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ABSTRACT 

This thesis aims at improving the accuracy of blood flow simulations by offering 

a faithful representation of the human blood rheology.  A central component of this 

work has been the establishment of a connection between the physiological conditions 

in blood and the exhibited rheology.  This connection, along with the macroscopic 

approach which is adopted so as to describe the structural changes within blood that 

dictate the key rheological properties, namely the viscosity and yield stress, can be a 

powerful tool in the hands of physicians and medical scientists who might require 

detailed and reliable information of the exhibited hemodynamics in the arterial network.  

Thus, this work can be potentially used for the improvement of diagnostic methods in 

cardiovascular-related diseases.   

Throughout this thesis particular emphasis has been placed on adhering to a 

systematic approach, a practice that is warranted for the modeling of systems as 

complex, and highly coupled, as the flow of blood in the human arterial network.  The 

first step has been the development of a parametric model for the description of the 

steady state rheology in simple shear flows.  Under physiological conditions, we have 

shown that the Casson constitutive equation describes best the rheology of blood.  The 

proposed model connects the involved parameters, the Casson viscosity and yield stress, 

to the physiological conditions, the hematocrit, temperature and fibrinogen 

concentration.  Yield stress has been modeled as critical, percolation type phenomenon 

with an onset that corresponds to a critical hematocrit.  The highlight of this work has 

been the quantification of the dependence of yield stress, and the critical hematocrit, on 

the fibrinogen concentration.    
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Following the development of the parametric Casson model for physiological 

conditions we extended our analysis to pathological cases, whereby we examined the 

effect of both high and low values of cholesterol and triglycerides to the steady shear 

flow properties.  We showed that while the Casson model continues to describe well the 

blood rheology, its model parameters, i.e. the yield stress and model viscosity, need to 

be significantly modified from their physiological expressions.  The new 

parametrization involves indices, formed from the supplied cholesterol and triglycerides 

information.  Namely, we found that the indices of interest are all ratios: total cholesterol 

to high density lipoproteins (HDL), low density lipoproteins (LDL) to HDL, and total 

triglyceride to HDL.  While these indices arose naturally in the fitting of the data, they 

all have been previously identified as important in medical evaluations of CVDs. 

Upon completion of the steady state analysis, we focused on the modeling of 

blood in transient shear flows.  We have developed a scalar, structural, parameter 

thixotropic model capable of describing the transient shear rheology.  The thixotropic 

model introduces only three additional parameters, with a specific physical meaning (a 

zero shear rate maximum strain, and two kinematic coefficients) and a known order of 

magnitude.  Even more importantly, at steady state the thixotropic model reduces to the 

parametric Casson for low and moderate shear rates, therefore ensuring the previously 

emphasized systematic analysis, while at high shear rates it reduces to a Newtonian 

model, which is consistent with data from literature that have, however, never been 

predicted theoretically.  The thixotropic model has been extensively validated against 

triangular step-change, rectangular step-change, and large amplitude oscillatory 

(LAOS) data, and it offers, at a minimum, a reasonable, semi-quantitative fit. 
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Finally, we have examined the impact of the described rheology on simulations 

of arterial flow.  Namely, we have carried out CFD simulations of blood flow in the left 

coronary artery (LCA), considering two separate cases: a healthy LCA artery, and a 

pathological one with a stenosis causing ~82% blockage in the left anterior descending 

(LAD) branch of the LCA.  In this study we further developed a previously proposed 

methodology for the proper implementation of outflow boundary conditions (OBCs) in 

simulations of arterial flow, while also applying a numerical analysis technique which 

accelerated significantly the convergence rate of the proposed scheme.  The results were 

presented via two comparative cases.  For the healthy LCA artery, we compared the 

predictions of a Newtonian-based simulation to those that resulted from the application 

of the Casson parametric model.  The obtained pressure and flow profiles, as well as the 

wall shear stress (WSS), which is the most important parameter in CVD related 

hematological studies, were shown to be significantly different in the two cases.  This 

highlights the importance of incorporating the rheology of blood in CFD simulations.  

Then, for the pathological geometry we compared the results obtained with and without 

the application of the proposed scheme for the proper implementation of OBCs.  Again, 

the marked differences in the simulation output in the two cases highlights the need for 

adopting the proposed methodology in arterial flow simulations.  
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Chapter 1 

INTRODUCTION 

1.1 Motivation  

Cardiovascular diseases (CVDs) are the leading cause of death in the US, and 

contribute more than three hundred billion dollars annually to the national health care 

cost (American Heart Association 2014).  This explains the enormous interest and 

number of research activities centered today on the investigation of blood flows, as can 

be inferred from the many books that have been dedicated partly or fully to this subject 

(Pedley 1980; Cheer and van Dam 1993; Fung 1997; Nichols and O’Rourke 1998; 

Drzewiecki and Li 1998; Li 2000; 2004; Zamir, 2000; 2005; Waite and Fine 2007; 

Batzel et al. 2007; Galdi et al. 2008; Truskey et al. 2009; Formaggia et al. 2009; 

Chandran et al. 2012; Peattie et al. 2013). 

Atherosclerosis, the most typical precursor of CVDs, can be seen as a flow 

problem developing in the closed network flow field of the cardiovascular system.  A 

fluid mechanics analysis of the flow can potentially improve the understanding of the 

mechanisms under which these pathologies develop.  A case in point is the investigation 

of Malek et al. (1999) which showed that low and oscillatory shear regions (below 0.4 

Pa) can favor the development of atherogenesis, the initial stage of atherosclerosis.  

From this work and various others [Ku et al. (1985); Levesque et al (1986); Nemerson 

and Turrito (1991); Ku (1997); Wooten and Ku (1999); Younis et al. (2004)] there has 

been a consistent trend of atherosclerosis being associated with local fluid dynamics 
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inside the vessels.  A popular means of obtaining detailed information about the flow is 

computational fluid mechanics (CFD). 

1.2 Background 

CFD has been increasingly used for modeling blood flow in arteries and has 

gained favor as a tool for understanding and predicting CVDs.  Three-dimensional (3D) 

simulations have been performed on various vascular regions, ranging from the carotid 

[Rindt and van Steehoven (1996); Milner et al. (1998), Gijsen et al. (1999a); Steinman 

et al. (2002); Kato et al. (2003); Valencia et al. (2006); Nguyen et al. 2008; Gay and 

Zhang 2009; Wake et al. (2009); Bevan et al. (2010); Morbiducci et al. (2011); 

Kamenskiy et al. (2012)], to the coronary (Hutchins et al. (1976); Nissen et al. (1991); 

Brinkman et al. (1994); Friedman et al. (1996); Perktold et al. (1998); Changizi and 

Cherniak (2000); Seron et al. (2003); Ramaswamy et al. (2004); Frauenfelder et al. 

(2007); Johnson et al. (2011a); Apostolidis et al. (2014)], the abdominal aorta [Taylor 

et al. (1998); Trushar et al. (2011)], the cerebral [Moore et al. (2006); Alastruey et al. 

(2007); Alastruey et al. (2008); Passerini et al. (2009); Reymond et al. (2012); Fahy et 

al. (2014)], and the pulmonary [Spilker et al. (2007); Clipp and Steele (2009)] arteries 

to name a few.  However, despite the significant number of cardiovascular-related CFD 

investigations, the clinical impact of these studies on the medical field is limited, as the 

physiological relevance of hematological data acquired from simulations can be 

questionable [Byoung-Kwon (2011)].   

The limiting factors that decide the accuracy of blood flow simulations are the 

precision of the geometrical model, the complexity of fluids in the human body, and the 

imposed boundary conditions (BCs).  State-of-the-art technologies have offered 
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significant improvements in overcoming some of these limitations.  Medical imaging 

techniques, such as computed tomography, ultrasound imaging, and magnetic resonance 

imaging offer very detailed, personalized geometrical models that are used for CFD 

simulations.  Therefore, the geometric representation of vascular components no longer 

constitutes a significant limitation in simulations of arterial flow.  The same cannot be 

claimed for the remaining limiting factors, the fluid complexity and the boundary 

conditions.   

 Being a dense suspension of cells in plasma, blood exhibits a complex non-

Newtonian rheology.  It has a shear thinning and viscoplastic behavior (exhibits a yield 

stress), while its deformation dependence on the history of the flow means it is also 

thixotropic.  The rheology of blood is often neglected, or at best severely simplified, in 

simulations of arterial flow.  Characteristically, non-Newtonian blood rheology effects 

are at best approximated through generalized Newtonian models (Gijsen et al. 1999a; 

1999b; Valencia et al. 2006; Lee and Steinman 2007; Yilmaz and Gundogdu 2008; 

Wang et al. 2010; Morbiducci et al. 2011; Seo 2013).  However, as we know from 

theory (Bird et al. 1987), and given the history-dependence of blood rheology (Bureau 

et al. 1980), such a description is only valid for steady shear flows which are 

fundamentally different from the pulsatile, Poiseuille type of flows occurring in the 

human body.  Most importantly, even when a phenomenological generalized Newtonian 

model is employed to represent the most important non-Newtonian characteristic of 

blood, namely the shear-thinning property, the model parameter values are not directly 

connected to the physiological conditions.  This limits significantly the application of 

blood flow simulations; in order to incorporate the rheology of blood, one would be 

required to obtain rheological measurements of the respective blood sample.   
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Another issue associated with capturing the in vivo nature of the fluid dynamics 

comes from the specification of appropriate boundary conditions.  These conditions 

need to be specified for every computational domain of the system, which includes the 

arterial vessel walls and the inlet(s)/outlet(s).  For the first type of BCs, those 

corresponding to the vessel wall, the most typical approach, and the one that is also 

adopted in our investigation, is to apply the no-slip and no-penetration conditions.  

However, for a more faithful representation of the in vivo conditions, the mechanical 

properties of the arterial wall would have to be taken into consideration.  This requires 

the application of fluid-structure interaction (FSI) modeling, in order to account for the 

impact of the vessel compliance on the arterial pressure and/or the pressure wave 

propagation [Campo-Deaño et al. (2015); Dong et al. (2015)].  However, the inclusion 

of FSI adds significant complexity, and therefore increased computational demands, to 

the problem of blood flow modeling.  While the importance of FSI is recognized, the 

focus of this project, as will be further discussed in the current section, is on improving 

the rheological description of blood flow.   

The proper specification of the outflow boundary conditions is an equally 

complicated task.  The complexity rises due to the closed network condition that 

characterizes the arterial system, which dictates that the outflow BCs in simulations of 

flow in specific vascular components (such as the coronary artery) should represent 

information of the downstream network, which extends beyond the limits of the 

simulated geometry.  Similarly to the case of the vessel wall BC, the various 

methodologies that are employed here involve different levels of accuracy.  

One of the sensible ways that have been followed to address this issue involves 

the use of existing, non-invasive technologies, such as the Doppler ultrasound and the 



 5 

3D MRI that can provide pressure and velocity profiles (Milner et al. 1998; Xu et al. 

1999; Frauenfelder et al. 2007; Boutsianis et al. 2008; Torii et al. 2009; Wake et al. 

2009).  These are very accurate and detailed data, but, in addition to requiring the use 

of expensive and time-consuming techniques, they can only be used to reproduce the 

existing flow.  In other words, such techniques cannot be utilized for modeling practices 

or to examine what-if scenarios. 

The most widely used type of outflow boundary conditions in arterial flow 

simulations is the zero pressure outlet BC [Galindo-Rosales et al. (2014)].  This type of 

conditions are not suitable for hematological studies, as they neglect any changes in the 

pressure and flow rate as a consequence of the influence of the downstream vessels.  

Moreover, their application can only be justified in symmetric geometrical models, 

which constitute a strongly idealized representation of vessels.  Another type of BCs 

typically employed in blood flow simulations is the resistance BC [Vignon- Vignon and 

Taylor (2004); Figueroa et al. (2006); Clementel et al. (2006)].  This methodology 

considers a linear relationship between flow rate and pressure at the outlets, and it is 

equivalent to imposing a constant pressure gradient across the downstream network.  

The resistance BCs cannot describe in vivo conditions either, as they are very 

approximate and they can only be applied to steady flow conditions.   

 More sophisticated methodologies for the description of the outflow conditions 

have also been employed.  These methods typically involve the description of outlet 

conditions through a correlation between outlet flow and pressure, as opposed to 

assigning absolute values to a computational outlet domain.  This is based on 

information of the arterial network dynamics, which extend beyond the limits of the 

simulated geometry.  Such information is obtained from more generic 0D or 1D network 
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models which, unlike the 3D simulations, can cover an extended part of the arterial 

network.  Since this approach involves the passing of information from the more 

approximate, but also generic, 0D or 1D models to the more detailed, but also 

computationally expensive, 3D simulations, the methodology can be described as 

hybrid.  The various hybrid models that have been proposed are mainly distinguished 

from the complexity of the developed network model. 

 The more simplistic cases of network models regard the use of lumped parameter 

models, the most common of which is the three-element Windkessel model [Taylor and 

Draney (2004); Grinberg and Karniadakis (2008)].  These models try to truncate the 

subnetwork resistance and pressure/flow relationships by using a lumped (0D) and 

regressed parameter set, which in consequence may be limited in its predictive 

capability, and by necessity involves parameters lacking a physiological meaning.  The 

more rigorous approaches aim at matching the outflow BCs of 3D simulations to the 

predictions of 1D impedance models of the whole arterial network [Quarteroni and 

Veneziani (2003); Formaggia et al. (2009); Bernabeu et al. (2013)].  These models 

approximate the arterial network as a 1D treelike structure with linearized flow 

equations that can be solved analytically, and incorporate time-periodicity of the flow.  

Such a network model has been previously developed within our group [Johnson et al. 

(2011b)] and it is used for the scope of the present work.  

The developed impedance model covers the entire arterial network, from the 

aorta all the way down to the smallest capillary level.  Furthermore, it solves for the 

time-periodic pulsatile flow profile as a combination of a steady state solution, which is 

obtained through a lubrication-type approximation for flow through tapered tubes, and 

a linear superposition of principal and higher harmonic modes, which are obtained 
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through a Womersley-type linear approximation of viscous pulsatile flow within thin-

walled elastic vessels [Johnson et al. (2011b)].  However, while the developed network 

model has been effective in capturing the extended vasculature of the human body, it 

has only accommodated a very basic and outdated description of the non-Newtonian 

rheology, limited only to the steady flow component of the model.  In order to closely 

imitate the in vivo outflow conditions in blood flow simulations, a faithful description 

of the non-Newtonian characteristics of blood needs to be implemented in the network 

model.  

 The use of hybrid models to describe the cardiovascular dynamics of blood flow 

highlights, implicitly, the importance of accounting for the rheology of blood.  On one 

hand, as described earlier in the text, there are efforts to account for the rheology of the 

fluid in CFD simulations, even with a simplistic way of introducing generalized 

Newtonian models which cannot predict the history-dependent effects.  On the other 

hand, a faithful rheological description needs to be included in the 1D network model 

to ensure realistic output of in vivo conditions that can be used as BCs in the CFD 

simulations.  Thus, an explanation of the non-Newtonian phenomena in the blood 

circulation is warranted.  

 The complex rheology of blood is attributed to its constituents.  The red blood 

cells (RBCs), which greatly outnumber the rest of the suspended in plasma cells 

(leucocytes and platelets), form aggregate structures (rouleaux) by connecting to each 

other via the bridging of plasma proteins, such as the fibrinogen [Merrill (1969)].  These 

structures develop further into a network at very low shear rates, which explains the 

yield stress characteristic, while at higher shear rates the rouleaux disintegrate, 

explaining the shear-thinning properties of blood.  The thixotropy and viscoelasticity 
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exhibited by blood are attributed to the elasticity of the formed structures, as well as the 

elasticity exhibited by the individual RBCs [Merrill (1969); Merrill et al. (1963, 1967, 

1965); Apostolidis and Beris (2014, 2015)].   

The complex rheology of blood can be exhibited at different parts of the 

circulation system, and under a variety of conditions.  The non-Newtonian properties 

are primarily manifested at low shear rates (~ 0.01-50 sec-1).  This has lead researchers 

to ignore the rheology of blood in simulations of flow in large arteries, where the shear 

rates are typically high, by assuming a Newtonian behavior of blood [Sochi (2014)].  

Although this assumption is justified to an extent, as indeed the low shear regions are 

primarily met at the smallest vessels such as the arterioles and the capillaries, such flow 

conditions can also develop even in large arteries, as, for instance, near bifurcation 

junctions or, for pathological cases, near aneurysms or close to the stenosis sites 

(occluded regions) of the diseased artery.  In addition, a factor that further perplexes the 

understanding of flow deformation in the circulatory system, and therefore any attempt 

to model the respective phenomena based on first principles, is the reported sensitivity 

of the rheology on pathological conditions invoked from abnormal levels of plasma 

proteins, such as hypefibrinogenemia, anemia, polycythemia, hyperlipemia and others 

[Merrill (1969)].   

The complex rheology of blood, coupled with the numerous, in most cases 

unidentified, interactions between the plasma proteins and the suspended cells, suggest 

a problem of such complexity that the accurate modeling of the system, based on first 

principles, becomes an immense challenge.  Although several efforts have been made 

to reconstruct the blood flow non-Newtonian characteristics from first principles 

micromechanical models [Fedosov et al. (2010; 2011; 2014); Li et al. 2014], the issue 
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remains that, due to so far poorly understood biological interactions between its 

ingredients, this full a-priori construction remains elusive and adjustable parameters are 

needed to describe the red blood cell behavior.  Thus, it is our perspective that an 

alternative approach should be adopted in order to improve the status quo of blood flow 

modeling, in CFD. 

1.3 Objectives 

The objective of this work is to improve the quality of blood flow simulations 

by offering a better representation of the involved rheology.  A more faithful description 

of the involved hemodynamics in the arterial network can improve the accuracy of blood 

flow simulations and get us closer to physiologically accurate results.  Most importantly, 

however, it is the objective of improving the connection of the rheology models to blood 

physiology that we want to achieve.  A side benefit, potentially of high significance to 

the medical field, is the use of blood rheology as a tool to improve diagnostic 

capabilities. Furthermore, by adopting a macroscopic approach, whereby we capture 

phenomenologically the structural changes within blood that dictate the rheological 

response, we ensure that the computational demands for incorporating these models into 

CFD are moderate.  This facilitates the end goal of a rheology-based diagnosis being 

adopted by physicians, as it would constitute an affordable means of establishing a 

connection between the in vivo measurements at the physician’s office and, through the 

connection of rheology to physiology, the medical diagnosis.  A final objective of this 

thesis is therefore to show the influence of rheology in actual CFD blood flow 

simulations in selected arterial vessels, which presupposes the fine-tuning, further 

development and implementation of the appropriate outlet boundary conditions.     
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1.4 Thesis Outline 

The rest of the dissertation is organized as follows: in Chapter 2 we focus on the 

steady state shear flows, and we develop a parametric model that can describe the 

rheology of physiological blood under such conditions.  Then, in Chapter 3 we try to 

model the impact of specific pathological conditions, namely the effect of high and low 

cholesterol and triglyceride levels, on the key rheological properties.  Chapter 4 regards 

the extension of the parametric steady state model to a thixotropic model, which can be 

used to describe the rheology of blood in transient shear conditions.  Finally, in Chapter 

5 we undertake a CFD investigation, whereby we simulate the flow of blood in the left 

coronary artery, and we emphasize the impact of the non-Newtonian rheology on the 

simulation output.  The conclusions of this work and the future directions of it are 

discussed in Chapter 6. 
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Chapter 2 

MODELING OF BLOOD RHEOLOGY IN STEADY-STATE SHEAR FLOWS 

2.1 Introduction 

Blood is a complex fluid with non-Newtonian characteristics. It has a shear-

thinning behavior [Merrill (1969)] and often exhibits a yield stress (viscoplasticity) 

[Cokelet et al. (1963); Merrill et al. (1966, 1969)] with potential history effects 

(thixotropy) [Dintenfass (1962)].  The rheological complexity of blood is attributed to 

its constituents.  Rheologically, blood is primarily characterized as a concentrated 

suspension of elastic, deformable, red blood cells (RBCs).  However, it also contains 

other ingredients such as leukocytes and platelets within plasma.  Plasma itself contains 

proteins, of which fibrinogen is known to affect the rheological properties of blood by 

promoting the aggregation of RBCs at low shear rates [Merrill (1963b, 1966, 1969); 

Morris et al. (1989)].  This complexity makes the modeling of blood rheology from first 

principles very challenging. 

Despite the tremendous amount of efforts in blood flow simulations [Shi et al. 

(2011)], a prominent drawback is in the description of the non-Newtonian rheology.  In 

many simulations it is neglected outright and blood is treated as a Newtonian fluid 

[Olufsen et al. (2000); Cebral et al. (2002); Lee and Xu (2002); Tang et al. (2003)], 

while in others it is simplistically represented by accounting only for the shear-thinning 

behavior [Gijsen et al. (1999); Jung and Hassanein (2008)].  In the recent review, 

Yilmaz and Gundogdu (2008) present an extended list of generalized Newtonian and 

non-Newtonian macroscopic models that have been used to describe blood flow.  On 

the other hand, considerable efforts have been placed to use detailed microscopic 

mechanical models [Tanaka and Takano (2005); Fedosov et al. (2011)], or even multi-
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scale approaches [Fedosov et al. (2010)], for better capturing the blood rheology.  

However, the resulting models (a) require a substantial time to run even for simple flow 

cases and (b) still fail to incorporate all relevant physics, such as the role of fibrinogen.   

The pulsatile flow conditions that are met in the human vascular network 

necessitate a blood flow model capable of representing time-dependent flows.  Such a 

model should predict both the viscoplastic and the thixotropic properties of blood.  Some 

of the most sophisticated, non-Newtonian, blood flow models in literature able to show 

(at least implicitly) thixotropy and viscoelasticity were developed by Owens and co-

workers [Owens (2006); Moyers-Gonzalez et al. (2008)].  In the first of these models 

[Owens (2006)] an attempt was made to take into account, through a set of viscoelastic 

phenomenological equations extracted from a polymer network theory analog, the 

aggregation and disaggregation of the erythrocytes.  Moyers-Gonzalez et al.(2008) 

developed a further refinement of that model to account for the inhomogeneous 

erythrocyte concentrations in the blood stream.  However, these models fail to account 

explicitly for yield stress and viscoplasticity. 

Yield stress is an important characteristic of blood rheology and an essential 

component of its non-Newtonian nature.  Experimental evidence for its association with 

blood has been provided in many investigations [Cokelet et al. (1963); Merrill et al. 

(1963, 1965, 1966, 1967, 1969); Chien et al. (1966)] and with different experimental 

techniques, as described by Picard et al. (1998).  From a modeling point of view, the 

role of yield stress is most clearly evaluated under steady-state shear flow conditions.  

This is where we focus our attention in the present work.  Furthermore, due to the 

steady-state restriction, we investigate here viscoplastic models with no time-dependent 
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(i.e. thixotropic or viscoelastic) characteristics.  These features can be added and be 

separately addressed in a future publication.   

The importance of the steady-state models should not be underestimated.  

Steady-state flows give an insight on essential characteristics of the non-Newtonian 

rheology, such as shear thinning and yield stress.  These need, at a minimum, to be 

captured in models before departing into a more detailed analysis of time-dependent, 

thixotropic, effects.  Furthermore, an approximate, yet efficient, treatment of blood flow 

in the arterial network involves decomposing the solution into a steady and a zero mean-

flow oscillatory component, each one of which is treated separately [Johnson et al. 

(2011)].  Finally, a trustworthy parametric representation of steady-state blood rheology 

in terms of physiological parameters may be used as a mean of medical diagnosis. 

Pathological issues can be inferred from observed differences between viscometric 

blood data and the predicted model results for physiological conditions [Marcinkowska-

Gapińska et al. (2007)]. 

A plethora of models have been used for steady-state blood flow predictions in 

the literature---see [Marcinkowska-Gapińska et al. (2007); Yilmaz and Gundogdu 

(2008)] and references therein.  Although, at times, the preference seems to be in one or 

two of those models, still there appears to be no consensus.  Part of the underlying 

reasons for this state of affairs may be that some of the proposed models have not been 

extensively compared to experimental data.  In other cases, ambiguities may arise due 

to incomplete characterization of the data samples used.  Moreover, on occasion, the 

pseudo-shear rate defining Poiseuille flow is confused with the actual shear rate in 

simple shear.  
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Due to the simplicity of the steady-state shear flow, the most general equation 

for the shear stress is of the form of a generalized Newtonian model: 

  
 ( ) ,τ η γ γ=     (2.1) 

where the shear stress, 𝜏𝜏, is described in terms of a positive (apparent) viscosity, 

𝜂𝜂, that depends only on the magnitude of the local shear rate, 𝛾̇𝛾.  As such, such an 

equation can also be used to describe the steady-state blood rheology.  However, 

inherent to that description is the assumption that the rheology in a steady-state non-

homogeneous shear flow, only depends on the local flow kinematics.  This is called the 

simple fluid hypothesis [Bird et al. (1977)].  If and only if this question is first answered 

affirmatively can one proceed to the next step, i.e. determining the particular generalized 

Newtonian model that best suits the experimental evidence.  

As a special case of a generalized Newtonian fluid, but also as one that further 

extends it to allow for a singular apparent zero-shear-rate viscosity, it is important to 

recognize here viscoplastic generalized Newtonian fluid models.  In general, 

viscoplasticity defines a rheological behavior that is characterized by the yield stress, 

yτ .  This represents the minimum magnitude of the extra stress needed in order for the 

material to deform continuously under flow.  Therefore, for shear flows, the most 

general viscoplastic description for the shear stress is slightly different than that 

corresponding to a generalized Newtonian model, Eq. (2.1), in that it explicitly only 

applies to the yielded state.  In shear flows it is implicitly described as: 
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where yη is the “post-yield” viscosity, a positive (finite) function of the local 

magnitude of the shear rate, γ .  Note that although Eq. (2.2) can be cast as a particular 

case of Eq. (2.1), the corresponding form of the (apparent) viscosity, η , given as: 

  

 ( ) ,y
y
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η η γ

γ
= + 



  (2.3) 

  

is singular and becomes unbounded in the limit 0γ → .   

The question of whether a real material exhibits a true yield stress, as described 

by Eq. (2.2) above, or it is only “apparent” and an idealization valid for small but not 

infinitesimally small values of the magnitude of the shear rate has sparked a lot of 

discussion [Barnes (1999)].  However, in many practical applications this may be of 

little significance to the flow predictions.  We believe that the explicit reference to a 

yield stress, if it is substantiated by experiments over a significant range of shear-rate 

values, is very useful to have. Not only it simplifies the resulting model equations [for 

instance η y  appearing in Eqs. (2.2) and (2.3) is, in general, much simpler than the 

apparent viscosity appearing in Eqs. (2.1) and (2.3)] but also it can be critical in certain 

problems where yield stress matters, i.e. where unyielded regions may be involved, like 

low stress stagnation regions.  Moreover, the yield stress may be more easily connected 
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to physiological parameters. For blood, there is overwhelming evidence for the 

existence of yield stress [Cokelet et al. (1963); Merrill et al. (1963b, 1965, 1966, 1967, 

1969); Meiselman et al. (1967); Morris et al. (1989); Picart et al. (1998); Yeow et al. 

(2002); Lee et al. (2011)]. 

A phenomenological viscoplastic model commonly used in the steady-state 

analysis of blood flow is the Casson constitutive equation [Casson (1959)].  This non-

linear model has been found to accurately predict the flow curves of pigment 

suspensions used for preparation of printing inks [Casson (1959)] and silicon 

suspensions [Walwander et al. (1975)].  Its applicability to blood is strongly supported 

by the good comparison with experimental data of varying hematocrits [Merrill et al. 

