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Monoclonal antibodies (mAbs) are a class of commercially valuable 

biopharmaceuticals that are used for treating diseases such as psoriasis, rheumatoid 

arthritis, and multiple types of cancer. A vast majority of these biotherapeutics are 

expressed in mammalian cell lines such as Chinese Hamster Ovary (CHO) cells to 

enable post-translational modifications that generate human-like protein structures. 

One such post-translational modification that results in structural and pharmacological 

changes in the protein is N-linked glycosylation, involving the addition and 

subsequent modification of an oligosaccharide to the protein backbone. The non-

template driven, enzymatic modification of the attached oligosaccharide yields a 

heterogeneous distribution of glycan isoforms, altering the immunogenicity, stability 

and half-life of the mAb, and hence the final drug product quality. Maintaining the 

desired product quality of mAbs in the presence of process variations during 

manufacturing has been difficult for a variety of reasons, including: (i) a lack of 

quantitative understanding of the effect of input factors on product quality attributes; 

(ii) the absence of on-line or real-time measurements of quality attributes as these are 

monitored infrequently or using time-consuming assays; (iii) the lack of effective 

control strategies that incorporate these infrequent measurements (as and when they 

become available) to regulate product quality. To ensure product safety and 

therapeutic efficacy, regulatory agencies are encouraging manufacturers to monitor 

and control the drug product quality, specifically maintaining the glycan distribution 

within an acceptable range. The overall goal of this dissertation, therefore, is to 
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develop a rational framework to model the effect of different input factors on the 

glycosylation profile, estimate the glycan distribution using a dynamic mathematical 

model supplemented with infrequent measurements, and control the final 

glycosylation profile in monoclonal antibodies produced in CHO cells.  

As the glycosylation profile in mAbs is influenced by several process variables 

spanning multiple scales – from operating conditions at the bioreactor (macro) scale, 

to factors at cellular (meso) scale and organelle (micro) scale – we developed an 

integrated multi-scale model of glycosylation and validated the model predictions 

using experimental results obtained with an in-house cell line. The model serves as a 

useful link between nutrient concentrations and cell growth at the macro-scale and the 

glycosylation profile at the micro-scale.  

In parallel, we used a holistic approach that combined factorial design of 

experiments and a novel computational technique to identify the various combinations 

of glycan species that are affected by dynamic media supplementation and to quantify 

mathematically how they are affected. Our experiments demonstrated the importance 

of taking into consideration the time of addition of trace media supplements, not just 

their concentrations, and the corresponding mathematical analysis provided insight 

into what supplements to add, when, and how much, in order to induce specific 

changes in the glycosylation profile. 

We developed a two-step framework to control the glycosylation profile by 

first generating quantitative input-output relationships using the previously described 

holistic approach and then designing proportional (P) and proportional integral (PI) 

controllers based on this quantitative input-output relationship. The set-point tracking 

performance of these P and PI controllers was evaluated via simulations under 



 xxi

nominal conditions (i.e. when the model is assumed to be representative of the actual 

‘plant’ or process) and model-plant mismatch conditions. Our results demonstrated 

that the developed framework can be implemented to design glycosylation controllers 

to achieve a desired target glycosylation profile under different conditions.  

The P and PI controllers that we have developed are suited for batch-to-batch 

control as they depend on the final glycosylation profile. To achieve real-time control 

of glycosylation we require real-time information of the glycan distribution obtained 

from glycan assays; however, current glycan assays are infrequent and characterized 

by long analysis times. We address this limitation in glycosylation analysis using two 

approaches: (i) by formulating a rational framework based on observability analysis to 

guide the development of novel assays that can simplify glycan analysis or reduce 

analysis time; and (ii) by designing a state estimator to predict the glycan distribution 

profile in the absence of measurements using the previously developed multi-scale 

model and updating those predictions as and when measurements become available.  

The framework developed in this dissertation will form the basis of an online 

control scheme to control the final glycosylation profile in the product, thereby 

achieving consistent product quality.  



 

 1

INTRODUCTION 

1.1 Background 

The global market for pharmaceuticals is predicted to grow to $1.2 trillion by 

2017, with nearly 20% of the market share being dominated by biologics such as 

monoclonal antibodies (mAbs), hormones, and therapeutic enzymes. Of these, 

monoclonal antibodies have steadily increased their market dominance – with US 

sales rising from $8.29 billion in 2005 to $24.6 billion in 2012 – accounting for nearly 

39% of total biologics sales in 2012 (Aggarwal 2007; Aggarwal 2014). In 2015, global 

sales of the top 5 best-selling mAbs (Humira®, Remicade®, Rituxan®, Avastin®, and 

Herceptin®), prescribed for treating breast cancer, colon cancer, Crohn’s disease to 

rheumatoid arthritis, exceeded US $45 billion, indicating the high commercial value of 

these biotherapeutics. Following the commercialization of the first mAb product in 

1986, there has been a spurt in the development of mAb products with over fifty 

monoclonal antibodies receiving approval by the FDA, four of them in the first half of 

2016 alone, and nearly 300 molecules in active development (Ecker et al. 2015; Elvin 

et al. 2013; Reichert 2012).  

However, despite the therapeutic benefits offered by these drugs, they present a 

financial burden on the healthcare system, with increased drug pricing becoming a 

matter of concern for both patients and policy makers (Araújo et al. 2016; Kesselheim 

et al. 2016). In an approach to curb these increasing prices, regulatory agencies are 

encouraging the development of biosimilars or biologics that are similar but not 
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identical to the innovator molecule. With the anticipated patent cliff expected to open 

up nearly half of the biologics market by 2022, manufacturers are exploring this 

growth opportunity in both developed and emerging markets (Deloitte Touche Ltd. 

2015). The first biosimilar mAb the US market, Celltrion’s Inflectra, which is a 

biosimilar to Janssen’s Remicade, received FDA approval in early 2016 and is 

expected to alter the drug pricing landscape for mAb therapeutics. Similar disruptions 

in drug pricing have been observed in Norway where the launch of the biosimilar 

Remsima with discounts of up to 69% on the prices of the innovator, Remicade 

resulted in increased switching to the biosimilar (Stanton 2015). 

As biosimilars share an identical amino acid sequence with the innovator 

molecule but differ only in their quality profiles, regulatory agencies are seeking 

extensive characterization of the complete quality attributes of the drug. The advent of 

biosimilars notwithstanding, there is a shift in the focus from improving productivity, 

which has dramatically increased with host cell optimization, to maintaining consistent 

product quality across batches, in order to improve overall profitability (Kelley 2009). 

Over the past decade, regulatory agencies have also been encouraging the 

biopharmaceutical industry to implement the ‘Quality by Design’ framework, wherein 

quality related to drug product safety and efficacy is in-built into every stage of the 

process, as per ICH Q8 guidelines (del Val et al. 2010; Rathore et al. 2010; Rathore 

and Winkle 2009). Maintaining drug product quality to ensure product safety and 

efficacy has therefore come to occupy the center stage of the biopharmaceutical 

industry.  

One important determinant of mAb quality is N-glycosylation, a post-

translational modification of the antibody in which an oligosaccharyltransferase 
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complex in the endoplasmic reticulum adds a sugar substrate (glycan) to the Asn-X-

Ser/Thr motif in the heavy chain of the mAb (where X is any amino acid other than 

Pro). As the mAb traverses the Golgi complex, the attached oligosaccharide is 

subjected to a series of non-template driven enzymatic modifications mediated by the 

localized glycosyltransferase enzymes in the different Golgi compartments (Cumming 

2003; Kornfeld and Kornfeld 1985). The intricate dynamics of multiple 

glycosyltransferase enzymes determine the eventual fate of the core glycan and result 

in the formation of a diverse array of glycan isoforms that affect the immunogenicity, 

effector functions, and the pharmacokinetic properties of the mAb, and consequently 

the final drug product quality (Berger et al. 2012; del Val et al. 2010; Liu 2015). Thus, 

there is considerable motivation for manufacturers to understand, characterize, and, if 

necessary, modulate the glycoform distribution in mAbs in order to maintain a 

consistent glycan profile and to meet the quality standards established by regulatory 

agencies worldwide (FDA 2006; Harmonised Tripartite Guideline 2009; Read et al. 

2011; Wacker et al. 2011). However, manipulating the glycan distribution effectively 

requires (i) identifying the factors that can influence the glycan distribution and 

quantifying the degree to which these factors affect the concentration of the glycoform 

species; (ii) characterizing the glycan distribution profile online or in real-time; and 

(iii) controlling the glycosylation profile in the face of potential process variations 

during manufacturing. Therefore, the overall objective of this dissertation is to 

provide a rational framework to quantitatively model, estimate, and control 

glycosylation in monoclonal antibodies produced in mammalian cells.  

The rest of the chapter is organized as follows: In §1.2, current quality 

considerations in the biopharmaceutical industry are discussed and the challenges 
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associated with controlling glycosylation during manufacturing are identified. In §1.3, 

we introduce our proposed framework for controlling glycosylation. Next, §1.4 and 

§1.5 provide a concise overview on monoclonal antibodies and glycosylation. Finally, 

in §1.6 we briefly introduce the contents of the remaining chapters of this dissertation.  

1.2 Motivation – Quality Considerations in the Biopharmaceutical Industry 

Deviations in drug product quality can result in compromised drug safety or 

efficacy, adversely affecting patient health. Hence, drug manufacturers are required to 

adhere to the quality standards and guidelines issued by drug regulatory agencies like 

the Food and Drug Administration (FDA). In conventional biopharmaceutical 

manufacturing, drug product quality testing is performed at the end of a series of 

production, purification, and formulation stages to evaluate if the end product meets 

the desired target quality profile. This ‘quality by testing’ (QbT) paradigm has ensured 

that marketed drugs meet specific quality standards, but it limits manufacturers to 

operating within certain ranges to ensure consistent product quality. Further, 

measuring product quality at the end of a batch generates, virtually no information 

about the effect of intermittent process conditions and operating parameters on the 

quality attributes of the drug (del Val et al. 2012). To encourage pharmaceutical 

innovation and improve the overall quality of the manufactured drug products, the 

FDA released a guidance document on a regulatory framework for Process Analytical 

Technology (PAT) in 2004, stating  

[PAT] . . . is a system for designing, analyzing, and controlling 
manufacturing through timely measurements . . . of critical quality and 
performance attributes of raw and in-process materials and processes, 
with the goal of ensuring final product quality . . . [Quality] cannot be 
tested into products; it should be built-in or should be by design. 
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Thus, the goal of PAT is to ensure consistent product quality during 

manufacturing by designing well-understood and controlled processes (FDA 2004; 

Watts 2004). The concepts established in PAT lead to a marked shift in attitudes 

towards quality within the biopharmaceutical industry and resulted in a new “Quality 

by Design” (QbD) paradigm involving greater process characterization and risk 

assessment during manufacturing to ensure product quality. 

Implementing PAT and QbD principles to design well-characterized processes 

requires three main activities during process development: 

Design – The design phase starts early in process development where a critical 

quality attribute (CQA) is identified along with the critical process parameters (CPP) 

that affect it. In the context of monoclonal antibody development, glycosylation is a 

critical quality attribute as it influences a wide range of antibody properties including 

stability and effector functions. The final glycan distribution profile in an antibody is 

also affected a large number of input factors (see §1.5 for details) at different system 

scales – ranging from conditions at the bioreactor (macro) scale to conditions at the 

cellular (meso) scale and organelle (micro) scale. The current process understanding 

of how factors at each of these scales affect glycosylation has been generated from 

qualitative experiments and there is a need to generate quantitative input-output 

relationships in a systematic fashion.  

Analyze – The analysis phase involves the design or selection of suitable 

analyzers that monitor CQAs and CPPs within a reasonable time-scale compared to 

the process time, so as to facilitate real-time decision making. Current glycosylation 

characterization assays however, are associated with long sample preparation times 

and/or infrequent measurements. In the absence of real-time measurements, there is a 
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need to develop techniques to infer or estimate the glycosylation profile to enable 

glycosylation control.  

Control  – In the control phase, the process understanding generated in the 

design phase, coupled with the CQA and CPP measurements available from the 

analysis phase are used to manipulate the CPPs in order to ensure consistent quality. 

Controlling glycosylation on-line remains a challenge due to the lack of process 

understanding and the absence of real-time measurements. Even when such 

measurements become available there currently exist no control schemes that can be 

implemented to control the glycosylation profile. 

1.3 Proposed Framework for Glycosylation Control 

Previously, we had outline a strategic vision for online quality control in the 

biopharmaceutical industry (St.Amand et al 2012). The work presented in this 

dissertation builds on this approach and addresses current unmet challenges associated 

with implementing PAT in upstream mAb development. Here, I propose to develop a 

rational framework for modeling, estimating, and controlling glycosylation in mAbs 

produced in CHO cells. The three main aspects of this work fall under the PAT 

framework as follows: 

Design – To control glycosylation, it is necessary to generate quantitative 

understanding of the effect of different input factors on the glycosylation profile. In 

this work, we propose two approaches to generate such quantitative input-output 

relationships. First, a multi-scale model of glycosylation will be developed to evaluate 

the effect of bioreactor operating conditions on the glycosylation profile of an IgG1 

producing CHO-K1 cell line. In parallel, we will identify different media supplements 
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that affect the glycosylation profile and quantify their effect on the glycan distribution 

using a combined experimental and computational approach.  

Analysis – To overcome challenges associated with delayed and infrequent 

glycan measurements, we will develop novel techniques that can infer or estimate the 

glycan distribution profile based on the multi-scale model developed in the design 

phase. Additionally, we will evaluate rational approaches to design simpler or faster 

glycan assays.  

Control – To control the final glycosylation profile observed at the end of the 

batch, we will design and implement controllers for set-point tracking using the 

quantitative input-output relationship established using controllability analysis.  

The framework presented in this dissertation will contribute to the 

development of an online glycosylation control scheme that can be implemented to 

achieve real-time glycosylation control. In the following section, we briefly review 

monoclonal antibodies and glycosylation to appreciate their underlying complexity 

and understand why controlling glycosylation can be challenging.  

1.4 Monoclonal Antibodies – An Overview 

1.4.1 Antibody Structure and Function 

Immunoglobulins (Igs) or antibodies are serum proteins whose main function 

is to bind and eliminate antigens in the body by inactivation or by triggering an 

inflammatory response (Wright and Morrison 1997). The core structure of these 

antibodies consists of two identical heavy chains and two identical light chains that 

together bind to form a Y-shaped structure as shown in Figure 1.1. The N terminals of 

the heavy and light chains consist of a variable region followed by the first constant 
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region of the heavy chain. Together, this variable region and constant region form the 

antigen binding Fab domain, while the remaining constant heavy chain regions form 

the Fc stem or the crystallizable stem. It is the Fab domain that recognizes and binds to 

the antigen, while the Fc domain is responsible for triggering the immune function 

resulting in the elimination of the antigen.  

In humans, five major classes of immunoglobulins are known: IgG, IgM, IgA, 

IgE, and IgD. Of these IgG (or immunoglobulin gamma, named for the gamma heavy 

chain) is known to have four different isotypes – IgG1, IgG2, IgG3 and IgG4, whereas 

IgA (immunoglobulin alpha) has two known isotypes – IgA1 and IgA2, yielding a 

total of nine different immunoglobulin types with widely differing biological 

activities, structures and even relative abundances in human sera. 

 

 

Figure 1.1: A representative image of the antibody structure. The image shows the 
two light chains (L) and the two heavy chains (H) that comprise the core 
structure of the antibody, with the variable (V) and constant (C) regions, 
and the antigen binding (Fab) and crystallizable (Fc) domains. 
Representative glycan species are also shown attached to two 
glycosylation sites on the CH2 domain. 
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Monoclonal antibodies (mAbs) are antibodies that are produced from cells 

originating from a single cell clone and have a very high specificity for a particular 

antigen (Nelson et al. 2000). Although they were long purported to be ‘magic bullets’ 

for selectively targeting diseases, it wasn’t until the development of hybridoma 

technology that use of mAb therapies became practical (Adams and Weiner 2005).  

Following decades of research, the first mAb product received regulatory approval in 

1986 and today there are over 300 mAb products in various stages of development 

(Ecker et al. 2015). Therapeutic mAbs use a combination of mechanisms in triggering 

cytotoxic response at the cellular level such as 

1. Antibody dependent cell cytotoxicity (ADCC) – where the Fab domain 
binds to the antigen on the diseased cell and the Fc domain binds to Fc 
receptor on the surface of natural killer cells; and  

2. Complement dependent cytotoxicity (CDC) – where the binding of the 
mAbs exposes binding sites in the C1 domain, initiating the formation 
of a complement cascade that triggers the release of chemotactic 
factors.  

 

Another mode of action involves targeting the signaling events leading to 

cellular proliferation by blocking the interaction of extracellular ligands with cell 

surface receptors. mAbs have also been used to deliver cytotoxic payloads as 

evidenced by the development of novel antibody drug conjugates (ADC) (Scott et al. 

2012; Weiner 2007). This versatility in mAb function and structure has resulted in the 

approval of mAbs for a variety of indications ranging from colorectal cancer, breast 

cancer, non-Hodgkin’s lymphoma, and multiple sclerosis to rheumatoid arthritis, 

allergic asthma, and plaque psoriasis. Various strategies for developing the next 

generation of mAbs are being investigated at present to increase the applicability of 
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mAbs to more indications and to enhance their overall functionality (Beck et al. 2010; 

Nelson et al. 2010).  

1.4.2 Antibody Expression Systems 

Therapeutic mAbs can be synthesized in several different mammalian cell 

expression systems such as Chinese Hamster Ovary (CHO) cell lines, murine 

myeloma cell lines NS0, Sp2/0, with over half of all currently approved mAbs are 

produced in Chinese Hamster Ovary (CHO) cell lines (see Figure 1.2) (data accessed 

online from Drugs@FDA).  Although Pichia pastoris and E. coli have been explored 

as potential expression systems, so far they have been used for generating antibody 

fragments. Two such Fab fragments that are expressed in E.coli and have received 

regulatory approval are Cimzia® and Lucentis® that are prescribed for rheumatoid 

arthritis and macular degeneration, respectively. Human cell lines such as human 

embryonic kidney (HEK) and a retinal cell line PER.C6 are also being investigated as 

potential cell lines to generate antibody with post-translational modifications that are 

identical to those found in humans. In the future, humanized mAb products from such 

cell lines might also gain regulatory approval.  

The standard process for development of a stable mammalian cell line for 

expressing mAbs involves developing an expression vector containing the antibody 

heavy and light chain genes as well as selectable markers, followed by transfection by 

electroporation, lipofection transfection, and post-transfection cell line screening and 

selection for high productivity cells (Li et al. 2010). Commonly observed metabolic 

selectable markers for CHO cell lines are dihydrofolate reductase (DHFR) and 

glutamine synthase (GS) with methotrexate (MTX) or methionine sulphoximine 

(MSX) acting as the selective reagent.  
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Figure 1.2: Distribution of approved mAbs by cell line used. Over half of currently 
approved mAbs are expressed in CHO cell lines, with the remainder 
being expressed in murine myeloma cell lines such as NS0 and Sp2/0 

The preference for CHO as the host expression system for recombinant 

therapeutic proteins arises from a variety of reasons. Regulatory agencies have greater 

confidence in the safety of CHO-based therapeutic products due to the decades long 

research and safety testing that has been carried out on this commercial cell line. From 

a manufacturing perspective, the availability of powerful gene amplification systems, 

such as DHFR-mediated gene amplification, helps improve specific productivity in 

these cell lines thereby driving up overall profitability. In recent years, antibody titers 

of up to 1 g/L for batch cultures and from 1-10 g/L for fed-batch cultures have been 

reported for CHO based mAb production processes, indicating the extensive 

development that has taken place in this field. Additionally, the ease of adapting CHO 

cells to suspension cultures that are required for large scale glycan production makes 

them a preferred host for most therapeutics (Jayapal et al. 2007; Kim et al. 2012; 

Kunert and Reinhart 2016). Table 1.1 lists all currently approved mAbs that are 
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manufactured in CHO cell lines along with the corresponding indications and 

manufacturer. 

1.1: List of approved monoclonal antibodies expressed in CHO cells 

mAb Trade name Select indications Manufacturer 
Adalimumab Humira Rheumatoid arthritis, Crohn’s disease AbbVie Inc. 
Alemtuzumab Campath B-cell chronic lymphocytic leukemia Genzyme 
Alemtuzumab Lemtrada Multiple sclerosis Sanofi Genzyme 
Alirocumab Praluent Cholesterol lowering Regeneron 
Atezolizumab Tecentriq Urothelial carcinoma Genentech 
Bevacizumab Avastin Colon, lung, ovarian, kidney, brain cancer Genentech 
Daratumumab Darzalex Multiple myeloma Janssen 
Denosumab Prolia Post-menopausal osteoporosis Amgen 
Denosumab Xgeva Prevent fracture, spinal cord compression Amgen 
Evolocumab Repatha High Cholesterol treatment Amgen 
Ipilimumab Yervoy Stage III melanoma BMS 
Ixekizumab Taltz Moderate to severe plaque psoriasis Eli Lilly  
Mepolizumab Nucala Asthma Glaxo-Smith Kline 
Nivolumab Opdivo Non-small cell lung cancer BMS 
Obinutuzumab Gazyva Untreated chronic lymphocytic leukemia Genentech 
Omalizumab Xolair Allergic asthma,  Genentech 
Panitumumab Vectibix Colorectal cancer Amgen 
Pembrolizumab Keytruda Melanoma, Non-small cell lung cancer Merck 
Pertuzumab Perjeta Metastatic breast cancer Genentech 
Rituximab Rituxan Non-Hodgkin’s lymphoma Genentech 
Secukinumab Cosentyx Plaque psoriasis, psoriatic arthritis Novartis 
Siltuximab Sylvant Multicentric Castleman’s Disease Janssen 
Tocilizumab Actemra Rheumatoid arthritis Genentech 
Trastuzumab Herceptin Her2+ breast cancer Genentech 
Vedolizumab Entyvio Crohn’s disease Takeda 
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In addition to the advantages listed above, CHO cells present the distinct 

advantage of having post-translational modification machinery that enables the 

formation of structures commonly observed in human cells, thereby ensuring 

biocompatibility between the products manufactured in CHO cells and human beings 

(Raju 2003). In the following section the different quality attributes of mAbs are 

discussed with a special focus on glycosylation. 

1.4.3 Quality Attributes of Monoclonal Antibodies 

The first generation of mAbs that were produced in murine cell lines presented 

immunogenic challenges in clinical evaluations, leading researchers to investigate the 

role of both the antibody sequence as well as post-translational modifications on 

antibody quality and effector functions. As mentioned above, the efficient post-

translational machinery in CHO cells results in the formation of structural isoforms of 

the antibody that closely resemble human-like structures, thereby ensuring greater 

biocompatibility than mAbs generated in other cell lines. As some of these post-

translational modifications are known to affect drug product quality, regulatory 

agencies require manufacturers to ensure they be consistent so that the drugs meet 

specified quality requirements. Developing the next generation of mAbs, including 

bispecific antibodies and antibody drug conjugates (ADCs), also requires a thorough 

understanding of the multiple quality attributes of monoclonal antibodies. Finally, the 

arrival of ‘biosimilars’ – biological drugs whose amino acid sequences are identical to 

that of the reference product, but the quality attributes are only similar (not identical) –  

along with the rapid advancement made in analytical characterization techniques, has 

increased the focus on the analyzing and identifying the factors that affect the quality 

attributes of antibodies. In the quality by design paradigm, only those physical and 
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chemical changes that affect drug product safety or efficacy are designated as critical 

quality attributes (CQAs) whose levels should be maintained within defined limits 

(Goetze et al. 2010; Rathore and Winkle 2009). Although quality attributes will vary 

between processes and products, a few quality attributes of monoclonal antibodies that 

are known to affect antibody activity in general are discussed here in brief (Gramer 

2014; Liu et al. 2008; Zhong and Wright 2013): 

Aggregation – The presence of aggregates or misfolded proteins is known to 

induce adverse immunological responses in patients and must hence such aggregated 

proteins must be cleared from the final drug product by implementing appropriate 

downstream purification strategies. Protein aggregation can occur due to exposed 

hydrophobic patches on the protein or due to changes in operating conditions. The 

formation of such aggregates lowers the efficiency of the process and reduces product 

yield and hence, appropriate strategies must be implemented to reduce protein 

aggregation.  

Glycation – Glycation is the natural attachment of a reducing sugar to the 

amine group of lysine side chains via a nonezymatic condensation reaction. Glycation 

of antibodies can take place during cell culture or in vivo upon storage with lactose. 

The resulting glycated antibody can exhibit lowered immunoreactivity and increase 

the drug product heterogeneity.  

Cysteine variants – Monoclonal antibodies contain interchain and intrachain 

disulphide bonds, which, if disturbed, can cause heterogeneity and disulphide bond 

scrambling in mAbs. Reduced mAb potency has been observed due to the presence of 

incomplete disulphide pairing on the protein.  
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Apart from these chemical and physical changes to the protein, glycosylation, 

one of the most commonly observed post-translational modification, is considered to 

be a highly critical determinant of protein quality and is discussed in the following 

section 

1.5 Glycosylation – An Overview 

Glycosylation is one of the most commonly observed post-translational 

modifications in eukaryotic cells which results in the addition of an oligosaccharide to 

the protein backbone. The formation of the carbohydrate-peptide bond can be 

classified into five major groups: (i) N-glycosydic bonds; (ii) O-glycosydic bonds; (iii) 

C-glycosydic bonds; (iv) P-glycosydic bonds; and (v) Glypiation (Spiro 2002). While 

each of these carbohydrate-peptide linkages affect and alter protein functionality and 

vary by cell line and protein type, we limit our discussion to N-linked glycosylation, 

or the β-glycosylamine linkage of a GlcNAc (N-acetylglucosamine) to an asparagine 

(Asn) residue of a tripeptide Asn-X-Ser/Thr consensus sequence, where X is any 

amino acid except proline (Butler 2006; Cumming 2003; Gramer 2014; Kornfeld and 

Kornfeld 1985).  

1.5.1 Glycosylation Pathway and Glycan Biosynthesis 

N-linked glycosylation is initiated on the cytosolic face of the ER membrane 

when a nucleotide sugar donor, UDP-GlcNAc transfers a GlcNAc phosphate 

(GlcNAc-P) to a dolichol phosphate (dol-P) on the ER membrane resulting in the 

formation of a dolichol pyrophosphate N-acetylglucosamine (dol-P-P-GlcNAc). 

Subsequently, another GlcNAc group is added to the dolichol linked structure 

followed by the addition of five mannose groups by GDP-Mannose. The dolichol 
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linked structure then flips to the lumenal face of the ER where four additional 

mannose residues are attached followed by three glucose residues. The fourteen sugar 

(Glc3Man9GlcNAc2) oligosaccharide is transferred en bloc by an oligosaccharyl 

transferase (OST) enzyme to the asparagine residue of the Asn-X-Ser/Thr consensus 

sequon on a protein that is being translocated through the ER membrane. Following 

cleavage of the three glucose units on the oligosaccharide structure by the α-

glucosidases in the ER, the newly synthesized protein is transferred to the Golgi for 

further processing (Stanley et al. 2009).  

As the protein is transported through the Golgi compartment, the non-template 

driven enzymatic processing of the attached oligosaccharide by the different 

mannosidases and glycosyltransferase enzymes localized in the different regions of the 

Golgi apparatus. A partial list of different enzymes involved in the glycosylation 

pathway is listed in Table 2. The initial processing of the oligosaccharide involves the 

clipping of the mannose groups by mannosidase I (ManI) to form a five mannose 

oligosaccharide, at which point it a GlcNac residue is added to the α-1,3-mannose by 

GnTI enzyme in the cis-Golgi region forming a hybrid glycan. The mannosidase in the 

cis-Golgi compartment cleaves majority of the glycans to produce a glycan with the 

core 3-mannose structure. Subsequent transfer of different glycans in the other 

compartments of the Golgi result in the formation of mature, complex glycans and 

hybrid glycans containing galactose, fucose, and sialyl residues. However, not all 

glycans are fully processed and the secreted glycoprotein consists of a heterogeneous 

distribution of different glycoforms or glycan isoforms (microheterogeneity) that 

impart different properties to the glycosylated protein. Here, it is important to 

distinguish between microheterogeneity, which arises due to the multiplicity of glycan 
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isoforms attached at a particular glycosylation site, and macroheterogeneity, which 

arises due to the variable occupation of a particular glycosylation site. 

Macroheterogeneity is of particular concern in glycosylated proteins like tissue 

plasminogen activator (tPA) and erythropoietin (EPO) that have multiple 

glycosylation binding sites, and glycosylation site occupancy can compromise efficacy 

(Hossler et al. 2009). While both macroheterogeneity and microheterogeneity 

influence protein function and quality, the focus of our work will be on glycan 

microheterogeneity.  

1.2: List of enzymes participating in glycosylation reactions  

Enzyme Name 
ManI (E.C. 3.2.1.113) Mannosyl-oligosaccharide 1,2-α-mannosidase 

ManII (E.C. 3.2.1.114) Mannosyl-oligosaccharide 1,3-1,6-α-mannosidase 

FucT (E.C. 2.4.1.68) Glycoprotein-α-6-L-fucosyltransferase 

GalT (E.C. 2.4.1.38) Β-N-Acetylglucosaminylglycopeptide β-1,4-galactosyltransferase 

GnTI (E.C. 2.4.1.101) α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase 

GnTII (2.4.1.143) α-1,6-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase 

GnTIII (2.4.1.144) β-1,4-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase 

GnTIV (2.4.1.145) α-1,3-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase 

GnTV (2.4.1.155) α-1,6-mannosyl-glycoprotein 6-β-N-acetylglucosaminyltransferase 

GnTE (2.4.1.149) N-acetyllactosaminide β-1,3-N-acetylglucosaminyltransferase 

SiaT (2.4.99.6) N-acetyllactosaminide α-2,3-sialyltransferase 
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Figure 1.3: Representative examples of different types of glycan isoforms that 
contribute to antibody microheterogeneity. All structures have been 
drawn using the GlycoForm software (McDonald et al. 2010) 

1.5.2 Effects of Glycosylation on Protein Quality 

The heterogeneous distribution of different glycan species at a specific glycan 

binding site or glycan microheterogeneity influences several properties of the 

therapeutic protein. Changes in protein glycosylation can have significant impact on 

physiological processes and diseases such as hemostasis and thrombosis (Preston et al. 

