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ABSTRACT

Monoclonal antibodies (mAbs) are a class of comrmabycvaluable
biopharmaceuticals that are used for treating desgauch as psoriasis, rheumatoid
arthritis, and multiple types of cancer. A vast ondy of these biotherapeutics are
expressed in mammalian cell lines such as Chineseskér Ovary (CHO) cells to
enable post-translational modifications that geteghaman-like protein structures.
One such post-translational modification that ressul structural and pharmacological
changes in the protein is N-linked glycosylatianjdlving the addition and
subsequent modification of an oligosaccharide ¢optotein backbone. The non-
template driven, enzymatic modification of the eliied oligosaccharide yields a
heterogeneous distribution of glycan isoforms,radtethe immunogenicity, stability
and half-life of the mAb, and hence the final dprgduct quality. Maintaining the
desired product quality of mAbs in the presencprotess variations during
manufacturing has been difficult for a variety easons, including: (i) a lack of
guantitative understanding of the effect of inpdtbrs on product quality attributes;
(ii) the absence of on-line or real-time measuremehquality attributes as these are
monitored infrequently or using time-consuming &sséii) the lack of effective
control strategies that incorporate these infrequerasurements (as and when they
become available) to regulate product quality. suee product safety and
therapeutic efficacy, regulatory agencies are eraging manufacturers to monitor
and control the drug product quality, specificatigintaining the glycan distribution

within an acceptable range. The overall goal of thssertation, therefore, is to

XiX



develop a rational framework toodel the effect of different input factors on the
glycosylation profile estimate the glycan distribution using a dynamic mathenatic
model supplemented with infrequent measurementscantrol the final
glycosylation profile in monoclonal antibodies puoeéd in CHO cells.

As the glycosylation profile in mAbs is influenckyg several process variables
spanning multiple scales — from operating condgianhthe bioreactor (macro) scale,
to factors at cellular (meso) scale and organatierQ) scale — we developed an
integrated multi-scale model of glycosylation amdidated the model predictions
using experimental results obtained with an in-leoeed! line. The model serves as a
useful link between nutrient concentrations antlgewth at the macro-scale and the
glycosylation profile at the micro-scale.

In parallel, we used a holistic approach that coratbifactorial design of
experiments and a novel computational techniqueetotify the various combinations
of glycan species that are affected by dynamic ensdpplementation and to quantify
mathematically how they are affected. Our experismidemonstrated the importance
of taking into consideration the time of additidrirace media supplements, not just
their concentrations, and the corresponding matheat@nalysis provided insight
into what supplements to add, when, and how muncbrder to induce specific
changes in the glycosylation profile.

We developed a two-step framework to control tlyeagsylation profile by
first generating quantitative input-output relasbips using the previously described
holistic approach and then designing proportioRaland proportional integral (PI)
controllers based on this quantitative input-outldtionship. The set-point tracking

performance of these P and PI controllers was atediwvia simulations under

XX



nominal conditions (i.e. when the model is assutndek representative of the actual
‘plant’ or process) and model-plant mismatch caondg. Our results demonstrated
that the developed framework can be implementetbsign glycosylation controllers
to achieve a desired target glycosylation profitder different conditions.

The P and PI controllers that we have developeduited for batch-to-batch
control as they depend on the final glycosylatioofife. To achieve real-time control
of glycosylation we require real-time informatiohtbe glycan distribution obtained
from glycan assays; however, current glycan asseysmfrequent and characterized
by long analysis times. We address this limitatioglycosylation analysis using two
approaches: (i) by formulating a rational framewbased on observability analysis to
guide the development of novel assays that canligyngihycan analysis or reduce
analysis time; and (ii) by designing a state estim#n predict the glycan distribution
profile in the absence of measurements using tnaqusly developed multi-scale
model and updating those predictions as and whesumements become available.

The framework developed in this dissertation valinh the basis of an online
control scheme to control the final glycosylationfge in the product, thereby

achieving consistent product quality.
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Chapter 1
INTRODUCTION

1.1 Background

The global market for pharmaceuticals is predittegrow to $1.2 trillion by
2017, with nearly 20% of the market share beingidated by biologics such as
monoclonal antibodies (mAbs), hormones, and thetapenzymes. Of these,
monoclonal antibodies have steadily increased thanket dominance — with US
sales rising from $8.29 billion in 2005 to $24.6ibin in 2012 — accounting for nearly
39% of total biologics sales in 2012 (Aggarwal 208ggarwal 2014). In 2015, global
sales of the top 5 best-selling mAbs (HurijiRemicad@, Rituxar?, Avastir, and
Herceptir?), prescribed for treating breast cancer, colorcearCrohn’s disease to
rheumatoid arthritis, exceeded US $45 billion, aadiing the high commercial value of
these biotherapeutics. Following the commercialratf the first mAb product in
1986, there has been a spurt in the developmenibf products with over fifty
monoclonal antibodies receiving approval by the FiAr of them in the first half of
2016 alone, and nearly 300 molecules in active ldpweent (Ecker et al. 2015; Elvin
et al. 2013; Reichert 2012).

However, despite the therapeutic benefits offerethbse drugs, they present a
financial burden on the healthcare system, witheased drug pricing becoming a
matter of concern for both patients and policy maKéraujo et al. 2016; Kesselheim
et al. 2016). In an approach to curb these inanggwiices, regulatory agencies are

encouraging the development of biosimilars or lgads that are similar but not



identical to the innovator molecule. With the aipiated patent cliff expected to open
up nearly half of the biologics market by 2022, mfacturers are exploring this
growth opportunity in both developed and emergirsgkats (Deloitte Touche Ltd.
2015). The first biosimilar mAb the US market, @&n’s Inflectra, which is a
biosimilar to Janssen’s Remicade, received FDA@@drin early 2016 and is
expected to alter the drug pricing landscape fobrtiferapeutics. Similar disruptions
in drug pricing have been observed in Norway wiieedaunch of the biosimilar
Remsima with discounts of up to 69% on the pridead®innovator, Remicade
resulted in increased switching to the biosimiBtafton 2015).

As biosimilars share an identical amino acid seqeaemith the innovator
molecule but differ only in their quality profilessgulatory agencies are seeking
extensive characterization of the complete qualitybutes of the drug. The advent of
biosimilars notwithstanding, there is a shift i flocus from improving productivity,
which has dramatically increased with host celimafation, to maintaining consistent
product quality across batches, in order to imprwerall profitability (Kelley 2009).
Over the past decade, regulatory agencies havéaésoencouraging the
biopharmaceutical industry to implement the ‘Quahy Design’ framework, wherein
quality related to drug product safety and efficecin-built into every stage of the
process, as per ICH Q8 guidelines (del Val et@L(2 Rathore et al. 2010; Rathore
and Winkle 2009). Maintaining drug product quatityensure product safety and
efficacy has therefore come to occupy the cenégyesof the biopharmaceutical
industry.

One important determinant of mAb quality is N-glggtation, a post-

translational modification of the antibody in whiah oligosaccharyltransferase



complex in the endoplasmic reticulum adds a sugfastsate (glycan) to the Asn-X-
Ser/Thr motif in the heavy chain of the mAb (wh&res any amino acid other than
Pro). As the mAbD traverses the Golgi complex, tieched oligosaccharide is
subjected to a series of non-template driven entigmaodifications mediated by the
localized glycosyltransferase enzymes in the dffieGolgi compartments (Cumming
2003; Kornfeld and Kornfeld 1985). The intricatendynics of multiple
glycosyltransferase enzymes determine the evefdtegabf the core glycan and result
in the formation of a diverse array of glycan isafs that affect the immunogenicity,
effector functions, and the pharmacokinetic prapsrof the mAb, and consequently
the final drug product quality (Berger et al. 20di2| Val et al. 2010; Liu 2015). Thus,
there is considerable motivation for manufactutersnderstand, characterize, and, if
necessary, modulate the glycoform distribution ib%in order to maintain a
consistent glycan profile and to meet the qualindards established by regulatory
agencies worldwide (FDA 2006; Harmonised TriparGigideline 2009; Read et al.
2011; Wacker et al. 2011). However, manipulatirgglycan distribution effectively
requires (i) identifying the factors that can ihce the glycan distribution and
guantifying the degree to which these factors atiee concentration of the glycoform
species; (ii) characterizing the glycan distribotrofile online or in real-time; and
(i) controlling the glycosylation profile in thiace of potential process variations
during manufacturing. Therefore, tbeerall objective of this dissertation is to
provide a rational framework to quantitatively model, estimate, and control
glycosylation in monoclonal antibodies produced imammalian cells

The rest of the chapter is organized as followg1r2, current quality

considerations in the biopharmaceutical industeychscussed and the challenges



associated with controlling glycosylation duringmagacturing are identified. In 81.3,
we introduce our proposed framework for controllgigcosylation. Next, 81.4 and
81.5 provide a concise overview on monoclonal awligs and glycosylation. Finally,

in 81.6 we briefly introduce the contents of thenagning chapters of this dissertation.

1.2 Motivation — Quality Considerations in the Biopharmaceutical Industry
Deviations in drug product quality can result imgwomised drug safety or
efficacy, adversely affecting patient health. Herdreag manufacturers are required to
adhere to the quality standards and guidelinegdsby drug regulatory agencies like
the Food and Drug Administration (FDA). In convenl biopharmaceutical
manufacturing, drug product quality testing is parfed at the end of a series of
production, purification, and formulation stage®t@luate if the end product meets
the desired target quality profile. This ‘quality testing’ (QbT) paradigm has ensured
that marketed drugs meet specific quality standdmdisit limits manufacturers to
operating within certain ranges to ensure condigterduct quality. Further,
measuring product quality at the end of a batclegeas, virtually no information
about the effect of intermittent process conditiand operating parameters on the
guality attributes of the drug (del Val et al. 2D1Po encourage pharmaceutical
innovation and improve the overall quality of thamafactured drug products, the
FDA released a guidance document on a regulatargdwork for Process Analytical

Technology (PAT) in 2004, stating

[PAT] . . . Is a system for designing, analyzingdaontrolling
manufacturing through timely measurements . critital quality and
performance attributes of raw and in-process nateand processes,
with the goal of ensuring final product quality..[Quality] cannot be
tested into products; it should be built-in or sldae by design.



Thus, the goal of PAT is to ensure consistent prbduality during
manufacturing by designing well-understood and iatietd processes (FDA 2004;
Watts 2004). The concepts established in PAT leadrharked shift in attitudes
towards quality within the biopharmaceutical indystnd resulted in a new “Quality
by Design” (QbD) paradigm involving greater procekaracterization and risk
assessment during manufacturing to ensure prodiadityy

Implementing PAT and QbD principles to design watlkracterized processes
requires three main activities during process dguaknt:

Design— The design phase starts early in process dawelopwhere a critical
quality attribute (CQA) is identified along withdlcritical process parameters (CPP)
that affect it. In the context of monoclonal antligalevelopment, glycosylation is a
critical quality attribute as it influences a widege of antibody properties including
stability and effector functions. The final glycdistribution profile in an antibody is
also affected a large number of input factors &k for details) at different system
scales — ranging from conditions at the bioreagt@cro) scale to conditions at the
cellular (meso) scale and organelle (micro) scEte current process understanding
of how factors at each of these scales affect giylation has been generated from
gualitative experiments and there is a need torgémeuantitative input-output
relationships in a systematic fashion.

Analyze — The analysis phase involves the design or setedfi suitable
analyzers that monitor CQAs and CPPs within a measie time-scale compared to
the process time, so as to facilitate real-timasi@c making. Current glycosylation
characterization assays however, are associatedomgj sample preparation times

and/or infrequent measurements. In the absenaabtime measurements, there is a



need to develop techniques to infer or estimatgly@sylation profile to enable
glycosylation control.

Control — In the control phase, the process understargéngrated in the
design phase, coupled with the CQA and CPP measumtsravailable from the
analysis phase are used to manipulate the CPRdento ensure consistent quality.
Controlling glycosylation on-line remains a chafierdue to the lack of process
understanding and the absence of real-time measuatsntEven when such
measurements become available there currently mxisbntrol schemes that can be

implemented to control the glycosylation profile.

1.3 Proposed Framework for Glycosylation Control

Previously, we had outline a strategic vision foliree quality control in the
biopharmaceutical industry (St.Amand et al 2012)e Work presented in this
dissertation builds on this approach and addressesnt unmet challenges associated
with implementing PAT in upstream mAb developmeidre, | propose to develop a
rational framework fomodeling, estimating, andcontrolling glycosylation in mAbs
produced in CHO cells. The three main aspectsisfbrk fall under the PAT
framework as follows:

Design— To control glycosylation, it is necessary to g@te quantitative
understanding of the effect of different input taston the glycosylation profile. In
this work, we propose two approaches to generafe guantitative input-output
relationships. First, a multi-scale model of glygasion will be developed to evaluate
the effect of bioreactor operating conditions o& ghycosylation profile of an IgG1

producing CHO-K1 cell line. In parallel, we willedtify different media supplements



that affect the glycosylation profile and quantifigir effect on the glycan distribution
using a combined experimental and computationaicau.

Analysis— To overcome challenges associated with delayédrdrequent
glycan measurements, we will develop novel techesdghat can infer or estimate the
glycan distribution profile based on the multi-gcadodel developed in the design
phase. Additionally, we will evaluate rational apgches to design simpler or faster
glycan assays.

Control — To control the final glycosylation profile obsedrat the end of the
batch, we will design and implement controllersget-point tracking using the
guantitative input-output relationship establiskisthg controllability analysis.

The framework presented in this dissertation valtribute to the
development of an online glycosylation control sokehat can be implemented to
achieve real-time glycosylation control. In theldaling section, we briefly review
monoclonal antibodies and glycosylation to apptediaeir underlying complexity

and understand why controlling glycosylation carcbhallenging.

1.4 Monoclonal Antibodies — An Overview

1.4.1 Antibody Structure and Function

Immunoglobulins (lgs) or antibodies are serum pnst&vhose main function
is to bind and eliminate antigens in the body kactivation or by triggering an
inflammatory response (Wright and Morrison 199'HeTore structure of these
antibodies consists of two identical heavy chaimd tavo identical light chains that
together bind to form a Y-shaped structure as shaviaigure 1.1. The N terminals of

the heavy and light chains consist of a variabgore followed by the first constant



region of the heavy chain. Together, this variabgon and constant region form the
antigen binding Fab domain, while the remainingstant heavy chain regions form
the Fc stem or the crystallizable stem. It is thb Bomain that recognizes and binds to
the antigen, while the Fc domain is responsibldariggering the immune function
resulting in the elimination of the antigen.

In humans, five major classes of immunoglobulireslkarown: 1gG, IgM, IgA,
IgE, and IgD. Of these IgG (or immunoglobugamma, named for the gamma heavy
chain) is known to have four different isotypeg&l, 1gG2, IgG3 and IgG4, whereas
IgA (immunoglobulinalpha) has two known isotypes — IgA1 and IgA2, yieldang
total of nine different immunoglobulin types withdely differing biological

activities, structures and even relative abundaimchaman sera.

Fab domain
Antigen binding

Fc domain
r Crystallizable
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Figure 1.1: A representative image of the antibstiycture. The image shows the
two light chains (L) and the two heavy chains (kgttcomprise the core
structure of the antibody, with the variable (VHaonstant (C) regions,
and the antigen binding (Fab) and crystallizabtg) flomains.
Representative glycan species are also shown attaohiwo
glycosylation sites on the CH2 domain.



Monoclonal antibodies (mAbs) are antibodies thatm@oduced from cells
originating from a single cell clone and have ay@gh specificity for a particular
antigen (Nelson et al. 2000). Although they wergglpurported to be ‘magic bullets’
for selectively targeting diseases, it wasn'’t uthté development of hybridoma
technology that use of mAb therapies became pediiclams and Weiner 2005).
Following decades of research, the first mAb prodeceived regulatory approval in
1986 and today there are over 300 mAb productsiiious stages of development
(Ecker et al. 2015). Therapeutic mAbs use a contibim@f mechanisms in triggering

cytotoxic response at the cellular level such as

1. Antibody dependent cell cytotoxicity (ADCC) — whehee Fab domain
binds to the antigen on the diseased cell and ¢hsomain binds to Fc
receptor on the surface of natural killer cellsg an

2. Complement dependent cytotoxicity (CDC) — whereltimeling of the
mADbs exposes binding sites in the C1 domain, tmiigethe formation
of a complement cascade that triggers the reldadeemotactic
factors.

Another mode of action involves targeting the sligrggevents leading to
cellular proliferation by blocking the interaction extracellular ligands with cell
surface receptors. mAbs have also been used teedeljtotoxic payloads as
evidenced by the development of novel antibody damgjugates (ADC) (Scott et al.
2012; Weiner 2007). This versatility in mAb functiand structure has resulted in the
approval of mAbs for a variety of indications ramgjifrom colorectal cancer, breast
cancer, non-Hodgkin’s lymphoma, and multiple sdesdo rheumatoid arthritis,
allergic asthma, and plaque psoriasis. Variouseggras for developing the next

generation of mAbs are being investigated at pteseincrease the applicability of



mADbs to more indications and to enhance their dvienactionality (Beck et al. 2010;

Nelson et al. 2010).

1.4.2 Antibody Expression Systems

Therapeutic mAbs can be synthesized in severaréifit mammalian cell
expression systems such as Chinese Hamster OvEI®)(€ell lines, murine
myeloma cell lines NSO, Sp2/0, with over half dfairrently approved mAbs are
produced in Chinese Hamster Ovary (CHO) cell lijge® Figure 1.2) (data accessed
online from Drugs@FDA). AlthougRichia pastoris andE. coli have been explored
as potential expression systems, so far they hage bsed for generating antibody
fragments. Two such Fab fragments that are exptasgecoli and have received
regulatory approval are Cim#iand Lucenti8 that are prescribed for rheumatoid
arthritis and macular degeneration, respectivelynin cell lines such as human
embryonic kidney (HEK) and a retinal cell line PER.are also being investigated as
potential cell lines to generate antibody with piahslational modifications that are
identical to those found in humans. In the futim@nanized mAb products from such
cell lines might also gain regulatory approval.

The standard process for development of a stabhemadian cell line for
expressing mAbs involves developing an expressamov containing the antibody
heavy and light chain genes as well as selectaat&ars, followed by transfection by
electroporation, lipofection transfection, and pwanhsfection cell line screening and
selection for high productivity cells (Li et al. P0). Commonly observed metabolic
selectable markers for CHO cell lines are dihydaioreductase (DHFR) and
glutamine synthase (GS) with methotrexate (MTXin@thionine sulphoximine

(MSX) acting as the selective reagent.
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Figure 1.2: Distribution of approved mAbs by celd used. Over half of currently
approved mAbs are expressed in CHO cell lines, thighremainder
being expressed in murine myeloma cell lines ssdN$%0 and Sp2/0

The preference for CHO as the host expressionmyisterecombinant
therapeutic proteins arises from a variety of reas®egulatory agencies have greater
confidence in the safety of CHO-based therapeutdyrcts due to the decades long
research and safety testing that has been camuteahahis commercial cell line. From
a manufacturing perspective, the availability ofveoful gene amplification systems,
such as DHFR-mediated gene amplification, helpsawg specific productivity in
these cell lines thereby driving up overall prdfitay. In recent years, antibody titers
of up to 1 g/L for batch cultures and from 1-10 §gk fed-batch cultures have been
reported for CHO based mAb production processeés;ating the extensive
development that has taken place in this field.ifoldally, the ease of adapting CHO
cells to suspension cultures that are requirethfge scale glycan production makes
them a preferred host for most therapeutics (Jdy@d. 2007; Kim et al. 2012;
Kunert and Reinhart 2016). Table 1.1 lists all eatty approved mAbs that are
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manufactured in CHO cell lines along with the cep@nding indications and

manufacturer.

Table 1.1:  List of approved monoclonal antibodies exprdsa CHO cells
mAb Trade name Select indications Manufacturer
Adalimumab Humira Rheumatoid arthritis, Crohn’s dise AbbVie Inc
Alemtuzumab  Campath B-cell chronic lymphocytic leukem Genzymu
Alemtuzumab  Lemtrada Multiple sclerosi Sanofi Genzym
Alirocumab Praluent Cholesterol lowerin Regenero
Atezolizumab  Tecentriqg Urothelial carcinom Genentec
Bevacizumab Avastin Colon, lung, ovarian, kidney, brain car Genentec
Daratumumab  Darzalex Multiple myelom: Jansse
Denosumab Prolia Pos-menopauseosteoporos Amger
Denosumab Xgeva Prevent fracture, spinal cord compres  Amger
Evolocumab Repatha High Cholesterol treatme Amger
Ipilimumab Yervoy Stage Il melanomn BMS
Ixekizumab Taltz Moderate to severe plague psori Eli Lilly
Mepolizumab  Nucala Asthme Glaxc-Smith Kline
Nivolumab Opdivo Non-small cell lung canc BMS
Obinutuzumab  Gazyva Untreated chronic lymphocytic leuker ~ Genentec
Omalizumab Xolair Allergic asthma Genentec
Panitumumab  Vectibix Colorectal canct Amger
Pembrolizumab Keytruda Melanoma, No-small cell lung canc Merck
Pertuzumab Perjeta Metastatic breast cant Genentec
Rituximab Rituxan Non-Hodgkin’s lymphom Genentec
Secukinumab Cosentyx Plaque psoriasis, psoriatic arthi Novartis
Siltuximab Sylvant Multicentric Castleman’s Disee Jansse
Tocilizumab Actemra Rheumatoid arthrit Genentec
Trastuzumab Herceptin Her2+ breast canc Genentec
Vedolizumab Entyvio Crohn’s diseas Taked:
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In addition to the advantages listed above, CH®G geksent the distinct
advantage of having post-translational modificanwachinery that enables the
formation of structures commonly observed in huralls, thereby ensuring
biocompatibility between the products manufactune@HO cells and human beings
(Raju 2003). In the following section the differentality attributes of mAbs are

discussed with a special focus on glycosylation.

1.4.3 Quality Attributes of Monoclonal Antibodies

The first generation of mAbs that were producenhurine cell lines presented
immunogenic challenges in clinical evaluationsdleg researchers to investigate the
role of both the antibody sequence as well as asslational modifications on
antibody quality and effector functions. As mengdrabove, the efficient post-
translational machinery in CHO cells results infilwenation of structural isoforms of
the antibody that closely resemble human-like stmes, thereby ensuring greater
biocompatibility than mAbs generated in other tiaks. As some of these post-
translational modifications are known to affectglproduct quality, regulatory
agencies require manufacturers to ensure theyr@stent so that the drugs meet
specified quality requirements. Developing the rgederation of mAbs, including
bispecific antibodies and antibody drug conjug&fd3Cs), also requires a thorough
understanding of the multiple quality attributesa§noclonal antibodies. Finally, the
arrival of ‘biosimilars’ — biological drugs whosenao acid sequences are identical to
that of the reference product, but the qualityilattes are only similar (not identical) —
along with the rapid advancement made in analytbalacterization techniques, has
increased the focus on the analyzing and identifytre factors that affect the quality

attributes of antibodies. In the quality by despgmadigm, only those physical and
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chemical changes that affect drug product safegffaracy are designated as critical
guality attributes (CQAs) whose levels should bentagned within defined limits
(Goetze et al. 2010; Rathore and Winkle 2009). &ltih quality attributes will vary
between processes and products, a few qualitpat&s of monoclonal antibodies that
are known to affect antibody activity in genera discussed here in brief (Gramer
2014; Liu et al. 2008; Zhong and Wright 2013):

Aggregation — The presence of aggregates or misfolded proigikisown to
induce adverse immunological responses in patemsnust hence such aggregated
proteins must be cleared from the final drug prodhyamplementing appropriate
downstream purification strategies. Protein aggiegaan occur due to exposed
hydrophobic patches on the protein or due to cheimgeperating conditions. The
formation of such aggregates lowers the efficienicthe process and reduces product
yield and hence, appropriate strategies must béemmgnted to reduce protein
aggregation.

Glycation — Glycation is the natural attachment of a redgisingar to the
amine group of lysine side chains via a nonezynai@ensation reaction. Glycation
of antibodies can take place during cell culturenaiivo upon storage with lactose.
The resulting glycated antibody can exhibit lowerachunoreactivity and increase
the drug product heterogeneity.

Cysteine variants — Monoclonal antibodies contain interchain andaicthain
disulphide bonds, which, if disturbed, can caugderogeneity and disulphide bond
scrambling in mAbs. Reduced mAb potency has beerrgbd due to the presence of

incomplete disulphide pairing on the protein.
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Apart from these chemical and physical changebkeg@totein, glycosylation,
one of the most commonly observed post-translatimaaification, is considered to
be a highly critical determinant of protein quaktyd is discussed in the following

section

1.5 Glycosylation — An Overview

Glycosylation is one of the most commonly obserpesit-translational
modifications in eukaryotic cells which resultsive addition of an oligosaccharide to
the protein backbone. The formation of the carbosgdpeptide bond can be
classified into five major groups: (i) N-glycosydionds; (ii) O-glycosydic bonds; (iii)
C-glycosydic bonds; (iv) P-glycosydic bonds; anfi@lypiation (Spiro 2002). While
each of these carbohydrate-peptide linkages adfettalter protein functionality and
vary by cell line and protein type, we limit ousdussion to N-linked glycosylation,
or thep-glycosylamine linkage of a GICNAc (N-acetylglucosae) to an asparagine
(Asn) residue of a tripeptide Asn-X-Ser/Thr consensequence, where X is any
amino acid except proline (Butler 2006; Cumming 20B8ramer 2014; Kornfeld and

Kornfeld 1985).

1.5.1 Glycosylation Pathway and Glycan Biosynthesis

N-linked glycosylation is initiated on the cytosoface of the ER membrane
when a nucleotide sugar donor, UDP-GICNAc transdée@cNAc phosphate
(GIcNACc-P) to a dolichol phosphate (dol-P) on tHe iBembrane resulting in the
formation of a dolichol pyrophosphate N-acetylgls@mine (dol-P-P-GIcNAc).
Subsequently, another GIcNAc group is added taltiiehol linked structure

followed by the addition of five mannose groupsd@iyP-Mannose. The dolichol
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linked structure then flips to the lumenal facete ER where four additional
mannose residues are attached followed by thremsgguresidues. The fourteen sugar
(GlesMansGIcNAC?) oligosaccharide is transferred bloc by an oligosaccharyl
transferase (OST) enzyme to the asparagine resfdhe Asn-X-Ser/Thr consensus
sequon on a protein that is being translocatedutiirahe ER membrane. Following
cleavage of the three glucose units on the oligdsaae structure by the
glucosidases in the ER, the newly synthesized pragdransferred to the Golgi for
further processing (Stanley et al. 2009).