(1965, 1967, 1963a)], anticoagulants [Meiselman et al. (1967)] and temperatures 

[Merrill et al. (1963a)].  However, so far, the Casson model has not been systematically 

compared against other equations, commonly used to describe the steady-state shear 

rheology of viscoplastic fluids, such as the Herschel-Bulkley model [Herschel and 

Bulkley (1926)].  

In addition, of interest to numerical simulations is the capability to connect the 

model parameters (i.e. the viscosity and yield stress of the Casson model) to the 

physiological conditions.  Some parametric representations for the viscosity already 

exist in the literature but they address the dependence of the apparent viscosity [Pries et 

al. (1990, 1992)], not the Casson viscosity, on the hematocrit (Hct).  On the other hand, 

the dependence of yield stress on the physiological parameters has been the focus of 

many studies [Chien et al. (1966); Picart et al. (1998); Yeow et al. (2002); Lee et al. 

(2011)].  However, most of the proposed equations in those studies quantify the 

dependence of yield stress only on the hematocrit.  Furthermore, in their formulations, 
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they do not take advantage of the percolation nature of the yield stress [Merrill (1969)].  

Merrill et al. (1965, 1969) reported a critical hematocrit value below which blood does 

not exhibit a yield stress.  He was also one of the first researchers to systematically 

measure the exhibited yield stress under various fibrinogen concentrations [Merrill et 

al. (1966, 1969)], proposing a quadratic dependence on the fibrinogen concentration in 

plasma [Merrill et al. (1969)].  His fibrinogen studies, however, were conducted only at 

a single hematocrit (40%).  Morris et al. (1989) also tried to quantify this dependence 

for a wider range of fibrinogen concentrations and at various hematocrit levels.  His 

experimental data were in reasonable agreement to those of Merrill, at least for those 

involving RBCs suspension in plasma (as opposed to saline solutions inhibiting red 

blood cell aggregation).  Morris’s data further suggested a correlation between the 

critical hematocrit value and the plasma fibrinogen concentration.  However, this effect 

was not quantified.  

Another issue pertaining to the correct use of experimental data is the type of 

suspending phase under study.  Red cell suspensions in plasma display a higher viscosity 

compared to saline suspensions [Brooks et al. (1970); Zydney et al. (1991)].  In the case 

of yield stress, important differences are exhibited between saline suspensions with 

added fibrinogen [Merrill et al. (1966)] and plasma suspensions [Merrill et al. (1969)].   

Morris et al. (1989) have postulated that factor VIII related antigen, immunoglobulins, 

and fibronectin, all of which are plasma constituents that promote cell-cell adhesion, 

could potentially affect the interaction of fibrinogen with the RBC membrane and thus 

the yield stress.   

Various studies have shown pathologies, along with the drugs that are used to 

cure the diseases, to have an impact on the rheology of blood.  Picart et al. (1999) have 
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identified the ratio of albumin to globulins as the best predictor of yield stress for 

patients with systemic sclerosis.  Marcinkowska-Gapińska et al. (2007) have shown 

changes in blood rheology, caused by acenocoumarol delivered to post-infarction 

patients, that they attributed to changes in RBC deformability and rouleaux formation.  

Weng et al. (1996) have examined the impact of macromolecules, other than fibrinogen, 

on erythrocyte aggregation and explained the pathological significance of 

concentrations of acute phase proteins.  They have also reported that RBCs are likely to 

be deformed and form compact clumps instead of rouleaux at high hematoctit values.  

Finally, there lies the value of a very interesting line of investigations where the use of 

pertinent information, such as the sickle cell shape and elasticity, in suitably established 

microscopic flow simulations, can lead to specific predictions for blood flow behavior 

under these specific pathological conditions [Lei and Karniadakis (2012)].  These 

studies show that as we depart from physiological to pathological states the steady state 

shear rheology of blood is also affected.  Thus, a complete description of the steady 

state, simple shear rheology could be used for potential diagnostic applications.  

The objective of this work is to systematically study and macroscopically (at the 

continuum level) model the behavior of physiological human blood, as a rheological 

fluid, in steady-state shear flow.  Using the most pertinent experimental data from the 

literature [Merrill et al. (1965); Morris et al. (1989); Barbee (1971); Barbee and Cokelet 

(1971)], the non-Newtonian characteristics of physiological human blood under steady-

state flow conditions are evaluated.  First, we test the simple fluid hypothesis for blood.  

In particular, we examine whether blood can be described by the same generalized 

Newtonian equation in all types of steady-shear flows, homogeneous (e.g. simple shear) 

as well as non-homogeneous (e.g. Poiseuille flow).  Second, after showing that the 
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answer to the aforementioned question is affirmative, we objectively determine the best 

generalized Newtonian description for the human blood shear rheology.  Third, we 

develop accurate parametric representations for the dependence of yield stress and 

model viscosity on the most critical parameters under physiological conditions 

(hematocrit, fibrinogen concentration and temperature).  

To address the third goal, i.e. to find effective parametric representations for the 

steady shear blood flow rheology, we consider the concept, suggested by Merrill [1969] 

and many other investigators, that blood forms rouleaux of red blood cells at low shear 

rates and that these rouleaux reversibly disintegrate when the shear rate is increased.  

The formation of the rouleaux aggregates is behind the underlying microscopic 

explanation for the macroscopic yield stress. Furthermore, we consider that RBC 

adsorption is done primarily through fibrinogen [Merrill (1969)], with synergic impact 

from other macromolecules [Morris (1989)], and that it is a critical, onset-type 

phenomenon.  Thus, the dependence of the yield stress on the fibrinogen concentration, 

and the difference of the hematocrit from a critical hematocrit value, which in turn is 

also fibrinogen-dependent, is justified.  To elucidate those dependences, we use 

literature data of normal human blood. An exception is the use of yield stress 

measurements of Morris et al who, apart from normal suspensions of RBCs in plasma, 

also used suspensions with an in-vitro augmented fibrinogen content.  Finally, it is worth 

to be mentioned here that we treat blood phenomenologically as a rheologically 

homogeneous medium.  Barbie and Cokelet (1971) showed that this leads to consistent 

results for tube steady state flow of diameter down to 29μm provided the local 

hematocrit value is used to characterize the blood condition. 
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The structure of this chapter is as follows.  In Section 2.2 we briefly describe 

the methods used in carrying out our investigation.  In Section 2.3 we present our 

results, focusing on our parametric representation.  In the same section, we present the 

model verification and validation through a comparison of the model predictions 

against data used in the model development and additional independent data from the 

literature, respectively.  In Section 2.4 we discuss the comparison of our model against 

additional data from the literature which are incompletely characterized.  Finally, our 

conclusions follow in Section 2.5. 

2.2 Methods 

The methods selected in this work have been tailored to address the three key 

issues identified in the introduction: (a) model consistency, (b) model description and 

(c) parametrization. 

2.2.1 Poiseuille flow data reduction 

It is important to convert capillary viscometry data into Couette, in order to 

consistently compare rheological information from various sources.  To achieve this 

task for viscometric capillary data we use the following formula that is derived based 

on the standard analysis of the flow of a simple fluid in a cylindrical tube [Bird et al. 

(1977)]: 

 

  

 
*

*( )( ) 3( ),w w
w

d U U
d

γ τ τ
τ

= +   (2.4) 
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where γ  is the wall shear rate, 2w P L Rτ = ∆ ×   is the wall shear stress with P L∆

denoting the pressure drop per unit length, and *U is the pseudo-shear rate defined as 

*
3

QU
Rπ

= , with Q  being the experimentally measured volumetric flow in the tube 

(vessel) and R  being the tube radius.  If necessary, the raw experimental data may need 

to be corrected for end effects as discussed in the literature [Bird et al. (1977)]. 

2.2.2 Constitutive model 

The constitutive model that we are looking to identify in this work is a 

particular case of a viscoplastic generalized Newtonian fluid (i.e. one that exhibits a 

non-zero yield stress), described (for positive shear rates) by 

  

 ,m m m k m
y yAτ τ γ τ τ⋅= + × ≥   (2.5) 

 

where  is the shear stress, is the yield stress,   the shear rate, A denotes the model 

viscosity, and  are model exponents.  The choice for the constitutive model is 

motivated by two viscoplastic constitutive models that have been extensively used in 

the past, both of which are limiting cases of the general viscoplastic constitutive model 

described by Eq. (2.5), as discussed below. 

2.2.2.1 The Herschel-Bulkley constitutive model 

The Herschel-Bulkley model, a generalization of the power law model for 

systems endowed with yield stress, finds numerous applications in describing 

viscoplastic flows [Mewis and Wagner (2012)].  The corresponding constitutive 
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equation is described for positive shear rates as [Herschel and Bulkley, (1926); Mewis 

and Wagner (2012)]: 

 

 ,k
y yKτ τ γ τ τ= + × ≥   (2.6) 

 
where yτ represents the yield stress, and  K , k  are the corresponding power law 

(positive) factors.  The generalized Newtonian fluid expression, Eq. (2.5), reduces to 

the Herschel-Bulkley model for 1m = .  In turn, the Herschel-Bulkley model reduces 

to the Bingham model for 1k = . 

2.2.2.2 The Casson constitutive model 

The Casson model is another popular phenomenological viscoplastic model, 

used frequently in the steady-state analysis of blood flows.  The physical model upon 

which its derivation is based is that of reversible aggregation, at low shear rates, of 

suspended particles into rod-like aggregates (rouleaux formation).  As the shear rate is 

increased, the rod-like aggregates decompose into smaller aggregates and, ultimately, 

into elementary particles [Merrill et al. (1963b)].  The Casson model is described for 

positive shear rates as: 

 
  ,   yyτ τ µγ τ τ= + ≥   (2.7)  

 

where 𝜏𝜏𝑦𝑦 represents the yield stress and  𝜇𝜇 is the model viscosity. 

In a square root “Casson” plot, 1 1
2 2vs.τ γ , the Casson model predicts a linear 

relationship between the square root of the shear stress and the square root of the shear 
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rate. In such a plot, the slope represents the square root of the viscosity, while the 

square root of the yield stress is given by the y-intercept.  Such a plot is then the 

natural one for the identification of the Casson model appropriateness to describe the 

data as well for determining best fits for its parameters.  Furthermore, based on the 

Casson equation, one can calculate the resulting pseudo-shear rate expression for 

pressure driven (Poiseuille) flow in a capillary tube as [Merrill et al. (1965)]: 

  

 

14 2
* 1 16 41 .

4 21 7 3
y y yw

w w w

U
τ τ ττ

µ τ τ τ

       = − − +            
  (2.8) 

 

Note that this expression corrects the corresponding formula reported by 

Truskee et al. (2009) for the factors -1/21 and 4/3 instead of 11/21 and 8/3, respectively. 

2.2.3 Parametric equations 

Parametric equations are needed in order to correlate the parameters of the 

Casson model, viscosity and yield stress, with the physiological conditions. 

2.2.3.1 Model viscosity 

The blood viscosity is known to depend strongly on the hematocrit level, while 

it also exhibits an Arrhenius type of dependence on the temperature of the suspension 

[Merrill et al. (1963); Merrill (1969)].  A list of proposed models for the apparent 

viscosity, η in Eq. (2.1), is presented in the work of Yilmaz and Gundogdu (2008).  

However, despite the long recognized dependence of viscosity on temperature, none of 

the listed models accounts for it explicitly.  Merrill’s experimental evidence [Merrill et 
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al., 1963a] suggests the same Arrhenious-type dependence for the blood apparent 

viscosity as that for water for moderate to high shear rates (where the model 

viscosity’s contribution is significantly stronger than that of the yield stress in the 

expression for the apparent viscosity) while the blood’s yield stress was found to be 

essentially temperature-independent.  The simplest approximation that could satisfy 

both of these partially conflicting conditions (rigorously satisfied only in the limit of 

high shear rates) is what we adopted here.  Namely, we introduced an Arrhenious-type 

temperature dependence only for the Casson model viscosity while treating the yield 

stress as temperature-independent.  Thus, we propose a separable parametric equation 

for the Casson model viscosity, of the form: 

  
 ( ) ( )exp ,g Hct T

αµ = ×   (2.9) 

  

where g is a function of Hct  (the tube hematocrit) to be determined through data 

fitting, and the exponential function, describing the dependence on the temperature, 

T , is obtained from the literature. The pre-exponential factor,α , is taken from the 

temperature dependence of the viscosity of water as, according to Merrill [Merrill et 

al. (1963); Merrill (1969)] is the same with blood---see also the relevant discussion 

right before Eq. (2.17) in Section 2.2.3.2.  Finally note that the model viscosity, µ , is 

a model parameter and it should not be confused with the apparent viscosity, defined 

in Eq. (2.1), which in general can depend on the shear rate. 
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2.2.3.2 Yield stress 

The main physiological parameters of importance in the case of yield stress are 

the hematocrit and the fibrinogen concentration as experimental evidence exists that 

shows the yield stress to be essentially temperature-independent [Merrill et al. (1963)].  

The vast majority of the parametric descriptions for yield stress in literature account 

only for the former parameter [Chien et al. (1966); Merrill et al. (1969); Zydney et al. 

(1991); Picart et al. (1998)].  The dependence on hematocrit is found to be either cubic 

[Merrill et al. (1969); Zydney et al. (1991); Picart et al. (1998)] or quadratic [Morris et 

al. (1989)].  Merrill et al. (1963a, 1969) have shown that yield stress is an onset 

phenomenon that is expressed only for cell concentrations above a critical hematocrit, 

𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐, an approach that was also used by Zydney et al. (1991).  The work of Morris et 

al. (1989) shows a strong interaction between the effects of hematocrit and fibrinogen 

concentration on yield stress, therefore suggesting that the critical hematocrit is also 

expected to depend on 𝑐𝑐𝑓𝑓.  However, this dependence, to be determined in this work as 

( )c fHct c , has as yet not been quantified. 

Furthermore, the use of a critical hematocrit allows us for a much more pertinent 

parametric representation of the yield stress as a critical, onset, phenomenon by 

considering the yield stress as a function of the difference of the hematocrit from the 

critical hematocrit value.  In particular, the following parametric equation for yield 

stress is proposed here: 

  

 
( )( ) ( )

( )

2

0

,
,

c f f c f

y

c f

f Hct Hct c c Hct Hct c

Hct Hct c
τ

  − >  = 
 ≤

  (2.10) 
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where ( )( )2
, − c f ff Hct Hct c c  is a function of ( ) 2

 − c fHct Hct c  and fc to be 

determined by fitting.  Note the dependence on the square of the difference of the local 

Hematocrit from its critical value.  This was found empirically as providing a good fit 

to the data while requiring a small number of fitting parameters, (in fact, the minimum 

possible, as only one quadratic term is needed) as shown in Section 2.3.2, Eq. (2.14).  

Note that the quadratic dependence emerges naturally from the fit of the data when the 

difference from a critical hematocrit is used, the first time that such a parametric 

expression is employed.  It allows for a much simpler final expression to be obtained 

involving only one term.  As such, we believe that it is of practical (due to its 

simplicity) as well as of theoretical significance as the power law may be connected to 

the underlying percolation nature of the yield stress.  This can potentially be further 

explored theoretically using percolation theory (see, for example, Balescu (1997)) 

albeit, due to the complexity of the phenomenon, such avenue has not been explored 

here. 

2.3 Results 

In our investigation we have used pertinent viscometric data from the literature.  

In Table 2.1 we list the works of various authors that have been used for the 

development and/or validation of our model, along with the relevant experimental 

conditions of each investigation. 
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2.3.1 Blood as a simple fluid 

To test the simple fluid hypothesis, we are using experimental data of a sample 

that have been obtained in both a capillary and a Couette viscometer [Merrill et al. 

(1965)].  The reported yield stress value, as measured with the use of a Couette 

viscometer, is 0.0289 dyne/cm2.  First, the capillary data are fitted with a spline 

interpolation, as shown in Fig. 1, where 𝑈𝑈� is a modified pseudo-shear rate defined as 
*

3
4 1

2π
= =

QU U
D

, with Q  denoting the volumetric flow rate.  Then, the fitted capillary 

data were reduced as shear stress vs. shear rate, with the use of Eq. (2.4), and 

compared against the Couette data in Fig. 2. 
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Figure 2.1.  Capillary wall stress vs. modified pseudo-shear 

rate for a blood sample of 39.3%Hct =  and at 20T C= °

[Merrill et al. (1965)].  Cross symbols:  Raw data.  Solid line: 

Spline interpolation fit. 
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Figure 2.2.  Shear stress vs. shear rate for a blood sample of 

39.3%Hct =  and at 20T C= ° [Merrill et al. (1965)].  Open 

circles:  Couette measurements.  Crosses:  Reduced capillary 

data. 

 
From Fig. 2, we notice that in the intermediate shear region ( )15sγ −≤  there is 

very good agreement between the Couette measurements and the reduced capillary 

data.  The maximum deviation between the two sets is ~17%, corresponding to the last 

datum in Fig. 2, while for the rest of the data the deviation is less than 10%.  An 

additional pair of datasets from the same work [Merrill et al., (1965)] but at a lower 

hematocrit, 20.1%Hct = has also been examined, where the Couette data are much 

closer to the reduced Poiseuille ones, with the data shown in the Section 2.4, in Figs. 

2.12 and 2.13.  Given the close agreement between the Couette and the reduced 

Poiseuille data for these two cases, we conclude that the simple fluid assumption for 

blood is a reasonable approximation for the case of steady-state shear flow. 
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2.3.2 Yield stress modeling and parametric estimation 

As described in Section 2.2.3.2, we are concerned here with a more rational 

modeling of the yield stress based on its interpretation as a critical, onset phenomenon, 

with respect to Hct , and with the onset being dependent on the fibrinogen 

concentration.  Our analysis is based on experimental data by Morris et al. (1989) that 

cover a wide range of plasma fibrinogen concentrations ( 0.1 0.9f
g gcdl dl≤ ≤ ), and 

hematocrits ( 40% 80%Hct≤ ≤  ).  In that work, the empirical formula proposed by 

the investigators for the fit of the yield stress data is: 

   
 τ = − + + − + ×2 2( 0.091 0.47 0.22 0.14 0.48 ) ,y f f fHct c c Hct c   (2.11) 

 

where the yield stress,  yτ  , is in  2/dyne cm and the fibrinogen concentration,  fc , in  

/g dl .  This formula involves a quadratic dependence on the hematocrit and a quartic 

one on the fibrinogen concentration.  It also shows a strong interaction between the 

effects of hematocrit and fibrinogen concentration on the yield stress.  However, in 

this formula, the yield stress is not recognized as an onset phenomenon.  

Correspondingly, there are no predictions for a critical hematocrit below which the 

yield stress is zero.  Nevertheless, as we show below, the data can be used to extract 

such information. 

Towards that goal, it is better to represent the data, for fixed fibrinogen 

concentrations, in terms of square root of the yield stress versus hematocrit graphs, as 

there some of the non-linearities are eliminated (see Fig. 3).  Indeed, as shown in Fig. 

3 and consistent with Eq. (2.11), the dependence of the square root of the yield stress 

on the hematocrit is well approximated as linear for any given value of the fibrinogen 
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concentration.  When extrapolated, these straight lines intersect the horizontal x-axis at 

positive values of hematocrit, Hct , that are decreasing as the fibrinogen concentration, 

fc , increases.  Based on that evidence, we postulate here the existence of a critical  

Hct , cHct , which, as a function of the fibrinogen, defines the onset of non-zero yield 

stress in blood flow. 
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Figure 2.3.  Experimental yield stress measurements (discrete symbols) 

and fitting curves (continuous lines) as a function of the hematocrit values 

based on the model of Morris [Morris et al. (1989)].  The error bars are 

+1.5 standard error of the mean and represent the upper 95% limit of 

normal by one sided test. Extrapolation of the model predictions is 

performed (dash lines) to obtain the critical hematocrit for each 

fibrinogen concentration (x intercepts). 
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The critical hematocrit data obtained from the x-intercepts are shown in Fig. 4, 

along with a quadratic fit, as a function of the fibrinogen concentration. The shaded 

region below the fitted line denotes the purely viscous region, i.e. the parameter region 

where blood behaves like a viscous Newtonian fluid without exhibiting a yield stress. 

From the good fit of the data, we conclude that the critical hematocrit can be accurately 

predicted as a quadratic function of the fibrinogen concentration, for concentrations less 

than 0.75 /g dl , where it assumes a minimum, and as a constant otherwise. The resulting 

equation is: 

 

 
20.3126 0.468 0.1764 0.75

,
0.0012 0.75

f f f
c

f

c c c
Hct

c
 − + <=  ≥

  (2.12) 

 
where the fibrinogen concentration, fc , is in /g dl .   
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Figure 2.4.  Critical hematocrit predictions as a function of 

the fibrinogen concentration based on the extrapolated data 
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shown in Fig. 2.3.  Crosses:  Extrapolated values.  Solid 

line:  Quadratic fit. Shaded area: unyielded zone. 

 

 

The increasing slope of the fitting curve in Fig. 2.4 for  fc   greater than 0.75   

is an artifact of the quadratic fit rather than a consequence of the underlying physics.  

As explained in Section 2.3.4, at high fibrinogen concentrations there is a saturation 

effect. Thus, the curve is expected to monotonically decrease asymptoting to a small 

value at high concentrations.  This is the explanation for the correction for fibrinogen 

concentrations more than those corresponding to the minimum of the quadratic fit, 

0.75 /g dl , in the fitting approximation offered by Eq. (2.12).   

In Fig. 2.5 we plot the slope of each curve in Fig. 2.3, 1/2( )yd dHctτ , against 

the fibrinogen concentration.  As shown in that figure, the dependence on the 

fibrinogen concentration is linear: 

 
 τ = × +1/2( ) 0.5084 0.4517,y fd dHct c   (2.13) 

 
where the slope, 1/2( )yd dHctτ , is in /dyne cm and the fibrinogen concentration, fc

, in /g dl . 

Combining the information extracted from Figs. 2.3-2.5, with the formula 

described by Eqs. (2.12) and (2.13), leads to the following parametric form for the 

yield stress: 

 

 ( ) ( )22   [ 0.5084 0.4517
,

 0
c f c

y

c

Hct Hct c Hct Hct

Hct Hct
τ

 − × + >= 
≤

  (2.14) 
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where the yield stress, yτ , is in 2/dyne cm and the fibrinogen concentration, fc , in 

/g dl .  Notice that the dependence of the yield stress on the hematocrit is through the 

square of the difference of the hematocrit from its critical value.  This arises naturally 

from the data, reinforcing our interpretation of the yield stress as an onset 

phenomenon. 
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Figure 2.5.  Dependence of the slope, 
1/2( )yd dHctτ , on the fibrinogen concentration, for 

the data shown in Fig. 3. Crosses:  Discrete data.  

Solid line:  Linear fit. 

 

The raw yield stress measurements of Morris et al. (1989) were made at a wide 

range of fibrinogen concentrations that span and exceed the physiological range.  

Including all experimental data of Figure 2.3 not only does not affect the validity of Eqs. 
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(2.12)-(2.14) within the physiological range but it also makes them potentially 

applicable to certain pathological conditions involving hyperfibrinogenemia.   

2.3.3 Constitutive model and parametric estimation for model viscosity  

2.3.3.1 Best constitutive model 

Once it has been determined that the simple fluid assumption is a reasonable 

approximation for describing the steady-shear flow behavior of blood, it still remains 

the task of systematically investigating for an appropriate equation to describe it.  

Towards that goal, and given the overwhelming evidence (in general) in favor of the 

presence of a nonzero yield stress, we investigated the quality of fit of available 

experimental literature viscometric data against various versions of the proposed 

generalized viscoplastic constitutive model, Eq. (2.5). 

For any fixed value of the exponent m , a simple rearrangement of Eq. (2.5)

leads to the following form: 

 

 ( )
1

log log log .m m m
y A kτ τ γ− = + ×    (2.15) 

 
 

Observe that for a given value of m this is a linear equation of the 

experimentally determined quantity ( )
1

log τ τ−m m m
y  with respect to logγ .  The 

remaining unknown parameters, log A and k , are determined from a Least Squares (LS) 

fit, as the y-intercept and the slope, respectively [Edwards (1979)].  A Least squares fit 

also provides the correlation coefficient, , 1r r ≤ .  The closest the magnitude of the 

correlation coefficient is to 1 the better the fit is [Edwards (1979)].   
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We have applied the LS analysis on (a) five Couette viscometric datasets 

[Merrill et al. (1963a, 1965, 1967)] and (b) two sets of reduced capillary data that 

correspond to two of the Couette viscometric datasets [Merrill et al. (1965)].  Pertinent 

information on the key physiological and rheological characteristics of these datasets 

is to be found in Table 2.2.  For each dataset the reported yield stress, 𝜏𝜏𝑦𝑦, has been 

experimentally determined by the respective investigators.  For each dataset the LS 

calculations were performed for three distinct values of the parameter m ( )1 1, , 13 2 .  

In each case, the parameters A and k are determined by the fit. 

 
Table 2.2.  Physiological and rheological information of the selected under study 
datasets. 
Dataset # Reference Hct 𝑐𝑐𝑓𝑓 (g/dl) 𝜏𝜏𝑦𝑦 (dyne/cm2) 
1 Merrill et al. (1965) 39.3% - 0.0289 
2 Merrill et al. (1965) 20.1% - 0.0036 
3 Merrill et al. (1965) 

(reduced capillary 
data) 

39.3% 
- 

0.0289 

4 Merrill et al. (1965) 
(reduced capillary 
data) 

20.1% 
- 

0.0036 

5 Merrill et al. (1963a) 35.5% - 0.019 
6 Merrill et al. (1967) 40% 0.18 0.0188 
7 Merrill et al. (1967) 40% 0.27 0.04 

Note:  Unless otherwise indicated the data correspond to Couette viscometry. 

 

The resulting k values, as well as the square of the correlation coefficients, 2r , 

are reported in Table 2.3.  Of interest is that 1m = corresponds to the Herschel-Bulkley 

model, which for a value of 1k = reduces further to the Bingham model, whereas the 

combination 1
2m = and 1k = characterizes the Casson model. 
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Table 2.3.  Least squares data of the cases of the selected under study datasets. 
Cases  𝑚𝑚 = 1

3�  𝑚𝑚 = 1
2�  𝑚𝑚 = 1 

Dataset 
# 

𝑘𝑘 r2 𝑘𝑘 r2 𝑘𝑘 r2 

1 1.2883 0.9974 0.9684 0.9992 0.6714 0.9961 
2 1.2210 0.9983 0.9912 0.9991 0.8047 0.9964 
3 1.3076 0.9996 0.9768 0.9999 0.6676 0.9936 
4 1.3194 0.9976 1.0329 0.9998 0.7817 0.9967 
5 1.2453 0.9988 0.9711 0.9999 0.7297 0.9982 
6 1.2705 0.9939 0.9967 0.9980 0.7575 0.9964 
7 1.2863 0.9927 0.9977 0.9971 0.7409 0.9957 

 
 

The selection of the most suitable constitutive model was based on two criteria, 

the correlation coefficient r2 and the dispersion of the k value. The closest the 

magnitude of the correlation coefficient to 1 is the better the fit [Edwards (1979)].  On 

the other hand, the smallest the dispersion of computed k value among the seven data 

sets, the more reliable and consistent the constitutive model is (a highly varying k 

value would have meant an inability to uniquely evaluate it).  Table 2.3 shows that, 

based on both criteria, the most suitable constitutive model is the Casson, since both 

conditions are met when = 1
2m .  In particular, for each data set examined the r2 is 

highest, and the dispersion of the computed k value among the seven datasets is 

minimum, when = 1
2m .  Thus, based on the analysis of the seven data sets listed in 

Table 2.3, the Casson constitutive model emerges naturally from the data as the most 

suitable one for the description of the steady state simple shear rheology of blood. 
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It should be noted that this is not a rigorous proof since the conclusion has 

been based on a particular, finite, number of investigations that has been used in the 

analysis and on a specific form of the most general constitutive model, provided by 

Eq. (2.5).  The latter, albeit is general enough to cover many common particular cases 

(including the Hershel-Bulkley model) it is clearly not the most general that one could 

have devised.  Nevertheless, it is likely that anything more general would have 

required more parameters, and more parameters would have required more 

experimental data.  However, the number of experimental data available that were 

well characterized are fairly limited and not too many beyond those used in this study.  