2013), allergies and autoimmunity (Karsten et al. 2012), tumor cell sensitivity 

(Mendelsohn et al. 2007), aging (Dall'Olio et al. 2013), in addition to other congenital 

disorders of glycosylation. At the protein level, glycosylation is known to improve 

protein stability and local structure (Imperiali and O'Connor 1999). The effect of 

glycosylation on protecting approved therapeutics, including IgG like antibodies, from 

protein instabilities such as proteolytic degradation, oxidation, precipitation, 
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aggregation, chemical denaturation, and thermal denaturation has been well 

documented and has led to the development of glycosylation as a strategy to develop 

better antibody therapies (Jefferis 2009; Onitsuka et al. 2014; Solá and Griebenow 

2010; Solá and Griebenow 2009; Zheng et al. 2014).  Glycans also play an intrinsic 

role in determining protein pharmacokinetics (PK) which in turn determines the 

efficacy of the protein (Sethuraman and Stadheim 2006). Glycans influence both the 

size and the net charge on the protein and can alter the clearance of the protein from 

serum. For instance, the terminal sialic group shields the protein from the 

asialoglycoprotein receptor on the surface of hepatocyte cells, thereby increasing 

serum half-life (Berger et al. 2012). In the case of monoclonal antibodies, a recent 

study suggested that the oligomannose species were cleared at a much faster rate than 

the fucosylated biantennary species thereby affecting the drug PK (Alessandri et al. 

2012). Thus, manufacturers would have to ensure that the total oligomannose fractions 

in the antibody be reduced to enhance the serum half-life of the mAb.  

Changes in the glycan profile due to the attachment of non-human glycan 

species can trigger immunogenic reactions in patients, as has been observed due to the 

presence of the alpha-linked galactose on the variable region glycosylation of the 

antibody Erbitux (Gramer 2014). The terminal sugar in glycans can also influence a 

variety of mAb properties such as antibody resistance to papain degradation (Raju and 

Scallon 2007) and changes in the CDC activity (Raju 2008; Raju and Jordan 2012). 

Core fucosylation is another factor influencing antibody effector functions as the 

absence of core fucose has been shown to enhance antibody ADCC activity (Houde et 

al. 2010; Kanda et al. 2007). Some studies suggest that antibody hemi-glycosylation 

does not affect Fab mediated antigen binding or Fc receptor binding (Ha et al. 2011).  
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Therefore, there is considerable interest in identifying factors influencing 

glycosylation, designing assays to characterize the glycan distribution, and developing 

strategies to control the glycosylation profile. We discuss some of these aspects in the 

following section.  

1.5.3 Factors Affecting Glycosylation 

In the previous section we briefly discussed how variability in protein 

glycosylation can affect antibody stability and efficacy, and hence its final drug 

product quality.  In the current section we look at factors that are known to affect the 

glycan distribution profile, while different glycan characterization techniques are 

discussed elsewhere in this dissertation.  

 The foremost cause of differences in protein glycosylation is the choice 

of expression system (Jenkins et al. 1996; Parekh 1991). Mammalian, murine, insect, 

and yeast cell line systems exhibit differences in their post-translational machinery and 

the right choice of cell line becomes an important factor in determining protein 

quality. Given the challenges associated with characterizing and controlling 

glycosylation, the focus has shifted to choosing cell lines or engineering cell lines to 

achieve desired glycan distribution profiles (Beck et al. 2008; Sethuraman and 

Stadheim 2006; van Berkel et al. 2009; Yoo et al. 2010). Having chosen a particular 

cell expression system, there can still be differences in the glycosylation profile during 

batch to batch operation due to differences in bioreactor conditions (Curling et al. 

1990).  

For instance, glycosylation is known to be affected by bioreactor operating 

conditions such as pH (Aghamohseni et al. 2014; Ivarsson et al. 2014; Muthing et al. 

2003; Trummer et al. 2006; Yoon et al. 2005), temperature (Ahn et al. 2008; Clark et 
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al. 2004; Gawlitzek et al. 2009; Sou et al. 2015), hydrodynamic stress (Godoy-Silva et 

al. 2009), and dissolved oxygen (Kunkel et al. 1998; Restelli et al. 2006; Serrato et al. 

2004). Nutrient conditions in the bioreactor, such as the concentration of ammonia 

(Borys et al. 1994; Chen and Harcum 2006; Gawlitzek et al. 2000; Grammatikos et al. 

1998; Yang and Butler 2000), and glucose (Fan et al. 2015a; Fan et al. 2015b; Liu et 

al. 2014; Villacres et al. 2015) influence the final glycan distribution profile via 

distinct mechanisms. Similarly, glutamine substitution by glutamate or TCA cycle 

intermediates was shown to alter the galactosylation and sialylation profiles in 

different proteins  (Ha and Lee 2014; Hong et al. 2010). The use of other hexoses, 

notably mannose and galactose, to alter the glycan distribution is also well studied 

(Huang et al. 2015; Liu et al. 2015; Slade et al. 2016).  

Several modifications have been made to cell culture media to evaluate the 

effect of different components on the glycosylation profile. Apart from altering 

medium osmolality to alter fucose (Konno et al. 2012), different media supplements 

have been introduced such as nucleotide sugar precursors (Blondeel et al. 2015; Wong 

et al. 2010; Zhang et al. 2016a), surfactant (Clincke et al. 2011), sodium butyrate 

(Borys et al. 2010; Chen et al. 2011; Gawlitzek et al. 2009), and trace metals like 

manganese chloride (MnCl2) (Grainger and James 2013; Gramer et al. 2011; Pacis et 

al. 2011; Surve and Gadgil 2015).  

It is important to note that the list of factors affecting the glycosylation profile 

presented above is not exhaustive, but is representative of the different cell culture 

conditions that can alter the glycan profile. Further, the understanding generated from 

such empirical studies has been primarily qualitative, with no quantitative input-output 

relationship being developed. Thus, the modulation of the glycan distribution profile 
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due to of multiple factors at different scales via distinct mechanisms poses several 

challenges to controlling glycosylation in the face of process variations during 

manufacturing. To date, cell line engineering and media design remain the only 

options to control the glycosylation profile within acceptable limits. Newer 

therapeutics circumventing protein glycosylation are being considered, but such 

aglycosylated proteins require extensive cell engineering and considerable investment 

(Ju and Jung 2014; Jung et al. 2011).  

Therefore, the work presented in this dissertation expands the available tools to 

control the glycosylation profile by generating fundamental quantitative relationships 

between inputs and outputs and then using the generated information in novel control 

schemes to ensure consistent glycan distribution profiles.  

1.6 Dissertation Overview 

The overall objective of this work is to develop an effective framework for 

modeling, estimating and controlling the glycosylation profile in monoclonal 

antibodies produced in CHO cells. In Chapter 2 an integrated multi-scale model of 

glycosylation is developed for an in-house CHO cell line grown under batch and fed-

batch conditions. Chapter 3 takes a parallel approach to developing a quantitative 

understanding of the effect of media supplements on the glycan profile. While the role 

of media supplements on glycosylation is well-studied, the work presented here 

evaluates the effect of dynamic media supplementation using experimental and 

computational techniques using controllability analysis. We then design and 

implement glycosylation controllers using controllability analysis and evaluate the set-

point tracking ability of glycosylation controllers in Chapter 4. In Chapter 5 the 

different challenges to developing an online glycosylation assay are discussed and two 
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different approaches based on observability analysis and state estimation are used to 

address the issue of delayed, infrequent measurements. Finally, the key findings are 

summarized in Chapter 6 along with a discussion of future directions.  
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MULTI-SCALE MODELING OF ANTIBODY GLYCOSYLATION 

2.1 Introduction 

As seen in Chapter 1, the glycosylation profile in mAbs is a critical 

determinant of protein quality as it influences such quality attributes as antibody 

immunogenicity, stability, efficacy, and half-life. Therefore, to ensure drug product 

quality, it is important to ensure consistent glycosylation of mAbs during 

manufacturing. However, as we have noted previously, protein glycosylation is 

extremely complex, involving a series of non-template driven enzymatic reactions that 

can be influenced by a variety of factors spanning multiple ‘scales’ – from macro-

scale properties such as bioreactor operating conditions and media composition, to 

meso-scale properties such as antibody productivity and nucleotide sugar donor 

concentrations at the cellular level, to micro-scale properties at the organelle level 

such as kinetic rates of glycosyltransferase and glycosidase enzymes in the Golgi 

apparatus of the cell. Thus, in order to develop any control strategy that will ensure 

consistent glycosylation, it is first necessary to identify the factors that influence 

glycosylation and develop a fundamental, quantitative input-output relationship 

between different input factors and the output glycan profile. This chapter and the 

following chapter demonstrate two parallel approaches taken to understand how the 

glycosylation profile is influenced by different input factors. In this chapter, we 

explore, by means of a fundamental mathematical model, the effect of bioreactor 

operating conditions on the glycosylation profile, while in the next, we use 

Chapter 2
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controllability analysis to establish a quantitative relationship between different media 

supplements and the output glycosylation profile.  

The motivation to develop a mathematical model of a complex biological 

system can stem from a need to organize the vast and disparate information available 

for a biological system into one coherent whole; or to understand the qualitative and 

phenomenological features of the system; or to develop predictive capabilities for a 

process of interest; or as means to synthesize existing empirical knowledge of a 

biological system and generate new insights about the underlying complex 

mechanisms (Bailey 1998). In the context of antibody glycosylation, generating 

mathematical models to describe the intricate multi-scalar interactions leading to 

changes in the glycan distribution will enable manufacturers to optimize process 

operating conditions based on a fundamental understanding of the effect that any 

process change would have on the final quality profile. Developing such predictive 

capabilities is vital to ensure the production of high value biotherapeutics with 

consistent quality. Further, such a mathematical model can also be useful when 

designing a control scheme to meet desired quality targets in the face of process 

variations during manufacturing. In this chapter, we develop a multi-scale model for 

glycosylation and test its performance for an in-house cell line under batch and fed-

batch conditions.  

The chapter begins with a brief review of various modeling approaches for 

biological processes, specifically focusing on models of cell growth in mammalian 

cell cultures and mathematical models for predicting the glycan distribution in 

glycoproteins, as described in §2.2. The use of these models in developing an in-house 
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multi-scale model for glycosylation is then presented in §2.3 and model results are 

compared to experimental data collected from batch and fed-batch experiments.  

2.2 Mathematical Models for Biological Processes 

2.2.1 Modeling Cell Growth in Mammalian Cell Culture 

A variety of kinetic models have been used to simulate and understand cellular 

growth. Much like the models used to described microbial cell growth, kinetic models 

for mammalian cell culture can be classified based on the level of detail incorporated 

in the model (Tziampazis and Sambanis 1994). Briefly, the various classes of models 

based on their structural classification are: 

Unstructured, unsegregated models: A vast majority of the models used for 

describing cellular growth are unstructured and unsegregated. Based on an idealized 

representation of cell growth, these models assume that all cells in the culture behave 

in the same fashion (unsegregated) and treat the cell as a black box, with no 

accounting of cellular reactions within the different regions of the cell (unstructured). 

Commonly used empirical models that describe cell growth on the basis of logistic 

growth rate expressions (Goudar 2012) or Monod kinetics fall under the unstructured, 

unsegregated category of models (Shirsat et al. 2015).  

Structured, unsegregated models: Single cell models (Sanderson et al. 1999; 

Sidoli et al. 2004; Wu et al. 1992)  that take into account intercellular transport, 

cellular compartmentalization, and intracellular metabolic pathways, and macroscopic 

biological models (Baughman et al. 2010; Provost and Bastin 2004; Provost et al. 

2006) that account for cellular metabolism are classified as structured, unsegregated 

kinetic models. Such models tend to be more complex, and hence, more 
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computationally demanding than unsegregated models. However, these single cell 

models do not account for any heterogeneity whatsoever in the cell population.  

Unstructured, segregated models: Segregated models or population balance 

models describe cell growth while factoring in the heterogeneity in cellular 

populations. With the advent of experimental tools such as flow cytometry that can be 

used to sort cells based on cellular age, and with improved computational tools, the 

applicability of these models in characterizing cellular growth has increased (Jang and 

Barford 2000; Karra et al. 2010; Munzer et al. 2015a; Munzer et al. 2015b).  

Segregated, structured models: The most realistic models of cell growth are 

those that take into account both the heterogeneity in cellular population as well as the 

internal metabolic structure (Sidoli et al. 2006). The high level of parameterization in 

these complex models necessitates the development of elaborate parameter reduction 

and estimation techniques, thereby increasing the associated computational challenges.  

In addition to such a structural classification of models, it is possible to 

develop models that do not necessarily conform to one or the other type. For instance, 

Kontoravdi and coworkers (Kontoravdi et al. 2005) developed a hybrid 

structured/unstructured model for a mAb producing mammalian cell culture, where 

cell growth dynamics were modeled using unstructured Monod kinetics, but the 

antibody productivity was modeled by taking into account the formation of the light 

and heavy chains starting from an organelle level mass balance for mRNA (Bibila and 

Flickinger 1991). The model parameters were then identified using global sensitivity 

analysis and model predictions were compared to experimental data. The utility of 

such a combined approach was further demonstrated by Ho and coworkers who 

compared the model predictions from a hybrid structured/unstructured model and a 
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detailed single cell model to experimental data obtained from a mAb producing GS-

NS0 cell line under hyperosmotic stress (Ho et al. 2006). They observed that 

predictions from the simpler hybrid model were comparable to those from the more 

computationally demanding single cell model and required simpler parameter 

estimation techniques. Similarly, data driven models using artificial neural networks 

(Marique et al. 2002) or based on Markov chain Monte Carlo methods (Xing et al. 

2010) have been developed to describe cellular growth in mammalian cells.  

While different forms of such structurally differentiated models have been 

used to model cell growth and antibody productivity in mammalian cell culture, the 

eventual choice of the model is dictated by the application for which the model is 

developed (Kontoravdi et al. 2010). A segregated, structured model can be used to 

understand cellular behavior, but the associated computational challenges render it 

impractical for process control and monitoring purposes, which are better served by 

simpler unstructured and unsegregated models. Thus, model complexity should be 

chosen appropriate to the task at hand.  

Next we discuss the different approaches that have been used to develop 

qualitative and quantitative models of protein glycosylation.  

2.2.2 Modeling Glycosylation 

The inherent complexity in glycosylation reaction networks has provided 

significant challenges to modelers seeking to create appropriate mathematical 

representations of the underlying biological phenomenon. In overcoming these 

challenges, several models based on mechanistic and empirical approaches have been 

developed (Sha et al. 2016). Each of these glycan models has contributed significantly 

to our knowledge of the mechanisms associated with protein glycosylation and helped 



 

 29

quantify the changes in the glycosylation patterns in glycoproteins. Although models 

for both N-linked and O-linked glycosylation are widely available (Neelamegham et 

al. 2008; Puri and Neelamegham 2012), for the purposes of this study, we limit our 

discussion to models for N-linked glycosylation alone.  

Glycosylation models have been developed to understand the diversity in 

glycan site occupancy in glycoproteins and the diversity in glycan structures and 

branching patterns at specific glycan sites on the protein backbone. Although models 

describing the branching patterns in observed in N-linked glycosylation reaction 

networks are more numerous, very few have examined the heterogeneity in glycan site 

occupancy (macroheterogeneity) that arises in glycoproteins with multiple glycan 

binding sites. For instance, the kinetic modeling framework developed by Shelikoff 

and coworkers (Shelikoff et al. 1996) modeled the co-translational transfer of the 

dolichol phosphate linked oligosaccharide to the nascent polypeptide. Although their 

model was largely qualitative in nature, it provided a framework to determine how 

glycosylation site occupancy depended on protein synthesis rates, and other 

parameters. In contrast to this structured kinetic model, Senger developed a predictive 

model using artificial neural networks (Senger and Karim 2005) to study site 

occupancy of recombinant tissue plasminogen activator (r-tPA) based on protein 

sequencing. Their goal was to understand how different protein residues influence the 

eventual glycan macroheterogeneity in glycoproteins with multiple binding sites. As 

with the structured kinetic model developed previously, the challenge of corroborating 

model predictions with experimental data has limited the applicability of models 

predicting glycan macroheterogeneity.  
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Mathematical models that predict the variability in glycan branching and the 

resulting microheterogeneity in glycoproteins have gained in popularity in recent 

years. These models quantify the non-template driven, enzymatic modification of the 

oligosaccharide attached to the protein backbone as the glycoprotein traverses the 

different regions of the Golgi apparatus before being secreted. One of the earliest 

kinetic models to capture the complexity of N-linked glycosylation networks was 

developed by Umaña and Bailey who wished to develop rational metabolic 

engineering strategies guided by effective mathematical models to achieve desired 

glycoform distributions(Umaña and Bailey 1997). In this seminal work, the 

mathematical model (referred to as UB1997) was developed considering mass 

balances for a simple glycosylation reaction network with 33 glycoforms participating 

in 33 reactions catalyzed by 7 glycosyltransferase enzymes. They factored the 

transport of proteins between different regions of the Golgi complex and modeled the 

individual enzymatic reactions using Michaelis-Menten rate expressions. The resulting 

oligosaccharide balances were generated using the glycan productivity rate which, in 

turn, was estimated from the glycoprotein productivity rate – a critical assumption that 

formed the basis of all subsequent kinetic models. Having estimated kinetic 

parameters from literature, the model was then analyzed at steady state to assess 

qualitative differences in glycan distribution as a function of antibody productivity as 

well as differences in the glycan distribution arising due to changes in glycan activity.  

Krambeck and Betenbaugh expanded the scope and applicability of the 

UB1997 model by incorporating additional glycosyltransferase enzymes and glycan 

branching structures, thereby enhancing the predictive capability of the model to a 

very wide range of oligosaccharide structures (Krambeck and Betenbaugh 2005). The 
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resulting mathematical model (referred to as KB2005) predicted the formation of 7565 

glycan structures participating in 22,871 reactions catalyzed by 11 glycosyltransferase 

enzymes. Like the UB1997 model before it, the KB2005 model too assumed that the 

Golgi apparatus could be modeled as a series of well-mixed reactors in sequence with 

bulk transport of cargo. The KB2005 model introduced a framework for automated 

generation of different glycosylation reaction networks (and consequently, various 

oligosaccharide sequences) by defining enzyme reaction rules. These rules vastly 

simplified the computational expense involved in generating large scale glycan 

reaction networks and enabled effective mathematical representation of different 

glycoforms using a nine-digit numbering system. The developed kinetic model was 

solved under steady state conditions using kinetic parameters estimated from literature 

and compared to experimental data. The model was also used to study the effect of 

increased glycan productivity on the glycosylation profile. In subsequent 

developments, the predictive capabilities of an expanded version of the KB2005 

model were refined by adjusting model parameters based on mass spectrometric 

measurements (Krambeck et al. 2009) and transcriptomic data was integrated with the 

glycomic model to identify cell biomarkers (Bennun et al. 2013).  

Contemporaneous to the development of the KB2005 model, which was based 

on the then prevailing vesicular transport model of the Golgi complex, studies of 

protein secretion in live cells seemed to suggest that the cisternal maturation model 

could account for secretory kinetics in the Golgi compartment better than the vesicular 

transport model (Losev et al. 2006; Matsuura-Tokita et al. 2006). To compare the 

differences in the glycan distribution arising due to the choice of vesicular transport 

model and the cisternal maturation model, Hossler and coworkers developed two 
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reaction schemes wherein they modeled the different compartments of the Golgi 

compartment as four continuous mixing tanks (CSTR) or four plug flow reactors 

(PFR) respectively (Hossler et al. 2007). The authors examined the effect of 

processing time, compartmentalization, and spatial localization of enzymes on the 

glycan distribution while studying the sensitivity of individual glycoforms to the 

concentrations of different enzymes. They noticed that the four PFR model provided a 

more realistic representation of the glycan distribution than the four CSTR model, 

indicating the effect of processing time on glycan microheterogeneity. The work done 

in this study is further enhanced when compared to past experimental data 

highlighting the effect of processing time on glycan microheterogeneity. For instance, 

Wang and coworkers (Wang et al. 1991) found that the amount of poly-

acetyllactosamines in membrane glycoproteins increased with prolonged association 

with the Golgi at lower temperatures due to slower intracellular transport. This was 

similar to the work by Fuller and coworkers (Fuller et al. 1985) who had demonstrated 

a change in the galactosylation and sialylation of a G protein processed at lower 

temperatures, due to increased residence time in the Golgi.  

In a further extension based on the cisternal maturation model, del Val and 

coworkers developed a model (referred to as DK2011) where the Golgi complex was 

viewed as a single PFR and obtained dynamic material balance for different 

glycoforms as well as nucleotide sugar donors (del Val et al. 2011). They also defined 

enzyme and transporter protein concentrations along the length of the Golgi apparatus 

to account for recycling of the different components along the Golgi compartment, 

while incorporating detailed kinetic mechanisms for each enzyme catalyzed reaction. 

Kinetic parameters were estimated from literature and unknown parameters were 
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estimated using optimization routines. The resulting model was matched with 

experimental data and compared to previous models. The DK2011 model provided a 

comprehensive dynamic glycosylation model that, when coupled to a model for 

nucleotide sugar donor (NSD) metabolism could link bioreactor and extracellular 

conditions to intracellular changes.  

As most of these kinetic models require extensive parameter estimation, there 

have been attempts at reconciling experimental glycosylation distribution data to 

parameter free models. For instance, predictive glycan models have been developed 

using artificial neural networks (Senger and Karim 2008) that correlate the type of 

glycan attached to a particular site to protein structure and sequence. By examining 

protein databases and antibody structures, such a neural network model aims to reduce 

the need for using elaborate kinetic models. Recently, Spahn and coworkers developed 

a low parameter Markov chain model for predicting the glycan distribution in different 

glycoproteins and evaluated its efficacy to predict the effect of glycosyltransferase 

knockdowns on glycosylation (Spahn et al. 2016).  By utilizing the reaction rules first 

elucidated in the KB2005 model, a probabilistic framework was developed for 

generating a glycosylation reaction network. The model does not account for 

nucleotide sugar precursors, but simply adjusts the transition properties in the Markov 

model to account for changes in the glycan distribution. Along similar lines, Kremkow 

and Lee have developed a parameter free glycosylation network model specifically for 

CHO model based on the CHO genome (Kremkow and Lee 2016).  

While such predictive models have helped lay the framework for 

understanding the diversity in glycosylation reaction networks, there is a need to 

understand how bioreactor culture conditions influence the heterogeneity in 
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glycosylation distribution. The development of models linking extracellular conditions 

to changes in the intracellular conditions is reviewed in the next section.  

2.2.3 Modeling Cell Growth and Antibody Glycosylation 

An examination of the factors that influence glycosylation indicates that the 

eventual antibody glycan distribution profile is affected by both intracellular and 

extracellular factors as reviewed in §1.5.3. By understanding the mechanistic 

relationship between the input factors and the output glycan distribution, one can 

develop necessary schemes to manipulate the various input factors and alter the 

resulting glycosylation profile in the protein.  

One such approach to understanding the effect of growth dynamics and 

antibody productivity on the final glycan distribution involves linking the ‘macro-

scale’ models of cell growth with the ‘micro-scale’ models of glycan productivity. 

Kontoravdi and coworkers developed a dynamic model linking a hybrid 

structured/unstructured model for cell growth for a mAb producing cell culture with 

the UB1997 model for glycosylation (Kontoravdi et al. 2007). Although the model 

produced qualitative results, it was a useful predictive tool to study the effect of 

different feeding strategies on fed batch cell culture. With the development of detailed 

micro-scale models of glycosylation that could be linked to experimental data, it was 

now possible to use this framework to link extracellular conditions to the eventual 

glycosylation profile. Jedrzejewski and coworkers sought to develop one such 

modeling framework by focusing on an in silico model reconstruction of sugar 

nucleotide and nucleotide sugar donor (NSD) synthesis pathways to link the 

availability of NSDs to the final glycan distribution predicted by the DK2011 model 

(Jedrzejewski et al. 2014). They linked a dynamic cell growth model to a simplified 
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nucleotide model developed using Monod kinetics to a NSD synthesis model 

developed from the KEGG database and modeled using Michaelis-Menten kinetics, to 

the DK2011 glycosylation model. The resulting model prediction for the glycosylation 

profile was compared to experimental data from an antibody producing mammalian 

cell culture and it showed a fairly reasonable match. Recently, the influence of 

antibody productivity on the glycosylation profile was examined using this integrated 

modeling framework for fed-batch cultures (del Val et al. 2016). 

In a different modeling approach, Kaveh and coworkers linked a dynamic 

model for cell growth to the glycosylation model proposed by Hossler et al (Ohadi et 

al. 2013). Recognizing that experimental measurements of glycan distribution in cell 

culture are representative of the cumulative amount of antibody generated, and that the 

kinetic models for glycosylation are instantaneous models, they converted the 

instantaneous glycan distribution to a cumulative measure by accounting for the 

cumulative antibody production at that time. Further by formulating a dynamic 

metabolic flux model for the extracellular metabolites, they attempted to link 

extracellular conditions to the glycosylation profile.  

The models reviewed thus far have been developed using a wide range of 

assumptions and for different systems. However, different cell lines producing 

different glycoproteins (or even the same glycoprotein) exhibit differences in cellular 

behavior. Thus in the absence of a general model of cell growth and glycosylation it 

becomes necessary to develop a specific model with a particular set of experimental 

parameters. In the next section we present results from our multi-scale modeling 

efforts using an in-house cell line.  
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2.3 Development of an In-house Multi-scale Model of Glycosylation 

To model the effect of cell growth conditions on the glycan distribution profile, 

we developed a multi-scale model to describe the cellular growth and glycosylation 

characteristics of an in-house cell line, wherein the macro-scale model was developed 

using an unstructured Monod model for cell growth and the micro-scale model was 

adapted from the DK2011 model. Model predictions were then compared to batch and 

fed-batch experimental data, as described in the following sub-sections.  

Figure 2.1 provides a brief overview of the overall model structure which 

incorporates both the macro-scale and the micro-scale models.  

 

Figure 2.1: Overview of the in-house multi-scale model. The multi-scale model first 
invokes the macro-scale model to solve mass balances for all nutrients 
that returns the dynamic nutrient concentration profile and the antibody 
production rate. The glycan production rate is then calculated and the 
micro-scale model is invoked to obtain the dynamic glycan distribution 
profile and the relative distribution of individual glycoforms. 
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2.3.1 Batch Experiments – Materials and Methods 

An IgG1 producing CHO-K1 cell line (gift of Genentech, CA) was used in our 

shake flask batch experiments. The cells were grown in suspension culture at 37° C 

with a 5% CO2 overlay in vented cap Erlenmeyer shake flasks with 50 mL custom CD 

OPTICHO™ media (Thermo Fisher, MA) supplemented with 28 mM glucose, 4 mM 

glutamine, and an initial seeding density of 0.5 x 106 cells/mL. Daily cell count 

measurements were taken using a hemocytometer, while metabolite (glutamine, 

glucose, glutamate and lactate) concentrations, media pH, and osmolality were 

measured using a Bioprofile 100+ analyzer (Nova Biomedical, MA). On day 8 after 

inoculation, the cells were centrifuged to harvest spent media from which the IgG1 

antibody was then purified with a PhyNexus Benchtop MEA2 system using Protein A 

chromatography resin packed in a 2 mL PhyTip column (PhyNexus, CA). Antibody 

titer in the harvest and post-purification was quantified on a Thermo ScientificTM 

MAbPac Protein A chromatography column (12-micron particle size, 35x4.0 mm I.D., 

Thermo Fisher Scientific, MA) using an Agilent 1200 HPLC instrument. The purified 

antibody was then trypsinized at 37° C, followed by enzymatic deglycosylation using 

PNGase-F (ProZyme, CA) for a minimum of 16 hours at 37° C. The free separated 

glycans were captured on Hypersep Hyper Carb SPE cartridges and permethylated 

following the Ciucanu method using methyl iodide and NaOH in the presence of 

DMSO (Ciucanu and Costello 2003; Ciucanu and Kerek 1984). The labeled glycans 

were purified in a liquid-liquid extraction step with chloroform, dried and resuspended 

in 80% methanol, and spotted onto a MALDI/TOF plate with a DHB matrix. The 

labeled glycans were then analyzed using a 4800 MALDI TOF/TOF Analyzer 

(ABSciex) in positive ion, reflector mode. The data collected using the mass 

spectrometer was then exported to DataExplorer to obtain the peak heights for the 
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identified glycans (see Appendix A for the complete list of identified glycans). The 

relative glycan distribution was calculated from the peak heights of individual glycan 

species.  

2.3.2 Macro-scale Model Development 

The macro-scale model used in this work is an unstructured, unsegregated 

model based on Monod kinetics, with appropriate mass balance equations included to 

account for nutrient consumption.  

In mammalian cell cultures, cell growth depends on the availability of two key 

nutrients, glucose and glutamine. Cells uptake glucose through the glycolytic pathway, 

resulting in the formation of lactate as a by-product, while the uptake of glutamine 

results in the formation of ammonia as a by-product. Both lactate and ammonia are 

known to inhibit cell growth in mammalian cells (Lao and Toth 1997). We take into 

account each of these factors in developing the expression for cell growth rate, μ, as 

 

 μ = μ���,� Glc�K
�� + Glc� Gln�K
�� + Gln� K�,����K�,��� + Lac� K�,����K�,��� + Amm� 2.1 

 

The cell death rate, which is inversely related to the growth rate, asymptotically 

reaches a maximum value as the growth rate goes to zero (Sanderson et al. 1999). 

Thus 

 

 μ� = μ�,��� k�,��k�,� + μ� 2.2 
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The consumption rates for glucose and glutamine are obtained by considering a mass 

balance for the two nutrients. For glucose we obtain 

 

 
dGlcdt = −Glc 1V dVdt − q
��X' + F��Glc��V − F)*+GlcV  2.3 

 

Here, V is the working volume in the bioreactor, Fin and Fout are the flowrates into and 

out of the bioreactor, with Glcin denoting the concentration of glucose in the input 

feed. Under batch conditions, we set Fin and Fout as zero. Further, the specific 

consumption rate for glucose, qGlc is given by 

 

 q
�� = μY-/
�� + m
�� 2.4 

 

where, Yx/Glc is the yield coefficient and the maintenance coefficient for glucose, mglc 

is given by 

 

 m
�� = a�Glca/ + Glc 2.5 

 

Similarly, glutamine consumption is given by  

 

 
dGlndt = −Gln 1V dVdt − q
��X' − K�,
�Gln + F��Gln��V − F)*+GlnV  2.6 

 

with the specific glutamine consumption rate given by 
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 q
�� = μY-/
�� + m
�� 2.7 

 

where YX/Gln is the yield coefficient of glutamine and mGln is the maintenance 

coefficient for glutamine.  

Glucose uptake by the cells results in the formation of lactate as a by-product 

at a rate directly proportional to the glucose consumption rate, with the accumulation 

of lactate resulting in growth inhibition. However, some CHO cells are known to 

consume lactate under low glucose conditions under batch and fed-batch conditions 

(Ozturk et al. 1997) resulting in higher productivities. This has led investigators to 

study the metabolic changes that result in the onset of lactate consumption and its 

effect on total protein productivity (Le et al. 2012; Mulukutla et al. 2012; Mulukutla et 

al. 2015). Several strategies have also been devised to control the production of lactate 

by substituting galactose for glucose or by using pH controlled addition of glucose 

thereby seeking to enhance protein productivity (Altamirano et al. 2006; Gagnon et al. 