As the protein is transported through the Golgi partment, the non-template
driven enzymatic processing of the attached oligdsaride by the different
mannosidases and glycosyltransferase enzymeszedah the different regions of the
Golgi apparatus. A partial list of different enzysriavolved in the glycosylation
pathway is listed in Table 2. The initial procegsai the oligosaccharide involves the
clipping of the mannose groups by mannosidase h(Ma form a five mannose
oligosaccharide, at which point it a GlcNac residuadded to the-1,3-mannose by
GnTI enzyme in the cis-Golgi region forming a hybglycan. The mannosidase in the
cis-Golgi compartment cleaves majority of the ghg#o produce a glycan with the
core 3-mannose structure. Subsequent transfeffefatit glycans in the other
compartments of the Golgi result in the formatiémature, complex glycans and
hybrid glycans containing galactose, fucose, aalylsiesidues. However, not all
glycans are fully processed and the secreted gigtep consists of a heterogeneous
distribution of different glycoforms or glycan iswfns (microheterogeneity) that
impart different properties to the glycosylatedtpio. Here, it is important to

distinguish betweemicroheterogeneity, which arises due to the multiplicity of glycan
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isoforms attached at a particular glycosylatioa,sahdmacroheter ogeneity, which

arises due to the variable occupation of a padicgllycosylation site.
Macroheterogeneity is of particular concern in gigyated proteins like tissue
plasminogen activator (tPA) and erythropoietin (BBt have multiple

glycosylation binding sites, and glycosylation siteupancy can compromise efficacy
(Hossler et al. 2009). While both macroheteroggremd microheterogeneity
influence protein function and quality, the focdsar work will be on glycan

microheterogeneity.

Table 1.2:  List of enzymes participating in glycosylati@actions

Enzyme Name

Manl (E.C. 3.2.1.113) Mannosyl-oligosaccharide d-@annosidase

Manll (E.C. 3.2.1.114) Mannosyl-oligosaccharide-1,8-a-mannosidase

FucT (E.C. 2.4.1.68) Glycoproteinr6-L-fucosyltransferase

GalT (E.C. 2.4.1.38) B-N-Acetylglucosaminylglycopeptidg-1,4-galactosyltransferase

GnTI (E.C. 2.4.1.101) a-1,3-mannosyl-glycoprotein @-N-acetylglucosaminyltransferase

GnTIll (2.4.1.143) a-1,6-mannosyl-glycoprotein B-N-acetylglucosaminyltransferase
GnTIlll (2.4.1.144) B-1,4-mannosyl-glycoprotein @-N-acetylglucosaminyltransferase
GnTIV (2.4.1.145) a-1,3-mannosyl-glycoprotein @-N-acetylglucosaminyltransferase
GnTV (2.4.1.155) a-1,6-mannosyl-glycoprotein p-N-acetylglucosaminyltransferase
GnTE (2.4.1.149) N-acetyllactosaminifiel ,3-N-acetylglucosaminyltransferase
SiaT (2.4.99.6) N-acetyllactosaminide?,3-sialyltransferase
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Figure 1.3: Representative examples of differepésyof glycan isoforms that
contribute to antibody microheterogeneity. All stures have been
drawn using the GlycoForm software (McDonald eR8ll0)

1.5.2 Effects of Glycosylation on Protein Quality

The heterogeneous distribution of different glyspecies at a specific glycan
binding site or glycan microheterogeneity influemiseveral properties of the
therapeutic protein. Changes in protein glycosgtatian have significant impact on
physiological processes and diseases such as hesisostd thrombosis (Preston et al.
2013), allergies and autoimmunity (Karsten et @lL2), tumor cell sensitivity
(Mendelsohn et al. 2007), aging (Dall'Olio et #13), in addition to other congenital
disorders of glycosylation. At the protein levdlyapsylation is known to improve
protein stability and local structure (Imperialide®'Connor 1999). The effect of
glycosylation on protecting approved therapeutimduding IgG like antibodies, from

protein instabilities such as proteolytic degramatioxidation, precipitation,
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aggregation, chemical denaturation, and thermatdeation has been well
documented and has led to the development of gljatien as a strategy to develop
better antibody therapies (Jefferis 2009; Onitsetkal. 2014; Sola and Griebenow
2010; Sola and Griebenow 2009; Zheng et al. 20G4ycans also play an intrinsic
role in determining protein pharmacokinetics (PKjiet in turn determines the
efficacy of the protein (Sethuraman and Stadheif620Glycans influence both the
size and the net charge on the protein and cantaéeclearance of the protein from
serum. For instance, the terminal sialic groupldiithe protein from the
asialoglycoprotein receptor on the surface of hepae cells, thereby increasing
serum half-life (Berger et al. 2012). In the cabeonoclonal antibodies, a recent
study suggested that the oligomannose speciesolgzned at a much faster rate than
the fucosylated biantennary species thereby affgdtie drug PK (Alessandri et al.
2012). Thus, manufacturers would have to ensutehieaotal oligomannose fractions
in the antibody be reduced to enhance the seruilifeabf the mADb.

Changes in the glycan profile due to the attachroénbn-human glycan
species can trigger immunogenic reactions in pegjers has been observed due to the
presence of the alpha-linked galactose on thehblarragion glycosylation of the
antibody Erbitux (Gramer 2014). The terminal sugaglycans can also influence a
variety of mAb properties such as antibody resitan papain degradation (Raju and
Scallon 2007) and changes in the CDC activity (R&08; Raju and Jordan 2012).
Core fucosylation is another factor influencingilaotly effector functions as the
absence of core fucose has been shown to enhatiloedsnADCC activity (Houde et
al. 2010; Kanda et al. 2007). Some studies suglgasantibody hemi-glycosylation

does not affect Fab mediated antigen binding aeEeptor binding (Ha et al. 2011).
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Therefore, there is considerable interest in idgng factors influencing
glycosylation, designing assays to characterizggiyigan distribution, and developing
strategies to control the glycosylation profile. Wiscuss some of these aspects in the

following section.

1.5.3 Factors Affecting Glycosylation

In the previous section we briefly discussed howalmslity in protein
glycosylation can affect antibody stability andiedty, and hence its final drug
product quality. In the current section we looKaattors that are known to affect the
glycan distribution profile, while different glycasharacterization techniques are
discussed elsewhere in this dissertation.

The foremost cause of differences in protein giytation is the choice
of expression system (Jenkins et al. 1996; Par8Rii)1 Mammalian, murine, insect,
and yeast cell line systems exhibit differenceth@ir post-translational machinery and
the right choice of cell line becomes an imporfactor in determining protein
quality. Given the challenges associated with atarezing and controlling
glycosylation, the focus has shifted to choosinglicees or engineering cell lines to
achieve desired glycan distribution profiles (Betlal. 2008; Sethuraman and
Stadheim 2006; van Berkel et al. 2009; Yoo et@L.®. Having chosen a particular
cell expression system, there can still be diffeesnin the glycosylation profile during
batch to batch operation due to differences indaiotor conditions (Curling et al.
1990).

For instance, glycosylation is known to be affedigdioreactor operating
conditions such as pH (Aghamohseni et al. 2014sban et al. 2014; Muthing et al.
2003; Trummer et al. 2006; Yoon et al. 2005), terapge (Ahn et al. 2008; Clark et
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al. 2004; Gawlitzek et al. 2009; Sou et al. 20b§frodynamic stress (Godoy-Silva et
al. 2009), and dissolved oxygen (Kunkel et al. 298stelli et al. 2006; Serrato et al.
2004). Nutrient conditions in the bioreactor, sastthe concentration of ammonia
(Borys et al. 1994; Chen and Harcum 2006; Gawlitgekl. 2000; Grammatikos et al.
1998; Yang and Butler 2000), and glucose (Fan.&x(dl5a; Fan et al. 2015b; Liu et
al. 2014; Villacres et al. 2015) influence the fighycan distribution profile via
distinct mechanisms. Similarly, glutamine subsittatby glutamate or TCA cycle
intermediates was shown to alter the galactosylatia sialylation profiles in
different proteins (Ha and Lee 2014; Hong et GL®. The use of other hexoses,
notably mannose and galactose, to alter the glglcinbution is also well studied
(Huang et al. 2015; Liu et al. 2015; Slade et @lL&).

Several modifications have been made to cell celllnedia to evaluate the
effect of different components on the glycosylatprafile. Apart from altering
medium osmolality to alter fucose (Konno et al. 2Qdifferent media supplements
have been introduced such as nucleotide sugarmgmsuyBlondeel et al. 2015; Wong
et al. 2010; Zhang et al. 2016a), surfactant (Bknet al. 2011), sodium butyrate
(Borys et al. 2010; Chen et al. 2011; Gawlitzekle009), and trace metals like
manganese chloride (Mndl(Grainger and James 2013; Gramer et al. 2011seac
al. 2011; Surve and Gadgil 2015).

It is important to note that the list of factorgesting the glycosylation profile
presented above is not exhaustive, but is reprabemf the different cell culture
conditions that can alter the glycan profile. Farttthe understanding generated from
such empirical studies has been primarily qualigatwith no quantitative input-output

relationship being developed. Thus, the modulatiothe glycan distribution profile
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due to of multiple factors at different scales @istinct mechanisms poses several
challenges to controlling glycosylation in the faxdgrocess variations during
manufacturing. To date, cell line engineering aralia design remain the only
options to control the glycosylation profile withacceptable limits. Newer
therapeutics circumventing protein glycosylatioa being considered, but such
aglycosylated proteins require extensive cell eexgyiimg and considerable investment
(Ju and Jung 2014; Jung et al. 2011).

Therefore, the work presented in this dissertagigmands the available tools to
control the glycosylation profile by generating iamental quantitative relationships
between inputs and outputs and then using the getkinformation in novel control

schemes to ensure consistent glycan distributioflgs.

1.6 Dissertation Overview

The overall objective of this work is to developedfective framework for
modeling, estimating and controlling the glycosgatprofile in monoclonal
antibodies produced in CHO cells. In Chapter Zriégrated multi-scale model of
glycosylation is developed for an in-house CHO lie# grown under batch and fed-
batch conditions. Chapter 3 takes a parallel agbré@ developing a quantitative
understanding of the effect of media supplementtherglycan profile. While the role
of media supplements on glycosylation is well-stdidithe work presented here
evaluates the effect of dynamic media supplememtatsing experimental and
computational techniques using controllability s&. We then design and
implement glycosylation controllers using contrblldy analysis and evaluate the set-
point tracking ability of glycosylation controllens Chapter 4. In Chapter 5 the

different challenges to developing an online glytatson assay are discussed and two
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different approaches based on observability arebysi state estimation are used to
address the issue of delayed, infrequent measutenténally, the key findings are

summarized in Chapter 6 along with a discussidiutoire directions.
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Chapter 2
MULTI-SCALE MODELING OF ANTIBODY GLYCOSYLATION

2.1 Introduction

As seen in Chapter 1, the glycosylation profilenAbs is a critical
determinant of protein quality as it influencestsgaality attributes as antibody
immunogenicity, stability, efficacy, and half-lif€herefore, to ensure drug product
quality, it is important to ensure consistent giyation of mAbs during
manufacturing. However, as we have noted previousbtein glycosylation is
extremely complex, involving a series of non-tengldriven enzymatic reactions that
can be influenced by a variety of factors spanmmutiple ‘scales’ — from macro-
scale properties such as bioreactor operating tiondiand media composition, to
meso-scale properties such as antibody productwitiynucleotide sugar donor
concentrations at the cellular level, to micro-eqaloperties at the organelle level
such as kinetic rates of glycosyltransferase apcogidase enzymes in the Golgi
apparatus of the cell. Thus, in order to developamtrol strategy that will ensure
consistent glycosylation, it is first necessarydentify the factors that influence
glycosylation and develop a fundamental, quantgaithput-output relationship
between different input factors and the output gtyprofile. This chapter and the
following chapter demonstrate two parallel apprescaken to understand how the
glycosylation profile is influenced by differentput factors. In this chapter, we
explore, by means of a fundamental mathematicaleitiae effect of bioreactor

operating conditions on the glycosylation profiidile in the next, we use
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controllability analysis to establish a quantitatirelationship between different media
supplements and the output glycosylation profile.

The motivation to develop a mathematical model cbaplex biological
system can stem from a need to organize the vdsiaparate information available
for a biological system into one coherent wholetoounderstand the qualitative and
phenomenological features of the system; or to ldpvaredictive capabilities for a
process of interest; or as means to synthesizérexsmpirical knowledge of a
biological system and generate new insights atbeutihderlying complex
mechanisms (Bailey 1998). In the context of antjbglycosylation, generating
mathematical models to describe the intricate radélar interactions leading to
changes in the glycan distribution will enable nfaaturers to optimize process
operating conditions based on a fundamental uratedstg of the effect that any
process change would have on the final qualityilerdDeveloping such predictive
capabilities is vital to ensure the production igfhhvalue biotherapeutics with
consistent quality. Further, such a mathematicalehoan also be useful when
designing a control scheme to meet desired gualigets in the face of process
variations during manufacturing. In this chaptee, develop a multi-scale model for
glycosylation and test its performance for an ing®cell line under batch and fed-
batch conditions.

The chapter begins with a brief review of variousdeling approaches for
biological processes, specifically focusing on nie@é cell growth in mammalian
cell cultures and mathematical models for predicthre glycan distribution in

glycoproteins, as described in 82.2. The use afdlmeodels in developing an in-house
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multi-scale model for glycosylation is then pregehin 82.3 and model results are

compared to experimental data collected from batachfed-batch experiments.

2.2 Mathematical Models for Biological Processes

2.2.1 Modeling Cell Growth in Mammalian Cell Culture

A variety of kinetic models have been used to sateund understand cellular
growth. Much like the models used to described otiial cell growth, kinetic models
for mammalian cell culture can be classified basethe level of detail incorporated
in the model (Tziampazis and Sambanis 1994). Bridfle various classes of models
based on their structural classification are:

Unstructured, unsegregated models: A vast majority of the models used for
describing cellular growth are unstructured andegnsgated. Based on an idealized
representation of cell growth, these models asghateall cells in the culture behave
in the same fashion (unsegregated) and treat thasca black box, with no
accounting of cellular reactions within the diffieteegions of the cell (unstructured).
Commonly used empirical models that describe gellvth on the basis of logistic
growth rate expressions (Goudar 2012) or Monodtkiadall under the unstructured,
unsegregated category of models (Shirsat et ab)201

Structured, unsegregated models: Single cell models (Sanderson et al. 1999;
Sidoli et al. 2004; Wu et al. 1992) that take iatzount intercellular transport,
cellular compartmentalization, and intracellulartat®lic pathways, and macroscopic
biological models (Baughman et al. 2010; ProvositBastin 2004; Provost et al.
2006) that account for cellular metabolism aresifaes] as structured, unsegregated

kinetic models. Such models tend to be more comples hence, more
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computationally demanding than unsegregated moHelsever, these single cell
models do not account for any heterogeneity whatsae the cell population.

Unstructured, segregated models: Segregated models or population balance
models describe cell growth while factoring in tieterogeneity in cellular
populations. With the advent of experimental t®ulsh as flow cytometry that can be
used to sort cells based on cellular age, andimipinoved computational tools, the
applicability of these models in characterizingual growth has increased (Jang and
Barford 2000; Karra et al. 2010; Munzer et al. 2818unzer et al. 2015b).

Segregated, structured models. The most realistic models of cell growth are
those that take into account both the heterogeireitglliular population as well as the
internal metabolic structure (Sidoli et al. 200B)e high level of parameterization in
these complex models necessitates the developrhelabmrate parameter reduction
and estimation techniques, thereby increasingdbecated computational challenges.

In addition to such a structural classificatiomuddels, it is possible to
develop models that do not necessarily conforrmear the other type. For instance,
Kontoravdi and coworkers (Kontoravdi et al. 2008yeloped a hybrid
structured/unstructured model for a mAb produciragmmalian cell culture, where
cell growth dynamics were modeled using unstruckivienod kinetics, but the
antibody productivity was modeled by taking int@@ant the formation of the light
and heavy chains starting from an organelle lexadsibalance for mRNA (Bibila and
Flickinger 1991). The model parameters were thentifled using global sensitivity
analysis and model predictions were compared teraxgntal data. The utility of
such a combined approach was further demonstrgtétbland coworkers who

compared the model predictions from a hybrid stmezt/unstructured model and a
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detailed single cell model to experimental datawigd from a mAb producing GS-
NSO cell line under hyperosmotic stress (Ho e2@06). They observed that
predictions from the simpler hybrid model were cangble to those from the more
computationally demanding single cell model andinegl simpler parameter
estimation techniques. Similarly, data driven medeing artificial neural networks
(Marique et al. 2002) or based on Markov chain Mddarlo methods (Xing et al.
2010) have been developed to describe cellular tirawmammalian cells.

While different forms of such structurally differteated models have been
used to model cell growth and antibody productiuitynammalian cell culture, the
eventual choice of the model is dictated by thdiaegtion for which the model is
developed (Kontoravdi et al. 2010). A segregatedcsired model can be used to
understand cellular behavior, but the associatetpoatational challenges render it
impractical for process control and monitoring psgs, which are better served by
simpler unstructured and unsegregated models. Tindel complexity should be
chosen appropriate to the task at hand.

Next we discuss the different approaches that baea used to develop

qualitative and quantitative models of protein glygation.

2.2.2 Modeling Glycosylation

The inherent complexity in glycosylation reactictworks has provided
significant challenges to modelers seeking to erappropriate mathematical
representations of the underlying biological pheaoan. In overcoming these
challenges, several models based on mechanistierapdical approaches have been
developed (Sha et al. 2016). Each of these glyaadteta has contributed significantly

to our knowledge of the mechanisms associatedprdtein glycosylation and helped
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guantify the changes in the glycosylation patténnglycoproteins. Although models
for both N-linked and O-linked glycosylation aredely available (Neelamegham et
al. 2008; Puri and Neelamegham 2012), for the mepof this study, we limit our
discussion to models for N-linked glycosylationrao

Glycosylation models have been developed to urasighe diversity in
glycan site occupancy in glycoproteins and thermditagin glycan structures and
branching patterns at specific glycan sites orptiogein backbone. Although models
describing the branching patterns in observed Iimk&d glycosylation reaction
networks are more numerous, very few have exantimetieterogeneity in glycan site
occupancy (macroheterogeneity) that arises in giyateins with multiple glycan
binding sites. For instance, the kinetic modeliramfework developed by Shelikoff
and coworkers (Shelikoff et al. 1996) modeled thdranslational transfer of the
dolichol phosphate linked oligosaccharide to th&ceat polypeptide. Although their
model was largely qualitative in nature, it proxddeeframework to determine how
glycosylation site occupancy depended on protemh®sis rates, and other
parameters. In contrast to this structured kinmtclel, Senger developed a predictive
model using artificial neural networks (Senger &agim 2005) to study site
occupancy of recombinant tissue plasminogen acti\(attPA) based on protein
sequencing. Their goal was to understand how eifiteprotein residues influence the
eventual glycan macroheterogeneity in glycoproteiit multiple binding sites. As
with the structured kinetic model developed preslguthe challenge of corroborating
model predictions with experimental data has lichitee applicability of models

predicting glycan macroheterogeneity.
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Mathematical models that predict the variabilitygigcan branching and the
resulting microheterogeneity in glycoproteins hgaeed in popularity in recent
years. These models quantify the non-template drigezymatic modification of the
oligosaccharide attached to the protein backborkeaglycoprotein traverses the
different regions of the Golgi apparatus beforspeiecreted. One of the earliest
kinetic models to capture the complexity of N-lidkglycosylation networks was
developed by Umafia and Bailey who wished to devedtipnal metabolic
engineering strategies guided by effective mathmalahodels to achieve desired
glycoform distributions(Umafa and Bailey 1997)this seminal work, the
mathematical model (referred to as UB1997) was ldpeel considering mass
balances for a simple glycosylation reaction nekweith 33 glycoforms participating
in 33 reactions catalyzed by 7 glycosyltransfessgymes. They factored the
transport of proteins between different regionthef Golgi complex and modeled the
individual enzymatic reactions using Michaelis-M&mntate expressions. The resulting
oligosaccharide balances were generated usingytbargproductivity rate which, in
turn, was estimated from the glycoprotein produttikate — a critical assumption that
formed the basis of all subsequent kinetic modédsing estimated kinetic
parameters from literature, the model was thenyaedl at steady state to assess
qualitative differences in glycan distribution aiiaction of antibody productivity as
well as differences in the glycan distribution exgsdue to changes in glycan activity.

Krambeck and Betenbaugh expanded the scope andadplity of the
UB1997 model by incorporating additional glycosgitsferase enzymes and glycan
branching structures, thereby enhancing the piigdicapability of the model to a

very wide range of oligosaccharide structures (Kraok and Betenbaugh 2005). The
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resulting mathematical model (referred to as KB3Q#®dicted the formation of 7565
glycan structures participating in 22,871 reactioatalyzed by 11 glycosyltransferase
enzymes. Like the UB1997 model before it, the KB2@tbdel too assumed that the
Golgi apparatus could be modeled as a series dfmeéd reactors in sequence with
bulk transport of cargo. The KB2005 model introdliedframework for automated
generation of different glycosylation reaction netks (and consequently, various
oligosaccharide sequences) by defining enzymeiogactles. These rules vastly
simplified the computational expense involved ingmating large scale glycan
reaction networks and enabled effective mathematgaesentation of different
glycoforms using a nine-digit numbering system. @beeloped kinetic model was
solved under steady state conditions using kirpgtrameters estimated from literature
and compared to experimental data. The model vgasusled to study the effect of
increased glycan productivity on the glycosylatwafile. In subsequent
developments, the predictive capabilities of aneexied version of the KB2005
model were refined by adjusting model parametesgd@n mass spectrometric
measurements (Krambeck et al. 2009) and transamiptdata was integrated with the
glycomic model to identify cell biomarkers (Bennetral. 2013).

Contemporaneous to the development of the KB200&emavhich was based
on the then prevailing vesicular transport modehefGolgi complex, studies of
protein secretion in live cells seemed to sugdestthe cisternal maturation model
could account for secretory kinetics in the Golginpartment better than the vesicular
transport model (Losev et al. 2006; Matsuura-Togttal. 2006). To compare the
differences in the glycan distribution arising doghe choice of vesicular transport

model and the cisternal maturation model, Hossidraworkers developed two
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reaction schemes wherein they modeled the differempartments of the Golgi
compartment as four continuous mixing tanks (CSaipur plug flow reactors

(PFR) respectively (Hossler et al. 2007). The angtleaamined the effect of
processing time, compartmentalization, and spktélization of enzymes on the
glycan distribution while studying the sensitivafindividual glycoforms to the
concentrations of different enzymes. They notit¢ed the four PFR model provided a
more realistic representation of the glycan distidn than the four CSTR model,
indicating the effect of processing time on glyoaieroheterogeneity. The work done
in this study is further enhanced when comparequh&i experimental data
highlighting the effect of processing time on glyaaicroheterogeneity. For instance,
Wang and coworkers (Wang et al. 1991) found thagtnount of poly-
acetyllactosamines in membrane glycoproteins irsg@avith prolonged association
with the Golgi at lower temperatures due to sloimtracellular transport. This was
similar to the work by Fuller and coworkers (Fulral. 1985) who had demonstrated
a change in the galactosylation and sialylatioa &f protein processed at lower
temperatures, due to increased residence timeiGthgi.

In a further extension based on the cisternal ratitir model, del Val and
coworkers developed a model (referred to as DK2@&1Bre the Golgi complex was
viewed as a single PFR and obtained dynamic mateziance for different
glycoforms as well as nucleotide sugar donors \@let al. 2011). They also defined
enzyme and transporter protein concentrations a@loatength of the Golgi apparatus
to account for recycling of the different comporgealong the Golgi compartment,
while incorporating detailed kinetic mechanismsdach enzyme catalyzed reaction.

Kinetic parameters were estimated from literatur@ anknown parameters were
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estimated using optimization routines. The resgltmodel was matched with
experimental data and compared to previous moiikss DK2011 model provided a
comprehensive dynamic glycosylation model that, wt@upled to a model for
nucleotide sugar donor (NSD) metabolism could bideeactor and extracellular
conditions to intracellular changes.

As most of these kinetic models require extensarameter estimation, there
have been attempts at reconciling experimentalogiylation distribution data to
parameter free models. For instance, predictiveagiynodels have been developed
using artificial neural networks (Senger and Ka2idg®8) that correlate the type of
glycan attached to a particular site to proteincttire and sequence. By examining
protein databases and antibody structures, suelir@lmetwork model aims to reduce
the need for using elaborate kinetic models. RégeBpahn and coworkers developed
a low parameter Markov chain model for predicting glycan distribution in different
glycoproteins and evaluated its efficacy to pretheteffect of glycosyltransferase
knockdowns on glycosylation (Spahn et al. 2016y.uBlizing the reaction rules first
elucidated in the KB2005 model, a probabilistiavieavork was developed for
generating a glycosylation reaction network. Thelaet@oes not account for
nucleotide sugar precursors, but simply adjustdrdresition properties in the Markov
model to account for changes in the glycan distigou Along similar lines, Kremkow
and Lee have developed a parameter free glycasylagtwork model specifically for
CHO model based on the CHO genome (Kremkow and2Dé&é).

While such predictive models have helped lay taengwork for
understanding the diversity in glycosylation reacthetworks, there is a need to

understand how bioreactor culture conditions infleeethe heterogeneity in
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glycosylation distribution. The development of misdanking extracellular conditions

to changes in the intracellular conditions is reagd in the next section.

2.2.3 Modeling Cell Growth and Antibody Glycosylation

An examination of the factors that influence glygdason indicates that the
eventual antibody glycan distribution profile ideated by both intracellular and
extracellular factors as reviewed in §1.5.3. Byensthnding the mechanistic
relationship between the input factors and the wtugfycan distribution, one can
develop necessary schemes to manipulate the vanpusfactors and alter the
resulting glycosylation profile in the protein.

One such approach to understanding the effectoftyrdynamics and
antibody productivity on the final glycan distribut involves linking the ‘macro-
scale’ models of cell growth with the ‘micro-scamebdels of glycan productivity.
Kontoravdi and coworkers developed a dynamic mbihg a hybrid
structured/unstructured model for cell growth fanAb producing cell culture with
the UB1997 model for glycosylation (Kontoravdi €t2007). Although the model
produced qualitative results, it was a useful midek tool to study the effect of
different feeding strategies on fed batch cellunat With the development of detailed
micro-scale models of glycosylation that could ip&dd to experimental data, it was
now possible to use this framework to link extradal conditions to the eventual
glycosylation profile. Jedrzejewski and coworkeysght to develop one such
modeling framework by focusing on amsilico model reconstruction of sugar
nucleotide and nucleotide sugar donor (NSD) syimghzsthways to link the
availability of NSDs to the final glycan distribati predicted by the DK2011 model

(Jedrzejewski et al. 2014). They linked a dynaneit growth model to a simplified
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nucleotide model developed using Monod kinetica MSD synthesis model
developed from the KEGG database and modeled Micttpelis-Menten kinetics, to
the DK2011 glycosylation model. The resulting magladiction for the glycosylation
profile was compared to experimental data fromratibady producing mammalian
cell culture and it showed a fairly reasonable maRecently, the influence of
antibody productivity on the glycosylation profias examined using this integrated
modeling framework for fed-batch cultures (del ¥ahl. 2016).