Based on this consideration and the fact that the Casson model naturally emerges as 

the optimum fit for the data and the general model equation used in this work, we 

believe that strong evidence is provided in favor of the Casson model. Therefore, in 

the rest of the paper only the Casson model is further considered. 

2.3.3.2 Parametric estimation for model viscosity 

Having shown the suitability of the Casson model and also having developed a 

parametric expression for the calculation of yield stress, the last stage towards the 

completion of our model is the parametrization of the Casson model viscosity, μ.  The 

key physiological parameter (other than the temperature that was discussed earlier) on 

which the model viscosity is anticipated to sensitively depend upon is the tube 

hematocrit, Hct .  For our parametrization we tried to find a set of data covering a wide 

range of hematocrit values.  Those turned out to be capillary data.  Therefore, they have 

to be reduced to equivalent Couette data prior to the analysis.  More specifically, we use 

the in vitro capillary data of Barbee (1971) which consist of 9 sets of shear stress versus 
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pseudo-shear rate data, each set having a distinct and specified hematocrit between 

0.123 and 0.593.  Conveniently, those data can be parametrically represented, as 

suggested by Lee (1977), following a modification of an earlier form provided by 

Barbee (1971), as: 

 

 
( )

( )

0.15*
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−

−

−

 +  − 

 ≤ ≤= 
 >

  (2.16) 

 
where 2 21.67 10 ×pn dyne s cm−= ×  is the plasma viscosity, τ w is the wall shear stress 

and *U  is the pseudo-shear rate in 1s− .  We have used Eq. (2.16) in this work instead of 

the original data as it is much more convenient due to its explicit parametric 

dependencies.  Thus, when we combine Eq. (2.16) and Eq. (2.4) we obtain the reduced 

Couette predictions, typical results of which are shown in Fig. 2.6. 
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Figure 2.6.  Casson plots, 1 1
2 2vs.τ γ , for three data sets 

from the work of Barbee (1971) each one corresponding to a 

different hematocrit value as indicated.  Dash lines:  Reduced 

capillary data.  Solid lines:  Linear fits. 

 

 

As indicated in Fig. 2.6, when the data are plotted as a 1 1
2 2vs.τ γ , the reduced 

data (dashed lines) display linearity.  The quality of the linear fits is equally good for 

the six remaining data sets (data not shown).  This serves as further verification for the 

suitability of the Casson equation.  In fact, the Casson constitutive equation correlates 

excellently with all the Barbee (1971) viscometric data in a shear rate range between ~
10.5 s− and ~ 1800 s− .   Upon reduction and linear fit of the nine data sets, we obtain nine 

model viscosities, one for each hematocrit, as shown in Fig. 2.7.  

 

0.1 0.2 0.3 0.4 0.5 0.6
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065

 Reduced viscosity values
 Second order polynomial fit

M
od

el
 V

isc
os

ity
, µ

 (d
yn

e*
s/

cm
2 )

Hematocrit, Hct
 



 41 

Figure 2.7.  Second order polynomial fit (solid line) to the viscosity 

values obtained from the Casson plots of the reduced in-vitro 

capillary data of Barbee (1971) (cross symbols)---typical results of 

which are shown in Fig. 6---as a function of the hematocrit values. 

 

Fig. 2.7 shows that a quadratic fit describes excellently the viscosity dependence 

on the hematocrit.  To ensure consistency we need to force the model viscosity to reduce 
to the plasma viscosity, pn , at zero Hct .  This leaves for obtaining the quadratic fit 

shown in Fig. 2.7 only two unknowns.  Those are most conveniently obtained by a linear 

least squares fit of the reduced viscosity ( )
( )

p

p

n n
n Hct

−
with respect to Hct  as the 

interceptx − and the slope, 2.0703 and 3.7222, respectively.  In this way, we also get 

from the closeness of the square of the correlation coefficient, 2 0.9949r = , to 1 another 

confirmation for the good quality of the fit. 

For the complete parametrization of viscosity the temperature dependence needs 

also to be taken into account. Merrill et al. (1963a) have shown that, for shear rates 

between 1 sec-1 and 100 sec-1 and for temperatures between 10oC and 37oC, the relative 

apparent viscosity of whole blood to water is independent of temperature.  In the same 

investigation it was proposed that the temperature function of the apparent (shear rate 

dependent) viscosity is expressed by an Arrhenius type of equation with the same 

activation energy as is applicable to water.  However, in the same investigation it was 

also found that the yield stress is essentially temperature independent [Merrill et al. 

(1963a)].  The best way to accommodate those two, partially conflicting, experimental 

observations in the present model is by restricting the temperature dependence for the 

model viscosity only, assuming a temperature-independent yield stress.  Furthermore, 
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we take the dependence of the model viscosity on the temperature to be the same as for 

water.  Thus, we quantify that dependence in an Arrhenius-type expression that we 

obtained using a least squares fit between the natural logarithm of the viscosity of water, 

( )ln wµ , and the inverse of the absolute temperatures, 1
T , over the desired range of 

temperatures of 10-37 oC.  We based that calculation on the very accurate viscosity data 

for water reported in [Korson et al. (1969] to obtain an optimum proportionality 

coefficient.  Thus, the final form for the viscosity model is: 

 

 ( )2 01 2.0703 3.7222 exp 7.0276 1 ,p
Tn Hct Hct
T

µ
  = + × + × × − −  

  
  (2.17) 

 

where T0 is the reference temperature of 273.16+23=296.16 ºK (at which the Barbee 
data were taken and the plasma viscosity 2 21.67 10 ×pn dyne s cm−= × is measured), 

and T is the blood absolute temperature (in ºK).  Alternatively, one can construct an 

Arrhenius expression around the reference temperature by linearizing an empirical fit 

of experimental data provided by Eq. (1) in [Kampmeyer (1952)] around the reference 

temperature.  This yields a slightly different coefficient of 6.9274 instead of 7.0276 in 

the RHS of Eq. (2.17).  Note that use of either coefficient results in less than 1% 

relative error for the estimation of the water viscosity over the desired temperature 

range of 10-37 oC.  In the following we use the slightly more accurate (for the range of 

temperatures sought) coefficient determined through the direct least squares fit of the 

data, as it appears in Eq. (2.17). 

Eq. (2.17) predicts that, at room temperature and in the limit of very low 

hematocrit, the so-called intrinsic viscosity is equal to 2.07, a value which is lower than 

the Einstein result for a rigid sphere. This deviation is expected as Einstein examined 
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ideal, non-interacting rigid spheres while the RBCs are deformable and interact with 

neighboring cells. Moreover, unlike the rigid sphere, the RBC is characterized by an 

internal viscosity (hemoglobin solution for RBC) and the ratio of internal to external 

(plasma) viscosity is known to affect the intrinsic viscosity of a sample [Vitkova et al. 

(2008)].  Theoretically one can show that both these conditions lower the intrinsic 

viscosity below Einstein’s value of 2.5 [Happel and Brenner (1983)] and that the value 

2.07 coming from our prediction is not inconsistent to those theoretical considerations, 

albeit a direct a priori evaluation is not possible due to the additional effects that exist 

in actual blood (such as the interactions between the RBC and between those and other 

blood constituents). 

In the following Sections (2.3.4 and 2.3.5) we test the quality of the derived 

model. We start with the model verification, where we examine whether the model can 

predict the specific data upon which its derivation was based. In Section 2.3.5 we 

validate the model against additional experimental evidence that were not used in the 

model development. 

2.3.4 Model verification  

For verification purposes we tested our model against the experimental wall 

stress vs. shear rate data of Barbee (1971), based on which the parametric expression 

of viscosity, Eq. (2.17), was derived.  In that study, the fibrinogen concentrations in 

plasma were not reported.  Therefore, through Eqs. (2.14) and (2.12), a fit was made to 

the experimental yield stress data, resulting to a fibrinogen concentration of 0.35 g/dl.  

This is a very reasonable estimate, almost in the middle of the reported physiological 
range ( 0.1 0.4fg dl c g dl≤ ≤ ) [Merrill et al. (1969)].  A comparison between the 
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nine available experimental datasets and our model predictions is shown in Fig. 2.8 in 

terms of the original capillary wall stress vs. (modified) pseudo-shear rate relations. 
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 Figure 2.8.  Wall stress vs. modified pseudo-shear rates model predictions 

(solid lines) vs. capillary data [Barbee (1971)] (cross symbols).  For any fixed 

modified pseudo-shear rate value the data are presented in the same order, 

high to low hematocrits from top to bottom, as in the legend.  A constant 

fibrinogen concentration of 0.35 g/dl was used for the evaluation of the yield 

stress required in the model. 

 

As Fig. 2.8 shows, our model provides excellent correlation of experimental data 

at hematocrits ( Hct ) between 0.3 and 0.5, and modified pseudo-shear rates ( * 2U U= ) 



 45 

between 20 and 100 1s− , the most commonly encountered data. The observed deviations 

in the low pseudo-shear rates appear to be due to the use of a single fibrinogen 

concentration for all nine fits.  The fibrinogen content corresponding to each one of the 

data sets is unknown, and albeit it is likely that it was within the physiological range it 

may still have varied within that range with different values for each case as the blood 

samples have been taken from different donors.  

Further verification of the yield stress model was performed by comparing the 

predictions to the experimental data of Morris et al. (1989) that were used for the 

development of the yield stress parametrization, Eqs. (2.12) and (2.14).  The results are 

shown in Fig. 2.9. 
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Figure 2.9.  Square root of the yield stress vs. fibrinogen concentration 

for three different hematocrit values.  The solid lines represent the 

predictions of our model based on Eqs. (14) and (12). The symbols 
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represent the experimental data that included blood samples from 

seven healthy donors and the error bars are +1.5 standard error of the 

mean and represent the upper 95% limit of normal by one sided test 

[Morris et al. (1989)]. 

 

 

In Fig. 2.9 we see a decreasing effect of fibrinogen to the yield stress at high 

concentrations and a relative insensitivity of yield stress to fibrinogen at low 

concentrations (realized by the constant slope at low fibrinogen concentrations).  Both 

of these effects have been reported [Morris et al. (1989); Merrill et al. (1966)].  The 

former is identified as a saturation effect, while the latter as a threshold effect. Our 

model captures both of these phenomena as it is implied by the reduced slope of the 

curves observed at high fibrinogen concentrations and by the exhibited linearity at low 

concentrations, respectively (see Fig. 2.9).  Strictly speaking, the postulated model 

should be used only for fibrinogen concentration and hematocrit values within the 

ranges specified by the experimental evidence, i.e. for fibrinogen concentrations 

between 0.1 and 0.9 g dl and for hematocrit values between 0.4 and 0.8.   However, 

the smoothness of the profiles in Fig. 2.9 and the simplicity of the proposed 

expressions, Eqs. (2.12) and (2.14), are suggestive for a potential validity even outside 

that range, certainly for lower values, from the mentioned minima down to zero. 

2.3.5 Model validation  

Merrill and Pelletier (1967) have reported coaxial cylinder Couette viscometer 

data for two samples with a specified innate plasma fibrinogen concentration.  As seen 
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in Fig. 2.10, our model correlates well with these experimental data, also presenting 

additional evidence in favor of the Casson model hypothesis.  Furthermore, the 

reported yield stresses, 20.04y
dyne

cm
τ = for the sample with a fibrinogen 

concentration, 0.27f
gc dl= (upper graph in Fig. 10), and 20.0188y

dyne
cm

τ = for 

0.18f
gc dl=  (lower graph in Fig. 2.10) are in good agreement with the predictions of 

our model 20.0371y
dyne

cm
τ =  and 20.0262y

dyne
cm

τ = , respectively. 
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Figure 2.10.  Casson plots, 1 1
2 2vs.τ γ , for Couette viscometer data 

of two blood samples [Merrill and Pelletier (1967)]. Upper plot: 

Hematocrit 40%, temperature 37oC, fibrinogen concentration 0.27 

g/dl. Lower plot: Hematocrit 40%, temperature 37oC, fibrinogen 
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concentration 0.18 g/dl.  Solid lines:  Model predictions.  Cross 

symbols:  Experimental data.  

 

 

Additional results on the fibrinogen dependence of the yield stress have been 

provided by Merrill et al. (1966, 1969).  Merrill’s experiments have been conducted at 

a constant hematocrit of 40%, with red blood cells suspended either in physiological 

plasma [Merrill et al. (1969)] or in plasma-saline solutions [Merrill et al. (1966)].  Our 

model is in good agreement with the results based on the physiological plasma 

suspensions.  When studying the yield stress of normal human blood ( 40%Hct = ) as a 

function of endogenous fibrinogen, Merrill et al. (1969) reported a variation over the 

range 0.01-0.06 dyne/cm2.  The fibrinogen concentration in that study varied between 

0.14-0.42 g/dl.  Between these limiting 𝑐𝑐𝑓𝑓 values our model predicts a 𝜏𝜏𝑦𝑦variation in the 

range of 0.0219-0.059 dyne/cm2.  Note that fibrinogen introduced by addition requires 

substantially higher concentrations to produce a given yield stress [Merrill et al. (1966)], 

indicating that other proteins present in blood play also a role in the yield stress 

development. 

In the case of saline-plasma solutions, the reported results strongly deviate from 

our model predictions. The experimental yield stress values in this case are constantly 

over-predicted, especially at high fibrinogen concentrations (greater than 0.4 g/dl), by 

an order of magnitude.  As explained in the subsequent work of Morris et al. (1989), 

this deviation is attributed to the higher potency of the fibrinogen-plasma solutions in 

their effect on yield stress, compared to the fibrinogen-saline solutions. The two 
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solutions contain a different mix of proteins, such as immunoglobulin and fibronectin, 

which are capable of augmenting the cell-to-cell adhesions.  

Merrill also reported the existence of a critical hematocrit, below which blood 

does not exhibit a yield stress [Merrill (1969)].  Based on his experimental evidence, 

the critical hematocrit values range approximately from 0.04 to 0.08.  However, direct 

quantification of the effect cannot be assessed as the fibrinogen concentration of the 

samples, based on which this range was specified, has not been reported.  To the best of 

our knowledge, none of the models in the literature quantifies this dependence.  

We have developed such a quantitative correlation, Eq. (2.12), that we extracted 

from the data of Morris et al. (1989).  The corresponding critical hematocrit predictions 

are shown in Fig. 2.4.  If we assume that physiological fibrinogen concentrations were 
employed, that is in the range ( 0.1 0.4fg dl c g dl≤ ≤ )  [Merrill et al. (1969)], then our 

predicted 𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐 range is 0.039-0.13. In that case, our model predictions for the critical 

hematocrits for the onset of yield stress compare reasonably well with the reported range 

by Merrill that can, therefore, be used as a validation of our expression. 

2.4 Discussion 

In this section we continue the comparison of model predictions against data 

from the literature.  Thus, this discussion offers additional validation of the model 

parametrization.  However, this is offered separately from the model validation 

described in the previous section as the datasets used here are less complete, in terms 

of the range of values covered or their characterization or both. 
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2.4.1    Comparison of model predictions to experimental yield stress 

measurements 

Numerous investigations for the determination of yield stress dependence on 

the hematocrit have been carried out in the past [Merrill et al. (1963); Chien et al. 

(1966); Morris et al. (1987); Zydney et al. (1991); Picart et al. (1998)]. The 

experimental measurements of the aforementioned investigations are presented in Fig. 

2.11.  We selected the particular studies presented in Fig. 2.11 as being more 

representative and self-consistent among the overall results available in the literature.  

The variability of the reported results is still important, yet much less than seen in 

other works of the literature not shown here.  As two extreme examples we can 

mention the data of Charm and Kurland (1967) (reporting yield stress values much 

higher than the ones shown) and that of Benis and Lacoste (1968) (much lower).  The 

depicted data in Fig. 2.11 were obtained by three different experimental techniques.  

Morris et al. (1987) used a chamber-sedimentation method, Picart et al. (1998) applied 

a direct rheometrical measurement of stress at 0.001 s-1, while the rest were based on 

an extrapolation from low shear rheometry.  The fact that three distinct experimental 

procedures yield similar results makes the particular evidence shown in Fig. 2.11 more 

trustworthy than the values of (a) Charm and Kurland (1967) who reported a yield 

stress of the order of 0.095-0.4 dyne/cm2 for a hematocrit of 0.18-0.56 or (b) Benis and 

Lacoste (1968) who reported yield stress values lower by an order of magnitude to 

those shown in Fig. 2.11 over the hematocrit range of 0.41-0.73. 
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Figure 2.11.  Yield stress vs. hematocrit.  Continuous lines:  Model 

predictions for different values of fibrinogen concentration as shown in the 

legend.  Symbols:  Yield stress measurements obtained by direct 

measurement [Picart et al. (1998)], chamber sedimentation [Morris et al. 

(1989)] and extrapolation form low shear [Chien et al. (1966), Merrill et al. 

(1963)].  Except from the data of Morris et al. (1987), where 0.2f
gc dl≅ , 

the fibrinogen content for the rest of the experimental data is unknown. 

 

 

In Fig. 2.11, the set of data of Morris (1987) is the only one for which the 
average fibrinogen concentration has been reported ( )0.2fc g dl≅ .  In the same 

figure, model predictions are provided at four distinct fibrinogen concentrations 
spanning the physiological range.  The predictions for 0.2fc g dl=  are close to the 

set of data by Morris.  The predictions for all four different fibrinogen concentrations 

show the effect of fibrinogen on yield stress as well as its anticipated yield stress 

variability from one individual to another, given that they span the physiological 
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range.  From Fig. 2.11 we see that the variability of the model predictions is very 

comparable to that seen in the data; furthermore, we can see an almost perfect overlap 

for hematocrit values in the range of 0.4 – 0.8 which is also the range, as mentioned 

above, where one trusts the most the model parametrization.  For the lower hematocrit 

values, there is still considerable overlap, albeit one can also see some systematic 

deviations, the model predictions being higher than the data.  Still, given the inherent 

variability of the data, the uncertainly on the fibrinogen concentration, and the 

experimental errors associated especially with the low values of the measured yield 

stress, we do not feel that there is enough experimental evidence to warrant further 

changes to our parametric expressions. 

2.4.2 Comparison of model predictions to viscometry data with unspecified fc   

 Our extensive literature review has only revealed a very limited number of 

reported viscometric blood flow data with known fibrinogen concentrations.  Those 

have been used in the previous section for model verification and validation.  Here we 

present an attempt to approximately fit and interpret additional data for which the 

fibrinogen concentrations are unknown.  In Fig. 2.12 we present the Couette 

experimental data by Merrill et al. (1965) for two datasets at two different hematocrits 

with, however, unspecified fibrinogen content.  The rheological parameters for the two 

cases have been independently fit by the investigator and we report them in Table 2.4.  

From the reported yield stress and hematocrit, and with the use of Eqs. (12) and (14), 

we were able to back calculate the fibrinogen concentration. The values obtained for the 

two samples are 0.215 g/dl and 0.206 g/dl corresponding to a hematocrit of 39.3% and 
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20.1%, respectively.  An average concentration of 0.21 g/dl was then used in both cases 

to fit the viscometric data with the results shown in Fig. 2.12. 
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Figure 2.12.  Casson plots, 1 1
2 2vs.τ γ , for Couette 

viscometer data of two blood samples [Merrill et al. 

(1965)].  Solid lines:  Model predictions.  Symbols:  

Experimental data for the conditions shown. 

 

 

The back calculation of the fibrinogen concentration and then its further usage 

in our model is justified on two grounds. First, even though not explicitly mentioned 

in the work of Merrill et al. (1965), we expect the two datasets to have the same 

fibrinogen content, as both originated from the same blood sample. Had that not been 

the case, using the same 𝑐𝑐𝑓𝑓 to fit the two data sets would have resulted in a poor 

prediction of the yield stress, at least for one of the two sets. Moreover, the 𝑐𝑐𝑓𝑓 

prediction of roughly 0.21 g/dl is a reasonable value as it is well within the 
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physiological range that Merrill has been using in his studies [Merrill et al. (1966, 

1967, 1969)]. 
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Figure 2.13.  Casson plots, 1 1

2 2vs.τ γ , for reduced 

capillary data of two blood samples [Merrill et al. 

(1965)].  Solid lines:  Model predictions.  Dash lines:  

Experimental data, top line: Hct=39.3%, T=19ºC; 

bottom line:  Hct=20.1%, T=22ºC. 

 

 

As Fig. 2.12 shows, the model predictions are in very good agreement with the 

viscometric data. The apparent deviation in the first set ( 39.3%Hct = ) is due to the 

predicted viscosity value which is ~17% lower than the Couette-measured viscosity 

for that sample, while the second set is in excellent agreement with our model.  It is 
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interesting to notice that, for both datasets, the model-predicted viscosity is in 

significantly better agreement with the reduced-capillary viscosity values, compared to 

the experimentally measured values, as demonstrated in Table 2.4 (see also Fig. 2.13).  

Thus, we can infer that the noticeable, yet acceptable, deviation observed in the first 

set is due to the approximate nature of the simple fluid hypothesis (manifested here in 

the discrepancy between Couette and capillary data), as already seen in Section 2.2.1 

and Fig. 2.2. 
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2.5 Conclusions 

In this work we undertook a systematic investigation of the rheology of normal 

human blood under steady-state shear flow. Based on a comparison between a 

homogeneous (Couette) and non-homogeneous (Poiseuille) flows, we first showed that 

the simple flow hypothesis constitutes a reasonable assumption for blood under steady-

shear flow with the errors resulting from it in all but one datum being less than 10%.  

Second, we unequivocally showed that the Casson viscoplastic model is the one that 

naturally emerges as the best approximation of available experimental data.  Third, we 

developped a parametrization of the Casson model parameters, the yield stress and the 

Casson viscosity, in terms of parameters that define the physiological state of blood.  As 

a single most important contribution of this work is the realization that yield stress is an 

onset phenomenon only occurring when the hematocrit exceeds a critical value that 

depends on the fibrinogen concentration.  Most importantly, we have found a simple 

quadratic relationship that connects the critical hematocrit with the fibrinogen 

concentration.  Albeit the connection of yield stress to fibrinogen (a key plasma protein 

responsible for the development of red blood cells adhesion) is not new, it is the first 

time that this is made in such a direct, quantitative, fashion.  Furthermore, beyond the 

onset, the dependence of the yield stress on the hematocrit is found to be through the 

square of its difference from its critical value, further reinforcing the interpretation of 

yield stress as a critical, percolation-type, phenomenon.   

A word of caution is needed for the applicability of our model.  The range of 

applicability is dictated by the range of experimental results that were used for the 

development of the parametric equations.  For the parameterization of viscosity, the 

hematocrit ranged roughly from 10% to 60%, while for yield stress the hematocrit varied 
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between 40% and 80% and the fibrinogen concentration between 0.1 g/dl and 0.9 g/dl.  

The fibrinogen content of the capillary data that were used for the parameterization of 

viscosity was unknown, as was the content of any other plasma macromolecule in any 

of the data sets used in the fitting of either the viscosity or yield stress. We assumed that 

both of those unreported quantities were within their physiological range.  Based on that 

information, and under this assumption, the model is most safely applicable for 

40%<Hct<60% and 0.1g/dl <𝑐𝑐𝑓𝑓<0.4g/dl, which is where the ranges of parameter values 

of all used data sets meet.  However, as shown in Figure 2.11, Eqs. (2.12) and (2.14) 

can be successfully extrapolated to predict yield stress measurements in the range 

10%<Hct<100%. Therefore, we can safely extend the limits in which our model can be 

used to 10%<Hct <60% and 0.1g/dl < 𝑐𝑐𝑓𝑓 <0.4g/dl and even expect a good fit, based on 

the smooth fits of Figure 2.9 and the commenting of Figure 2.4 results in Section 2.3.2,  

for the extended limits of 10%<Hct<80% and 0.1 g/dl <𝑐𝑐𝑓𝑓<0.7 g/dl.    

Beyond verifying the proposed model through a comparison of its predictions 

against the data that we have used for its development, we have extensively validated it 

against additional data from the literature.  The model validation was successful as long 

as the blood used in the studies was minimally processed and within the physiological 

range of conditions.  In particular, the model predictions were found to be off when 

compared against data involving red blood cells in other than plasma solutions (such as 

saline solutions) and/or the blood was drawn from patients with specific illnesses or 

individuals under various drag regiments.  This finding, beyond setting the limits of 

validity of the proposed parametrization for our model (minimally processed blood, 

under physiological conditions) it also most definitely points out further to the 

rheologically complex character of blood.  Clearly, one needs to know the fibrinogen 
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concentration, in addition to the hematocrit, in order to properly characterize the steady-

state shear blood flow.  Furthermore, it is also clear that more blood ingredients, beyond 

those used explicitly in our parameterization (i.e. the red blood cells and fibrinogen) 

play a role in defining the blood flow rheology, even in the limiting case of steady-state 

shear flows examined here.  Although those ingredients have not been explicitly taken 

into account here (the primary reason being of course the lack of adequate quantitative 

data) nevertheless they have been present in the blood samples used in the experimental 

data and therefore they have been considered implicitly, as defining the physiological 

environment.  The fact that when the physiological conditions change we can have 

significant departures in the steady–state shear blood flow rheology points out to a 

potential diagnostic application of the present work.  Considerable differences between 

the predicted and experimentally determined viscometric results based on the above 

analysis provide evidence to a non-physiological, i.e. pathological, behavior (thus 

suggesting new uses for rheology!).  Clearly this is a point worth of further study in the 

future.   
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Chapter 3 

THE EFFECT OF CHOLESTEROL AND TRIGLYCERIDES ON THE 

STEADY STATE RHEOLOGY OF BLOOD 

3.1 Introduction 

In Chapter 2 we established parametric relationships that connect the yield stress 

and model viscosity appearing in the Casson model to important physiological 

parameters such as the hematocrit, temperature and the fibrinogen concentration 

[Apostolidis and Beris (2014)].  These relationships, derived on a large number of 

available blood flow data from the literature, represent the first improvement over the 

previously widely used but rather obsolete relations offered by Pries et al. (1990). 

However, those parametric relations were developed and extensively tested for healthy 

blood and thus are restricted to physiological conditions.  There is considerable interest 

therefore (a) to test those relationships with blood samples of blood indices considerably 

outside the physiological conditions and (b) to see how, in case those relationships fail 

to hold, they need to be corrected.  This is exactly the subject of the present work 

focusing on the particular case of high and low cholesterol/trigluceride conditions, 

exploiting the very recent, well-characterized, available data by Moreno et al. (2015).   