2011). In our shake flask experiments too, we observe the consumption of lactate as 

the growth phase shifts under low glucose and glutamine conditions. Although both 

glucose and glutamine are vital for cell growth and maintenance in CHO cells, cells 

continue to grow even at limiting concentrations of glutamine (Sun and Zhang 2004). 

The rapid uptake and degradation of glutamine accompanied by the consumption of 

lactate results in a slowing down of cellular growth and the expression for cellular 

growths is now modeled as 
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 μ � μ���,/ Glc�K
�� � Glc� Lac�K��� � Lac� K�,����K�,��� � Amm� 2.8 

 

Consequently, when we account for lactate mass balance, we incorporate terms for 

both lactate production rate as well as consumption. Thus: 

 

 
dLacdt � "Lac 1VdVdt � q���X' " q�)�0X' � F��Lac��V " F)*+LacV  2.9 

 

where the specific lactate production rate, qLac is given by: 

 

 q��� � Y���/
��q
�� 2.10 

 

while the specific lactate consumption rate, qcons is given by: 

 

 q�)�0 � 1k, under	exponential	growth	conditions		μY-/��� , under	low	glucose	conditions  2.11 

 

The uptake of glutamine during cellular growth as well as the degradation of 

glutamine results in the formation of ammonia, which continues to accumulate even 

after glutamine depletion. This is likely due to the degradation of glutamate and the 

conversion of alanine to pyruvate as the cells consume lactate (Li et al. 2012). Thus, 

we write the mass balance for ammonia as  
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dAmmdt = −Amm 1V dVdt + q���X' + K�,
�Gln − F)*+AmmV + k��� 2.12 

 

where the specific ammonia production rate is given by 

 

 q��� = Y���/
��q
�� 2.13 

 

The viable cell density (Xv) depends on the growth rate as well as the death rate, while 

the total cell density (Xt) depends on the number of viable cells and the cell lysis rate 

Klysis. Therefore, we get 

 

 
dX'dt = >μ − μ� − FoutV − 1V dVdt ? X' 2.14 

 

 
dX+dt = μX' − FoutV X+ − 1V dVdt X+ − K�@0�0�X+ − X'� 2.15 

 
 

Several different approaches have been used to model protein productivity, 

using segregated or unsegregated, structured or unstructured models. For instance, an 

antibody synthesis model was developed for hybridoma cells that accounted for light 

and heavy chain protein and mRNA expression (Bibila and Flickinger 1991; Bibila 

and Flickinger 1993). Extensive factorial design experiments have been performed to 

identify appropriate cell culture media supplementation that can enhance protein 

productivity (Xu et al. 2014). Data mining approaches involving historic 

manufacturing data have also been used to identify factors that influence protein 
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productivity (Charaniya et al. 2010). Recent investigations of the metabolomic activity 

in different cell lines producing industrially relevant mAbs suggest a correlation 

between oxidative stress and the production of TCA cycle intermediates (Ishii et al. 

2015; Templeton et al. 2013). However, for our modeling purposes, we have 

associated antibody titer with the glucose consumption rates.  Thus, we get a mass 

balance for the antibody production rate as 

 

 
dMAbdt = −MAb 1V dVdt + qC�DX' − F)*+MAbV  2.16 

 

where the specific antibody production rate, qMAb is given by 

 

 qC�D = YC�D/
��q
�� 2.17 

 

and YMAb/Glc is the yield coefficient of the antibody on glucose.  

The resulting set of ODEs was solved in MATLAB using an in-built ODE 

solver with a non-negativity constraint. Nutrient concentration from the batch 

experiments was measured on day 0 using the Bioprofile Analyzer and these values 

were passed to the ODE solver as initial conditions. The model parameters were 

obtained from literature and predictions for glucose, glutamine, and lactate were 

compared to the experimental values obtained from the batch run. Later these, 

parameters were optimized using the in-built optimizer in MATLAB. The parameters 

used in the macro-scale model have been listed in Table 2.1 
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2.1: Parameter values used in the macro-scale model 

Parameter Value (in-
house 
model) 

Yield coefficient of biomass on glucose, YX/Glc, [cells/ mM] 1.40 x 109 

Yield coefficient of biomass on glutamine, YX/Gln, [cells/ mM] 2.70 x 109 

Yield coefficient of biomass on lactate, YX/Lac, [cells/ mM] 6.53 x 107 

Yield coefficient of ammonia on glutamine, YAmm/Gln, [mM/ mM] 0.63 

Yield coefficient of lactate on glucose, YLac/Glc, [mM/ mM] 1.30 

Yield coefficient of mAb on glucose, YMAb/Glc, [g/L/ mM] 5.55 x 10-3 

Constant for glutamine degradation, Kd,Gln, [hour -1] 9.60 x 10-3 

Monod constant for glucose, KGlc, [mM] 0.14 

Monod constant for lactate, KLac, [mM] 0.25 

Monod constant for glutamine, KGln, [mM] 0.025 

Constant for lactate inhibition, KI,Lac, [mM] 171.76 

Constant for ammonia inhibition, KI,Amm, [mM] 28.48 

Cell lysis rate, Klysis, [hour -1] 0.02 – 0.06   

Glutamine maintenance coefficient, mgln, [mM-hour -1 /cells] 4.25 x 10-15 

Constant for glucose maintenance coefficient, a0, [mM-hour -1 /cells] 2.25 x 10-10 

Constant for glucose maintenance coefficient, a1, [mM] 39.65 

Maximum growth rate (exponential), μmax1, [hour -1] 0.03 

Maximum growth rate (stationary), μmax2, [hour -1] 6.50 x 10-3 

Maximum death rate, μd,max, [hour -1] 0.042 

Death rate constant, kd0, [hour -1] 4.54 x 10-4 

Death rate constant, kd1, [hour -1] 5.00 x 10-3 

The resulting dynamic profiles for nutrient uptake and production are shown in 

Figure 2.2, while Figure 2.3 shows a comparison of the model predictions and the 

experimental measurement for the cellular viability. The model adequately captures 
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the trends in the nutrient uptake and metabolite production as well as the cell growth 

rates. Due to the low antibody concentrations seen in our experiments, mAb 

measurements are available for just two time points, on day 7 and day 8 at the end of 

the batch. The model predictions for antibody production compare well with the 

experimental data as shown in Figure 2.4. 

 

Figure 2.2: Nutrient and by-product concentration profiles for batch culture. The plot 
shows the model fit for glucose, glutamine, lactate, and ammonia. The 
blue solid line represents the model predictions, while the red circles are 
the experimental measurements.  
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Figure 2.3: Viable cell density and total cell density profiles for batch culture. The 
solid black line represents the model predictions for the total cell density 
while the solid red line represents the model fit for viable cell density. 
The black and red circles represent the average of the experimentally 
observed total cell density and viable cell density respectively, while the 
error bars represent the range of observed values (n=2).  

 

Figure 2.4: Antibody concentration profile for batch culture. The solid blue line 
represents the model simulations while the red circles represent the 
experimental data.  
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2.3.3 Coupling the Macro-scale Model with the Micro-scale Model 

To couple the macro-scale model with the eventual glycan distribution in the 

output, we must estimate the glycan production rate from the antibody production rate. 

First we calculate the integral viable cell density (IVCD) which is calculated as 

 

  IVCD � 	H X'dt+I
�  2.18 

 

We numerically integrate the viable cell density in MATLAB using the 

cumulative trapezoidal function. Next, we evaluate the specific antibody productivity 

rate at different time intervals using 

 

 qJK+L+M � MAb+M "MAb+NIVCD+M " IVCD+N 2.19 

 

The low antibody titers seen in our cell line imply that the productivity that we 

observe can be as low as 0.2 pg/cell/day. Next by assuming that each antibody has two 

glycan binding sites, we calculate the glycan productivity rate as 

 

 qO�@� � qJ 2MAb	molecular	weight 2.20 

 

The glycan productivity rate is then passed to the micro-scale model which is 

described in the following section. 
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2.3.4 Micro-scale Model Development 

The micro-scale model used in the current work is adapted from the DK2011 

model while the glycan reaction network is built using the reaction rules and the 

numbering system originally proposed in the KB2005 model. First, we generate the 

glycan reaction network using the reaction rules listed in Table 2.2. The columns list 

the enzyme (see Table 1.2 for enzyme names), the associated reaction rule, and the 

corresponding reaction leading to the formation of a particular glycan. The complete 

list of experimentally observed glycan isoforms and their structures are listed in 

Appendix A. The generation of different glycan isoforms per each reaction rule gets 

recorded in a nine-digit array, where every number is a unique representation of a 

glycan isoform. In this representation, Man, Fuc, and Gal refer to the digits 

corresponding to the number of mannose groups (which can range from 3 to 9), the 

fucosylation state (0 or1), and the number of galactose residues (0 to 4) respectively. 

Br2 and Br4 correspond to the extension level in branch 2 (upper branch attached to 

the α-1,6-linked mannose of the tri-mannosyl core) and the extension level in branch 4 

(lower branch attached to the α-1,3-linked mannose in the tri-mannosyl core), 

respectively. In generating the reaction network, we have not included the bisecting 

species (denoted by Gnb) which arise due to the action of GnTE enzyme, nor do we 

account for sialyl groups (Sia), which are added as extensions to the galactosylated 

branches by the action of SiaT.  
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2.2: Reaction rules for generating the glycosylation reaction network based on 
KB2005 model 

Enzyme Rule Reaction 
ManI Man>5 Man = Man-1; 

ManII Man>3 && Br4==1 && Man~=4 Man = Man-1; 

ManII Man>3 && Br4==1 && Man==4 Man = Man-1; 

FucT Fuc==0 && Br4>0 && Gal==0 && Man==3 Fuc = Fuc+1; 

GnTI Br4==0 && Man==5 Br4 = Br4+1; 

GnTII Br2==0 && Man<4 && Br4==1 && Gnb==0 Br2 = Br2+1; 

GalT (Br2==1) && ~(Br2>0) && Man<4 
Br2 = Br2+1 or Br4 = 

Br4+1; Gal = Gal+1; 

GalT (Br2==1 && Br4 ==1) && (Br2>0) 
Br2 = Br2+1 or Br4 = 

Br4+1; Gal = Gal+1; 

 

 

To generate the reaction network, we start with nine mannose oligosaccharide 

(labeled M9) which gets converted to a five mannose glycoform (M5) by the action of 

ManI enzyme, as per the first rule. To the M5 glycoform, the enzyme GnTI adds an N-

acetylglucosamine (GlcNAc) at branch 4, i.e. at the α-1,3-mannose on the trimannosyl 

core. Accordingly, the nine-digit glycan modifier gets edited to account for the 

addition of the GlcNAc at Br4. Subsequently, other glycan isoforms are created based 

on the different reaction rules, leading to the formation of a glycan reaction network 

with 18 glycan isoforms participating in 20 reactions.  

Having defined a complete glycan reaction network suitable for our purpose, 

we then calculate the complete glycosylation distribution profile using an adapted 
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version of the DK2011 model. Based on the cisternal maturation model, we 

approximate the Golgi apparatus as a single PFR system with no axial dispersion, 

constant linear velocity, and constant Golgi diameter to get the oligosaccharide mass 

balance as: 

 

 
∂RGlycTU∂t � " 4qπD/ ∂RGlycTU∂z "Yv�,TrT 2.21 

 

where the kinetic rate expression rj for each enzyme is as listed in Table 2.3. 

2.3: Kinetic mechanisms for different glycosylation enzymes 

Enzyme 
Kinetic 
mechanism Rate expression 

ManI, 
ManII 

Michaelis-
Menten 
with 
competitive 
and product 
inhibitions 

rT � 	 k[,TRETURP�UK�,� >1 � ∑ RP_UK�,_? 

GnTI, 
GnTII, 
GalT 

Sequential 
order Bi-Bi 
kinetics 
with 
competitive 
and product 
inhibitions 

rT � 	 k[,TRETURP�URUDP " S�UK�,�K��,� >1 � 2 RUDP " S�UK��,� � RUDP " S�UK��,� ∑ RP_UK�,_? 

FucT 

Random 
order Bi-Bi 
kinetics 
with 
competitive 
and product 
inhibitions 

rT� 	 k[,TRETURP�URUDP " S�UK�,�K��,� >1 � 2 RUDP " S�UK��,� � �1 � RUDP " S�UK��,� �∑ RP_UK�,_? 
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Next, as proposed in DK2011 model, we calculate the enzyme distribution 

along the length of the Golgi apparatus assuming it is normally distributed using  

 

 ET�z� = ET,���eb�/cdbde,fghi jM 2.22 

 

The initial simulations are carried out using values provided in literature for peak 

enzyme concentrations (Emax), the mean value along the length of the Golgi (zmax), and 

the standard deviation (ω) that are used in equation 2.22.  

Next, we solve the for the glycan distribution profile using the method of lines 

by dividing the length of the Golgi into different grid points. The glycan concentration 

at the entrance to the Golgi (or the first grid point) is the boundary condition, while we 

define initial concentrations for the glycan species in all the regions of the Golgi. 

Using the glycan productivity rate, we estimate the amount of glycans entering the 

Golgi and solve to obtain the dynamic glycan distribution profile the end of the batch 

culture. As the experimentally reported values are available to us as relative glycan 

percentages, we convert the glycosylation profile obtained from our simulations to a 

relative glycan distribution and compare the model simulations at the end of the batch 

with the experimentally observed glycan distribution. We then optimize the kinetic 

parameters in the model and the optimized kinetic parameters for the peak enzyme 

concentration and for the kinetic constants as listed in Tables 2.4 and 2.5, respectively. 

The model simulations and output glycan distribution is shown in Figure 2.5.  
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2.4: Parameters to estimate the distribution of different glycosylation 
enzymes along the length of the Golgi apparatus 

Enzyme Emax (μM) zmax ω 
FucT 0.16 11.60 1.51 

GalT 1.00 17.15 0.90 

GnTI 2.52 8.02 1.56 

GnTII 1.07 10.94 1.56 

ManI 2.45 5.63 1.57 

ManII 1.00 8.58 1.15 

 

 

2.5: Kinetic constants used in the rate expressions for different 
glycosyltransferase enzymes arranged as per the reaction rule.  

Enzyme Rule kf,  
min-1 

Km, 
mM 

Kmd, 
mM 

ManI Man > 8 2734 60.5 0 

ManI Man > 7 && ~(Man>8) 2005 110 0 

ManI Man > 6 && ~(Man>7) 792 30.8 0 

ManI Man > 5 && ~(Man>6) 70 625 0 

ManII Man>3 && Br4==1 && Gnb==0 && Man~=4 1026 20 0 

FucT Fuc==0 && Br4>0 && Gnb==0 && Gal==0 

&& Man==3 

225 250 46 

GnTI Br4==0 && Man==5 2768 260 170 

GnTII Br2==0 && Man<4 && Br4==1 && Gnb==0 56 190 960 
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Table 2.5: continued 

Enzyme Rule kf,  
min-1 

Km, 
mM 

Kmd, 
mM 

GalT (Br2==1) && ~(Gnb>0 && Br2>0) && 

Man<4 

25 130 65 

GalT (Br4==1) && ~(Gnb>0 && Br2>0) && 

Man<4 

25 130 65 

ManII Man>3 && Br4==1 && Gnb==0 && 

Man==4 

43 20 0 

GalT (Br2==1 && Br4 ==1) && (Gnb>0 && 

Br2>0) 

904 6280 65 

GalT (Br4==1 && Br4==1) && (Gnb>0 && 

Br2>0) 

2444 6280 65 

 

 



 

 54

 

Figure 2.5: Glycan distribution profile obtained from the multi-scale model. Solid 
grey bars represent the experimentally observed glycan distribution while 
the cross-hatched bars represent model predictions.  

2.4 Validation using Fed-batch Model with Pulse Feeding 

2.4.1 Fed-batch Experiments – Materials and Methods 

To assess the validity of the model structure and expand its overall 

applicability, we evaluated the model under fed batch conditions with pulse feeding. 

As described in § 2.3.1, we grew an IgG1 producing CHO-K1 cell line (gift of 

Genentech, CA) in suspension culture at 37° C with a 5% CO2 overlay in vented cap 

Erlenmeyer shake flasks starting with 50 mL custom CD OPTICHO™ media (Thermo 

Fisher, MA) supplemented with 28 mM glucose, 4 mM glutamine, and an initial 

seeding density of 0.5 x 106 cells/mL. Cell count measurements were taken using a 
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Nexcelom Cellometer Mini (Nexcelom Bioscience, MA), while metabolite (glutamine, 

glucose, glutamate and lactate) concentrations, media pH, and osmolality were 

measured using a Bioprofile 100+ analyzer (Nova Biomedical, MA). The cells were 

grown under batch conditions till day 4, after which 5 mL custom CD OPTICHO™ 

media supplemented with 28 mM glucose, 4 mM glutamine was added on a daily 

basis. Samples were withdrawn before and after every feeding and cell count and 

nutrient concentration measurements were noted. Antibody quantification, purification 

and subsequent glycan release, permethylation, and analysis was carried out as per the 

protocol listed earlier.  

2.4.2 Modifications to Multi-scale Model 

To account for the pulse addition at fixed time intervals, we model the time 

between the feeding as individual batch runs (Xing et al. 2010) and adjust the nutrient 

concentration at the start of each new batch by accounting for the volumetric change 

in the bioreactor due to the addition of fresh media daily. Thus the change in nutrient 

and metabolite concentrations after feeding is 

 

 kNJ)0+m = �kNJnom × VJno + 5 × RN[oo�]�/VJ)0+ 2.23 

 

 kMJ)0+m = �kMJnom × VJno�/VJ)0+ 2.24 

 

where Vpre refers to the volume before adding feed and Vpost is the volume after adding 

the feed. As the batch and fed-batch experiments were performed under slightly 

different conditions, we are able to match the new nutrient and cell viability profile as 
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well as the antibody concentration and the glycan distribution profile as shown in 

Figures 2.6 through 2.8 by making minor adjustments to the kinetic parameters.  

 

Figure 2.6: Nutrient and by-product concentration profiles for fed-batch culture with 
daily 5 mL pulse feeding. The plot shows the model fit for glucose, 
glutamine, lactate, and ammonia. The blue solid line represents the model 
predictions, while the red circles are the average experimental 
measurements taken from two trials. The error bars indicate the range of 
experimental values.  
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Figure 2.7: Viable cell density and total cell density profiles for fed-batch culture 
with daily 5 mL pulse feeding. The solid black line represents model 
predictions for total cell density while the solid red line represents model 
predictions for viable cell density. The black and red circles represent the 
average of the experimentally observed total cell density and viable cell 
density respectively, while the error bars represent the range of observed 
values (n=2) 
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Figure 2.8: Antibody concentration profile for fed-batch culture with 5 mL daily 
pulse feeding. The solid blue line represents the model simulations while 
the red circles represent the average experimental data obtained from two 
trials. The error bars represent the range in the experimental values 
observed.  

 

Figure 2.9: Glycan distribution profile obtained from the multi-scale model for fed-
batch case. Solid grey bars represent the experimentally observed glycan 
distribution while the cross-hatched bars represent model predictions  
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Thus the developed mathematical model is useful in evaluating the glycan 

distribution under different conditions.  

2.5 Summary and Conclusions 

In this chapter, we developed a multi-scale model to describe cell growth 

kinetics and antibody glycosylation for an in-house cell line under batch and fed-batch 

conditions and compared the model predictions to experimental data. Our model 

captured the growth profiles at the macro-scale model and predicted the antibody 

productivity rate based on the total glucose consumption rate. The glycan productivity 

rate was then calculated from the antibody productivity rate and used in an adapted 

micro-scale model wherein the Golgi compartment was modeled as a plug flow 

reactor and the dynamic glycan distribution was obtained by solving the mass balance 

for each glycan species. The model parameters were optimized using the data from the 

batch bioreactor experiments and validated using fed-batch data. The models 

developed in this chapter will be used in Chapter 4 to test the design of batch to batch 

controllers for glycosylation control using the enzyme concentrations as varying 

inputs in the micro-scale model and in Chapter 5 to develop a state estimation scheme 

for predicting the glycan distribution profile in the absence of real time measurements. 

Chapter 6 will touch upon the different aspects of the model that can be improved in 

successive iterations.  

While this model captures the effect of cell growth dynamics on the 

glycosylation profile, we note that the effects of cell culture media, another major 

macro-scale factor that affects glycosylation, have not been included in the predictive 

model. One of the prime reasons for not including cell culture media in our model is 

due to its highly complex composition which due to proprietary concerns, is often 
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unknown to the end user. In the following chapter, we use a parallel approach to 

understand how different media components affect the glycan distribution, we develop 

a quantitative relationship between time-dependent media supplementation and the 

glycosylation profile.  
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CONTROLLING THE GLYCOSYLATION PROFILE USING TIME-
DEPENDENT MEDIA SUPPLEMENTATION 

3.1 Introduction  

In Chapter 2, a multi-scale model of glycosylation was developed and tested 

using in-house batch and fed-batch data.  The macro-scale model, based on Monod 

kinetics, accounted for the effect of cell culture conditions such as concentrations of 

glucose, glutamine, lactate, and ammonia on cell growth, viability, and the antibody 

productivity rate, which was subsequently used in the micro-scale model used to 

generate the glycosylation profile. Although the mathematical model gave a 

descriptive understanding of the effect of various macro-scale parameters on the cell 

culture performance, it did not consider a wide range of macro-scale factors that are 

known to affect glycosylation. For instance, previous studies have demonstrated that 

protein glycosylation can be influenced by various factors, such as pH (Ivarsson et al. 

2014; Yoon et al. 2005), temperature (Ahn et al. 2008; Gawlitzek et al. 2009; Sou et 

al. 2015), dissolved oxygen (Kunkel et al. 1998; Serrato et al. 2004), ammonia (Borys 

et al. 1994), and media supplements such as nucleotide sugar precursors (Wong et al. 

2010) and manganese chloride (MnCl2) (Grainger and James 2013; Gramer et al. 

2011; Pacis et al. 2011). Modulating the complete glycan distribution profile requires 

manipulating multiple input factors simultaneously, and to be effective, such action 

must be based on a thorough, holistic understanding of how these inputs individually 

and jointly affect various glycan species.  

Chapter 3
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In the absence of detailed first-principles based, mathematical models that 

describe the effect of all cell culture process variables that can influence glycosylation, 

we rely upon statistical design of experiments to systematically generate empirical 

understanding, whereby input factors are judiciously varied simultaneously to generate 

data on the main and interaction effects they exert on all the output responses of 

interest. Such structural information indicates which inputs to manipulate, and by how 

much, in order to alter the relative concentrations of different glycan species 

appropriately. In most cases, however, the available inputs are fewer than the glycan 

species to be controlled, resulting in a system with insufficient degrees of freedom. 

Consequently, we must first answer a fundamental question: given a limited set of 

inputs, to what extent can we independently control the concentrations of all the 

desired glycan species? In other words, is the desired change in the glycan distribution 

achievable using the available inputs? We address this question using “controllability 

analysis”, by which we can determine quantitatively the extent to which the system is 

controllable. (Informally, a system is considered completely controllable if it is 

possible to drive the complete set of outputs from some initial value to any arbitrarily 

specified final, desired value by manipulating the available set of inputs.) Previously, 

the concept of output controllability was introduced and the controllability of the 

glycan reaction network was assessed using data generated from statistical design of 

experiments (St. Amand et al. 2014c). The applicability of controllability analysis was 

also illustrated by identifying glycan species whose concentrations can be controlled 

using such media supplements as MnCl2, galactose and NH4Cl as manipulated 

variables (St. Amand et al. 2014b).  
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The role of different media supplements in modulating critical quality 

attributes of the mAb in general, and the glycan distribution profile in particular, has 

received considerable attention recently (Brühlmann et al. 2015). Typically, 

supplements such as MnCl2, that are known to affect the expression and activity of 

several glycosyltransferase enzymes, are added to the media at the start of the batch to 

alter the glycan distribution. However, over the course of the batch run, as the cells 

continue to grow and produce mAb molecules, changes in the cellular availability of 

supplements will influence not just the antibody productivity but also the activity of 

the glycosyltransferase enzymes, thus affecting the final glycan distribution. Hence, 

we postulate that it is possible to control the glycosylation profile in mAbs by 

introducing specific media supplements at different stages of cell growth. Specifically, 

we aim to identify the glycan species that can be controlled by adding MnCl2 during 

lag, exponential, and stationary phases of cell growth, and quantify the effect of such 

time-dependent MnCl2 additions on the glycan distribution. We postulate further that 

introducing a chelating agent to the media can alter the effect of MnCl2 addition on the 

glycan distribution.  

In this chapter we use a mixed factorial experimental design to add MnCl2 and 

EDTA at various stages of cell growth and analyze the resulting data appropriately to 

quantify the effect of time-dependent media supplementation on the glycosylation 

profile in mAbs. Subsequently, we use controllability analysis to identify the glycan 

species whose relative percentages can be controlled effectively by introducing MnCl2 

and EDTA to the media at different time points, and quantify the effect of these time-

dependent additions. Overall, our results highlight the importance of taking into 

account the dynamic nature of media supplementation, and presents concepts that can 
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be exploited to develop new strategies for controlling the glycosylation profile in 

mAbs.  

In the following section, we discuss the experimental and modeling techniques 

used in this chapter. The results from our work are then presented in section §3.3 with 

a detailed discussion in section §3.4. The key findings are summarized in the last 

section of this chapter.  

3.2 Materials and Methods 

3.2.1 Cell Culture 

All experiments were conducted using an IgG1 producing CHO-K1 cell line 

donated by Genentech, San Francisco, California. The cells were scaled up in a 

custom CD OptiCHOTM medium formulation (Thermo Fisher Scientific, Waltham, 

MA) that was supplemented with 4 mM glutamine, 5 g/L glucose and 25 nM MTX. 

The osmolality was adjusted to 300 mOsm by adding NaCl stock solution. The 

concentration of MnCl2 in the media was adjusted using a 0.5 M stock solution (Sigma 

Aldrich). Similarly, a 0.5 M EDTA sterile stock solution was prepared and added to 

the media as required. The cells were inoculated with an initial seeding density of 0.5 

x 106 cells/mL in vented-cap Erlenmeyer shake flasks with a working volume of 50 

mL and grown in batch in suspension in an incubator maintained at 37° C with a 5% 

CO2 overlay, with supplements only as indicated by experimental design below. Cell 

count measurements were taken every two days using a hemocytometer. Metabolite 

(glutamine, glucose, glutamate and lactate) concentrations, media pH, and osmolality 

were measured using a Bioprofile 100+ analyzer (Nova Biomedical, Waltham, MA). 

Antibody titer was measured with an Agilent 1200 HPLC instrument using 1X PBS 



 

 65

buffer on a Thermo ScientificTM MAbPac Protein A chromatography column (12 

micron particle size, 35x4.0 mm I.D., Thermo Fisher Scientific, Waltham, MA).  

3.2.2 Experimental Design  

The shake flask experiments were conducted according to a (22, 32) mixed 

level experimental design for the following factors: (i) MnCl2 concentration (high and 

low levels); (ii) EDTA concentration (high and low levels); (iii) time of addition of 

MnCl2 (high, intermediate, and low levels); and (iv) time of addition of EDTA (high, 

intermediate and low levels). The concentration of MnCl2 in the basal media 

corresponds to the low level condition (-1) for MnCl2, while the high level condition 

(+1) corresponds to the final concentration of MnCl2 supplemented media (0.04 mM). 

Similarly, the low level condition (-1) for EDTA corresponds to “no EDTA” added to 

the media, while the high level (+1) corresponds to 0.08 mM EDTA added to the 

media. MnCl2 and EDTA are added on day 0 (D0), day 3 (D3), or day 6 (D6) after 

inoculation, corresponding respectively to the low (-1), intermediate (0), and high (+1) 

levels. Thus, this full factorial mixed level (22, 32) experimental design yields a total of 

36 different possible shake flask conditions to be tested. However, the 36 conditions 

are not unique because some of the cases correspond to identical experimental 

conditions. For instance, 9 of the 36 conditions correspond to MnCl2 and EDTA at low 

levels (-1), with the time of addition at low (-1), intermediate (0) and high levels (+1). 

The low level condition for MnCl2 represents basal concentrations, while the low level 

for EDTA represents no EDTA supplementation. Thus, these 9 cases represent 
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identical conditions where the flask has basal levels of MnCl2 with no EDTA 

supplementation either on D0, D3, or D6. A single flask (F1) was used for all nine 

cases and was treated as the control flask because of what the conditions represent — 

basal level of MnCl2 and no EDTA supplementation on any day. It can be shown that 

there are in fact only 16 unique experimental cases/conditions, as listed in Table 3.1. 

Each condition was tested with two biological replicates. The glycan distribution 

profile was determined using the permethylation assay described below, and the 

resulting relative glycan percentages data obtained for each condition were analyzed in 

MINITAB using standard analysis of variance (ANOVA) to obtain the factor 

effects/coefficients and associated p-values.  

3.2.3 Glycan Permethylation Assay  

On day 8 after inoculation, the cells were centrifuged at 3000 rpm for 10 

minutes and the spent media was harvested. The IgG1 antibody was then purified from 

the spent media using a PhyNexus Benchtop MEA2 system using Protein A 

chromatography resin packed in a 2 mL PhyTip column (PhyNexus, San Jose, CA). 

The glycan permethylation assay was then carried out with 100 microgram of the 

purified antibody using a previously described method (St. Amand et al. 2014b). 

