing such a U = (U U *) and referring to
(3-8) and (3.9) for the definition of XU, we note that the two terms on the right in (3.8) represent
functions with supports in Iy and I'_, respectively. Therefore, we may use the forms given in (3.2)
to get, for a.a. £ € T,

ec%,U(e) = [

+
Egoh7! [ ¥ ___Uto h+] o h3! Thy' d,
h+(F+) F+

Jh;lo hy

n E h:l[ _¥Y  y- h_] h=' IB=1 dA
/h_(p_) §° Y R M 2

1 et + 1 qp-1
= Ecohy ——5——U%oh,  poh " Th d)
b, (supp ) Jhi oh,

_ ("2 - -1 q3—1
+/ th_l{ — U oh_}oh_ Ih=t d),,
h_(suppy~—) ¢ jh_lo h_ 2

the latter equality holding because h (supp ¢*) and h_(supp¢~) lie in O; for the same reason,
these sets of integration may each be replaced by [. Therefore, it is now easy to see that this
coincides with the expression on the right in (4.5), so that (4.6) is correct.

Other relations between Er, €, and € are useful in certain contexts. For example, from (4.1)
and (4.6) we find the counterpart of (4.7):

&n = K,¢&; (4.8)
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in turn, the latter gives X;E€q = K Ky € = €, so
& =X€m, (4.9)
which corresponds to (4.6). Now (4.7) and (4.8) yield
Koér = Koe K,y = e K, (4.10)

To see how the operator £ is determined explicitly by the kernel E, the coérdinate systems
for I, and the partition of unity, let us display the “matrix form” of 4. For this, it appears easiest
to proceed from the representation in (4.8), which leads, after some scratchwork, to

gbt etm\ [U+
&qU = for U= (Ut,U")e H(O)?, (4.11)
&gt e U-

in which the elemental operators bounded in H°(O) are given by

5" (@) 1= \fior o 17 (@) 05" &) [ Byagy o' o i ahizt wad,
for aa.zeld, ¢€ H’O), and p==+,n==. (4.12)

Remark 4.1. From the explicit representations given, one notes that the operators Ep and € will
inherit certain symmetry properties from symmetry properties of the kernel £. This is in agreement
with (4.1) and (4.3), which, with the help of Corollary 3.1, show already that & is self-adjoint in
HO(T) iff €4 is self-adjoint in H°(O)?.

Remark 4.2. In view of (4.1) and (4.3), it is clear that the hypothesis (H.I) can be replaced by the
equivalent condition

(4.12) defines bounded operators &X' : HO(O) — H°(O) for p=4,n=4=, (H.T)

necessary and sufficient for € : H°(O)? — H°(O)? as in (4.11) to be well defined and bounded.
It may be useful to keep this in mind, just because it is usually easier to discern and/or analyze
the properties of integral operators associated with [J than those associated with I'. In fact, the
developments here suggest another way in which to attack the matter of establishing mapping
properties of boundary-integral operators, viz., by transferring the questions to the corresponding
ones for operators in spaces of functions on O.

Finally, we shall prepare some mapping results that find application in the study of the example
boundary-operator problems discussed in the next sections.

Lemma 4.1. Let (H.I) hold, so that the operator & : H*(T') — H°(T') constructed from the kernel
E is bounded. Let the bounded operator & : H°(O)? — H°(O)? be defined as in (4.1).

(i.) € is compact iff & is compact.

(#i.) Suppose that0 < s < m. Then & maps H°(T') into H*(T) iff € maps H*(O)? (= H°(0)?)
into H*(0O)2.
(i1i.) Let 0 < s < m and suppose that & maps H°(T) into H*(T'). Then the densely defined

operator &p : {L,(T) ¢ H=*(T')} — H*(T) is bounded iff the densely defined operator
&o : {Ly(O0)* c H™*(0)?*} — H*(O)? is bounded. Moreover, when these operators are
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bounded, their bounded extensions €. and &} to all of H—*(T') and H~*(0)?2, respectively,
are connected by

&l = stESDfK's, (4.13)
&L = K 6L K., (4.14)

and
K &L = ESDiK'S. (4.15)

(Under the various hypotheses of the lemma, corresponding statements can be made about &€, but
we have no need for those here, and so omit them.)

Proof . (i). This follows immediately from (4.1) and (4.3).

(i1). Suppose that & maps H°(T) into H*(T), which means that K,€ru € H*(0)? whenever u €
HO(T'). Let U € H°(O)?: then X,U € H(T), so that &.K,U € H*(T), or, as noted, K,ErK,U €
H*#(0O)?; the support of K €rK,U is in the (open) rectangle O, so it belongs to HE(O)? C H*(O)2.
Therefore, by (4.1), €5 maps H°(O)? into H*(0)?. The reversed implication is proven in a similar
manner, by relying on (4.3).

(#i). Let the operator & : {L,(T) ¢ H~*(T')} — H*(T) be bounded and denote its bounded
extension to all of H=%(T) by &}; by (i), we already know that &5 maps L,(0)? into H*(O)2.
Clearly, K, &} K! is then a bounded operator from H™*(0)? into H*(0O)? which, by (3.21.1) and
(4.1), is an extension of €4 : {L,(0)% C H™*(0)?} — H°(O)2. Therefore, the latter is bounded and
its bounded extension is given as in (4.14). This proves one direction of the first statement of (iii)
and (4.14), while the other direction and (4.13) are proven similarly, by recalling (3.21.2) and (4.3).
Finally, (4.15) follows by extending the equality in (4.10), again with the help of (3.21.1). [

Remark 4.3. In the reformulation examples to be examined here, an isomorphism condition will
always be hypothesized for the operator on I', not for the operator on 0. This reflects the usual
situation in the applications, where the property of bijectivity will have been established for the
boundary operator by some other argument, e.g., appeal to a uniqueness theorem available for an
underlying boundary-value problem in partial differential equations.
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5. Reformulation of boundary-operator problems: examples.

With the developments of the previous paragraphs, we can begin to examine the reformulation of
boundary-operator problems. That is, we want to replace an original well-posed problem set in some
space(s) of functions on I' by a new problem well posed in some space(s) on O, in such a way that the
solution of the original problem can be easily constructed or approximated once we have constructed
or approximated the solution of the new problem. The arguments may be complicated by the fact
that an isomorphism between Sobolev spaces on I' need not correspond to an isomorphism between
the corresponding Sobolev spaces on 0. Thus, in certain cases one must augment the “directly
transformed” operator to achieve a new problem involving an isomorphism.