Cholesterol is a lipid that is produced by the liver and/or found in certain foods 

[Thiriet (2008)].  Being insoluble to water, it is carried within blood through various 

transport proteins, the lipoproteins, which are usually distinguished as low, intermediate 

and high density (or LDL, IDL and HDL).  Cholesterol is useful for a variety of 

important functions, ranging from maintaining healthy cell membranes to building 

crucial hormones and vitamins [Thiriet (2008)[.  At the same time, it is well known that 

elevated cholesterol levels can increase the risk of several adverse health effects 
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including atherosclerosis, heart attack and stroke [Cowan et al. (2012)].  This is 

especially true for LDL (also termed “bad cholesterol”) as it is associated with the 

transfer of cholesterol from the liver to the cells.  Inversely, high levels of HDL(also 

termed “good cholesterol”) are considered beneficial, as it is associated with the transfer 

(clearing) of cholesterol from the cells and to have antioxidant and antiflammatory 

properties [Forti and Diament (2006); Cowan et al. (2012)]. 

.  However, although that much is universally accepted, the mechanism through 

which cholesterol increases the risk of diseases is not well understood or agreed upon.  

While the mainstream theory considers the accumulation of cholesterol, crossing the 

endothelial barrier and subsequent oxidation activating the endothelial cells promoting 

the formation of atherosclerotic plaques as the primary reason [Kwiterovich (2000)], 

there is also evidence [Kensey (2003);  Cowan et al. (2012)] and support [Sloop (1996, 

1999)] of the hypothesis that it is through the increase in blood viscosity that LDL 

cholesterol contributes to atherogenesis. Inversely, lowered HDL levels are associated 

with elevated blood viscosity [Stamos and Rosenson (1999)] and elevated HDL levels 

are connected to a decrease in blood viscosity (Cowan et al. 2012).  This makes the 

study of the effects of cholesterol to blood viscosity and blood rheology, in general, of 

considerable medical, as well as rheological, interest.  Moreover, elevated levels of 

triglycerides (the most common form of fats--fatty acid esters--that are circulated within 

blood, also through lipoproteins, as they are also insoluble to water) are also considered 

as a factor of increased blood viscosity [Rosenson et al. (2002)] and a contributor to 

cardiovascular disease [Chapman et al. (2011)].   Thus, emerges the need to study 

simultaneously the effect of all those factors, i.e. total cholesterol levels, LDL, HDL and 

triglycerides, on blood viscosity and rheology. 



 62 

 Although several studies have been dedicated in the past to study the 

effect of each one of the above factors to blood viscosity, this was so far implemented 

statistically and for each one of the factors considered separately or at most studied in 

cross-correlation against another [Koenig et al. (1992); Crowley et al. (1994); Stamos 

and Rosenson (1999); Rosenson et al. (2002)].  Moreover, the analysis has been limited 

to the overall blood viscosity at a particular shear rate, or, to the plasma viscosity 

[Koenig et al. (1992)].  It is only with the new rheology study by Moreno et al. (2015) 

that we have full rheological results (viscosity vs shear rates) for fully characterized 

blood samples, with respect to all the physiological (hematocrit, fibrinogen) but also 

cholesterol and triglycerides levels and also for samples taken from two populations, 

exhibiting high and low cholesterol and triglycerides.  However, the analysis in Moreno 

et al. (2015), albeit complete from a rheological perspective (three different models 

were used to fit the data for any particular sample), it still did not address the issue of 

their parametric dependence effects on all the factors synergistically, but again only on 

an one by one basis.  Moreover, there was no quantitative correlation of the results to 

those factors except some limited semi-quantitative correlations that, as a result, showed 

considerable scatter.  The most promising results was a close to linear fit of the yield 

stress (as fit through a Casson model) to the total cholesterol levels.  However, even in 

that case, the discussion as for the procedure used to extract those yield stress values 

and the fit to the supplied viscosity data was not addressed but only in a couple of cases.   

The presence of the previous work [Apostolidis and Beris (2014)], 

demonstrating the Casson model as the most useful model to describe steady state shear 

blood rheology, leads naturally to the suggestion of using its two parameters, yield stress 

and model viscosity, to quantitatively characterize blood viscosity, not only at a specific 
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shear rate but as a general dependence vs. shear rates, and all this following just two 

parameters with concrete physical meaning.  Especially the yield stress, as it has been 

connected to the rouleaux aggregates that form between the red blood cells in the flow, 

becomes the natural way to express the effect of biological factors that influence cell-

cell interactions and aggregation to rheology.  Moreover, the previously developed 

parametrization for healthy blood under physiological conditions allows us to 

accommodate a physically meaningful reference state and therefore it presents a unique 

opportunity for analysis of pathological effects.  Finally, the systematic procedure 

employed in the previous chapter can also be applied here to eliminate biases in the 

analysis.  This is exactly what we are undertaking here. 

 The rest of the chapter has as follows.  In the next section, the Casson 

model and the standard parametrization developed in our previous work are 

summarized.  In the section following that, we describe the results of our analysis of the 

effects of cholesterol and triglycerides on the Casson model parameters based on the 

Moreno et al. (2015) viscosity data.  This is followed by our conclusions. 

3.2 Model Equations 

In our recent investigation [Apostolidis and Beris (2014)], by a careful analysis of 

existing literature data drawn from healthy individuals, it was shown that:  

(1) The simple fluid assumption (i.e. that the rheology can be described based 

on the local kinematics) is a reasonable working hypothesis for steady shear blood 

flows, at least when wall effects can be neglected. Thus, the use of a generalized 

Newtonian model, the most general model for simple fluids in shear flows, is justified. 
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(2) Among a fairly wide representation of plausible generalized Newtonian 

model representations, including the power law and the Herschel-Bulkley, Casson and 

their modifications, the Casson model came us as statistically the one providing by far 

the best overall fit to a large collection of data.  As a reminder, and for future reference, 

in the Casson model the steady state shear stress, τ , is described for positive shear rates, 

0γ >  , as [Casson (1959)]: 

 
  ,  τ τ µγ τ τ= + >y y  , (3.1) 

 
where yτ  represents the yield stress and µ  is the model viscosity. 

(3)  For a large number of healthy blood samples with rheological data reported 

in the literature, which are characterized physiologically by at least the hematocrit, Hct  
(i.e. the red blood cells (RCB) volume fraction) and the fibrinogen concentration, fc  

(in /g dl ), the Casson model parameters can be parametrically represented as functions 

of those parameters and the temperature.  In particular, for the yield stress, it is 

recognized as a critical phenomenon due to the RBC aggregation that is mediated, 

among other factors not explicitly resolved in this work, through fibrinogen.  As a result, 

it was postulated that, for any given fibrinogen concentration, there is a critical 

hematocrit, cHct , for yield stress phenomena to appear.  This critical hematocrit 

concentration was shown to be provided by the following parametric relation in terms 

of the fibrinogen concentration, ( / )fc g dl ,  as: 
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For hematocrit values below that critical hematocrit value, cHct , there is no yield 

stress and the blood is assumed to behave like a Newtonian fluid.  Above cHct  the yield 

stress, ( )y Paτ ,  quickly develops as a quadratic function of both the hematocrit and the 

fibrinogen concentration.  Thus, the overall expression developed by Apostolidis and 

Beris (2014) for the yield stress is: 

 

 ( ) ( )22   [ 0.5084 0.451

0

7
 

τ
 − × + >= 

≤

c f c
y

c

Hct Hct c Hct Hct

Hct Hct
 . (3.3) 

 

Similarly, the following parametric relationship has been developed for the 

Casson model viscosity in terms of the hematocrit and the temperature: 

 

 ( )2 0
0 1 2.0703 3.7222 exp 7.0276 1µ

  = + × + × × − −  
  

p
Tn Hct Hct
T

 , (3.4) 

 
where the temperature T  is in K°  and 0 0, 0.00167p p Pa sη η = ⋅  is the plasma viscosity 

at the reference temperature 0 273.16 23 296.16 ºT K= + = .  Note that the fibrinogen 

concentration does not enter the viscosity expression.  From a rheology perspective, Eq. 

(3.4), that has been developed from a regression of rheological data, offers good 

agreement to independent theoretical expectations, such as for example, considering the 
first, linear, coefficient of proportionality between the relative viscosity / pµ η , 

0 0exp( 7.0276(1 / ))p p T Tη η= − − , and the blood hematocrit, Hct , which is the volume 

fraction of RBC in suspension.  With the reported value of 2.0703 being just below the 

Einstein hard sphere limit (2.5) and right in the range of expectations considering the 
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deformability and inner viscous internal nature [Vitkova (2008)] of the RBCs [Happel 

and Brenner (1983)]. 

The parametrization expressed by Eqs. (3.2)-(3.4) represents what we call here 

the Basic Reference Physiological Healthy State  (BRePHS).  As it has been developed 

for healthy individuals, and only based on hemactocrit and fibrinogen data, it cannot 

possibly accommodate the effect of significant variations of other parameters, such as 

cholesterol and triglycerides, of interest to the present work.  As we will see this is true 

not only for pathologically high levels of those factors (expressing a 

hypercholesterolemia condition) but also, potentially, for low levels, as (when they are 

excessive, as postulated here) they may also take us beyond the range covered in the 

samples that led to the BRePHS model.  Of course, in this case, the evaluation of the 

new model applicable for those data, should involve, in principle, a full 

reparametrization of the Casson model, in terms of all the parameters, i.e. the various 

indices of cholesterol, and triglycerides, as well as hematocrit and fibrinogen, truly a 

daunting task.  Fortunately, in the present work, the available data been restricted to 

approximately constant Hematocrit and fibrinogen values allows us to focus our 

analysis to only the effect of cholesterol and riglycerides that can be safely assumed to 

be described through a multiplicative factor to Eqs. (3.3) and (3.4), for the yield tress 

and model viscosity, respectively.  Of course, this is only meaningful if the Casson 

model continues to describe well the steady state blood rheology.  This is shown first, 

followed by the new parametrization, in the following results section. 
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3.3 Experimental Data 

The task undertaken in the present work is the analysis and interpretation of the 

detailed steady state shear blood rheology results made available in a seminal work by 

Moreno et al. (2015) on well characterized physiologically blood samples taken from 

two populations, both of high (H) and low (L) cholesterol/triglycerides.  Detailed 

viscosity data were offered in their Figure 1 Moreno et al. (2015) for 4 high cholesterol 

(H1-H4) and 4 low cholesterol (L1-L4) samples.  These are the data that we employ 

also here in our analysis taking also advantage of their detailed physiological evaluation 

in terms of (a) total cholesterol levels, (TC), triglyceride levels, (TG), low density 

lipoprotein, (LDL), and high density lipoprotein levels, (HDL), in addition to their 
hematocrit ( Hct ) and fibrinogen concentration ( fc  ).  For convenience, those data (the 

mean values, as the uncertainties, which are also supplied in Moreno et al. (2015), are 

typically fairly small, within less than 5%) are reproduced here in Table 3.1.  Note that 

both the hematocrit and fibrinogen concentration levels varied little both within the H 

and L groups as well as between the two groups ( 48 1%Hct = ±  and 
0.28 0.01 / dlfc g= ±  ).  This is particularly advantageous as it allows us to focus on the 

cholesterol and triglyceride effects. 
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Table 3.1.  Clinical data on physiological indices of the blood samples used in the 

viscosity evaluation study as reported by Moreno et al. (2015).  The sample notation 

follows the notation introduced in that work:  H1-H4 correspond to high 

cholesterol/triglycerides; L1-L4 to low cholesterol/triglycerides. 

Sample TC 

(mg/dL) 

TG 

(mg/dL) 

HDL 

(mg/dL) 

LDL 

(mg/dL) 

fc
  

(mg/dL) 

Hct 

(%) 

H1 400 250 35.5 135.5 284 48.2 

H2 268 157 36.1 130.8 278 47.9 

H3 250 187 38.2 139.4 273 48.0 

H4 290 160 40.6 149.1 278 47.8 

L1 187 180 48.8 159.1 288 48.7 

L2 164 122 46.7 148.9 275 48.8 

L3 109 130 47.6 146.8 270 49.0 

L4 180 145 40.6 144.5 278 47.9 

 

As analyzed by Moreno et al. (2015), what one sees in their raw data is a 

significant variability in blood flow viscosity between the various samples, on top of 

the (expected) differences between the H and L groups.  The variability is such that 

viscosity levels at any given shear rate can only exhibit certain qualitative trends when 

plotted in terms of any given factor, with significant variations remaining, of the order 

50 – 100%.  For example, as seen in Fig. 2 of Moreno et al. (2015) when the viscosity 

at γ −= 11s  is plotted as a function of the total cholesterol (TC) levels, whereas there is 

an overall linearly increasing trend of the viscosity with TC there is still considerable 

scatter.  This scatter is also reminiscent of earlier results reported in the literature, much 
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more voluminous in size, such as those shown in Fig. 2 of Crowley et al. (1994) 

extracted from a healthy population, as well as in Fig. 1 of Nara et al. (2009) obtained 

with blood samples taken from hypercholesterolaemic subjects.  The scatter in these last 

two studies is further exacerbated from the fact that the data involved concerned more 

variable hematocrit values as opposed to the Moreno et al. (2015) reported cases.   

In this respect, the raw data by Moreno et al. (2015), in terms of extracting 

correlations between blood viscosity and TC (or the other factors) little added to the 

previous information --- such positive correlations were also reported in both the 

Crowley et al. (1994) as well in the Nara et al. (2009) studies.  More specifically, in 

addition to the well known correlation of blood viscosity with hematocrit (that our 

previous study nicely quantified for normal samples), Crowley et al. (1994) also 

detected, again within a normal, healthy population, and in order of decreasing effect, 

positive correlations between blood viscosity and TC, LDL (almost at the same level, 

about 1/3 the effect seen with hematocrit) as well as with TG (although about half as 

strong as the effect with TC, LDL) whereas a negative correlation was noticed with 

respect to HDL (and almost as strong a magnitude as with TC and LDL).  It is interesting 

that almost exactly the same correlations were also noted in the above-mentioned [Nara 

et al. (2009)] study that also involved hypercholesterolaemic subjects, although there 

(presumably because of the higher variations) the correlations were twice as strong as 

those reported by Crowley et al. (1994) that involved only healthy subjects, and the 

correlation with TG was as strong (in fact even slightly stronger) as with TC and LDL.  

Similar statistical correlations were also reported in several other studies---see, for 

example, Stamos and Rosenson (1999), Rosenson et al. (2002).  Still, the same scatter, 

as well as interrelationships between the various factors involved (as well as also with 
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hematocrit and fibrinogen that were not as tightly controlled in these studies), prevented 

a more quantitative analysis.   

Still, the Moreno et al. (2015) study was unique for one more reason.  In addition 

for offering detailed viscosity results (as well as linear viscoelasticity data) for a number 

of well-characterized samples, both of low and high cholesterol/triglycerides, they also 

attempted a rheological fir of the data---several models have been tried, including purely 

shear thinning (Carreau), viscoplastic [Casson and Quemada—see (Quemada 1978a,b)] 

and multimode thixotropic-viscoelastic [Bautista-Manero-Puig---see (Bautista et al. 

1999)] models.  All models appear to be able to fit the data, with suitably selected 

parameters (with the Bautista-Manero-Puig model, of course, due to its viscoelastic 

three modes, been able to also fit the linear viscoelasticity data).   

However, the most important contribution was the capability to now use model 

parameters to correlate against the blood flow physiological indices.  In that respect, not 

surprisingly, it was the yield stress parameter of the Casson model that was selected to 

study.  In Fig. 10 of Moreno et al. (2015) we see a much better correlation (linear 

relationship) between the yield stress and the total cholesterol (TC) with significantly 

less scatter than in the correlation mentioned above involving directly the blood 

viscosity at 11sγ −= .   However, only partial Casson data are offered and no quantitative 

relations were produced. In the following subsection, and starting from the raw blood 

viscosity data, we reevaluate the Casson fits of the data.  Those are compared against 

the BRePHS model predictions in Table 3.2.  Then, in the subsection that follows, we 

show the development of more quantitative relations, by fully exploring the 

cholesterol/triglyceride dependencies. 
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3.4 Casson Model Fits 

In Figs. 3.1a,b we show the blood viscosity data of Moreno et al. (2015) for High 

(H) and Low (L) cholesterol/triglyceride levels and their linear fits in the Casson 

coordinates, i.e. in a τ  vs. γ  diagram form.  There are several important 

observations that we can make from Fig. 3.1.  First, from the quality of the linear fits 

we can testify about the appropriateness of the Casson model to represent the blood 

viscosity data, for the low as well as the high cholesterol/ triglyceride levels alike.  

Second, we notice that the graphs do not superimpose, despite the fact that they 

correspond to almost the same hematocrit and fibrinogen levels (as well as temperature, 

37T C= ° .  In fact, there are quite different.  Therefore, the BRePHS model, which only 

involves those parameters—see Eqs. (3.2)-(3.4), cannot possibly explain them.   
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Figure 3.1.  Casson plots ( τ  vs. γ ) of four high cholesterol/triglyceride data 

samples (symbols, as indicated by H1-H4 in graph (a)) and four low 

cholesterol/triglyceride data samples (symbols, as indicated by L1-L4 in graph (b)), 
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and their corresponding best linear (Casson) fits (continuous lines) corresponding to 

the H1-H4 and L1-L4 viscosity vs. shear rate data of Figure 1 of Manero et al. 

(2015).  The corresponding Casson model parameters are indicated in Table 3.2. 

 

 
Table 3.2.  Casson model fitted parameters (the yield stress, yτ  , and the viscosity, µ ) 

to the blood samples viscosity data reported in Figure 3.1 of (Moreno et al. 2015).  

The BRePHS model predictions, and their ratios are also shown. 

Sample yτ
  

(Pa) 

BRePHSyτ
  

(Pa) 

yr   

(-) 

µ  

(Pa s) 

BRePHSµ   

(Pa s) 

rµ   

(-) 

H1 0.0568 0.0605 0.939 0.00935 0.00348 2.69 

H2 0.0111 0.0585 0.190 0.00290 0.00346 0.838 

H3 0.0125 0.0579 0.216 0.00149 0.00347 0.429 

H4 0.0167 0.0582 0.287 0.00136 0.00345 0.394 

L1 0.00287 0.0627 0.0458 0.00129 0.00352 0.366 

L2 0.00458 0.0605 0.0757 0.00141 0.00352 0.401 

L3 0.00126 0.0602 0.0209 0.00104 0.00354 0.294 

L4 0.00203 0.0585 0.0347 0.00227 0.00346 0.656 

 

As seen in Table 3.2, there is a significant variation on the individual Casson 

model parameter values (i.e. the yield stress and the viscosity) between the samples.  In 

the same table we have also listed the values corresponding to the BRePHS model 

predictions.  Not surprisingly, given the closeness in the hematocrit and fibrinogen 
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values between the various sample, the BRePHS predictions show much smaller 

differences between the different samples. Thus, there are quite significant differences 

between the actual fitted values of the Casson model parameters to the experimental 

data and their BRePHS predictions.  A measure of that difference is further obtained by 
evaluating the yield stress ratio, yBRePHS/y yr τ τ≡  and the viscosity ratio, BRePHS/rµ µ µ≡  

which are also shown in Table 2.  The substantial deviation of these ratios from 1 is at 

first glance quite astonishing. 

On the other hand, neither the deviation from one of those ration, nor their 

variations from sample to sample should be surprising given the large variations 

reported for these samples regarding the various cholesterol and triglycerides levels, as 

seen in Table 3.1.  Indeed, the strong effect of cholesterol and triglycerides on blood 

viscosity, albeit so far mostly qualitative, has been well documented, as mentioned 

above in many references (Crowley et al. 1994, Stamos and Rosenson 1999, Rosenson 

et al. 2002, Nara et al. 2009) well before the (Moreno et al. 2015) data appeared.  

However, as the biological effect that causes these changes to the blood rheology are 

still unknown (at least on a quantitative fashion, suitable for modeling) we will attempt 

to capture those effects phenomenologically, parametrically and separately for each one 

of the two Casson model parameters, the yield stress and the Casson viscosity, in the 

two sections that follow.  For that task, we will be taking advantage of the detailed 

information offered in the (Moreno et al. 2015) about the blood samples physiological 

characterization, as reproduced in Table 3.1.. 
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3.4.1 Cholesterol/Triglycerides effects on yield stress 

The effect of cholesterol/triglycerides on the yield stress of blood was also 

attempted to be captured by Moreno et al. (2015) in their seminal work by trying to 

correlate their yield stress fitted values to the total cholesterol levels, and that correlation 

appeared to be very well represented by a simple linear relationship---see Fig. 11 in 

Moreno et al. (2015).  However, (a) the fit had some scatter around this linear 

proportionality average and (b) their reported yield stress values were at considerable 

disagreement from the values obtained in the present work---compare the reported 

values for samples H1-H4 in Table 3 of Moreno et al. (2015) to those that appear in 

Table 3.2 in this work.  Most importantly, when we attempted to represent our own 

reported yield stress values as a function of the total cholesterol levels, the relationship 

appeared significantly more complicated with the data much more scattered---see Fig. 

3.2.  Thus a different modeling approach is warranted. 
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Figure 3.2.  Total cholesterol (in mg/dL) of the samples as a function of the Casson 

yield stress values (in Pa) 

 

To be able to better explain the obtained data, we looked more carefully on 

evidence from the medical literature as for the most significant indices that medically 

make sense to use in order to judge the effect of cholesterol and triglycerides in blood.  

It appears that there is growing support to the opinion that it is not the absolute values 

of any of the indices (TC, TG, LDL, HDL).  Rather, one should look at the ratios 

TC/HDL, LDL/HDL and TG/HDL (Mercola 2012).  Still, when a direct linear 

regression of the data was attempted, the results appeared not very well quantitatively 

explained.   

At the end, what worked, was a simple two-prong process.  First, the yield stress 

data were regressed as a function to the TC/HDL ratio.  Astonishingly, a strong 
quadratic correlation ( )2

/yr TC HDL∝  appeared! Then, the yield stress ratio weighted 

by ( )2
/HDL TC  was considered with respect to the remaining two indices, LDL/HDL 

and TG/HDL.  What then became obvious is that there is a fairly different behavior 

between the high (H series, considered here when LDL/HDL > 3.623) and the low (L 

series, considered here when LDL/HDL < 3.623) cases.  In the first, a critical behavior 

was exhibited very clearly between the weighted yield ratio and LDL/HDL manifested 

with a linear relationship with respect to the square root of the departure of LDL/HDL 

from its critical value, 3.623---see Fig. 3.3a.  In contrast, for the second case, what 

correlated the weighted yield stress perfectly was the TG/HDL ratio, with a quadratic 

relationship allowing for a clear minimum (sweet value?) at TG/HDL=3.25---see Fig. 

3.3b. 
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Figure 3.3.  Weighted yield stress ratio, ( )2
/yr HDL TC  , as a function of (a) 

( )/ 3.623LDL HDL −  (for H samples, / 3.623LDL HDL ≥  ) or (b) TG/HDL (for L 

samples, LDL/HDL < 3.623). 
 

 

Those results can be summarized to the following expression for the yield 
stress ratio: 

 
2

2

0.0344 0.092 3.623 3.623

1.6216 1.001 0.1545 3.623
y

LDL LDL
HDL HDLTCr

HDL TG TG LDL
HDL HDL HDL

    
+ − ≥    

      = ×  
       

− + <     
     

 . (3.5) 

 

How well can the expanded model proposed here through Eq.(3.5), together with 

the BRePHS model, predict the observed yield stress?  To answer that we show in Fig. 

3.4 the expanded model vs. the fitted Casson yield stress values.  As it can be seen from 

there, the agreement is excellent. 
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Figure 3.4.  Comparison of the extended model predictions against 

the experimental data fitted values for the yield stress for the eight 

samples, H1-H4 and L1-L4 corresponding to the viscosity data of 

Figure 1 of (Moreno et al. 2015). 

 

All resulting fits appear to be consistent with the anecdotal evidence that we 

have from the literature on the cholesterol/triglycerides effects to the blood flow 

rheology:  i.e. that the  (apparent) viscosity of blood increases as either TC, LDL or TG 

increase, but is the opposite, i.e. it decreases, with increasing HDL.  Indeed, Eq. (3.5) 

implies exactly those effects to the yield stress, and if the yield stress increases, the 

apparent viscosity also increases (at least for low shear rates---for higher shear rates, 

one needs to see what happens to the model viscosity as well).  What is of interest is 

that now we have specific quantitative expressions for those effects and in terms of a 

concrete physical parameter (the yield stress) instead of a rather vague “(apparent) 

viscosity” that may also (and it does) have a shear rate dependence.  Moreover, we 
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noticed that they are ratios that are of importance, rather than absolute values—that 

seems to be now the feeling in the medical community regarding the medical evaluation 

of cholesterol and triglyceride effects (Mercola 2012). 

Given the small number of samples, we feel that the particular quantitative 

details maybe off; however, we tend to believe that certain qualitative characteristics, 

certainly the dependence on ratios as well as the fact the dependence on the yield 

stress on the TC/HDL is through its second power, may be generic and more 

reproducible.  Here, as before in Apostolidis and Beris (2014) (also supplied here as 

Eq. (3.3)), in the parametric expressions for the stress we see second powers which 

may be revealing on the criticality of the phenomena (here as then) giving rise to the 

yield stress.  The fact that the dependences observed are so strong and that yield stress 

is significantly increased in association to increased TC, LDL cholesterol levels and 

triglycerides (respectively, decreased in association to increased HDL levels) may also 

be explained in terms of our ideas on the influence of cholesterol and triglycerides to 

the cell membrane proteins, adhesion and interactions of the membrane with the 

cytoskeleton (Sun et al. 2007).  Of course we are far away from a priori explanation of 

those effects and more work is definitely warranted but the present results may 

provide some evidence supporting such a path through which cholesterol can influence 

the blood rheology 

3.4.2 Cholesterol/Triglycerides effects on Casson viscosity 

The examination of the effect of cholesterol/triglycerides on the Casson model 

viscosity followed a similar path to that described to the yield stress.  Namely, first we 

regressed the observed viscosity ratios (as shown in the last column of Table 3.2) against 
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the TC/HDL ratio.  In this case, two different linear relationships emerged, depending 

on whether we considered high cholesterol/triglyceride (H series, considered here when 

LDL/HDL > 3.623) or low (L series, considered here when LDL/HDL < 3.623) cases: 

 

 
0.5 5.93 3.623

1 3.623
8

TC LDL
HDL HDL

r
TC LDL

HDL HDL

µ

    
− ≥    

    ≈ 
    <       

 . (3.6) 

 

However, as before, the above relations are highly approximate and there is a 

considerable scatter in the data present.  To remove that, again, as in the case of the 

yield stress before, we seek correlations of the differences with respect to the other 

relevant ratio, TG/HDL.  In this case, what we found that it worked the best was the 

correlation of the inverse weighed viscosity ratio, or normalized fluidity, *ϕ  , with 

TG/HDL, where the normalized fluidity is defined, based on the regression shown in 

Eq. (3.6), as: 

 

 

10.5 5.93 3.623
*

10.123 3.623

TC LDL
HDL r HDL

TC LDL
HDL r HDL

µ

µ

ϕ

    
− ≥    

   ≈ 
    <       

 . (3.7) 

Those correlations are shown in Figs. 3.5a and 3.5b for the high and low 

cholesterol/triglyceride cases, respectively.  As it can be seen from there, they can very 

well be represented by quadratics, similar to the case shown in Fig. 3.3b. 
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Figure 3.5.  Normalized fluidity, *ϕ  (as defined in Eq. (3.7)) as a function of  

TG/HL for (a) L samples, LDL/HDL < 3.623) and  (b)  H samples, 

/ 3.623LDL HDL ≥ . 