Briefly, the antibody was first digested with trypsin (Promega, Madison, WI) for four 

hours in an incubator held at 37 °C, followed by enzymatic deglycosylation using 

PNGase-F (ProZyme, Hayward, CA) for a minimum of 16 hours at 37 °C. The free 

separated glycans were captured on Hypersep Hyper Carb SPE cartridges (Thermo 
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Fisher Scientific, Waltham, MA) and permethylated following the Ciucanu method 

using methyl iodide and NaOH in the presence of DMSO (Ciucanu and Costello 2003; 

Ciucanu and Kerek 1984). The permethylated glycans were purified in a liquid-liquid 

extraction step with chloroform (Sigma Aldrich, St. Lois, MO), dried and resuspended 

in 80% methanol (Sigma Aldrich, St. Lois, MO). The resuspended glycans were 

spotted onto a MALDI/TOF plate with a DHB matrix and analyzed using a 4800 

MALDI TOF/TOF Analyzer (ABSciex) in positive ion, reflector mode. The data 

collected using the mass spectrometer was then exported to DataExplorer to obtain the 

peak heights for the identified glycans (see Appendix A). The relative glycan 

distribution in each sample was calculated from the sum of the peak heights for all the 

identified glycans in that sample.  
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3.1: Experimental conditions tested in mixed factorial design 

Experimental 
condition 

MnCl 2 
conc. 
(mM) 

EDTA 
conc. 
(mM) 

Time of 
addition of 
MnCl 2 † 

Time of 
addition of 
EDTA † 

Label 

1 0.01 0 D0 D0 Control 
2 0.01 0.08 D0 D0 ED D0 
3 0.04 0.08 D0 D0 Mn D0/ED D0 
4 0.04 0.08 D3 D0 Mn D3/ED D0 
5 0.04 0.08 D6 D0 Mn D6/ED D0 
6 0.01 0.08 D0 D3 ED D3 
7 0.04 0.08 D0 D3 Mn D0/ED D3 
8 0.04 0.08 D3 D3 Mn D3/ED D3 
9 0.04 0.08 D6 D3 Mn D6/ED D3 
10 0.01 0.08 D0 D6 ED D6 
11 0.04 0.08 D0 D6 Mn D0/ED D6 
12 0.04 0.08 D3 D6 Mn D3/ED D6 
13 0.04 0.08 D6 D6 Mn D6/ED D6 
14 0.04 0 D0 D0 Mn D0 
15 0.04 0 D3 D0 Mn D3 
16 0.04 0 D6 D0 Mn D6 

† D0, D3 and D6 refer to Day 0, Day 3 and Day 6 after inoculation, respectively 

 

 

3.2.4 Glycosylation Index 

For each experimental condition, glycosylation indices were calculated from 

the relative percentages of individual glycan species (Ivarsson et al. 2014; Majid et al. 

2007). For example, the galactosylation index (GI), defined as the percentage of 

mono- and di-galactosylated species in the total glycan distribution, was determined 

according to the following equation 
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 GI = 2 × G/ + G�2 × �G� + G� + G/� % 3.1 

 

where G0 is the sum of all agalactosylated species, G1 is the sum of all 

monogalactosylated species, and G2 is the sum of all digalactosylated species. 

Similarly, we calculated the fucosylation index (FI) for each distribution as 

 

 FI = F��F� + F�� % 3.2 

 

where F0 and F1 are the sum of all afucosylated and fucosylated species, respectively.  

3.2.5 Controllability Analysis 

Using the technique presented in St.Amand et al (2014b), we perform 

controllability analysis to quantify the effect of time dependent media supplementation 

on the glycosylation profile in mAbs. Briefly, we note first that estimates of factor 

coefficients obtained after analyzing the mixed factorial design data correspond to the 

various “process gains”, defined as the change observed in the glycan distribution 

(output), ∆y, in response to a unit change in the input factor with which the coefficient 

in question is associated. By selecting statistically significant factor coefficients (at the 

significance level of α = 0.05) and setting all non-significant coefficients to zero, we 

generate the process gain matrix K so that 
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 ∆t = u∆v 3.3 

 

where ∆u represents the change in the input factor. Singular value decomposition of 

the process gain matrix produces the diagonal singular value matrix, Σ, and the unitary 

matrices, W and VT, that are subsequently used to obtain the orthogonal input (μ) and 

output (η) modes, which, along with the corresponding singular values are used to 

assess controllability. 

3.3 Results 

3.3.1 Early Addition of EDTA is Detrimental to Cell Growt h and Reduces 
Antibody Titer 

Figures 3.1 and 3.2 show the effect that introducing media supplements 

(MnCl2 or EDTA) at different time points had on cell culture parameters and final 

antibody titer, compared to corresponding results obtained from a control flask (F1) 

which contained MnCl2 at basal media concentrations and no EDTA. 

Compared to the conditions in the control flask, early addition of EDTA on D0 

reduced the cell density significantly, which is consistent with hampered cell growth. 

However, this effect was offset somewhat by introducing MnCl2 in addition to EDTA 

on D0. The viable cell density (VCD) measured on day 4 for samples in which both 

MnCl2 and EDTA were introduced on D0, was 1.31 x 109 cells/L, which was nearly 

three times as large as the value of the VCD in the flasks where only EDTA was added 

on D0 (~0.4 x 109 cells/L). Introducing MnCl2 on D3 or D6 after the addition of 

EDTA on D0 did not improve the VCD. Similarly, when EDTA was introduced on 

D3, the VCD in samples with no additional MnCl2 supplementation dropped sharply. 

By contrast, when the media was supplemented with MnCl2 on D0 or D3, the VCD 
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was slightly higher than when the media was supplemented with just EDTA on D3. 

Supplementing the samples with MnCl2 on D6 after the addition of EDTA did not 

improve the VCD significantly. In all cases, the observed VCD was generally higher 

than when EDTA was introduced on D0. Addition of EDTA on D6 had no impact on 

the VCD, regardless of the time of introduction of MnCl2. Similarly, as shown in 

Figure 3.1(d), early addition of MnCl2 on D0 and D3 reduced the VCD, while addition 

of MnCl2 on D6 did not alter the VCD. Thus, in summary, early addition of EDTA 

reduced cell viability in the absence of MnCl2 supplementation, but the addition of 

MnCl2 by itself did not alter cell viability significantly. 

Figure 3.2 shows the effect of media supplementation on antibody titers. The 

average mAb titer in the control flask F1 (with no MnCl2 or EDTA supplementation) 

was 0.13 g/L. The addition of EDTA to the media on D0 in the absence of MnCl2 

supplementation decreased the titer by about a fourth, to 0.03 g/L. This decrease in the 

titer was marginally offset when MnCl2 was introduced on D0, D3, or D6, with earlier 

MnCl2 supplementation resulting in higher titers than later supplementation. When 

EDTA was introduced on D3, the resulting titer was 0.10 g/L, three times higher than 

that observed with EDTA supplementation on D0. Further supplementing the media 

with MnCl2 on D0, D3, or D6, increased the titer observed with EDTA 

supplementation on D3 to values comparable to that of the control case. 

Supplementing the flasks on D6 with EDTA increased titers even further to 0.15 g/L, 

beyond values obtained in the control case. The titer values were also higher when 

EDTA supplementation on D6 was combined with MnCl2 supplementation on D0 

(0.17 g/L), D3 (0.17 g/L) or D6 (0.16 g/L). Finally, MnCl2 supplementation alone on 

D0, D3, or D6 increased the titer to an average of 0.14 g/L. Thus while early EDTA 
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supplementation has an adverse effect on the antibody titer, late EDTA addition 

improves the final titer. Consequently, we conclude that the addition of MnCl2 to the 

cell culture media or to EDTA supplemented media enhances the titer.  

 

Figure 3.1: Viable cell concentration data for CHO-K1 cells under different media 
supplementation conditions. (a) When EDTA is added by itself on D0 
(●), or in the presence of MnCl2 on D0 (▲), D3 (*), and D6 (♦); (b) 
When EDTA is added by itself on D3 (●), or in the presence of MnCl2 on 
D0 (▲), D3 (*), and D6 (♦); (c) When EDTA is added by itself on D6 
(●), or in the presence of MnCl2 on D0 (▲), D3 (*), and D6 (♦); and (d) 
When MnCl2 is added on D0 (▲), D3 (*), and D6 (♦) 
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Figure 3.2: Average antibody titer for the 16 experimental conditions. Mn and ED 
refer to the media supplements MnCl2 and EDTA, while D0, D3 and D6 
refer to Day 0, Day 3 and Day 6 after inoculation, respectively. Error 
bars represent the range of biological replicates (n=2). 

3.3.2 Early Addition of MnCl 2 Alters the Glycan Distribution Significantly 

The addition of EDTA and MnCl2 at different time points altered the glycan 

distribution, with earlier addition of MnCl2 having the more significant effect. Figure 

3.3 shows the effect of media supplementation on the glycan distribution, with panels 

3.3(a), (b) and (c) showing the changes in the glycan profile as a result of media 

supplementation with EDTA on D0, D3, and D6, with or without additional MnCl2 

supplementation, and 3.3(d) showing the impact of MnCl2 addition in the absence of 

EDTA supplementation.  

Adding EDTA to the cell culture media on D0 (Figure 3.3(a)) decreased the 

amount of biantennary fucosylated species, FA2, by 5.58%, which was offset by a 

concomitant increase in its galactosylated isoforms, FA2G1 (4.52%) and FA2G2 

(1.52%). The mannosylated species M5 also increased by 1.52% with a corresponding 

reduction of 1.79% in the concentration of the biantennary group A2 (which is 
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produced from M5 in the Golgi compartment). Adding MnCl2 on D0, D3, or D6 to 

media in which EDTA was introduced on D0 resulted in a further increase in the 

relative concentrations of the galactosylated isoforms FA2G1 and FA2G2, in addition 

to a decrease in the relative percentage of FA2, A2, and A2G1 species, compared to 

the distribution in the control flask. However, the increase in FA2G1 and FA2G2 was 

more pronounced when MnCl2 was introduced on D3 or D6 after adding EDTA. 

When EDTA was added on D3 (Figure 3.3(b)) the relative percentages of the 

biantennary species FA2, FA2G1, and A2G1 decreased, while the relative percentages 

of glycan species M5, A1, and FA1 increased. When MnCl2 was added on D0 

followed by EDTA supplementation on D3, the concentrations of M5 and FA1 

increased, while the concentration of FA2 decreased. Additionally, there was an 

increase in the relative percentage of A2G1 that was offset by the decrease in the 

concentration of A1G1. When both EDTA and MnCl2 were added to the media on D3, 

the change in the glycan distribution mirrors the trend observed when only EDTA was 

introduced on D3. The main difference occurs when MnCl2 was added to the media 

after EDTA addition, i.e., on D6. Here, the relative percentages of M5, FA1, FA2G1, 

and FA2G2 increased while the relative percentages of A2, A2G1, and FA2 decreased, 

similar to the trends observed with the addition of MnCl2 on D3 or D6 following 

EDTA supplementation on D0. Although the late addition of EDTA on D6 of the cell 

culture did not affect the glycan profile significantly (Figure 3.3(c)), for those glycan 

species whose relative percentages change, the trend was similar to that observed with 

EDTA supplementation on D0 and D3, i.e., an increase in the relative percentage of 

M5 and A1 accompanied by a decrease in that of FA2 and FA2G1. When the media 

was first supplemented with MnCl2 on D0 or D3, followed by EDTA supplementation 
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on D6, the relative percentage of FA2 species decreased while the relative percentages 

of M5, A2 and FA2G1 species increased. A simultaneous addition of both EDTA and 

MnCl2 toward the end of the batch increased the relative percentage of A2G1 while 

decreasing the relative amount of its fucosylated isoform FA2G1. 

 

Figure 3.3: Average relative glycan percentage of IgG1 glycans produced in CHO-
K1 cells under different experimental conditions. (a) When EDTA is 
added on D0 with no MnCl2 supplementation or with MnCl2 
supplementation on D0, D3, and D6; (b) When EDTA added on D3 with 
no MnCl2 supplementation or with MnCl2 supplementation on D0, D3, 
and D6; (c) When EDTA added on D6 with no MnCl2 supplementation 
or with MnCl2 supplementation on D0, D3, and D6; and (d) When MnCl2 
is added on D0, D3, and D6 
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The solo effect of MnCl2 on the glycan profile was observed by supplementing 

the media with MnCl2 in the absence of EDTA on D0, D3 or D6 (Figure 3.3(d)). 

Adding MnCl2 on D0 decreased the relative percentage of the FA2 species from the 

control value of 51.79% (with a 95% confidence interval range of ±0.94%) to 39.50% 

(±1.55%). Similarly, the relative percentage of the monogalactosylated species FA2G1 

drops from the control value of 23.87% (±0.94%) to 17.95% (±1.55%).  This decrease 

in the fucosylated species was offset by an increase in the biantennary species A2 

(which increased by 13.24%), the mannosylated species M5 (2.62%), and the 

galactosylated biantennary species A2G1 (4.29%). A similar trend was observed when 

MnCl2 was introduced to the culture medium on D3, with the decrease in the 

fucosylated species being offset by a significant increase in the biantennary species A2 

(which increased by 10.20%), the mannosylated species M5 (increasing by 6.59%) 

and only a marginal increase in the A2G1 species (by 0.76%). Adding MnCl2 during 

the peak exponential phase (D6) resulted in similar changes to the glycan distribution, 

but these changes were smaller in comparison to the changes in the glycan distribution 

due to earlier addition of MnCl2. The concentrations of the fucosylated species FA2 

and FA2G1 decreased by 2.36% and 1.28% respectively, with the corresponding 

increases in the concentrations of A2 and M5 species being 2.52% and 1.94%, 

respectively. While such qualitative discussions of the glycan distribution profiles may 

be instructive, for our purposes, a quantitative analysis relating the changes in the 

experimental conditions to the observed changes in the glycan profile is more 

informative. 
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3.3.3 The Type of Media Supplement and the Time of Addition both howed 
Statistically Significant Effects on Glycan Distribution 

The concentrations of MnCl2 and EDTA and the time of addition of each one 

constitute the four factors in the (22, 32) mixed factorial experimental design. A full 

factorial experimental design gives rise to 36 experimental conditions and the resulting 

model in principle consists of 35 main and interaction effects. The statistically 

significant factor coefficients (at the significant level of α = 0.05) estimated using 

ANOVA, were used to generate a “gain” matrix, whose elements represent “by how 

much” each output variable (relative glycan distribution) will change in response to a 

unit change in each input factor, including multi-factor interactions (since multiple 

combinations of single inputs are considered as valid inputs in this case). However, 

because the full factorial experiment consists of only 16 unique cases (see Materials 

and Methods), we must eliminate the redundant rows in our gain matrix resulting in a 

reduced gain matrix with 15 input factors, some of which are multi-factor 

combinations (see Appendix B for the complete gain matrix and the interactions) 

Figure 3.4 shows a heat map of the elements of the gain matrix, indicating which input 

factor affects which glycan, and the magnitude as well as the direction (increase or 

decrease) of each effect.  
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Figure 3.4: Heat map of significant factor coefficients (α = 0.05) obtained from 
ANOVA. The input factors are listed along the horizontal axis, and 
individual glycan species along the vertical axis. The color red indicates 
a decrease in the concentration of a particular glycan while green 
indicates an increase. The color intensity represents the magnitude of the 
significant coefficient, with increasingly darker hues indicating 
increasingly larger magnitudes and progressively lighter hues indicating 
commensurately lower magnitudes.  

An examination of the heat map indicates that the glycan species FA2, FA2G1, 

and A2 are affected by most of the factors and their combinatorial interactions. For 

instance, the concentration of the most abundant glycoform, FA2, (which accounts for 

nearly 52% of the glycan concentration in the control sample) is affected by the 

concentration of MnCl2, the two-way interaction of MnCl2 and EDTA, and the late 

stage addition of MnCl2. In particular, a unit change in the concentration of MnCl2 

causes an increase in the average concentration of FA2 (as indicated by the positive 

coefficient for the MnCl2 effect), while introducing MnCl2 on D3 causes a reduction in 
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the average concentration of FA2. By contrast, the monogalactosylated form FA2G1 is 

not affected by changes in the media concentration of MnCl2; rather it is influenced by 

changes in the concentration of EDTA, the early addition of MnCl2MnCl2and the two-

way interaction of MnCl2 and EDTA. Further, we observe that two of the interaction 

factors, Mn T1-ED T1 and Mn T2-ED T1, have statistically significant and opposing 

effects on the concentration of FA2G1. The factor Mn T1-ED T1 represents the two-

way interaction of adding MnCl2 on D0 and adding EDTA on D0, whereas Mn T2-ED 

T1 represents the two-way interaction of adding MnCl2 on D3 when EDTA is 

introduced on D0.  We observe therefore that the concentration of FA2G1 is affected 

by multiple input factors, including complex interactions between the amount of 

supplements added, and the times of addition of the supplements. One is thus able to 

assess the impact of each input factor on the response of all other individual glycan 

species in similar fashion. As indicated by the heat map, the effects of higher order 

interactions on most of the glycan species are negligible (if they exist at all) because 

estimates of the coefficients associated with most interaction effects are statistically 

insignificant.  

3.4 Discussion 

While media supplementation has been studied widely for its effect on the 

quality attributes of mAbs, such studies have been limited to the introduction of media 

supplements exclusively at the start of the culture, and the results, when quantitative, 

have yielded only isolated single factor relationships. The results from the current 

study show that introducing media supplements at different time points during cell 

culture does in fact have an effect on cell growth conditions and antibody 
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glycosylation distribution, and the effects can be quantified globally and potentially 

used to design effective control schemes.  

Specifically, we have shown that earlier addition of EDTA is detrimental to 

cell growth and results in a decrease in antibody titer. When EDTA was added on D0 

(at the inoculation stage) the peak viable cell density (VCD) remained close to the 

seeding density, indicating a hampering of cell growth. This result is consistent with 

the well-known fact that EDTA is toxic to cells (Kim et al. 2009b). The decline in the 

viable cell densities due to EDTA addition during the growth phase can also be 

attributed to the removal from the media (as a result of EDTA’s chelating effect) such 

trace metals as Ca++, Zn++, etc. that are essential for cell survival. By contrast, when 

both EDTA and MnCl2 were added on D0, the peak VCD increased two-fold. While 

this peak VCD is lower than the peak VCD of the control flask (5.78 x 106 cells/mL), 

the increased viability can be attributed to the presence of excess MnCl2 titrating 

EDTA, resulting in reduced cytotoxicity. The increase in the cell viability due to the 

simultaneous addition of MnCl2 and EDTA also resulted in higher mAb titers, 

compared to the titers observed when only EDTA was added.  

When EDTA was added on D3, the cells were in the middle of the growth 

phase and the addition of the cytotoxic EDTA hampered further growth, leading to a 

steep decline in the cell viability beyond D3 (Figure 3.1(b)). By contrast, when MnCl2 

was added to the media (on D0 or D3) in the presence of EDTA, the cells did not 

experience a similar reduction in viability. As noted previously, simultaneous addition 

of EDTA and MnCl2 also resulted in an improvement in the titer to a value 

comparable to that in the control flask. When EDTA was added on D6, the cells were 

already at the end of the growth phase and hence the introduction of EDTA did not 
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alter the cell viability. However, when EDTA was added on D6 along with MnCl2 

supplementation on D0, D3 or D6, the final titer values were higher than the titer value 

in the control flask. The increase in antibody titer in the presence of EDTA has been 

observed by others as well (Kao et al. 2010; McAtee et al. 2014) and is attributed to 

the inhibition of antibody reduction during cell lysis. Thus, later addition of EDTA 

combined with early addition of MnCl2 could potentially improve titer without 

compromising cell viability. Further, analyzing the EOR titer data using ANOVA 

shows that the factor coefficients for the concentration of EDTA, the concentration of 

MnCl2, and time of addition of EDTA are statistically significant (at a significance 

level of α = 0.05). The expected change in the EOR titer in response to a unit change 

in any of these factors is quantified by the magnitude of that factor coefficient, while 

the sign of the factor coefficient indicates the direction of change. Thus, for example, a 

unit positive step change in the concentration of EDTA (with a factor coefficient of -

0.017) or time of addition of EDTA (-0.032) results in a decrease in EOR titer; a unit 

positive step change in the concentration of MnCl2 (0.008) causes an increase in titer. 

Quantifying the effect of these input factors on the EOR titer provides a rational basis 

for selecting what particular supplement to add, and how much of it to add, at a given 

stage of cell culture in order to maximize product yield. However, any media 

supplementation strategy must meet not just the desired specifications for final titer 

but also for product quality, i.e., to be effective, the implemented media 

supplementation strategy must not alter the glycan distributions significantly.  

The EOR titer represents the total amount of antibody accumulated at the end 

of the batch, while the measured glycan distribution represents the relative amount of 

each individual glycan isoform that has accumulated over the duration of the batch. 
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Now, the relative amount of individual glycan species is a function of antibody 

productivity and it changes over the course of the batch. In our case, the addition of 

different media supplements at different stages of batch cultures affected both viability 

and antibody titer; consequently, the observed change in the glycan distribution has 

been induced by dynamic media supplementation and changes in productivity. 

Therefore, to develop a mechanistic understanding of the effect of dynamic media 

supplementation on the glycosylation profile, we first decouple the effect of antibody 

productivity on the glycan distribution from the overall change observed at the end of 

the batch.  One such decoupling approach involves estimating the mass fractions of 

specific glycoforms produced at different stages of cell culture using the expression 

(Fan et al. 2015b) 

 

 f� = kmAb�|+L +Nm − kmAb�|+L +MmkmAby)+|+L +Nm − kmAby)+|+L +Mm 3.4 

 

for fi, the fraction of mAb glycoform i produced in the time period [t1, t2] relative to 

the total amount of antibody secreted in the same period. However, we cannot use this 

expression for our purpose because we only measured EOR titer and final glycan 

distribution, not intermittent antibody titer or glycan concentration. Consequently, we 

propose an alternative metric based solely on the final titer and glycan measurements.  

To illustrate, consider the glycan distribution in the control flask and in the 

flask with MnCl2 added on D6. In both flasks, the cell growth profile and antibody 

productivity will be the same until day 6, when MnCl2 is introduced to the latter flask. 
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Thus the amount of ith glycoform fractions accumulated between day 6 (D6) and the 

end of the run (EOR) for the two flasks can be written as 

 

 fC�z/� = {mAbC�z/�K+L |}~� − {mAbC�z/�K+L �z�{mAbC�z/y)+K+L |}~� − {mAbC�z/y)+K+L �z� 3.5 

 

 f�)�+n)�/� = {mAb�)�+n)�/�K+L |}~� − {mAb�)�+n)�/�K+L �z�{mAb�)�+n)�/y)+K+L |}~� − {mAb�)�+n)�/y)+K+L �z� 3.6 

 

Recognizing that the D6 values in equations (5) and (6) above are identical, we 

can eliminate the intermittent time point with simple arithmetic manipulations and 

obtain the change in the accumulation of the ith glycoform based solely on EOR 

values, as 

 

 ∆f� = {mAbC�z/�K+L |}~� − {mAb�)�+n)�/�K+L |}~�{mAbC�z/y)+K+L |}~� − {mAb�)�+n)�/y)+K+L |}~� 3.6 

 

Thus, this fractional difference allows us to group together different 

experimental conditions with similar antibody titers, making it possible to compare 

final glycan distributions and hence quantify the effect of individual media 

supplements on the glycan profile appropriately. Such analyses extended to other 

experimental conditions yield the comparative fractional difference in the glycoform 

distribution shown in Figure 3.5.  
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A comparison of the fractional difference in the glycan distribution in flasks 

where MnCl2 is added to D0 EDTA supplemented flasks relative to the glycan 

distribution in D0 EDTA supplemented flasks (figure 5(a)), shows the following: an 

increase in the amount of FA2 (by nearly ~ 50% in all cases), FA2G1 (by 29% during 

D0 supplementation, 60% during D3 supplementation, and 122% during D6 

supplementation), and FA2G2 (by 3%, 10%, and 20% respectively), with a relative 

decrease in A2 and M5 by 2% and 4% when MnCl2 is added on D3, and nearly 14% 

when MnCl2 is added on D6. A similar trend is observed in the fractional difference in 

the glycan distribution in flasks where MnCl2 is added on D3 and D6 to D3 EDTA 

supplemented flasks (figure 5b). Here the fractional difference in the glycan 

distribution is calculated relative to the glycan distribution observed when EDTA is 

added on D3. Again, we notice an increase in FA2, FA2G1 and FA2G2, with a 

decrease in A2, M5, and A2G1 observed only when MnCl2 is added on day 6 after the 

addition of EDTA on D3. Previous studies have shown that adding MnCl2 produces an 

upregulation of galactosyltransferase enzymes (St. Amand et al. 2014b), and 

subsequently in increased galactosylation (Grainger and James 2013; Gramer et al. 

2011). Hence, the increase in the amount of FA2G1 and FA2G2 species can be 

attributed to the effect of late stage manganese addition on the galactosyltransferase 

enzyme. Figure 3.5(c) shows fractional difference when EDTA is added on D6 after 

MnCl2 has been added to the culture on D0 and D3. These differences are calculated 

relative to the glycan distribution observed due to the addition of MnCl2 on D3 and 

D6, respectively. We note that the fractional difference in the fucosylated species FA2 

and FA2G1 is positive when EDTA is added after MnCl2 supplementation, indicating 

that the addition of EDTA increases the concentration of these species relative to their 
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respective concentrations in MnCl2 supplemented cultures.  Also, a comparison of the 

fractional difference in the glycan distribution when MnCl2 was introduced on D0, D3, 

or D6 relative to the glycan distribution in the control flask (figure 3.5(d)), shows that 

the relative concentrations of FA2 and FA2G1 species decreased in flasks with D0, 

while late stage addition of MnCl2 did not have a significant effect on the overall 

glycan distribution. Taken together, our findings indicate that the latter addition of 

EDTA reverses the changes in the glycan distribution induced by MnCl2.  
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Figure 3.5: Comparing fractional differences in the glycoforms for different 
experimental cases. (a) When MnCl2 is added on D0 (E0M0), D3 
(E0M3), and D6 (E0M6) to EDTA D0 supplemented cultures. The 
fractional changes are calculated relative to the glycan distribution in 
EDTA D0 (labeled E0) cultures and no MnCl2 supplementation. (b) 
When MnCl2 is added on D3 (E3D3), and D6 (E3D6) to EDTA D3 
supplemented cultures and on D6 (E6D6) to EDTA D6 supplemented 
cultures. The fractional changes are calculated relative to the glycan 
distribution in EDTA D3 (E3) and D6 (E6) cultures respectively. (c) 
When EDTA is added on D3 (E3M0) and D6 (E6M0) to MnCl2 D0 
cultures and on D6 (E6M3) to MnCl2 D3 cultures. The fractional changes 
are calculated relative to the glycan distribution in MnCl2 D0 and D3 
(M3) cultures respectively. (d) when MnCl2 is added on D0, D3, and D6 
to control cultures. The fractional changes are calculated relative to the 
distribution in the control case.  
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Fractional difference analysis helps to identify which glycan species are altered 

as a result of the addition of specific media supplements, but not why those particular 

glycan species changed. To identify the kinetic mechanisms underlying these changes 

observed in the glycan distribution upon adding MnCl2 to the media, we use an 

existing dynamic mathematical model of glycosylation previously described in §2.3.3 

to test the proposition that the changes observed in the glycan distribution due to the 

addition of MnCl2 are induced by changes in the concentrations of the 

glycosyltransferase enzymes. First we matched the simulated glycan profile to the 

experimentally determined glycan profile in the control flask using kinetic parameters 

obtained by the optimization subroutine. Next, we note that the addition of MnCl2 on 

D0 of the cell culture results in a decrease in the relative abundance of fucosylated 

glycoforms, FA2 and FA2G1 with a corresponding increase in the concentration of 

their afucosylated isoforms, A2 and A2G1 species.  The enzyme alpha-1,6-

fucosyltransferase (FucT) is responsible for fucosylating glycan species in the N-

glycan biosynthetic pathway. By reducing the total enzyme concentration for FucT in 

the kinetic model from 0.55 mM to 0.22 mM, we are able to simulate the change in the 

glycan distribution due to addition of MnCl2 on D0, as shown in Figure 3.6. The 

simulations show that changes in the glycan distribution due to the addition of MnCl2 

can be attributed to the changes in the enzyme concentration of FucT. 
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Figure 3.6: Comparison of experimental data and model fit for the glycan 
distribution profile obtained from (a) control flask; and (b) when MnCl2 
is added on D0.  

In addition to fractional difference analysis, we use the glycan indices 

computed for each experimental condition, shown in Table 3.2, as a quantitative 

metric for quantifying and assessing the change in the final glycosylation profile 

caused by the addition of different media supplements. Specifically, a comparison of 

the individual glycan indices for each condition against the corresponding values 

under control conditions allows us to establish objectively that altering the availability 

of MnCl2 in the media using a chelating agent reverses the changes in the glycan 

distribution. While MnCl2 addition on D0 resulted in a decrease in the fucosylation 

index from 79.9% in the control flask to 60.5%, we see that subsequent introduction of 

EDTA on either D0, D3, or D6 reversed that trend. Early stage addition of EDTA on 

D0 increased the fucosylation index to 82.46%, while adding EDTA on D3 and D6 

resulted in fucosylation indices of 78.8%, and 76.5% respectively. Similarly, the 

decrease in the galactosylation index, upon adding MnCl2 on D0, from 17.9% in the 

control flask to 15.8%, could be reversed by subsequently adding EDTA on D3. 

Adding MnCl2 to the media on D3 reduced the fucosylation index to 61.9%, but if we 
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then added EDTA on D6, the fucosylation index increased to 77.8%, which is 

comparable to the value of 79.9% in the control flask.  It is important to note however, 

that the reversal in the glycan indices observed due to the addition of EDTA on D0 

and D3 is achieved at the expense of reduced titer and reduced viability, as discussed 

above. The indication from our results is that changes in the glycan distribution due to 

MnCl2 addition can be reversed only when EDTA is added to the media after MnCl2 

addition. Thus, the effect of MnCl2 supplementation can be reversed, without 

decreasing productivity, by adding EDTA on D6 to MnCl2 supplemented media, 

providing a means of ensuring higher productivity without altering glycan distribution  
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3.2: Glycosylation index (GI) and fucosylation index (FI) for each 
experimental condition 

Experimental condition† Galactosylation 
Index (GI) 

Fucosylation 
Index (FI) 

Control 17.9 79.9 

Mn D0 15.8 60.5 

Mn D0/ ED D0 20.6 82.5 

Mn D0/ ED D3 18.0 78.8 

Mn D0/ ED D6 19.3 76.5 

Mn D3 15.7 61.8 

Mn D3/ ED D0 25.2 88.6 

Mn D3/ ED D3 15.1 73.9 

Mn D3/ ED D6 18.0 77.8 

Mn D6 16.7 76.3 

Mn D6/ ED D0 24.8 90.3 

Mn D6/ ED D3 19.9 86.4 

Mn D6/ ED D6 17.9 77.3 

ED D0 21.6 81.0 

ED D3 16.5 75.3 

ED D6 16.9 77.7 

 

 

Although such observations as these provide useful qualitative information 

about the system, they cannot be used to develop a control strategy; that requires a 

quantitative representation (and hence understanding) of the effects of media 

supplementation on glycan distribution. Such quantitative understanding can be 
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obtained via formal analysis of the experimental data using analysis of variance 

(ANOVA) to generate the process gain matrix, K , as described in Materials and 

Methods. Singular value decomposition of the gain matrix K  produces a (diagonal) 

matrix of singular values, Σ, and two unitary matrices, W and VT. Together these 

three matrices provide a particularly insightful representation of the process 

information encapsulated in the gain matrix, K : Equation 3.3 is transformed into a 

series of n individual and independent equations where, in each case, a linear 

combination of the original process input factors, with weighting coefficients from the 

matrix W, now constituting an “input mode”, μi, is connected through the associated 

singular value σi, to the corresponding linear combination of the output glycans, (with 

weighting coefficients from the matrix V), now constituting an output mode ηi (St. 