We shall illustrate the main ideas by examining two settings, corresponding to the classical
“second-kind” and “first-kind” cases. Throughout, the basic hypothesis (H.I) is assumed and the
operator € is constructed from & as in (4.1).

5.1. Example: a problem of the second kind.

Here, we consider the frequently occurring situation in which
&r: HY(T) - H°(T) is compact and I+ & is injective. (H.II)
Then I + & : HY(T) — H(T) is an isomorphism and the basic operator problem is well posed:
given g€ H°(T), determine u, € H°(T) such that (I+¢&r)u, =g. (P.IT)

In this case, (P.II).. can be directly replaced by a well-posed problem in the product space H°(O)?.
In fact, let g € H(T). Since K is an isometry from H°(T) into H°(0)?, the equality (I+&p)u, =g
holds iff K (I + EF)u s = Kyg holds, or, by noting from (4.10) that the two operators are connected
by

Ko(I+&p) = (I+¢&)K,, (5.1)

iff (I + 85)[79 = (G holds, in which we have written ﬁg = Kyu, and G := Kg.

With this motivation, we pose a problem that we suspect will serve as a replacement for the
original:

given G € H°(O)?, determine Ug € H°(O)?> such that (I+&n)Us;=G. (PI)g

Let us check that this new problem is well posed, i.e., that the operator I + £ is an isomorphism
in H°(O)2. Since the compactness of € follows from that of ., we need show only that I + €
is injective. For this, let U € H°(0)? with (I + €5)U = 0. By (4.8) we have then U = —€U =
—KyeU, so (5.1) gives Ky (I + &p) (—=EU) = (I 4+ €g)U = 0, which implies (I + &) (EU) =0 and
so also EU = 0. Therefore, U = —K,EU = 0, whence we conclude that I + g is indeed injective.

Thus, the well-posedness of (P.II); implies that of (P.IT). Moreover, if the data g and G are
related by G = K,g, (5.1) shows that the respective solutions u, and Uy must be connected by
Ug = Kyu,; then also u, = K, Ug.

Now an approximation-of-solution scheme for (P.II);. can be derived from one for (P.II). That
oo

N=N,
converging in H°(0)? to the solution Uy, of (P.IT)y, then (K UJ)_, will provide a sequence from
-0

is, if we take G to be K¢ and use, say, a Galerkin procedure to generate a sequence (Ug )

HO(T) converging in the latter space to K Ug = Uy.
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In this second-kind case, under the hypothesis that the original operator is injective (and so
an isomorphism), the reformulated problem comes out directly as well posed, and there is no need

to “augment”

it. Moreover, in view of the nice form of the operator I + €5, the Bubnov-Galerkin
method (in which the trial- and test-families coincide) is applicable to (P.II)5; in such an application,
for convergence we need only ensure that the usual requirement of ultimate denseness is fulfilled by
the codrdinate subspaces (here, in H°(0)?), and, for numerical stability, that the trial/test-family
is well conditioned in H°((1)2. (In Section 6 we outline the implementation of the Bubnov-Galerkin
procedure in a product space H x H and indicate how one can generate an appropriate trial/test-
family for the product from such a family in H.) All of this is to be contrasted with the situation

in the upcoming case of the “first-kind” problem.
5.2. Example: a problem of the first kind.

Let 0 < s < m. In place of (H.IT), now we impose two conditions (H.IIT) and (H.IV) in addition to
(H.I):
&+ maps Ly(T) into H?(T) and the densely defined operator
€ : {Ly(T) ¢ H-5(T)} — H*(T) (HLIII)

is bounded.

The bounded extension of the operator in (H.IIT) to all of H *(T') we denote by & : H *(T) —
H*(T). Now, according to Lemma 4.1, &5 maps L%(0)2 into H*(0)? and the densely defined
operator € : {Ly(0)? C H *(0)?} — H*(O)? is also bounded; its bounded extension to all of
H~°(0)? is denoted by EF. Relations between £ and € are given in (4.13-15). We shall also
suppose that

&l : H~%(T') —» H*(T") is an isomorphism (H.IV)

(recall Remark 4.3). Thus, the basic operator problem for £} is well posed:
given g€ H*('), determine wu, € H~*(I') such that Etu, = g. (PIDp

This is the problem of primary interest; as in the previous example, we want to show

(1) how to replace (P.I)r by a new well-posed problem (P.I)5 involving £F, whose solution will
provide for construction of the solution of the original problem, and

(2) how to generate convergent and numerically stable approximations to the unique solution of
the original problem (P.I).. by the formulation and execution of a Galerkin procedure for the
new problem (P.I).

In the remainder of this section we are concerned with goal (1); the later sections are devoted to
goal (2).

For clarity, we shall work our way in several steps to a replacement problem for (P.I)r.. Upon
recalling the isometric property of K, we observe first that the equality 8f~ug = g obviously holds
iff

K, &tu, = K,g,
or, since K, &} = E5K, by (4.15),
EnXKu, = K,g.
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Since R(Q%) = R(X.) (Lemma 3.2), this gives us an “intermediate” reformulation appearing as
given g€ H*(T), determine U, € R(Q;) such that E[U, = K,g; (PD)4
by recalling that X, K is the identity on R(Q}), we conclude that the solution of (P.I). should be
subsequently constructed from the solution U, of (P.I)g by taking u, := K U,.
We summarize this first step—and ensure that we can later reverse the step—in
Lemma 5.1. Let hypotheses (H.I), (H.IIT), and (H.IV) hold.

(i.) &4|R(Qy) is an isomorphism of R(Q}) onto R(Q,), so that problem (P.I) is uniquely

s
solvable.

(i4.) The respective (unique) solutions u, and U, of (P.I)p and (P.I)g are connected by u, =

KU, and U, = X,u,. Moreover, if (U;V)(;VOZNO is a sequence from H°(O)? converging to
U, in H™*(0)?, then the “computable” sequence (KU )?VOZ N, converges to the desired
u, in H=*(T).

Proof . (i). The equality &4 = K, &} K| of (4.14) implies that €% | R(Q}) maps R(Q;) bijectively
onto R(Q,). In fact, we see first that E. K’ carries R(Q.) bijectively onto H?*(T), since K'X., is the
identity map on H—*(T') (Lemma 3.2), so that K7, is an injection from X, H—*(T) = R(X}) = R(Q})
onto H~*(T"), while we have supposed in (H.IV) that . is bijective from H~*(T") onto H®(T"). Finally,
K, obviously takes H*(I') bijectively onto R(K,) = R(Q,), which shows that the assertion of (7) is

correct.