 

The results can be summarized to the following expression for the Casson model 

viscosity ratio: 

 

 

2

2

0.5 5.93
3.623

11.37 3.83 0.3348

0.12315
3.623

25.443 15.928 2.5374
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  
−      ≥      

− +        = 
 
     <  

     − +       

 . (3.8) 

  

How well can the expanded model proposed here through Eq. (3.8), together 

with the BRePHS model, predict the observed Casson model viscosity?  To answer 

that we show in Fig. 3.6 the expanded model vs. the fitted Casson model viscosity 
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values.  As it can be seen from there, the agreement is very good with the emerging 

linear fit almost coinciding with the identity map and the scatter minimal. 
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Figure 3.6.  Comparison of the extended model predictions 

against the experimental data fitted values for the Casson 

model viscosity for the eight samples, H1-H4 and L1-L4 

corresponding to the viscosity data of Figure 1 of Moreno et 

al. (2015). 

 

In this case we also feel that the most important item is that the reported results 

on model viscosity, that showed significant deviations from the reference values of the 

previously established parametric relations of the BRePHS model, can also be fit 

through relations to the same ratio of indices, and not their absolute values.  The results 

are also a bit surprising in that they tend to show (in all but one case) that the model 

viscosity is actually reduced as a consequence to cholesterol/triglyceride effects.  Again 
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the number of data is small to be able to draw firm conclusions but the indications are 

that it may be that the model viscosity effect is a result of a model compensation to the 

very strong effect on the yield stress and to the model nonlinearity.  It certainly makes 

the case that the data on yield stress and mode viscosity need to be examined and 

interpreted in combination rather than in isolation.  Once more, additional data are 

necessary before we can draw more concrete conclusions. 

3.5 Conclusions 

In this work we presented a first attempt to quantitatively rationalize on the very 

significant effects that the cholesterol and triglycerides have on the steady state shear 

rheology of blood.  We show that these effects are considerable and modify the 

parameterization description provided in our previous work (Apostolidis and Beris 

2014) in a very significant way.  However, despite their significant effect, as a positive 

result, the Casson model remains a very good model for the steady state shear blood 

rheology.  That limits the need of the investigation in expressing the changes needed to 

predict the Casson model parameters, i.e. the yield stress and the Casson model 

geometry.  In the present work we showed how the same ratios that physicians have 

found to be of importance in assessing the risks of hypercholesterolemia and 

hypertriglycerolaemia also seem to be important in assessing the cholesterol and 

triglyceride effects on blood rheology.  This provides indirect evidence on the value of 

the hypothesis that cholesterol and triglycerides when in excess they contribute to 

cardiovascular diseases primarily because they increase blood viscosity (Sloop 1997).  

Inversely, the natural emergence of certain ratios in the viscosity and yield stress 
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correlations, such as LDL/HDL = 3.623, and TG/HDL = 3.2 point out to naturally 

emerging target values that may end up having future medical significance. 

The rheology of biofluids and blood in particular, proves to be a very complex 

phenomenon due to the presence of many constituents with complex interconnections.  

The need for further microscopic and biological investigations on the underlying 

phenomena that eventually lead to rheological changes is very high.  However, this 

undertaking will take time to be completed, given the underlying complexity of the 

phenomena.  In the mean-time, phenomenological relations may play a role in modeling 

and simulations.  Even those, they require very extensive physiological evaluations of 

the blood samples used in the measurements.  The present work due to the many factors 

involved and the relatively small number of available data cannot claim to have 

provided strong relations that can be used for a priori predictive purposes.  In all 

likelihood the results are limited to the particular cases studied as other factors, not 

explicitly accounted for (such, for example, other proteins in blood, as albumin) may 

also play a key role in establishing blood’s rheological behavior.  However, we strongly 

believe on the robustness of the most important conclusions, i.e. the demonstration that 

(a) the Casson model appears to hold even under pathological conditions and that (b) 

key ratios of importance to medical diagnosis, emerged naturally in the investigation as 

the most sensitive factors controlling blood rheology as well.  This close connection of 

rheology to pathology is the most important contribution of the present work and one 

that may have significant repercussions in the future. 
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Chapter 4 

MODELING OF HUMAN BLOOD RHEOLOGY IN TRANSIENT SHEAR 

FLOWS 

4.1 Introduction 

As a dense suspension of deformable red blood cells (RBCs), as well as 

leucocytes and platelets, in plasma, an aqueous solution of proteins, blood rheology is 

characterized by a complex, viscoplastic and thixotropic, non-Newtonian behavior 

[Cokelet et al. (1963); Dintenfass (1962); Merrill (1969)].  At low shear rates RBCs 

tend to aggregate, via the bridging of fibrinogen, into column structures (rouleaux), thus 

giving rise to the experimentally measured blood yield stress [Merrill et al. (1969); 

Picart et al. (1998)].  However, this process is shear-rate dependent, as the rouleaux 

structures disintegrate when they are deformed by the flow.  The reversibility of this 

process, that is the ability of RBCs to aggregate and disagregate, explains the shear-

thinning character of blood.  Moreover, this process is time-dependent as the rouleaux 

structures form and dissolve at differing time scales, which are also flow-dependent, 

thus attributing to blood a time-dependent (apparent) viscosity and thus, thixotropy 

[Owens (2006)].  

A significant effort has focused on the steady state shear blood flow behavior, 

as discussed at length in our recent publication [Apostolidis and Beris (2014)].  In that 

previous modeling work we showed how, based on a systematic study of available 

steady state shear data, the Casson viscoplastic model emerges naturally as the most 

suitable one to describe the blood rheology in steady state shear.  The most important 

findings of those steady state experimental blood flow investigations were: the 

exhibition of yield stress [Cokelet et al. (1963); Chien et al. (1966);  Merrill (1969); 
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Merrill et al. (1963, 1965)], the correlation between yield stress and the plasma 

fibrinogen concentration [Merrill et al. (1969); Morris et al. (1989)], the existence of a 

critical hematocrit [Meiselman et al. (1967); Merrill (1969); Merrill et al. (1963)], i.e. 

the demonstration for the existence of a threshold concentration of RBCs in the 

suspension in order for blood to exhibit a yield stress, and the transition from non-

Newtonian to Newtonian flow in high shear rates [Merrill and Pelletier (1967)].  With 

the exception of the last one, our previous steady state model was able to account for all 

other effects successfully [Apostolidis and Beris (2014)].  Furthermore, the most 

significant contribution of that work was the development of parametric relationships 

expressing the dependence of the Casson model parameters (i.e. the Casson model 

viscosity and yield stress) on physiological conditions such as the hematocrit (Hct), the 

fibrinogen concentration in plasma (𝑐𝑐𝑓𝑓), and the temperature (T).   

However, the steady state shear behavior clearly represents a limiting case.  In 

particular, the yield stress in dense soft colloidal suspensions, of which blood is one 

example, is typically attributed to an internal structure that develops, deforms and 

decays in a way that depends critically not only on the current flow kinematics but also 

on its history, thus giving rise to thixotropy [Mewis (1979); Barnes (1997); Mewis and 

Wagner (2012)].  Thus, while the study of steady state shear flows gave important 

insight into the non-Newtonian, viscoplastic, characteristics of blood, it is only the study 

of transient and time-dependent behavior that can allow for the system to exhibit its 

most complex, thixotropic and viscoelastic, rheological properties. Some of the most 

commonly employed methods to probe those properties are the use of triangular steps 

of shear rate (hysteresis experiments) and the application of oscillatory flow [Mewis 

and Wagner (2012)]. Only few experimental investigations have been so far devoted to 
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the description of these transient blood flow characteristics, and it would be safe to claim 

that the matter has not received the appropriate amount of attention, given the sparseness 

of results that have been reported so far. Some of the pertinent experimental 

investigations that need to be distinguished are those of Bureau et al. (1979, 1980), who 

systematically obtained, using a coaxial cylinder microviscometer, hysteresis and step-

up curves of pathological and physiological human blood. Other important contributions 

on the experimental investigation of the viscoelasticity of human blood have been 

provided by Thurston (1972, 1975, 1976) who performed oscillatory flow experiments 

in cylindrical tubes.  Moreover, in a recent study Sousa et al. (2013) were only the first 

to obtain whole blood Large Amplitude Oscillatory Shear (LAOS) data, reinforcing the 

notion that the transient rheology of blood has not been explored in depth.  The evidence 

supplied in these studies provides useful information that can be used for validation 

purposes of blood flow models in the transient shear regimes. 

Some of the most sophisticated non-Newtonian blood flow models have been 

developed in the last decade by Owens and coworkers [Fang and Owens (2006); 

Moyers-Gonzalez et al. (2008a, 2008b); Moyers-Gonzalez and Owens (2008);Owens 

(2006); Owens et al. (2008)].  In the first of these models, an attempt was made to take 

into account, through a set of viscoelastic phenomenological equations extracted 

through a polymer network theory analog, the aggregation and disaggregation of the 

erythrocytes [Owens (2006)].  This model was subsequently applied to simple shear 

flows [Owens (2006)] as well as to steady, oscillatory and pulsatile flow in rigid vessels 

[Fang and Owens (2006)].  Later, Moyers-Gonzalez et al. (2008a) developed a further 

refinement of that model to take into account inhomogeneous erythrocyte 

concentrations due to stress-induced migration, following the modeling described in 
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earlier work by Beris and Mavrantzas (1994).  This allowed for the description of the 

Fahreus and Fahreus-Lindquist effects thereby the local hematocrit and the apparent 

blood viscosity, respectively, decrease with tube diameter, for sufficiently small vessels 

[Truskey et al. (2009)].  These sophisticated models have improved the modeling of the 

non-Newtonian blood flow, however, due to their viscoelastic origin they cannot 

explicitly account for a yield stress, the most important manifestation of the viscoplastic 

nature of blood.  

Another remarkable attempt to describe general blood flow, this time through a 

generalized Oldroyd-B model, was made by Anand and Rajagopal (2004).  This model, 

which was developed in the context of the general thermodynamic framework of 

Rajagopal and Srinivasa (2000), has been shown to produce results that correlate well 

with the steady state simple shear data of Yeleswarapu (1996) and the oscillatory tube 

flow data of Thurston et al. (1975).  The authors [Anand and Rajagopal (2004)] claimed 

that the model can also describe the rheological hysteresis curves of Bureau et al. 

(1980), however such a comparison was not shown.  Anand et al. (2013) further refined 

that work by accounting for a finite zero shear rate viscosity and by allowing for a 

smooth variation of viscosity at very low shear rates.  These changes improved the 

numerical stability of the model when used in the simulations of straight and bent 

cylindrical tubes.  In the same investigation, the model is used to fit the hysteresis data 

of Bureau et al. (1980), however the validation in transient shear flows is incomplete as 

the comparison was done only against one of the rheograms presented in the work of 

Bureau et al. (1980).  Moreover, as also it was the case with the models referenced in 

the previous paragraph, these works of Anand and Rajagopal (2004) and Anand et al. 
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(2013) make use of a tensorial viscoelastic model and therefore do not explicitly take 

into account the viscoplastic nature of blood.  

Unlike the general viscoelastic descriptions mentioned in the two previous 

paragraphs, thixotropic models account explicitly for the exhibited yield stress in 

viscoplastic systems.  The most common thixotropic models are so far 

phenomenological, based on a constitutive equation that links a rheological stress 

response to a given level of microstructure, the latter being expressed by means of a 

scalar structural parameter [Mewis and Wagner (2012)].  Thixotropy is then accounted 

for via the time evolution equation of the structural parameter that is assumed to obey a 

relaxation equation with terms accounting both for the structural buildup as well as for 

the shear-induced structural breakdown.  Modeling thixotropic systems, even at a 

phenomenological level, is still one of the most challenging problems in suspension 

rheology.  The works of Mujumdar et al. (2002) and Dullaert and Mewis (2006) have 

provided some of the most popular structural models that have been successfully used 

to model thixotropic systems, while a comprehensive overview on the matter has been 

offered by Mewis and Wagner (2012).  In the case of blood, however, despite its 

viscoplastic nature, there have been no attempts to describe systematically its transient 

rheology through a purely thixotropic model.  To the best of our knowledge, the only 

model able to describe the thixotropy in blood, and therefore able to account explicitly 

for the exhibited yield stress, is the one proposed by Sun and De Kee (2001).  The 

specific system, a first order kinetic model with a structural parameter, was developed 

to describe the flow of a wide class of materials, including biofluids.  This model was 

shown to produce results that agree well both with steady state [Chien et al. (1971)] and 

transient [Bureau et al. (1980)] blood data.  However, as first pointed out by Owens 
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(2006), there are questions related to the exact form of the model equations used and 

the parameters corresponding to these results.  Furthermore, a fundamental pitfall 

pertaining to this, as well as all other modeling investigations of transient shear blood 

flow so far, is the lack of a systematic approach. 

In the present paper we offer a systematic study of the rheology of blood in 

transient shear flows, based on a structural thixotropic model, fully capitalizing on the 

findings and the parametric relations of our previous steady-state viscoplastic shear flow 

model. The model developed in this work is a single scalar internal structural parameter 

thixotropic model, based on the model developed in our earlier work [Mujumdar et al. 

(2002)].  It has also been suitably modified to (a) exploit recent advances based on the 

kinematic hardening model of the elastic strain in plasticity theory [Dimitriou et al. 

(2013)] and (b) enforce the constraint that it reduces to the Casson model in steady state 

shear flows, at least for low shear rates.  This constraint helped the present investigation 

in two significant ways.  First, it allowed the selection of the proper forms in the 

evolution equation for the structural parameter as well as in the stress constitutive model 

so that this constraint is satisfied exactly, at least in the limit of low shear rates.  Second, 

given this reduction, it allowed the full use of the previously developed and thoroughly 

tested parametric dependences.  As a result, the new, extended, model proposed in the 

present work has only four additional parameters, of which one can be fit by looking at 

any deviations from the Casson steady state behavior realized at higher shear rates, such 

as those reported in Merrill and Pelletier (1967).  Moreover, by using these data, the 

model can explain for the first time theoretically this effect that, albeit it has been 

observed a long time ago, has not as yet been theoretically understood.  To fit the 

remaining three model parameters, all of which have concrete physical meaning and 
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tight limits, we used the transient data reported by Bureau et al. (1980) involving 

triangular changes in shear, at a slow shear rate transient shear flow.  Furthermore, we 

systematically evaluated the model performance in additional, triangular changes in 

shear transient shear flow performed at a higher shear rate, as well as in step-up and 

step-down shear [Bureau et al. (1979)] all of them collected with the same blood 

samples.  Finally, we also compared the predictions of our model against recent whole 

blood flow LAOS results [Sousa et al. (2013)].   Our aim is to model bulk phenomena 

in geometries of dimensions significantly larger to the diameter of the red blood cells, 

and for short times that do not facilitate significant concentration inhomogeneities. Thus 

we treat blood phenomenologically as a rheologically homogeneous medium.    

The remaining sections of the paper are organized as follows.  In the next 

section, Sec. II, we systematically develop the model equations, starting with a review 

of the steady state Casson model, to which the transient model reduces exactly in 

steady state simple shear flows at low shear rates.  In Sec. III we show our results and 

discussion, starting with the high shear rate steady state behavior, and then presenting 

all the transient shear results, first those used to fit the model parameters and then the 

rest used for model validation.  The final section, Sec. IV, presents our conclusions. 

4.2 Model Equations 

The starting point for the transient model development is the constraint that for 

steady-state shear flows it reduces to the Casson model, for which our previous work 

[Apostolidis and Beris (2014)] (a) has shown to arise naturally from the consideration 

of previous literature data and (b) has developed expressions for its model parameters 
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in terms of physiological parameters.  For completion, we review the final results from 

this analysis. 

4.2.1 Overview of the steady state model 

Following the Casson model (1959), the steady state shear stress sτ  is described 

for positive shear rates 0sγ >  as:  

 
  ,  s y s s yτ τ µγ τ τ= + >  ,    (4.1) 

 

where yτ represents the yield stress and µ  the model viscosity.  Apostolidis and Beris 

(2014) developed parametric expressions for the model parameters in terms of the 

physiological blood parameters, namely the blood hematocrit, Hct, the fibrinogen 
concentration, fc , and the temperature, T, as follows.  First, the yield stress parametric 

form is given as: 

 

       ( ) ( )22   [ 0.5084 0.4517
 0

c f c
y

c

Hct Hct c Hct Hct

Hct Hct
τ

 − × + >= 
≤

,  (4.2) 

 
where the yield stress, yτ , is in 2/dyne cm and the fibrinogen concentration, fc , in 

/g dl , and cHct  represents the critical hematocrit value for yield stress given as:  
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Second, the viscosity parametric form is given as: 
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 ( )2 01 2.0703 3.7222 exp 7.0276 1p
Tn Hct Hct
T

µ
  = + × + × × − −  

  
 , (4.4) 

 

where T0 is the reference temperature of 273.16+23=296.16 ºK (at which the plasma 
reference viscosity 2 21.67 10 ×pn dyne s cm−= × is measured), and T is the blood 

absolute temperature (in ºK).    An extensive verification and validation of the 

proposed model is presented in Apostolidis and Beris (2014). 

4.2.2 Development of a thixotropic model for transient shear blood flow 

The development of the fully time-dependent thixotropic model for blood is 

based on a single scalar structural parameter thixotropic model---see, for example, 

Mewis and Wagner (2012) and references therein.  These models attempt to describe 

thixotropy (i.e. the dependence on the deformation-history in viscoplastic materials) 

phenomenologically by expressing the parameters of inelastic viscoplastic equations 

(such as the Bingham or Hershel Bulkley models [Bird et al. 1987)] parametrically in 

terms of a scalar structural parameter λ .  For example, the shear stress can be 

represented in a shear flow (assuming, for simplicity, a positive shear rate γ ) as a linear 

superposition of the yield stress and a viscous contribution as [Mewis and Wagner 

(2012)]: 

 
 ( )1 n

y Kτ λτ λ γ= + −  . (4.5) 

In turn, λ is assumed to obey a relaxation evolution equation that, in addition 

to a relaxation term back to its static equilibrium value (typically taken as 1) also 

includes a flow-induced structure breakdown term [Mewis and Wagner (2012)]: 
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 ( )1 21d k k
dt

λ λ γλ= − −  , (4.6) 

 

where 1k  and 2k are rate coefficients describing the recovery of the structure and the 

shear induced break down, respectively.  A further development on these structural 

thixotropic models was made when the elastic contribution to the shear stress (i.e. the 
term yλτ in the stress Eq. (4.5)) was substituted by a modulus ( )G G λ= times an elastic 

strain eγ :   

 
 ( )( ) 1 n

eG Kτ λ γ λ γ= + −  .   (4.7) 

 

In turn, ( )G λ was postulated to have a certain functional relationship whereas 

the evolution of the elastic strain was described in terms of the imposed strain rate.  The 

details vary depending on the model.  For the “Delaware model”, developed by 

Mujumdar et al. (2002) for a thixotropic concentrated ceramic suspension, we have: 

  

 
γ γ γ λ

γ
γ γ λ

 <= 
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0 ( )

e
e

e

d
dt   (4.8) 

  

where γ max  is the upper limit of the sustained elastic strain within the material.  As the 

structure breaks down this limit may change and it is represented within the model as a 

power law with respect to the structural parameter: 

 

 max 0( ) mγ λ γ λ=   (4.9) 
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where γ 0  is the zero shear rate elastic strain and m is an exponent characteristic to the 

material.  The “Delaware model” predicts that the elastic strain increases as the material 

is strained from rest until it reaches the critical limit strain, γ max , thus reaching the yield 

point.  Past the yield point, the elastic strain follows the critical strain in the post-yield 

phase.     

Finally, the “Delaware” model introduces a functional relationship for the dependence 

of the elastic modulus on the fluid’s structure: 

 

 0( )G Gλ λ= , (4.10) 

 

where 0G  is the zero shear rate value of the modulus.   

We have used the “Delaware model” as a prototype to model the thixotropic 

blood rheology, through suitable modifications and extensions.  We first implemented 

an improvement on the elastic strain evolution equation extending that developed by 

Dimitriou et al. (2013) based on the kinematic hardening theory of plasticity.  First, the 

total strain is assumed to be decomposed into the sum of an elastic and a plastic part: 

 
 γ γ γ γ γ γ= + ⇔ = +  e p e p .  (4.11) 

Second, the rate of change of the elastic strain is determined, following a 

straightforward extension of the kinematic hardening model [Dimitriou et al. (2013)] to 

allow for a variable maximum elastic strain, as 

 

 
γ

γ γ γ
γ

= −  

e
e p p

max
,  (4.12) 
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where maxγ  represents the maximum allowed elastic strain.  For the blood flow model 

we propose the following relationship 

 

 γ
γ γ

λ ∞

 
=  

 
0
2min ,max ,  (4.13) 

 

where 0 ,γ γ ∞ are two dimensionless parameters representing the zero-shear rate and 

infinite shear rate limiting values for the maximum elastic strain supported within the 

material, respectively.  Note that as λ , the structural parameter characterizing the 

material, varies between the 1 and 0 limits, achieved at the  zero-shear rate and infinite 

shear rate limiting values, respectively, the γ ∞ value is necessary in order to avoid 

allowing unrealistically high (even infinite!) values for the elastic strain within the 

material at high shear rates.  The values for 0γ γ ∞< are expected to range between order 

0.01 and 1, roughly.  

If Eq.(4.12) is now substituted into the second one of Eq.(4.11) we can get the 

relationship between the rate of change for the plastic strain and the shear rate: 
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Second, based on this elastic-plastic strain decomposition, we replaced the 

previous stress equation, Eq. (4.7), by one relating the shear stress,τ , to the elastic 
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strain, eγ , and the plastic strain rate, pγ .  For blood, which behaves like a Newtonian 

viscous fluid in the limit of high shear rates this leads to: 

 

 e pGτ γ µγ= +  ,  (4.15) 

 

where G represents a structure-dependent elastic modulus which now is assumed to 

obey a relaxation equation: 

 

 ( )0
G e

d G k G G
dt

τ
µ

λ= −  , (4.16) 

 

where 0τ is the zero shear rate yield stress of the material 

 

 τ γ≡0 0 0G ,  (4.17) 

 

and eG  represents an equilibrium value assumed to depend proportionally to a structural 

parameter λ and its zero shear rate value 0G : 

 λ= 0eG G ,  (4.18) 

 

and where Gk is a dimensionless, order 1, kinetic coefficient.  Note that from this 

equation the modulus of elasticity is assumed to relax to its equilibrium value based on 

a characteristic rate that changes, as the equilibrium modulus value in Eq.(4.18), i.e. at 

a rate proportional to the structural parameter λ .   
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The last, and probably most important, of the governing equations for the 

transient blood behavior is that corresponding to the relaxation of the λ  structural 

parameter.  This is assumed to follow a modified relaxation equation: 

 

 ( )λ

µγτ
λ λ λ

µ τ

 
 = − −
 
 



0

0

4
1 pd k

dt
,  (4.19) 

 

where kλ a dimensionless kinetic parameter characterizing the structural rebuild, of 

order 1.  Note that, in Eq. (4.19), the square root dependence on the (plastic) shear rate, 

as well as the ratio of the kinetic coefficients for the breakdown vs. rebuild (represented 

by the term µ
τ 0

4 ) are so chosen so that the following steady state simple shear flow 

solution for λ , sλ  is obtained by zeroing the left hand side of Eq. (4.19):  

 

 λ
µγ
τ

=

+


0

1
4

1
s

s

 , (4.20) 

 

When this solution is introduced into the constitutive relations for eG and maxγ , 

Eqs. (4.18) and (4.13), respectively, and those in turn are substituted into the constitutive 

equation for the shear stress, Eq. (4.15), the Casson model expression, Eq. (4.1), arises 

naturally, provided that 0
2

0 0

4
1sγ µγ γ

γ
τ γλ

∞
∞≤ ⇔ ≤ −

   (see Appendix A).   

What we see therefore is that, at the end, the proposed thixotropic model satisfies 

the constraint that it reduces to the Casson model only for small shear rates where the 
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above inequality is satisfied.  Indeed, the full steady state simple shear flow solution for 

the shear stress that is obtained is given by the following expression:   
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Note that this leads asymptotically at high shear rates to a Newtonian behavior 

with the same viscosity as the Casson model viscosity.  This deviation from the Casson 

model behavior is unavoidable as long as one has a finite magnitude infinite shear strain, 

γ ∞ , which, however, is the only natural solution.  Therefore, what we find is that the 

introduction of a finite magnitude infinite shear rate elastic strain in Eq. (4.13), which 

is necessary in order to avoid an unnatural infinite elastic strain within the material, also 

distorts the equilibrium value of the structural λ  parameter, offered by Eq. (4.20) and 

from there the steady simple shear flow solution.   

However, rather than being a model deficiency, as it turns out, this issue 

develops as a distinct model advantage, as a closer look at the previous literature 

indicates that such departures from the Casson model behavior have been previously 

experimentally observed [Merrill and Pelletier (1967)].  In fact, our model offers the 

first theoretical explanation of such effects.  Simultaneously, when these higher shear 

rates experimental results are taken into account they can be used to fit the ratio 0γ γ∞

in addition to the Casson model parameters 0( , )τ µ ---see next section.  Thus, at the end, 
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the proposed thixotropic model introduces only three additional parameters on top of 

those that can be determined solely from steady state experiments:  One dimensionless 

strain, 0γ  and two dimensionless kinetic coefficients, ,L Gk k  .  To determine these one 

needs to use some transient shear data, as shown in the next section.   

4.3 Results and Discussion 

Comparison of the model predictions to steady state and selective transient data 

are needed in order to fit the model parameters and validate its performance.  For low 

shear rate steady state simple shear flows one can further take advantage of the 

parameterization of the Casson model parameters in terms of physiological data, as 

developed in Apostolidis and Beris (2014), also shown in Eqs. (4.3) and (4.4).  That 

leaves the steady state simple shear flow behavior at higher shear rates (which is needed 

for the determination of  the ratio 0γ γ∞ ) as shown in section A below.  Then, selective, 

low shear rate transient shear flow data are used in Section 4.3.2 for determining the 

three additional thixotropic model parameters, dimensionless strain, 0γ  and two 

dimensionless kinetic coefficients, ,L Gk k  .  In the same section, comparison of the 

model predictions to the experimental data based on those parameter values, as well as 

to additional transient data, are used to determine the model verification and validation, 

respectively.  

 

  

This effect, though explicitly emphasized in an early experimental investigation 

(Merrill and Pelletier, 1967), it has so far been neglected from a theoretical point of 

view.  To the best of our knowledge, there have been no attempts to explain or predict, 
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under steady state flow, the transition from a Casson to a Newtonian behavior.  As 

mentioned in the previous section, this feature arises naturally as a consequence of the 

physical picture (from the finite magnitude of the elastic strain) associated with the 

proposed thixotropic model.  In fact, as seen in Fig. 1 where a comparison of a fit with 

γ γ∞ =0 100 to the original Merrill and Pelletier (1967) data is shown, the proposed 

model not only predicts the deviation from the Casson flow behavior at high shear rates 

and the transition to a Newtonian behavior qualitatively, but also quantitatively.  

4.3.1 Steady state simple shear flow:  Deviation from the Casson flow behavior 

at high shear rates 

This effect, though explicitly emphasized in an early experimental 

investigation (Merrill and Pelletier, 1967), it has so far been neglected from a 

theoretical point of view.  To the best of our knowledge, there have been no attempts 

to explain or predict, under steady state flow, the transition from a Casson to a 

Newtonian behavior.  As mentioned in the previous section, this feature arises 

naturally as a consequence of the physical picture (from the finite magnitude of the 

elastic strain) associated with the proposed thixotropic model.  In fact, as seen in Fig. 