In a different modeling approach, Kaveh and cowwrkieked a dynamic
model for cell growth to the glycosylation modebposed by Hossler et al (Ohadi et
al. 2013). Recognizing that experimental measurésnaiglycan distribution in cell
culture are representative of the cumulative amotiahtibody generated, and that the
kinetic models for glycosylation are instantanemwuslels, they converted the
instantaneous glycan distribution to a cumulativeasure by accounting for the
cumulative antibody production at that time. Furtibne formulating a dynamic
metabolic flux model for the extracellular metabesi they attempted to link
extracellular conditions to the glycosylation plefi

The models reviewed thus far have been developed asvide range of
assumptions and for different systems. Howevefeunt cell lines producing
different glycoproteins (or even the same glycogirtexhibit differences in cellular
behavior. Thus in the absence of a general modalbfrowth and glycosylation it
becomes necessary to develop a specific modelanprticular set of experimental
parameters. In the next section we present refsaitsour multi-scale modeling

efforts using an in-house cell line.
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2.3 Development of an In-house Multi-scale Model of Glyosylation

To model the effect of cell growth conditions oe tjlycan distribution profile,
we developed a multi-scale model to describe thelaegrowth and glycosylation
characteristics of an in-house cell line, wherém acro-scale model was developed
using an unstructured Monod model for cell growtd ¢he micro-scale model was
adapted from the DK2011 model. Model predictionsentben compared to batch and
fed-batch experimental data, as described in thewimg sub-sections.

Figure 2.1 provides a brief overview of the ovematidel structure which

incorporates both the macro-scale and the micrte-soadels.

Multi-scale model Macro-scale model

¢ Initial nutrient conditions

*  Receives: Initial values for nutrients (bioreactor
provided I——‘J>

conditions)

|

|

|

I . i ’
+  Invokes macro-scale to solve | Solves: ODEs and mass balance for all nutrients
|
|

<:| *  Returns: Solution to growth model

@ Micro-scale model

{ ¢ Invokes micro-scale model by }
I passing glycan production rate :
: and obtains dynamic glycan |
| |
! |

|:> *  Receives: Glycan productionrates

*  Solves: PDEs and mass balance for glycans

<:| *  Returns: Dynamic glycan profile and relative glycan
distribution

profile and relative glycan
distribution

Figure 2.1: Overview of the in-house multi-scaledmlo The multi-scale model first
invokes the macro-scale model to solve mass badaoncall nutrients
that returns the dynamic nutrient concentratiorfilgrand the antibody
production rate. The glycan production rate is tbaliculated and the
micro-scale model is invoked to obtain the dynaghycan distribution
profile and the relative distribution of individugllycoforms.
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2.3.1 Batch Experiments — Materials and Methods

An 1gG1 producing CHO-K1 cell line (gift of Genente CA) was used in our
shake flask batch experiments. The cells were glioveaspension culture at 37° C
with a 5% CQ overlay in vented cap Erlenmeyer shake flasks &@mL custom CD
OPTICHO™ media (Thermo Fisher, MA) supplemented\28 mM glucose, 4 mM
glutamine, and an initial seeding density of 0 BXcells/mL. Daily cell count
measurements were taken using a hemocytometee wietabolite (glutamine,
glucose, glutamate and lactate) concentrationsianpd, and osmolality were
measured using a Bioprofile 100+ analyzer (Novanigidical, MA). On day 8 after
inoculation, the cells were centrifuged to hansgstnt media from which the 1gG1
antibody was then purified with a PhyNexus BenciNtipA2 system using Protein A
chromatography resin packed in a 2 mL PhyTip col{RinyNexus, CA). Antibody
titer in the harvest and post-purification was difeatl on a Thermo Scientifié/
MAbPac Protein A chromatography column (12-micratigle size, 35x4.0 mm I.D.,
Thermo Fisher Scientific, MA) using an Agilent 128@LC instrument. The purified
antibody was then trypsinized at 37° C, followedelgymatic deglycosylation using
PNGase-F (ProZyme, CA) for a minimum of 16 hour8#&tC. The free separated
glycans were captured on Hypersep Hyper Carb SREdgges and permethylated
following the Ciucanu method using methyl iodidel &aOH in the presence of
DMSO (Ciucanu and Costello 2003; Ciucanu and K&&84). The labeled glycans
were purified in a liquid-liquid extraction stepttvichloroform, dried and resuspended
in 80% methanol, and spotted onto a MALDI/TOF platth a DHB matrix. The
labeled glycans were then analyzed using a 4800 MAIOF/TOF Analyzer
(ABSciex) in positive ion, reflector mode. The datdlected using the mass

spectrometer was then exported to DataExplorebtaim the peak heights for the
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identified glycans (see Appendix A for the compliéteof identified glycans). The
relative glycan distribution was calculated frore fieak heights of individual glycan

species.

2.3.2 Macro-scale Model Development

The macro-scale model used in this work is an uosired, unsegregated
model based on Monod kinetics, with appropriatesfedance equations included to
account for nutrient consumption.

In mammalian cell cultures, cell growth dependdhenavailability of two key
nutrients, glucose and glutamine. Cells uptakeagadhrough the glycolytic pathway,
resulting in the formation of lactate as a by-prdwhile the uptake of glutamine
results in the formation of ammonia as a by-prodBoth lactate and ammonia are
known to inhibit cell growth in mammalian cells Land Toth 1997). We take into

account each of these factors in developing theesspon for cell growth ratg, as

Glc Gln Ki,Lac Ki,Amm
=u
M3 (Kgie + Glo) (Kgin + GIn) (K; o + Lac) (K; amm + Amm)

1 2.1

The cell death rate, which is inversely relatethegrowth rate, asymptotically
reaches a maximum value as the growth rate gaar¢o(Sanderson et al. 1999).

Thus

Kd,0

— 2.2
(kd,1 + U)

Mg = Hd,max
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The consumption rates for glucose and glutamin@lbi@ned by considering a mass

balance for the two nutrients. For glucose we obtai

dGlc 1dv FinGlc;,  FoutGlc

o . _Gle—— — ge1.X
at ‘vt~ deetv Ty v

2.3

Here,V is the working volume in the bioreacté#, andFo. are the flowrates into and
out of the bioreactor, witlslcin denoting the concentration of glucose in the input
feed. Under batch conditions, we BetandFout as zero. Further, the specific

consumption rate for glucosesigis given by

dcic = + mgjc 2.4

YX/Glc

where, Yycic is the yield coefficient and the maintenance doieffit for glucose, @t

is given by

a, Glc

= 25
Malc a, + Glc
Similarly, glutamine consumption is given by
dGIn 1dv FinGln;,  FouiGln
- _Glne—-— — — 2.6
I Gan I qcinXv — Kg,gnGIn + v v

with the specific glutamine consumption rate gibgn
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m
dGin = Y_ + Mgy 2.7
X/GIn

whereYxcin is the yield coefficient of glutamine angin is the maintenance
coefficient for glutamine.

Glucose uptake by the cells results in the fornmatiblactate as a by-product
at a rate directly proportional to the glucose comgtion rate, with the accumulation
of lactate resulting in growth inhibition. Howevegme CHO cells are known to
consume lactate under low glucose conditions ubdeah and fed-batch conditions
(Ozturk et al. 1997) resulting in higher produdias. This has led investigators to
study the metabolic changes that result in thetarfdactate consumption and its
effect on total protein productivity (Le et al. Z0 Mulukutla et al. 2012; Mulukutla et
al. 2015). Several strategies have also been dktaseontrol the production of lactate
by substituting galactose for glucose or by usiHgcpntrolled addition of glucose
thereby seeking to enhance protein productivitgg@irano et al. 2006; Gagnon et al.
2011). In our shake flask experiments too, we alesttre consumption of lactate as
the growth phase shifts under low glucose and gluta conditions. Although both
glucose and glutamine are vital for cell growth amaintenance in CHO cells, cells
continue to grow even at limiting concentrationglftamine (Sun and Zhang 2004).
The rapid uptake and degradation of glutamine apemied by the consumption of
lactate results in a slowing down of cellular grbwand the expression for cellular

growths is now modeled as
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B Glc Lac Ki,Amm
Hmax,2 (KGIC + G]C) (KLac + Lac) (Ki,Amm + Amm)

1 2.8

Consequently, when we account for lactate massibajave incorporate terms for

both lactate production rate as well as consumpfibns:

dLac 1dv FipLaci, Foutlac

dt - _Lacva + qLach - qconsXv + v - v 2.9

where the specific lactate production ratec s given by:

Qrac = YLac/Glchlc 2.10

while the specific lactate consumption ratgngs given by:

k, under exponential growth conditions

q = 2.11
o a ,under low glucose conditions

X/Lac

The uptake of glutamine during cellular growth adlas the degradation of

glutamine results in the formation of ammonia, viaheontinues to accumulate even
after glutamine depletion. This is likely due te tthegradation of glutamate and the
conversion of alanine to pyruvate as the cells goneslactate (Li et al. 2012). Thus,

we write the mass balance for ammonia as
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dAmm 1dv FoutAmm
dt = —Ammva + qumXV + Kd_GnGll’l - T + kamm 2.12

where the specific ammonia production rate is givgn

damm = YAmm/GanGln 2.13

The viable cell density (X depends on the growth rate as well as the da&ghwhile
the total cell density (X depends on the number of viable cells and tHdys#$ rate

Kiyss. Therefore, we get

dx, Fout 1dV
=Vl —— - 2.14
dt (“ Ha =7y~ 7y dt) v

dX Fout 1dv

d_tt = pX, — ~ Xe — vaxt — Kiysis (Xt = Xy) 2.15

Several different approaches have been used tolmpamtein productivity,
using segregated or unsegregated, structured buatwsed models. For instance, an
antibody synthesis model was developed for hybralosils that accounted for light
and heavy chain protein and mRNA expression (Benild Flickinger 1991, Bibila
and Flickinger 1993). Extensive factorial desigperiments have been performed to
identify appropriate cell culture media supplemg&atathat can enhance protein
productivity (Xu et al. 2014). Data mining approashnvolving historic

manufacturing data have also been used to iddiatitprs that influence protein
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productivity (Charaniya et al. 2010). Recent inigegtons of the metabolomic activity
in different cell lines producing industrially rent mAbs suggest a correlation
between oxidative stress and the production of Tg&e intermediates (Ishii et al.
2015; Templeton et al. 2013). However, for our niodepurposes, we have
associated antibody titer with the glucose consionpates. Thus, we get a mass

balance for the antibody production rate as

dvab . 1dV F,u:MAb )16

dt Abg e 1 dmanXy — —;

where the specific antibody production rateagjis given by

dmab = Ymab/GlcdGlc 2.17

andYwmawcic is the yield coefficient of the antibody on glueos

The resulting set of ODEs was solved in MATLAB gsan in-built ODE
solver with a non-negativity constraint. Nutrieoncentration from the batch
experiments was measured on day O using the BitpArialyzer and these values
were passed to the ODE solver as initial conditidim® model parameters were
obtained from literature and predictions for glugoglutamine, and lactate were
compared to the experimental values obtained ftenbatch run. Later these,
parameters were optimized using the in-built optenin MATLAB. The parameters

used in the macro-scale model have been listedleT2.1
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Table 2.1: Parameter values used in the macro-scale model

Parameter Value (in-
house
model)

Yield coefficient of biomass on glucosex¥, [cells/ mM] 1.40x 19

Yield coefficient of biomass on glutaminex¥n, [cells/ mM] 2.70 x 18

Yield coefficient of biomass on lactatexiac, [cells/ mM] 6.53 x 10

Yield coefficient of ammonia on glutamineaXmwain, [MM/ mMM] 0.63

Yield coefficient of lactate on glucose,a¥cic, [MM/ mM] 1.30

Yield coefficient of mAb on glucose,wo/cic, [g/L/ mM] 5.55x 1¢

Constant for glutamine degradatiorny df, [hour] 9.60 x 16°

Monod constant for glucosegls, [mMM] 0.14

Monod constant for lactate, k&, [MM] 0.25

Monod constant for glutamine,dg, [mM] 0.025

Constant for lactate inhibition,Kac, [MM] 171.76

Constant for ammonia inhibition, Kmm, [MM] 28.48

Cell lysis rate, Ksis, [nour] 0.02 -0.06

Glutamine maintenance coefficient, mgin, [mM-hducells] 4.25 x 16°

Constant for glucose maintenance coefficiegtjraM-hour-* /cells] | 2.25 x 16¢

Constant for glucose maintenance coefficientjraM] 39.65

Maximum growth rate (exponentiafjsmaxi, [hour-1] 0.03

Maximum growth rate (stationary)maxz [hour] 6.50 x 16°

Maximum death rateyd,max [hour] 0.042

Death rate constantgds [hour-] 4.54 x 1¢¢

Death rate constantgi [hour-] 5.00 x 16°

The resulting dynamic profiles for nutrient uptaled production are shown in
Figure 2.2, while Figure 2.3 shows a comparisothefmodel predictions and the

experimental measurement for the cellular viahilithe model adequately captures
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the trends in the nutrient uptake and metabolitelpction as well as the cell growth
rates. Due to the low antibody concentrations se@uor experiments, mAb
measurements are available for just two time pporigday 7 and day 8 at the end of
the batch. The model predictions for antibody padidun compare well with the

experimental data as shown in Figure 2.4.
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Figure 2.2: Nutrient and by-product concentratioofifes for batch culture. The plot
shows the model fit for glucose, glutamine, lactated ammonia. The
blue solid line represents the model predictiorts/erthe red circles are
the experimental measurements.
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Figure 2.3: Viable cell density and total cell denprofiles for batch culture. The
solid black line represents the model predictiandlie total cell density
while the solid red line represents the modelditviable cell density.
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2.3.3 Coupling the Macro-scale Model with the Micro-scaleModel
To couple the macro-scale model with the eventlyalg distribution in the
output, we must estimate the glycan productionfrata the antibody production rate.

First we calculate the integral viable cell dengityCD) which is calculated as

th

IVCD = f X, dt 2.18
0

We numerically integrate the viable cell densityATLAB using the
cumulative trapezoidal function. Next, we evaluaie specific antibody productivity

rate at different time intervals using

MAth - l\/IAbt1

= 2.1
t=tz  [VCD,, — IVCDy, ?

dp

The low antibody titers seen in our cell line imghat the productivity that we
observe can be as low as 0.2 pg/cell/day. Nexsbyraing that each antibody has two

glycan binding sites, we calculate the glycan pobdity rate as

2
~ 99 MAb molecular weight

glyc 2.20

The glycan productivity rate is then passed tontiero-scale model which is

described in the following section.
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2.3.4 Micro-scale Model Development

The micro-scale model used in the current worldepéed from the DK2011
model while the glycan reaction network is builingsthe reaction rules and the
numbering system originally proposed in the KB2@@&del. First, we generate the
glycan reaction network using the reaction rulstetl in Table 2.2. The columns list
the enzyme (see Table 1.2 for enzyme names), Hueiased reaction rule, and the
corresponding reaction leading to the formatioa particular glycan. The complete
list of experimentally observed glycan isoforms #émeir structures are listed in
Appendix A. The generation of different glycan mwhs per each reaction rule gets
recorded in a nine-digit array, where every numbearunique representation of a
glycan isoform. In this representatidvian, Fuc, andGal refer to the digits
corresponding to the number of mannose groups fwdaa range from 3 to 9), the
fucosylation state (0 orl), and the number of gakeresidues (0 to 4) respectively.
Br2 andBr4 correspond to the extension level in branch 2 éajppanch attached to
thea-1,6-linked mannose of the tri-mannosyl core) dreddéxtension level in branch 4
(lower branch attached to thel,3-linked mannose in the tri-mannosyl core),
respectively. In generating the reaction networl,have not included the bisecting
species (denoted nb) which arise due to the action of GnTE enzyme,dwmwe
account for sialyl groupsS(@), which are added as extensions to the galacteslyla

branches by the action of SiaT.
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Table 2.2:  Reaction rules for generating the glycosyfatigaction network based on
KB2005 model

Enzyme | Rule Reaction

Manl Man>5 Man = Man-1;
Manll Man>3 && Br4==1 && Man~=4 Man = Man-1;
Manll Man>3 && Br4==1 && Man== Man = Man-1;
FucT Fuc==0 && Br4>0 && Gal==0 && Man== Fuc = Fud+t
GnTI Br4==0 && Man==5 Br4 = Br4+1,

GnTIIl Br2==0 && Man<4 && Br4==1 && Gnb==0 Br2 = Br21,;

Br2 = Br2+1 or Br4 =

GalT (Br2==1) && ~(Br2>0) && Man<4
Br4+1; Gal = Gal+1,;

Br2 = Br2+1 or Br4 =

GalT (Br2==1 && Br4 ==1) && (Br2>0)
Br4+1; Gal = Gal+1;

To generate the reaction network, we start witle mmrannose oligosaccharide
(labeled M9) which gets converted to a five manmgigeoform (M5) by the action of
Manl enzyme, as per the first rule. To the M5 gfgem, the enzyme GnTl adds an N-
acetylglucosamineGIcNAC) at branch 4, i.e. at thel,3-mannose on the trimannosyl
core. Accordingly, the nine-digit glycan modifieztg edited to account for the
addition of the GIcNAc at Br4. Subsequently, othercan isoforms are created based
on the different reaction rules, leading to thenfation of a glycan reaction network
with 18 glycan isoforms participating in 20 reaoto

Having defined a complete glycan reaction netwaiitable for our purpose,

we then calculate the complete glycosylation distion profile using an adapted

49



version of the DK2011 model. Based on the cistemmaturation model, we
approximate the Golgi apparatus as a single PFRmywith no axial dispersion,
constant linear velocity, and constant Golgi diané&h get the oligosaccharide mass

balance as:

a[Glyc, a[Glyc;
[Glyg] _ _ 4q 9lGyg] N~ 2.21
ot nD? 0z K

where the kinetic rate expressigrior each enzyme is as listed in Table 2.3.

Table 2.3:  Kinetic mechanisms for different glycosylatienzymes

Kinetic

Enzyme .
y mechanism

Rate expression

Michaelis-
Menten
Ke: [Ei] [P
Manl, | with K= £ [Esll l]p
Manll competitive K. (1 +3 _I[( k] )
and product mk
inhibitions

Sequential
order Bi-Bi
GnTI, kinetics . ke;[E;][P][UDP — S;]

GnTII, with JT UDP —S. UDP = S P
GalT competitive Km,iKma, (1 +2l Ko 1 K 1 ) lgnli)
and product
inhibitions

Random

order Bi-Bi r

kinetics

FucT with _ ke [Ej][P][UDP — Si]
competitive|  g_ K .. (1 " 2_[U]ID(P — Si [U?(P — Sily 5 [Pid )
and product ' ' md,i md,i

inhibitions

+(1+
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Next, as proposed in DK2011 model, we calculatestiyme distribution

along the length of the Golgi apparatus assumirggriormally distributed using

1/Z2—Zjmaz
Ei(2) = Ej‘maxe_i(—\]/v ) 2.22

The initial simulations are carried out using valpeovided in literature for peak
enzyme concentrationgdfsx), the mean value along the length of the Galgix], and
the standard deviatiom] that are used in equation 2.22.

Next, we solve the for the glycan distribution pliefising the method of lines
by dividing the length of the Golgi into differegtid points. The glycan concentration
at the entrance to the Golgi (or the first gridntpis the boundary condition, while we
define initial concentrations for the glycan spedieall the regions of the Golgi.
Using the glycan productivity rate, we estimatedahsount of glycans entering the
Golgi and solve to obtain the dynamic glycan dsttion profile the end of the batch
culture. As the experimentally reported valuesaaa@lable to us as relative glycan
percentages, we convert the glycosylation profiamed from our simulations to a
relative glycan distribution and compare the maiulations at the end of the batch
with the experimentally observed glycan distribntigVe then optimize the kinetic
parameters in the model and the optimized kinetrameters for the peak enzyme
concentration and for the kinetic constants asdigh Tables 2.4 and 2.5, respectively.

The model simulations and output glycan distribui®shown in Figure 2.5.
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Table 2.4: Parameters to estimate the distribution dédeht glycosylation
enzymes along the length of the Golgi apparatus

Enzyme Emax (uM) zmax ®

FucT 0.16 11.60 151
GalT 1.00 17.15 0.90
GnTI 2.52 8.02 1.56
GnTII 1.07 10.94 1.56
Manl 2.45 5.63 1.57
Manll 1.00 8.58 1.15

Table 2.5:  Kinetic constants used in the rate expresdamndifferent
glycosyltransferase enzymes arranged as per theaeaule.

Enzyme | Rule Kr, Km, Kmd,
mint | mM mM
Manl Man > 8 2734 60.5 0
Manl Man > 7 && ~(Man>8) 2005 110 0
Manl Man > 6 && ~(Man>7) 792 30.8 0
Manl Man > 5 && ~(Man>6) 70 625 0
Manlli Man>3 && Br4==1 && Gnb==0 && Man~=4| 1026 20 0
FucT Fuc==0 && Br4>0 && Gnb==0 && Gal==0 | 225 250 46
&& Man==
GnTI Br4==0 && Man==5 2768 260 170
GnTII Br2==0 && Man<4 && Br4==1 && Gnb==0 | 56 190 9B
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Table 2.5: continued

Enzyme | Rule ks, Km, Kmd,
mint | mM mM
GalT (Br2==1) && ~(Gnb>0 && Br2>0) && 25 130 65
Man<4
GalT (Bra==1) && ~(Gnb>0 && Br2>0) && 25 130 65
Man<4
Manlli Man>3 && Br4==1 && Gnb==0 && 43 20 0
Man==
GalT (Br2==1 && Br4 ==1) && (Gnb>0 && 904 6280 | 65
Br2>0)
GalT (Brd==1 && Br4==1) && (Gnb>0 && 2444 | 6280 | 65

Br2>0)
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Figure 2.5: Glycan distribution profile obtainedrn the multi-scale model. Solid
grey bars represent the experimentally observethglgistribution while
the cross-hatched bars represent model predictions.

2.4 Validation using Fed-batch Model with Pulse Feeding

2.4.1 Fed-batch Experiments — Materials and Methods

To assess the validity of the model structure aquéied its overall
applicability, we evaluated the model under feccbatonditions with pulse feeding.
As described in § 2.3.1, we grew an IgG1 produ€it-K1 cell line (gift of
Genentech, CA) in suspension culture at 37° C wils% CQ overlay in vented cap
Erlenmeyer shake flasks starting with 50 mL cus@IOPTICHO™ media (Thermo
Fisher, MA) supplemented with 28 mM glucose, 4 mitamine, and an initial

seeding density of 0.5 x 40ells/mL. Cell count measurements were taken using
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Nexcelom Cellometer Mini (Nexcelom Bioscience, Mhile metabolite (glutamine,
glucose, glutamate and lactate) concentrationsjaypd, and osmolality were
measured using a Bioprofile 100+ analyzer (Novaniidical, MA). The cells were
grown under batch conditions till day 4, after whiemL custom CD OPTICHO™
media supplemented with 28 mM glucose, 4 mM glutemvas added on a daily
basis. Samples were withdrawn before and afterydeeding and cell count and
nutrient concentration measurements were notedbdaly quantification, purification
and subsequent glycan release, permethylationaaalgsis was carried out as per the

protocol listed earlier.

2.4.2 Modifications to Multi-scale Model

To account for the pulse addition at fixed timesrtls, we model the time
between the feeding as individual batch runs (Xéhgl. 2010) and adjust the nutrient
concentration at the start of each new batch bgwatng for the volumetric change
in the bioreactor due to the addition of fresh raathily. Thus the change in nutrient

and metabolite concentrations after feeding is

[Npost] = ([Npre] X Vpre + 5 X [Nfeed])/vpost 2.23

[Mpost] = ([Mpre] X Vpre)/vpost 2.24
whereVpre refers to the volume before adding feed ¥pd is the volume after adding

the feed. As the batch and fed-batch experiments performed under slightly

different conditions, we are able to match the mesvient and cell viability profile as
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well as the antibody concentration and the glydatridution profile as shown in

Figures 2.6 through 2.8 by making minor adjustmémte kinetic parameters.
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Figure 2.6: Nutrient and by-product concentratioofifes for fed-batch culture with
daily 5 mL pulse feeding. The plot shows the mdiidbr glucose,
glutamine, lactate, and ammonia. The blue solid tepresents the model
predictions, while the red circles are the avegeerimental
measurements taken from two trials. The error ialisate the range of
experimental values.
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Figure 2.9: Glycan distribution profile obtainedrin the multi-scale model for fed-
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Thus the developed mathematical model is usefelaluating the glycan

distribution under different conditions.

2.5 Summary and Conclusions

In this chapter, we developed a multi-scale moaleldscribe cell growth
kinetics and antibody glycosylation for an in-hogsé line under batch and fed-batch
conditions and compared the model predictions peamental data. Our model
captured the growth profiles at the macro-scaleehadd predicted the antibody
productivity rate based on the total glucose congian rate. The glycan productivity
rate was then calculated from the antibody proditgtrate and used in an adapted
micro-scale model wherein the Golgi compartment madeled as a plug flow
reactor and the dynamic glycan distribution wasmtgd by solving the mass balance
for each glycan species. The model parameters oygnmized using the data from the
batch bioreactor experiments and validated usidgbfech data. The models
developed in this chapter will be used in Chapttr #st the design of batch to batch
controllers for glycosylation control using the gme concentrations as varying
inputs in the micro-scale model and in Chapter 8eieelop a state estimation scheme
for predicting the glycan distribution profile ing absence of real time measurements.
Chapter 6 will touch upon the different aspectthefmodel that can be improved in
successive iterations.

While this model captures the effect of cell growtmamics on the
glycosylation profile, we note that the effectscefl culture media, another major
macro-scale factor that affects glycosylation, haoebeen included in the predictive
model. One of the prime reasons for not includield @ilture media in our model is

due to its highly complex composition which dugtoprietary concerns, is often
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unknown to the end user. In the following chaptex,use a parallel approach to
understand how different media components affexgtircan distribution, we develop
a quantitative relationship between time-dependetia supplementation and the

glycosylation profile.