Amand et al. 2014c). Furthermore, as a result of this decoupling transformation, the 

magnitude of each singular value naturally quantifies the extent to which the output 

mode in question will change in response to a change in the corresponding input 

mode. Thus, the larger the value of σi, the greater will be the change in the 

corresponding output mode ηi as a result of changes in the input mode μi, so that 

output modes associated with larger values of σi will be more “controllable” than 

modes associated with smaller values of σi.  

The first ten singular values (σ1 – σ10) for our experimental system are listed in 

Table 3.3 in decreasing order of magnitude. As modes associated with singular values 

of smaller magnitude are less controllable, we limit our analysis only to those modes 

that are practically controllable; we do this by using a threshold cutoff value, σ* , 

arbitrarily selected to be 0.5 in this example, thereby limiting our analysis to the first 

five singular values. From a process control perspective, modes associated with 
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singular values below this threshold are considered to be of no practical importance 

since, for all intents and purposes, they are not controllable 

3.3: Singular values obtained from the SVD analysis of the matrix of 
significant coefficients 

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 

6.22 3.68 2.21 0.80 0.61 0.45 0.41 0.31 0.10 0.05 

 

 

Next, since by definition, each input–output mode pair represents the linear 

combination of output glycan species that can be controlled by manipulating the 

specific input factors in the corresponding input mode, the coefficients of each output 

factor in the output modes and of each input factor in the input modes provide further 

information about the relative influences exerted by each original input factor on each 

output factor. Specifically, the coefficient of a particular output factor in a particular 

mode represents the magnitude by which the relative percentages of those particular 

glycans will change in response to a unit change in the input mode. On the other hand, 

the coefficient of a particular input factor in the associated input mode corresponds to 

the relative contribution of that input factor to the unit change the input mode in 

question. Thus, the inputs with the largest coefficients in an input mode represent the 

dominant factors and hence the largest contributors to the influence of that mode, 

while the output glycans with the largest coefficients in an output mode represent 

those species whose relative percentages will change the most under the influence of 
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the input modes. The input-output mode pairs and their associated coefficients are 

shown in Figure 3.7.  

Because it is associated with the largest singular value of σ1 = 6.62, the first 

output mode η1 is the most controllable output mode. The value of σ1 represents the 

change in the overall output mode η1 resulting from a unit change in the input mode 

μ1. For this output mode, we note that the dominant glycan species are A2, with a 

coefficient of 0.64, followed by FA2G1 (with a coefficient of -0.62), FA2 (-0.38), M5 

(0.14), and A1 (0.13), indicating that a unit positive change in the input mode μ1 will 

result in an increase in A2, M5, and A1, accompanied by a decrease in FA2G1 and 

FA2, each in the amount indicated by the identified coefficients. The biantennary 

species A2, with the largest coefficient, is the most controllable glycan in the first 

mode, followed by FA2G1 and FA2. The indicated coupling between the glycans A2, 

FA2G1, and FA2 makes sense because an increase in the afucosylated glycoforms 

occurs at the expense of the fucosylated forms, as our experimental results show. The 

associated input mode μ1 is a linear combination of different input factors representing 

the media supplements MnCl2 and EDTA as well as the times of their addition. Mode 

μ1 is primarily dominated by the interaction of MnCl2 and EDTA, and the 

concentrations of EDTA and MnCl2, with associated coefficients -0.58, 0.44, and -

0.39 respectively, indicating that the addition of these two media supplements has 

opposing individual effects on output mode 1. Early stage addition of EDTA and 

MnCl2, denoted by the factors EDT1 and MnT1, with associated coefficients -0.38 and 

0.25 respectively, also exert important influences on the first output mode. Based on 

the different elements that comprise the first input mode, we note that one can control 
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the glycans in output mode η1 by adjusting the concentrations of the two supplements 

at the early stages of the cell culture.  

The next controllable output mode η2 is associated with the singular value σ2 = 

3.68, and the linear combination of glycans represented by this mode is dominated by 

the glycan species FA2G1, FA2, A2, M5, and FA2G2. The coefficients associated 

with these glycans are -0.71, 0.56, -0.33, -0.20 and -0.11, respectively, indicating that 

a unit positive change in the input mode μ2 will cause a relative increase in FA2 while 

causing the other glycan species to decrease. The increase in FA2 coupled with the 

decrease in FA2G1 and FA2G2 indicates that perturbations to the input mode μ2 

affect the galactosylated species particularly. Since the singular values are arranged in 

decreasing order, the influence of mode μ2 on output mode η2 is less than that of μ1 on 

mode η1. The largest coefficients in mode μ2 are associated with the input factors 

MnCl2 (with a coefficient of 0.6), the early stage addition of EDTA denoted by factors 

EDT1 (with a coefficient of -0.47) and EDT2 (0.35), and the interaction effect of 

MnCl2 and EDTA (0.24).   
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Figure 3.7: Graphical representation of the coefficients associated with the first five 
input and output modes (with σi ≥ σ*=0.5) obtained from controllability 
analysis. (a) Output mode η1 and the corresponding input mode μ1; (b) 
Output mode η2 and the corresponding input mode μ2; (c) Output mode 
η3 and the corresponding input mode μ3; (d) Output mode η4 and the 
corresponding input mode μ4; (e) Output mode η5 and the corresponding 
input mode μ5 

A unit positive change to the input mode μ3 causes the following changes in 

the relative concentrations of the glycan species that comprise output mode η3 (with σ3 

= 2.21): A2, A2G1, FA2, and FA2G1 increase, and M5, A1, and FA1 decrease, 

simultaneously. This indicates that input mode μ3 can be used to increase the 
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biantennary species, but at the expense of a (perfectly logical) concomitant decrease in 

the species that are upstream of these biantennary species. The input mode μ3 is 

dominated by EDTA (with associated coefficient 0.65), the interaction effect of MnCl2 

and EDTA (with coefficient 0.45), and the early stage addition of MnCl2 denoted by 

the factor MnT1). In each of the three input modes, the coefficients associated with the 

interaction effect of MnCl2 and EDTA indicate the importance of this combination 

input factor in altering the concentrations of the glycan species associated with the 

respective modes. 

The fourth and the fifth modes are less controllable, as they are associated with 

singular values of comparatively smaller magnitudes (σ4 = 0.80 and σ5 = 0.61). η4 is 

dominated by glycans A1, A2, FA1, FA2, FA2G1, and FA2G2, while η5 is dominated 

by FA1, A2G1, and FA2G2. The input mode μ4 is dominated by the interaction effects 

Mn T2-ED T2 and EDTA*Mn T2-ED T2 representing the interaction between the 

time of addition of the media supplements. By contrast, the predominant factors in 

mode μ5 are MnT1 and EDT2, which represent the addition of MnCl2 on D0 and 

EDTA on D3 respectively. 

It is worth mentioning that the controllability analysis presented here provides 

a quantification of the effect that the addition of specified amounts of particular media 

supplements and the respective times of addition jointly have on the output glycan 

distribution at the end of the batch. As discussed above, introducing these media 

supplements dynamically also results in quantifiable changes in the antibody titer. 

Thus, the dynamic supplementation strategies discussed here present a challenging 

problem involving a trade-off between product yield and product quality. To be 

effective, a control strategy based on these considerations, must therefore be carefully 
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designed to resolve these conflicts appropriately in order to optimize both the titer and 

the quality simultaneously. 

In closing, we note that: 

1. the relationships between time-dependent changes in media 
supplements and the corresponding changes in glycan distribution are 
(understandably) complex and not necessarily obvious or easily 
amenable to qualitative thinking; but  

2. controllability analysis via singular value decomposition, and the 
resulting input-output mode pairs determined specifically for our 
experimental system, have enabled us to identify which input factors 
are best manipulated, in order to effect changes in the relative 
percentage of specific glycan species;  

3. in addition, the coefficients in the equations representing the input and 
output modes allow us to quantify by how much we expect the glycan 
species to change in response to specific time-dependent media 
supplementation actions. 

3.5 Summary and Conclusions 

There is growing interest in evaluating the role of media supplements, 

especially MnCl2, in modulating glycoform distributions in mAbs. However, most 

media supplementation studies (where supplements are added to the media before 

starting the batch) do not take into consideration the impact of introducing media 

supplements at different stages of cell growth. In this chapter we have presented a 

systematic approach for evaluating the effects of time dependent media 

supplementation on the glycan profile, and provided a methodology for quantifying 

and analyzing the complex effects. Our results show that while it is important to 

consider which supplements are to be added to the media in order to alter specific 

glycan species, when they are to be added is just as important. In addition to this 

general observation about what to change and when, our results and analysis technique 
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also demonstrate how to quantify “by how much” to expect specific glycan species to 

change as a result of the changes in the media supplements.  

For instance, we observe that early stage addition of MnCl2 affects fucosylated 

species and alters the glycan distribution more significantly than a late stage addition. 

Similarly, early stage addition of EDTA affects not just the antibody titer, but also the 

relative percentages of biantennary and galactosylated species; late stage addition of 

EDTA does not alter the glycan distribution significantly. The glycan distribution 

profile is also affected by the addition of both EDTA and MnCl2 to the media at 

different time points and a mechanistic understanding of the effect of individual media 

components on the glycan distribution can be developed by studying the fractional 

difference in the glycan distribution. In fact, our results demonstrate that changes in 

the glycan distribution profile due to the addition of MnCl2 are not immutable; they 

can be reversed by adding EDTA after MnCl2 has been added to the media. We then 

used controllability analysis to identify the specific combinations of input factors 

which, when manipulated, result in quantifiable changes in the relative percentage of 

specific glycan species. For the specific experimental system, our analyses show that 

A2, FA2G1 and FA2 are the most controllable glycan species whose concentrations 

can be changed by early stage supplementation of EDTA and late stage 

supplementation of MnCl2. 

Traditionally, the composition of cell culture media is fixed prior to starting the 

batch. However, we have demonstrated that introducing supplements at different 

points in time can influence both the productivity and the quality attribute of the 

antibody. While we have examined only two specific media components in the current 

set of experiments, in principle, the systematic approach presented here can be 
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extended easily to other media components such as amino acids, or trace metals. In 

addition, the development of hydrogels that can induce a “slow release” or “timed 

release” of specific nutrients and media supplements should provide additional 

degrees of freedom that could be investigated in future experiments. 

While this chapter has focused on establishing a rational framework for 

studying the influence of time-dependent media supplementation on the glycosylation 

profile, the techniques introduced here can be extended to tackle the complementary 

problem of designing and implementing appropriate control strategies to achieve 

desired glycan distribution profiles. In the following chapter, the design and 

implementation of controllers based on output controllability analysis is demonstrated 

for two different systems.  
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A CONTROLLER DESIGN FRAMEWORK FOR CONTROLLING THE 
GLYCOSYLATION PROFILE 

4.1 Introduction 

In the preceding chapters, we developed a fundamental understanding of the 

effect of different input factors on the glycan distribution using two parallel 

approaches. First, in Chapter 2 we developed a multi-scale model of glycosylation to 

model the effect of macro-scale bioreactor conditions such as nutrient and metabolite 

concentrations on the glycan distribution profile. Next, we studied how media 

conditions affect the glycan distribution and identified, using controllability analysis, 

the specific combinations of different inputs that can be used to manipulate specific 

combinations of different glycan outputs. In this work, we use output controllability 

analysis to design proportional (P) and proportional-integral (PI) controllers to control 

the glycan distribution in mAbs.  

We propose a two-step framework for controlling glycosylation based on 

output controllability analysis. First, we use statistical design of experiments to study 

the changes in the glycosylation pattern due to different input factors and then 

implement controllability analysis to identify specific inputs that can be used to 

control the glycosylation profile. As demonstrated in Chapter 3, output controllability 

analysis is used to identify the combination of input factors that alter the 

concentrations of specific combinations of glycan species, and to develop a 

quantitative input-output relationship. Using the structural information generated from 

Chapter 4
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such an analysis, we design a control scheme for glycosylation control and illustrate 

its applicability using two specific case studies: (a) where the concentrations of 

specific glycosyltransferase enzymes are the inputs (or manipulated variables) used to 

control glycan distribution (output) and we represent the input-output relationship 

using the micro-scale model developed from a first principles based analysis of the 

glycan reaction network; and (b) where we add select amino acids to the cell culture 

media and use these cell culture media supplements as manipulated variables.  The 

first case study is based on the micro-scale mathematical model originally presented in 

§2.3.3. We investigate the second case study as there is growing interest in examining 

the role of media additives and optimizing cell culture media to improve antibody titer 

and modulate product quality attributes (Blondeel et al. 2016; Jordan et al. 2013; 

Kildegaard et al. 2016; Kishishita et al. 2015; Kyriakopoulos and Kontoravdi 2014; 

Landauer 2014; Rouiller et al. 2014; Zhang et al. 2013). Cell culture media 

development is an area of active research, and specifically, the role of amino acids in 

altering cellular metabolism is being investigated to develop means to enhance cell 

culture productivity and titer (Gonzalez-Leal et al. 2011; Xing et al. 2011). However, 

the effect of adding different amino acids on the glycosylation profile and hence the 

overall quality is not well understood and there are often conflicting reports on the 

subject. For instance, the addition of asparagine to cell culture media has been 

reported to modulate the concentrations of galactosylated species of IgG1 (McCracken 

et al. 2014; Rives et al. 2015), while other studies have reported no effect of amino 

acids on the quality attributes of IgG3 (Read et al. 2013). In our work, we 

systematically investigate the effect of amino acid supplements using a factorial 

design approach and perform controllability analysis.  
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Based on output controllability analysis (that has been described in Chapter 3), 

we design P- and PI-type controllers, and then test via simulations the controller 

performance for set-point tracking. We then test, via simulations, the controller 

performance under nominal conditions by assuming that the process model accurately 

represents the process. However, due to the inherent complexity and non-linearity of 

the system, the linear process model generated by our analysis is bound to be different 

from the ‘true’ process and hence, we test the controller performance under model-

plant mismatch conditions. Our results show that in each instance the designed 

controllers are able to track the set-point effectively, indicating that the two-step 

framework presented here is an effective method for controlling the glycosylation 

profile.  

In §4.2, different experimental and computational approaches used to develop 

the glycosylation controllers are discussed, while in §4.3 our main findings are 

presented and the results are discussed. We summarize the work presented in this 

chapter in the final section of this chapter.  

4.2 Materials and Methods 

4.2.1 Computational Model of Glycosylation 

The micro-scale glycosylation model introduced in Chapter 2 was suitably 

modified to study the changes in the glycan distribution induced by changes in the 

concentrations of the glycosyltransferase enzymes. Having defined the reaction 

network and obtained the mass balances for the 18 glycan species participating in 20 

reactions based on the cisternal maturation model, we calculate the distribution of the 

different glycosylation enzymes along the length of the Golgi using the peak enzyme 
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concentrations (Emax) listed here: Emax,FucT = 2.33 μM; Emax,GalT = 1.00 μM; Emax,GnTI 

= 2.52 μM; Emax,GnTII = 1.07 μM; Emax,ManI = 2.45 μM; Emax,ManII = 1.00 μM. The mass 

balance equations form a system of partial differential equations that was solved using 

the ode15s function in MATLAB to obtain the dynamic concentration profile for each 

glycan species. Next, using Plackett-Burman experimental design, the peak enzyme 

concentrations, Emax, for all six glycosyltransferase enzymes were changed by ±10% 

and the new glycan distribution was obtained. The variance in the glycan distribution 

data was then analyzed in MINITAB using ANOVA. 

4.2.2 Cell Culture 

Frozen cells from a CHO-K1 cell line producing a model IgG1 (gift of 

Genentech, San Francisco, CA) were thawed and inoculated with a seeding density of 

0.5 x 106 cells/mL in vented-cap Erlenmeyer shake flasks with a working volume of 

50 mL, maintained in an incubator at 37 °C with a 5% CO2 overlay. Custom CD-

OTPICHO™ media (Thermo Fisher Scientific, Waltham, MA) supplemented with 5 

g/L glucose, 4 mM glutamine and 0.01 mM MnCl2 was used as the cell culture media 

in this study.  

Based on a survey of existing literature, eleven amino acids were chosen as 

additional cell culture supplements: valine, arginine, glutamic acid, proline, 

asparagine, serine, methionine, threonine, leucine, and lysine (Sigma Aldrich, St. 

Louis, MO). Stock solutions for each amino acid were prepared in deionized water and 

added to individual flasks as per the conditions specified in the experimental design 

section. In addition to these flasks, a control flask containing the basal media with no 

amino acid supplementation was also cultured. All 13 experimental conditions (12 

corresponding to the Plackett Burman design + 1 control) were performed in 
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duplicate. pH, nutrient, and metabolite concentration in each flask was analyzed using 

a Bioprofile 100+ Analyzer (Nova Biomedical, Waltham, MA) and the viable cell 

count was measured manually using a hemocytometer. Antibody titer was estimated 

using a Thermo ScientificTM MAbPac Protein A chromatography column (12 micron 

particle size, 35x4.0 mm I.D., Thermo Fisher Scientific, Waltham, MA) on an Agilent 

1200 HPLC instrument. 

4.2.3 Glycan Permethylation Assay 

Media containing the secreted antibody was harvested nine days after 

inoculation by spinning down the cells at 3000 rpm. The antibody was then purified 

using 2 mL PhyTip columns packed with Protein A chromatography resin and 

operated using PhyNexus Benchtop MEA2 system (PhyNexus, San Jose, CA). Next, 

after the tryptic digestion (Promega, Madison, WI) of the purified mAb at 37 °C for 

four hours, a 16 hour deglycosylation protocol was initiated using PNGase-F 

(ProZyme, Hayward, CA) to release the glycan groups attached to the mAb. The 

released glycans were separated from the residual enzyme and other peptides using 

Hypersep Hyper Carb SPE cartridges (Thermo Fisher Scientific, Waltham, MA) and 

permethylated following the Ciucanu method with methyl iodide and NaOH in the 

presence of DMSO(Ciucanu and Costello 2003; Ciucanu and Kerek 1984). The 

permethylated glycans were recovered by a liquid-liquid extraction step using 

chloroform (Sigma Aldrich, St. Lois, MO), dried, and resuspended in 80% methanol 

followed by purification on Sep Pak SPE C18 cartridges (3 cc Vac Cartridge, 200 mg 

Sorbent per Cartridge, 55-105 µm Particle Size, Waters Corporation, Milford, MA). 

Finally, the glycans were dried and resuspended in LC-MS grade methanol (Sigma 

Aldrich, St. Lois, MO) and spotted onto a MALDI-TOF plate with a DHB matrix to be 
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analyzed using a 4800 MALDI TOF/TOF Analyzer (ABSciex, Framingham, MA) in 

positive ion, reflector mode. The data collected from the mass spectrometer was then 

exported to Data Explorer to obtain the heights of the individual peaks in the sample. 

The relative glycan distribution in each sample was estimated from the percentage 

peak heights of each sample.  

4.2.4 Statistical Design of Experiments 

Plackett-Burman experimental design was used to assess the effect of changing 

the different inputs on the glycan distribution. Table 4.1 lists the experimental design 

used as well as the high and low concentration levels used for each of the 

glycosyltransferases to simulate the dynamic glycan profile. Table 4.2 lists all the 

experimental conditions tested with amino acid supplementation and specifies the high 

and low amino acid levels that were introduced to each flask. The variance in the data 

obtained from each experimental design was analyzed using ANOVA in MINITAB.  
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4.1: Plackett-Burman experimental design with high and low concentrations 
of different glycosyltransferase enzymes in the dynamic mathematical model for 
glycosylation 

Run 

FucT, 

(mM) 

GalT, 

(mM) 

GnTI, 

(mM) 

GnTII, 

(mM) 

ManI, 

(mM) 

ManII, 

(mM) 

1 2.56 0.90 2.78 0.96 2.21 0.90 

2 2.56 1.10 2.27 1.18 2.21 0.90 

3 2.09 1.10 2.78 0.96 2.70 0.90 

4 2.56 0.90 2.78 1.18 2.21 1.10 

5 2.56 1.10 2.27 1.18 2.70 0.90 

6 2.56 1.10 2.78 0.96 2.70 1.10 

7 2.09 1.10 2.78 1.18 2.21 1.10 

8 2.09 0.90 2.78 1.18 2.70 0.90 

9 2.09 0.90 2.27 1.18 2.70 1.10 

10 2.56 0.90 2.27 0.96 2.70 1.10 

11 2.09 1.10 2.27 0.96 2.21 1.10 

12 2.09 0.90 2.27 0.96 2.21 0.90 
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4.2: Plackett-Burman experimental design with high and low concentrations of individual amino acids added to 
the cell culture media 

Run 
Val, 
(mM) 

Arg, 
(mM) 

Glu, 
(mM) 

Pro, 
(mM) 

Gly, 
(mM) 

Asn, 
(mM) 

Ser, 
(mM) 

Met, 
(mM) 

Thr, 
(mM) 

Leu, 
(mM) 

Lys, 
(mM) 

1 0.27 1.15 0.54 2.50 0.50 2.50 0.80 0.10 0.70 0.22 0.50 
2 0.27 0.72 0.54 2.50 2.50 0.50 0.80 0.40 0.24 0.70 0.50 
3 1.61 1.15 0.54 0.50 2.50 2.50 0.40 0.40 0.24 0.22 0.50 
4 1.61 0.72 0.54 0.50 0.50 0.50 0.80 0.40 0.70 0.22 0.87 
5 1.61 0.72 0.54 2.50 0.50 2.50 0.40 0.10 0.24 0.70 0.87 
6 1.61 0.72 0.17 0.50 2.50 2.50 0.80 0.10 0.70 0.70 0.50 
7 0.27 0.72 0.17 2.50 2.50 2.50 0.40 0.40 0.70 0.22 0.87 
8 0.27 1.15 0.17 0.50 0.50 2.50 0.80 0.40 0.24 0.70 0.87 
9 0.27 1.15 0.54 0.50 2.50 0.50 0.40 0.10 0.70 0.70 0.87 
10 0.27 0.72 0.17 0.50 0.50 0.50 0.40 0.10 0.24 0.22 0.50 
11 1.61 1.15 0.17 2.50 2.50 0.50 0.80 0.10 0.24 0.22 0.87 
12 1.61 1.15 0.17 2.50 0.50 0.50 0.40 0.40 0.70 0.70 0.50 
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4.2.5 Controllability Analysis 

As described in Chapter 3, we performed controllability analysis to quantify 

the effect of changing the input conditions on the glycosylation profile in mAbs. 

Briefly, we used Plackett-Burman factorial design to obtain different experimental 

conditions to be tested in the two cases. Accordingly, we performed multiple 

simulations of the dynamic model using the different glycosyltransferase enzyme 

concentrations as our inputs, and carried out shake flask experiments with varying 

concentrations of amino acids added to each flask. The variance in the final glycan 

distribution obtained from our simulations and from our experiments was analyzed 

using Minitab. The estimates of factor coefficients obtained from such an analysis 

represent the process gains or the change in the output glycan distribution (∆y), when 

there is a unit change in the input factor (∆u) associated with that coefficient. We 

selected statistically significant factor coefficients and set all other insignificant 

coefficients to zero to generate the process gain matrix G, which gives us 

 

 ∆t = �∆v 4.1 

 

Next, by performing singular value decomposition of the process gain matrix, we 

obtained the diagonal singular value matrix, Σ, and the unitary matrices, W and VT, 

that were subsequently used to obtain the orthogonal input (μ) and output (η) modes. 

Thus,  

 

 ∆t = ����∆v 4.2 

 ��∆t = ���∆v 4.3 
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 ∆� = �∆� 4.4 

 

As Σ is a diagonal matrix, we related the change in each output mode (∆ηi) to its 

corresponding input mode (∆μi) using the associated singular value (σi) as: 

 

 ∆η� = σ�∆μ� 4.5 

 

4.2.6 Controller Design under Nominal Conditions 

Proportional controllers were designed based on the results obtained from 

controllability analysis. Starting with the steady state glycan distribution (yss), 

controllers were designed to track the new set-point, or new glycan distribution, (yd). 

These variables were then transformed to output modes using the orthogonal matrix 

(W) obtained by singular value decomposition of the gain matrix (G). Thus,  

 

 � = ���t − t��� 4.6 

 �� = ���t� − t��� 4.7 

 

The error (ε) was calculated based on the difference between the output modes for the 

set point and the measurement as 

 

 � = �� − � =  Δ� 4.8 
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The controller is then designed to obtain the particular set of inputs ‘u’ which, 

when implemented on the process, will result in an output signal similar to the new 

set-point, thereby minimizing this error. To design the controller appropriately, we 

note that equation (5) can be rewritten as  

 

 ∆μ� = ∆η�σ�  
4.9 

 

Thus, we designed simple P-controllers using the individual singular values, using the 

control law given by 

 

 ∆� = u�� 4.10 

 

where the proportional gain of the controller, K c, is given by 

 

 u� = �1 σ�� ⋯ 0⋮ ⋱ ⋮0 ⋯ 1 σ�� � 

 

4.11 

 

Finally, we estimated the change in the input that, when implemented on the process, 

will track the set point effectively 

 

 ∆v = �∆μ  4.12 
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The final output glycan distribution, ynew, corresponding to the new set of input 

conditions obtained from the controller was then calculated using the gain matrix from 

equation 4.1 

 

 t��� = t�� + �∆v 4.13 

 

4.2.7 Controller Design under Model-Plant Mismatch Conditions 

The glycosylation controllers were designed under nominal conditions, based 

on the assumption that the process model accurately defines the “true” physical 

process or the plant.  However, in practical instances we do not have complete 

knowledge of the “true” model of the process resulting in model-plant mismatch. To 

simulate model-plant mismatch conditions normally distributed random error (Φ) was 

added to every element of the nominal gain matrix, (G), to yield a modified gain 

matrix, (Gmod). Thus,  

 

 ���� = � + �  4.14 

 

Singular value decomposition of the modified gain matrix yielded a new set of 

singular values, (Σmod) and new orthonormal matrices Wmod and VT
mod.  Proportional 

(P) and Proportional Integral (PI) glycosylation controllers were then designed using 

the new set of singular values; thus: 
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 u�,��� = �1 σ�,�)�� ⋯ 0⋮ ⋱ ⋮0 ⋯ 1 σ�,�)�� � 

 

4.15 

  ��� = u�,��� 3�  4.16 

 

where K c,MPM is the proportional gain of the P- and PI-controller and IMPM is 

the associated integral constant used in the PI-controller. The ability of the 

glycosylation controllers to track the output trajectory under model plant mismatch 

conditions was assessed iteratively, with every successive iteration representing a new 

batch. The control laws used for the P- and PI- controllers were 

 

 ��k + 1� = ��k� + u¢,��� ∗ ��i� 4.17 

 ��k + 1� = ��k� + u¢,��� ∗ ��k� +  ��� ∗ Y ��
_

�L�  
4.18 

 

where μ is the vector of input modes and ‘k’ denotes the current iteration. The 

corresponding change in the input, ∆u, and the final glycan distribution ynew are 

determined after every iteration using equations 4.12 and 4.13 above. Figure 4.1 

shows the control block diagram representing the glycosylation control scheme.  
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Figure 4.1: Control block diagram indicating different components of the 
glycosylation control scheme. The current glycan distribution measured 
at the output (y) and the new glycan distribution set point (yd) are 
transformed to output modes (η and ηd, respectively) using the output 
transformation matrix, (WT), obtained by the singular value 
decomposition of the process gain matrix, (G). The error signal, (ε), 
obtained from the difference of the two output modes is sent to the 
control block, where controllers designed using appropriate singular 
values (σi ≥ σ*) generate the input mode (μ) which is converted back to 
the set of inputs (u) using the appropriate input transformation matrix, V 

4.3 Results and Discussions 

4.3.1 Controllability Analysis 

Using statistical design of experiments (DoE), we have systematically studied 

the effect of manipulated variables (i.e. enzyme concentrations in model simulations, 

and amino acid concentrations in cell culture media supplementation trials) on the 

glycan distribution profile in mAbs. However, the qualitative data obtained from our 

preliminary analysis is not sufficient to develop an effective control scheme to control 

the glycan distribution using the manipulated variables; instead, we need to establish a 

quantitative input output relationship between the amino acid or enzyme 

concentrations (manipulated variables) and the output glycan distribution. Such a 

quantitative understanding of the effect of adding a specific amino acid or altering 
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certain glycosyltransferase enzyme concentrations on the glycan distribution can be 

readily obtained by analyzing the variance in the glycan distribution data. In each case, 

the statistically significant input coefficients represent the magnitude (gain) associated 

with the output glycan species for unit changes in that specific input. Thus, using the 

coefficients obtained from ANOVA we construct a process gain matrix G, as 

previously described under materials and methods. The process gain matrices can be 

graphically represented using the heat maps shown in Figures 4.2(a-b), which indicate 

the magnitude as well as direction (increase or decrease) of change effected by a unit 

change in the input on the output glycan distribution profile. Figure 4.2(a) is a heat 

map representing the estimates of the statistically significant factor coefficients (α = 

0.05), with all other coefficients set to zero. We observe that the concentrations of the 

high mannose glycan species, M8, M7, M5, biantennary species A2 and its 

galactosylated isoforms A2G1, A2G2 are not affected by the change in the 

concentrations of any of the glycosyltransferase enzymes. Similarly, a change in the 

concentration of the input factor, α-1,6-fucosyltransferase (FucT) has no impact on 

any of the glycan species. The heat map also indicates that in the simulations tested, 

the biantennary fucosylated species FA2 and its galactosylated isoforms FA2G1 and 

FA2G2 are the most affected species.  
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Figure 4.2: Heat map of significant factor coefficients obtained by analysis of 
variance of the glycan distribution data. The experimental data was 
obtained using (a) glycosyltransferase enzyme concentrations as inputs in 
the dynamic mathematical model of glycosylation (b) amino acid media 
supplements as inputs. The input factors are listed along the horizontal 
axis while the output glycan species obtained from the simulations are 
listed along the vertical axis. The color bar indicates the signage and 
magnitude of the factor coefficient, with red indicating a negative 
coefficient (i.e. a unit increase in an input decreases the relative 
concentration of that glycan) while green indicates a positive coefficient 
(i.e. a unit increase in an input increases the relative glycan 
concentration). The intensity of each color represents the magnitude with 
lighter hues indicating factor coefficients of lesser magnitude than those 
represented by darker hues 
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Figure 4.2(b) is a heat map representing the estimated gain coefficients 

obtained from analysis of variance of the glycan distribution data when different 

amino acids are added to the media. Here, we use a more “relaxed” criterion to 

estimate the statistically significant factor coefficients (α = 0.25) as opposed to the 

conventionally used value of α = 0.05. As α is the probability that we reject the null 

hypothesis when it is true, in this instance, we have chosen a higher risk of rejecting 

the null hypothesis (that the estimated factor coefficients are not significantly different 

from zero) in favor of the alternative. Our decision is informed by an understanding of 

the inherent variability in the experimental measurements involved in analyzing 

glycan distribution and the addition of 11 different amino acids to each individual 

flask. From Figure 4.2(b) we note that the concentrations of certain glycan species, 

such as M8, M5, A2G1 cannot be influenced by supplementing the cell culture media 

with any of the amino acids used in the study, whereas the concentrations of 

fucosylated glycoforms FA2 and FA2G1 can be altered to varying degrees using 

arginine, glutamic acid, methionine, threonine, and lysine. Each amino acid input in 

turn, influences the concentration of more than one glycan species, highlighting the 

close interdependence in the concentrations of different glycan species.  