4.1 where a comparison of a fit with γ γ∞ =0 100 to the original Merrill and Pelletier 

(1967) data is shown, the proposed model not only predicts the deviation from the 

Casson flow behavior at high shear rates and the transition to a Newtonian behavior 

qualitatively, but also quantitatively. 
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Figure 4.1.  Steady state Couette viscometry data of Merrill et al. 

(1967) (Hct 45%, temperature 37 °C, fibrinogen concentration 0.27 

g/dl) vs. our updated steady state model predictions. The transition 

from the Casson to Newtonian viscosity starts at shear rate ~20 s-1. 

The dashed line represents the Newtonian response. 

 

4.3.2 Transient shear flow 

With the consideration of the high shear rate steady state simple shear flow data, 

the thixotropic model adds only 3 new parameters ( 0 , or ,  and γ γ ∞ L Gk k ).  In the 

absence of steady state data,  as mentioned above,  Eqs. (4.3) and (4.4) can be used for 

the determination of the zero shear rate yield stress and the Casson viscosity parameters, 

τ 0 and µ , respectively.  However, note that this assumes that all the relevant 

physiological parameters, i.e. the hematocrit (Hct), fibrinogen concentration (cf) and the 

temperature are known.  In principle, they are measurable quantities and should be 
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normally reported with all blood flow related studies.  However, when some of these 

parameters are not reported, as is often the case with the fibrinogen concentration, then 

these are treated as fitting parameters (within a physiological range of variation).  

In the following, the proposed model is used to describe experimental shear data 

emanating from the following transient shear protocol: a triangular step change in shear 

rate (hysteresis data) [Bureau et al. (1980)], a rectangular step change [Bureau et al. 

(1979)], and LAOS [Sousa et al. (2013)]. Bureau et al. (1979, 1980) have studied the 

response of specific normal blood samples subjected to both types of step change 

rheological experiments.  This is important from a modeling point of view, as it poses 

the constraint of fitting the two sets of experimental data with the same model 

parameters. 

4.3.3 Blood hysteresis in triangular change in shear rate experiments 

The variation of shear rate in this type of experiments can be described through 

a set of linear equations: 

 

 ( )
, 0

2 , 2
m

m m m

t for t t
t t for t t t

γ α
γ α

= < <
 = − < <





.  (4.22) 

 

Bureau et al. (1979, 1980) have shown that the shape of the hysteresis curves 

observed in the measured shear stress depends sensitively on the two experimental 

parameters: the rate of change of shear rate (α ) and the duration of shear in each 

direction ( mt ).  Based on this observation, Bureau et al. (1979, 1980) chose two sets of 

parameters for the examination of all blood samples, leading to two types of rheograms, 

A and B (see Fig. 4.2).  The investigators examined both pathological and physiological 
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cases and in each case the respective set of rheograms was reported. Here we use three 

sets of rheograms, all corresponding to normal (physiological) human blood. For each 
set of parameters defining the triangular change in shear rate, that is ( ), mtα  in Eq. (4.22)

, a comparison between the experimental data obtained from each one of the three 

normal blood samples shows that there is significant variability in the reported results-

--see Fig. 4.2. 
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Figure 4.2.  Hysteresis curves of three normal blood samples obtained by Bureau et 

al. (1980) corresponding to a triangular change in the shear rate following Eq. (4.22)

. (a) Type A rheogram    (α =0.0185 sec-2, mt =6.5sec), (b) Type B rheogram (α
=0.043sec-2, mt =23.8 sec). The hematocrit of each sample was adjusted at 0.45 and 

the measurements were done at T=25 ± 0.5 oC. The numbering of the samples in the 

legends corresponds to the figures from which the raw data where drawn from, in 

the original work of Bureau et al. (1980). 

 

We postulate that the variability shown in rheological responses of different 

normal blood samples in Fig. 4.2 is due to the different physiological parameters of each 
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sample. Since for all cases the hematocrit was adjusted to 45% and the temperature of 

all measurements was also the same, then the physiological parameter of importance is 

the protein content, and in particular the fibrinogen concentration. While it is possible 

that other proteins, such as the immunoglobulins, or acute phase proteins [Weng et al. 

(1996)], impact the rheology of blood, our model accounts only for the fibrinogen 

concentration. 

In order to compare our model predictions to the reported set of hysteresis 

curves, we first fit the rheogram A data for each blood sample and then, using the same 

model parameter values, we predict the respective rheogram B data.  The fit of the 

rheogram A data is a non-linear parametric fit which is based on a global optimization 

routine that has been developed by Armstrong et al. (2014). This analysis was done for 

all three data sets appearing in Fig. 4.1. In Fig. 4.3 the fits for sample 8 and sample 9 

are shown. The results were very similar for sample 7 (data not shown). 
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Figure 4.3.  Comparison of model predictions (continuous lines) against 

experimental hysteresis data (dashed lines) of normal human blood, 

0.45, 25Hct T C= = ° .  Following Eq. (4.20) the experimental parameters are (a), 

(c): Type A rheogram (α =0.0185 sec-2, mt =6.5sec); (b), (d): Type B rheogram (α
=0.043sec-2, mt =23.8 sec).  The model parameters used to fit the data were: (a)-(b): 

Sample 8 of Bureau et al. (1980), 0.125,fc = 0 0.039,γ = 1.214,kλ = 0.595Gk = ; 

(c)-(d): Sample 9 of Bureau et al. (1980), 0.173,fc = 0 0.039,γ = 1.207,kλ =

0.216Gk = . 
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The fibrinogen concentration values of the blood samples that have been used in 
the investigation of Bureau et al. (1980) were not reported. As a result, fc  was used 

here as an additional fitting parameter in the thixotropic model.  In addition, since no 

steady state data were reported for any of the blood samples, a γ γ∞ =0 100  was used 

that was obtained from the steady state stress vs shear rate data of another normal blood 

sample (see Fig. 4.1).  In any case, in the present experiments, since the values of the 

elastic strain were always modest, and if we accept that they remain below γ ∞ (which it 

is always the case for 0 10γ γ∞ =  or higher) its exact value plays no role in the model 

predictions.  

For both sets of data in Fig. 4.3 the model describes accurately the rheogram A 

data, while the correlation with the rheogram B data is lower. This is the case for sample 

7 as well (data not shown).  This consistent difference in the quality of the fit can be 

explained by the fact that the rheogram B data correspond to, on the average, higher 

shear rate values, i.e. to conditions under which one expects additional nonlinearities to 

kick-in that our simple model cannot capture.  In principle, we could improve the fitting 

by introducing higher nonlinearities into the model, but this would have only come at 

the expense of introducing additional parameters.  In any case, at higher shear rates one 

anticipates that the isotropicity assumption for the samples structure, which is implicit 

to the use of a single, scalar, internal structural parameter, starts to fail.   

Despite these shortcomings, we feel that the model, in addition to being able to 

fit the lower shear rate data almost exactly, it also captures well all the significant trends 

seen in the experiment upon increasing the shear rate.  In particular, the dramatic shape 

changes seen between rheograms A and B are predicted with just three additional 
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parameters over those needed for the steady state and only requiring the data from 

rheogram A to fit those extra parameters.  Furthermore, comparing the fitted parameter 

values between samples 8 and 9, it is worth noting that (a) the fitted values to the 

fibrinogen concentration ended up well within the allowed physiological range (0.1 to 

0.4 g/dl) and (b) out of the other three transient parameters, one ended up with exactly 

the same value for both samples (the zero shear rate maximum elastic strain 0 0.039γ = ) 

and of the right physical magnitude (a few percent), another ended up to have very close, 

order one, values ( the dimensionless kinetic coefficient for the structural parameter, 

1.214 or 1.207kλ = ), and only the third showed some significant variation, (the 

dimensionless kinetic coefficient for the elastic modulus relaxation 

0.595 or 0.216Gk = ), still without deviating more than a factor of 5 from unity.  In 

retrospect, it makes sense to see the most sensitivity to the parameter associated with 

the elasticity of the sample, as (a) this is expected to be affected the most by the 

difference seen in the fibrinogen concentration values, as fibrinogen is implicated in 

regulating the forces between the red blood cells and their aggregation which is 

ultimately responsible for the viscoplasticity of blood and (b) other proteins, whose 

concentration may also have been different between the two samples, may also be 

implicated in controlling the relaxation of the elastic modulus and thus Gk .     

Overall, it was very encouraging to find naturally, through the fitting process, 

those reasonable parameter values.  Still, as we can see from Fig. 4.3, they were able to 

(a) fit almost exactly the low shear rate hysteresis curves (rheogram A) and (b) show 

the trends correctly observed upon increasing the shear rate (and getting a hysteresis 

curve of very different shape, that corresponding to rheogram B).  Furthermore, the 

small variations in parameter values were sufficient to explain the significant variations 
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seen between different samples (see Fig. 4.2).  Those differences are to be attributed to 

a great extent to natural differences observed in normal blood at the fibrinogen 

concentration levels, without also excluding the possibility that for the transient blood 

flow behavior, other proteins, beyond fibrinogen, may also play a role.  This clearly 

points to the need for a much better characterization of the blood samples used in 

rheological experiments. 

An advantage of possessing a mathematical model for the structure development 

and rheological response is that one can use it after fitting the data to further analyze the 

observed response and thus improve the understanding of the underlying mechanisms.  

In particular, the use of a thixotropic viscoplastic model, like the one suggested in this 

investigation, allows to probe further the shear stress development in terms of analyzing 

it into its natural constituents, namely its elastic and viscous contributions. This is 

exactly what is shown in Fig. 4 where the time evolution of the total shear stress, as well 

as that for its elastic and viscous contributions, are offered over the total time of the 

experiment for both rheograms A and B.  For brevity, only the results from the modeling 

one of the samples shown in Fig. 4.2 (sample 8) are shown; very similar results are 

obtained with the other samples.  As we can see in Fig. 4.4, in both experiments the 

stress contribution is predominantly elastic. This is more the case in Fig. 4.4a than in 

Fig. 4.4b as the maximum shear rate for rheogram A is 0.12 s-1 as opposed to the 1 s-1 in 

rheogram B where the viscous stress contribution is significantly enhanced.  Comparing 

the two contributions, it is instructive that the viscous one in both rheograms is 

symmetric, linearly increasing with shear rate, as it should, based on the constitutive 

equation used, Eq. (4.15).  The elastic stress response is more nonlinear, distinctly 

asymmetric, and showing a history dependence that makes it is the source of the 
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observed hysteresis. Nevertheless, in both rheograms, the elastic stress also assumes its 

maximum at the maximum shear rate. 
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Figure 4.4.  Model predictions for the elastic stress, the viscous stress and the total 

stress response of the normal blood sample 8 as a function of time in (a) rheogram 

A, corresponding to Fig.  3 (a), and (b) rheogram B, corresponding to Fig. 3 (b).  

The experimental conditions and the model parameters used are those indicated in 

Fig. 3. 

 

To further understand how those asymmetric and history-dependent elastic 

stresses develop it is of interest to examine the development over time of their 

constituents, i.e. the elastic strain and the modulus of elasticity.  Those are shown in Fig. 

4.5 and Fig. 4.6, respectively.  There we see the effects of the flow.  First, as far as the 

elastic strain is concerned, this is almost symmetric, increasing with increasing time up 

to the time the maximum shear rate is reached, and then decreasing afterwards.  In 

contrast, the modulus of elasticity shows a distinct asymmetry while it keeps decreasing 
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(albeit by a smaller relative rate as the increase observed in elastic strain) almost through 

the whole triangular change in shear experiment.  Furthermore, as rheogram B 

corresponds to higher shear rates we see larger changes in both the elastic strain and 

modulus. 
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Figure 4.5.  Model predictions for the time evolution of the elastic strain eγ  

during the hysteresis experiment of sample 8 in (a) rheogram A and (b) rheogram 

B.  The experimental conditions and the model parameters used are those indicated 

in Fig. 4.3(a) and 4.3(b), respectively. 
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Figure 4.6.  Model predictions for the time evolution of the modulus G  

during the hysteresis experiment of sample 8 in (a) rheogram A and (b) 

rheogram B.  The experimental conditions and the model parameters used are 

those indicated in Fig. 4.3(a) and 4.3(b), respectively. 

 

 

To further understand the observed changes in the elastic strain and the modulus of 

elasticity it is instructive to follow the changes in the structure.  This is possible as 

the thixotropic model involves the λ structural parameter, ranging from the value 

of 1 (for a virgin structure) to 0 (for a fully broken structure obtained in the limit of 

high shear rates).  Thus, following the evolution in time of the structural parameter 

in Fig. 4.7 below allows us to evaluate changes in the structure during the triangular 

change in shear hysteresis experiments.  As we can see in Fig. 4.7 there are 

significant differences between the two rheogram experiments. As the maximum 

shear rate for rheogram A is 0.12 s-1, as opposed to the 1 s-1 in rheogram B, the 

structural parameter in A assumes larger values (closer to the virgin sample). While 
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in both cases the structural parameter achieves its minimum value close to the 

maximum shear rate, achieved in the middle of each experiment, the variation is 

more asymmetric in the first case (low shear rates) than in the second (higher shear 

rates).  This asymmetry in the structural parameter, caused by the relaxation-type 

evolution of the structure, in connection to the relaxation-type helps explain the 

previously seen in Fig. 4.6 asymmetry in the modulus that in turn helps explain the 

strong hysteresis of the stress observed in Fig. 4.3. 
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Figure 4.7.  Model predictions for the time evolution of the structural 

parameter λ during the hysteresis experiment of sample 8 in (a) rheogram A 

and (b) rheogram B.  The experimental conditions and the model parameters 

used are those indicated in Fig. 3(a) and 3(b), respectively. 
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4.3.4 Rectangular step-change in shear-rate experiments 

In addition to the triangular change in shear rate hysteresis experiments, in an 

earlier work Bureau et al. (1979) have also studied the rheological response of normal 

and pathological human blood to step-change in shear rate experiments. As with the 

case of the hysteresis experiments, the investigators subjected each sample to two step-

changes of different magnitude; a 0.05 s-1 and 1 s-1 shear rates were applied, leading to 

the formation of two types of rheograms, rheogram I (see Figs. 4.8a & 4.8c) and 

rheogram II (see Figs. 4.8b & 4.8d), respectively. The notation of the type of rheograms 

(e.g. Rheogram I or II) and the numbering of the samples in Fig. 8 corresponds to the 

annotation used in the original work by Bureau et al. (1979). 
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Figure 4.8.  Comparison of model predictions (continuous lines) against 

experimental step-change in shear rate data (dashed lines) of normal human blood, 

0.45, 25Hct T C= = ° .  Starting from rest, the final shear rate values are (a), (c): 

Type I rheogram, 10.1 sγ −= ; (b), (d): Type II rheogram, 11 sγ −= .  Samples 5 and 

7 from [Bureau et al. (1979)] correspond to samples 8 and 9 from [Bureau et al. 

(1980)] and therefore the model predictions are based on the same parameters as 
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those used in Fig. 4.3:  (a)-(b):  0.125,fc = 0 0.039,γ = 1.214,kλ = 0.595Gk = , 

1γ ∞ = , (c)-(d): 0.173,fc = 0 0.039,γ = 1.207,kλ = 0.216Gk = , 1γ ∞ = .  

 

Each set of rheograms presented in Fig. 4.8 corresponds to data collected from 

the same human blood sample that was respectively used to obtain the two sets of 

hysteresis curves in Fig. 4.3.  More specifically, sample 8 in Fig. 4.3 consists of the 

same blood as sample 5 in Fig. 4.8, and sample 9 in Fig. 3 is the same as sample 7 in 

Fig. 4.8.  Therefore, the data in Fig. 4.8a-4.8b were compared against model predictions 

which were based on same parameters to those that were obtained from the fit of the 

data shown in Fig. 3a. Similarly, we compare the experimental data of sample 7 to the 

model predictions obtained with the parameters from the fit of sample 9 data shown in 

Fig. 4.3c. 

As it can be seen from Fig. 4.8 we do get a semi-quantitative agreement in all 

cases:  At the lower shear rate, the model predictions for both samples are monotonically 

increasing until saturation in the step-up case, as are the experimental data.  Similarly, 

at the higher shear rate, the model predictions show an overshoot as the steady state 

results are approached and so do the data.  However, there are also quantitative 

differences.  Those need to be explained by the fact that we have opted, for the sake of 

simplicity and in order to minimize the number of adjustable parameters, to use the 

simplest possible expressions for the various material functions.  Furthermore, note that 

at the end of the experiments (relaxation after the shear rate is decreased to zero) the 

model predictions are very good.  Some discrepancies observed there at the later stages 

of the relaxation process in association with the lower shear rate experiment (Figs. 4.8a 

and 4.8c) need to be attributed to experimental artifacts rather than genuine differences, 
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as the discrepancies arise right at the point where the yield stress value is reached.  This 

is a robust feature of the model and ought also to be respected in the experiment; the 

fact that lower values than the expected yield stress values are obtained experimentally 

should therefore be attributed to the way the stress is actually monitored in the 

experiment upon cessation of the flow. 

 
Table 4.1.  Model parameters obtained from the non-linear parametric fit of the 
hysteresis curve-rheogram A of sample 8 and sample 9 [Bureau et al. (1980)], in 
Figure 4.3.  Each set of parameters is used to predict the response of the respective 
blood under different conditions (i.e. a triangular step-change of larger magnitude –see 
Fig. 4.3b and Fig. 4.3d which correspond to rheogram B) or even different type of 
experiments (i.e. rectangular step-change in shear rate, in Fig. 4.8 –also obtained 
LAOS predictions with these two sets of parameters, however the LAOS data do not 
correspond to the same blood sample). 

Parameters Sample 8 (Figure 3a) Sample 9 (Figure 3c) 

fc (g/dl) 0.125 0.173 

0γ  0.039 0.039 

kλ  1.214 1.207 

Gk  0.595 0.216 

γ ∞  1 1 
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4.3.5 LAOS experiments 

Finally the developed model was tested by comparing its predictions against 

very recent experimental results obtained with whole blood under Large Amplitude 

Oscillatory Shear flow (LAOS) reported by Sousa et al. (2013).  The experimental 

conditions of large amplitude oscillatory shear flow consist of a sinusoidal strain as 

shown in Eq. (4.23).  The corresponding shear rate is simply the first derivative of the 

strain with respect to time as shown in Eq. (4.24).  The strain amplitude is given by γ L  

while ω  is the oscillation frequency. 

  

 γ γ ω=( ) sin( )Lt t  , (4.23) 

             

 γ γ ω ω=( ) cos( t)Lt  . (4.24) 

 

As the provided data involved samples other than the ones for which the model 

parameters have been developed (samples 8 and 9 of Bureau et al. (1980)) and as, again, 

no values for the samples fibrinogen concentration have been reported, we first used 

available steady state data in order to obtain the steady state Casson model parameters.  

Those data (from Sousa et al. (2013)) are plotted in Fig. 4.9 in Casson-appropriate 

coordinates (i.e. as the square root of the shear stress with respect to the square root of 

the shear rate). 
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Figure 4.9.  Fitting of blood steady shear data to obtain the 

steady state model parameters. The data correspond to Donor 

A from the work of Sousa et al. (2013), with Hct=41.6% and 

T=37 oC.  

 

First, as Fig. 4.9 shows, the data fall almost perfectly on a straight line.  Thus, 

one sees again evidence for the appropriateness of the Casson model to represent the 

steady state shear blood flow behavior, consistent to the findings of our previous work 

[Apostolidis and Beris (2014)].  Based on a least squares fit of the data, the model 

viscosity, µ , is found to be 0.0030 Pa·s, while the yield stress is 0.00823 Pa.  Note that 

almost the same viscosity value (0.00302 Pa s) is predicted from our previously 

developed parametric relationship, Eq.(4.4), for the reported hematocrit and temperature 

values, providing, again, independent evidence for the validity of that expression. Using 

Eqs. (4.2) and (4.3), and the yield stress value obtained from the Fig. 4.9 fit through 
extrapolation, we back-calculated the fibrinogen concentration, 𝑐𝑐𝑓𝑓 as 0.512 /fc g dl= .  

Although this value came out to be a little high it is still close enough to the 



 119 

physiological range (between 0.1 and 0.4) to be acceptable.  Also, note that as the 

provided steady state shear data, as shown in Fig. 4.9, do not show within the 

experimental range of shear rates covered a transition to a Newtonian behavior similar 

to the one corresponding to the data of Merrill and Pelletier (1969) shown in Fig. 4.1, 

we used a very high value for γ ∞  that does not come to affect the predictions of the 

model.   

As we do not have an independent transient experiment for low shear rates to fit 

the remaining three of the transient model parameters, 0 ,,  and γ L Gk k , we used the 

values corresponding to either one of the Bureau et al. (1980) samples, 8 and 9, as 

obtained from the rheograms shown in Fig. 4.3a and 4.3c, respectively.  We then 

compared the model predictions obtained with these two sets of parameters (on top of 

the same steady state parameters evaluated as discussed above) against the LAOS data 

reported by Sousa et al. (2013).  For that comparison, we used the Lissajous-Bowditch 

representations, both with respect to the shear as well as shear rate, two different 

frequencies, 0.251 rad/sω = and 0.631 rad/sω = , as well as two different strain 

amplitudes, 1.0Lγ =  and 0.1Lγ = .  The comparisons are shown for the two different 

values of the frequency in Figs. 4.10 and 4.11, respectively, with the continuous and the 

dashed lines denoting the predictions obtained with the transient parameters developed 

from samples 8A and 9A, respectively.   

 

 

 

 

 



 120 

-1 0 1

-1.0

-0.5

0.0

0.5

1.0

 

 τ∗
 Sousa et al. (2013)
 Model Prediction (9)
 Model Prediction (8)

ω=0.251 rad/s
γL=1

(a)

-1 0 1

-1

0

1

 

 τ∗

 Sousa et al. (2013)
 Model Prediction (9)
 Model Prediction (8)

ω=0.251 rad/s
γL=0.1

(c)

 

-1 0 1

-1.0

-0.5

0.0

0.5

1.0

 

 τ∗

 Sousa et al. (2013)
 Model Prediction (9)
 Model Prediction (8)

ω=0.251 rad/s
γL=1.0

(b)

-1 0 1

-1

0

1

 

 τ∗

 Sousa et al. (2013)
 Model Prediction (9)
 Model Prediction (8)

ω=0.251 rad/s
γL=0.1

(d)

 

Figure 4.10.  Non-dimensionalized elastic (a, c) and viscous (b, d) projections of 
the Lissajous-Bowditch diagrams for ω  =0.251 rad/s and (a, b) Lγ =1 or (c, d) Lγ
=0.1.  With the continuous and the dashed lines we denote the model predictions 
obtained both with the same steady state parameters µ = 0.0030 Pa·s and 0τ = 
0.00823 Pa and with the transient parameters developed from samples 8 and 9 of 
Bureau et al. (1980), as obtained from the rheograms A shown in Fig. 3a and 3c, 
respectively, whereas with the symbols we denote the experimental data of Sousa et 
al. (2013).   
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Figure 4.11.  Non-dimensionalized elastic (a, c) and viscous (b, d) projections of the 

Lissajous-Bowditch diagrams for ω  =0.631 rad/s and (a, b) Lγ =1 or (c, d) Lγ =0.1.  

With the continuous and the dashed lines we denote the model predictions obtained 

both with the same steady state parameters µ = 0.0030 Pa·s and 0τ = 0.00823 Pa and 

with the transient parameters developed from samples 8 and 9 of Bureau et al. (1980), 

as obtained from the rheograms A shown in Fig. 3a and 3c, respectively, whereas with 

the symbols we denote the experimental data of Sousa et al. (2013).   
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The LAOS data and model predictions are shown in Figs. 4.10 and 4.11 via a 

series of two dimensional Lissajous-Bowditch diagrams whereby the non-dimensional 

stress vs.  non-dimensional strain is the elastic projection and the non-dimensional stress 

vs. non-dimensional shear rate is the viscous projection.  The strain and shear rate are 

scaled by maximum values, while the stress is non-dimensionalized by the first 

harmonic of the stress decomposition given by 

 

 σ γ ω ω
=

 = + ∑ ' "

1( )
( ) sin( ) cos( )L n n

n odd
t G n t G n t  . (4.25) 

 

As we can see in Figs. 4.10 and 4.11, most of the LAOS features are adequately 

captured by the model.  Of course, once more we cannot expect to see quantitative 

agreement, not only for the reasons stated before (simplicity of the model, involving 

few parameters, as well as an anticipated limited region of applicability due to the 

isotropicity assumed for the structure) but also because the transient model parameters 

are not obtained through a fit to pertinent to the LAOS experimental data.  Nevertheless, 

it is instructive to see that all the major trends seen in the LAOS experimental data as 

different parameters are modified are also seen in the model predictions:  Namely, as 

the amplitude of the imposed oscillation decreases from 1 to 0.1 we see very similar 

changes taking place in both the model predictions and the experimental data for either 

the elastic or viscous projection; similarly the changes affected by changes in the 

frequency are also well captured.  The only major discrepancy is observed with the 

viscous projection associated with 0.251 rad/sω = and 1Lγ = (see Fig. 4.10b) where 

the data seem to fall on a line whereas the model predictions show a rather large loop in 

the center.  To see whether this is a fundamental flaw of the model or rather a mismatch 
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of parameter values, we undertook an additional sensitivity study of the model 

predictions to the imposed strain amplitude with the results shown in Fig. 4.12. 
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Figure 4.12.  Non-dimensionalized viscous projections of the Lissajous-Bowditch 

diagrams for ω  =0.251 rad/s and γ L =0.1 of the experimental data of Sousa et al. 

(2013), denoted by the symbols, compared against model predictions, denoted by 

the continuous lines, obtained with the steady state parameters µ = 0.0030 Pa·s and 

0τ = 0.00823 Pa and with the transient parameters developed from sample 8 of 
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Bureau et al. (1980), as obtained from the rheogram A shown in Fig. 3a, evaluated 

at different strain amplitudes:  (a) 2Lγ = ; (b) 5Lγ =  and (c) 10Lγ = .   

 

What Fig. 4.12 shows is that the model predictions depend sensitively to the 

imposed amplitude of the oscillations.  As this amplitude increases there is a clear 

tendency for the loop in the viscous Lissajous-Bowditch projection to shrink 

considerably (see, for example, Fig. 4.12b) thereby the model predictions approaching 

considerably closer to the data.  It is therefore still considered a reasonable prediction 

of the observed trends, despite the above-mentioned model limitations. 

4.4 Conclusions 

In this work we showed how a structurally-based, albeit phenomenological, 

thixotropic viscoplastic model can be developed and used to explain the main 

thixotropic characteristics associated with blood flow rheology in transient shear flows 

involving low and moderate shear rates.    The model not only duly reduces to the Casson 

model under steady-state, simple shear, flow conditions (at least for low to moderate 

shear rate values) but also allows for the previously observed, but so far unexplained, 

transition to a Newtonian behavior exhibited at high shear rates to take place [Merrill 

and Pelletier (1967)].  Furthermore, we have shown that this transition happens naturally 

as a consequence of the finiteness of the elastic strain assumed within the material.  This 

is one of the most important contributions of the model, which therefore also gives 

credence to its main assumptions, i.e. that the shear stress can be analyzed into an elastic 

and a viscous contribution with the elastic one been further described in terms of the 

product of an elastic modulus and an elastic strain.  The kinematic theory of plasticity 
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of Dimitriou et al. (2013) has been used for the description of the elastic strain evolution 

suitably modified to allow for a variable maximum elastic strain value.  Then, both that 

maximum elastic strain as well as the equilibrium value of the elastic modulus are 

assumed to be functions of the scalar structural parameter λ .  Finally, both the structural 

parameter and the modulus of elasticity are assumed to obey suitably defined relaxation 

equations. 