(#). With g € H*(T), let u, € H~*(T) be the solution of (P.I);. Then Kju, € H~*(0)? satisfies
85536'5% = K &tu, = K,g, so we must have U, = fK'sug. By inverting the latter relation, we get

u, = K\X,u, = K.U,, showing that the two solutions are related as claimed. Finally, let (UN) 3 _ N,

be a sequence from H°(O)? that converges to U, in 1 *(0)2. On the one hand, it is then clear that

(KLUN)%_ converges to KU, = u, in H~*(T"), while, on the other, we have K{UN = KUY for

each N by (3?21.1), so the final assertion is true. [J

Next, we must replace (P.I)5 by a well-posed reformulation set in all of H~°(0)2. Since we
have R(Q.) = N'(I —Q}), it is clear that such a reformulation is afforded by
given g€ H*), determine U, € H™*(0)* satisfying

JDSESDUQ = JDsnga (PI)%

and
!
(I - Qs)Ug =0;

we have inserted the antiduality operator Jo, : H*(O)? — H~?(0)? here to get the operator J,&

2

acting entirely in H ™ °(0)°. However, (P.I){ is still not in a form convenient for application of

a Galerkin approximation-of-solution procedure. To achieve such a form, we want an equivalent
problem involving an isomorphism acting in all of H™*(0)2.

first to inquire concerning the properties of operators constructed as linear combinations of the two

Evidently, for this it is reasonable

operators figuring in (P.I){;. In fact, we can prove

Theorem 5.1. Let hypotheses (H.I), (H.IIT), and (H.IV) hold. Suppose that « is a nonzero complex
number. Then J &8 +a (I —Q)) is an isomorphism of H™*(0)? onto itself. Moreover, the operator
maps R(Q;) onto R(Jg,Q,), so that the unique U € H~*(0)? such that Jq,EHU +a(I - Q) U =V
lies in R(Q,,) whenever V € R(J,Q,).

s
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Proof. We suppose that we have proven the following statement and show that the proof of the
theorem follows; the proof of the lemma we defer until after the argument.

Lemma 5.2. H~°(0)? has the direct-sum decomposition
H™*(O)* =R(Jn,Q,) + R(I - Q).

We show first that Jo,&4 + a(I — Q) is injective. Indeed, suppose that U € H™*(0)? and
Jo, 80U + a(I — Q;)U = 0. It is clear from (4.15) that the operator &% has range in R(K,) =
R(Q,), so Jo,€5U € R(Jg,Q,); since the decomposition of Lemma 5.2 is a direct sum, we can
conclude that both J5,E5U = 0 and (I — Q,)U = 0 must hold. The latter equality implies that
UeN(I-Q;) =R(Q),), so the former shows that U = 0, since we already know that the restriction
of & to R(Q}) is injective. Therefore, the operator is injective.

To prove that the range of J5, &8 + a(I — Q) is all of H™*(0)?, we choose any V € H™*(0)?
and use the decomposition of Lemma 5.2 to write V = Jg,Q,V, + (I — Q;) V_, for some V, € H*(0)?
and V_, € H~°(0)2. By the mapping property of £ already established in Lemma 5.1.i, there
exists a unique U € R(Q.) such that

~ 1
80 = Q,V, - ~E1V.,.

Upon setting U := U + éV,S and noting that (I — Q.)U = 0, we get
JosERU +a(l — Q) U = J5,Q,V, + (I - Q)V_, =V,

whence we conclude that the operator is surjective.

Finally, Lemma 5.1.¢ certainly implies that Jo,&5 + a(I — Q}) maps R(Q,) onto R(J-,9,),

B
whence the final statement of the theorem is an obvious consequence. []

Returning for the proof of Lemma 5.2, it is convenient first to point out the following elementary
result about geometry in Hilbert space; it seems that the statement is not recorded in the standard
texts, so we sketch a proof.

Lemma 5.3. Let the Hilbert space H have the direct-sum decomposition H = M + N into the
sum of the (closed) subspaces M and N; let (),, denote the associated operator of projection onto
M along N. If M is a third subspace of H that is mapped bijectively by @),, onto M, then H also
has the direct-sum decomposition H = M + N.

Proof . Since the restriction @, |M : M — M is invertible we can define the operator Qﬁ acting in
H by QJ\~4 = (Qu |]f\\/.f)7lQM. A short computation shows that va[ =Q, 50 Qﬁ is a (bounded)
projector in H. Tt is also clear that the range R(Qﬁ) = M and the null space N(Qﬁ) =N, so we
can show in the usual way that M N N = {0} and H = M+N. [

Finally, we can give the

Proof of Lemma 5.2. According to Lemma 5.3, to establish the direct-sum decomposition claimed
for H™*(0)? we need only verify that Q] maps R(Jg,Q,) bijectively onto R(Q}), since we already
have H~°(0)% = R(Q}) + R(I — Q)). Let us first check that the restriction of Q) to R(J,Q,) is
injective: if U € H*(0)? and Q}J,Q,U = 0 we get

Q,U,Q,U), - = (Ju,Q,U,Q,U Q' J5,9,U,U) . = 0.
(.01 i)

o=
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Thus, Q,U = 0, which implies the injectivity.

Finally, to show that Q} sends R(Jg,Q,) onto R(Q}), we observe first that R(Q5Q,) = R(Q}),
since Q, has closed range. Therefore,

R(Jos 25900 0059s) = R(I0s2%) = R(Jos 200

since Q! = J,Q5J5!,, this just says that R(Q,J5,Q,) = R(Q)), as we were to show. [

With the help of Theorem 5.1, it is now easy to see that the following operator problem is
equivalent to (P.I){j, and therefore also a replacement for (P.I);. (in the sense described); here, the

R

“coupling constant” « is nonzero and complex:

given g€ H*(T), determine U, € H™°(0)* such that  Jg,E8U, + o(I — Q,)U, = Jg,K,g.

(PI)g

” replacing “(PI)y” in its statement, i.e., we

Moreover, Lemma 5.1.% remains true with “(P.I)5
are still to follow the prescription laid out there when we want to return from the solution U, (or
from an approximate solution U gN ) of (P.I)5 to the solution u, (or, respectively, to an approximate
solution u)’) of (P.I)r.