60



Chapter 3

CONTROLLING THE GLYCOSYLATION PROFILE USING TIME-
DEPENDENT MEDIA SUPPLEMENTATION

3.1 Introduction

In Chapter 2, a multi-scale model of glycosylatwas developed and tested
using in-house batch and fed-batch data. The rsmaie model, based on Monod
kinetics, accounted for the effect of cell cultaonditions such as concentrations of
glucose, glutamine, lactate, and ammonia on ceiitr, viability, and the antibody
productivity rate, which was subsequently usederhicro-scale model used to
generate the glycosylation profile. Although thetimeanatical model gave a
descriptive understanding of the effect of varimecro-scale parameters on the cell
culture performance, it did not consider a widegeanf macro-scale factors that are
known to affect glycosylation. For instance, prestudies have demonstrated that
protein glycosylation can be influenced by varitarstors, such as pH (Ivarsson et al.
2014; Yoon et al. 2005), temperature (Ahn et ad&@@awlitzek et al. 2009; Sou et
al. 2015), dissolved oxygen (Kunkel et al. 1998r&e et al. 2004), ammonia (Borys
et al. 1994), and media supplements such as niddgemigar precursors (Wong et al.
2010) and manganese chloride (Ms)QGrainger and James 2013; Gramer et al.
2011; Pacis et al. 2011). Modulating the complégean distribution profile requires
manipulating multiple input factors simultaneousiynd to be effective, such action
must be based on a thorough, holistic understarafihgw these inputs individually

and jointly affect various glycan species.
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In the absence of detailed first-principles baseathematical models that
describe the effect of all cell culture processalales that can influence glycosylation,
we rely upon statistical design of experimentsy&tematically generate empirical
understanding, whereby input factors are judicipuakied simultaneously to generate
data on the main and interaction effects they exedll the output responses of
interest. Such structural information indicatesahhinputs to manipulate, and by how
much, in order to alter the relative concentratiohdifferent glycan species
appropriately. In most cases, however, the avalaiguts are fewer than the glycan
species to be controlled, resulting in a systerh wisufficient degrees of freedom.
Consequently, we must first answer a fundamentastipn: given a limited set of
inputs, to what extent can we independently cortbrelconcentrations @il the
desired glycan species? In other words, is theetkshange in the glycan distribution
achievable using the available inputs? We addhesgjiestion using “controllability
analysis”, by which we can determine quantitativtely extent to which the system is
controllable. (Informally, a system is considerednpletely controllable if it is
possible to drive the complete set of outputs femme initial value to any arbitrarily
specified final, desired value by manipulating éivailable set of inputs.) Previously,
the concept of output controllability was introddand the controllability of the
glycan reaction network was assessed using datxaend from statistical design of
experiments (St. Amand et al. 2014c). The applltgtf controllability analysis was
also illustrated by identifying glycan species wégsncentrations can be controlled
using such media supplements as MnGalactose and Ni€I as manipulated

variables (St. Amand et al. 2014b).
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The role of different media supplements in modaatritical quality
attributes of the mAb in general, and the glycastritiution profile in particular, has
received considerable attention recently (Brihlmeinal. 2015). Typically,
supplements such as MnCthat are known to affect the expression and ey f
several glycosyltransferase enzymes, are addéuwk tmédia at the start of the batch to
alter the glycan distribution. However, over theise of the batch run, as the cells
continue to grow and produce mAb molecules, chaimgt® cellular availability of
supplements will influence not just the antibodgdrctivity but also the activity of
the glycosyltransferase enzymes, thus affectinditiad¢ glycan distribution. Hence,
we postulate that it is possible to control thecglylation profile in mAbs by
introducing specific media supplements at diffesgages of cell growth. Specifically,
we aim to identify the glycan species that candrgrolled by adding MnGlduring
lag, exponential, and stationary phases of celivfrpand quantify the effect of such
time-dependent Mngladditions on the glycan distribution. We postulatg¢her that
introducing a chelating agent to the media can #ite effect of MnCGl addition on the
glycan distribution.

In this chapter we use a mixed factorial experirmetesign to add Mngland
EDTA at various stages of cell growth and analyeeresulting data appropriately to
guantify the effect of time-dependent media suppletation on the glycosylation
profile in mAbs. Subsequently, we use controllapiinalysis to identify the glycan
species whose relative percentages can be couteffiectively by introducing MnGl
and EDTA to the media at different time points, godntify the effect of these time-
dependent additions. Overall, our results highlihletimportance of taking into

account the dynamic nature of media supplementagioth presents concepts that can
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be exploited to develop new strategies for contrglthe glycosylation profile in
mADs.

In the following section, we discuss the experirméahd modeling techniques
used in this chapter. The results from our workthes presented in section 83.3 with
a detailed discussion in section 83.4. The keyitfigel are summarized in the last

section of this chapter.

3.2 Materials and Methods

3.2.1 Cell Culture

All experiments were conducted using an IgG1 prody€HO-K1 cell line
donated by Genentech, San Francisco, California.cElls were scaled up in a
custom CD OptiCH®" medium formulation (Thermo Fisher Scientific, Wial,
MA) that was supplemented with 4 mM glutamine, b glucose and 25 nM MTX.
The osmolality was adjusted to 300 mOsm by addia@INtock solution. The
concentration of MnGlin the media was adjusted using a 0.5 M stockisoiSigma
Aldrich). Similarly, a 0.5 M EDTA sterile stock saglon was prepared and added to
the media as required. The cells were inoculated an initial seeding density of 0.5
x 106 cells/mL in vented-cap Erlenmeyer shake Hasith a working volume of 50
mL and grown in batch in suspension in an incubataintained at 37° C with a 5%
CO2 overlay, with supplements only as indicateeéyerimental design below. Cell
count measurements were taken every two days adnegnocytometer. Metabolite
(glutamine, glucose, glutamate and lactate) comagomhs, media pH, and osmolality
were measured using a Bioprofile 100+ analyzer @&\Bwmedical, Waltham, MA).

Antibody titer was measured with an Agilent 1200U@Rnstrument using 1X PBS
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buffer on a Thermo Scientifi¥ MAbPac Protein A chromatography column (12

micron particle size, 35x4.0 mm 1.D., Thermo FisBetentific, Waltham, MA).

3.2.2 Experimental Design

The shake flask experiments were conducted acaptdia (2, 3%) mixed
level experimental design for the following facta(i¥ MnCl> concentration (high and
low levels); (i) EDTA concentration (high and Idewels); (iii) time of addition of
MnClI2 (high, intermediate, and low levels); and (iv) ¢imf addition of EDTA (high,
intermediate and low levels). The concentratioMafCl; in the basal media
corresponds to the low level condition (-1) for Mp@vhile the high level condition
(+1) corresponds to the final concentration of My&lipplemented media (0.04 mM).
Similarly, the low level condition (-1) for EDTA ceesponds to “no EDTA” added to
the media, while the high level (+1) correspond8.@8 mM EDTA added to the
media. MnC} and EDTA are added on day 0 (DO0), day 3 (D3),ay @ (D6) after
inoculation, corresponding respectively to the [e%y), intermediate (0), and high (+1)
levels. Thus, this full factorial mixed level’(Z?) experimental design yields a total of
36 different possible shake flask conditions tadsted. However, the 36 conditions
are not unique because some of the cases corregpa@htical experimental
conditions. For instance, 9 of the 36 conditiongespond to MnGland EDTA at low
levels (-1), with the time of addition at low (-Intermediate (0) and high levels (+1).
The low level condition for MnGlrepresents basal concentrations, while the loellev

for EDTA represents no EDTA supplementation. Thisse 9 cases represent
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identical conditions where the flask has basalllegéMnCk with no EDTA
supplementation either on DO, D3, or D6. A sindgsk (F1) was used for all nine
cases and was treated as the control flask bechug®at the conditions represent —
basal level of MnGland no EDTA supplementation on any day. It cashmevn that
there are in fact only 16 unique experimental daseslitions, as listed in Table 3.1.
Each condition was tested with two biological regles. The glycan distribution
profile was determined using the permethylatiormgstescribed below, and the
resulting relative glycan percentages data obtdioedach condition were analyzed in
MINITAB using standard analysis of variance (ANOV#)obtain the factor

effects/coefficients and associafegalues.

3.2.3 Glycan Permethylation Assay

On day 8 after inoculation, the cells were cengréidi at 3000 rpm for 10
minutes and the spent media was harvested. Thedg@iody was then purified from
the spent media using a PhyNexus Benchtop MEA2sysising Protein A
chromatography resin packed in a 2 mL PhyTip colgRinyNexus, San Jose, CA).
The glycan permethylation assay was then carri¢avish 100 microgram of the
purified antibody using a previously described rodtfSt. Amand et al. 2014b).
Briefly, the antibody was first digested with trypgPromega, Madison, WI) for four
hours in an incubator held at 37 °C, followed byymnatic deglycosylation using
PNGase-F (ProZyme, Hayward, CA) for a minimum ohbéirs at 37 °C. The free

separated glycans were captured on Hypersep Hygoér $PE cartridges (Thermo
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Fisher Scientific, Waltham, MA) and permethylatetldwing the Ciucanu method
using methyl iodide and NaOH in the presence of @Siucanu and Costello 2003;
Ciucanu and Kerek 1984). The permethylated glyeare purified in a liquid-liquid
extraction step with chloroform (Sigma Aldrich, &tis, MO), dried and resuspended
in 80% methanol (Sigma Aldrich, St. Lois, MO). Tiesuspended glycans were
spotted onto a MALDI/TOF plate with a DHB matrixdaanalyzed using a 4800
MALDI TOF/TOF Analyzer (ABSciex) in positive ioneflector mode. The data
collected using the mass spectrometer was thernrtexjim DataExplorer to obtain the
peak heights for the identified glycans (see AppeAd. The relative glycan
distribution in each sample was calculated fromstina of the peak heights for all the

identified glycans in that sample.
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Table 3.1:  Experimental conditions tested in mixed faelaiesign
Experimental | MnCl. | EDTA | Time of Time of Label
condition conc. conc. | addition of | addition of

(mM) (mM) | MnCl; T EDTA t
1 0.01 0 DO DO Control
2 0.01 0.08 DO DO ED DO
3 0.04 0.08 DO DO Mn DO/ED DO
4 0.04 0.08 D3 DO Mn D3/ED DO
5 0.04 0.08 D6 DO Mn D6/ED DO
6 0.01 0.08 DO D3 ED D3
7 0.04 0.08 DO D3 Mn DO/ED D3
8 0.04 0.08 D3 D3 Mn D3/ED D3
9 0.04 0.08 D6 D3 Mn D6/ED D3
10 0.01 0.08 DO D6 ED D6
11 0.04 0.08 DO D6 Mn DO/ED D6
12 0.04 0.08 D3 D6 Mn D3/ED D6
13 0.04 0.08 D6 D6 Mn D6/ED D6
14 0.04 0 DO DO Mn DO
15 0.04 0 D3 DO Mn D3
16 0.04 0 D6 DO Mn D6

DO, D3 and D6 refer to Day 0, Day 3 and Day 6 afteculation, respectively

3.2.4 Glycosylation Index

For each experimental condition, glycosylation eegi were calculated from

the relative percentages of individual glycan spe¢ivarsson et al. 2014; Majid et al.

2007). For example, the galactosylation index (@4fjned as the percentage of

mono- and di-galactosylated species in the totadagl distribution, was determined

according to the following equation
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2X Gy + Gy

Gl =
2 X (Gg+ Gy +Gy)

% 3.1

where G is the sum of all agalactosylated speciesis@he sum of all
monogalactosylated species, and$she sum of all digalactosylated species.

Similarly, we calculated the fucosylation index)(fédr each distribution as

Fy

FI=—2> 0
o + F) 2

3.2

where kb and k are the sum of all afucosylated and fucosylatetisg, respectively.

3.2.5 Controllability Analysis

Using the technique presented in St.Amand et dl4B}) we perform
controllability analysis to quantify the effecttihe dependent media supplementation
on the glycosylation profile in mAbs. Briefly, wete first that estimates of factor
coefficients obtained after analyzing the mixeddaal design data correspond to the
various “process gains”, defined as the changereeden the glycan distribution
(output),Ay, in response to a unit change in the input fagitr which the coefficient
in question is associated. By selecting statidticagnificant factor coefficients (at the
significance level ot = 0.05) and setting all non-significant coeffidieto zero, we

generate the process gain makiso that
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Ay = KAu 3.3

whereAu represents the change in the input factor. Simg@lie decomposition of
the process gain matrix produces the diagonal Engalue matrixX, and the unitary
matricesW andV', that are subsequently used to obtain the ortralgoput 1) and
output §) modes, which, along with the corresponding siagulues are used to

assess controllability.
3.3 Results

3.3.1 Early Addition of EDTA is Detrimental to Cell Growt h and Reduces
Antibody Titer

Figures 3.1 and 3.2 show the effect that introdycredia supplements
(MnCl; or EDTA) at different time points had on cell eut parameters and final
antibody titer, compared to corresponding resuitaioed from a control flask (F1)
which contained MnGlat basal media concentrations and no EDTA.

Compared to the conditions in the control flasklyeaddition of EDTA on DO
reduced the cell density significantly, which isisstent with hampered cell growth.
However, this effect was offset somewhat by int@dg MnCk in addition to EDTA
on DO. The viable cell density (VCD) measured oy 4ldor samples in which both
MnCl> and EDTA were introduced on DO, was 1.31 X ddlIs/L, which was nearly
three times as large as the value of the VCD irfl#sks where only EDTA was added
on DO (~0.4 x 18cells/L). Introducing MnGlon D3 or D6after the addition of
EDTA on DO did not improve the VCD. Similarly, wh&DTA was introduced on
D3, the VCD in samples with no additional MaGupplementation dropped sharply.

By contrast, when the media was supplemented wit€on DO or D3, the VCD
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was slightly higher than when the media was supeieed with just EDTA on D3.
Supplementing the samples with Mp@Gh D6 after the addition of EDTA did not
improve the VCD significantly. In all cases, thesetved VCD was generally higher
than when EDTA was introduced on DO. Addition of Ebon D6 had no impact on
the VCD, regardless of the time of introductiorMuiCl,. Similarly, as shown in
Figure 3.1(d), early addition of Mngbn DO and D3 reduced the VCD, while addition
of MnCl, on D6 did not alter the VCD. Thus, in summary)yeaddition of EDTA
reduced cell viability in the absence of MaGUpplementation, but the addition of
MnCl2 by itself did not alter cell viability significaiyt

Figure 3.2 shows the effect of media supplememaiimantibody titers. The
average mADb titer in the control flask F1 (with MaCl> or EDTA supplementation)
was 0.13 g/L. The addition of EDTA to the medial@hin the absence of Mn£l
supplementation decreased the titer by about @fotar 0.03 g/L. This decrease in the
titer was marginally offset when Mnglas introduced on DO, D3, or D6, with earlier
MnCl2 supplementation resulting in higher titers thaerlaupplementation. When
EDTA was introduced on D3, the resulting titer Wak0 g/L, three times higher than
that observed with EDTA supplementation on DO. rersupplementing the media
with MnCl2 on DO, D3, or D6, increased the titer observedh \EDTA
supplementation on D3 to values comparable todhtte control case.
Supplementing the flasks on D6 with EDTA increasesis even further to 0.15 g/L,
beyond values obtained in the control case. Thevdlues were also higher when
EDTA supplementation on D6 was combined with Min&ipplementation on DO
(0.17 g/L), D3 (0.17 g/L) or D6 (0.16 g/L). FinallyinCl> supplementation alone on
DO, D3, or D6 increased the titer to an average. b4 g/L. Thus while early EDTA
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supplementation has an adverse effect on the aiytititer, late EDTA addition

improves the final titer. Consequently, we concltlts the addition of MnGlto the

cell culture media or to EDTA supplemented mediaagces the titer.
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Figure 3.1: Viable cell concentration data for CH®-cells under different media
supplementation conditions. (a) When EDTA is adodself on DO
(), or in the presence MnCl> on DO (A), D3 (*), and D6 ¢); (b)
When EDTA is added by itself on D8)( or in the presence MnCl, on
DO (A), D3 (*), and D6 ¢); (c) When EDTA is added by itself on D6
(), or in the presence MnCl> on DO (A), D3 (*), and D6 ¢); and (d)
When MnC} is added on DOK), D3 (*), and D6 ¢)
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Figure 3.2: Average antibody titer for the 16 expental conditions. Mn and ED
refer to the media supplements Mp@hd EDTA, while DO, D3 and D6
refer to Day 0, Day 3 and Day 6 after inoculati@spectively. Error
bars represent the range of biological replicate).

3.3.2 Early Addition of MnCl 2 Alters the Glycan Distribution Significantly

The addition of EDTA and MnEhat different time points altered the glycan
distribution, with earlier addition of Mn€having the more significant effect. Figure
3.3 shows the effect of media supplementation ergtircan distribution, with panels
3.3(a), (b) and (c) showing the changes in theaglyarofile as a result of media
supplementation with EDTA on DO, D3, and D6, withnathout additional MnGl
supplementation, and 3.3(d) showing the impact €l addition in the absence of
EDTA supplementation.

Adding EDTA to the cell culture media on DO (Fig.&(a)) decreased the
amount of biantennary fucosylated species, FAZ.6§%, which was offset by a
concomitant increase in its galactosylated isofofrd2G1 (4.52%) and FA2G2
(1.52%). The mannosylated species M5 also increlagdd52% with a corresponding

reduction of 1.79% in the concentration of the t#anary group A2 (which is

73



produced from M5 in the Golgi compartment). AddMgCl. on DO, D3, or D6 to
media in which EDTA was introduced on DO resulted ifurther increase in the
relative concentrations of the galactosylated iso®FA2G1 and FA2G2, in addition
to a decrease in the relative percentage of FA2aA8 A2G1 species, compared to
the distribution in the control flask. However, therease in FA2G1 and FA2G2 was
more pronounced when MngGhas introduced on D3 or D6 after adding EDTA.
When EDTA was added on D3 (Figure 3.3(b)) the nedgpercentages of the
biantennary species FA2, FA2G1, and A2G1 decreadatt the relative percentages
of glycan species M5, A1, and FA1 increased. Wha€lwas added on DO
followed by EDTA supplementation on D3, the concatndns of M5 and FA1
increased, while the concentration of FA2 decrea&dditionally, there was an
increase in the relative percentage of A2G1 that eftset by the decrease in the
concentration of A1G1. When both EDTA and Mp@kre added to the media on D3,
the change in the glycan distribution mirrors tteat observed when only EDTA was
introduced on D3. The main difference occurs wherClklwas added to the media
after EDTA addition, i.e., on D6. Here, the relative gantages of M5, FALl, FA2G1,
and FA2G2 increased while the relative percentafié, A2G1, and FA2 decreased,
similar to the trends observed with the additiopiCl, on D3 or D6 following

EDTA supplementation on DO. Although the late addibf EDTA on D6 of the cell
culture did not affect the glycan profile signifithy (Figure 3.3(c)), for those glycan
species whose relative percentages change, thiewrasn similar to that observed with
EDTA supplementation on DO and D3, i.e., an inadaghe relative percentage of
M5 and Al accompanied by a decrease in that of &#RFA2G1. When the media

was first supplemented with Mngbn DO or D3, followed by EDTA supplementation
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on D6, the relative percentage of FA2 species dsectwhile the relative percentages
of M5, A2 and FA2G1 species increased. A simultaseaddition of both EDTA and
MnCl; toward the end of the batch increased the relg@greentage of A2G1 while

decreasing the relative amount of its fucosylaseform FA2G1.
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Figure 3.3: Average relative glycan percentagegy@fll glycans produced in CHO-
K1 cells under different experimental conditioreg. \V\hen EDTA is
added on DO with no Mngbkupplementation or with Mng&l
supplementation on DO, D3, and D6; (b) When EDTAeztlon D3 with
no MnCk supplementation or with Mngsupplementation on DO, D3,
and D6; (c) When EDTA added on D6 with no Ma&lipplementation
or with MnCk supplementation on DO, D3, and D6; and (d) WherChIn
is added on DO, D3, and D6
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The solo effect of MnGlon the glycan profile was observed by supplemegntin
the media with MnClin the absence of EDTA on DO, D3 or D6 (Figure(@)
Adding MnCk on DO decreased the relative percentage of thedp&2ies from the
control value of 51.79% (with a 95% confidence imék range of £0.94%) to 39.50%
(x1.55%). Similarly, the relative percentage of thenogalactosylated species FA2G1
drops from the control value of 23.87% (+0.94%) 7095% (+1.55%). This decrease
in the fucosylated species was offset by an iner@gathe biantennary species A2
(which increased by 13.24%), the mannosylated spadb (2.62%), and the
galactosylated biantennary species A2G1 (4.29%)nmAlar trend was observed when
MnCl. was introduced to the culture medium on D3, whid decrease in the
fucosylated species being offset by a significantease in the biantennary species A2
(which increased by 10.20%), the mannosylated spedb (increasing by 6.59%)
and only a marginal increase in the A2G1 specig®(B6%). Adding MnGl during
the peak exponential phase (D6) resulted in simhanges to the glycan distribution,
but these changes were smaller in comparison toltheges in the glycan distribution
due to earlier addition of Mn&IThe concentrations of the fucosylated species FA2
and FA2G1 decreased by 2.36% and 1.28% respectivislythe corresponding
increases in the concentrations of A2 and M5 spdmiing 2.52% and 1.94%,
respectively. While such qualitative discussionghefglycan distribution profiles may
be instructive, for our purposes, a quantitativalysis relating the changes in the
experimental conditions to the observed changéseiglycan profile is more

informative.
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3.3.3 The Type of Media Supplement and the Time of Additin both howed
Statistically Significant Effects on Glycan Distritution

The concentrations of Mngand EDTA and the time of addition of each one
constitute the four factors in the?(2%) mixed factorial experimental design. A full
factorial experimental design gives rise to 36 expental conditions and the resulting
model in principle consists of 35 main and inte@aceffects. The statistically
significant factor coefficients (at the significdatel ofa = 0.05) estimated using
ANOVA, were used to generate a “gain” matrix, whessments represent “by how
much” each output variable (relative glycan disttibn) will change in response to a
unit change in each input factor, including mugtctior interactions (since multiple
combinations of single inputs are considered aisl waputs in this case). However,
because the full factorial experiment consistsrdy 46 unique cases (see Materials
and Methods), we must eliminate the redundant iovesir gain matrix resulting in a
reduced gain matrix with 15 input factors, some&vhich are multi-factor
combinations (see Appendix B for the complete gaatrix and the interactions)
Figure 3.4 shows a heat map of the elements ajalrematrix, indicating which input
factor affects which glycan, and the magnitude ak &s the direction (increase or

decrease) of each effect.
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Figure 3.4: Heat map of significant factor coefiais ¢ = 0.05) obtained from
ANOVA. The input factors are listed along the hontal axis, and
individual glycan species along the vertical aXise color red indicates
a decrease in the concentration of a particulazaglywhile green
indicates an increase. The color intensity reprssiae magnitude of the
significant coefficient, with increasingly darkeuds indicating
increasingly larger magnitudes and progressivelytér hues indicating
commensurately lower magnitudes.

An examination of the heat map indicates that thieag species FA2, FA2G1,
and A2 are affected by most of the factors and tt@nbinatorial interactions. For
instance, the concentration of the most abundgobfprm, FA2, (which accounts for
nearly 52% of the glycan concentration in the cargample) is affected by the
concentration of MnG| the two-way interaction of Mnghnd EDTA, and the late
stage addition of MnGl In particular, a unit change in the concentrabdMnCl,
causes an increase in the average concentratioA2{as indicated by the positive

coefficient for the MnGl effect), while introducing MnGlon D3 causes a reduction in
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the average concentration of FA2. By contrastntba@ogalactosylated form FA2G1 is
not affected by changes in the media concentratidinCly; rather it is influenced by
changes in the concentration of EDTA, the earlyitamtdof MnCl.MnCl,and the two-
way interaction of MnGland EDTA. Further, we observe that two of theraxtgon
factors, Mn T1-ED T1 and Mn T2-ED T1, have statislliy significant and opposing
effects on the concentration of FA2G1. The factor M-ED T1 represents the two-
way interaction of adding Mngbn DO and adding EDTA on DO, whereas Mn T2-ED
T1 represents the two-way interaction of adding Mr@d D3 when EDTA is
introduced on DO. We observe therefore that tmeeotration of FA2G1 is affected
by multiple input factors, including complex intet@ns between the amount of
supplements added, and the times of addition oftipplements. One is thus able to
assess the impact of each input factor on the nsgpof all other individual glycan
species in similar fashion. As indicated by thetimeap, the effects of higher order
interactions on most of the glycan species areigibg (if they exist at all) because
estimates of the coefficients associated with rimgstaction effects are statistically

insignificant.

3.4 Discussion

While media supplementation has been studied wifdelits effect on the
quality attributes of mAbs, such studies have bieited to the introduction of media
supplements exclusively at the start of the cutarel the results, when quantitative,
have yielded only isolated single factor relatiagpshThe results from the current
study show that introducing media supplementsférent time points during cell

culture does in fact have an effect on cell groeahditions and antibody
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glycosylation distribution, and the effects cargoantified globally and potentially
used to design effective control schemes.

Specifically, we have shown that earlier additi6'EDTA is detrimental to
cell growth and results in a decrease in antibddy. WWhen EDTA was added on DO
(at the inoculation stage) the peak viable cellstgr(VCD) remained close to the
seeding density, indicating a hampering of cellngro This result is consistent with
the well-known fact that EDTA is toxic to cells (iiet al. 2009b). The decline in the
viable cell densities due to EDTA addition durihg growth phase can also be
attributed to the removal from the media (as alteStEDTA’s chelating effect) such
trace metals as Cq Zn**, etc. that are essential for cell survival. Bytcast, when
both EDTA and MnGlwere added on DO, the peak VCD increased two-iMaile
this peak VCD is lower than the peak VCD of thetoairflask (5.78 x 18cells/mL),
the increased viability can be attributed to thespnce of excess MnQitrating
EDTA, resulting in reduced cytotoxicity. The incsean the cell viability due to the
simultaneous addition of Mngand EDTA also resulted in higher mADb titers,
compared to the titers observed when only EDTA added.

When EDTA was added on D3, the cells were in thddiai of the growth
phase and the addition of the cytotoxic EDTA haragdurther growth, leading to a
steep decline in the cell viability beyond D3 (Fig3.1(b)). By contrast, when MnCl
was added to the media (on DO or D3) in the preseh&DTA, the cells did not
experience a similar reduction in viability. As edtpreviously, simultaneous addition
of EDTA and MnC} also resulted in an improvement in the titer take
comparable to that in the control flask. When EDiWi&s added on D6, the cells were

already at the end of the growth phase and hemcittoduction of EDTA did not
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alter the cell viability. However, when EDTA wasdad on D6 along with MnGlI
supplementation on DO, D3 or D6, the final titelues were higher than the titer value
in the control flask. The increase in antibodyrtitethe presence of EDTA has been
observed by others as well (Kao et al. 2010; Mc/Astegl. 2014) and is attributed to
the inhibition of antibody reduction during celklg. Thus, later addition of EDTA
combined with early addition of Mngtould potentially improve titer without
compromising cell viability. Further, analyzing tBOR titer data using ANOVA
shows that the factor coefficients for the concaidn of EDTA, the concentration of
MnClz, and time of addition of EDTA are statisticallgsificant (at a significance
level ofa = 0.05). The expected change in the EOR titeegponse to a unit change
in any of these factors is quantified by the magtetof that factor coefficient, while
the sign of the factor coefficient indicates theediion of change. Thus, for example, a
unit positive step change in the concentrationDTE (with a factor coefficient of -
0.017) or time of addition of EDTA (-0.032) resuiltsa decrease in EOR titer; a unit
positive step change in the concentration of Mr{Ql008) causes an increase in titer.
Quantifying the effect of these input factors oe EOR titer provides a rational basis
for selecting what particular supplement to addi, laoww much of it to add, at a given
stage of cell culture in order to maximize prodyietd. However, any media
supplementation strategy must meet not just thieedkespecifications for final titer
but also for product quality, i.e., to be effectittee implemented media
supplementation strategy must not alter the glytistnibutions significantly.