The structure of the model is such to allow full use of previously established 

parametric relations for the Casson model based on steady state shear data.  

Furthermore, the deviations from the Casson behavior allow to fix one more parameter.  

Thus, only three parameters remain to be fit and all of those have physical meaning with 

well-established limited range of values.  That makes the model simple and efficient to 

use.  We demonstrated that by successfully fitting available data for a triangular shear 

rate transient experiment of [Boureau et al. (1980)].  The data at low shear rate that we 

used to fit our additional model parameters were almost perfectly reproduced by the 

model.  In addition, the model parameter values were all within the expected range.  

Furthermore, we validated the model, by comparing it against either additional 

triangular data obtained at higher shear rates, or data obtained in step change of shear 

rate, all of them using the same blood samples.  In all cases the agreement was good, 

semi-quantitative, capturing all the experimentally observed trends.  In addition, we 

were able to show all the experimentally observed trends observed in very recent LAOS 

whole blood experiments by Sousa et al. (2013).  It was the first time that LAOS data 

were reported and in the present work it is the first time that those data have been 

compared rather successfully against the predictions of an independently developed 

model. 
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Still, due to the model simplicity and phenomenology, its predictions were 

found to deteriorate at higher shear rates.  It is therefore best considered as an 

intermediate model, applicable primarily at low and perhaps up to moderate shear 

rates (order 1 s-1) only. Nevertheless, it has helped to interpret physically many 

complex transient flow results and it provides a significant improvement over previous 

models with a significantly wider capability of fitting transient data and thixotropy 

with the use of a very modest number of adjustable parameters. 
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Chapter 5 

A CONVERGENCE STUDY FOR THE PROPER 

IMPLEMENTATION OF BOUNDARY CONDITIONS IN 

SIMULATIONS OF ARTERIAL FLOW: GEOMETRIC AND NON-

NEWTONIAN EFFECTS 

5.1 Introduction 

The decreasing ratio of hardware costs to computational power has seen 

Computational Fluid Dynamics (CFD) bloom in the past decades.  While at the early 

stages the applications of CFD pertained primarily to high-tech engineering problems, 

the past two decades CFD has given rise to a large number of medical related studies, 

such as the analysis of the flow in specific arteries.  Cardiovascular diseases are affected 

by the hemodynamics within the arteries, while low wall shear stress values (WSS) have 

been correlated with atherogenesis, the initial stages of atherosclerosis [Cecchi et al. 

(2011)].  Therefore, CFD can be used to obtain detailed flow information, such as the 

WSS distribution, in the vessels of investigation.   

Despite the rapidly increasing number of such investigations, it can be argued 

that CFD is still emerging in the biomedical field [Byoung-Kwon (2011)].  The 

physiological relevance of hematological data acquired from simulations can be 

questionable.  The commonly accepted limiting factors that decide the accuracy of the 

results of CFD simulations in the biomedical field are the accuracy of the geometric 

model, the complexity of fluids in the human body, and the imposed boundary 

conditions (BCs) [Byoung-Kwon (2011)].   

State of art technologies have offered significant improvements in overcoming 

some of these limitations.  Medical imaging techniques, such as computed tomography, 
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ultrasound imaging, and magnetic resonance imaging offer very detailed, personalized 

geometrical models that are used for CFD simulations.  Therefore, the geometric 

representation no longer constitutes a significant limitation.  Similarly, existing 

technologies, such as Doppler ultrasound, pressure wire, and non-invasive techniques, 

provide pressure and flow information at specific locations of the arterial network, 

which then can be used as BCs in CFD simulations.  However, even though these 

techniques provide accurate pressure and flow measurements, the information obtained 

in each case reflects the data of a specific case, at a specific time.  These technologies 

cannot be used to examine what-if scenarios or else, for modeling practices [Johnson et 

al. (2011a); Taylor and Draney (2004)].  Thus, imposing the appropriate BCs in 

simulations of arterial flow still constitutes a limitation in the field.   

The proper implementation of BCs in simulations of flow in a specific artery 

requires that the impact of the rest of the arterial network be taken into consideration 

[Formaggia et al. (2009)].  This can be achieved by using boundary conditions that, 

instead of absolute values, describe a correlation between outlet flow and pressure 

[Johnson et al. (2011a); Formaggia et al. (2009)].  Such correlations represent flow 

information for the arterial network that extends beyond the boundary points of the 

simulation, and they are typically the product of a 1D-network model that is used to 

represent the flow in an extended part of, or even the entire, arterial system.  The two 

main approaches that have been used for the implementation of more sophisticated 

boundary conditions are only distinguishable based on the complexity of the network 

model involved and they range from a linear resistance or lumped 

parameter/Windkessel (0D) model to a 1D full arterial network [Johnson et al. (2011a)]. 
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In the first of these cases, the lumped parameter models represent a truncation 

of the subnetwork resistance by making use of a lumped and regressed parameter set.  

As a consequence, such models may be limited in their predictive capability, especially 

in time-dependent simulations, and by necessity involve parameters lacking a 

physiological meaning.  The second approach, which bases the outlet BCs on the 

predictions of an approximate flow model for the entire arterial network, is more 

rigorous and became more popular in the past decade.  However, the use of a complete 

set of BCs as predicted from 1D network model requires a sophisticated coupling of the 

1D model predictions to the 3D simulations, which can only be made possible through 

the use of proprietary, in-house developed codes.  Detailed discussions on the coupling 

between the 3D domain and the lower order models can be found in literature [Johnson 

et al. (2011a); Formaggia et al. (2009); Esmaily-Moghadam et al. (2013); Formaggia et 

al. (2001)].  

Johnson et al. [Johnson et al. (2011a)] proposed a more versatile approach which 

decouples the detailed 3D simulation upstream from the more approximate 1D network 

downstream.  The 1D model used is an impedance model, the output of which is a 

prediction of the pressure/flow relationships for the entire arterial network, yielded in 

the form of complex impedance coefficients in the Fourier domain [Johnson et al. 

(2011b)].  Then, the decoupling is achieved through the intermediate use of an 

approximate “simulant” model (run in Matlab environment), based on the lubrication 

approximation, which corresponds to the full 3D and time-dependent numerical 

simulation.  The simulant model makes use of a correction term which accounts for the 

observed differences between the simulant predictions (based on the lubrication 

approximation) and the 3D simulations results.  This scheme, which is applied 
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iteratively until convergence is reached, was demonstrated with simulations of the flow 

in the left coronary artery [Johnson et al. (2011a)].  However, the geometric models 

used in that study were simplistic and not capturing important effects that can impact 

the dynamics of the flow, such as the curvature of the vessels.  Moreover, the 

simulations were based solely on the Newtonian assumption of the fluid, therefore 

neglecting the complex rheology of blood [Apostolidis and Beris (2014); Apostolidis et 

al. (2015)].   

The complex nature of the fluids in the human body is a main reason of concern 

for the reliability of the results of blood flow simulations.  For the simulations of the 

human right coronary arteries, Johnston et al. (2006) showed that, “when studying the 

wall shear stress distribution for transient blood flow in arteries, the use of a Newtonian 

blood flow model is a reasonably good approximation.  However, to study the flow 

within the artery in greater detail, a non-Newtonian model is more appropriate”.  The 

non-Newtonian characteristics are prevalently demonstrated at low shear rates which 

can exist near bifurcation sites and at recirculation zones developing in the arteries.  

Since the generation of atherosclerosis, i.e. atherogenesis, has been correlated with low 

(<0.5 Pa) WSS values [Cecchi et al. (2011); Chaichana et al. (2012); Soulis et al. 

(2008); Wentzel et al. (2012)], it becomes clear that non-Newtonian models need to be 

employed.  This has been done with increasing frequency for flow simulations of 

various vascular components, such as the aorta [Karimi et al. (2014); Morbiducci et al. 

(2013); Liu et al. (2011)], the cerebral [Bernabeu et al. (); Campo-Deaño et al. (2015)], 

and the coronary arteries [Johnston et al. (2006); Lassaline et al. (2014); Chaichana et 

al. (2012); Soulis et al. (2008)].  In all of these cases, generalized Newtonian 

expressions are adopted which can better capture the complex behavior of the fluid 
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under steady state conditions.  However, while a variety of constitutive models is 

examined in literature, there is strong evidence that the steady state rheology of blood 

is best described by the Casson model [Apostolidis et al. (2015)].   

The goal of this investigation is to further develop and validate an efficient 

implementation of proper outflow boundary conditions (OBCs) for CFD simulations of 

arterial flow.  The OBCs are obtained from a 1D-network model of the arterial system 

[Johnson et al. (2011)], while the system of investigation is the left coronary artery 

(LCA).  The geometric model includes significant improvements to previously 

developed geometries that were used to test the simulant-based approach for the 

efficient implementation of OBCs, which was first introduced by Johnson et al. (2011a).  

The proposed scheme guarantees that the outward flow rate is related to the outlet 

pressures in a way consistent with rest of the network, and independent to the flow 

geometry and the fluid rheology model employed.  The functionality of the scheme is 

validated through three examples: a Newtonian simulation of a healthy system patterned 

after the LCA, a Newtonian simulation of a diseased case where an occlusion is 

developed in the LCA, and a Casson simulation of the healthy LCA.  

  The rest of the chapter is organized as follows: in Section 5.2 we discuss the 

materials and methods used; this entails the construction of geometrical models, an 

overview of the Casson parametric model for blood flow, a briefing of the simulant 

model, the numerical stability analysis and the acceleration of the scheme convergence 

via numerical analysis.  The results of the simulations are presented in Section 5.3, and 

the discussion on the impact of this work is included in Section 5.4. 
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5.2 Material and Methods 

5.2.1 Geometrical models 

The present investigation regards the examination of 3D arterial flow problems.  

The particular simulated vascular geometry in this study is the left coronary artery 

(LCA), which consists of the left main artery (LM) that bifurcates into the left anterior 

descending (LAD) and the left circumflex (LCX).  In this work, we consider two 

geometrical models: a healthy or physiological LCA geometry, which is a prototype 

asymmetric arterial bifurcation, and a modified or pathological geometry, so as to model 

the effects of a hypothetical stenosis in the LAD resulting to a lumen narrowing of 

approximately 82%.  The two geometries are presented in Fig. 5.1. 

(a) (b) 

  

Figure 5.1.  Geometries of left coronary artery used for the simulations: (a) 

Physiological case, and (b) Pathological case with a stenosis causing ~ 82% 

occlusion of the LAD artery.   
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The simplified vascular geometries have been developed based on anatomically 

accurate dimensions of the LCA, as reported in literature [Dodge et al. (1992)].  The 

dimensions of the constructed vessel geometries are presented in Table 5.1.  Tapering 

effects were included in the construction of the LAD and LCX arteries, while a 

branching angle of 90o was used between the LCX and the LAD [Dong et al. (2015)].  

Finally, an important feature, and an improvement to the previously used geometries of 

our LCA investigations [Johnson et al. (2011a)], is the inclusion of curvature in the 

geometry vessels.  The curvature originates from the modeling of the heart as a sphere, 

therefore requiring that the arteries existing on the surface of the heart be curved as well.   

The geometries as well as the meshes were developed with the use of the 

commercial software ANSYS ICEM CFD version 12 (ANSYS, Inc., Canonsburg, PA, 

USA).   

 

Table 5.1.  Characteristic lengths of geometrical model 

Vessel            Diameter (mm) Length 

 

Curvature 

  
 In         Out   

LM 4             4 10 34.92 

LCX 3.4          1.6 17 34.92 

LAD 3.8 2 30 34.92 
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5.2.2 Application of physiological parameters 

The physiological parameters of importance in simulations of blood flow are the 

temperature, T , the hematocrit, Hct , and the fibrinogen concentration, fc .  Fibrinogen 

is known to play a key role in bridging the adjacent red blood cells (RBCs) and therefore 

giving rise to RBC aggregates.  The presence of RBC networks explains the complex 

rheology of blood, manifested by the exhibition of yield stress, a property that is strongly 

dependent on fc .  The results obtained in the current investigation correspond to 

average, normal values of physiological parameters ( Hct =40%,  T = 37C, fc = 0.3 

g/dl). 

We have carried out simulations for blood density of 1060 kg/m3 both under the 

Newtonian assumption, and by taking into consideration the non-Newtonian rheology 

of blood, in the form of a Generalized Newtonian model.  In the first case, a constant 

viscosity, µ , of 0.003  was used.  In the second, we employed a parametric form of the 

Casson constitutive equation that we recently developed [Apostolidis and Beris (2014)].  

This model has been extensively validated against experimental data, while 

comparisons with other models frequently used in blood flow simulations, such as the 

Herschel Bulkley and the Bingham model, show that the Casson describes best the 

rheology of blood [Apostolidis and Beris (2014)].   The Casson parametric model is 

defined as: 

 
  ,   yyτ τ µ γ τ τ= + ≥  , (5.1) 
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c f c
y

c

Hct Hct c Hct Hct

Hct Hct
τ

 − × + >= 
≤

 , (5.2) 

 



 135 

 
20.3126 0.468 0.1764 0.75

0.0012 0.75
f f f

f
cHc

c c
t

c
c

− + <
=

≥





 , (5.3) 
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where yτ , γ , and 
cHct denote the yield stress, shear rate, and critical hematocrit, 

respectively.  The critical hematocrit is the minimum hematocrit below which blood 

does not exhibit a yield stress.  In this model, Pη  represents the plasma viscosity and 

has a value of −× 2 21.67 10 ×dyne s cm , while T0 is the reference temperature of 296.16 

K.  For the physiological parameters reported above ( Hct =40%, T = 37C, fc = 0.3

g dl  ), the model predicts a yield stress 0f 0.00412 Pa  and a viscosity of 0.00295

secPa ⋅ .    

5.2.3 Efficient implementation of outflow boundary conditions (OBCs) 

While the inlet boundary condition is a periodic mass flux (period T=1.25 sec) 

readily obtained from Johnson et al. (2011a), and the typical no slip condition is applied 

on the vessel wall, the proper implementation of the outlet pressure BCs requires some 

attention.  The complexity rises due to the inclusion of the proper closed network 

condition for the in vivo model of blood flow through the LM coronary artery system, 

which requires that the outlet pressure profiles are related to the outward flow rates in a 

fashion consistent with the rest of the network.  The pressure/flow information for the 

vasculature that extends beyond the limits of the 3D simulated geometry are obtained 

from a 1D-network model [Johnson et al. (2011b)], in the form of complex impedances: 
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^ ^ ^

, , ,j k j k j kP Z Q=  , (5.5) 

 

In Eq. (5.5) 
^

,j kP is the pressure, 
^

,j kQ the flow rate, and 
^

,j kZ the complex 

impedance.  The symbol ‘^’ is used to denote the Fourier transform in time, assuming a 

period of 1.25T s=  which corresponds to the period of the input flow profile, while k  

denotes the corresponding k-th mode in the Fourier space and j  is the vessel of reference 

(LAD or LCX).  The impedance model can be used to obtain the complex impedances 

at any point of the arterial network, thus providing in-vivo boundary conditions for the 

simulation of flow at the vascular component of interest.  However, ensuring 

consistency between the outlet pressure profiles and the 1D-network derived 

impedances requires additional effort.   

Johnson et al. (2011a) have shown how this consistency can be achieved through 

the intermediate use of an approximate simulant model of the outlet pressure/flow 

relationship corresponding to the full 3D and time-dependent numerical simulations.  

The proposed methodology involves an iterative approach, based on the simulant model, 

which results in the effective implementation of 1D outlet conditions corresponding to 

the network impedance model into full time-dependent 3D simulations.  An elaborate 

explanation of the proposed scheme can be found in [Johnson et al. (2011a)].  A brief 

explanation of the simulant model and the implementation scheme are discussed in 

Sections 5.2.3.1-5.2.3.2. 

5.2.3.1   The simulant model 

The incompressibility condition allows for a reference pressure to be defined 

arbitrarily in time.  Therefore, the outlet BCs can be simplified by using one of the 
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outlet pressures as a reference and subtracting it from all other pressures.  In our 

simulations the LAD outlet pressure is chosen as a reference ( 0LADP = ).  Then, the 

outflow conditions are given by: 

 

 LCX LADP P P∆ = −  . (5.6) 

 

It is the proper specification of Eq. (5.6) that requires the development of the 

simulant model.  The simulant model assumes pressure driven flow (Poiseuille) in each 

of the vessels, with only linear viscous forces to overcome.  The mathematical 

formulation for this problem becomes: 
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where u  is the velocity, P the pressure, µ the viscosity, Q the flowrate, L the length 

of the vessel, and R  its diameter.  ,1jP and ,2jP  is the pressure at the beginning (point 

1) and the end (point 2) of the j artery, respectively (see Fig. 5.1).  

For the physiological geometry, an analytical expression for Eq. (5.8) can be 

obtained by assuming a linear tapering of the vessels and equal pressures at the 

branching point of the vessel ( ,1 ,1LCX LADP P= ).  Then, Eq. (5.8) reduces to: 
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 2 ( ) ( ) ( )inlP t Q t Q tα β∆ = − ∆ +  , (5.9) 

 

where inl LAD LCXQ Q Q≡ +  is the flow rate at the inlet, and α and β are constants and 

a function of geometrical parameters and the viscosity, given by: 
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The final step in the development of the simulant model is the inclusion of a 

non-linear corrective term, ( )tδ .  This term accounts for the observed differences 

between the lubrication approximation based simulant model and the 3D simulation 

results.  Then, the final form of the simulant model becomes: 

 

 2 ( ) ( ) ( ) ( )inlP t Q t Q t tα β α δ∆ = − ∆ + − ⋅ ,  (5.11) 

 

In the case of a pathological geometry, the occluded vessel is segmented into 

three parts: the unobstructed downstream, the occluded region (stenosis), and the 

unobstructed upstream.  At each axial point along the LAD vessel, the hydrodynamic 

radius is calculated so that the pressure differential along the vessel can be computed 

from: 
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As explained in detail in Section 5.2.3.2, the simulant is applied iteratively 

until convergence is reached.   A detailed explanation, followed by a geometrical 

analysis that is required for the evaluation of the above integral (corresponding to the 

stenosis region), is presented in Appendix B.   

5.2.3.2   Iterative implementation of OBCs using the simulant model 

The proper enforcement of Eq. (5.11) as an outlet BC in simulations of arterial 

flow requires an iterative procedure.  For the first iteration, an initial guess for the 

pressure difference between the two outlets, P∆ , is needed.  The initial guess can be a 

time-dependent profile, e.g. with information obtained from a 1D network model, or 

even a constant, if such information is not available.  Then, from the simulation output 

we can evaluate the corresponding  Q∆  profile.  To facilitate the calculations, given 

the expected pulsatile/periodic form of the vectors, we opt to perform the calculations 

in the Fourier domain.  Thus, after taking the Fourier transform of Q∆ , 
^
Q∆ , we can 

subsequently estimate the correction term,  
^

kδ .  From Eqs. (5.5),(5.6) and (5.11) one 

can obtain an updated prediction of the flow rate, given by: 
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Finally, after applying an inverse Fourier transformation to return to the time 

domain, Eq. (5.13) yields the new outlet pressure BC, corresponding to the updated Q∆

.  The new P∆  is then the updated outlet BC that is used in the second iteration.   The 

flow diagram of the described process is shown in Fig. 5.2. 

 

 

 

 

Figure 5.2.  Logical diagram for the iterative application of the simulant model. 

 

The proposed scheme converges in ~10 iterations, while the convergence rate is 

not significantly affected by the initial guess of P∆  (constant vs time dependent from 

1D), which shows the robustness of the approach.  However, the rather significant 
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number of iterations required for convergence leads to the examination of numerical 

techniques that can potentially accelerate the convergence rate.  

5.2.3.3   Accelerated convergence of iterative scheme 

Numerical analysis was applied in order to accelerate the convergence rate of 

the proposed iterative scheme.  A non-linear series acceleration method, the Shanks 

transformation, was used to improve the rate of convergence.  Based on the Shanks 

formulation, the transformation of a sequence nA  (
0

n

n m
m

A a
=

= ∑  ) into another 

sequence, ( )nS A , is defined as: 
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 It can be shown that if the error convergence is of a power law form, i.e. 
n

nA A aq∞= +  ,the transformation of Eq. (5.14) leads to a constant, perfectly converged 

series.  Of course, this rarely happens in practice, but the transformation can lead close 

enough to perfectly converged series, so that the transformed sequence, ( )nS A , often 

converges faster than the original sequence, nA .  For the application in our system, the 

sequence nA  is replaced by the nth iteration’s pressure profile, ( )nP t∆ .  If the initial 

guess of P∆  is a constant, then the minimum number of iterations required before the 

Shanks transformation can be applied is four.  Then, the Shanks transformation yields: 
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Based on this numerical analysis, the Shanks transformation was applied 

(usually in the 3rd or the 4th simulation) to get an accelerated convergence of the pressure 

profile.  Fig. 5.3 shows the pressure and flow profiles obtained for Newtonian 

simulations of the physiological (Fig 5.3a-Fig. 5.3b) and the pathological geometry 

(Fig.5.3c- Fig. 5.3d). 
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Figure 5.3.  Pressure and flow profiles as obtained from the iterative procedure 

outlined in Section 5.2.3.2.  (a), (b):  Physiological geometry. (c),(d): Pathological 
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The Shanks transformation accelerates the convergence of both the pressure 

and flow profiles.  The acceleration is more significant in the case of the physiological 

geometry where, depending on the simulation specifications (coarse vs base vs dense 

simulation), the scheme can require up to 16 iterations for convergence (data not 

shown).  In that case, the Shanks transformation reduces the required number of 

iterations by 50%.  The simulations of the stenosis geometry were accelerated by a 

maximum of ~30%.  Based on these results, we conclude that the Shanks 

transformation can consistently accelerate the convergence rate of the proposed 

iterative scheme, and therefore reduce the computational demands of the analysis. 

5.2.3.4   Numerical stability 

It is common practice in CFD investigations to perform a sensitivity analysis in 

order to show that the obtained results are not significantly affected by numerical error.  

In the vast majority of the medical related CFD studies in literature, this analysis is 

restricted to the sensitivity of the simulation outcome to meshes of different densities.  

Moreover, the sensitivity is often tested only under steady state conditions.  Such 

approaches neglect the impact of the pulsatile nature of blood flow on the numerical 

stability of the simulations, while the sensitivity to parameters other than the mesh 

density, such as the integration time step, is rarely examined.  Performing a more holistic 

sensitivity analysis is crucial not only for the obvious reason, that of reliability of the 

yielded results, but also because, despite the decrease of hardware costs, the simulations 

of flow in vasculature remain computationally expensive, therefore adopting more 



 144 

refined parameters than necessary can lead to a tremendous increase in time and/or 

computational needs.   

We have adapted a more general stability analysis by systematically examining 

the impact of the mesh density, the integration time-step, and the number of iterations 

performed per time-step.  For each of the simulated geometries, the healthy 

(physiological) and the stenosis (pathological), we are considering three progressively 

refined parameter cases: a coarse, a base, and a dense one.  The analysis is also done for 

simulations of the physiological geometry with the Generalized Newtonian model, in 

order to ensure that the additional non-linearity of the Casson model does not influence 

the numerical stability.  The parameters used in each case are presented in Table 5.2. 

 

  Table 5.2.  Parameters used for the numerical stability analysis. 

       Physiological                                  Pathological 

               Coarse     Base         Dense         Coarse          Base          Dense 

Number of 

cells 

4,534 123,12 244,918 128,543 220,138 363,841 

Time-step  0.025 0.0125 0.00625 0.025 0.0125 0.00625 

Number of 

steps 

       100 200 400 100 200 400 

Iterations per 

time-step 

40 80 160 40 80 160 

Period       2      2       2        2        2        2 
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It is of importance to note that in order to compare results between two different 

density cases, for instance Newtonian-coarse versus Newtonian-base simulation results 

for the physiological geometry, the converged results need to be obtained in each case.  

This is done in an iterative fashion, as shown in Section 5.2.3.2 and presented in Fig. 3.  

The converged pressure and flux profiles for all nine cases (three physiological-

Newtonian, three physiological-Casson, and three pathological-Newtonian) are shown 

in Fig. 4. 
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Figure 5.4.  Comparison of the converged pressure profiles (a,c,e) and LCX flow 

rates (b,d,f) for all examined cases: i.  Physiological geometry and Newtonian fluid 

assumption (a,b), ii.  Physiological geometry and Casson fluid assumption (c,d), iii.  

Pathological geometry and Newtonian fluid assumption. 

5.3   Results 

The results of the flow simulations presented correspond to either the peak 

systole, reached at time (t1) of 0.0625 sec, or to the late diastole instant, corresponding 

to a time (t2) of 0.6875 sec (see Fig. 5.5a).    Moreover, for the post-processing of the 

physiological model results we have created cross-sections A1 and A2, located along the 

LAD and the LCX artery, respectively (Fig. 5.5b).  Finally, all of the presented results 

correspond to the converged solutions obtained after the iterative application of the 

simulant model. 
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(a) (b) 

 

Figure 5.5.  (a): The periodic, transient volumetric flow rate at the left main artery 

that is used as the inlet boundary condition [Johnson et al. (2011a)].  The peak 

systole and late diastole times, t1 and t2, respectively, are marked, (b): cross-sections 

A1 and A2, near the bifurcation site, that are used for the post-processing of the 

simulation results. 

 

The peak systole results are obtained for comparison purposes, as we are mostly 

interested in the late diastole findings.  The non-Newtonian rheology is expected to be 

more prominent at low shear rates, which is when the stress and velocity profiles are at 

a minimum.  The same reasoning holds for the selection of the particular locations of 

the cross-sections A1 and A2.  Near the bifurcation site we expect the formation of 

recirculation zones (due to flow separation), and therefore the appearance of zones of 

low shear rates.   
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5.3.1   Physiological geometry: Newtonian vs Casson 

For the physiological geometry, the comparison between Newtonian and Casson 

simulations shows important differences between the two cases.  To compare the two 

models we have plotted in Fig. 5 the WSS distribution along the circumference of the 

cross-sections A1 and A2, as predicted in each case (Newtonian vs parametric Casson). 

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6 (a)

W
S

S
 (P

a)

θ

 Newtonian
 Casson

 

0 100 200 300
0

1

2

3

4

5

6
(b)

 Newtonian
 Casson

W
SS

 (P
a)

θ

 

0 100 200 300
0

1

2

3

4

5 (c)

 Newtonian
 Casson

θ

W
SS

 (P
a)

 

0 100 200 300
0

1

2

3

4

5
(d)

 Newtonian
 Casson

θ

W
SS

 (P
a)

 

Figure 5.6.  WSS distribution along the circumference of the cross-sections A1 (a,c) 

and A2 (b,d), evaluated at t1 (a,b) and t2 (c,d). 
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Fig. 5.6 clearly demonstrates that the Newtonian predictions of WSS are 

consistently lower to those of the Casson model.  This conclusion is in agreement with 

the predictions of Karimi et al. (2014) for the WSS distribution in the human aorta.  In 

addition, we notice that for the circumference of both cross-sections the maximum 

deviation between the WSS predictions of the two models occurs, in both cases, at the 

late-diastole time, t2 (Fig. 5.6 (c-d)).  This result is attributed to the fact that the non-

Newtonian rheology is primarily manifested at lower shear rates. 