Further, by carrying out singular value decomposition of the process gain 

matrix G, we obtain a diagonal matrix Σ containing the singular values, and the two 

unitary matrices W and VT. As has been previously described under materials and 

methods, we can transform the original input output equation given in equation 4.1 to 

a series of n independent equations listed in equation 4.4, where η, the output mode, 

represents a linear combination of the output glycan species weighted by the 

individual elements of W; the associated singular value σ (obtained from the diagonal 
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elements of the matrix Σ), quantifies the change in the output mode due to a unit 

change in the input mode μ, which is the linear combination of the inputs weighted by 

the unitary matrix VT. As the magnitude of the singular value quantifies the extent of 

change in the particular output mode, we note that smaller values of σ are associated 

with output modes that are less controllable, and hence we choose to study only those 

modes that are above an arbitrarily chosen threshold cutoff value of σ* and ignore all 

modes associated with lower singular values. After examining the singular values 

listed in Table 4.3 we choose a threshold cutoff value of σ* = 1 and ignore all modes 

associated with lower singular values. Further, since each input-output mode pair 

represents the linear combination of glycans that can be controlled using different 

inputs, the associated coefficient of each input and output in any given mode is 

indicative of the relative influence of a particular input on the output. The coefficient 

of the output glycan is the magnitude by which its relative percentage changes in 

response to a unit change in the corresponding input mode, implying that the relative 

percentage of glycans with larger coefficients in a particular mode can be modulated 

more easily, making those glycans more controllable. Similarly, inputs with larger 

coefficients have a relatively larger contribution to a unit change in the associated 

mode and are hence considered as the dominant factors in that mode.  
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4.3: Singular values obtained from singular value decomposition of the 
matrix of significant factor coefficients with (a) glycosyltransferase enzyme 
coefficients as inputs; and (b) amino acid supplements as inputs 

Singular Value (a) (b) 

σ1 25.2 28.1 

σ2 7.1 11.8 

σ3 4.7 5.9 

σ4 2.7 2.9 

σ5 0.1 1.2 

σ6 0.0 0.6 

σ7 - 0.4 

σ8 - 0.3 

σ9 - 0.1 

σ10 - 0.1 

σ11 - 0.0 

 

 

In Figure 4.3 we have plotted the input-output mode pairs relating the changes 

in the glycosyltransferase enzyme concentration to the changes in the output glycan 

distribution. Based on the selected threshold cutoff value of σ* = 1, we select only the 

first four input-output mode pairs associated with the four largest singular values, σ1 – 

σ4. From the first output mode, η1 (which is associated with the largest singular value, 

σ1 = 25.22) we notice that the most controllable glycans are fucosylated biantennary 

glycan FA2 and its galactosylated glycoforms FA2G1 and FA2G2 as they have the 

largest coefficients (0.82, -0.53, and -0.23 respectively) indicating that a unit change in 
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the first input mode would result in an increase in the FA2 concentration and a 

decrease in the relative concentrations of its galactosylated isoforms. The 

corresponding input mode, μ1 is dominated by GalT (-0.99), indicating that a decrease 

in the GalT enzyme levels would result in a decrease in the concentration of FA2G1 

and FA2G2, as expected. The second output mode (with a singular value of σ2 = 7.12) 

shows that a unit change in the input mode results in an increase in FA1 (with a 

coefficient of 0.69) and M6 (0.21) and a decrease in FA2G1 (-0.58) and FA2 (-0.38). 

The linear combination of enzymes associated with the second input mode are GnTII 

(with a coefficient of -0.92), ManI (-0.34), and GalT (-0.15). As expected, a decrease 

in GnTII would result in a decrease in the relative concentration of biantennary species 

FA2, while the reduction in GalT concentration causes the relative concentration of 

FA2G1 to decrease as well. Finally, we can study the third and fourth input-output 

mode pairs (σ3 = 4.69 and σ4 = 2.74, respectively) to assess which other glycan species 

can be modulated by modifying different combinations of glycosyltransferase 

enzymes.  
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Figure 4.3: Graphical representation of the coefficients associated with the first four 
input and output modes with glycosyltransferase enzymes as the input 
factors. Shown here are the primary modes (with σi ≥ σ*=0.5) obtained 
from controllability analysis. (a) Output mode η1 and the corresponding 
input mode μ1; (b) Output mode η2 and the corresponding input mode μ2; 
(c) Output mode η3 and the corresponding input mode μ3; (d) Output 
mode η4 and the corresponding input mode μ4. 

A similar analysis to assess the effect of amino acid supplementation on the 

glycan distribution was carried out by studying the first five input and output modes 

(associated with singular values σ1 – σ5 > σ*) plotted in Figure 4.4. The first output 

mode is associated with a singular value of σ1 = 28.1 and is dominated by the 

coefficients of the glycan species FA2 (0.92) and FA2G1 (0.43), indicating that these 

two glycan species are the most controllable, with a unit change in the associated input 

mode resulting in an increase in their relative concentrations. The first input mode, μ1, 

representing the linear combination of amino acids that when added to the media will 

result in changes in the concentration of the glycans contained in the first output mode, 

is dominated by methionine (0.69), lysine (-0.59) and threonine (0.36). A unit change 

in the second input mode (σ2 = 11.8) results in a decrease in FA2G1 (-0.89) and 
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FA2G2 (-0.11) and an increase in the agalactosylated isoform, FA2 (0.43). The linear 

combination of amino acids that make up the second input mode include glutamic acid 

(0.75), arginine (-0.49), and threonine (0.39). The third input-output mode pair with σ3 

= 5.9 indicates that the relative percentage of A2, A1, and FA1, with coefficients of -

0.93, -0.33, and -0.13 respectively, are altered when a linear combination of all amino 

acids, dominated by serine (-0.85) and leucine (0.46) is changed. We can further 

analyze the fourth and fifth input-output mode pairs in a similar fashion. We note that 

no single amino acid dominates in these modes; instead, the change in the output 

glycan profile is due to the combined action of all the added amino acids.   
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Figure 4.4: Graphical representation of the coefficients associated with the first four 
input and output modes with glycosyltransferase enzymes as the input 
factors. Shown here are the primary modes (with σi ≥ σ*=0.5) obtained 
from controllability analysis. (a) Output mode η1 and the corresponding 
input mode μ1; (b) Output mode η2 and the corresponding input mode μ2; 
(c) Output mode η3 and the corresponding input mode μ3; (d) Output 
mode η4 and the corresponding input mode μ4; (e) Output mode η5 and 
the corresponding input mode μ5 

While the role of amino acids in directly regulating the glycan distribution is 

not well understood, some studies have established a correlation between 

glycosylation levels and the concentration of byproducts of amino acid biosynthesis. 

For instance, ornithine which is produced during the degradation of Arg, Pro, and Glu 

has been shown to modulate high mannose glycan levels (Kang et al. 2015). 
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Researchers have also noticed the effect of spermine and spermidine, by-products of 

Arg-Pro metabolism, on altering the activities of glycosyltransferase enzymes (Gréco 

et al. 2001). Therefore, the changes in the glycosylation profile seen in this 

experimental work may have accrued due to the by-products of the amino acid 

metabolism. Conversely, the change in the glycosylation levels seen in this work 

might have been induced solely due to the changes in the medium pH brought about 

by the addition of 11 different amino acids to each flask.  

Despite not having a complete mechanistic understanding of the effects of 

amino acids on the glycosylation profile, the presented approach provides us with a 

quantitative input-output relationship and we can now assess how media 

supplementation affects the glycosylation profile.  

4.3.2 Set-point Tracking under Nominal Conditions 

Using the structural input-output relationship developed using controllability 

analysis, we design controllers to carry out set-point tracking of the glycan distribution 

as discussed under materials and methods. As each controller gain is determined by 

the corresponding singular value, and as we only consider singular values greater than 

a critical cutoff value, we note that the total number of controllers in each case will 

depend on the number of selected singular values. Thus, when we use 

glycosyltransferase enzymes as the manipulated variables, we obtain the controller 

gains from the first four singular values, whereas in the case with amino acid 

supplementation we use five different controllers based on the first five singular 

values. In each case, we generate the error signal (ε) based on the difference in the 

desired output mode, ηd, and the measured output mode, η, (obtained by transforming 

the corresponding desired glycan set-point (yd) and measured glycan distribution (y), 
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respectively). Next using P-controllers, designed from select singular values, we 

obtain the new set of inputs that, when implemented on our process, will shift the 

process output to match the desired glycan set-point.  

First, we assess the set point tracking capability of the controllers under 

nominal conditions with glycosyltransferase enzymes as the manipulated variables. 

The resulting output glycan distribution is plotted in Figure 4.5(a), showing that the 

controllers effectively track the new set-point and the output glycan distribution now 

matches the new set-point. The predicted set of input glycosyltransferase enzyme 

concentrations, plotted in Figure 4.5(b) are compared to the enzyme concentrations 

used in the original simulations to obtain the glycan distribution yd. Here we note that 

unlike the enzyme concentrations of GalT, GnTII, ManI and ManII, those of FucT and 

GnTI predicted by the controller do not match the enzyme concentrations originally 

used in the simulation. This discrepancy can be explained by assessing the input 

modes (μ1 – μ4), where we note that the coefficients of FucT and GnTI are very small 

in each mode, indicating that any change in their concentration will have negligible 

impact on the relative glycan distribution. Thus, even though the concentrations of 

FucT and GnTI predicted by the controller do not match those used in the simulation, 

we know that this will not influence the final glycan distribution 
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Figure 4.5: Controller performance under nominal conditions. (a) Relative glycan 
distribution when enzyme concentrations are used as inputs. The solid 
black bar represents the initial steady state, while the solid white bar 
represents the new set-point. The cross-hatched bar represents the final 
output achieved after taking control action. (b) Comparing experimental 
and predicted inputs. The black bar represents the enzyme concentration 
used to generate the new set-point and the white bar represents the inputs 
generated by the controller. (c) Relative glycan distribution when amino 
acid concentrations are used as inputs with the solid black bar 
representing the initial steady state, the solid white bar representing the 
new set-point, and the cross-hatched bar representing the final output 
achieved after taking control action. (b) Comparing experimental and 
predicted inputs. The black bar represents the amino acid concentrations 
(normalized to that of valine) used to generate the new set-point, while 
the white bar represents the inputs generated by the controller 
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Similarly, in Figure 4.5(c) we observe the set-point tracking capability of P-

controllers where amino acid media supplements are used as manipulated variables. 

Here, the glycan distribution in the control flask with basal media and no amino acid 

supplementation is taken to be the measured glycan distribution, y, while the glycan 

distribution observed in flask F1 from the experimental design is the desired glycan 

set-point, yd. Once again, using P-controllers designed using appropriate singular 

values, we are able to track the desired glycan set-point effectively. A comparison of 

the predicted and experimentally used amino acid concentrations, plotted in Figure 

4.5(d), indicates that the concentrations of Asn and Pro do not match. An examination 

of the input modes indicates that the coefficients of Asn and Pro in the primary input 

modes is not large enough to alter the glycan distribution significantly.  

4.3.3 Set-point Tracking under Model-Plant Mismatch Conditions 

In the previous section, we assessed set-point tracking capabilities of the 

controller under nominal conditions, i.e. when the model is truly representative of the 

actual process. However, in reality, the true process model is not completely known 

and is estimated with some error. Hence, it is important to evaluate controller 

performance under such practical model plant mismatch conditions as well. As 

described under materials and methods section, we introduce random error to every 

element in the gain matrix obtained from ANOVA to generate a modified gain matrix. 

Using the singular values of this modified matrix we design P- and PI-controllers to 

track the new set-point by performing a series of iterative calculations (equation 4.14 

to equation 4 18).  

In Figure 4.6, we observe the set-point tracking ability of the P- and PI-

controllers using glycosyltransferase enzyme concentrations in the dynamic glycan 
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model as the manipulated variables. We note that the output glycan distribution after 

25 iterations using P- and PI-controllers matches the desired glycan distribution 

despite the controllers being designed under model plant mismatch conditions (Figure 

4.6(a)), while the predicted inputs converge using either P- or PI- controllers (Figure 

4.6(b)). A comparison of the sum of absolute errors estimated from the difference in 

the output glycan distribution and the desired glycan trajectory after each iteration 

using the P- and PI- controllers indicates that the sum of absolute errors associated 

with the P-controller decreases steadily and finally converges to fixed error, whereas 

the output from the PI controller oscillates before the sum of absolute errors eventually 

decreases. We observe similar trends when we use amino acid media supplements as 

the manipulated variables to control the glycan distribution under model plant 

mismatch conditions (Figure 4.7). Here, we note that both the P and PI controllers are 

able to effectively track the desired glycan trajectory and the predicted inputs under 

mismatch and nominal conditions are very similar. As seen in the case with enzyme 

concentrations as inputs under model-plant mismatch, a comparison of the controller 

performance shows that the sum of absolute error in the P-controller decreases steadily 

while the sum of absolute error in the PI-controller oscillates. 
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Figure 4.6: P-type and PI-type controller performance under model-plant mismatch 
conditions. (a) Relative glycan distribution when enzyme concentrations 
are used as inputs. The solid black bar represents the initial steady state, 
the solid red bar represents the new set-point, solid white bar is the final 
output using P-type and grey crosshatched bar is the final output using 
PI-type controller. (b) Comparing experimental and predicted inputs. The 
black bar represents the enzyme concentration used to generate the new 
set-point, solid white bar represents the inputs generated by the P-type, 
and crosshatched bar represents inputs from the PI-type controller. (c) 
Relative glycan distribution when amino acids are used as inputs. The 
solid black bar represents the initial steady state, the solid red bar 
represents the new set-point, solid white bar is the final output using P-
type and grey crosshatched bar is the final output using PI-type 
controller. (d) Comparing experimental and predicted inputs. The black 
bar represents the amino acid concentrations (normalized to that of 
valine) used to generate the new set-point, solid white bar represents the 
inputs generated by the P-type, and crosshatched represents inputs by the 
PI-type controller. (e) Sum of absolute error for each successive iteration 
with P- and PI-type controllers with enzyme concentration as inputs. (f) 
Sum of absolute error for each successive iteration with P- and PI-type 
controllers with amino acid concentration as inputs. 

In each case studied under model-plant mismatch conditions, we observe that 

the final glycan output converges to the desired trajectory regardless of the choice of 

controller used. This indicates robust controller behavior which stems from having 

used singular values of the gain matrix to determine the controller gains. The choice of 

select singular values greater than a cutoff value inherently eliminates the singularity 

in the system and results in a system with a low condition number (which is the ratio 

of the largest singular value to the smallest singular value), and hence, the designed 

controllers tend to be more robust, leading to effective convergence.  
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4.4 Summary and Conclusions 

Changes in antibody glycosylation profile affect the final drug product quality 

significantly, leading researchers to investigate means to control, modulate and finely 

tune the glycan distribution profile. In this paper we have systematically developed 

and evaluated a two-step framework for controlling the glycosylation profile in mAbs. 

First, we identified a quantitative, structural input-output relationship by analyzing 

data obtained from statistically designed experiments. The structural relationship was 

then used to design controllers for two cases – (i) where the concentration of 

glycosyltransferase enzymes in the dynamic glycan model were manipulated to 

modulate the glycan distribution; and (ii) where different amino acid supplements 

added to the cell culture media were used as the manipulated variables. We then 

performed simulations to test the performance of our controller in trying to track a 

desired glycan set-point under two conditions: one, where we assumed complete 

knowledge of the process (i.e. nominal conditions) and another, under model plant 

mismatch conditions. In both these conditions, we observe that the controllers are able 

to track the set-point effectively and accurately. Even under model plant mismatch 

conditions, when we introduce random error in our gain matrix, we note that the 

glycan distribution generated by implementing the input signal from the designed 

proportional (P) and proportional integral (PI) controllers on the process closely 

matches the desired glycan output, as the sum of absolute error eventually converges. 

The robustness in the system is likely introduced by the elimination of process 

singularity, as a consequence of having chosen singular values above a specific cut-off 

value (σ*). 

Although it is easier to implement such glycosylation controllers in the second 

case (using media supplements) as opposed to the first (where glycosylation enzyme 
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concentrations were modified), it is instructive to demonstrate via simulations the 

applicability of the proposed framework to both these test cases. The development of 

glycosylation controllers using media supplements as input factors has a lot of 

significance to the field of media design. If at the end of a particular batch, the glycan 

distribution is not as desired and we wish to change the glycosylation profile, then, by 

implementing the glycosylation controller presented here, we can estimate how to 

modulate the concentrations of different media supplements in the successive batch so 

as to achieve the desired glycan distribution profile. Thus, we now have the ability to 

fine tune and modulate the final glycan profile by simply altering the media 

composition at the start of the batch. In the case of enzyme concentrations as inputs, 

the approach presented here provides a rational basis to carry out cell line engineering 

approaches to alter glycosyltransferase enzyme concentrations. The glycan enzyme 

concentrations can be targeted in a quantitative fashion to achieve the desired 

glycosylation profile at the end of the batch. Further, the structural information gained 

from this approach also indicates which enzyme concentrations have little to no 

impact on the glycosylation profile and hence, we can target select enzymes that can 

induce the desired change in the glycosylation profile. The glycosylation controllers 

designed using this study are thus robust and effective in controlling and modulating 

the glycan distribution under a variety of conditions.  

It is important to note, however, that the controller design implemented here 

based on output controllability analysis is dependent on the glycan distribution 

obtained at the end of the batch. Consequently, these controllers are designed as batch-

to-batch controllers, where the control action is taken in the subsequent batch and a 

new glycan distribution profile is obtained. While this is a significant development 



 

 135

based on controllability analysis, in order to achieve our overall objective of online 

control of glycosylation, we need to design controllers that respond to the changes in 

the glycosylation profile in real-time. One of the biggest challenges in controlling 

glycosylation online is the lack of suitable, real-time glycan measurements as current 

glycan assays are typically performed offline and are associated with long time delays. 

To overcome these challenges, we explore two different techniques for estimating the 

glycan distribution in the following chapter. First, we consider how, using 

observability analysis and by exploiting the underlying network structure inherent in 

glycosylation, we can identify a subset of glycan species that can be measured to get 

an estimate of the complete glycan distribution. This approach can lead to the 

development of novel glycan assays. Next, we use the multi-scale model of 

glycosylation developed in Chapter 2 to estimate the glycan distribution profile when 

measurements are unavailable, with a periodic update of the glycan distribution as and 

when a measurement becomes available. Together, the approaches in the following 

chapter will lay the foundation for developing online glycosylation control schemes. 
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GLYCOSYLATION ANALYSIS: OBSERVABILITY AND STATE 
ESTIMATION 

5.1 Introduction 

In the previous chapters we developed quantitative input-output structural 

relationships between manipulated variables and the glycosylation profile at the end of 

the batch run using controllability analysis. Further, we utilized these quantitative 

relationships to develop proportional (P) and proportional integral (PI) controllers to 

control the glycan distribution and demonstrated the ability of these controllers to 

track the new glycan set point under nominal and model plant mismatch conditions. 

However, as controllability analysis is based on changes in the glycan distribution 

profile in the antibody accumulated at the end of a batch run, the resulting P and PI 

type controllers designed from the controllability analysis are suited for batch-to-batch 

or iterative control rather than for real time control.  

As stated in Chapter 1, glycosylation is a critical quality attribute and hence, it 

is necessary to monitor and control the glycosylation distribution during 

manufacturing to maintain it within acceptable levels (del Val et al. 2010). To achieve 

real time glycosylation control, it is necessary to have a detailed understanding of the 

influence of different input factors on the dynamic glycan distribution profile; and 

reliable on-line or at-line measurements of the glycan distribution profile, as what 

cannot be observed or measured cannot be controlled. Our efforts in Chapter 2 and 3 

were directed towards generating a detailed understanding of how process variables 

Chapter 5
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and media supplements at the bioreactor level influence the glycan distribution profile. 

In this chapter, we address the issues and challenges associated with analyzing the 

glycan distribution in mAbs. 

The analysis of critical quality attributes and critical process parameters can be 

carried out at-line, which involves sample removal, isolation, and subsequent analysis 

close to the process stream; on-line, wherein the sample is removed from the process 

stream, analyzed, and returned to the process stream; in-line, which involves in situ 

analysis of the sample; or off-line, where the sample is removed and analyzed away 

from the process stream (Rathore et al. 2010). Although it would be ideal to measure 

all quality attributes such as glycosylation and aggregation on-line or at-line, under 

practical circumstances, most quality attributes are either measured infrequently, or, as 

is more commonly practiced, they are measured off-line at the end of the process. This 

is particularly true of glycan assays where the complexity and diversity of 

glycosylation profiles makes analysis a non-trivial process, often requiring multiple 

purification, labeling, and separation steps prior to being quantified (Marino et al. 

2010). Consequently, detailed analysis of the glycan distribution profile using glycan 

assays becomes a laborious, time-consuming, and expensive endeavor requiring 

multiple instrumentation techniques. Presently, there exist no on-line assays for 

measuring the glycan distribution profile, while the available at-line glycan assays are 

used to obtain infrequent measurements that are associated with large time-delays. 

Thus, not only is there a requirement for developing faster, effective glycan assays, we 

also need techniques to infer the glycan distribution profile in the absence of frequent 

measurements. To accomplish both of these tasks, we rely on our understanding and 

knowledge of glycosylation presented in the previous chapters. 
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Here, we seek to address the following challenges associated with glycan 

analysis: 

• How do we rationally develop novel glycosylation assays based on 
an understanding of the glycan reaction network? 

• In the absence of real time measurements, how do we reliably 
estimate the glycan distribution profile using the available dynamic 
model of glycosylation? 

 

First, we provide a concise review of different analytical methods for glycan 

characterization along with a brief description of in-house glycan assay development 

efforts. Next, in §5.3, a rational approach for developing novel glycan measurement 

assays based on observability analysis is presented. In §5.4, a novel state estimation 

technique is implemented to estimate the entire glycan distribution in the absence of 

frequent, real time measurements.  Finally, the key findings are summarized at the end 

of the chapter. 

5.2 Glycan and Glycoproteomic Analysis – An Overview 

The diversity and heterogeneity in oligosaccharides attached to protein 

moieties has led to several challenging problems in the emerging field of 

glycobiology. However, aided by the development of newer and more robust 

analytical techniques, particularly in mass spectrometry, the scientific discipline of 

glycomics is witnessing a spurt in novel and high throughput analytical techniques for 

oligosaccharide characterization. The different analytical approaches for glycan 

characterization can be broadly classified as: (i) intact glycoprotein analysis; (ii) 

glycopeptide characterization; (iii) released glycan analysis; and (iv) monosaccharide 

analysis (Marino et al. 2010). The analytical technique chosen depends on the amount 
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of sample available, the level of characterization desired, and the nature of information 

required. Additionally, different applications might require orthogonal assays, or the 

use of multiple analytical techniques (Mittermayr et al. 2011; Roth et al. 2012). Figure 

5.1 shows the different strategies that are available for glycan characterization along 

with the associated analytical technique. 

 

Figure 5.1: Different analytical techniques for glycoprotein characterization. These 
include characterizing the intact glycoprotein, trypsinizing the 
glycoprotein to produce glycopeptides that are analyzed separately, using 
glycosidases to release the glycans and then characterizing the individual 
glycan species, or breaking down the glycan fragment into individual 
monosaccharides to get a detailed understanding of the attached sugars.  

Intact glycoprotein analysis can be considered a ‘top–level’ analysis wherein 

the glycoprotein is directly injected to the mass spectrometer (MS) with minimal 

sample preparation or separated using liquid chromatography before being injected to 
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the MS (Planinc et al. 2016; Zhang et al. 2016b).  The advantage of such intact 

analysis is that it provides unique information on the attachment of specific glycan 

species to a particular glycosylation site on the protein backbone (Rosati et al. 2013). 

Lectin affinity chromatography is another powerful technique for isolating and 

analyzing intact glycoproteins, wherein lectins with high affinities towards particular 

oligosaccharides are immobilized to separation matrices such as agarose, resulting in 

techniques with high specificities (Mechref and Novotny 2002). The recent 

development of chemiluminiscence-based lectin-binding assays have further expanded 

the applicability to high throughput glycan analysis (Onitsuka and Omasa 2015).  

A ‘middle level’ approach involves proteolytic digestion of the glycoprotein 

that results in the formation of intact glycopeptides that are then separated, purified 

and analyzed using matrix assisted laser desorption/ionization time of flight (MALDI-

TOF) MS (Bailey et al. 2005), or using electrospray ionization (ESI) MS following 

separation by liquid chromatography (LC) (Medzihradszky 2005). Such a mid-level 

analysis helps identify the glycosylation site and characterize the site-specific glycan 

heterogeneity in samples with multiple glycosylation sites. Note that, this approach at 

characterizing the glycopeptide differs from other techniques to identify the site 

occupancy. For instance, techniques have been developed using HPLC (St. Amand et 

al. 2014a) and Raman spectroscopy  (Brewster et al. 2011) for characterizing the 

glycan macroheterogeneity, that are distinct from the techniques described here for 

glycan site heterogeneity. While the former techniques assess and quantify the level of 

deglycosylation in the sample, the latter characterize the glycan species at specific 

glycosylation sites.  
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The bottom level analysis involves proteolytic cleavage of the glycoprotein 

followed by a release of the N-glycans using enzymatic release (with glycosidase 

enzymes such as PNGase-F) or chemical release (using sodium borohydride). The 

released glycans are captured and derivatized with a chemical tag followed by 

spectroscopic analysis. While there are several different glycan labeling strategies, the 

commonly used techniques are based on reductive amination – wherein a label such as 

2-amniobenzamide (2-AB), 2-aminobenzoic acid (2-AA), or 2-aminopyridine (2-AP) 

which contain primary amine groups react with the aldehyde group of the glycan 

forming a Schiff base; or are based on (per)-methylation – where hydrogens on the 

hydroxyl group, amine group, and carboxyl groups of the glycan are replaced by 

methyl groups from the added methyl iodide (Ruhaak et al. 2010). Labeled glycans are 

then analyzed using HPLC or MS.  

Bottom-level analysis gives an in-depth characterization of the different glycan 

species present in the mAb and is required by all regulatory agencies. However, the 

detailed information received from a bottom level analysis comes at the expense of 

local information such as protein binding site, glycan pairing on the adjacent heavy 

chain glycosylation site, etc. Extensive research has been undertaken on the 

development of such assays that characterize the microheterogeneity in the antibody 

sample. As these assays require elaborate sample preparation, they are usually 

comprised of multiple process steps and efforts have been directed at optimizing each 

process step. For instance, following the purification of the glycoprotein, the 

enzymatic release of the glycan species requires overnight incubation. However, by 

using microwave based deglycosylation techniques, the overall deglycosylation time 

was reduced from 16 hours to a matter of minutes (Sandoval et al. 2007a; Sandoval et 
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al. 2007b). The subsequent choice of the labeling tag is dictated by the final analytical 

technique used for characterization. Different tags have their specific advantages and 

disadvantages and are optimized for each application. In our work, we have 

extensively used glycan permethylation as reported in the previous chapters to label 

the released glycans using the Ciucanu method (Ciucanu and Costello 2003; Ciucanu 

and Kerek 1984). Here the methyl iodide is added in the presence of a strong base 

such as sodium hydroxide followed by liquid-liquid extraction and solid phase 

extraction prior to analysis by MALDI-TOF (Kang et al. 2008; Lin and Lubman 

2013). Alternatively, both 2-AB and 2-AA labels have been used as fluorescent tags 

followed by subsequent purification and glycan characterization using a variety of 

analytical techniques – such as capillary electrophoresis (Kamoda et al. 2006), normal 

phase HPLC (Royle et al. 2007),  UPLC or ultrahigh performance liquid 

chromatography (Burnina et al. 2013), and HILIC or hydrophilic interaction liquid 

chromatography followed by MS (Shang et al. 2014). Label-free analytical methods 

using coupled orthogonal methods such as LC-MS and 1H-NMR have also been 

implemented to characterize the glycan distribution in commercial mAbs (Wiegandt 

and Meyer 2014).  

The relative comparison between different characterization methods such as 

Reverse Phase (RP)-UPLC, HILIC-UPLC and CE-LIF has also been studied, 

highlighting the disadvantages of using the RP-UPLC method (Adamczyk et al. 2014). 

Efforts have also been made to increase the throughput of these characterization 

methods by introducing automated sampling and analytical techniques thereby 

reducing sample time (Doherty et al. 2013; Tharmalingam et al. 2015). The methods 

listed so far are by no means exclusive, as a glycoprotein may be characterized by 
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more than one orthogonal technique (Klapoetke 2014; Stadlmann et al. 2008; Wagner-

Rousset et al. 2008). 

Monosaccharides are obtained by acid hydrolysis of the glycoprotein and can 

be analyzed using high performance anion exchange (HPAE) chromatography or by 

gas chromatography followed by mass spectrometry (GC-MS). They are often used to 

characterize the individual sugars that comprise any oligosaccharide.  

With the advancement of analytical techniques and the increased 

understanding of the effect of glycosylation on other quality attributes such as 

aggregation and charge variants, there have been further advances in the development 

of multi-attribute methods wherein more than a single quality attribute is measured 

using orthogonal techniques (Rogers et al. 2015). Additionally, increasing regulatory 

requirements have also led to the development of several high-throughput techniques 

for glycan characterization at all levels (Aich et al. 2016). However, despite these 

advances, glycan analysis still remains an elaborate and time-consuming process. 

While a few assays have been developed to achieve near real-time analysis of glycan 

species (Tharmalingam et al. 2015), a majority of the techniques remain off-line or 

require elaborate sample preparation.  

For instance, the glycan permethylation technique used in this thesis involves 

multiple sample preparation steps – starting from antibody purification, to glycan 

cleavage, capture, labeling, liquid-liquid extraction, and final clean-up – before they 

can be analyzed by MALDI-TOF. These sample preparation steps can take over 48-60 

hours before the glycan distribution is fully characterized and hence, are not amenable 

for real time or near real-time glycan analysis. Some of the newer reagents being 

developed for faster glycan labeling remain prohibitively expensive and are more 
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suitable for final quality analysis before product release than for in-process use. There 

is thus a growing necessity to develop better glycan assays or, in the absence of glycan 

measurements, to have reliable inferential estimates of the glycan distribution. In the 

rest of this section, we present in brief, our efforts at developing an in-house HILIC 

based glycan assay followed by modeling approaches to address the challenges arising 

due to infrequent measurements. 