We settle on (P.I) as our replacement for (P.I);.. Next, we want to show that, under reasonable
conditions on the operator £ implying that the Bubnov-Galerkin method would be applicable for
convergent approximation of the solution of problem (P.I)j., the number a can be selected to ensure
that the Bubnov-Galerkin method is also applicable for convergent approximation of the solution
of problem (P.I)5. Specifically, we shall require the following property of £f, which is frequently
fulfilled in applications:

&} : H*(T') —» H*(T') has a decomposition
& =D +CL
in which CGf is compact and OD{ is definite: 3 [, >0 such that
Re (u, Dru)r > Byllull®, ¢ for every uw e H5(T).

(H.V)

Now we can establish the coercivity condition (5.2) of the following statement, at least when « is
sufficiently small and positive; it is easy to check that this condition guarantees the convergence of
the Bubnov-Galerkin method for (P.I);, using any family of trial/test subspaces that is ultimately
dense in H~%(0)2.

Proposition 5.1. Let hypotheses (H.I), (H.III), (H.IV), and (H.V) hold. For any sufficiently small
positive a, there exists v, > 0 such that

Re (Jg,&8U + a(I — Q))U, U)[_S,D] > YUy for every U e H*(0)>. (5.2)

Proof . By (4.14), with hypothesis (H.V) we can write
€h = K,Er Ky = K, Dr K| + K,Cr K,

in which K,CLK! : H™*(0)? — H*(0)? is clearly compact. Then it suffices to prove (5.2) with
&G replaced by K, Di K., for, once this has been accomplished, the full statement will follow by
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extending the result to account for the compact perturbation K, €K' as in [8]. Accordingly, for
any a > 0 we have the estimate

Re (Jo, K, D} KLU + (I — Q)U,U)

[-5,00
= Re (U, K, DF KU o + aRe (I - Q)U,U) _,
= Re (K,U, DRKJU ) + aRe (I - Q)U,U) _, o

> G| K|, + Ul g - ol (QUU.0) g

ﬂs 2 2 (0% 2 2
2 el % ooy +elVl o - IO o+ 12U o}

a 63 a —8
= SN0 + {W ~SHQUIL, o forevery U et (@)

here, we used the equality Q.U = X K U to get the lower bound [|IC||IEU||_,r > QU _, o
Evidently, we obtain a coercivity inequality of the form (5.2) with K D} K in place of £} whenever
the positive « is less than 243, /[|K[|2. 0O

Remark 5.1. Numerical experience shows that one should take some care in the selection of the
positive a in the construction of any solution-approximation scheme. For example, while the choice
of any sufficiently small a will permit the implementation of a Bubnov-Galerkin procedure, one finds
that very small values of a will lead to large condition numbers for the system matrices; this is not so
surprising, since it is clear that the norm of the inverse of the operator J5,E¢; +a(I — Q) must grow
without bound as a — 0%, because J,E is not invertible. On the other hand, neither is I — Q,
invertible, so as a grows large one discovers at best a similar effect on the condition number (and,
evidently, perhaps even a failure of invertibility of the Galerkin matrices). Thus, an uninformed
choice of a can have the effect of cancelling the beneficial effects of conditioning devices such as the
one explained in [5], so it is worthwhile to develop estimates for the permissible values of a in any
particular example.

23



6. Remarks on the Bubnov-Galerkin procedure in a product space.

Since our reformulated problem will always be set in a product Hilbert space, e.g., H°(O)? or
H~°(0)?, we want to record here some simple observations concerning the implementation of
Bubnov-Galerkin procedures in product spaces. More precisely, in addition to displaying the actual
form taken by such a scheme, we want to indicate how one can generate—in a “natural” manner—a
well-conditioned coordinate family for a product space H x H when such a family is known for H
itself.

Let (H, (-, -)y) be a Hilbert space; the product Hilbert space (H x H, (-, -)[H]) is equipped
with the usual inner product, generated from that of H:

(UJ V)[H] = (U+7V+)H + (U_JV_)H for U= (U+7U7)7 V= (V+7V7) € H x H.

o>
Suppose that F := ((bﬁ )dN ) is a codrdinate family in H; this means simply that each of

n=1 N=1
the finite collections {bg }Zi , is a linearly independent subset of H, while the dimensions dy — oo

as N — oo. We say that the codrdinate family is well conditioned in H iff the ¢,-condition numbers

d
of the Gram matrices Gy := {(bﬁ',bﬁ)H} Y K N =1, 2,..., form a bounded sequence of

positive numbers. Recall that the use of trial- and test-families well-conditioned in the respective
Hilbert spaces between which the underlying operator is an isomorphism will guarantee numerical
stability of the corresponding Galerkin procedure (provided, of course, that we have convergence of
the procedure); cf. [4], [5]. We write M := span {b% }Zi , for the subspaces of H spanned by the
respective finite collections. We say that the sequence (M J\,)f\,o:1 is ultimately dense in H iff

A}iinoo dist (u, My) = A}gnoo vIenJi/{lN |u—=v|, = A}gnoo |u—Pyul|, =0  for every u € H;

here, we have denoted by P the orthoprojector onto My in H.

Corresponding to the coordinate family F and the sequence (M N)fvozl of subspaces we construct
a coordinate family § and a sequence (EDTN)?VO:I of subspaces for the product H x H: for N =1,

2,..., the collection {bg}id:l‘; in H x H is defined by

(bg,O) for n=1,...,dy
oY = (6.1)
(O,bf_dN) for n=dy+1,...,2dy;

clearly, {b} }id:“; is linearly independent, so that the corresponding span 9ty := span {b; }id:l‘; is

of dimension 2d,. In fact, it is not hard to see that
My = { (u,v) |u,v € My }.

It is also clear that the sequence (SJTN)?Vozl is ultimately dense in H x H if (MN)?VO:l is ultimately
dense in H, and, moreover, that the codrdinate family § is well conditioned in the product H x H
if ¥ is well conditioned in H itself. To see that the latter assertion is true, consider the form of the

2d
Gram matrix & := {(bg, b%)[H]} " , which is

n,m=1

Sy O
®N=
0 SN
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With this, it is not hard to show that G and &y have the same sets of eigenvalues (i.e., without
regard for multiplicity), from which we conclude that their £,-condition numbers coincide, as well,
since the latter are just the ratios of the largest to the smallest eigenvalues.