Significantly deviations between the Newtonian and the Casson model 

predictions were also apparent when comparing the predicted shear rate along the two 

cross-sections.  The contours of shear rate for the two planes are shown in Fig. 5.7. 
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(a) 

     

(b)           

 

Figure 5.7.  Shear rate contours of planes A1 (a) and A2 (b), evaluated with the 

Newtonian and the parametric Casson model, and their difference.  
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The maximum difference in shear rate estimations of the two models at cross-

sections A1 and A2 is 40% and 24%, respectively.  Thus, from the illustrations of Figures 

5.6-5.7 it can be concluded that the rheology of blood impacts significantly the 

simulation outcome.    

5.3.2   Pathological geometry 

 The proposed methodology for the appropriate implementation of BCs was also 

applied in the second geometrical model, the pathological coronary artery with a 

stenosis in the LAD branch (Fig. 5.1b).  In Fig. 5.8 we present contours of WSS of the 

simulated geometry, with a comparison made between the contour of the converged 

iteration and that of the first iteration.   This was done both for the peak systole (Fig. 5a) 

and the late diastole (Fig. 5b). 
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(a) 

 

 

(b) 

 

Figure 5.8.  WSS contours of values up to 0.8Pa for pathological geometry 

evaluated at (a) the systolic time, t1 and (b) the diastolic time, t2.  Comparison 
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between predictions of converged iteration and the first iteration (a,b).  The global 

maximum WSS is 398Pa. 

 

The illustrations of Fig. 8 show a remarkable difference between the predicted 

WSS values of the first iteration and those of the converged one.  This difference 

emphasizes the need of adapting an iterative approach to ensure that the in-vivo 

conditions have been met.  Moreover, by comparing the WSS contours of the converged 

iteration at Fig. 5a and 5b, we notice that higher stresses are predicted at the systolic 

time, which is in agreement with our results in Section 5.3.1. 

5.4   Discussion 

We have presented an efficient implementation of proper outlet BCs in 

simulations of blood flow in the left coronary artery.  This is achieved through a hybrid 

approach, with a 1D impedance network model providing outlet conditions for the 3D 

simulations of interest.  Emphasis is given to the development and application of an 

intermediate simulant model which ensures that the in-vivo BCs are consistently 

applied.  We have followed the methodology first proposed by Johnson et al. (2011), 

albeit we have: (a) applied the analysis to more realistic geometrical models, (b) used 

the Shanks transformation to accelerate the convergence of the iteratively applied 

simulant model, and (c) performed a holistic numerical stability analysis to ensure that 

the displayed simulation results are not significantly affected by numerical error.   

We have presented the results of this investigation in the form of two 

comparative cases.  First, we compared the simulation output of a Newtonian fluid to 

that of a Casson fluid for a physiological (healthy) left coronary artery.  This was done 
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to examine the impact of rheology on the CFD simulations and in particular on 

hematological parameters of interest, such as the WSS, low values of which are known 

to contribute to atherogenesis, the initial stage of atherosclerosis.  The results have 

confirmed the importance of rheology in blood flow simulations, as evidenced by the 

important deviations between the WSS and the strain rate contours of the Newtonian 

and the Casson based simulations.    

The second case regarded a comparison between the first and the converged 

iteration results of the simulation of flow in a pathological LCA geometry.  Significant 

differences were observed in the magnitude of the reported WSS and the strain rate.  

These differences justify the use of the simulant model, whose purpose is to ensure that 

the application of the in-vivo boundary conditions, as obtained from the 1D-network 

impedance model, is performed in a consistent fashion.  Moreover, the computational 

load required for the iterative application of the simulant model has been significantly 

decreased (at least 30%) by application of the Shanks transformation.   

 The accuracy of hybrid blood flow simulations can be improved by accounting 

for the main features of the proposed scheme, that is the rheology of blood through the 

Casson equation and a simulant model for the proper implementation of BCs.  This 

would ensure that more accurate in vivo conditions are reached in the simulation, and 

that local fluid dynamics are better ascertained if correlation back to experimental and 

physical relevance is sought.   
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this thesis we have undertaken the task of improving the accuracy of blood 

flow simulations, with the ultimate goal of using blood flow modeling to improve 

diagnostic capabilities of cardiovascular-related diseases.  The main avenue through 

which we have tried to achieve this goal is by offering a faithful representation of blood 

rheology.   

In Chapter 2 we presented a systematic investigation of the rheology of normal 

human blood under steady state shear flow. Based on a comparison between a 

homogeneous (Couette) and non-homogeneous (Poiseuille) flows, we first showed that 

the simple flow hypothesis constitutes a reasonable assumption for blood under steady-

shear flow.  Then, we unequivocally showed that the Casson viscoplastic model is the 

one that naturally emerges as the best approximation of available experimental data.  

Consequently, we developed a parametrization of the Casson model parameters, the 

yield stress and the Casson viscosity, in terms of the physiological parameters of 

importance.  A key contribution of this work is the realization that yield stress is an 

onset phenomenon only occurring when the hematocrit exceeds a critical value that 

depends on the fibrinogen concentration.  Most importantly, we have established a 

relationship that connects the critical hematocrit with the fibrinogen concentration.  

Albeit the connection of yield stress to fibrinogen (a key plasma protein responsible for 

the development of red blood cell aggregates) is not new, it is the first time that this is 

made in such a direct, quantitative, fashion.  Furthermore, beyond the onset, the 

dependence of the yield stress on the hematocrit is found to be through the square of its 
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difference from its critical value, further reinforcing the interpretation of yield stress as 

a critical, percolation-type, phenomenon.  By adding the aforementioned features, the 

proposed Casson parametric model constitutes a complete, updated, and reliable model 

for the prediction of the rheology of normal (healthy) human blood.   

Upon completion of the examination of normal human blood, we investigated 

the impact of particular pathological conditions on the steady state shear rheology.  

Specifically, we examined the impact that results from abnormal concentrations, both 

low and high, of cholesterol and triglycerides in human blood.  While we showed that 

the Casson constitutive equation remains an appropriate model for the description of 

blood’s rheology, it was clear that, due to the significant effects emanating from the 

abnormal levels of cholesterol and triglycerides, a new parametrization of the Casson 

viscosity and the yield stress was required.  Our analysis has shown that the same ratios 

that physicians have found to be of importance in assessing the risks of 

hypercholesterolemia and hypertriglycerolaemia (LDL/HDL and TG/HDL) are also 

important in assessing the cholesterol and triglyceride effects on the model parameters.  

The natural emergence of certain ratios in the viscosity and yield stress correlations, 

such as LDL/HDL = 3.623, and TG/HDL = 3.2, point out naturally emerging target 

values that may end up having future medical significance.   

 Chapter 4 is one of the most important contributions of this thesis.  We have 

presented the development of a thixotropic model that can be used to describe the 

transient shear flow of blood.  The thixotropic approach allows the phenomenological 

description of the reversible aggregation of RBCs, and its use is even more justified in 

systems that exhibit a yield stress, as is the case with blood. A key feature of the 

proposed model is that under steady state conditions it reduces to the Casson parametric 
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model, which confirms the consistency of the proposed work.  Furthermore, the new 

model makes use of only three additional parameters, with a specific physical meaning 

(a zero shear rate maximum strain, and two kinematic coefficients) and a known order 

of magnitude.  Moreover, this is the first time that a blood flow model is validated 

extensively against a variety of transient blood flow data.  The model shows good 

agreement with blood data stemming from triangular step-change, rectangular step-

change, and LAOS experiments.  In the last case, the predictions are rather semi-

quantitative, however this can be justified by the incomplete characterization of the 

reported data (no steady state data and no fibrinogen concentration reported).   

Finally, in Chapter 5 we examined the impact of the described shear rheology in 

arterial simulations of blood flow.  We have simulated the flow in the left coronary 

artery (LCA), considering a healthy geometry and a pathological one with a stenosis 

developing in the left anterior descending (LAD) branch of the artery.  The impact of 

the rheology was demonstrated by comparing the results of Newtonian simulations to 

those based on the Casson parametric model.  In all of the examined cases, higher values 

of pressure profiles and the wall shear stress were predicted by the Casson model.  This 

information can be of importance in the investigation of cardiovascular diseases 

(CVDs), as the WSS in human arteries is used as a hematological factor to assess the 

risk of atherogenesis, the initial stage of atherosclerosis.  Furthermore, in the same work 

we have presented an efficient implementation of outflow boundary conditions in 

simulations of arterial flow.  The proposed scheme relies on an iterative application of 

an intermediate simulant model which ensures consistency between the outflow 

conditions in the simulation and the hemodynamic predictions of a 1D network model 

for the same outlet.  We have shown that there are important differences between 
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converged results with the use of the simulant model and the non-converged output 

which corresponds to the conventional way of carrying out arterial flow simulations.  

This is another factor affecting the accuracy, and therefore the physiological relevance, 

of the output of blood flow simulations. 

The conclusions of this thesis are presented in compact form in Fig. 6.1.  
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Figure 6.1.  Summarized conclusions.  The double asterisk symbol (**) denotes results/conclusions of 

this work that, to the best of our knowledge, constitute contributions to the field that are made for the 

first time.   

4 

6.2 Future Work 

The conclusions of this work offer a better understanding of the rheology of 

blood, and therefore can lead to more accurate simulations of arterial flow.  However, 

further improvements need to be made in the future, so that the model predictions can 

have a significant impact in the medical field, and in clinical applications.   

In Chapter 3 we examined the impact of certain pathological conditions on the 

exhibited shear rheology of blood, under steady state conditions.  The analysis 

conducted in Chapter 3 can serve as an example for future investigations.  Merrill (1969) 
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has reported various pathologies that are invoked from abnormal levels of plasma 

proteins, such as hyperfibrinogenemia, anemia, polycythemia, hyperlipemia and others.  

Similarly to the work of Chapter 3, investigators can re-parametrize an existing 

rheological model so that they describe the reported data or they identify new 

correlations, as the ratio indices that emerged in Chapter 3, that are relevant to the 

respective pathologies.  Such updated rheological models would contribute 

accumulatively to a deeper understanding of blood’s rheology.  Moreover, this is 

another example of how the rheology of blood can contribute towards the improvement 

of diagnostic capabilities. For instance, if a ratio of the concentration of certain proteins 

is found to correlate strongly with a specific pathological behavior, and this correlation 

is not known a priori, then this information can be used to detect or predict the 

occurrence of a pathology.  

Then, in Chapter 4, we undertook the important task of describing 

macroscopically the rheology of blood under transient shear conditions.  The work of 

Chapter 4 has unveiled important limitations in the rheological reports of transient 

blood flow studies.  For instance, while the important role of plasma proteins, such as 

the fibrinogen, is documented in theory, such information is rarely reported in 

rheological studies.  This is also the case with the lipoproteins and cholesterol 

concentrations, which, as shown in Chapter 3, can significantly affect the rheology of 

blood.  Such information should be reported not only when studying pathological 

cases, but also in the case of physiological studies, as in that case: a. the reported data 

would serve as a verification of the fact that the respective blood sample is indeed 

normal, and b. the reported protein concentrations could be used for the improvement 
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of existing models or for the development of more reliable ones.  Therefore, there is a 

need for a more complete characterization of blood samples, in rheological studies. 

The frequently incomplete characterization of blood in the rheological studies 

limits the reliability and the predictability of the developed blood flow models.  While 

Chapters 2-4 offer, for the first time, a complete and systematic description of the shear 

flow of blood under both steady state (Chapters 2-3) and transient (Chapter 4) 

conditions, extending this analysis to complex, general flows, while maintaining the 

systematic approach that we have thus far followed, seems impossible.  Even in 

sophisticated tensorial blood models that have been proposed for the description of 

complex flow, arbitrary parameters that lack a physical meaning are typically employed.  

This occurs despite the fact that the proposed models aim at the description of specific 

blood samples and are not a product of a systematic approach that aims at 

parameterizing the main features of a model so that it can be used to describe the flow 

of any blood sample.  Obviously, the level of difficulty in the latter case would be higher, 

and so is the need of more blood data that are fully characterized.  However, provided 

that such information can be obtained in the short future, the development of a tensorial, 

and thermodynamically consistent model would significantly improve the predictability 

of blood’s rheology in the human arterial network.  

The relevance of CFD investigations of arterial flow, and the acquired 

physiological data such as the pressure and flow data or the WSS profiles, can be 

further improved in the future.  The next step in capturing the complex blood rheology 

in simulations of flow is to account for the time-dependent rheological effects, i.e. the 

thixotropy of blood.  This is a feature that is currently not addressed in CFD 

simulations as, in the best case, the investigators incorporate generalized Newtonian 
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models which, by definition, cannot describe time-dependent effects, such as the 

history-dependent flow of materials.  The challenge in this case would be to account 

for this feature without adding the need of excessive computational demands, as such 

a development would limit the scope of translating our work into an easily accessed 

diagnostic tool.  Thus, a phenomenological way of incorporating thixotropy into CFD 

would need to be employed.  Of course, to ensure realistic results, the rheology 

features discussed in this thesis would need to merge with the fluid-structure 

interactions (FSI) so as to account for important physiological features like the vessel 

compliance and tethering. 
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Appendix A   

EVALUATING THE STEADY STATE SOLUTION OF THE PROPOSED 

THIXOTROPIC MODEL 

 

A.1   Proving that the thixtropic model reduces to the Casson under steady state  

 

We want to evaluate the steady state stress, sτ , for a given shear rate, sγ . 

Throughout the analysis that is presented in the Appendix, we will be using the 

subscript “s” to denote steady state conditions.  

From Eq. (4.15), the stress prediction of the thixotropic model under steady 

state is given by: 

 

 
s ss s e pGτ γ µγ= +    (A.1) 

 

where sG  is the elastic modulus, 
seγ  the elastic strain, µ the model viscosity and 

spγ  the plastic shear rate, all evaluated at steady state.  

Under steady state conditions the elastic strain, 
seγ , reaches its maximum 

value, that of the critical strain, γ
smax : 

 

 
s sae m xγγ =   (A.2) 
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Thus, based on Eq. (12), the model predicts that the elastic shear rate is zero, 

and then based on Eq. (11) we conclude that, under steady state conditions, the shear 

rate, sγ , is equal to the plastic shear rate,  
spγ : 

  

 γ γ= 

sp s   (A.3) 

The steady state solution (i.e. 0s
d
dt

λ =  ) of the structural equation, Eq. (19), 

yields: 

 

 λ
µγ
τ

=

+


0

1
4

1
s

s

 , (A.4) 

while from the modulus evolution equation, Eq. (16), we get: 

 

 
ss eG G= ,  (A.5) 

 

where 
seG is the steady state equilibrium value of the modulus given by (see Eq. 

(18)): 

 
 λ= 0se sG G .  (A.6) 

 

 Thus, by combining Eq. (A4) - Eq. (A6) we get:  

 

 λ
µγ
τ

= =

+


0 0

0

1
4

1
s s

s

G G G .  (A.7) 
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The last piece of information needed to obtain the steady state predictions of the 

thixotropic model is the critical strain value.  Based on Eq. (13), we need to examine 

two cases: 

 

i. If 0
2

γ
γ

λ ∞≤ ⇒   

 0 0
2

2

0

1

4
1

smax
s

s

γ γ
γ

λ

µγ
τ

= =

 
+  

 



  (A.8) 

 

Then, combining Eq. (A1)- (A3), and Eq. (A7)-(A8) we get:   

 
0 0 0

0
0 0 0

0
2

0

0

41 114 1
4 1

G
s

s s
s

s

s G G
γ τγ µγµγ γ µγ

τµγ
τ µγ

τ

τ
= 

+ = + + ⇔  
 +

 
+  

 

=


 





 

1/2 1/2 1 1/2/2 1/2 1/2 1/2
0 0 02s ss ssτ µγτ µ γ τ ττ µ γ= ⇔+ =+ +   . Casson Eq.          (A9) 

 

ii. If     
0
2 smax

γ
γ γ γ

λ ∞ ∞> ⇒ =   

 

Similarly, combining the information from the respective equations, Eq. (A.1)-  

(A.3) and Eq. (A.7)-(A.8), we get in this case: 
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0 0 0
0 0
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       (A.10) 

 

Eq. (A.9) and (A.10) can be collectively represented to give the steady state 

predictions of the thixotropic model as: 

 

0
0 0
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Appendix B 

DEVELOPMENT OF SIMULANT MODEL FOR THE PATHOLOGICAL 

LEFT CORONARY ARTERY (LCA) 

B.1   Summary 

 Appendix A summarizes the development and application of the simulant 

model for the pathological geometry examined in Chapter 5 (blockage in LAD artery, 

causing an 82% occlusion).  The geometrical analysis required for the development of 

the simulant model, as well as the Matlab code wherein the model is implemented, are 

presented. 

 

B.2   Methodology 

 Following the description of Section 5.2.3.1, the development of the simulant 

model for the pathological geometry requires that the pressure differential along the 

occluded artery, LAD, be determined by: 

 

 
( ) ( ) ( )

.,,

,2 ,1 4 4 4
0 ., .,,

8 ( )

( ) ( ) ( )

jLsten upstrstenosis downstream
j

j j
sten downstr sten upstrj hyd j j

Q t dz dz dzP P
R z R z R z

µ
π

 
 − = − + +
 
 

∫ ∫ ∫   (B.1) 

 

 The complexity rises from the calculation of the second integral on the right 

hand side of Eq. (B.1).  The particular term denotes the pressure drop along the 

stenosis site and requires, due to the irregular shape that results from the stenosis 

development, the calculation of a hydraulic radius.  This radius is used to estimate the 

unobstructed area.  Both the hydraulic radius and the level of occlusion are dependent 
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on the position along the LAD centerline.  Fig. B.1 demonstrates the geometry of the 

particular problem.  

 

Figure B.1:  Geometrical representation of the pathological LAD artery.  The 

stenosis is modeled as a sphere of radius Rs.  RLAD, the local radius of the LAD 

(dotted circles), decreases from left to right due to the tapering of the vessel, while 

RH, the radius of the heart, is constant.  A is the center of the stenosis-sphere and O 

is the origin.  

 

 In order to facilitate our calculations of the hydraulic radius and the obstructed 

area, we need to consider the intersections between the local LAD cross-sections 
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(dotted circles in Fig. B.1) and the stenosis sphere, for incremental changes of the 

angle θ that occur within the length of the lower branch of the LAD artery that is span 

from the stenosis.  The geometrical information required for this analysis, such as 

lengths and angles, are shown in Fig. B.2, where we consider an arbitrary intersection 

between the stenosis-sphere and one of the LAD cross-sections.   

 

 

 

Figure B.2:  Geometrical analysis of the intersection between a random LAD cross-

section and the stenosis.  Rloc is the radius of the projected stenosis sphere on the 

arbitrary LAD cross-section.  Points A and D are the centers of the stenosis sphere 

and the projected sphere, respectively.  Point B lies on the LAD centerline.   
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 From the illustration of Fig. B.2, the main geometrical lengths of interest are 

the radii Rloc, RLAD, and the distance d.  Based on these three parameters, a list of all 

possible intersection configurations that could emerge, as we integrate from the 

beginning to the end of the stenosis site, has been constructed.  The logical diagram 

that accounts for all configurations is shown in Fig. B.3. 
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Figure B.3:  Logical diagram accounting for all possible configurations of the 

stenosis-sphere projection on the local LAD cross-section. 

 

 The different configurations, corresponding to the algorithm of Fig. B.3, are 

shown in Figs. B.3-B.9. 

 

 

Figure B.4 
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Figure B.5 

 

 

 

Figure B.6 
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Figure B.7 
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Figure B.8 

 

 

 

Figure B.9 
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Figure B.10 

 

 

B.3   Matlab implementation 

 
function 

[R_Hydr,R_LAD_local,R_loc,OD,lamda,Area_of_flow,Wet_Perimeter,DH,EH, 
    EH2,theta,m,H,phi,beta,beta2,beta3,gamma,BH] = ... 
    Hydraulic_Diameter_Stenosis(m,R,R_s) 

  

% This function yields the hydraulic diameter (and therefore 

the area % of flow) for every incremental change in the angle theta 
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(which is % directly related to the coefficient m that was used in 
ICEMANSYS to % build the mesh geometry).  The code accounts for all 
possible      % configurations of the projected stenosis-sphere on 
the local LAD     % cross-section.  

% 

 

  

for i=1:length(m) 
    R_LAD_local(i)=(1.85*0.93^m(i))/1000; % [m] 
    theta(i)=abs((pi/2.*3/16)-(pi/2.*m(i)/16)); 
    H(i)=(sin(theta(i))).*(R+((1.85*0.93.^3)/1000)); % H = 

distance     between points A & D 
    if H(i)>R_s 
        H(i)=R_s; 
    end 
    phi(i)=acos(H(i)/R_s);  
    R_loc(i)=sin(phi(i))*R_s; 
    OD(i)=cos(theta(i))*(R+((1.85*0.93.^3)/1000)); 
    lamda(i)=OD(i)-R; 
    if (R_loc(i)^2+lamda(i)^2)-R_LAD_local(i)^2<0 
        DH(i)=(R_LAD_local(i)^2-R_loc(i)^2-

lamda(i)^2)/2/lamda(i);  
    else 
        DH(i)=(R_loc(i)^2-

R_LAD_local(i)^2+lamda(i)^2)/(2*lamda(i)); 
    end 
        if lamda(i)> R_loc(i)+R_LAD_local(i)  % No 

instersection 
            % Case 1: No intersection between sphere projection 

and  
            % local LAD circle 
            count2=count2+1; 
            BH(i)=0;  
            EH(i)=0; 
            DH(i)=0; 
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            Area_of_flow(i)=0; 
            Wet_Perimeter(i)=0; 
            R_Hydr(i)=0; 
        else 
            if lamda(i)+R_loc(i)<=R_LAD_local(i) 
                % Case 2: All of the sphere projection in LAD 

circle 
                BH(i)=0; 
                EH(i)=0; 
                DH(i)=0;  
                Wet_Perimeter(i)=2*pi*(R_LAD_local(i)); 
                Area_of_flow(i)=pi*(R_LAD_local(i)^2-

R_loc(i)^2); 
                R_Hydr(i)=2*Area_of_flow(i)/Wet_Perimeter(i); 
            else 
                if lamda(i)>=R_LAD_local(i) 
                    if R_loc(i)^2 >= 

lamda(i)^2+R_LAD_local(i)^2 
                        % Case 4: Chord EF above B & D  
                        BH(i)=(DH(i)-lamda(i)); 
                        EH(i)=sqrt((R_LAD_local(i)^2-

(BH(i))^2)); 
                        EH2(i)=sqrt(R_loc(i)^2-DH(i)^2); 
                        gamma(i)=asin(EH(i)/R_loc(i)); 
                        beta2(i)=asin(BH(i)/R_LAD_local(i)); 
                        beta3(i)=pi-pi/2-beta2(i);  
                        beta(i)=pi-beta3(i); 
                        Area_of_flow(i)=pi*R_LAD_local(i)^2-

beta(i)*R_LAD_local(i)^2-(gamma(i)*R_loc(i)^2-EH(i)*DH(i))-

EH(i)*BH(i); 

                        

Wet_Perimeter(i)=2*R_LAD_local(i)*beta3(i)+2*R_loc(i)*gamma(i); 
                        

R_Hydr(i)=2*Area_of_flow(i)/Wet_Perimeter(i); 
                    else 



 195 

                        % Case 3: Chord EF between B & D 
                        BH(i)=(lamda(i)-DH(i)); 
                        EH(i)=sqrt((R_LAD_local(i)^2-

(BH(i))^2));  
                        beta(i)=asin(EH(i)/R_LAD_local(i)); 
                        gamma(i)=asin(EH(i)/R_loc(i)); 
                        Area_of_flow(i)=pi*R_LAD_local(i)^2-

(gamma(i)*R_loc(i)^2-EH(i)*DH(i))-beta(i)*R_LAD_local(i)^2-

EH(i)*BH(i)); 

                        Wet_Perimeter(i)=2*R_LAD_local(i)*(pi-

beta(i))+2*R_loc(i)*(gamma(i)); 
                        

R_Hydr(i)=2*Area_of_flow(i)/Wet_Perimeter(i); 
                    end 
                else 
                    if R_LAD_local(i)^2 >= 

R_loc(i)^2+lamda(i)^2 
                        % Case 5: Chord EF below B & D 
                        DH(i)=(R_LAD_local(i)^2-R_loc(i)^2-

lamda(i)^2)/2/lamda(i);  
                        DH(i)=(R_LAD_local(i)^2-R_loc(i)^2-

lamda(i)^2)/2/lamda(i); 
                        BH(i)=lamda(i)+DH(i); 
                        EH(i)=sqrt((R_LAD_local(i)^2-BH(i)^2)); 
                        beta(i)=asin(EH(i)/R_LAD_local(i)); 
                        gamma(i)=asin(EH(i)/R_loc(i)); 
                        Wet_Perimeter(i)=2*(pi-

beta(i))*R_LAD_local(i)+2*(pi-gamma(i))*R_loc(i); 
                        Area_of_flow(i)=pi*R_LAD_local(i)^2-

(pi*R_loc(i)^2-(gamma(i)*R_loc(i)^2-EH(i)*DH(i)-

(beta(i)*R_LAD_local(i)^2-EH(i)*BH(i)))); 

                        

R_Hydr(i)=2*Area_of_flow(i)/Wet_Perimeter(i); 
                    else 
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                        if R_loc(i)^2 >= 

lamda(i)^2+R_LAD_local(i)^2 
                            % Case 7: Chord EF above B & D 
                            BH(i)=(DH(i)-lamda(i)); 
                            EH(i)=sqrt((R_LAD_local(i)^2-

(BH(i))^2)); 
                            EH2(i)=sqrt(R_loc(i)^2-DH(i)^2); 
                            gamma(i)=asin(EH(i)/R_loc(i)); 
                            

beta2(i)=asin(BH(i)/R_LAD_local(i)); 
                            beta3(i)=pi-pi/2-beta2(i);  
                            beta(i)=pi-beta3(i); 
                            

Area_of_flow(i)=pi*R_LAD_local(i)^2-beta(i)*R_LAD_local(i)^2-

(gamma(i)*R_loc(i)^2-EH(i)*DH(i))-EH(i)*BH(i); 

                            

Wet_Perimeter(i)=2*R_LAD_local(i)*beta3(i)+2*R_loc(i)*gamma(i); 
                            

R_Hydr(i)=2*Area_of_flow(i)/Wet_Perimeter(i); 
                        else 
                            % Case 6: D inside LAD circle, 

chord EF between B & D 
                            BH(i)=(lamda(i)-DH(i)); 
                            EH(i)=sqrt((R_LAD_local(i)^2-

(BH(i))^2));  
                            beta(i)=asin(EH(i)/R_LAD_local(i)); 
                            gamma(i)=asin(EH(i)/R_loc(i)); 
                            

Area_of_flow(i)=pi*R_LAD_local(i)^2-(gamma(i)*R_loc(i)^2-

EH(i)*DH(i))-(beta(i)*R_LAD_local(i)^2-EH(i)*BH(i)); 
                            

Wet_Perimeter(i)=2*R_LAD_local(i)*(pi-beta(i))+2*R_loc(i)*(gamma(i)); 
      R_Hydr(i)=2*Area_of_flow(i)/Wet_Perimeter(i); 

                        end 
                    end 
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                end 
            end 
        end 

end 
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