5.2.1 In-house Glycan Assay Development 

An in-house HILIC based glycan assay was developed for characterizing the 

glycan distribution profile in IgG1 samples obtained from our experiments. IgG1 was 

purified from spent media using a PhyNexus Benchtop MEA2 system using Protein A 

chromatography resin packed in a 2 mL PhyTip column. The antibody was then 

denatured using SDS followed by overnight enzymatic deglycosylation with PNGase-

F at 37° C in a water batch. Microwave based deglycosylation techniques were also 

tested, but the technique was marred with issues of reproducibility. Following 

deglycosylation, the glycans were separated from the denatured protein by buffer 

exchanged followed by centrifugation, with the glycans collecting in the supernatant. 

The supernatant was then dried and labeled with 2-aminobenzamide (2-AB) at 65° C 

for 3 hours. Following glycan derivatization, excess reagent is washed off using a 

PhyNexus Benchtop MEA2 system with normal phase chromatography resin packed 

in a 2 mL PhyTip column. The labeled glycans are then analyzed on a Waters BEH 

XBridge Glycan column (250 mm, 4.6 mm o.d., 3.5 micron particles) following 

hydrophilic interaction chromatography (HILIC) on an Agilent 1100 system fitted 

with a fluorescence detector. The total glycan analysis time was further reduced by 

using non-linear gradient chromatography to enhance separation. The resulting glycan 
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peaks were characterized by comparing the retention times to the retention times for a 

2-AB labeled dextran ladder that was analyzed using a similar elution gradient and the 

glycan peaks were then identified on the basis of their glucose unit (GU) values by 

searching the GlycoBase database (GlycoBase, NIBRT, Ireland).  

The in-house assay reduces sample preparation and overall analysis time to a 

little over 48 hours in comparison to the longer permethylation assay. Thus, this assay 

can be potentially used for analyzing in-process samples. However, even with a 

reduced analysis time, we are faced with the issue of the long time delay associated 

with this assay. We can address this issue by either: (i) developing a different assay 

that would require fewer measurements to be made, thereby reducing sample time; or 

(ii) utilize a mathematical model to predict the glycan distribution taking into account 

the associated time delays. These challenges have been addressed in §5.3 and §5.4 

respectively. 

5.3 Designing Novel Glycan Assays using Observability Analysis 

As our brief review shows, glycan analysis is an exciting and challenging 

frontier in glycobiology and has seen considerable development in the past couple of 

decades. The advancement of analytical tools along with the growing requirements 

from manufacturers and regulatory agencies alike to characterize the glycan 

distribution have led to the development of a variety of glycosylation assays. 

However, these assays require skilled personnel, expensive reagents, and/or detailed 

sample preparation prior to characterization. To characterize these diverse and 

complex glycosylation profiles, faster or simpler assays have to be developed that can 

be implemented on-line or at-line during manufacturing.  
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One characteristic feature of glycan species that has not been widely exploited 

in the development of current glycan assays is the underlying glycan reaction network. 

As noted in §1.5.1, although glycosylation is a non-template driven process, the 

localization of different glycosyltransferase enzymes causes specific glycan species to 

be produced in different regions of the Golgi apparatus. Further, the formation of late 

stage glycans is dependent on the glycan species that are produced prior to it. Thus, 

the sialic group will only be attached to a galactosylated glycan; the galactose group, 

in turn, only attaches to an N-acetylglucosamine precursor; and so on. Thus, the 

individual glycan species are interconnected forming an elaborate glycan reaction 

network whose topology can be studied to understand the impact of specific glycan 

species on other glycan intermediates. Such a topological study of the glycosylation 

reaction network has been studied previously to understand the modularity in these 

reaction networks and develop techniques for glycoengineering of therapeutic proteins 

(Kim et al. 2009a). Here, we use the information contained in such a glycan reaction 

network to guide glycan assay development. Essentially, we propose that, in lieu of 

measuring each individual glycan species, it might suffice to measure a judiciously 

selected set of glycans that contain information about the rest of the glycan reaction 

network. Assays developed for these “secondary” measurements would thus contain 

the relevant information needed to infer the glycan distribution profile.  

The use of secondary or indirect measurements to estimate target variables is 

not new and the use of such soft sensor techniques for bioprocesses has gained a lot of 

traction in recent years (Mandenius and Gustavsson 2015). To be able to design and 

implement these soft sensors, we must first answer a critical question: for a given set 

of secondary (indirect) measurements, which combination would be suitable for 
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estimating the target variables (Golabgir et al. 2015)? In the context of our work, we 

frame this question as: which combination of glycan species, when measured together, 

would be suitable to estimate the complete glycan distribution profile? Having 

identified this combination of glycan species, we can then explore the feasibility of 

developing novel glycan assays targeted towards these specific information-rich 

glycan measurements. 

To address this work, we rely upon observability analysis, which reflects the 

possibility of estimating the internal states of a system based on the input/data 

available over a finite time horizon (Ray 1984). In observability analysis we aim to 

infer the internal state or the glycan distribution for our system using the available 

output measurements, making it a dual to the controllability analysis that was 

previously described in §3.2.5. However, for a system as complex as glycan reaction 

network, where the enzyme kinetics for each glycan species are described using 

Michaelis-Menten reaction kinetics, we note that the use of standard observability 

analysis poses a mathematically intractable problem. Consider, for instance, a generic, 

time-invariant state space model describing the dynamics of our variable of interest, x 

(the glycan distribution profile), as given by: 

 

 
d¤dt = f�¤, v� 5.1 

 

where u represents the associated inputs and the output measurements, y (that we wish 

to monitor using the glycan assay) are given by: 

 t = h�¤, v� 5.2 
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Applying standard observability analysis enables us to uniquely infer the initial 

state x(0), provided the following observability criteria is met – the observability 

matrix obtained as the Jacobian of the Lie derivative vector of the output must be full 

rank. Clearly, for a small glycan reaction network with just 20 glycan species, the 

associated Jacobian calculations become computationally challenging. Also, a 

complete observability analysis only serves to assess if our selected set of 

measurements renders the system observable, without providing any guidance as to 

the selection of specific sensors. As our objective is to identify the particular sensors 

whose measurement will aid in characterizing the complete glycan distribution, we 

seek alternative means of performing the observability analysis. 

One such approach to identify the sensors that describe the internal states of a 

complex systems uses a graphical approach, wherein inference diagrams are drawn, 

connecting the different states that are interconnected and subsequently, strongly 

connected components (SCC) decomposition is performed on these inference 

diagrams to uniquely identify the nodes that can be selected as sensors (Liu et al. 

2013). However, the challenge of applying such a graphical approach to our problem 

lies in the inherent linear nature of the glycan reaction network. Although the glycan 

species are interconnected, only upstream glycan species (i.e. glycans produced in the 

initial compartments of the Golgi apparatus such as high mannose glycans and 

biantennary glycans) have an effect on the downstream glycan species (i.e. glycans 

produced in the latter regions of the Golgi compartment such as complex glycans and 

hybrid glycans) and not vice-versa. Consequently, when we apply strongly connected 

components decomposition using the in-built graphnoncomp function in MATLAB 

for the 77 glycan reaction network presented in the DK2011 model (del Val et al. 
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2011), we note that every glycan in the resulting inference chart becomes a potential 

sensor, implying that we need to measure every single glycan under this scheme (see 

Figure 5.2). As the graphical approach does not assist us in sensor selection, we 

examine an alternate based on the stoichiometry of the system.  

 

Figure 5.2: Inference maps based on SCC decomposition of the glycan reaction 
network obtained from DK2011 model. Every single glycan is identified 
as a potential sensor based on this map. 
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5.3.1 Selecting Measurement Variables for Analysis 

To identify a subset of glycan species that can be measured to provide maximal 

information of the complete glycan distribution, we examined the stoichiometry of the 

glycan reaction network. The interdependencies of the glycan reaction network 

indicate that selecting any subset of glycans from the complete set of glycan species 

would pose subsequent computational challenges in defining the measurement matrix. 

Recall from equation 5.2, that the measurements are defined using a measurement 

model, h, and are dependent on the inputs, u, and the internal states, x. Further, in 

Chapter 2, we noted that the mass balance on the glycan species involve coupled PDEs 

using detailed Michaelis-Menten rate equations. Thus selecting a particular subset of 

glycans as our output measurements, y, and estimating the complete glycan 

distribution, x, would result in a highly non-linear measurement model, h. To 

circumvent this issue, we avoid selecting individual glycan species as our 

measurements and instead use ‘grouped variables’ (similar to the glycosylation indices 

presented in Chapter 3) as our measurement variables. For instance, our measurement 

variable ‘F1’ is defined as the sum of the relative distributions of all fucosylated 

glycans, while the sum of the relative distributions of all afucosylated glycans is 

defined as our measurement variable ‘F0’. 
 

 F� = %FA2 + %FA2G1 + ⋯ + %FA2G2 + 5.3 

 F� = 0 × %M8 + 0 × %M7 + ⋯ + 1 × %FA2 + 1 × %FA2G1 + ⋯ 5.4 

 

The complete set of measurements used are listed in Table 5.1. Note that, in 

addition to the fucosylated and galactosylated measurement variables, we have 

introduced two additional variables – Man (M), the sum of relative distribution of all 
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glycans with greater than three mannose groups attached; and Ratio (R), the relative 

distribution of two most abundant glycans found in the system. 

5.1: List of new measurement variables and their definitions 

Selected 

measurement 
Definition 

F0 Sum of relative distribution of afucosylated glycans 

F1 Sum of relative distribution of fucosylated glycans 

G0 Sum of relative distribution of agalactosylated glycans 

G1 Sum of relative distribution of mono-galactosylated glycans 

G2 Sum of relative distribution of bi-galactosylated glycans 

Mannose, M Sum of relative distribution of high mannose species ( > 3) 

Ratio (R) Relative distribution of the two most abundant species 

 

 

The biggest advantage of using ‘glycan groups’ as our measurement variables 

in lieu of individual glycan species is the resulting simplification of the measurement 

matrix (Equation 5.2). Instead of a highly non-linear measurement matrix, we now 

have a linear measurement matrix, where most elements are either 0 or 1. Thus, the 

linearized measurement model can be written as 

 

 t = §¤ 5.5 

 ¨ y�y/.y�
ª = « c�� c�/ . . c��. . .c�� . . . c��¬ p ­®®

®̄x�x/..x�°±±
±² 5.6 
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By this simplification, we reduce the issue of determining the complete glycan 

distribution profile from select measurements to a mathematically tractable matrix 

inversion problem. As the measurements included herein are sums of relative 

distributions, we are able to introduce additional constraints as given below 

 

 F� � F� � 100% 5.7 

 G� � G� � G/ 	� 100% 5.8 

 x� ³ 0 5.9 

 Yx� � 100% 5.10 

 

These constraints include the non-negativity constraint on the glycan 

distribution and a summation constraint on the different measurement variables. The 

implication of the summation constraint is that we cannot choose to measure the 

fucosylation indices (F0, F1) and the galactosylation indices (G0, G1, G2) 

simultaneously, as the resulting measurement matrix would be rank deficient. 

Similarly, if we choose measurement variables such that the summation constraint in 

equation 5.10 is not satisfied, (for instance, by choosing F0, G0, G1, M, R), then we 

must modify the measurement matrix appropriately to satisfy that constraint. 

Regardless of how many measurement variables are chosen, the number of glycans to 

be estimated will be greater, i.e. in equation 5.6, the number of measurements, m, will 

be less than the number of glycans to be estimated, n. Thus the stoichiometric or 

measurement matrix, C, is non-square and we solve for the glycan distribution using a 

non-negative least squares solver.  
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To assess the quality of glycan distribution predictions arising from our choice 

of measurement variables, we test the proposed calculation technique against 

experimental data. Briefly, an IgG1 producing CHO-K1 cell line was grown under 

standard growth conditions described in the previous chapters and the glycan 

distribution at the end of the batch was analyzed by permethylation followed by 

MALDI-TOF. A total of eighteen glycan species were experimentally observed and 

their relative glycan distribution was obtained. The experimental data was then used to 

calculate the values of the measurement variables F0, F1, G0, G1, G2, M, and R as 

defined in Table 5.1. Next, we estimate the glycan distribution using the non-negative 

least squares solver in MATLAB and compare the estimated glycan distribution to the 

experimentally observed glycosylation profile. The root mean square error (RMSE) is 

used to evaluate the quality of the predicted glycan distributions from our analysis, as 

demonstrated in the following section. 

5.3.2 Results from Observability Analysis 

To estimate the glycan distribution profile, we first choose a measurement 

vector with as few measurements as possible. Here, we choose to measure the 

fucosylation indices (F0, F1) and the mannose value (M) in addition to the ratio (R) of 

the two most abundant glycan species. Figure 5.3 shows a comparison of the measured 

and estimated values.  
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Figure 5.3: Experimental and predicted value of the glycan distribution using 
observability analysis with four measurements. The measurements 
included here are F0, F1, M, and R 

We note that with just 4 measurement variables, the resulting estimate has an 

RMSE value of 13.27% as it closely accounts for most of the major glycan species. 

We expect that increasing the number of measurements will improve the quality of our 

estimate and accordingly, we choose to measure G0 in addition to the measurement 

variables previously selected. Addition of a variable increases the rank of the 

measurement matrix and the RMSE decreases as expected to 9.27%. If we define an 

acceptable cutoff for the measurement assay at 10% RMSE, then an assay with just 

five measurements (F0, F1, G0, M, R) would be sufficient to get a reasonable estimate 

of the glycan distribution. If we now choose to include a sixth measurement, say G1, 

then the rank of the measurement matrix increases to 6 and the RMSE decreases to 

9.09%. Thus the improvement in the quality of the estimate with the addition of a sixth 

measurement is only marginal in comparison to the improvement in the quality of the 
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estimate when a fifth measurement is added. Figure 5.4 plots the estimated glycan 

distribution for each scenario against the experimentally determined values. 

 

Figure 5.4: Comparing experimental and predicted values obtained from 
glycosylation analysis with four, five, and six measurements. 

Additionally, we check to see if we can comment on the quality of the 

prediction a priori by checking specific metrics related to the measurement matrix. 

One such obvious metric that can be tested is the condition number of the 

measurement matrix. When we plot the RMSE against the condition number (Figure 

5.5), we notice a general trend in that the increasing condition number tends to 

represent lower RMSE. This is expected as each additional measurement increases the 

rank of the matrix and the additional measurement improves the quality of the 

estimate. Thus, once we select a set of measurement variables and examine the 
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condition number, we might plausibly be able to judge if the quality of the estimate 

will be within the defined acceptable limit. 

 

Figure 5.5: Root mean squared error (RMSE) of the glycan prediction for different 
scenarios plotted against the corresponding condition number of the 
measurement matrix. We see that with four measurements, the predicted 
measurements have a lower condition number but a higher RMSE, while 
with six measurements, the RMSE is lower.  

Finally, we note that we the choice of different measurements is a 

combinatorial problem. Assuming that the ratio (R) is measured each time, we can 

come up with forty different choices involving different combinations of variables that 

comprise the measurement vector. These include cases with four measurements, five 

measurements, and six measurements, as well as the rank deficient case where both 

fucosylation and galactosylation indices are included. In cases where the chosen 

measurements do not meet the summation constraint, the measurement matrix is 
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adjusted accordingly and the glycan distribution is then estimated. The resulting 

RMSE values for each of the 39 cases is plotted as a function of the matrix condition 

number. 

 

Figure 5.6: Root mean squared error (RMSE) for glycan predictions with each of the 
39 cases tested plotted against the corresponding condition number. The 
red squares indicated cases with four measurements, the blue diamond 
represents cases with five measurements, the green triangle cases with six 
measurements. As some measurement choices do not meet the 
summation constraint, they are added to the measurement matrix. The 
purple circles consist of 4 measurements with the constraint added, while 
the black cross marks are for five measurements with a constraint added.  

Our analysis shows that it is not just the number of measurements that matter, 

but also the choice of a measurement variable can have a significant impact on the 

overall estimate. For instance, for a given number of measurements, if we take an 
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average of the mean of squared errors, we note that the quality of the estimate 

improves when we exclude G2 or Man as a measurement variable. This is likely 

because they information content in G2 and Man is lower than that contained in the 

other measurement variables, as there are fewer high mannose and bi-galactosylated 

glycoforms. 

Overall, the analysis presented here is a means to assess how measurement 

variables can be selected to obtain reasonably acceptable estimates of the glycan 

distribution. We must note that in each case we are estimating a large glycan 

distribution with a limited set of measurements, and hence there is some sacrifice in 

the quality of the estimate. However, the information content in all measurement 

variables is not the same and given a limited set of measurements, this method can be 

used to rationally design assays that measure the required variables.  

While observability analysis helped us understand how novel assays can be 

developed, in the subsequent section, we address how the glycan distribution can be 

estimated using a dynamic model with intermittent measurement. 

5.4 Estimating Glycan States 

As discussed in §5.2, measuring the glycan distribution is laborious, expensive, 

and time-consuming; consequently, glycan measurements are made at infrequent 

intervals, with no reliable on-line monitoring of the glycosylation profile. Although 

progress is being made in monitoring real-time glycan distribution using some of the 

more advanced assays (Tharmalingam et al. 2015), the established methods for 

measuring the complete glycan distribution profile are still primarily offline. The 

absence of any commercially available assays for continuous, on-line monitoring of 

glycosylation, renders on-line control of glycosylation extremely difficult and 
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necessitates the development of alternate approaches to monitor the glycan 

distribution. In §5.3, we discussed how stoichiometric information of the glycan 

reaction network can be used to develop novel glycan assays based on output 

observability analysis. In this section, we address the issue of infrequent 

measurements directly by employing dynamic models described in detail in Chapter 2 

to estimate the glycosylation profile.  

5.4.1 Overview of State Estimation 

State variables are those process variables that uniquely specify the internal 

condition (or state) of a process at any given time. In order to achieve effective control 

of a dynamic process, it is necessary to have reliable, real-time information on these 

state variables (Ogunnaike and Ray 1994b; Soroush 1998). However, in practice, not 

all state variables can be monitored on-line due to considerations of cost or analysis 

time, or even the availability of reliable sensors. The lack of frequent, on-line or at-

line measurements of critical process variables is commonly encountered in the 

process industry, with routine analysis of samples being conducted offline and/or on 

an infrequent basis. Without on-line sensors for all state variables, regular feedback 

control of the process is rendered infeasible and hence, inferential techniques are used 

to reconstruct or estimate the state variables based on available measurements 

(Ogunnaike and Ray 1994a). The general structure of such a ‘state estimator’ is 

presented in Figure 5.7.  
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Figure 5.7: General structure of a state estimator. Adapted from Ogunnaike and Ray 
(1994b) 

State estimators static or dynamic, deterministic (Dochain 2003) or Bayesian 

(stochastic) (Patwardhan et al. 2012) systems that are widely used to estimate the 

unmeasured states in chemical (Ogunnaike 1994; Zambare et al. 2003) and 

biochemical processes (Dewasme et al. 2015; Fernandes et al. 2015; Gudi et al. 1995; 

Tatiraju et al. 1999). The main components of a state estimator are as listed below. 

A state estimator requires a dynamic model of the different states of the system 

x, with process input u, and model error ξ usually given by 

 

 
d¤dt � ´�¤, v� � ξ�t� 5.11 

 

The initial condition for the states, as represented by 
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 ¤�0� = ¤¶ + ξ� 5.12 

 

The measurement device which produces the signal of measured values, y,  

 

 t = ·�¤, v, β� + � 5.13 

 

where the measurement model depends on the parameters, β and the measurement 

signal contains noise, η.  

Based on these components, we develop a state estimator that takes the form 

 

 
d¤¹dt = f�¤¹, v� + u∗�t�Rt�t� − t¹�t�] 5.14 

 t¹ = h�¤,º v, β� 5.15 

 

Here, the variables ¤¹ and t¹ refer to the on-line estimates of x and y 

respectively, and K (t) denotes the correction gain matrix. The first term in the state 

estimator is the prediction based on the process model, while the second term denotes 

the correction to the process model calculated as the difference between the actual 

measurement, y, and the estimated value of the measurement signal, t¹  predicted by 

the model, h�¤,º v, β�. In the next section, we identify the state variables and 

measurements in our process.  
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5.4.2 System and Model Description 

The multi-scale dynamic model for glycosylation has been described in detail 

in Chapter 2 of this thesis. Briefly, we use a macro-scale model developed using 

Monod kinetics to calculate the antibody productivity based on cellular growth. The 

glycan productivity, which is obtained from the antibody productivity in the macro-

scale model, is used in the adapted DK2011 model to obtain the glycan distribution 

profile. The values of the process variables measured at the macro-scale (nutrient 

concentration, cell densities, antibody concentration) are available to us at the time 

scale of an hour, which when compared to the time required for analyzing the glycan 

distribution profile (> 48 hours), is practically insignificant. Thus, the macro-scale 

process variables are available at much faster rates and at higher frequencies than the 

micro-scale glycan distribution, as listed in Table 5.2 

5.2: Measurement delay and sampling frequencies for different measurements 

Process Variable Time delay 
(hours) 

Sampling frequency 
(days) 

Glucose concentration 0.0 1 
Glutamine concentration 0.0 1 
Lactate concentration 0.0 1 
Ammonia concentration 0.0 1 
Viable cell concentration, Xv 0.0 1 
Total cell concentration, Xt 0.0 1 
Antibody concentration 0.5 2 
Glycan distribution 48.0 2 

 

 

For the purposes of the present discussion, we evaluate the performance of the 

state estimator assuming that there is adequate knowledge of the macro-scale model. 
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Thus, we assume that there is a priori knowledge of cell growth profile, antibody 

productivity profile and hence, the glycan productivity profile. Such an assumption 

would be valid, considering that macro-scale concentration measurements are 

available at a significantly faster rate and a greater frequency than glycan 

measurements. Further, by assuming that the macro-scale model correctly predicts the 

antibody and glycan productivity rate (which form the inputs for the micro-scale 

model), we deduce that differences observed between the measured and the predicted 

glycan distribution profile are due to inadequacies in the micro-scale model alone. 

This assumption helps simplify our calculations and assess the performance of the 

state estimator. Before we get to designing the state estimator, however, we must first 

define the state and measurement variables and the attendant equations used in the 

dynamic state model.  

The absolute concentrations of the different glycoform that accumulate in the 

flask over the period of the batch culture represent the internal state of the system that 

we wish to monitor, whereas typical glycan assays provide the relative distribution (or 

percentage distribution) of the individual glycan species in the flask at a particular 

sampling time. Thus the absolute accumulated concentrations of individual 

glycoforms are the state variables of interest (x), whereas the relative glycan 

distribution (or percent glycan distribution) of each glycoform obtained from the 

glycan assay constitutes the measurement variable, y. As the absolute concentrations 

of different glycan isoforms remain unmeasured and as glycan measurements are 

available only at infrequent intervals, we employ a dynamic model based state 

estimation technique to obtain real time estimates of the state variables. 
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Having defined our state and measurement variables, the resulting system 

equations that we use in our analysis are obtained as follows. We note that the 

accumulation of any specific glycoform (mAbi) in the culture can be given by (del Val 

et al. 2016): 

 

 
dRmAb�Udt � 	 f� p q��D p X' 5.16 

 

where fi is the fractional concentration of that mAb glycoform obtained from the 

micro-scale model, qmAb and Xv are the antibody productivity and cell viability 

obtained from the macro-scale model, respectively. The glycan measurements are 

related to the glycan fraction state variables as: 

 

 t�t� � 	 100RMAb	conc�t�U ¤�t�,% 5.17 

 

In the present analysis, we generate our model predictions using the 

aforementioned multi-scale model. However, lacking the experimental measurements 

to compare these model results to, we generate a set of simulated measurements using 

a modified version of the multi-scale model. This is accomplished by changing the 

concentrations of the glycosyltransferase enzymes in the micro-scale model and 

obtaining a new glycan distribution profile. The relative glycan distribution is 

calculated at specific time points and chosen as the simulated ‘measurement’ for our 

system. The algorithm for the state estimator and the associated calculations are 

discussed in the following section.  
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5.4.3 Algorithm for Designing the State Estimator 

As described in the previous section, we implement the state estimator by 

assuming that the macro-scale model is known to us a priori, enabling us to predict 

the glycan distribution profile based on antibody productivity.  

Starting with an initial concentration x0, we solve equation 5.16, to obtain the 

estimate of the concentration of individual glycoforms accumulated from time t = t0 to 

time t = t1, and using the model listed in equation 5.17, we obtain the relative glycan 

distribution (t¹) at time t = t1. At the first time instant, the solver checks to see if any 

measurements (t�t��) are available, and if so, this measurement is compared to the 

model prediction at that time instant (t¹�t��, giving us the error, ε as 

 

 �|+L+N = t�t�� − t¹�t�� 5.18 

 

We multiply this error by a correction gain matrix (K) as given in equation 

5.14 and add the innovation term to our prediction at that time instant. The correction 

gain matrix is generally specified according to the type of estimator used. For non-

linear systems, a commonly employed state estimator is the extended Kalman filter 

(EKF), wherein the non-linear state equations are linearized around the current state 

estimate and an appropriate correction term (KEKF) is calculated using the process 

noise covariance matrix, the measurement noise covariance matrix, and the Jacobian 

of the process model (Fernandes et al. 2015). By contrast, the unscented Kalman filter 

(UKF) avoids linearization approach used in EKF and instead uses a Gaussian random 

variable to represent the state distribution, and calculates the Kalman correction gain 

using the covariance matrices. In our system, the high degree of non-linearity 

associated with the glycan reaction expressions makes it impractical to adopt 
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linearization techniques or evaluate the appropriate Jacobian of the process model. 

Instead, we use a constant, time-invariant correction gain matrix in all our simulations 

and evaluate the performance of the state estimator under these conditions.  

The correction gain matrix is multiplied to the error determined from equation 

18, to obtain the correction (or innovation) term which is then used to update the 

model as shown in equation 5.14. We then solve equation 5.16 for our state variables 

(glycoform concentration) from time t = t1 to the next time instant, t = t2 using the 

updated state estimate at time t = t1. At the next time instant, t = t2, we evaluate once 

again the availability of any measurements. If no measurements are available at time t 

= t2, equation xx is solved till the next time instant t = t3, without any correction to the 

model prediction at time t = t2. This loop is iteratively performed till the end of the 

batch. Figure 5.8 shows a flowchart that briefly summarizes the algorithm 

implemented here for state estimation 
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Figure 5.8: Flowchart depicting state estimation algorithm. At specific time instants, 
the availability of measurements is checked. If no new measurements are 
available, the state estimator uses the model to predict the glycan 
distribution. When a measurement becomes available, the model is 
updated and a new prediction is obtained. The algorithm is performed 
iteratively till the end of the batch.  
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5.4.4 Estimating Glycan States using a Constant, Time-invariant State 
Estimator 

In this section, we will discuss the key findings obtained by implementing the 

designed state estimation technique. First, we evaluate the state estimator performance 

under nominal, noise-free conditions where, we assume that neither the model nor the 

measurement has any noise associated with it. To do this, we generate noise-free 

measurements using the multi-scale model at time points, t = 58 hours, 98 hours, 138 

hours, and 178 hours. These time points are chosen assuming that the initial glycan 

measurement is made after about two and a half days after the cells were inoculated in 

the flask, followed by glycan measurements every 40 hours. Next, we follow the state 

estimation algorithm and generate model predictions from time t = 0 to time t= t1 = 58 

hours. At 58 hours, the innovation (correction) term in the state estimator is activated 

and the model prediction gets updated, followed by subsequent integration of the state 

model till the time point at which the next measurement is available, i.e. 98 hours. 

Once again, at 98 hours, the measurement is compared to the estimate of the measured 

value as generated by the model predictions, and the correction term is activated 

accordingly. This process is repeated for time points 138 hours and 178 hours and the 

final glycan distribution profile predicted by the model is recorded. In these 

simulations, the correction matrix is defined as a diagonal matrix with a constant, 

time-invariant gain of 10-4. 

Additionally, to compare the efficacy of our state estimator, we obtain model 

predictions for the complete time period without including the state estimation 

technique, i.e. model predictions are not corrected at the specific time points at which 

measurements are available. Figure 5.9 plots the estimated values of the accumulated 



 

 169

glycan fractions for three glycan species A2, FA2, and M6 and compares them to the 

available measurements.  

We note that in each case, the estimates obtained from the model prediction do 

not match the available measurements and hence, the model predictions must be 

corrected appropriately. When the first measurement becomes available at time t = 58 

hours, we note that the activation of the correction matrix improves the subsequent 

estimate of the glycan distribution, and with each additional measurement, the final 

estimate is closer to the measured value of the glycan state. Figure 5.9(d) compares the 

sum of squared errors (SSE) between the estimated glycan distribution and the 

measured glycan distribution at each time point. Once again, we note that the sum of 

squared error between the estimated values and the measured values decreases when a 

state estimator is implemented. 
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Figure 5.9: State estimator performance under noise-free conditions. Plots represent 
the accumulation of (a) A2; (b) FA2; and (c) M6. Solid red line 
represents the estimate without state estimation, the solid black line 
represents the estimate obtained by implementing the state estimation 
technique, while the blue dashed line with boxes represents the available 
measurements. (d) Sum of squared errors for estimates obtained with and 
without state estimation. The solid grey bars represent the SSE for 
estimates obtained without implementing the state estimation technique 
while the cross-hatched bars represent the SSE for estimates obtained 
after implementing state estimation  

Next, we test the state estimator performance under conditions where we 

account for model and measurement noise. Here, we add a uniformly distributed 

random number, generated using the inbuilt ‘rand’ function in MATLAB, to each 

measurement value and to each model prediction. However, the measurement 
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variables represent relative glycan fractions and are hence constrained to sum up to 1. 

Therefore, upon adding a random number to each measurement and model value, we 

must then renormalize the measurement and model values so that the inherent 

constraint (that the sum of glycan fractions must add up to 1) is satisfied.  