We denote the orthoprojector in H x H onto My by Py -

Now let £ be an isomorphism of H x H onto itself. We consider the operator problem
given G € H x H, find the unique Ug € H x H such that LUg=G. P

In particular, assuming that we know the action of L through a matrix of operators in H, as

Lttt Ut
LU = , (6.2)
Lt oL U-

we want to display the form of the Bubnov-Galerkin approximation-of-solution procedure for the
problem (P)[ H] constructed by using as trial- and test-functions the codrdinate family §. The NP
subsidiary problem of that Bubnov-Galerkin procedure appears as

find UY € My satisfying  PyLUS = PnG;
since the latter equality is equivalent to the condition
(vl bg)[m = (G, b))y for m=1,2,...,2dy, (6.3)
by using the basis generating 9Mt,;, we arrive at the numerical formulation for the N*® subsidiary
problem:
determine (c )id:“; satisfying

2d
Z(Lbﬁ,bg)[mcﬁ =(G,b))y  for m=1,2,...,2dy, (6.4)

n=1

and construct the N*" Bubnov-Galerkin approximant Ug by

2dy
Ud => o). (6.5)
n=1
Now, we find
(00, 60%) gy = (B0 000) o+ (6770 B) , + (6B )+ (6706,

for m,n=1,...,2dy,

but only one of the four terms on the right is nonzero for each m, n. Accounting for this, we come

to the explicit form of the system (6.4) for (c¥ )id:Nl
dy 2,y
Z(L++bgabﬁ)Hcg+ z (L+7bgdeabﬁ)Hcg = (G+Jbﬁ)H: m = 1; 2;--'7dNa
n=1 n=d,+1
(6.6)
dy 2dy

Z(L_—bemvﬂb%—dN)Hcg + Z (L__bg—dN’b%—dN)Hcme = (Gi’b%—dN)Hﬂ m= dN +1,..., 2dN'
n=1 n=dy+1
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The 2dy % 2dy matrix of the system can be represented in block form as

(@ 6) )

Pyq=1
++pN N +—p N N
{(L bn 7bm)H}m:1,...,dN {(£J bn—dN’bm)H} m=1,...,d
_ n=1,...,dy n=dy+1,...,2d 5
—+3N N —— N N
{(L bn ,bm_dN)H}mszH,...ﬂdN {(L bn—dN’bm—dN)H}m=dN+1,...,2dN
n=1,....dy n=dy+1,....2dy

Now let us return to the integral operator & in HO(T') of hypothesis (H.I) in Section 4 and
the associated operator € in H°(0)?2, defined in (4.1). In the approximate solution of the example
problems set up and examined in Section 5, we must apply to (P.IT)5 and to (P.I)5 the Bubnov-
Galerkin procedure sketched here for the generic problem (P)y;, taking H°(O)? and H™°(0)?,
respectively, for the product space H x H. Thus, we must identify the matrix form of the operators
I + &g (for (P.II)4) and Jo,&5 + a(I — Q) (for (P.I)g), as in (6.2), and compute the collection
of inner products appearing on the lefthand side of (6.6), supposing that specific basis functions
bY have been selected. By recalling (4.11) and (4.12), this is quite straightforward for the operator
I + €, in the case of the second-kind problem of Example 5.1. However, there are some points
concerning the first-kind problem of Example 5.2 that warrant comment.

Suppose that a collection {b} }iil‘; has been chosen from H°(O)? as in (6.1), so that the bY
are elements of H°(O). Taking £ now to be Jo,&% + a(I — Q%) and H to be H~*(0), we can write

(Jms€hbp +all = Q)b o) o = (b, I, &b ), oy + (I — Q)67 I55bm) oy
= (b%&&bﬁ)m +a((T - Q;)bnN7J5ibz>[D]
= (b% ED[’Z)[O,D] + 0‘((1 - QQbﬁ,JE@bﬁ)m

= (€abn, b 10 oy + (T = 20)6, 5 o

in which we used the basic properties of the antiduality operator Jo, and its inverse along with those
of the antiduality pairing (-, -)[D] as the appropriate extension of the inner product (-, ')[o,D]v as
well as the equality Qb = Qb2 following from (3.21.2) since b € H°(0)?. Therefore, the matrix
of the N** Bubnov-Galerkin system appears as

2d
{Ooetey +ar - 26y, 6)) o1 ™
’ pg=1
++ +-
{ (5000 0} iy L5 BY 0y BN)on}  metoa
— n=1,....dy n=dy+1,...,2dy
_+ —_—
{(ED bg,b%—dlv)o,m}m:dN1+1,.(.i.,2dN {(&j bg_dN;b%—dN)o,D}m:;NE,...,?ng
n=l,...,an n=dapy sy 4@y
{((I - Qa_—i_)bg’ Jlislb%)o,m} m=1,...,dn
n=1,...,dy

o —+pN 7—1 N
{(QO bn ’ Jljg bmde)oy[]} m=dx+1,...,2d N

n=1,....dy

{(Q(—)i__bibvdeJJE;b%)o,D} m:l,...,d{v
n=dy+1,...,2d 5 (67)

——\pN 13N
(0T = Q5 TS0 o} oty 1.2
n=dy+1,...,2d y
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with Jg, : H*(0) — H °(0) denoting the antiduality operator. The elemental operators EF
are given in (4.12), while the Q)" are displayed in the proof of Lemma 3.3. Upon inspecting the
matrix elements, we see that all inner products are taken in H°((I) and only the computation of
the images Jﬁ;b% requires explanation. In fact, we shall know how to compute the Jﬁ;b% in the
contemplated applications, since we will have selected the spaces H*(O) in such a way that we
can handle numerically the Sobolev structures on them; as previewed in Section 1, the possibility
of doing so rests ultimately on the simplicity of the underlying geometry, which is here the plane
rectangle [0. However, since the elements JE]: b themselves are too cumbersome and costly to deal
with repeatedly, in practice we have used not these images but their orthoprojections in H°(O) back
onto the original subspace M. Similar computations are discussed more fully below in Section 7
and also in [5].

Finally, the inner products forming the righthand side of the N*" Bubnov-Galerkin system for
(P.I) are (cf. (6.4) and (6.6))

PP (L L R
JDsnga bm _ = ng’ bm = (68)
[ S,D] [O,D] (K_g,bﬁde)O,D for m = dN+ ]_, “"2dN'
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7. A numerical implementation for a boundary-integral equation in R2.