The EOR titer represents thatal amount of antibody accumulated at the end
of the batch, while the measured glycan distributepresents theslative amount of

each individual glycan isoform that has accumulatestr the duration of the batch.
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Now, the relative amount of individual glycan sgecis a function of antibody
productivity and it changes over the course ofttateh. In our case, the addition of
different media supplements at different stagdsat¢h cultures affected both viability
and antibody titer; consequently, the observed ghamthe glycan distribution has
been induced by dynamic media supplementation hadges in productivity.
Therefore, to develop a mechanistic understanditigeoeffect of dynamic media
supplementation on the glycosylation profile, wstfdecouple the effect of antibody
productivity on the glycan distribution from theayall change observed at the end of
the batch. One such decoupling approach involsgsiating the mass fractions of
specific glycoforms produced at different stagesedf culture using the expression

(Fan et al. 2015b)

_ [mADb; |~ t, | — [mAb;|—+, ]
[mAbT0t|t= t1] - [mAbTot|t= t2]

i

for fi, the fraction of mAb glycoformi produced in the time perioti[t] relative to

the total amount of antibody secreted in the saen®@. However, we cannot use this

expression for our purpose because we only mea&i®@&ititer and final glycan

distribution, not intermittent antibody titer orygan concentration. Consequently, we

propose an alternative metric based solely onitta titer and glycan measurements.
To illustrate, consider the glycan distributiortfe control flask and in the

flask with MnCb added on D6. In both flasks, the cell growth peofind antibody

productivity will be the same until day 6, when Mn@ introduced to the latter flask.
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Thus the amount af" glycoform fractions accumulated between day 6 (@) the

end of the run (EOR) for the two flasks can betemnitas

L [mAbyns il _ poe] — [MAPMAeAl,_ ] .
Mn6/i [mAane/Totlt EOR] [mAané/Tot|t D6]
feontrol/i = [mAbcontml/i|t= EOR] _ [mAbcontml/ i|t= D6] 36

[rnAbcontrol/Tot|t= EOR] - [rnAbcontrol/Tot|t= D6]

Recognizing that the D6 values in equations (5) (@peébove are identical, we
can eliminate the intermittent time point with siemprithmetic manipulations and
obtain thechange in the accumulation of thé& glycoform based solely on EOR

values, as

Af; = 3.6

[mAan6/1 t= EOR] [rnAbcontrol/ilt= EOR]
|-

[mAan6/Tot|t EOR [mAbcontrol/Totlt= EOR]

Thus, this fractional difference allows us to graagether different
experimental conditions with similar antibody tg&emaking it possible to compare
final glycan distributions and hence quantify tiffee of individual media
supplements on the glycan profile appropriatelchSanalyses extended to other
experimental conditions yield the comparative fi@wl difference in the glycoform

distribution shown in Figure 3.5.
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A comparison of the fractional difference in thgagin distribution in flasks
where MnC} is added to DO EDTA supplemented flasks relatvéhe glycan
distribution in DO EDTA supplemented flasks (fig&@)), shows the following: an
increase in the amount of FA2 (by nearly ~ 50%llicases), FA2G1 (by 29% during
DO supplementation, 60% during D3 supplementaaond, 122% during D6
supplementation), and FA2G2 (by 3%, 10%, and 20$peetively), with a relative
decrease in A2 and M5 by 2% and 4% when Mn€added on D3, and nearly 14%
when MnC} is added on D6. A similar trend is observed infthetional difference in
the glycan distribution in flasks where Mn@ added on D3 and D6 to D3 EDTA
supplemented flasks (figure 5b). Here the fractidliféerence in the glycan
distribution is calculated relative to the glycastdbution observed when EDTA is
added on D3. Again, we notice an increase in FA2&L and FA2G2, with a
decrease in A2, M5, and A2G1 observed only when IMigCadded on day &ter the
addition of EDTA on D3. Previous studies have shdwat adding MnGlproduces an
upregulation of galactosyltransferase enzymesAi@and et al. 2014b), and
subsequently in increased galactosylation (GraiagdrJames 2013; Gramer et al.
2011). Hence, the increase in the amount of FA2@GILFA2G2 species can be
attributed to the effect of late stage manganedéiad on the galactosyltransferase
enzyme. Figure 3.5(c) shows fractional differen¢ewEDTA is added on D6 after
MnCl2 has been added to the culture on DO and D3. Tdiffeeences are calculated
relative to the glycan distribution observed dugh®addition of MnGlon D3 and
D6, respectively. We note that the fractional difece in the fucosylated species FA2
and FA2G1 is positive when EDTA is added after MrgCipplementation, indicating

that the addition of EDTA increases the concerdratif these species relative to their
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respective concentrations in MnGupplemented cultures. Also, a comparison of the
fractional difference in the glycan distribution &hMnC} was introduced on DO, D3,
or D6 relative to the glycan distribution in thentwl flask (figure 3.5(d)), shows that
the relative concentrations of FA2 and FA2G1 spedecreased in flasks with DO,
while late stage addition of Mng&tlid not have a significant effect on the overall
glycan distribution. Taken together, our findingdicate that the latter addition of

EDTA reverses the changes in the glycan distrilutidluced by MnCl
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Figure 3.5: Comparing fractional differences in giiycoforms for different
experimental cases. (a) When Mp@ladded on DO (EOMO), D3
(EOM3), and D6 (EOM6) to EDTA DO supplemented cidtu The
fractional changes are calculated relative to tiieam distribution in
EDTA DO (labeled EO) cultures and no MaGlupplementation. (b)
When MnC} is added on D3 (E3D3), and D6 (E3D6) to EDTA D3
supplemented cultures and on D6 (E6D6) to EDTA Oyfptemented
cultures. The fractional changes are calculatestivel to the glycan
distribution in EDTA D3 (E3) and D6 (E6) culturesspectively. (c)
When EDTA is added on D3 (E3MO0) and D6 (E6MO0) to@#DO
cultures and on D6 (E6M3) to Mn{ID3 cultures. The fractional changes
are calculated relative to the glycan distribufiomnCl> DO and D3
(M3) cultures respectively. (d) when MnG$ added on DO, D3, and D6
to control cultures. The fractional changes areuwdated relative to the
distribution in the control case.
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Fractional difference analysis helps to identifyiethglycan species are altered
as a result of the addition of specific media seppnts, but navhy those particular
glycan species changed. To identify the kineticme@csms underlying these changes
observed in the glycan distribution upon adding M@ the media, we use an
existing dynamic mathematical model of glycosylagweviously described in §2.3.3
to test the proposition that the changes observéaei glycan distribution due to the
addition of MnC} are induced by changes in the concentrationseof th
glycosyltransferase enzymes. First we matchedithelated glycan profile to the
experimentally determined glycan profile in the wohflask using kinetic parameters
obtained by the optimization subroutine. Next, wéerthat the addition of Mngbn
DO of the cell culture results in a decrease inréhative abundance of fucosylated
glycoforms, FA2 and FA2G1 with a corresponding &ase in the concentration of
their afucosylated isoforms, A2 and A2G1 speciBlse enzyme alpha-1,6-
fucosyltransferase (FucT) is responsible for futatgyg glycan species in the N-
glycan biosynthetic pathway. By reducing the tetatyme concentration for FucT in
the kinetic model from 0.55 mM to 0.22 mM, we abdeao simulate the change in the
glycan distribution due to addition of MnGin DO, as shown in Figure 3.6. The
simulations show that changes in the glycan distidin due to the addition of Mng&l

can be attributed to the changes in the enzymeecration of FucT.
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Figure 3.6: Comparison of experimental data andehfidfor the glycan
distribution profile obtained from (a) control flgsand (b) when MnGl
is added on DO.

In addition to fractional difference analysis, wseuhe glycan indices
computed for each experimental condition, showhahle 3.2, as a quantitative
metric for quantifying and assessing the changdbarfinal glycosylation profile
caused by the addition of different media supplasieé®pecifically, a comparison of
the individual glycan indices for each conditioraagt the corresponding values
under control conditions allows us to establisheotiyely that altering the availability
of MnClz in the media using a chelating agent reversestaages in the glycan
distribution. While MnCJ addition on DO resulted in a decrease in the fylation
index from 79.9% in the control flask to 60.5%, s&e that subsequent introduction of
EDTA on either DO, D3, or D6 reversed that trendrl¥estage addition of EDTA on
DO increased the fucosylation index to 82.46%, evadding EDTA on D3 and D6
resulted in fucosylation indices of 78.8%, and %6 respectively. Similarly, the
decrease in the galactosylation index, upon adélinGl> on DO, from 17.9% in the
control flask to 15.8%, could be reversed by subsetly adding EDTA on D3.
Adding MnCk to the media on D3 reduced the fucosylation inade&l1.9%, but if we
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then added EDTA on D6, the fucosylation index iasesl to 77.8%, which is
comparable to the value of 79.9% in the contralilalt is important to note however,
that the reversal in the glycan indices observedtduihe addition of EDTA on DO
and D3 is achieved at the expense of reducedatitgreduced viability, as discussed
above. The indication from our results is that demin the glycan distribution due to
MnCl. addition can be reversed only when EDTA is addeti¢ media after Mn¢lI
addition. Thus, the effect of MngZ$upplementation can be reversed, without
decreasing productivity, by adding EDTA on D6 to®nsupplemented media,

providing a means of ensuring higher productivifthaut altering glycan distribution
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Table 3.2:  Glycosylation index (Gl) and fucosylation ixd&l) for each
experimental condition

Experimental conditiont | Galactosylation | Fucosylation
Index (GI) Index (FI)
Control 17.9 79.9
Mn DO 15.8 60.5
Mn DO/ ED DO 20.6 82.5
Mn DO/ ED D3 18.0 78.8
Mn DO/ ED D6 19.3 76.5
Mn D3 15.7 61.8
Mn D3/ ED DO 25.2 88.6
Mn D3/ ED D3 15.1 73.9
Mn D3/ ED D6 18.0 77.8
Mn D6 16.7 76.3
Mn D6/ ED DO 24.8 90.3
Mn D6/ ED D3 19.9 86.4
Mn D6/ ED D6 17.9 77.3
ED DO 21.6 81.0
ED D3 16.5 75.3
ED D6 16.9 77.7

Although such observations as these provide useflitative information
about the system, they cannot be used to deveatopteol strategy; that requires a
guantitative representation (and hence understghdirthe effects of media

supplementation on glycan distribution. Such quatmie understanding can be
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obtained via formal analysis of the experimentahdesing analysis of variance
(ANOVA) to generate the process gain matkix,as described in Materials and
Methods. Singular value decomposition of the gaatrinK produces a (diagonal)
matrix of singular valueg;, and two unitary matrice®y andV'. Together these
three matrices provide a particularly insightfydmresentation of the process
information encapsulated in the gain matkx,Equation 3.3 is transformed into a
series oh individual and independent equations where, imease, a linear
combination of the original process input factevith weighting coefficients from the
matrix W, now constituting an “input modejj;, is connected through the associated
singular valuegj, to the corresponding linear combination of thgpatiglycans, (with
weighting coefficients from the matriX), now constituting an output modge(St.
Amand et al. 2014c). Furthermore, as a resultisfdbcoupling transformation, the
magnitude of each singular value naturally quasgithe extent to which the output
mode in question will change in response to a chamghe corresponding input
mode. Thus, the larger the valuesgfthe greater will be the change in the
corresponding output moag as a result of changes in the input mpdeo that
output modes associated with larger values ofill be more “controllable” than
modes associated with smaller valuesiof

The first ten singular valuesi(— 610) for our experimental system are listed in
Table 3.3 in decreasing order of magnitude. As m@dsociated with singular values
of smaller magnitude are less controllable, wetlooir analysis only to those modes
that are practically controllable; we do this byngsa threshold cutoff value},
arbitrarily selected to be 0.5 in this examplerehg limiting our analysis to the first

five singular values. From a process control pertspe, modes associated with
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singular values below this threshold are considaydze of no practical importance

since, for all intents and purposes, they are aotrollable

Table 3.3:  Singular values obtained from the SVD analg§ithe matrix of
significant coefficients

01 G2 03 04 05 06 67 03 09 610

6.22 | 3.68 | 2.21| 080 061 045 041 0381 0j10 0.05

Next, since by definition, each input—output modé& pepresents the linear
combination of output glycan species that can lmdrotbed by manipulating the
specific input factors in the corresponding inputd®, the coefficients of each output
factor in the output modes and of each input faictdne input modes provide further
information about the relative influences exertgahach original input factor on each
output factor. Specifically, the coefficient of arpcular output factor in a particular
mode represents the magnitude by which the relatveentages of those particular
glycans will change in response to a unit changbernnput mode. On the other hand,
the coefficient of a particular input factor in tagsociated input mode corresponds to
the relative contribution of that input factor tetunit change the input mode in
qguestion. Thus, the inputs with the largest coigfits in an input mode represent the
dominant factors and hence the largest contributotise influence of that mode,
while the output glycans with the largest coeffntgein an output mode represent

those species whose relative percentages will éhirgmost under the influence of
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the input modes. The input-output mode pairs ard #ssociated coefficients are
shown in Figure 3.7.

Because it is associated with the largest singidare ofc1 = 6.62, the first
output mode; is the most controllable output mode. The valueiakpresents the
change in the overall output mogleresulting from a unit change in the input mode
w. For this output mode, we note that the domin&ydam species are A2, with a
coefficient of 0.64, followed by FA2G1 (with a céefent of -0.62), FA2 (-0.38), M5
(0.14), and A1 (0.13), indicating that a unit pisitchange in the input mogéd will
result in an increase in A2, M5, and Al, accompabiga decrease in FA2G1 and
FA2, each in the amount indicated by the identifiedfficients. The biantennary
species A2, with the largest coefficient, is thestmmontrollable glycan in the first
mode, followed by FA2G1 and FA2. The indicated dimgpbetween the glycans A2,
FA2G1, and FA2 makes sense because an increase afucosylated glycoforms
occurs at the expense of the fucosylated formsuagxperimental results show. The
associated input mode is a linear combination of different input factoepresenting
the media supplements MnGind EDTA as well as the times of their additiorodd
w1 is primarily dominated by the interaction of Ma@hd EDTA, and the
concentrations of EDTA and Mng Wwith associated coefficients -0.58, 0.44, and -
0.39 respectively, indicating that the additiortte#se two media supplements has
opposing individual effects on output mode 1. Eathge addition of EDTA and
MnClz, denoted by the factors EDT1 and MnT1, with assed coefficients -0.38 and
0.25 respectively, also exert important influenaegshe first output mode. Based on

the different elements that comprise the first inpode, we note that one can control
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the glycans in output modg by adjusting the concentrations of the two supples
at the early stages of the cell culture.

The next controllable output modeis associated with the singular vatie=
3.68, and the linear combination of glycans represeby this mode is dominated by
the glycan species FA2G1, FA2, A2, M5, and FA2Q#e Toefficients associated
with these glycans are -0.71, 0.56, -0.33, -0.20-8ril 1, respectively, indicating that
a unit positive change in the input madewill cause a relative increase in FA2 while
causing the other glycan species to decrease.nthedise in FA2 coupled with the
decrease in FA2G1 and FA2G2 indicates that pertiorsto the input modg2
affect the galactosylated species particularlyc&ite singular values are arranged in
decreasing order, the influence of med®n output mode: is less than that @f, on
moden:. The largest coefficients in moge are associated with the input factors
MnCl2 (with a coefficient of 0.6), the early stage amudtitof EDTA denoted by factors
EDT1 (with a coefficient of -0.47) and EDT2 (0.3&hd the interaction effect of
MnClz2 and EDTA (0.24).
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Figure 3.7: Graphical representation of the coffits associated with the first five
input and output modes (with > 6*=0.5) obtained from controllability
analysis. (a) Output modg and the corresponding input maode (b)
Output modey2 and the corresponding input moge (c) Output mode
n3 and the corresponding input madg (d) Output modeys and the
corresponding input mode; (e) Output mod@s and the corresponding
input modeus

A unit positive change to the input mogtecauses the following changes in
the relative concentrations of the glycan spetias¢comprise output modg (with o3
=2.21): A2, A2G1, FA2, and FA2G1 increase, and W5, and FA1 decrease,

simultaneously. This indicates that input megdean be used to increase the
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biantennary species, but at the expense of a (lrfegical) concomitant decrease in
the species that are upstream of these biantespagyes. The input moge is
dominated by EDTA (with associated coefficient (,8be interaction effect of Mn¢l
and EDTA (with coefficient 0.45), and the earlyggaddition of MnCGl denoted by

the factor MnT1). In each of the three input modles,coefficients associated with the
interaction effect of MnGland EDTA indicate the importance of this combioiati
input factor in altering the concentrations of ghgcan species associated with the
respective modes.

The fourth and the fifth modes are less controiabb they are associated with
singular values of comparatively smaller magnitu@es: 0.80 andss = 0.61).ma4 is
dominated by glycans Al, A2, FAL, FA2, FA2G1, a2, whilens is dominated
by FA1, A2G1, and FA2G2. The input mogeis dominated by the interaction effects
Mn T2-ED T2 and EDTA*Mn T2-ED T2 representing timearaction between the
time of addition of the media supplements. By casttrthe predominant factors in
modeus are MnT1 and EDT2, which represent the additioMo€l> on DO and
EDTA on D3 respectively.

It is worth mentioning that the controllability dpsis presented here provides
a quantification of the effect that the additiorspecified amounts of particular media
supplements and the respective times of additimlyohave on the output glycan
distribution at the end of the batch. As discussealve, introducing these media
supplements dynamically also results in quanti@aifianges in the antibody titer.
Thus, the dynamic supplementation strategies dseclisere present a challenging
problem involving a trade-off between product yiattl product quality. To be

effective, a control strategy based on these cerglidns, must therefore be carefully
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designed to resolve these conflicts appropriatelyrder to optimize both the titer and
the quality simultaneously.
In closing, we note that:

1. the relationships between time-dependent changesdia
supplements and the corresponding changes in gbiisaibution are
(understandably) complex and not necessarily olsvarieasily
amenable to qualitative thinking; but

2. controllability analysis via singular value decomjpion, and the
resulting input-output mode pairs determined speadly for our
experimental system, have enabled us to identifighvimput factors
are best manipulated, in order to effect changdisanelative
percentage of specific glycan species;

3. in addition, the coefficients in the equations es@nting the input and
output modes allow us to quantify by how much wpeet the glycan
species to change in response to specific timerdkgre media
supplementation actions.

3.5 Summary and Conclusions

There is growing interest in evaluating the roleredia supplements,
especially MnC, in modulating glycoform distributions in mAbs. Wever, most
media supplementation studies (where supplemeatadated to the media before
starting the batch) do not take into consideratimnimpact of introducing media
supplements at different stages of cell growttthia chapter we have presented a
systematic approach for evaluating the effectsnoé dependent media
supplementation on the glycan profile, and providedethodology for quantifying
and analyzing the complex effects. Our results stiat/while it is important to
consider which supplements are to be added to dutanin order to alter specific
glycan species, when they are to be added is gustortant. In addition to this

general observation about what to change and whemgesults and analysis technique
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also demonstrate how to quantify “by how much” xpect specific glycan species to
change as a result of the changes in the medidesuppts.

For instance, we observe that early stage additiovinCl. affects fucosylated
species and alters the glycan distribution moreiagntly than a late stage addition.
Similarly, early stage addition of EDTA affects nost the antibody titer, but also the
relative percentages of biantennary and galacttesykspecies; late stage addition of
EDTA does not alter the glycan distribution sigesdintly. The glycan distribution
profile is also affected by the addition of both E®and MnC} to the media at
different time points and a mechanistic understagdif the effect of individual media
components on the glycan distribution can be d@ezldy studying the fractional
difference in the glycan distribution. In fact, aesults demonstrate that changes in
the glycan distribution profile due to the addit@nMnCl; are not immutable; they
can be reversed by adding EDTA after Mn4s been added to the media. We then
used controllability analysis to identify the sgeccombinations of input factors
which, when manipulated, result in quantifiablerges in the relative percentage of
specific glycan species. For the specific experii@esystem, our analyses show that
A2, FA2G1 and FA2 are the most controllable glyspacies whose concentrations
can be changed by early stage supplementation ®REINd late stage
supplementation of Mn@l

Traditionally, the composition of cell culture mads fixed prior to starting the
batch. However, we have demonstrated that introdusupplements at different
points in time can influence both the productiatyd the quality attribute of the
antibody. While we have examined only two speatfiedia components in the current

set of experiments, in principle, the systematigrapch presented here can be
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extended easily to other media components suchmamacids, or trace metals. In
addition, the development of hydrogels that camaeda “slow release” or “timed
release” of specific nutrients and media supplesshould provide additional
degrees of freedom that could be investigatedtiuréuexperiments.

While this chapter has focused on establishindiarral framework for
studying the influence of time-dependent media Erppntation on the glycosylation
profile, the techniques introduced here can benelee to tackle the complementary
problem of designing and implementing appropriatetiol strategies to achieve
desired glycan distribution profiles. In the follmg chapter, the design and
implementation of controllers based on output adfability analysis is demonstrated

for two different systems.
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Chapter 4

A CONTROLLER DESIGN FRAMEWORK FOR CONTROLLING THE
GLYCOSYLATION PROFILE

4.1 Introduction

In the preceding chapters, we developed a fundahentlerstanding of the
effect of different input factors on the glycantdizution using two parallel
approaches. First, in Chapter 2 we developed a-sudte model of glycosylation to
model the effect of macro-scale bioreactor cond#tisuch as nutrient and metabolite
concentrations on the glycan distribution profext, we studied how media
conditions affect the glycan distribution and idied, using controllability analysis,
the specific combinations of different inputs thah be used to manipulate specific
combinations of different glycan outputs. In thisrk; we use output controllability
analysis to design proportional (P) and proportiamizzgral (P1) controllers to control
the glycan distribution in mAbs.

We propose a two-step framework for controllingoglgylation based on
output controllability analysis. First, we use stital design of experiments to study
the changes in the glycosylation pattern due tewint input factors and then
implement controllability analysis to identify spigcinputs that can be used to
control the glycosylation profile. As demonstratecChapter 3, output controllability
analysis is used to identify the combination ofunfactors that alter the
concentrations of specific combinations of glycpades, and to develop a

guantitative input-output relationship. Using tieistural information generated from
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such an analysis, we design a control scheme yoogylation control and illustrate
its applicability using two specific case studi@g:where the concentrations of
specific glycosyltransferase enzymes are the infautsranipulated variables) used to
control glycan distribution (output) and we reprasie input-output relationship
using the micro-scale model developed from a firstciples based analysis of the
glycan reaction network; and (b) where we add $eletno acids to the cell culture
media and use these cell culture media supplenasntsanipulated variables. The
first case study is based on the micro-scale madtieah model originally presented in
§2.3.3. We investigate the second case study &s ithgrowing interest in examining
the role of media additives and optimizing celltaté media to improve antibody titer
and modulate product quality attributes (Blondeelle2016; Jordan et al. 2013;
Kildegaard et al. 2016; Kishishita et al. 2015; i&kopoulos and Kontoravdi 2014;
Landauer 2014; Rouiller et al. 2014; Zhang et @1.3). Cell culture media
development is an area of active research, andfispdlg, the role of amino acids in
altering cellular metabolism is being investigatedievelop means to enhance cell
culture productivity and titer (Gonzalez-Leal et2011; Xing et al. 2011). However,
the effect of adding different amino acids on thegsylation profile and hence the
overall quality is not well understood and there aiten conflicting reports on the
subject. For instance, the addition of asparagireell culture media has been
reported to modulate the concentrations of galgtatsd species of IgG1 (McCracken
et al. 2014; Rives et al. 2015), while other stadiave reported no effect of amino
acids on the quality attributes of IgG3 (Read eR@l 3). In our work, we
systematically investigate the effect of amino atigplements using a factorial

design approach and perform controllability analysi

102



Based on output controllability analysis (that baen described in Chapter 3),
we design P- and PI-type controllers, and thenviestsimulations the controller
performance for set-point tracking. We then teist, simulations, the controller
performance under nominal conditions by assumiagttie process model accurately
represents the process. However, due to the inheoerplexity and non-linearity of
the system, the linear process model generatedibgralysis is bound to be different
from the ‘true’ process and hence, we test therotlet performance under model-
plant mismatch conditions. Our results show thadoh instance the designed
controllers are able to track the set-point effestti, indicating that the two-step
framework presented here is an effective methoddatrolling the glycosylation
profile.

In 84.2, different experimental and computatiorggdraaches used to develop
the glycosylation controllers are discussed, wimil§4.3 our main findings are
presented and the results are discussed. We supentiaei work presented in this

chapter in the final section of this chapter.

4.2 Materials and Methods

4.2.1 Computational Model of Glycosylation

The micro-scale glycosylation model introduced ma@ter 2 was suitably
modified to study the changes in the glycan distidn induced by changes in the
concentrations of the glycosyltransferase enzyidasing defined the reaction
network and obtained the mass balances for thdyt&mspecies participating in 20
reactions based on the cisternal maturation megetalculate the distribution of the

different glycosylation enzymes along the lengttihaf Golgi using the peak enzyme
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concentrations (Emax) listed herésagruct= 2.33uM; Emax,car= 1.00uM; Emax,cnTi

= 2.52uM; Emax,.entii= 1.07uM; Emax,mani= 2.45uM; Emax,mani = 1.00uM. The mass
balance equations form a system of partial difféatequations that was solved using
the odel5s function in MATLAB to obtain the dynarmancentration profile for each
glycan species. Next, using Plackett-Burman expamntal design, the peak enzyme
concentrations, Emax, for all six glycosyltransger&nzymes were changed by £10%
and the new glycan distribution was obtained. Téwawice in the glycan distribution

data was then analyzed in MINITAB using ANOVA.

4.2.2 Cell Culture

Frozen cells from a CHO-K1 cell line producing adeblgG1 (gift of
Genentech, San Francisco, CA) were thawed and lateclwith a seeding density of
0.5 x 106 cells/mL in vented-cap Erlenmeyer shédsks with a working volume of
50 mL, maintained in an incubator at 37 °C witlPa 602 overlay. Custom CD-
OTPICHO™ media (Thermo Fisher Scientific, Walthdf) supplemented with 5
g/L glucose, 4 mM glutamine and 0.01 mM Ma@{as used as the cell culture media
in this study.