Figure 5.10 compares the estimated value of the accumulated glycan fraction 

for glycoforms A2, FA2, and M6 to their respective measured values. Once again, we 

note that the estimates obtained by implementing the state estimator are closer to the 

actual measurement than the estimates obtained without implementing the state 

estimator. The sum of squared errors of the estimates obtained using the state 

estimator are also lesser than the sum of squared errors of estimates obtained without 

implementing the state estimator.  
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Figure 5.10: State estimator performance in the presence of model and measurement 
noise. As before, the plots represent the accumulation of (a) A2; (b) FA2; 
and (c) M6. Solid red line represents the estimate without state 
estimation, the solid black line represents the estimate obtained by 
implementing the state estimation technique, while the blue dashed line 
with boxes represents the available measurements. (d) Sum of squared 
errors for estimates obtained with and without state estimation. The solid 
grey bars represent the SSE for estimates obtained without implementing 
the state estimation technique while the cross-hatched bars represent the 
SSE for estimates obtained after implementing state estimation  

In the analysis performed here, we have worked with a constant, time-invariant 

gain in the correction matrix. Further refinement of the state estimator can be carried 

out by using a varying correction gain matrix.  
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5.5 Summary and Conclusions 

Glycan distribution is heterogeneous and diverse resulting in a wide array of 

oligosaccharide attachments that are naturally observed. The attachment of these 

diverse oligosaccharides to different glycoproteins alters their form, functionality, and 

structure and is hence critical to be monitored. While glycan analysis has been used 

primarily for off-line quality control to ensure batch-to-batch consistency and 

comparability, the adoption of quality by design (QbD) principles by manufacturers 

and regulatory agencies, and the emergence of biosimilars is increasing the need for 

at-line and on-line glycan characterization assays. However, current glycan 

characterization assays are laborious, expensive, and time-consuming and hence, most 

glycan assays are still performed off-line. The lack of on-line or real-time 

measurements further hinders the development of control schemes that can be 

developed to ensure on-line glycosylation control. To address the challenges 

associated with the lack of on-line measurements we have presented two techniques in 

this chapter. First, we developed a rational method based on observability analysis to 

identify glycan groups that can provide the maximum information about the glycan 

distribution profile, based solely on the stoichiometric information of the glycan 

reaction network. Next, we have demonstrated the efficacy of a state estimator scheme 

in estimating the glycan distribution profile in the absence of real time measurements. 

This work will form the foundation of future efforts to develop on-line control 

schemes for controlling glycosylation in mAbs.  



 

 174

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

6.1 Summary and Conclusions 

The work presented in this dissertation provides a robust framework: (a) for 

modeling the effect of different input factors on the glycosylation profile and 

obtaining quantitative input-output relationships; (b) for estimating the glycan 

distribution profile in the absence of real time glycan measurements; and (c) for 

controlling the final glycosylation profile based on an understanding of the underlying 

structural input-output relationship. The developed framework forms the basis of a 

rational approach to implement process analytical technology (PAT) in upstream cell 

culture operations to ensure glycosylation control.   

As glycosylation is affected by a variety of factors at different system scales, 

we first developed a multi-scale model of glycosylation linking a macro-scale cell 

culture model to a micro-scale, kinetic model of glycosylation. The model predictions 

were compared to the experimental data obtained from in-house shake flask studies 

and the model parameters were optimized accordingly. The model was then validated 

under fed-batch conditions and found to be fairly representative of the growth 

dynamics under both batch and fed-batch conditions. The antibody productivity rate 

from the macro-scale model was used to obtain the glycan productivity rate which was 

used, subsequently, to predict the dynamic glycan distribution profile in the system. 

This multi-scale model serves as a quantitative link between cell growth conditions in 

Chapter 6
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the bioreactor and the observed glycosylation profile and can predict the glycan 

distribution under different cell growth conditions.  

However, one of the limitations of the developed multi-scale model is that the 

model accounts for the effects of cell culture nutrients on the glycan distribution but 

does not take into account the changes in the glycan distribution arising due to 

variations in cell culture media. Media composition is known to affect cell growth and 

product quality, but the composition of most commercially available cell culture 

media is proprietary information and is, therefore, unknown to the end user. 

Consequently, there exist few models that can capture the underlying mechanisms 

relating the vast majority of media components and the glycan distribution. In order to 

rationally quantify the effect of different media components on the glycosylation 

profile, we used a holistic approach combining factorial design of experiments and 

mathematical analysis as demonstrated in Chapter 3, wherein we evaluated the effect 

of dynamically introducing MnCl2 and EDTA on the final glycan distribution using 

controllability analysis. 

While the effect of MnCl2 as a media supplement has been well studied, our 

work is a novel consideration into the effect of introducing multiple media 

supplements at different stages of cell culture. Specifically, we demonstrated through 

mixed-level factorial experiments that adding MnCl2 early during cell culture has a 

greater impact on the glycan distribution profile than a late stage addition. Further, we 

showed that the changes in the glycosylation profile due to the addition of MnCl2 to 

the media are not immutable and can be reversed by the judicious addition of EDTA. 

Specifically, the addition of EDTA after MnCl2 has been added to the cell culture was 

shown to reverse the changes in the glycan distribution due to the addition of MnCl2. 
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However, the time of addition of EDTA also influenced cell growth and productivity, 

with early addition of EDTA having an adverse effect while late stage addition of 

EDTA enhanced the final antibody titer.  

Next, by performing controllability analysis, we identified the combinations of 

inputs factors which, when manipulated, result in quantifiable changes in the relative 

percentage of specific glycan species. Our analyses showed that the most controllable 

glycan species in our experimental system were A2, FA2G1 and FA2 whose 

concentrations were affected by early stage supplementation of EDTA and late stage 

supplementation of MnCl2. Thus, we successfully demonstrated that the glycan 

distribution is affected not just by the concentration of the media supplement, but also 

by the time of introduction of the media supplement. While conventional strategies for 

media development include media preparation prior to the start of the batch, the 

experimental and computational approaches demonstrated in our work present a 

holistic approach to controlling the glycosylation profile using time-dependent media 

supplementation.  

Controllability analysis allows us to identify which combination of input 

factors influence specific glycan species and by how much. Thus, by implementing 

controllability analysis, we generate a quantitative input-output relationship relating 

the multiple inputs that are available to the multiple outputs in the system. In Chapter 

4, we used this structural relationship to design glycosylation controllers for two cases 

of practical significance: (i) where the input factors chosen were the enzyme 

concentrations in the micro-scale model developed in Chapter 2 and the changes in the 

glycosylation model were observed via simulations; and (ii) where the input factors 

were amino acid supplements added to cell culture media and the changes in the 
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glycosylation pattern were evaluated experimentally. In both cases we designed 

proportional and proportional integral controllers and evaluated the performance of the 

controllers under set-point tracking conditions. We observed that the controllers were 

able to effectively track the new set-point under both nominal conditions (i.e. when we 

assumed that the input-output model generated by our controllability analysis is a 

perfect representation of the ‘true’ process or the plant) and under the more realistic 

model-plant mismatch conditions. Significantly, we observed that by designing our 

controllers using select singular values obtained from controllability analysis, 

controller robustness is maintained in the face of significant model-plant mismatch. 

The glycosylation controllers developed in this work can form the basis of future cell 

engineering and media design efforts. 

However, it must be noted that the glycosylation controllers designed on the 

basis of controllability analysis are batch-to-batch controllers, with the control action 

performed on every successive batch to ensure consistent glycan distribution. To 

achieve real time control of glycosylation, it is necessary to measure the glycosylation 

profile continuously or at reasonably frequent intervals compared to the time-scale of 

the process. As noted in our brief review in Chapter 5, current assays for glycosylation 

are performed offline, at irregular or less frequent intervals and are associated with 

long measurement delays. Consequently, in the absence of any real-time measurement 

of the glycan distribution there is a need to develop techniques to infer the glycan 

profile based on a process understanding of the system. We have addressed this 

challenge using two approaches. First, using observability analysis and by exploiting 

the underlying connectivity inherent in glycan reaction networks, we have identified a 

particular subset of glycan measurements that when measured together would give us 
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ample information about the complete glycoform distribution. Such an approach can 

lead to the rational development of shorter or simpler glycan assays that do not require 

measuring the entire glycosylation profile. Next, we have used the multi-scale model 

presented in Chapter 2 in a state estimation scheme to obtain estimates of the glycan 

distribution profile over the course of a batch run and compared these to a set of 

simulated ‘measurements’. As and when the measurements were available, the 

predicted estimates would be corrected and a new estimate would be obtained. In our 

simulations, we tested a constant, time-invariant correction gain matrix and the 

resulting estimates were closer to the measurement than the values obtained without 

state estimation. The state estimation performance remained robust even when 

evaluated against measurement noise. To our knowledge, this is the first such design 

of a state estimation scheme to achieve real-time estimates of the glycosylation profile. 

The state estimator designed here will be an integral component in the development of 

an online glycosylation controller.  

In the following section, we briefly consider some avenues of research that can 

be considered to extend the work presented in this dissertation.  

6.2 Future Work 

6.2.1 Expanding the Scope of the Multi-scale Model 

In this dissertation, we have established that the multi-scale modeling approach 

presented here is critical to our understanding of glycosylation and for obtaining 

reasonable estimates of the different glycan states. Therefore, enhancing the fidelity of 

the model will be vital to the development of robust controllers. Some of the 

approaches to extend the scope of the multi-scale model are listed below: 
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Mechanistic model development: In order to enhance the utility of a 

mathematical model, it is necessary to ensure that the model is valid and has 

acceptable predictive capabilities over a wide range of input conditions beyond those 

in the model identification set. To improve model reliability, it is necessary to perform 

informed experiments that can be used to refine the model systematically (Kontoravdi 

et al. 2010; Lencastre Fernandes et al. 2013). For biological systems, the resulting 

mathematical models typically contain several model parameters whose values are 

either based on historical manufacturing data, obtained from literature, or they are fit 

to suit the available experimental data. However, such an approach limits the utility of 

the model and hence, there is a need for systematic estimation of the model 

parameters, as shown in Figure 6.1 

 

Figure 6.1: Schematic representation of systematic model development. Adapted from 
Lencastre Fernandes et al (2013).  



 

 180

Given that the number of model parameters in most mathematical models of 

biological systems far exceeds the available output or experimental measurements (for 

instance, the macro-scale model developed in this dissertation consists of 21 model 

parameters and 6 output measurements), it is important to understand which 

parameters are ‘identifiable’, i.e. the parameters whose values can be estimated with a 

high degree of certainty. Of the subset of identifiable parameters, only some are 

estimable using the available data. By performing global sensitivity analysis, the 

dependence of the output variance on the model parameters can be assessed. Such a 

systematic approach is necessary to increase model fidelity and robustness. 

Incorporating the effect of multiple input factors: In this dissertation, cell 

growth and productivity were modeled considering substrate consumption and by-

product inhibition rates. However, cell growth is also affected by the addition of 

different media supplements such as amino acids, temperature shifts, pH and shear 

rate. Each of these factors is also known to influence the glycosylation profile and 

hence an extended multi-scale model would incorporate the effect of each of these 

input factors at multiple scales. 

Bioreactor pH is one such input factor that affects cell growth, productivity, as 

well as glycan distribution. During manufacturing, cellular metabolism and by-product 

formation results in a drift in bioreactor pH, which is controlled within a specific range 

to maintain cell growth at optimal levels by using complex buffer and base additions 

(Gramer and Ogorzalek 2007). By generating empirical or mechanistic models linking 

pH measurements at the cellular level to the intracellular pH (Wu et al. 1993) and then 

extending these model to assess organelle level pH changes, it would be possible to 

estimate how bioreactor pH can influence the pH in the Golgi, changes in which are 
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known to affect the glycosylation profiles and glycosyltransferase enzyme localization 

(Hassinen et al. 2011; Rivinoja et al. 2009; Rivinoja et al. 2012). Similar models can 

be built to relate other inputs such as temperature, dissolved oxygen content, shear 

rate, at the macro-scale to changes at the micro-scale, thereby providing us with 

manipulated variables at the macro-scale that can be used to fine-tune the 

glycosylation profile.  

In the absence of extensive mechanistic models, controllability analysis can be 

used to generate quantitative input-output relationships between macro-scale factors 

and the glycan distribution profile. Ideally, the use of micro-bioreactors should be 

explored to perform the necessary factorial experiments under high throughput 

conditions. Further, if intermittent glycan measurements are available, the current 

steady state controllability analysis can be extended to quantify the effect of input 

parameters on the output glycan distribution as a function of time. By evaluating the 

total change in the glycosylation profile at a given point of time as well as the 

fractional difference in the glycan distribution profile between measurements, a 

dynamic gain matrix can be generated and mathematically analyzed to identify how 

different combinations of glycans can be controlled at different stages of cell culture.  

6.2.2 Multi-attribute Analytics and Control 

Protein therapeutics have multiple quality attributes that need to be monitored 

both in-process and offline. The increasing number of analytical tools employed for 

protein characterization have added to the cost and complexity of drug testing, 

necessitating the development of simpler, multi-attribute analytical methods (Rogers 

et al. 2015). However, existing analytical methods are laborious and expensive, with 

fewer options for in-process monitoring. To reduce the cost, complexity and analysis 
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time, a representative set of attributes that contain information about other quality 

attributes can be analyzed. The observability analysis technique developed in Chapter 

5 can be used in determining if the choice of measurements would yield adequate 

information about the entire quality profile of the mAb. 

For instance, thermal unfolding experiments – where spectroscopic techniques 

are used to determine changes in the conformation of a protein heated at a constant 

rate – are typically carried out to test the thermodynamic stability of proteins. Recent 

research has indicated (Zheng et al. 2014) that the thermal unfolding of antibodies 

differs based on the abundance of oligomannose groups attached to the constant heavy 

chain (CH2) domain (Fig. 6.2). Conversely, we can now examine changes in the 

thermal unfolding of the CH2 domain as a potential surrogate for mannose 

measurement. Such an analysis can lead to the design of rational multi-attribute 

assays. 

 

Figure 6.2: Thermal unfolding from DSC measurements for different glycan 
isoforms. Adapted from Zheng et al (2014) 
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Further, it will be interesting to consider how these multiple quality attributes 

can be controlled using common inputs. For instance, heterogeneity that arises from 

modifications to the antibody such as the loss of a lysine residue on the C-terminal of 

the antibody (C-terminal heterogeneity) and acidic and basic variants (charge 

variants), affects protein stability and binding. As these changes depend on the amino 

acid profile in the cell culture, we could evaluate if the addition of specific amino acid 

supplements to the media alter multiple quality attributes such as C-terminal 

heterogeneity and charge variants in the mAb. If so, how do we develop a framework 

for achieving multiple objectives of controlling charge and sequence variants using the 

same set of inputs? The answers to these questions will be critical in the 

manufacturing of generic biologics (biosimilars) that are expected to match every 

quality attribute of the innovator drug.  

6.2.3 Validating the State-estimator and Implementing On-line Glycosylation 
Control 

The state estimator designed in this dissertation is integral to the development 

of an on-line glycosylation control scheme. Presently, the state estimation has been 

designed using the multi-scale model. However, it will be essential to validate the state 

estimation with actual, real-time measurements taken in-process. The in-house glycan 

assay described in Chapter 5 will be useful in making intermittent measurements of 

the glycan distribution.  

Having evaluated the validity of the state estimator, we can then implement the 

state-estimation scheme in an on-line glycosylation control scheme (St Amand et al. 

2011). Figure 6.3 shows the proposed hierarchical multi-loop control scheme where 

the inner loop controllers maintain the bioreactor at defined in-process set-points and 
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the outer-loop controller takes control action to achieve the desired glycan set-point. 

The state estimator is used to predict the glycosylation profile on the basis of the 

multi-scale model and in-process measurements and is updated when the glycosylation 

measurement becomes available.  

 

Figure 6.3: Strategy for on-line control of glycosylation. Adapted from St.Amand et 
al (2011) 

The development and experimental validation of such an online glycosylation 

control scheme will establish a new basis for on-line quality control of 

biopharmaceuticals and will ensure consistent product quality during manufacturing.  
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EXPERIMENTALLY OBSERVED GLYCAN SPECIES 

Glycan structures Glycan structures drawn using GlycoForm software with 

sugar symbol set specified as per Consortium of Functional Glycomics. The masses 

correspond to the permethylated masses for the respective glycan peaks observed 

following mass spectrometry.  

 
Glycan species Structure Mass (m/z) 

FA2 
 

1835.92 

FA2G1 
 

2040.02 

A2 
 

1661.83 

A2G1 
 

1865.93 

A1G1 
 

1620.8 

M5 
 

1579.78 

A1 
 

1416.7 
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FA2G2 
 

2244.12 

A3 

 

1906.9 

FA1 
 

1590.79 

FA2BG1 
 

2285.2 

M5A1 

 

1824.9 

FA1G1 
 

1794.89 

FM5A1 

 

1998.9 

A2G2 

 

2070.036 

FA2G1S1 

 

2401.19 

FA2G2S1 

 

2605.29 
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MIXED LEVEL DESIGN OF EXPERIMENTS 

The accompanying table lists the full factorial (22,32) experimental design as 

well as the labels associated with each experimental condition. 

 

Appendix B

Experiment MnCl 2 level EDTA level MnCl 2 Addition  EDTA Addition  Label 

1 -1 -1 -1 -1 

Control 

2 -1 -1 -1 0 

3 -1 -1 -1 +1 

4 -1 -1 0 -1 

5 -1 -1 0 0 

6 -1 -1 0 +1 

7 -1 -1 +1 -1 

8 -1 -1 +1 0 

9 -1 -1 +1 +1 

10 -1 +1 -1 -1 

ED D0 11 -1 +1 0 -1 

12 -1 +1 +1 -1 
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Table continued 

13 -1 +1 -1 0 

ED D3 14 -1 +1 0 0 

15 -1 +1 +1 0 

16 -1 +1 -1 +1 

ED D6 17 -1 +1 0 +1 

18 -1 +1 +1 +1 

19 +1 -1 -1 -1 

Mn D0 20 +1 -1 -1 0 

21 +1 -1 -1 +1 

22 +1 -1 0 -1 

Mn D3 23 +1 -1 0 0 

24 +1 -1 0 +1 

25 +1 -1 +1 -1 

Mn D6 26 +1 -1 +1 0 

27 +1 -1 +1 +1 

28 +1 +1 -1 -1 
ED D0/ Mn 
D0 

29 +1 +1 -1 0 
ED D3/ Mn 
D0 

30 +1 +1 -1 +1 
ED D6/ Mn 
D0 

31 +1 +1 0 -1 
ED D0/Mn 
D3 
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Table continued 

†D0, D3, D6 refer to the time of addition of the supplement MnCl2 (Mn) or EDTA 
(ED) on day 0, day 3, or day 6 respectively.  

32 +1 +1 0 0 
ED D3/ Mn 
D3 

33 +1 +1 0 +1 
ED D6/ Mn 
D3 

34 +1 +1 +1 -1 
ED D0/Mn 
D6 

35 +1 +1 +1 0 
ED D3/Mn 
D6 

36 +1 +1 +1 +1 
ED D6/Mn 
D6 



 

 

2
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Gain matrix generated from statistically significant (p ≤0.05) coefficients obtained from ANOVA of the full factorial design 
experimental data 

FA2 FA2G1 A2 A2G1 A1G1 M5 A1 FA2G2 A3 FA1 FA2BG1 M5A1 FA1G1 FM5A1 M6A1 A2G2 FA2G1S1 FA2G2S1 

MnCl2 2.17 0.00 -2.21 -0.50 0.37 -0.86 0.00 0.00 0.00 0.00 0.00 0.27 0.22 0.13 0.13 0.07 0.00 0.00 

EDTA 0.00 -1.79 2.34 0.80 0.00 0.00 0.00 -0.48 0.00 -0.55 0.12 0.00 -0.09 0.00 0.00 -0.07 0.00 -0.05 

Mn Time 1 0.00 -0.87 1.45 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn Time 2 -1.08 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ED Time 1 0.00 2.67 -0.92 0.00 0.00 0.00 -0.57 0.59 0.00 -0.32 0.00 0.00 0.00 0.10 0.09 0.12 0.00 0.06 

ED Time 2 0.00 -1.66 0.00 0.00 0.00 0.00 0.51 -0.27 0.00 0.62 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 

MnCl2 – EDTA 2.35 1.76 -2.12 0.00 0.00 -0.99 -0.87 0.18 0.20 -0.23 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 

MnCl2 - Mn Time1 0.00 0.87 -1.45 -0.78 0.00 0.00 0.00 0.00 0.00 0.00 -0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2 - Mn Time2 1.08 0.00 -0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2 - ED Time1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2 - ED Time2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EDTA - Mn Time 1 0.00 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EDTA - Mn Time 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EDTA - ED Time 1 0.00 -2.67 0.92 0.00 0.00 0.00 0.57 -0.59 0.00 0.32 0.00 0.00 0.00 -0.10 -0.09 -0.12 0.00 -0.06 

EDTA - ED Time 2 0.00 1.66 0.00 0.00 0.00 0.00 -0.51 0.27 0.00 -0.62 0.00 0.00 -0.15 0.00 0.00 0.00 0.00 0.00 
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Table continued 

Mn T1 - ED T1 0.00 -0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn T1 - ED T2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn T2 - ED T1 0.00 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn T2 - ED T2 0.00 -1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2-EDTA-Mn T1 0.00 0.00 -0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2-EDTA-Mn T2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2-EDTA-ED T1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2-EDTA-ED T2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2 - Mn T1 - ED T1 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2 - Mn T1 - ED T2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2 - Mn T2 - ED T1 0.00 -0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2 - Mn T2 - ED T2 0.00 1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EDTA - Mn T1 - ED T1 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EDTA - Mn T1 - ED T2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EDTA - Mn T2 - ED T1 0.00 -0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EDTA - Mn T2 - ED T2 0.00 1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2 - EDTA - Mn T1 - ED T1 0.00 -0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2 - EDTA - Mn T1 - ED T2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2 - EDTA - Mn T2 - ED T1 0.00 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MnCl2 - EDTA - Mn T2 - ED T2 0.00 -1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Main and interaction effects and corresponding confounding factors 
EDTA 
MnCl2 

MnCl2 – EDTA 
ED T1 = -1*EDTA - ED T1 
ED T2 = -1*EDTA - ED T2 
Mn T1 = -1*MnCl2 - Mn T1 
Mn T2 = -1*MnCl2 - Mn T2 

Mn T1 - ED T1 = -1*MnCl2 - Mn T1 - ED T1 
Mn T2 - ED T1 = -1*MnCl2 - Mn T2 - ED T1 
Mn T2 - ED T2 = -1*MnCl2 - Mn T2 - ED T2 
Mn T1 - ED T2 = -1*MnCl2 - Mn T1 - ED T2 
EDTA - Mn T1 = -1*MnCl2-EDTA-Mn T1 
MnCl2 - ED T2 = -1*MnCl2-EDTA-ED T2 
EDTA - Mn T2 = -1*MnCl2-EDTA-Mn T2 

EDTA - Mn T1 - ED T1 = -1*MnCl2 - EDTA - Mn T1 - ED T1
EDTA - Mn T2 - ED T1 = -1*MnCl2 - EDTA - Mn T2 - ED T1
EDTA - Mn T2 - ED T2 = -1*MnCl2 - EDTA - Mn T2 - ED T2
EDTA - Mn T1 - ED T2 = -1*MnCl2 - EDTA - Mn T1 - ED T2

MnCl2 - ED T1 = -1*MnCl2-EDTA-ED T1 
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“Reduced” gain matrix (K ) obtained by eliminating the redundant rows from the gain matrix listed in Table A2 

FA2 FA2G1 A2 A2G1 A1G1 M5 A1 FA2G2 A3 FA1 FA2BG1 M5A1 FA1G1 FM5A1 M6A1 A2G2 FA2G1S1 FA2G2S1 

MnCl 2 2.17 0.00 -2.21 -0.50 0.37 -0.86 0.00 0.00 0.00 0.00 0.00 0.27 0.22 0.13 0.13 0.07 0.00 0.00 

EDTA 0.00 -1.79 2.34 0.80 0.00 0.00 0.00 -0.48 0.00 -0.55 0.12 0.00 -0.09 0.00 0.00 -0.07 0.00 -0.05 

MnCl 2 – EDTA 2.35 1.76 -2.12 0.00 0.00 -0.99 -0.87 0.18 0.20 -0.23 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 

Mn Time 1 0.00 -0.87 1.45 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn Time 2 -1.08 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ED Time 1 0.00 2.67 -0.92 0.00 0.00 0.00 -0.57 0.59 0.00 -0.32 0.00 0.00 0.00 0.10 0.09 0.12 0.00 0.06 

ED Time 2 0.00 -1.66 0.00 0.00 0.00 0.00 0.51 -0.27 0.00 0.62 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 

MnCl 2 - ED Time2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EDTA - Mn Time 1 0.00 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn T1 - ED T1 0.00 -0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn T2 - ED T1 0.00 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn T2 - ED T2 0.00 -1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EDTA - Mn T1 - ED T1 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EDTA - Mn T2 - ED T1 0.00 -0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EDTA - Mn T2 - ED T2 0.00 1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 



 

  

2
12

 

 
Unitary matrix W obtained from SVD of gain matrix K   

η1 η2 η3 η4 η5 η6 η7 η8 η9 η10 η11 η12 η13 η14 η15 η16 η17 η18 

FA2 -0.38 0.56 0.56 -0.30 -0.02 0.04 0.35 -0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

FA2G1 -0.62 -0.71 0.18 -0.27 -0.03 -0.03 -0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

A2 0.64 -0.33 0.54 -0.29 -0.11 0.00 0.01 -0.32 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

A2G1 0.12 -0.05 0.39 0.14 0.59 0.19 -0.11 0.60 -0.02 -0.01 0.02 -0.06 0.02 -0.19 -0.06 -0.07 0.00 -0.03 

A1G1 -0.02 0.06 0.00 -0.08 -0.23 0.40 -0.23 0.01 -0.19 -0.44 0.39 0.44 0.25 -0.25 -0.05 0.01 0.00 -0.10 

M5 0.15 -0.20 -0.20 -0.03 0.01 0.14 0.82 0.22 0.13 -0.25 -0.06 0.12 0.21 0.05 0.11 0.01 0.00 -0.01 

A1 0.13 0.06 -0.27 -0.60 -0.17 0.25 0.01 0.34 -0.20 0.46 -0.06 0.03 -0.20 -0.08 -0.17 -0.09 0.00 -0.03 

FA2G2 -0.10 -0.11 -0.04 0.28 0.26 0.57 0.20 -0.50 -0.24 0.31 -0.01 -0.04 -0.06 -0.09 -0.11 -0.16 0.00 -0.10 

A3 -0.02 0.01 0.04 0.04 0.11 -0.22 -0.06 -0.05 0.06 0.26 -0.48 0.65 0.38 -0.06 -0.24 -0.03 0.00 -0.09 

FA1 0.02 0.06 -0.30 -0.51 0.65 -0.10 -0.08 -0.31 0.04 -0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

FA2BG1 0.02 0.01 0.07 0.00 0.11 0.19 -0.09 0.08 -0.34 0.00 -0.06 0.26 -0.07 0.77 0.24 0.29 0.00 0.11 

M5A1 -0.02 0.04 0.00 -0.06 -0.17 0.29 -0.17 0.01 -0.14 -0.32 -0.72 -0.31 0.17 -0.11 0.16 -0.10 0.00 0.18 

FA1G1 -0.02 0.05 -0.05 -0.13 0.03 0.24 -0.18 -0.01 0.45 0.35 0.17 -0.18 0.58 0.12 0.39 0.01 0.00 -0.07 

FM5A1 -0.02 0.01 0.02 0.02 -0.03 0.18 -0.10 0.00 0.47 -0.09 -0.10 0.34 -0.50 0.09 0.31 -0.50 0.00 -0.06 

M6A1 -0.01 0.01 0.00 0.00 -0.07 0.25 -0.08 0.02 0.40 -0.18 -0.03 -0.16 0.03 0.41 -0.73 0.01 0.00 -0.07 

A2G2 -0.02 -0.01 -0.02 0.01 0.02 0.23 -0.02 -0.04 0.33 0.03 -0.17 0.10 -0.30 -0.29 0.06 0.79 0.00 -0.05 

FA2G1S1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

FA2G2S1 -0.01 -0.01 -0.01 0.01 0.04 0.08 0.01 -0.04 0.13 0.09 0.13 0.14 0.03 -0.09 -0.10 -0.03 0.00 0.95 
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Diagonal matrix of singular values (Σ) obtained from SVD of reduced gain matrix K   
σ1 6.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ2 0.00 3.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ3 0.00 0.00 2.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ4 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ5 0.00 0.00 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ6 0.00 0.00 0.00 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ7 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 

σ10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 

σ11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

σ18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Unitary matrix VT obtained from SVD of reduced gain matrix K  

MnCl 2 EDTA 
Mn-

EDTA Mn T1 Mn T2 
ED 
T1 

ED 
T2 

Mn-
ED T2 

ED-
Mn T1 

Mn T1 
- ED 
T1 

Mn T2 - 
ED T1 

Mn T2 
- ED 
T2 

EDTA 
- Mn 
T1 - 

ED T1 

EDTA 
- Mn 
T2 - 

ED T1 

EDTA - 
Mn T2 
- ED 
T2 

μ1 -0.39 0.44 -0.58 0.25 0.11 -0.38 0.18 0.00 0.09 0.09 -0.07 0.11 -0.09 0.07 -0.11 

μ2 0.60 0.13 0.24 0.03 -0.21 -0.47 0.35 0.00 -0.07 0.18 -0.13 0.21 -0.18 0.13 -0.21 

μ3 0.00 0.65 0.45 0.42 -0.16 0.10 -0.28 -0.02 0.20 -0.08 0.06 -0.09 0.08 -0.06 0.09 

μ4 -0.18 0.11 0.18 -0.08 0.25 0.27 -0.34 -0.10 -0.30 0.31 -0.23 0.36 -0.31 0.23 -0.36 

μ5 -0.39 -0.34 0.33 0.57 -0.05 0.11 0.48 0.17 -0.15 0.04 -0.03 0.05 -0.04 0.03 -0.05 

μ6 0.49 -0.06 -0.48 0.48 -0.09 0.52 -0.03 -0.04 0.01 0.05 -0.04 0.06 -0.05 0.04 -0.06 

μ7 0.26 0.09 0.12 0.13 0.91 -0.02 0.16 0.03 -0.03 -0.08 0.06 -0.09 0.08 -0.06 0.09 

μ8 -0.01 -0.28 0.08 0.04 0.12 -0.05 -0.13 0.16 0.87 0.13 -0.10 0.15 -0.13 0.10 -0.15 

μ9 -0.05 0.37 0.03 -0.41 -0.04 0.52 0.60 0.06 0.23 0.03 -0.02 0.03 -0.03 0.02 -0.03 

μ10 -0.06 -0.11 0.07 0.07 0.02 -0.01 0.15 -0.96 0.16 -0.01 0.00 -0.01 0.01 0.00 0.01 

μ11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.16 0.46 0.49 0.27 -0.46 -0.49 

μ12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.52 -0.43 0.18 0.54 0.43 -0.18 

μ13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 -0.03 -0.04 0.68 0.03 0.04 

μ14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 -0.45 0.00 0.54 -0.45 

μ15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.45 -0.54 0.00 -0.45 -0.54 

 