The framework developed in the preceding sections for the reformulation of integral equations set on
the boundary of a domain in R?® can be modified in an obvious manner so that it is applicable for the
same purpose in R?. Accordingly, to gain some experience before implementing the method in the full
three-dimensional setting, we have applied the same ideas to generate a Bubnov-Galerkin procedure
for constructing approximate solutions of a particular first-kind integral equation on the bounding
curve of a domain in R?; the chosen example arises in studying time-harmonic acoustic scattering by
a “soft” obstacle in two dimensions. To perform the computations, we have written a code that will
accommodate a fairly large class of smoothly bounded shapes and incorporates a scheme aimed at
achieving numerical stability by “conditioning” of the codrdinate functions that is explained in [5];
the computer program also served to demonstrate the effectiveness of this conjectured stabilization
device. The numerical results, which have been validated by comparison with those of an essentially
independent calculation (viz., a “standard” application of the Bubnov-Galerkin method to the same
boundary-operator problem, also described in [5]) show that the reformulation approach developed
here is successful in producing approximate solutions for the example problem studied, at least for all
those I for which computations have been performed, which ranged from rotund shapes (including
a nonconvex example) to slender ellipses.

We shall give some description for each of the major steps required in setting up the application.
Now, Q is a bounded domain of class C? in R? with boundary curve I := 8Q. We require that T be
starlike with respect to some enclosed point P; to simplify the numerical work somewhat, we have
also assumed that 2 is symmetric with respect to a midline. Therefore, we may describe I' in polar
coordinates with pole at P by a radius-function

¥ — or(cosd), - <9< 7.

Coordinate patches; partition of unity. By exploiting the hypothesis of starlikeness for T', we
let Rp : T' = X, denote the associated radial-projection mapping given by Rp(§) := |§ |_1§ for
£ €T, carrying T bijectively onto the unit circle ;. We first choose an appropriate pair {XF, %7 }
of covering codrdinate patches for ¥, then set T, := Ry {S{} to get a pair {I',,_} of covering
codrdinate patches for I'. Specifically, we select § € (0,7/2) and, under the usual identification
of ¥, with (—m,7], take X to correspond to the complement of {9 |9 — (-7/2)| < 7/2-4}
and X7 to correspond to the complement of {9 |[¢ — /2| <7/2—6}. The codrdinate function
h, : T, — (=b,b) is then taken to be the composition of the radial map Ry |F+ : T, - =f
followed by the stereographic projection map (into the equatorial plane) based on the south pole of
¥,; the codrdinate function h_ : I'_ — (=b,b) is constructed in the corresponding manner, using
Rp |T_ : T_ — X7 followed by the stereographic projection map based on the north pole of 3.
Here, the open interval (—b, b) takes the place of the rectangle O; it is easy to check that

cosd
b= 1—sinéd’

In the remainder of this section, “00” stands for (—b,b). Explicitly, one finds that the h, : T, —

(—b,b) are given by

h:l:(é.) = |£|£:*1:£27 ger:l::
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with the ¢, denoting the Cartesian codrdinates of ¢ € R?, while values of the inverses h1' : (—b,b) —
I’ can be computed from

_ 2s 2s . §2-1.
hil(s):Qr(52+1){82+lel:F82+162}, —b<$<b,

with the &, denoting the standard Cartesian unit-basis vectors. In this lower-dimensional case, the
Jhi' are just the magnitudes |h;11| of the derivatives of the inverses h'.

We need an easily computable partition of unity for T' subordinate to the covering {T',,T"_}.
For this, we choose §, € (0,d) along with a positive integer p and set

£p(6) = 0+ 50075y — 00, 6y <0< by;

then, with a, := ff“’s f,(0) db, by putting
0

1 /0
B = [ a8 -5 <i<s,
P 760

we form a function monotonically increasing from 0 to 1 on [—6, ;] with its derivatives of order less
than or equal to p vanishing at each endpoint, so we can extend F, to all of [~7/2,7/2] by setting
F,(9) := 0 for ¥ € [-7/2,—6;) and F, () := 1 for ¥ € (Jy,7/2], to get a nondecreasing function
of class CP with support [—dq,7/2] and equalling unity on [dy,7/2]. In the obvious manner, we
generate from F,, a function ¢t on T with support in ' and equalling unity on a closed segment
containing T'\T'_ in its interior. Therefore, by setting ¢~ := 1—¢™, it is clear that we get a partition
of unity {¢*, ¢~} for I' subordinate to the cover {I',,I"_}.

The parameters §, J,, and p are selected as input-data for the numerical computation. The
explicit forms of the various compositions required, such as h, o h=! on h_ (T, NTC_), pto hjrl,
etc., can now be easily computed; we omit a listing of these. Moreover, now the operators K, X,
and Q, can be constructed, on the basis of the definitions given in Section 3; cf., the expressions
provided in the proof of Lemma, 3.3.

The kernel for T' and its associated integral operators. The framework set up to this point is
applicable for any choice of the kernel E for I' generating the associated integral operators £, and
€. Now, for a positive “wavenumber” x, we choose the kernel given by

i

Se(Q) = 7H (IC—€l),  for & CET, (#&

with H(gl) denoting, as usual, the Hankel function of first kind and order zero, which generates the
integral operator 8, : H*(T') — H°(T') by

8, u(f) == i /F H (k¢ — e)u(Q) dAr(¢)  for aa.£€T, foreach ue HYT),

as in hypothesis (H.I). The operator 8, is the so-called direct-value operator corresponding to the
single-layer potential for the Helmholtz equation in two dimensions which is based on T.

The corresponding operator (€4 =) &, : H°(O)? — H%(O)?, defined in terms of (& =) §
just as in (4.1), is constructed numerically directly from the kernel S (and from the other already-

K

prepared functions, such as h;l and ¢"o h;l) by using (4.11), with the elemental operators G4"
defined just as in (4.12).
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We now choose s = 1/2, although we continue to write, e.g., Jg, in place of J L when it is
convenient. Then the operator 8, fulfills the hypothesis (H.IIT) laid down for Example 5.2, as shown
in [9]; 8 : H 3(I') - Hz(T') denotes the extension of 8,. Provided that the square 2 of the
wavenumber is not a Dirichlet eigenvalue for the negative Laplacian in Q, hypotheses (H.IV) and
(H.V) also hold, again as shown in [9], so we shall impose that restriction on . (Although the latter
condition essentially limits the usefulness of the present formulation in acoustics studies to “small”
values of k2, this is of little concern for our testing program.)

We take H*(O) to be HO% (O); the antidual space is then usually denoted by H~2(O). The

1

1
operator corresponding to 8;, as in (4.14) and extending G, is denoted by &;, : H~2(0)? — HZ (0)?.