Based on a survey of existing literature, elevemaracids were chosen as
additional cell culture supplements: valine, anggiglutamic acid, proline,
asparagine, serine, methionine, threonine, leuainé lysine (Sigma Aldrich, St.
Louis, MO). Stock solutions for each amino acid everepared in deionized water and
added to individual flasks as per the conditiorec#ed in the experimental design
section. In addition to these flasks, a contradklaontaining the basal media with no
amino acid supplementation was also cultured. Blégperimental conditions (12

corresponding to the Plackett Burman design + irohrwere performed in
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duplicate. pH, nutrient, and metabolite concerdratn each flask was analyzed using
a Bioprofile 100+ Analyzer (Nova Biomedical, WalthaMA) and the viable cell
count was measured manually using a hemocytomfgtébody titer was estimated
using a Thermo Scientifi¥ MAbPac Protein A chromatography column (12 micron
particle size, 35x4.0 mm |.D., Thermo Fisher Sdfemtwaltham, MA) on an Agilent

1200 HPLC instrument.

4.2.3 Glycan Permethylation Assay

Media containing the secreted antibody was hardestee days after
inoculation by spinning down the cells at 3000 rdine antibody was then purified
using 2 mL PhyTip columns packed with Protein Aachatography resin and
operated using PhyNexus Benchtop MEA2 system (Pky$d/eSan Jose, CA). Next,
after the tryptic digestion (Promega, Madison, bfljhe purified mAb at 37 °C for
four hours, a 16 hour deglycosylation protocol wetsated using PNGase-F
(ProZyme, Hayward, CA) to release the glycan graifmched to the mAb. The
released glycans were separated from the residagiree and other peptides using
Hypersep Hyper Carb SPE cartridges (Thermo Fistien8fic, Waltham, MA) and
permethylated following the Ciucanu method with Inyktodide and NaOH in the
presence of DMSO(Ciucanu and Costello 2003; CiueartlKerek 1984). The
permethylated glycans were recovered by a liqujdidl extraction step using
chloroform (Sigma Aldrich, St. Lois, MO), dried,danesuspended in 80% methanol
followed by purification on Sep Pak SPE C18 cagesl (3 cc Vac Cartridge, 200 mg
Sorbent per Cartridge, 55-105 pum Patrticle Size evdaCorporation, Milford, MA).
Finally, the glycans were dried and resuspend&dCiMS grade methanol (Sigma

Aldrich, St. Lois, MO) and spotted onto a MALDI-TQifate with a DHB matrix to be
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analyzed using a 4800 MALDI TOF/TOF Analyzer (AB&ci Framingham, MA) in
positive ion, reflector mode. The data collecterrfrthe mass spectrometer was then
exported to Data Explorer to obtain the heightthefindividual peaks in the sample.
The relative glycan distribution in each sample estimated from the percentage

peak heights of each sample.

4.2.4 Statistical Design of Experiments

Plackett-Burman experimental design was used &sadbe effect of changing
the different inputs on the glycan distributionbl&a4.1 lists the experimental design
used as well as the high and low concentrationdav&ed for each of the
glycosyltransferases to simulate the dynamic glywafile. Table 4.2 lists all the
experimental conditions tested with amino acid $empentation and specifies the high
and low amino acid levels that were introducedacheflask. The variance in the data

obtained from each experimental design was analyzed) ANOVA in MINITAB.
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Table 4.1: Plackett-Burman experimental design with ragld low concentrations
of different glycosyltransferase enzymes in theagic mathematical model for
glycosylation

FucT, | GalT, | GnTl, | GnTIl, | Manl, | Manll,
Run (mM) | (mM) | (mM) | (MmM) | (mM) | (mM)
1 2.56 0.90 2.78 0.96 2.21 0.90
2 2.56 1.10 2.27 1.18 2.21 0.90
3 2.09 1.10 2.78 0.96 2.70 0.90
4 2.56 0.90 2.78 1.18 2.21 1.10
5 2.56 1.10 2.27 1.18 2.70 0.90
6 2.56 1.10 2.78 0.96 2.70 1.10
7 2.09 1.10 2.78 1.18 2.21 1.10
8 2.09 0.90 2.78 1.18 2.70 0.90
9 2.09 0.90 2.27 1.18 2.70 1.10
10 2.56 0.90 2.27 0.96 2.70 1.10
11 2.09 1.10 2.27 0.96 2.21 1.10
12 2.09 0.90 2.27 0.96 2.21 0.90
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Table 4.2:

the cell culture media

Plackett-Burman experimental design with kagld low concentrations of individual amino aciddexito

Val, Arg, Glu, Pro, Gly, Asn, Ser, Met, Thr, Leu, Lys,
Run | (mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM) (mM)
1 0.27 1.15 0.54 2.50 0.50 2.50 0.80 0.10 0.70 0.22 0.50
2 0.27 0.72 0.54 2.50 2.50 0.50 0.80 0.40 0.24 0.70 0.50
3 1.61 1.15 0.54 0.50 2.50 2.50 0.40 0.40 0.24 0.22 0.50
4 1.61 0.72 0.54 0.50 0.50 0.50 0.80 0.40 0.70 0.22 0.87
5 1.61 0.72 0.54 2.50 0.50 2.50 0.40 0.10 0.24 0.70 0.87
6 1.61 0.72 0.17 0.50 2.50 2.50 0.80 0.10 0.70 0.70 0.50
7 0.27 0.72 0.17 2.50 2.50 2.50 0.40 0.40 0.70 0.22 0.87
8 0.27 1.15 0.17 0.50 0.50 2.50 0.80 0.40 0.24 0.70 0.87
9 0.27 1.15 0.54 0.50 2.50 0.50 0.40 0.10 0.70 0.70 0.87
10 0.27 0.72 0.17 0.50 0.50 0.50 0.40 0.10 0.24 20.2]0.50
11 1.61 1.15 0.17 2.50 2.50 0.50 0.80 0.10 0.24 20.2]|0.87
12 1.61 1.15 0.17 2.50 0.50 0.50 0.40 0.40 0.700 00.7]0.50




4.2.5 Controllability Analysis

As described in Chapter 3, we performed contrditglanalysis to quantify
the effect of changing the input conditions ongheosylation profile in mAbs.
Briefly, we used Plackett-Burman factorial desigrobtain different experimental
conditions to be tested in the two cases. Accotdinge performed multiple
simulations of the dynamic model using the diffeérgigcosyltransferase enzyme
concentrations as our inputs, and carried out sfiaglke experiments with varying
concentrations of amino acids added to each flHs&.variance in the final glycan
distribution obtained from our simulations and froor experiments was analyzed
using Minitab. The estimates of factor coefficienkdained from such an analysis
represent the process gains or the change in tpeataglycan distributionAy), when
there is a unit change in the input factdu) associated with that coefficient. We
selected statistically significant factor coeffitie and set all other insignificant

coefficients to zero to generate the process gaimixG, which gives us

Ay = GAu 4.1
Next, by performing singular value decompositiorre process gain matrix, we
obtained the diagonal singular value matlixand the unitary matrice¥/ andVT,

that were subsequently used to obtain the orthdgopat (u) and outputif) modes.
Thus,

Ay = WEVTAu 4.2

WTAy = 2VTAu 4.3
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An = ZAp 4.4

As X is a diagonal matrix, we related the change imeatput modeAn;) to its

corresponding input mod@;) using the associated singular valag &s:

AT]i = GiAUi 4.5

4.2.6 Controller Design under Nominal Conditions

Proportional controllers were designed based omethalts obtained from
controllability analysis. Starting with the steastate glycan distributiory{y),
controllers were designed to track the new settpoimew glycan distributionyg).
These variables were then transformed to outpueading the orthogonal matrix

(W) obtained by singular value decomposition of thie gaatrix G). Thus,

n=WT(y—ys) 4.6

Na =W (¥4 — Vss) 4.7

The error §) was calculated based on the difference betweenutput modes for the

set point and the measurement as

€E=1Ng—M= Aq 4.8
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The controller is then designed to obtain the paldr set of inputsu’ which,
when implemented on the process, will result imatput signal similar to the new
set-point, thereby minimizing this error. To destba controller appropriately, we

note that equation (5) can be rewritten as

_ An; 4.9

Ay
Oj

Thus, we designed simple P-controllers using thesidual singular values, using the

control law given by
Ap = K.e 4.10

where the proportional gain of the controll€g, is given by

1/01 e 0

K¢ = : “ :
0 - 1/0n

Finally, we estimated the change in the input thdien implemented on the process,

will track the set point effectively

Au = VA 4.12
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The final output glycan distributiognew, corresponding to the new set of input
conditions obtained from the controller was thelcdated using the gain matrix from

equation 4.1

Ynew = Vss + GAu 4.13

4.2.7 Controller Design under Model-Plant Mismatch Condiions

The glycosylation controllers were designed undaeninal conditions, based
on the assumption that the process model accurdgdiyes the “true” physical
process or the plant. However, in practical insgsnve do not have complete
knowledge of the “true” model of the process reagltn model-plant mismatch. To
simulate model-plant mismatch conditions normaistrcbuted random errody) was
added to every element of the nominal gain maféy, to yield a modified gain

matrix, Gmod). Thus,

Gumod = G + ® 4.14

Singular value decomposition of the modified gaitnx yielded a new set of
singular values Ymod) and new orthonormal matric®émod andV "med. Proportional
(P) and Proportional Integral (PI) glycosylatiomtollers were then designed using

the new set of singular values; thus:
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1
/Gl,mod 0
Kempm = : : 4.15

0 1/Gn,mod

K 4.16
Iuem =M™/ 3

whereK ¢ mpwm is the proportional gain of the P- and Pl-con&odind ipm is
the associated integral constant used in the Riater. The ability of the
glycosylation controllers to track the output tcagey under model plant mismatch
conditions was assessed iteratively, with evergassive iteration representing a new

batch. The control laws used for the P- and Plirotiers were

I.l(k + 1) = u(k) + Kp,MPM * 8(1) 4.17

k 4.18
uGc+ 1) = 00O + Kpupw * €09 + hupw * ) £

m=1

wherep is the vector of input modes arid denotes the current iteration. The
corresponding change in the inpaiti, and the final glycan distributiofew are
determined after every iteration using equatiod? 4nd 4.13 above. Figure 4.1

shows the control block diagram representing tiyeaglylation control scheme.
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Figure 4.1: Control block diagram indicating di#et components of the
glycosylation control scheme. The current glycastriiution measured
at the outputy() and the new glycan distribution set poiyd)(are
transformed to output modes &ndng, respectively) using the output
transformation matrix,WT), obtained by the singular value
decomposition of the process gain matr).(The error signal gf,
obtained from the difference of the two output n®desent to the
control block, where controllers designed usingrappate singular
values 6i > ¢*) generate the input modg)(which is converted back to
the set of inputsu) using the appropriate input transformation mawix

4.3 Results and Discussions

4.3.1 Controllability Analysis

Using statistical design of experiments (DoE), \mgéhsystematically studied
the effect of manipulated variables (i.e. enzymecentrations in model simulations,
and amino acid concentrations in cell culture mediaplementation trials) on the
glycan distribution profile in mAbs. However, thealitative data obtained from our
preliminary analysis is not sufficient to develapetfective control scheme to control
the glycan distribution using the manipulated Jales; instead, we need to establish a
guantitative input output relationship betweendh@no acid or enzyme
concentrations (manipulated variables) and theudwgiycan distribution. Such a

guantitative understanding of the effect of addargpecific amino acid or altering
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certain glycosyltransferase enzyme concentrations®e glycan distribution can be
readily obtained by analyzing the variance in tlyean distribution data. In each case,
the statistically significant input coefficientgpresent the magnitude (gain) associated
with the output glycan species for unit changethat specific input. Thus, using the
coefficients obtained from ANOVA we construct a @ess gain matrig, as

previously described under materials and metholde.pfFocess gain matrices can be
graphically represented using the heat maps showigures 4.2(a-b), which indicate
the magnitude as well as direction (increase oredse) of change effected by a unit
change in the input on the output glycan distrimutrofile. Figure 4.2(a) is a heat
map representing the estimates of the statistisaifyificant factor coefficientsu(=
0.05), with all other coefficients set to zero. Bleserve that the concentrations of the
high mannose glycan species, M8, M7, M5, biantgnepecies A2 and its
galactosylated isoforms A2G1, A2G2 are not affettedhe change in the
concentrations of any of the glycosyltransferasgyeres. Similarly, a change in the
concentration of the input factar;1,6-fucosyltransferase (FucT) has no impact on
any of the glycan species. The heat map also itedidhat in the simulations tested,
the biantennary fucosylated species FA2 and itzotiadylated isoforms FA2G1 and

FA2G2 are the most affected species.
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Figure 4.2: Heat map of significant factor coe#iais obtained by analysis of
variance of the glycan distribution data. The ekpental data was
obtained using (a) glycosyltransferase enzyme guretBons as inputs in
the dynamic mathematical model of glycosylationginino acid media
supplements as inputs. The input factors are ligtexg the horizontal
axis while the output glycan species obtained fthensimulations are
listed along the vertical axis. The color bar iradés the signage and
magnitude of the factor coefficient, with red inaling a negative
coefficient (i.e. a unit increase in an input deses the relative
concentration of that glycan) while green indicag®sitive coefficient
(i.e. a unit increase in an input increases thaixa glycan
concentration). The intensity of each color repnes¢éhe magnitude with
lighter hues indicating factor coefficients of lessnagnitude than those
represented by darker hues
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Figure 4.2(b) is a heat map representing the etgohgain coefficients
obtained from analysis of variance of the glycastrdiution data when different
amino acids are added to the media. Here, we us@a “relaxed” criterion to
estimate the statistically significant factor coa@éints @ = 0.25) as opposed to the
conventionally used value af= 0.05. Asu is the probability that we reject the null
hypothesis when it is true, in this instance, weehehosen a higher risk of rejecting
the null hypothesis (that the estimated factor fociefts are not significantly different
from zero) in favor of the alternative. Our decrsie informed by an understanding of
the inherent variability in the experimental measoents involved in analyzing
glycan distribution and the addition of 11 differamino acids to each individual
flask. From Figure 4.2(b) we note that the con@itns of certain glycan species,
such as M8, M5, A2G1 cannot be influenced by supptging the cell culture media
with any of the amino acids used in the study, wasithe concentrations of
fucosylated glycoforms FA2 and FA2G1 can be altéoedarying degrees using
arginine, glutamic acid, methionine, threonine, fsthe. Each amino acid input in
turn, influences the concentration of more than glgean species, highlighting the
close interdependence in the concentrations odrifft glycan species.

Further, by carrying out singular value decompositf the process gain
matrix G, we obtain a diagonal matr¥ containing the singular values, and the two
unitary matricedV andV'. As has been previously described under mateaials
methods, we can transform the original input ougmuation given in equation 4.1 to
a series oh independent equations listed in equation 4.4, etethe output mode,
represents a linear combination of the output glysg@ecies weighted by the

individual elements oWV, the associated singular valki€obtained from the diagonal
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elements of the matriX), quantifies the change in the output mode dueeuait
change in the input mode which is the linear combination of the inputs giged by
the unitary matriy/T. As the magnitude of the singular value quantiffesextent of
change in the particular output mode, we noteghsller values of are associated
with output modes that are less controllable, aemtk we choose to study only those
modes that are above an arbitrarily chosen thrdshdbff value o* and ignore all
modes associated with lower singular values. Adt&mining the singular values
listed in Table 4.3 we choose a threshold cutoliie#®fc* = 1 and ignore all modes
associated with lower singular values. Furtherei@ach input-output mode pair
represents the linear combination of glycans thatlee controlled using different
inputs, the associated coefficient of each inpdt@utput in any given mode is
indicative of the relative influence of a partiaulaput on the output. The coefficient
of the output glycan is the magnitude by whichréative percentage changes in
response to a unit change in the corresponding impde, implying that the relative
percentage of glycans with larger coefficients paaticular mode can be modulated
more easily, making those glycans more controllaBiilarly, inputs with larger
coefficients have a relatively larger contributiona unit change in the associated

mode and are hence considered as the dominantSactihat mode.
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Table 4.3: Singular values obtained from singular valaeainposition of the
matrix of significant factor coefficients with (g)ycosyltransferase enzyme
coefficients as inputs; and (b) amino acid supplEsas inputs

Singular Value €)) (b)
o1 25.2 28.1
62 7.1 11.8
03 4.7 5.9
04 2.7 2.9
o5 0.1 1.2
6 0.0 0.6
o7 - 0.4
o8 - 0.3
69 - 0.1
610 - 0.1
011 - 0.0

In Figure 4.3 we have plotted the input-output mpdes relating the changes
in the glycosyltransferase enzyme concentratidhéahanges in the output glycan
distribution. Based on the selected threshold éwalfie ofc* = 1, we select only the
first four input-output mode pairs associated wité four largest singular values,—
o4. From the first output modg; (which is associated with the largest singulaugal
ol = 25.22) we notice that the most controllablecghs are fucosylated biantennary
glycan FA2 and its galactosylated glycoforms FAZBH FA2G2 as they have the
largest coefficients (0.82, -0.53, and -0.23 respely) indicating that a unit change in
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the first input mode would result in an increas¢hie FA2 concentration and a
decrease in the relative concentrations of itsajasylated isoforms. The
corresponding input modg; is dominated by GalT (-0.99), indicating that ardase
in the GalT enzyme levels would result in a dea@eaghe concentration of FA2G1
and FA2G2, as expected. The second output mode &singular value af> = 7.12)
shows that a unit change in the input mode regult® increase in FA1 (with a
coefficient of 0.69) and M6 (0.21) and a decreaseA2G1 (-0.58) and FA2 (-0.38).
The linear combination of enzymes associated vaghsecond input mode are GnTII
(with a coefficient of -0.92), Manl (-0.34), and I&4-0.15). As expected, a decrease
in GnTIl would result in a decrease in the relateacentration of biantennary species
FA2, while the reduction in GalT concentration esithe relative concentration of
FA2G1 to decrease as well. Finally, we can stuéythird and fourth input-output
mode pairsdqs = 4.69 ands = 2.74, respectively) to assess which other glypeties
can be modulated by modifying different combinasiaf glycosyltransferase

enzymes.
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Figure 4.3: Graphical representation of the coiffits associated with the first four
input and output modes with glycosyltransferaseyeres as the input
factors. Shown here are the primary modes (wiith 6*=0.5) obtained
from controllability analysis. (a) Output mogdeand the corresponding
input modeus; (b) Output mode2 and the corresponding input made
(c) Output modeyz and the corresponding input maae (d) Output
modens and the corresponding input mogde

A similar analysis to assess the effect of amind sgpplementation on the
glycan distribution was carried out by studying fingt five input and output modes
(associated with singular values— cs> ¢*) plotted in Figure 4.4. The first output
mode is associated with a singular valueof 28.1 and is dominated by the
coefficients of the glycan species FA2 (0.92) aA@G1 (0.43), indicating that these
two glycan species are the most controllable, withnit change in the associated input
mode resulting in an increase in their relativeagarations. The first input mode,,
representing the linear combination of amino ath@s$ when added to the media will
result in changes in the concentration of the gigazontained in the first output mode,
is dominated by methionine (0.69), lysine (-0.58) #hreonine (0.36). A unit change

in the second input modex(= 11.8) results in a decrease in FA2G1 (-0.89) and
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FA2G2 (-0.11) and an increase in the agalactosylate#form, FA2 (0.43). The linear
combination of amino acids that make up the seagmat mode include glutamic acid
(0.75), arginine (-0.49), and threonine (0.39). Tiied input-output mode pair witbs

= 5.9 indicates that the relative percentage of R,and FA1, with coefficients of -
0.93, -0.33, and -0.13 respectively, are alteredndnlinear combination of all amino
acids, dominated by serine (-0.85) and leucinesdgichanged. We can further
analyze the fourth and fifth input-output mode pair a similar fashion. We note that
no single amino acid dominates in these modesadsthe change in the output

glycan profile is due to the combined action oftb# added amino acids.

123



1.0
(ags ]
0.6
0.4

0.2+

0.0 A —— ——

0.2+
0.4+
0.6

-0.8 4

M3

1.0
(b)), ]
06
0.4

0.24

0.0 —— m—

02
-0.4
-0.6 4

-0.8 4

M3

(c)os
0.6 4
0.4+

0.2

-0.24
-0.4 4
-0.6

-0.8 4

M3

M4

M4

M4

A1l

Al

Al

M5

M5

M5

(1)

FA1

FA1

FA1

A1G1
A2

(n2)

A1G1
A2

(n3)

A1G1
A2

FA1G1

FA1G1

OAO——-I—-— —

FA1G1

FA2

FA2

FA2

A2G1

A2G1

A2G1

FA2G1

FA2G1

FA2G1

A2G2

A2G2

A2G2

M8

M8

FA2G2

FA2G2

FA2G1S1

FA2G1S1

FA2G2S1

FA2G2S1

M8

FA2G2

FA2G1S1

FA2G2S1

124

1.04
0.8+
0.6+
0.4 4
0.2+

Coefficients

-0.24
-0.4 4
-0.64
-0.84
-1.0-

1.0-
0.8
0.6
0.4
0.2

-0.24
-0.44
-0.6 4
-0.84

Coefficients

-1.0-

1.04
0.8+
0.6+
0.4 4
0.2+

Coefficients

-0.24
-0.44
-0.6
-0.84
-1.0-

Val

00—

Val

oo 1

Val

00l

Arg

Arg

Arg

(1)

Glu
Pro
Gly
Asn
Ser
Met
Thr
Leu
Lys

(12)

Glu
Pro
Gly
Asn
Ser
Met
Thr
Leu
Lys

(1)

Glu
Pro
Gly
Asn
Ser
Met
Thr
Leu
Lys



(d)os] (na) 1.0+
06 0.8
0.4 0.64
a2 I 04

B I N —_— . 202
00 [ | 5
0.2 g 00
b=
8
-0.4 3-0.2
o8] 0.4
0.8 -0.6 1
1.0 -0.84

||
|
|
Coefficients
o
o

M3

M4

A1

M5

FA1
A1G1
FA1G1
FA2
A2G1
FA2G1
A2G2

M8
FA2G2
FA2G1S1
FA2G2S1

(ka)

vvvvvv -y = = N ® N = =
8 3. <ThY "2 d 3 ¢ 50 8 2 ¢ -1.0

=) @
=4 >
< )

Val
Glu
Pro
Gly
Asn
Ser
Met
Thr
Leu

(1s)

=] o s - 0
=, = < 2
< o = 3 )

Glu
Gly
Met

& & 5
s 2 &

Figure 4.4: Graphical representation of the coiffits associated with the first four
input and output modes with glycosyltransferaseyeres as the input
factors. Shown here are the primary modes (wiith 6*=0.5) obtained
from controllability analysis. (a) Output mogeand the corresponding
input modeus; (b) Output mode> and the corresponding input made
(c) Output modeyz and the corresponding input maae (d) Output
moden4 and the corresponding input made (e) Output modegs and

the corresponding input moge

While the role of amino acids in directly regulgtithe glycan distribution is

not well understood, some studies have establisloadrelation between

glycosylation levels and the concentration of bygluas of amino acid biosynthesis.

For instance, ornithine which is produced during diegradation of Arg, Pro, and Glu

has been shown to modulate high mannose glycats|@ang et al. 2015).
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Researchers have also noticed the effect of speramd spermidine, by-products of
Arg-Pro metabolism, on altering the activities bfapsyltransferase enzymes (Gréco
et al. 2001). Therefore, the changes in the glylation profile seen in this
experimental work may have accrued due to the bgymts of the amino acid
metabolism. Conversely, the change in the glyctisyldevels seen in this work
might have been induced solely due to the changgeimedium pH brought about
by the addition of 11 different amino acids to e#labk.

Despite not having a complete mechanistic undedstgrof the effects of
amino acids on the glycosylation profile, the preeed approach provides us with a
guantitative input-output relationship and we cawrassess how media

supplementation affects the glycosylation profile.

4.3.2 Set-point Tracking under Nominal Conditions

Using the structural input-output relationship deped using controllability
analysis, we design controllers to carry out setpwacking of the glycan distribution
as discussed under materials and methods. As eattolter gain is determined by
the corresponding singular value, and as we onhgider singular values greater than
a critical cutoff value, we note that the total raenof controllers in each case will
depend on the number of selected singular valuass,Twhen we use
glycosyltransferase enzymes as the manipulatedhlas, we obtain the controller
gains from the first four singular values, whergathe case with amino acid
supplementation we use five different controllesisdd on the first five singular
values. In each case, we generate the error qignadsed on the difference in the
desired output modegg, and the measured output mogge(obtained by transforming

the corresponding desired glycan set-poyat &nd measured glycan distributior), (

126



respectively). Next using P-controllers, desigrmedif select singular values, we
obtain the new set of inputs that, when implementedur process, will shift the
process output to match the desired glycan set-poin

First, we assess the set point tracking capalafithe controllers under
nominal conditions with glycosyltransferase enzym&she manipulated variables.
The resulting output glycan distribution is plotiad=igure 4.5(a), showing that the
controllers effectively track the new set-point dahe output glycan distribution now
matches the new set-point. The predicted set aftiglycosyltransferase enzyme
concentrations, plotted in Figure 4.5(b) are cora@do the enzyme concentrations
used in the original simulations to obtain the glydlistributionys. Here we note that
unlike the enzyme concentrations of GalT, GnTll,fMand Manll, those of FucT and
GnTI predicted by the controller do not match theyene concentrations originally
used in the simulation. This discrepancy can béa@xgd by assessing the input
modes [11 —p4), Where we note that the coefficients of FucT @md’| are very small
in each mode, indicating that any change in tharcentration will have negligible
impact on the relative glycan distribution. Thuger though the concentrations of
FucT and GnTI predicted by the controller do notahdhose used in the simulation,

we know that this will not influence the final gbe distribution
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Similarly, in Figure 4.5(c) we observe the set-pdiacking capability of P-
controllers where amino acid media supplementsised as manipulated variables.
Here, the glycan distribution in the control flagith basal media and no amino acid
supplementation is taken to be the measured glgisanibution,y, while the glycan
distribution observed in flask F1 from the expenmta¢ design is the desired glycan
set-pointyqd. Once again, using P-controllers designed usipgogpiate singular
values, we are able to track the desired glycapaiat effectively. A comparison of
the predicted and experimentally used amino aateatrations, plotted in Figure
4.5(d), indicates that the concentrations of Asth Rro do not match. An examination
of the input modes indicates that the coefficiaritdsn and Pro in the primary input

modes is not large enough to alter the glycanidigion significantly.

4.3.3 Set-point Tracking under Model-Plant Mismatch Condtions

In the previous section, we assessed set-poirkitigacapabilities of the
controller under nominal conditions, i.e. when thedel is truly representative of the
actual process. However, in reality, the true pssagaodel is not completely known
and is estimated with some error. Hence, it is irtgyd to evaluate controller
performance under such practical model plant mismebnditions as well. As
described under materials and methods sectiomtreduce random error to every
element in the gain matrix obtained from ANOVA tngrate a modified gain matrix.
Using the singular values of this modified matrig design P- and Pl-controllers to
track the new set-point by performing a serieserftive calculations (equation 4.14
to equation 4 18).

In Figure 4.6, we observe the set-point trackingtglof the P- and PI-

controllers using glycosyltransferase enzyme comagons in the dynamic glycan
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model as the manipulated variables. We note theabtitput glycan distribution after

25 iterations using P- and Pl-controllers matchesdesired glycan distribution
despite the controllers being designed under maldet mismatch conditions (Figure
4.6(a)), while the predicted inputs converge usitiger P- or PI- controllers (Figure
4.6(b)). A comparison of the sum of absolute erestimated from the difference in
the output glycan distribution and the desired glytrajectory after each iteration
using the P- and PI- controllers indicates thatsiima of absolute errors associated
with the P-controller decreases steadily and fynatinverges to fixed error, whereas
the output from the PI controller oscillates befthre sum of absolute errors eventually
decreases. We observe similar trends when we ug® atid media supplements as
the manipulated variables to control the glycatrihistion under model plant
mismatch conditions (Figure 4.7). Here, we note iwéh the P and PI controllers are
able to effectively track the desired glycan tregeg and the predicted inputs under
mismatch and nominal conditions are very similes.s&en in the case with enzyme
concentrations as inputs under model-plant mismatclomparison of the controller
performance shows that the sum of absolute errtireriP-controller decreases steadily

while the sum of absolute error in the Pl-contmodscillates.
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Figure 4.6: P-type and PI-type controller perforesennder model-plant mismatch
conditions. (a) Relative glycan distribution wherzgme concentrations
are used as inputs. The solid black bar represieatsitial steady state,
the solid red bar represents the new set-point gdlite bar is the final
output using P-type and grey crosshatched baeifirial output using
Pl-type controller. (b) Comparing experimental @neldicted inputs. The
black bar represents the enzyme concentrationtosgeherate the new
set-point, solid white bar represents the inputseegated by the P-type,
and crosshatched bar represents inputs from titgpBleontroller. (c)
Relative glycan distribution when amino acids asedias inputs. The
solid black bar represents the initial steady sthtesolid red bar
represents the new set-point, solid white bareditial output using P-
type and grey crosshatched bar is the final outping PI-type
controller. (d) Comparing experimental and predidteuts. The black
bar represents the amino acid concentrations (Haedao that of
valine) used to generate the new set-point, safideAbar represents the
inputs generated by the P-type, and crosshatclpedsents inputs by the
Pl-type controller. () Sum of absolute error facle successive iteration
with P- and PI-type controllers with enzyme concatndn as inputs. (f)
Sum of absolute error for each successive iteraiitm P- and Pl-type
controllers with amino acid concentration as inputs

In each case studied under model-plant mismatctittons, we observe that
the final glycan output converges to the desirapettory regardless of the choice of
controller used. This indicates robust controlleh&vior which stems from having
used singular values of the gain matrix to deteentive controller gains. The choice of
select singular values greater than a cutoff valberently eliminates the singularity
in the system and results in a system with a lomdit@n number (which is the ratio
of the largest singular value to the smallest dewgwalue), and hence, the designed

controllers tend to be more robust, leading toatiffe convergence.
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4.4 Summary and Conclusions

Changes in antibody glycosylation profile affect final drug product quality
significantly, leading researchers to investigatgans to control, modulate and finely
tune the glycan distribution profile. In this papes have systematically developed
and evaluated a two-step framework for controltimg glycosylation profile in mAbs.
First, we identified a quantitative, structural intqputput relationship by analyzing
data obtained from statistically designed experisiefhe structural relationship was
then used to design controllers for two cases wifgre the concentration of
glycosyltransferase enzymes in the dynamic glycadehwere manipulated to
modulate the glycan distribution; and (ii) wher#etient amino acid supplements
added to the cell culture media were used as timgpmlated variables. We then
performed simulations to test the performance ofcoamtroller in trying to track a
desired glycan set-point under two conditions: oviggre we assumed complete
knowledge of the process (i.e. nominal conditiaarg) another, under model plant
mismatch conditions. In both these conditions, Wgeove that the controllers are able
to track the set-point effectively and accurat&lyen under model plant mismatch
conditions, when we introduce random error in aingnatrix, we note that the
glycan distribution generated by implementing thguit signal from the designed
proportional (P) and proportional integral (PI) tofers on the process closely
matches the desired glycan output, as the sumsofiate error eventually converges.
The robustness in the system is likely introducgthle elimination of process
singularity, as a consequence of having chosemukingalues above a specific cut-off
value ©*).

Although it is easier to implement such glycosyatcontrollers in the second

case (using media supplements) as opposed tashéhere glycosylation enzyme
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concentrations were modified), it is instructivedemonstrate via simulations the
applicability of the proposed framework to bothghéest cases. The development of
glycosylation controllers using media supplemestsput factors has a lot of
significance to the field of media design. If a #nd of a particular batch, the glycan
distribution is not as desired and we wish to cleathg glycosylation profile, then, by
implementing the glycosylation controller preserttede, we can estimate how to
modulate the concentrations of different media gmppnts in the successive batch so
as to achieve the desired glycan distribution profihus, we now have the ability to
fine tune and modulate the final glycan profiledayply altering the media
composition at the start of the batch. In the cdsnzyme concentrations as inputs,
the approach presented here provides a rational twasarry out cell line engineering
approaches to alter glycosyltransferase enzymeetrations. The glycan enzyme
concentrations can be targeted in a quantitatisieida to achieve the desired
glycosylation profile at the end of the batch. Rert the structural information gained
from this approach also indicates which enzyme eptrations have little to no
impact on the glycosylation profile and hence, &e target select enzymes that can
induce the desired change in the glycosylationilerofhe glycosylation controllers
designed using this study are thus robust andteféem controlling and modulating
the glycan distribution under a variety of condigo

It is important to note, however, that the coneollesign implemented here
based on output controllability analysis is depenaa the glycan distribution
obtained at the end of the batch. Consequentlgetbentrollers are designed as batch-
to-batch controllers, where the control actioralen in the subsequent batch and a

new glycan distribution profile is obtained. Whiles is a significant development
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based on controllability analysis, in order to aslei our overall objective of online
control of glycosylation, we need to design comérsl that respond to the changes in
the glycosylation profile in real-time. One of thigigest challenges in controlling
glycosylation online is the lack of suitable, réate glycan measurements as current
glycan assays are typically performed offline arelassociated with long time delays.
To overcome these challenges, we explore two eifitetechniques for estimating the
glycan distribution in the following chapter. Firste consider how, using
observability analysis and by exploiting the unge network structure inherent in
glycosylation, we can identify a subset of glycpa@es that can be measured to get
an estimate of the complete glycan distributions®pproach can lead to the
development of novel glycan assays. Next, we usenthti-scale model of
glycosylation developed in Chapter 2 to estimagedilycan distribution profile when
measurements are unavailable, with a periodic epafate glycan distribution as and
when a measurement becomes available. Togethaptiteaches in the following

chapter will lay the foundation for developing adiglycosylation control schemes.
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Chapter 5

GLYCOSYLATION ANALYSIS: OBSERVABILITY AND STATE
ESTIMATION

5.1 Introduction

In the previous chapters we developed quantitatipet-output structural
relationships between manipulated variables andlfesylation profile at the end of
the batch run using controllability analysis. Ferthwe utilized these quantitative
relationships to develop proportional (P) and prapoal integral (PI) controllers to
control the glycan distribution and demonstratelahility of these controllers to
track the new glycan set point under nominal andehplant mismatch conditions.
However, as controllability analysis is based oanges in the glycan distribution
profile in the antibody accumulated at the end b&gch run, the resulting P and Pl
type controllers designed from the controllabiltyalysis are suited for batch-to-batch
or iterative control rather than for real time aoht

As stated in Chapter 1, glycosylation is a critigadlity attribute and hence, it
is necessary to monitor and control the glycosytadistribution during
manufacturing to maintain it within acceptable levglel VVal et al. 2010). To achieve
real time glycosylation control, it is necessarynave a detailed understanding of the
influence of different input factors on the dynargigcan distribution profile; and
reliable on-line or at-line measurements of thegtydistribution profile, as what
cannot be observed or measured cannot be contr@ladefforts in Chapter 2 and 3

were directed towards generating a detailed uraieilgtg of how process variables
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and media supplements at the bioreactor levelentte the glycan distribution profile.
In this chapter, we address the issues and chakesmgsociated with analyzing the
glycan distribution in mAbs.

The analysis of critical quality attributes andical process parameters can be
carried outat-line, which involves sample removal, isolation, ands&gfuent analysis
close to the process streamn;line, wherein the sample is removed from the process
stream, analyzed, and returned to the processistredine, which involvesn situ
analysis of the sample; off-line, where the sample is removed and analyzed away
from the process stream (Rathore et al. 2010).oAlgh it would be ideal to measure
all quality attributes such as glycosylation andragation on-line or at-line, under
practical circumstances, most quality attributeseather measured infrequently, or, as
is more commonly practiced, they are measuredimdfdt the end of the process. This
is particularly true of glycan assays where the glexity and diversity of
glycosylation profiles makes analysis a non-triyiebcess, often requiring multiple
purification, labeling, and separation steps ptodbeing quantified (Marino et al.
2010). Consequently, detailed analysis of the glyaiatribution profile using glycan
assays becomes a laborious, time-consuming, arehsi@ endeavor requiring
multiple instrumentation techniques. Presentlyralexist no on-line assays for
measuring the glycan distribution profile, while thvailable at-line glycan assays are
used to obtain infrequent measurements that aceiagsd with large time-delays.
Thus, not only is there a requirement for develggaster, effective glycan assays, we
also need techniques to infer the glycan distrdsuprofile in the absence of frequent
measurements. To accomplish both of these tasksglwen our understanding and

knowledge of glycosylation presented in the presiobapters.
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Here, we seek to address the following challenges@ated with glycan

analysis:

* How do we rationally develop novel glycosylatiosags based on
an understanding of the glycan reaction network?

* Inthe absence of real time measurements, how dehadbly
estimate the glycan distribution profile using #wailable dynamic
model of glycosylation?

First, we provide a concise review of differentlgtieal methods for glycan
characterization along with a brief descriptionmehouse glycan assay development
efforts. Next, in 85.3, a rational approach for@eping novel glycan measurement
assays based on observability analysis is present&®.4, a novel state estimation
technique is implemented to estimate the entireagiydistribution in the absence of
frequent, real time measurements. Finally, thefkedings are summarized at the end

of the chapter.

5.2 Glycan and Glycoproteomic Analysis — An Overview

The diversity and heterogeneity in oligosaccharatésched to protein
moieties has led to several challenging problenteeremerging field of
glycobiology. However, aided by the developmeme@iver and more robust
analytical techniques, particularly in mass speuntty, the scientific discipline of
glycomics is witnessing a spurt in novel and higlotighput analytical techniques for
oligosaccharide characterization. The differentyital approaches for glycan
characterization can be broadly classified asn{gct glycoprotein analysis; (i)
glycopeptide characterization; (iii) released glyeamalysis; and (iv) monosaccharide

analysis (Marino et al. 2010). The analytical tegbe chosen depends on the amount
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of sample available, the level of characterizatiesired, and the nature of information

required. Additionally, different applications migtequire orthogonal assays, or the

use of multiple analytical techniques (Mittermayak 2011; Roth et al. 2012). Figure

5.1 shows the different strategies that are availfy glycan characterization along

with the associated analytical technique.

Monosaccharide
analysis
*HPAE
*GC-MS

Intact
glycoprotein
*LC-MSMS
*Lectin
chromatography

Released glycan
analysis

*LC-MS
*LC-FLR

Glycopeptide
mapping
*LC-MS/MS
*MS

Figure 5.1: Different analytical techniques fora@dprotein characterization. These
include characterizing the intact glycoproteinpsiizing the
glycoprotein to produce glycopeptides that areyaeal separately, using
glycosidases to release the glycans and then ¢karitg the individual
glycan species, or breaking down the glycan fragnma individual
monosaccharides to get a detailed understanditigeadttached sugars.

Intact glycoprotein analysis can be consideredjalevel analysis wherein

the glycoprotein is directly injected to the magsdrometer (MS) with minimal

sample preparation or separated using liquid chrognaphy before being injected to
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the MS (Planinc et al. 2016; Zhang et al. 2016H)e advantage of such intact
analysis is that it provides unique informationtbe attachment of specific glycan
species to a particular glycosylation site on tfeggan backbone (Rosati et al. 2013).
Lectin affinity chromatography is another powertedthnique for isolating and
analyzing intact glycoproteins, wherein lectinshaliigh affinities towards particular
oligosaccharides are immobilized to separation icedrsuch as agarose, resulting in
techniques with high specificities (Mechref and Nimy 2002). The recent
development of chemiluminiscence-based lectin-bigdissays have further expanded
the applicability to high throughput glycan anasy@Dnitsuka and Omasa 2015).

A ‘middle level’ approach involves proteolytic dgjeon of the glycoprotein
that results in the formation of intact glycopepsdhat are then separated, purified
and analyzed using matrix assisted laser desoftiopation time of flight (MALDI-
TOF) MS (Bailey et al. 2005), or using electrospi@yization (ESI) MS following
separation by liquid chromatography (LC) (Medzitsady 2005). Such a mid-level
analysis helps identify the glycosylation site @hdracterize the site-specific glycan
heterogeneity in samples with multiple glycosylatgites. Note that, this approach at
characterizing the glycopeptide differs from ottesrhniques to identify the site
occupancy. For instance, techniques have been developed t§.C (St. Amand et
al. 2014a) and Raman spectroscopy (Brewster 20all) for characterizing the
glycan macroheterogeneity, that are distinct framtechniques described here for
glycan site heterogeneity. While the former techegassess and quantify the level of
deglycosylation in the sample, the latter char&mtethe glycan species at specific

glycosylation sites.
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The bottom level analysis involves proteolytic elage of the glycoprotein
followed by a release of the N-glycans using enziowalease (with glycosidase
enzymes such as PNGase-F) or chemical release @mitium borohydride). The
released glycans are captured and derivatizedanstiemical tag followed by
spectroscopic analysis. While there are severtdrdifiit glycan labeling strategies, the
commonly used techniques are based on reductivession — wherein a label such as
2-amniobenzamide (2-AB), 2-aminobenzoic acid (2-AdY)2-aminopyridine (2-AP)
which contain primary amine groups react with tltkeelayde group of the glycan
forming a Schiff base; or are based on (per)-matloih — where hydrogens on the
hydroxyl group, amine group, and carboxyl groupthefglycan are replaced by
methyl groups from the added methyl iodide (Ruhetadd. 2010). Labeled glycans are
then analyzed using HPLC or MS.

Bottom-level analysis gives an in-depth characté¢ion of the different glycan
species present in the mAb and is required byeglllatory agencies. However, the
detailed information received from a bottom levehlgsis comes at the expense of
local information such as protein binding site,ogly pairing on the adjacent heavy
chain glycosylation site, etc. Extensive reseaahlteen undertaken on the
development of such assays that characterize ttr@h@terogeneity in the antibody
sample. As these assays require elaborate sanggarption, they are usually
comprised of multiple process steps and effortehmeen directed at optimizing each
process step. For instance, following the purifaxabf the glycoprotein, the
enzymatic release of the glycan species requireght incubation. However, by
using microwave based deglycosylation techniqguesoverall deglycosylation time

was reduced from 16 hours to a matter of minutesd8val et al. 2007a; Sandoval et
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al. 2007b). The subsequent choice of the labeliggd dictated by the final analytical
technique used for characterization. Different tagge their specific advantages and
disadvantages and are optimized for each applitatoour work, we have
extensively used glycan permethylation as repartede previous chapters to label
the released glycans using the Ciucanu method &Biuand Costello 2003; Ciucanu
and Kerek 1984). Here the methyl iodide is addetthénpresence of a strong base
such as sodium hydroxide followed by liquid-liq@idtraction and solid phase
extraction prior to analysis by MALDI-TOF (Kang &t 2008; Lin and Lubman
2013). Alternatively, both 2-AB and 2-AA labels lealveen used as fluorescent tags
followed by subsequent purification and glycan elsterization using a variety of
analytical techniques — such as capillary electoopsis (Kamoda et al. 2006), normal
phase HPLC (Royle et al. 2007), UPLC or ultralpginfformance liquid
chromatography (Burnina et al. 2013), and HILIChgdrophilic interaction liquid
chromatography followed by MS (Shang et al. 201L4pel-free analytical methods
using coupled orthogonal methods such as LC-MS1&h8IMR have also been
implemented to characterize the glycan distributboommercial mAbs (Wiegandt
and Meyer 2014).

The relative comparison between different charaagon methods such as
Reverse Phase (RP)-UPLC, HILIC-UPLC and CE-LIF&las been studied,
highlighting the disadvantages of using the RP-UPt&€thod (Adamczyk et al. 2014).
Efforts have also been made to increase the thpugif these characterization
methods by introducing automated sampling and &nalytechniques thereby
reducing sample time (Doherty et al. 2013; Tharngam et al. 2015). The methods

listed so far are by no means exclusive, as a ghptein may be characterized by
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more than one orthogonal technique (Klapoetke 281&dlmann et al. 2008; Wagner-
Rousset et al. 2008).

Monosaccharides are obtained by acid hydrolyste@fjlycoprotein and can
be analyzed using high performance anion exchaiB&E) chromatography or by
gas chromatography followed by mass spectrometGr¥Gs). They are often used to
characterize the individual sugars that comprigeadigosaccharide.

With the advancement of analytical techniques &edrcreased
understanding of the effect of glycosylation onesthuality attributes such as
aggregation and charge variants, there have bettrefladvances in the development
of multi-attribute methods wherein more than a lemgiality attribute is measured
using orthogonal techniques (Rogers et al. 2018ylitfonally, increasing regulatory
requirements have also led to the developmentwarakhigh-throughput techniques
for glycan characterization at all levels (Aicha&t2016). However, despite these
advances, glycan analysis still remains an elab@madl time-consuming process.
While a few assays have been developed to achieatereal-time analysis of glycan
species (Tharmalingam et al. 2015), a majorityheftechniques remain off-line or
require elaborate sample preparation.

For instance, the glycan permethylation technicgedlun this thesis involves
multiple sample preparation steps — starting froibady purification, to glycan
cleavage, capture, labeling, liquid-liquid extraatiand final clean-up — before they
can be analyzed by MALDI-TOF. These sample preparateps can take over 48-60
hours before the glycan distribution is fully chaeaized and hence, are not amenable
for real time or near real-time glycan analysism8mf the newer reagents being

developed for faster glycan labeling remain prahibly expensive and are more
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suitable for final quality analysis before produslease than for in-process use. There
is thus a growing necessity to develop better glyassays or, in the absence of glycan
measurements, to have reliable inferential estisnat¢he glycan distribution. In the
rest of this section, we present in brief, our gf@t developing an in-house HILIC
based glycan assay followed by modeling approaithaddress the challenges arising

due to infrequent measurements.

5.2.1 In-house Glycan Assay Development

An in-house HILIC based glycan assay was develd@echaracterizing the
glycan distribution profile in IgG1 samples obtadrfeom our experiments. IgG1 was
purified from spent media using a PhyNexus BencM&#2 system using Protein A
chromatography resin packed in a 2 mL PhyTip colufte antibody was then
denatured using SDS followed by overnight enzymagiglycosylation with PNGase-
F at 37° C in a water batch. Microwave based deglylation techniques were also
tested, but the technique was marred with issuespobducibility. Following
deglycosylation, the glycans were separated frad#natured protein by buffer
exchanged followed by centrifugation, with the glgs collecting in the supernatant.
The supernatant was then dried and labeled witlhiz@benzamide (2-AB) at 65° C
for 3 hours. Following glycan derivatization, exsesagent is washed off using a
PhyNexus Benchtop MEA2 system with normal phaseraoatography resin packed
in a 2 mL PhyTip column. The labeled glycans aenthnalyzed on a Waters BEH
XBridge Glycan column (250 mm, 4.6 mm o.d., 3.5nmicparticles) following
hydrophilic interaction chromatography (HILIC) on Agilent 1100 system fitted
with a fluorescence detector. The total glycansialtime was further reduced by

using non-linear gradient chromatography to enhaeparation. The resulting glycan

144



peaks were characterized by comparing the retetitizas to the retention times for a
2-AB labeled dextran ladder that was analyzed uaisignilar elution gradient and the
glycan peaks were then identified on the basis@f glucose unit (GU) values by
searching the GlycoBase database (GlycoBase, NIBBIand).

The in-house assay reduces sample preparationvanallcanalysis time to a
little over 48 hours in comparison to the longempethylation assay. Thus, this assay
can be potentially used for analyzing in-process@as. However, even with a
reduced analysis time, we are faced with the is$tlee long time delay associated
with this assay. We can address this issue byreifieleveloping a different assay
that would require fewer measurements to be maeéegly reducing sample time; or
(i) utilize a mathematical model to predict thgadn distribution taking into account
the associated time delays. These challenges lemredaldressed in 85.3 and 85.4

respectively.

5.3 Designing Novel Glycan Assays using Observabilitymalysis

As our brief review shows, glycan analysis is aaitaxg and challenging
frontier in glycobiology and has seen consideralleelopment in the past couple of
decades. The advancement of analytical tools alethgthe growing requirements
from manufacturers and regulatory agencies alikehtvacterize the glycan
distribution have led to the development of a \ugra# glycosylation assays.
However, these assays require skilled personnpérestve reagents, and/or detailed
sample preparation prior to characterization. Taratterize these diverse and
complex glycosylation profiles, faster or simplesays have to be developed that can

be implemented on-line or at-line during manufacigir
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One characteristic feature of glycan species thatiot been widely exploited
in the development of current glycan assays isittterlying glycan reaction network.
As noted in 81.5.1, although glycosylation is a-template driven process, the
localization of different glycosyltransferase enagcauses specific glycan species to
be produced in different regions of the Golgi appas. Further, the formation of late
stage glycans is dependent on the glycan spedaearth produced prior to it. Thus,
the sialic group will only be attached to a galagtated glycan; the galactose group,
in turn, only attaches to an N-acetylglucosamirexprsor; and so on. Thus, the
individual glycan species are interconnected fogvan elaborate glycan reaction
network whose topology can be studied to undergtamdmpact of specific glycan
species on other glycan intermediates. Such adgpall study of the glycosylation
reaction network has been studied previously teetstdnd the modularity in these
reaction networks and develop techniques for glggoeeering of therapeutic proteins
(Kim et al. 2009a). Here, we use the informationtamed in such a glycan reaction
network to guide glycan assay development. Essntige propose that, in lieu of
measuring each individual glycan species, it mgglifice to measure a judiciously
selected set of glycans that contain informatiooualthe rest of the glycan reaction
network. Assays developed for these “secondary”sonegments would thus contain
the relevant information needed to infer the glydestribution profile.

The use of secondary or indirect measurementditoase target variables is
not new and the use of such soft sensor techniguésoprocesses has gained a lot of
traction in recent years (Mandenius and Gustav&8d56). To be able to design and
implement these soft sensors, we must first anaveeitical question: for a given set

of secondary (indirect) measurements, which contimnavould be suitable for
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estimating the target variables (Golabgir et al3®)0 In the context of our work, we
frame this question as: which combination of glyspacies, when measured together,
would be suitable to estimate the complete glydatmibution profile? Having

identified this combination of glycan species, va@ then explore the feasibility of
developing novel glycan assays targeted towardsethpecific information-rich

glycan measurements.

To address this work, we rely upon observabilitglgsis, which reflects the
possibility of estimating the internal states @yatem based on the input/data
available over a finite time horizon (Ray 1984)olservability analysis we aim to
infer the internal state or the glycan distributfonour system using the available
output measurements, making it a dual to the cbalribty analysis that was
previously described in 83.2.5. However, for asysas complex as glycan reaction
network, where the enzyme kinetics for each glysj@ecies are described using
Michaelis-Menten reaction kinetics, we note that tise of standard observability
analysis poses a mathematically intractable prob&onsider, for instance, a generic,
time-invariant state space model describing theadyos of our variable of interest, x

(the glycan distribution profile), as given by:

dx
= = fxw 5.1

whereu represents the associated inputs and the out@gurementsy (that we wish

to monitor using the glycan assay) are given by:

y = h(x,u) 5.2
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Applying standard observability analysis enabletousniquely infer the initial
statex(0), provided the following observability criteimmet — the observability
matrix obtained as the Jacobian of the Lie denveatiector of the output must be full
rank. Clearly, for a small glycan reaction netwuaiikh just 20 glycan species, the
associated Jacobian calculations become compuddliamallenging. Also, a
complete observability analysis only serves to ssffeour selected set of
measurements renders the system observable, wighotiting any guidance as to
the selection of specific sensors. As our objedsuve identify the particular sensors
whose measurement will aid in characterizing themete glycan distribution, we
seek alternative means of performing the obsenalihalysis.

One such approach to identify the sensors tharidesihe internal states of a
complex systems uses a graphical approach, wheference diagrams are drawn,
connecting the different states that are intercotateand subsequently, strongly
connected components (SCC) decomposition is pedron these inference
diagrams to uniquely identify the nodes that casdiected as sensors (Liu et al.
2013). However, the challenge of applying suchagphical approach to our problem
lies in the inherent linear nature of the glycaact®n network. Although the glycan
species are interconnected, oupgtream glycan species (i.e. glycans produced in the
initial compartments of the Golgi apparatus suchige mannose glycans and
biantennary glycans) have an effect ondbenstream glycan species (i.e. glycans
produced in the latter regions of the Golgi comparit such as complex glycans and
hybrid glycans) and not vice-versa. Consequenthgmwe apply strongly connected
components decomposition using the in-bgri#iphnoncomp function in MATLAB

for the 77 glycan reaction network presented inDK2011 model (del Val et al.
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2011), we note that every glycan in the resultiffgrence chart becomes a potential
sensor, implying that we need to measure everyesgigcan under this scheme (see
Figure 5.2). As the graphical approach does nastass in sensor selection, we

examine an alternate based on the stoichiometityeo$ystem.
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Figure 5.2: Inference maps based on SCC decompositithe glycan reaction

network obtained from DK2011 model. Every singlgcgh is identified
as a potential sensor based on this map.
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5.3.1 Selecting Measurement Variables for Analysis

To identify a subset of glycan species that cambasured to provide maximal
information of the complete glycan distribution, examined the stoichiometry of the
glycan reaction network. The interdependencies®fglycan reaction network
indicate that selecting any subset of glycans ftieencomplete set of glycan species
would pose subsequent computational challengesfinidg the measurement matrix.
Recall from equation 5.2, that the measurementdefieed using a measurement
model,h, and are dependent on the inputsand the internal states, Further, in
Chapter 2, we noted that the mass balance onyhargkpecies involve coupled PDEs
using detailed Michaelis-Menten rate equations.sl$rlecting a particular subset of
glycans as our output measurementsind estimating the complete glycan
distribution, x, would result in a highly non-limemeasurement modéi, To
circumvent this issue, we avoid selecting individylgcan species as our
measurements and instead use ‘grouped variableslgsto the glycosylation indices
presented in Chapter 3) as our measurement vasidbde instance, our measurement
variable ‘R’ is defined as the sum of the relative distribns®f all fucosylated
glycans, while the sum of the relative distribusaf all afucosylated glycans is

defined as our measurement variablg. ‘F

F; = %FA2 + %FA2G1 + --- + %FA2G2 + 5.3

F; =0X%M8 + 0 X %M7 + ---+ 1 X %FA2 + 1 X %FA2G1 + - 5.4

The complete set of measurements used are lisfeabile 5.1. Note that, in

addition to the fucosylated and galactosylated onresmsent variables, we have

introduced two additional variables — Man (M), gen of relative distribution of all
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glycans with greater than three mannose groupshetthh and Ratio (R), the relative

distribution of two most abundant glycans foundhe system.