Of course, we want to solve the problem (P.I)j., which here appears as
given ge Hi(T), determine u, € H 3(T') such that Snu, =g,
by solving instead (P.I)5, which is now
given g€ H*(T), determine U, € H-3(0)? such that Jos6.U, + a(I - Q,)U, = Jo,K 9.

When g = v*|p, the trace on I' of an “incident-field” velocity potential v, i.e., a function satisfy-
ing the Helmholtz equation Av* 4+ k2v* = 0 in an open set containing the closure of , then the
corresponding unique solution u, has a physical interpretation as the normal derivative on I' of the
“total” acoustic field in the exterior of Q. (Once this normal derivative is known, it can be used as
the density of an exterior single-layer potential to yield the scattered field in the exterior region.) In
those problems solved for validation of the programs, we have taken the incident field to be a plane
wave with its fronts propagating in a direction that is set as input for the numerical computation,
i.e., we put
V() = e, fe R,

in which the unit vector é is chosen as input data. Sample graphs of the resulting approximations to
the normal derivative of the total acoustic field can be found in [5], along with a description of the
more standard Bubnov-Galerkin procedure yielding the comparison approximations, which agreed
(to within errors) with those obtained in the present calculations.

The initial trial/test functions. Our “initial,” or “unmodified,” trial/test functions are con-
structed, in a well-known manner described by, e.g., AUBIN[1], [2] (cf., also, [5]), as polynomial
spline functions generated from the convolution powers x*¥ of the characteristic function x of the
interval [0,1]. That is, x*! := x and

o

B (5) = / x(s — o)x*(0) do, sER, for k=1,2,....

—0o0
Then x**+1 is of class C*~' on R if k > 1, with support the interval [0, k + 1]; the restriction of
x**+1) to each interval [I,1 + 1] is a polynomial of degree k, for [ = 0,..., k.

Now, with the integers £ > 0 and N > 0 such that N — k > 1, the corresponding “mesh size”
is defined by

2b
hN -.— N’
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and then the translations/compressions bY'* of x*(¥+1) are defined in [b,b] by

—(n—1
) ::x*(k+1)(s (n )hN+b), —-b<s<b, for n=1,...,N —k.
hy

One can then check that the support of bX'F is the interval [~b + (n — 1)hy, —b + (n + k)hy].
Consequently, each function in {b% k}f;k has support in the interval [—b,b]. In [5] it is shown that

_ oo

each of the codrdinate families ((bnN k)f_lk) ,for k=0,1,2,...,is well conditioned in H°(OJ),
=1/ N=k+1

and so cannot be well conditioned in a Sobolev space on O of nonzero order, as pointed out in [4].

Let the collection {bﬁk}Q(_N_k) in H°(O)? be constructed from the collection {bN’“}N__k in H°(O)

n=1 n n=1

just as in (6.1); we term these the “initial,” or “unmodified,” coérdinate functions.

Corresponding to the selected k, which determines the smoothness of the trial functions, we
denote the N'*' coérdinate subspace by M := span {bl k}fz_lk; in particular, now dyy = N — k.

The developments of AUBIN [2] imply that the sequence (M’f\,);o:k 1
ultimate denseness in H°(0), and therefore also in H—2(0). Then the corresponding sequence
N-k

(sm’;v);’;’: b1 of subspaces, with the 9)?’1“\, = span {bg k }n:1 related to the va just as in Section 6,

is ultimately dense in the product space H 2 (0)2.

has the requisite property of

The Bubnov-Galerkin matrices; plots of condition-number variation with N. Given the
discretization integer N, we compute the elements of the 2(N — k) x 2(N — k) N*! Bubnov-Galerkin
matrix for the problem (P.I)5, as in (6.7), for two choices of the trial/test functions spanning
9k, The first choice, in case (A), comprises the unmodified functions just introduced, while the
second, in case (B), derives from the application of a prospective “conditioning transformation” to
those unmodified functions; the idea is explained briefly below and more fully in [5]. In each case,
the LINPACK condition number of the matrix is computed for a range of increasing values of N;
comparison of the variation with N in the two cases is shown in Figures 1-6, for various shapes of
the domain 2 and values of ka, where a is a characteristic length of the shape. In all the results
shown, we used cubic splines, i.e., we took k = 3, and set the value of the parameter a at 0.1.
Selection of “large” values for «, say, a = 1.0, resulted in very erratic behavior of the condition
numbers. We have not indicated the values used for the various technical parameters, such as d, d,
etc.

From a review of the figures, numerical instability is evident in all the results of case (A), which
are indicated with the label “unmodified co6rdinate functions.” On the other hand, the figures also
clearly illustrate the consistent reduction in condition number achieved by the use of the “new,”
or “preconditioned,” codrdinate functions in case (B). However, we cannot presently state that the
latter behavior represents genuine numerical stability, since we have not yet proven the necessary
results on the validity of the scheme.

(A.) Here, we use the unmodified collections {bﬁ k}ig_k). In this case, we should compute the
elements of the matrix
2(N—k)
Nk Nk ¢ Nk
{(JDSGHBH + OL(I - Q.Is)bn 7bm )[,S,D]}

m,n=1 ’
by making the necessary identifications in the general form displayed on the right in (6.7).

Evidently, here we must compute values of the elements J5 b* (recall that s = 1/2); these
calculations can be performed after finding the eigenpairs of the antiduality operator, which we can
do explicitly here, since we are working in the “simple” Sobolev spaces H§(O) and their antiduals, as
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explained in [5]. On the other hand, the numerical computations will be relatively time-consuming,
so we would like to avoid executing them many times. Accordingly, we employ an approximation,
replacing the elements J5b2* by their orthogonal projections in H(O) onto Mk, which are much
more easily computed and handled in the integrations. Denoting by ‘P’fv the H°(O)-orthoprojector

onto va, we can write

k J1pNE _ ZANkka n=1,...,N —k, (7.1)

Os“n nm “m

in which the coefficients AN are found from the defining condition

N—k
D00k, o) g ANE = (Jgioh*, o), 1=1,...,N—k. (7.2)

m=

[

Now, in this case in which the underlying Sobolev space is HO%( 0), the elements of {JDS by k}

are not merely translates of each other (unlike the situation in a space of periodic functlons), SO
one cannot avoid solving the system in (7.2) for n =1,..., N — k. However, this requires less work
than one might anticipate. In fact, the linearly independent functions in {b k}gz_lk are translates
of each other (and have “small” supports in (—b,b)), so their H°(0O)-Gram matrix, figuring in the
systems (7.2), is a symmetric, positive-definite (and banded) Toeplitz matrix. Since the inverse of a

symmetric, positive-definite M x M Toeplitz matrix can be computed in O(M?) operations by using
N—k
n,m=1

the Trench algorithm, as explained in, e.g., [6], the calculation of the matrix AVF := {A
of coefficients enabling construction of the orthogonal projections is reduced to performing the Trench
inversion procedure, involving O(N?2) operations, followed by N —k matrix-vector multiplications, or
one matrix-matrix multiplication. Since the codrdinate family ((bN k)iv 1k) N is well-conditioned
in H°(O) for any k > 0, the corresponding sequence of H°(O)-Gram matrices h;s bounded condition
numbers, i.e., this process of computing H°(O)-orthogonal projections onto the subspaces MN is

numerically stable.

Consequently, in this first case the (approximation of the) N'** Bubnov-Galerkin matrix is

formed in three steps:

(A.1) computing the elements of each of the matrices

{(& BN 0Y9) o 0 b

n=1,...N—k
{(Gn-{_bnNkab%k (N—k))o,\j}m =N—k+1,...,.2(N—k)
n=1 N—k
{(6+ bn (N— k)?b%k)o,lj} m=1,...,.N—k

n=N—k+1,...,2(N—k) (7 3)

{ (6;71351“(1\;@ ) b%ki(N_k))o,D} m=N—k+1,...,2(N—k)
n=N—k+1,....2(N—k)

and

T One should beware a typographical error in the symbolic code displayed for the Trench algorithm in [6], which
becomes apparent upon comparison with the textual description.
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{0 = N% 08 o 0 b e,

.o N—Fk
1,....N—k
{50 Y )} men itz
n=1,...N—k
{0 i o} v

)

n=N—k+1,...,2(N—k) (7 4)

{((I - Qa_)bgf(kaybzli(ka))O,D m=N—k+1,...,2(N—k)
n=N—k+1,...,2(N —k)

ANk ANk
(A.2) postmultiplication of the matrix in (7.4) by the transpose of the matrix ( ),

AN k AN k
to perform the transformation implied in (7.1), and, finally,

(A.3) coupling the two matrices with the parameter a.

In passing, we should note that, owing to the symmetry of the kernel S and the midline-
symmetry postulated for the shape of the region (2, there are symmetries in the matrices (7.3) and
(7.4) that can be exploited to shorten the numerical computations. In fact, one finds that the
matrix in (7.3) is symmetric and its two main-diagonal blocks are identical, while the pairs of main-
and secondary-diagonal blocks in the matrix of (7.4) are identical and the blocks themselves are
symmetric.

Some erratic behavior of the condition numbers is apparent from the plots in Figures 1-6; we
ascribe this to the approximation that was used, since the calculation of the LINPACK condition
number is evidently rather sensitive to errors in the matrix elements. One also observes a curious
“oscillatory” variation of the condition number with N. The origin of this oscillation is not known,
but it is inferred that the plots shown are essentially correct, because of the cited agreement achieved

between the approximate solutions of (P.I)p. by the present method and by the alternate procedure
of [5].

B.) We pointed out that the codrdinate family ( (bY*)N 7)™
(B.) We pointed out that the codrdinate family ( (b2 )n:11 Neki1
(for any k > 0); the family is therefore ill-conditioned in H~2 () and so unsuitable for construction

is well conditioned in H°(O)

of a numerically stable Bubnov-Galerkin procedure in the example under study here (¢f. [4]). This
explains the condition-number behavior observed in case (A). In this second computation, we use a
construction described in [5] to generate a codrdinate family that appears to be well conditioned in
H~3(0).
1

To briefly motivate and explain the idea, we recall that the antiduality operator J, : Hg (0) —

H~2(0) has a factorization
Jog =TIy,

: H%(O) — H=(0) are certain isometric isomorphisms;

in which I, : H°(0) - HZ(0) and I_,
cf., eg., [23], [5]. In the present caseZOf a sufficiently simple geometry underlying the Sobolev
space, we can compute the action of either of these operators for the same reason that we could
compute the action of the antiduality operator in case (A), but again we want to avoid repeated
evaluation of thigo action on the original codérdinate functions. Now, clearly, the coordinate family
<(I—%bgk)iv=1k)1v=k+1

original family in H°(O) and the isometric property of I ,; this is the family that we wish to

is well conditioned in H~2(0) for any k, by the well-conditioning of the

2
use as our new codrdinate functions for case (B), but to reduce the work we shall again appeal to
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the “back-projection” device, as in case (A), and hope that this does not destroy the property of
well-conditioning.
1
However, we shall be inconsistent in approximating values of the images J‘ESII bk e HZ (D),
2
which are also required. Since we can write JD 1 = =1 L I I 1= = I,, these images are just the
2

I, bk which can be computed in the same manner as the I bN k as described in [5].
2

Thus, we replace both the T _%bﬁy kand I L bNE by their H 0(D)—orthoprojections PRI _%bﬁy k and
PR I,bN* onto ME. In effect, this returns us to the original codrdinate subspaces, since the new
codrdinate functions now appear just as linear combinations of the original ones. Having already
computed the inverse of the appropriate H°((J)-Gram matrix with the Trench algorithm, after
computing the requisite inner products (Iiébﬁk, %) o and (I1 by * o )gpforlym=1,...,N —

k, now two matrix-matrix multiplications are required for construction of the matrices BN* :=

{BNk and BNk .= {B Nk uch that
n,m=1 n,m=1
N—k
PRI_by* =% BirbRF,  m=1,...,N-Fk (7.5)
m=1
and
?Nll bk = Z BNEpNE oy =1,...,N L. (7.6)

With these transformation matrices and the matrices (7.3) and (7.4) already computed and stored,
we produce an approximation to the N*® Bubnov-Galerkin matrix in this second case (B) in three

steps:
Nk BNk
(B.1) premultiplication of the matrix of (7.3) by the block matrix ( BNk BNk and postmul-

tiplication by its transpose, to effect the transformation implied in (7.5),

(B.2) premultiplication of the matrix of (7.4) by the same block matrix as in the first step,
BNk BNk

BNk B Nk) to perform the transformation

but postmultiplication by the transpose of (

following from (7.6),
and

(B.3) coupling of the resultant matrices with the parameter a.

As we pointed out, the evidence in Figures 1-6 strongly indicates that this modification of the
coordinate functions imparts numerical stability to the previously unstable computation.

This completes the brief description of our numerical experiment with an application of the
original reformulation to a lower-dimensional problem.
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