Table 5.1: List of new measurement variables and thdinidie®ns

Selected
Definition
measurement
Fo Sum of relative distribution of afucosylated glgsa
F1 Sum of relative distribution of fucosylated glysan
Go Sum of relative distribution of agalactosylategogins
G1 Sum of relative distribution of mono-galactosythtgycans
Gz Sum of relative distribution of bi-galactosylatgigicans
Mannose, M Sum of relative distribution of high mase species ( > 3)
Ratio (R) Relative distribution of the two most adant species

The biggest advantage of using ‘glycan groups’asmeeasurement variables
in lieu of individual glycan species is the resudtisimplification of the measurement
matrix (Equation 5.2). Instead of a highly non-aneneasurement matrix, we now
have a linear measurement matrix, where most elesnaea either O or 1. Thus, the

linearized measurement model can be written as

y = Cx 5.5
X1
Y1 Cll C12 Cln [le
Yal-| . ] x |- 5.6
Ym Cm1 Cmn anJ
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By this simplification, we reduce the issue of deti@ing the complete glycan
distribution profile from select measurements taathematically tractable matrix
inversion problem. As the measurements includedihere sums of relative

distributions, we are able to introduce additicc@hstraints as given below

Fo + F, = 100% 5.7
Go + Gl + GZ == 100% 5.8
Xj =0 5.9

in = 100% 510

These constraints include the non-negativity canstion the glycan
distribution and a summation constraint on theedé@ht measurement variables. The
implication of the summation constraint is thate@mnot choose to measure the
fucosylation indices (¢ F1) and the galactosylation indiceso(®&:1, Gy)
simultaneously, as the resulting measurement matidd be rank deficient.
Similarly, if we choose measurement variables sbhahthe summation constraint in
eqguation 5.10 is not satisfied, (for instance, bgasing 5, Go, G1, M, R), then we
must modify the measurement matrix appropriatelgatisfy that constraint.
Regardless of how many measurement variables asenhthe number of glycans to
be estimated will be greater, i.e. in equation thé,number of measurements,will
be less than the number of glycans to be estimatddyus the stoichiometric or
measurement matrix;, is non-square and we solve for the glycan distigm using a

non-negative least squares solver.
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To assess the quality of glycan distribution predits arising from our choice
of measurement variables, we test the proposedlatitin technique against
experimental data. Briefly, an IgG1 producing CHQ-¢€ll line was grown under
standard growth conditions described in the previchapters and the glycan
distribution at the end of the batch was analyzaeddrmethylation followed by
MALDI-TOF. A total of eighteen glycan species wesgerimentally observed and
their relative glycan distribution was obtainedeTéxperimental data was then used to
calculate the values of the measurement variables ,F&o, Gi, G, M, and R as
defined in Table 5.1. Next, we estimate the glydstribution using the non-negative
least squares solver in MATLAB and compare thawested glycan distribution to the
experimentally observed glycosylation profile. Thet mean square error (RMSE) is
used to evaluate the quality of the predicted giyaigtributions from our analysis, as

demonstrated in the following section.

5.3.2 Results from Observability Analysis

To estimate the glycan distribution profile, wesfichoose a measurement
vector with as few measurements as possible. Merehoose to measure the
fucosylation indices (& F1) and the mannose value (M) in addition to theoré®) of
the two most abundant glycan species. Figure D& sta comparison of the measured

and estimated values.

153



o]
o

[ Experimental
U/ /] Predicted

(4]
o
1

N
o
|

N
o
1

Relative glycan distribution, %
8
1

-
o
1

o

o002 2TIOIOIZIOND
L N - N T OV -« VL © N «— N
d <9z 2 Al Z2z=2=200
[T w < b W SV
w < <

b

Figure 5.3: Experimental and predicted value ofglyean distribution using
observability analysis with four measurements. iff@asurements
included here areoFF, M, and R

We note that with just 4 measurement variablesrehlealting estimate has an
RMSE value of 13.27% as it closely accounts fortodshe major glycan species.
We expect that increasing the number of measuremahtimprove the quality of our
estimate and accordingly, we choose to measuia &ldition to the measurement
variables previously selected. Addition of a valgaibcreases the rank of the
measurement matrix and the RMSE decreases as edfe®.27%. If we define an
acceptable cutoff for the measurement assay atRBIBE, then an assay with just
five measurements ¢, Go, M, R) would be sufficient to get a reasonabléneste
of the glycan distribution. If we now choose tolude a sixth measurement, say, G
then the rank of the measurement matrix increas6sahd the RMSE decreases to
9.09%. Thus the improvement in the quality of teeneate with the addition of a sixth

measurement is only marginal in comparison toitiqggrovement in the quality of the
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estimate when a fifth measurement is added. Figudr@lots the estimated glycan

distribution for each scenario against the expemniaiéy determined values.
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Figure 5.4: Comparing experimental and predictddesaobtained from
glycosylation analysis with four, five, and six rsagements.

Additionally, we check to see if we can commentlonquality of the
predictiona priori by checking specific metrics related to the measient matrix.
One such obvious metric that can be tested isdhditon number of the
measurement matrix. When we plot the RMSE agaestondition number (Figure
5.5), we notice a general trend in that the ingngasondition number tends to
represent lower RMSE. This is expected as eactiiadal measurement increases the
rank of the matrix and the additional measurenmaproves the quality of the

estimate. Thus, once we select a set of measuraemmgables and examine the
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condition number, we might plausibly be able togedf the quality of the estimate

will be within the defined acceptable limit.
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Figure 5.5: Root mean squared error (RMSE) of tiieag prediction for different
scenarios plotted against the corresponding camditumber of the
measurement matrix. We see that with four measurantne predicted
measurements have a lower condition number bujleehiRMSE, while
with six measurements, the RMSE is lower.

Finally, we note that we the choice of differentasigrements is a
combinatorial problem. Assuming that the ratio iRRneasured each time, we can
come up with forty different choices involving difent combinations of variables that
comprise the measurement vector. These include g@gefour measurements, five
measurements, and six measurements, as well esntheeficient case where both
fucosylation and galactosylation indices are inellidn cases where the chosen

measurements do not meet the summation constitantmeasurement matrix is
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adjusted accordingly and the glycan distributiothen estimated. The resulting
RMSE values for each of the 39 cases is plotteafasction of the matrix condition

number.
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Figure 5.6: Root mean squared error (RMSE) forahypredictions with each of the
39 cases tested plotted against the correspondimdjton number. The
red squares indicated cases with four measurentéetbjue diamond
represents cases with five measurements, the gieagle cases with six
measurements. As some measurement choices do abthee
summation constraint, they are added to the mems&inmematrix. The
purple circles consist of 4 measurements with trestraint added, while
the black cross marks are for five measurements avitonstraint added.

Our analysis shows that it is not just the numiien@asurements that matter,
but also the choice of a measurement variable aga & significant impact on the

overall estimate. For instance, for a given nundfeneasurements, if we take an

157



average of the mean of squared errors, we notéhtbafuality of the estimate
improves when we excludex@r Man as a measurement variable. This is likely
because they information content in &d Man is lower than that contained in the
other measurement variables, as there are fewlkemh@nnose and bi-galactosylated
glycoforms.

Overall, the analysis presented here is a meaassess how measurement
variables can be selected to obtain reasonablyptaige estimates of the glycan
distribution. We must note that in each case wesatienating a large glycan
distribution with a limited set of measurements] Aence there is some sacrifice in
the quality of the estimate. However, the informatcontent in all measurement
variables is not the same and given a limited Eeteasurements, this method can be
used to rationally design assays that measuresthered variables.

While observability analysis helped us understama hovel assays can be
developed, in the subsequent section, we addressheoglycan distribution can be

estimated using a dynamic model with intermitteeasurement.

5.4 Estimating Glycan States

As discussed in 85.2, measuring the glycan digiohus laborious, expensive,
and time-consuming; consequently, glycan measurenaea made at infrequent
intervals, with no reliable on-line monitoring diet glycosylation profile. Although
progress is being made in monitoring real-time gtydistribution using some of the
more advanced assays (Tharmalingam et al. 20k gdtablished methods for
measuring the complete glycan distribution praddite still primarily offline. The
absence of any commercially available assays fotirmaous, on-line monitoring of

glycosylation, renders on-line control of glycosida extremely difficult and
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necessitates the development of alternate appreachmeonitor the glycan
distribution. In 85.3, we discussed how stoichiameahformation of the glycan
reaction network can be used to develop novel glassays based on output
observability analysis. In this section, we addtessissue of infrequent
measurements directly by employing dynamic modetxdbed in detail in Chapter 2

to estimate the glycosylation profile.

5.4.1 Overview of State Estimation

State variables are those process variables tiguely specify the internal
condition (or state) of a process at any given tim@rder to achieve effective control
of a dynamic process, it is necessary to havebleliaeal-time information on these
state variables (Ogunnaike and Ray 1994b; Soro@88)1However, in practice, not
all state variables can be monitored on-line dusottsiderations of cost or analysis
time, or even the availability of reliable sensdrise lack of frequent, on-line or at-
line measurements of critical process variable®mmonly encountered in the
process industry, with routine analysis of samplkeisg conducted offline and/or on
an infrequent basis. Without on-line sensors fbstalte variables, regular feedback
control of the process is rendered infeasible arté, inferential techniques are used
to reconstruct or estimate the state variablescbasevailable measurements
(Ogunnaike and Ray 1994a). The general structuseidf a ‘state estimator’ is

presented in Figure 5.7.
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State model

x(t) = f(x(0),u(®)) +¢,

Output

Initial condition
measurement

x(0) = xo + & y = h(x(t),u(t)) + B

State
Estimator

2=fRud;p)+ K*(t)[y(ts) — h(®,u; £)]

y

Estimate, 2(t)

Figure 5.7: General structure of a state estimétdapted from Ogunnaike and Ray
(1994b)

State estimators static or dynamic, determinifiachain 2003) or Bayesian
(stochastic) (Patwardhan et al. 2012) systemsatieatvidely used to estimate the
unmeasured states in chemical (Ogunnaike 1994; Zaardi al. 2003) and
biochemical processes (Dewasme et al. 2015; Feesastchl. 2015; Gudi et al. 1995;
Tatiraju et al. 1999). The main components of testatimator are as listed below.

A state estimator requires a dynamic model of ifferdnt states of the system

X, with process input, and model errof usually given by
d
- =W + 50 5.11

The initial condition for the states, as represetg

160



x(0) =xo + & 5.12

The measurement device which produces the sigmakakured values, v,

y=hxuB)+n 5.13

where the measurement model depends on the paramfeded the measurement

signal contains nois@,
Based on these components, we develop a stateagstithat takes the form

A

dx

- (Rw+KOy® -y®] 5.14

§=h&u,p) 5.15

Here, the variable® andy refer to the on-line estimates>ofindy
respectively, an (t) denotes the correction gain matrix. The fiestt in the state
estimator is the prediction based on the procestsemwhile the second term denotes
the correction to the process model calculateti@asglifference between the actual
measuremeny;, and the estimated value of the measurement sgnadedicted by
the modelh(X, u, B). In the next section, we identify the state vdaaland

measurements in our process.

161



5.4.2 System and Model Description

The multi-scale dynamic model for glycosylation bagn described in detail
in Chapter 2 of this thesis. Briefly, we use a roagrale model developed using
Monod kinetics to calculate the antibody produtyiviased on cellular growth. The
glycan productivity, which is obtained from theiaotly productivity in the macro-
scale model, is used in the adapted DK2011 modahtain the glycan distribution
profile. The values of the process variables meakat the macro-scale (nutrient
concentration, cell densities, antibody concerdgrgtare available to us at the time
scale of an hour, which when compared to the tgeired for analyzing the glycan
distribution profile (> 48 hours), is practicallysignificant. Thus, the macro-scale
process variables are available at much fastes eatd at higher frequencies than the

micro-scale glycan distribution, as listed in Tabl2

Table 5.2: Measurement delay and sampling frequenciedifi@rent measurements

Process Variable Time delay Sampling frequency
(hours) (days)

Glucose concentration 0.0 1

Glutamine concentration 0.0 1

Lactate concentration 0.0 1

Ammonia concentration 0.0 1

Viable cell concentration, X | 0.0 1

Total cell concentration, X | 0.0 1

Antibody concentration 0.5 2

Glycan distribution 48.0 2

For the purposes of the present discussion, weliateathe performance of the

state estimator assuming that there is adequatgl&dge of the macro-scale model.
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Thus, we assume that theraipriori knowledge of cell growth profile, antibody
productivity profile and hence, the glycan produtyi profile. Such an assumption
would be valid, considering that macro-scale cotreéion measurements are
available at a significantly faster rate and a grefiequency than glycan
measurements. Further, by assuming that the maate-siodel correctly predicts the
antibody and glycan productivity rate (which forine inputs for the micro-scale
model), we deduce that differences observed bettveemeasured and the predicted
glycan distribution profile are due to inadequaaethe micro-scale model alone.
This assumption helps simplify our calculations asdess the performance of the
state estimator. Before we get to designing thte sistimator, however, we must first
define the state and measurement variables arattdredant equations used in the
dynamic state model.

The absolute concentrations of the different glgoof that accumulate in the
flask over the period of the batch culture represieminternal state of the system that
we wish to monitor, whereas typical glycan assagside the relative distribution (or
percentage distribution) of the individual glycaesies in the flask at a particular
sampling time. Thus the absolute accumulated cdrat@ns of individual
glycoforms are the state variables of intergkt\Whereas the relative glycan
distribution (or percent glycan distribution) ofceaglycoform obtained from the
glycan assay constitutes the measurement variables the absolute concentrations
of different glycan isoforms remain unmeasured andlycan measurements are
available only at infrequent intervals, we emplayyaamic model based state

estimation technique to obtain real time estimafdke state variables.
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Having defined our state and measurement variatllesesulting system
equations that we use in our analysis are obtasddllows. We note that the
accumulation of any specific glycoform (mAlin the culture can be given by (del Val

et al. 2016):

d[mAb]
dt

= f; X qmab X Xy 5.16
wherefi is the fractional concentration of that mAb glymoh obtained from the
micro-scale modebma, andXy are the antibody productivity and cell viability
obtained from the macro-scale model, respectivétg glycan measurements are

related to the glycan fraction state variables as:

y(t) = mx(t),% 5.17

In the present analysis, we generate our modelgii@as using the
aforementioned multi-scale model. However, lackimgexperimental measurements
to compare these model results to, we generated senulated measurements using
a modified version of the multi-scale model. Tlisaccomplished by changing the
concentrations of the glycosyltransferase enzymdisda micro-scale model and
obtaining a new glycan distribution profile. Théatese glycan distribution is
calculated at specific time points and chosen esitinulated ‘measurement’ for our
system. The algorithm for the state estimator &edassociated calculations are

discussed in the following section.
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5.4.3 Algorithm for Designing the State Estimator

As described in the previous section, we implentleaistate estimator by
assuming that the macro-scale model is known @pugori, enabling us to predict
the glycan distribution profile based on antibodgductivity.

Starting with an initial concentratio, we solve equation 5.16, to obtain the
estimate of the concentration of individual glyaofis accumulated from tinte= to to
timet = t1, and using the model listed in equation 5.17, iaia the relative glycan
distribution §) at timet = t1. At the first time instant, the solver checks ¢e & any
measurementy(t,)) are available, and if so, this measurement ispeoed to the

model prediction at that time insta§t({, ), giving us the errog as

gli=r, = y(t1) — ¥(t1) 5.18

We multiply this error by a correction gain mat¢i«) as given in equation
5.14 and add the innovation term to our predictibthat time instant. The correction
gain matrix is generally specified according to tyy@e of estimator used. For non-
linear systems, a commonly employed state estintbe extended Kalman filter
(EKF), wherein the non-linear state equations iaestized around the current state
estimate and an appropriate correction tefexf) is calculated using the process
noise covariance matrix, the measurement noiserieov matrix, and the Jacobian
of the process model (Fernandes et al. 2015). Byrast, the unscented Kalman filter
(UKF) avoids linearization approach used in EKF arstiead uses a Gaussian random
variable to represent the state distribution, aaldutates the Kalman correction gain
using the covariance matrices. In our system, ifjie dhegree of non-linearity

associated with the glycan reaction expressionsemakmpractical to adopt
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linearization techniques or evaluate the appropdatobian of the process model.
Instead, we use a constant, time-invariant comaajain matrix in all our simulations
and evaluate the performance of the state estimatier these conditions.

The correction gain matrix is multiplied to theardetermined from equation
18, to obtain the correction (or innovation) termnieth is then used to update the
model as shown in equation 5.14. We then solvetequa.16 for our state variables
(glycoform concentration) from tinte= t1 to the next time instant= t> using the
updated state estimate at titrre t1. At the next time instant,= t2, we evaluate once
again the availability of any measurements. If reasurements are available at time
= tp, equation xx is solved till the next time instartt3, without any correction to the
model prediction at time= t>. This loop is iteratively performed till the entitbe
batch. Figure 5.8 shows a flowchart that brieflynsearizes the algorithm

implemented here for state estimation
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Figure 5.8: Flowchart depicting state estimatiggoathm. At specific time instants,
the availability of measurements is checked. Ihew measurements are
available, the state estimator uses the modeledigirthe glycan
distribution. When a measurement becomes availdi@anodel is
updated and a new prediction is obtained. The digors performed
iteratively till the end of the batch.
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5.4.4 Estimating Glycan States using a Constant, Time-irariant State
Estimator

In this section, we will discuss the key findindganed by implementing the
designed state estimation technique. First, weuat@lthe state estimator performance
under nominal, noise-free conditions where, we msstinat neither the model nor the
measurement has any noise associated with it. Tbislove generate noise-free
measurements using the multi-scale model at tinmggo = 58 hours, 98 hours, 138
hours, and 178 hours. These time points are ches®ming that the initial glycan
measurement is made after about two and a halfafégisthe cells were inoculated in
the flask, followed by glycan measurements everpd@s. Next, we follow the state
estimation algorithm and generate model predictfooms timet = O to timet= t; = 58
hours. At 58 hours, the innovation (correctionjiteén the state estimator is activated
and the model prediction gets updated, followedudysequent integration of the state
model till the time point at which the next measoeat is available, i.e. 98 hours.
Once again, at 98 hours, the measurement is cothpatbe estimate of the measured
value as generated by the model predictions, amddlrection term is activated
accordingly. This process is repeated for time §3al'38 hours and 178 hours and the
final glycan distribution profile predicted by theodel is recorded. In these
simulations, the correction matrix is defined aagonal matrix with a constant,
time-invariant gain of 10.

Additionally, to compare the efficacy of our statgimator, we obtain model
predictions for the complete time period withowtluding the state estimation
technique, i.e. model predictions are not correatdtie specific time points at which

measurements are available. Figure 5.9 plots tivaaed values of the accumulated
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glycan fractions for three glycan species A2, F&Z] M6 and compares them to the
available measurements.

We note that in each case, the estimates obtaiogdthe model prediction do
not match the available measurements and hencemdtel predictions must be
corrected appropriately. When the first measurerbenbmes available at time 58
hours, we note that the activation of the correcti@trix improves the subsequent
estimate of the glycan distribution, and with eaduditional measurement, the final
estimate is closer to the measured value of theaglgtate. Figure 5.9(d) compares the
sum of squared errors (SSE) between the estimatedrgdistribution and the
measured glycan distribution at each time pointeéagain, we note that the sum of
squared error between the estimated values andd¢hsured values decreases when a

state estimator is implemented.
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Figure 5.9: State estimator performance under Hoggeconditions. Plots represent

the accumulation of (a) A2; (b) FA2; and (c) M6li8aed line
represents the estimate without state estimatensolid black line
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estimates obtained without implementing the statenation technique
while the cross-hatched bars represent the SS&stonates obtained
after implementing state estimation

Next, we test the state estimator performance ucaladitions where we

account for model and measurement noise. Hereddi@ ainiformly distributed

random number, generated using the inbughd’ function in MATLAB, to each

measurement value and to each model prediction.edMexythe measurement
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variables represent relative glycan fractions aedhance constrained to sum up to 1.
Therefore, upon adding a random number to eachurezagnt and model value, we
must then renormalize the measurement and modetvab that the inherent
constraint (that the sum of glycan fractions mut ap to 1) is satisfied.

Figure 5.10 compares the estimated value of thenaglated glycan fraction
for glycoforms A2, FA2, and M6 to their respectimeasured values. Once again, we
note that the estimates obtained by implementiegtate estimator are closer to the
actual measurement than the estimates obtainedwvitmplementing the state
estimator. The sum of squared errors of the estisnalbtained using the state
estimator are also lesser than the sum of squared @f estimates obtained without

implementing the state estimator.
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Figure 5.10: State estimator performance in thegee of model and measurement
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grey bars represent the SSE for estimates obtaitbdut implementing
the state estimation technique while the crossHeatdars represent the
SSE for estimates obtained after implementing sstienation

In the analysis performed here, we have worked witbnstant, time-invariant
gain in the correction matrix. Further refinemehth@ state estimator can be carried

out by using a varying correction gain matrix.
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5.5 Summary and Conclusions

Glycan distribution is heterogeneous and diversaltieag in a wide array of
oligosaccharide attachments that are naturallyrebde The attachment of these
diverse oligosaccharides to different glycoproteihers their form, functionality, and
structure and is hence critical to be monitoredilgjlycan analysis has been used
primarily for off-line quality control to ensure tzh-to-batch consistency and
comparability, the adoption of quality by desigrb@®@) principles by manufacturers
and regulatory agencies, and the emergence ohtiiass is increasing the need for
at-line and on-line glycan characterization asskigsvever, current glycan
characterization assays are laborious, expenginktime-consuming and hence, most
glycan assays are still performed off-line. The&klaton-line or real-time
measurements further hinders the development dfamsthemes that can be
developed to ensure on-line glycosylation conffoladdress the challenges
associated with the lack of on-line measurementbave presented two techniques in
this chapter. First, we developed a rational metiexked on observability analysis to
identify glycan groups that can provide the maximuoformation about the glycan
distribution profile, based solely on the stoich&int information of the glycan
reaction network. Next, we have demonstrated theaely of a state estimator scheme
in estimating the glycan distribution profile iretabsence of real time measurements.
This work will form the foundation of future effaerto develop on-line control

schemes for controlling glycosylation in mADs.
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Chapter 6
SUMMARY, CONCLUSIONS, AND FUTURE WORK

6.1 Summary and Conclusions

The work presented in this dissertation providesbaist framework: (a) for
modeling the effect of different input factors & tglycosylation profile and
obtaining quantitative input-output relationshifs), for estimating the glycan
distribution profile in the absence of real timgagln measurements; and (c) for
controlling the final glycosylation profile based an understanding of the underlying
structural input-output relationship. The develofradnework forms the basis of a
rational approach to implement process analyteetology (PAT) in upstream cell
culture operations to ensure glycosylation control.

As glycosylation is affected by a variety of fact@t different system scales,
we first developed a multi-scale model of glycosiglalinking a macro-scale cell
culture model to a micro-scale, kinetic model gfcgisylation. The model predictions
were compared to the experimental data obtained fnehouse shake flask studies
and the model parameters were optimized accordifiglg model was then validated
under fed-batch conditions and found to be faiglyresentative of the growth
dynamics under both batch and fed-batch conditibhs.antibody productivity rate
from the macro-scale model was used to obtain lyeag productivity rate which was
used, subsequently, to predict the dynamic glyéstniloution profile in the system.

This multi-scale model serves as a quantitativie bietween cell growth conditions in
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the bioreactor and the observed glycosylation [@aifind can predict the glycan
distribution under different cell growth conditions

However, one of the limitations of the developedtiracale model is that the
model accounts for the effects of cell culture s on the glycan distribution but
does not take into account the changes in the glglcsribution arising due to
variations in cell culture media. Media compositisiknown to affect cell growth and
product quality, but the composition of most comeradty available cell culture
media is proprietary information and is, therefaneknown to the end user.
Consequently, there exist few models that can caphe underlying mechanisms
relating the vast majority of media components @iredglycan distribution. In order to
rationally quantify the effect of different mediamponents on the glycosylation
profile, we used a holistic approach combiningdael design of experiments and
mathematical analysis as demonstrated in Chapten&.ein we evaluated the effect
of dynamically introducing MnGland EDTA on the final glycan distribution using
controllability analysis.

While the effect of MnGlas a media supplement has been well studied, our
work is a novel consideration into the effect dfaclucing multiple media
supplements at different stages of cell culturec8ally, we demonstrated through
mixed-level factorial experiments that adding Mn€arly during cell culture has a
greater impact on the glycan distribution profilan a late stage addition. Further, we
showed that the changes in the glycosylation mrafile to the addition of Mngib
the media are not immutable and can be reversédejudicious addition of EDTA.
Specifically, the addition of EDTA after Mnghas been added to the cell culture was

shown to reverse the changes in the glycan disioibulue to the addition of Mng&l
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However, the time of addition of EDTA also influemccell growth and productivity,
with early addition of EDTA having an adverse effetile late stage addition of
EDTA enhanced the final antibody titer.

Next, by performing controllability analysis, weeitified the combinations of
inputs factors which, when manipulated, resultuarmifiable changes in the relative
percentage of specific glycan species. Our analyisewed that the most controllable
glycan species in our experimental system wereFA2G1 and FA2 whose
concentrations were affected by early stage supptéation of EDTA and late stage
supplementation of Mn@I Thus, we successfully demonstrated that the glyca
distribution is affected not just by the concentnatof the media supplement, but also
by the time of introduction of the media supplem&hile conventional strategies for
media development include media preparation padhé start of the batch, the
experimental and computational approaches demadedtiraour work present a
holistic approach to controlling the glycosylatiomofile using time-dependent media
supplementation.

Controllability analysis allows us to identiyhich combination of input
factors influence specific glycan species andhéy much. Thus, by implementing
controllability analysis, we generate a quantigiivput-output relationship relating
the multiple inputs that are available to the nplétioutputs in the system. In Chapter
4, we used this structural relationship to desigeagylation controllers for two cases
of practical significance: (i) where the input fas chosen were the enzyme
concentrations in the micro-scale model developedhapter 2 and the changes in the
glycosylation model were observed via simulatiarg] (i) where the input factors

were amino acid supplements added to cell cultiedianand the changes in the
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glycosylation pattern were evaluated experimentétiyoth cases we designed
proportional and proportional integral controllarsd evaluated the performance of the
controllers under set-point tracking conditions. Wtserved that the controllers were
able to effectively track the new set-point undethtnominal conditions (i.e. when we
assumed that the input-output model generated bganirollability analysis is a
perfect representation of the ‘true’ process omlamt) and under the more realistic
model-plant mismatch conditions. Significantly, aleserved that by designing our
controllers using select singular values obtaimethfcontrollability analysis,
controller robustness is maintained in the facgigrificant model-plant mismatch.
The glycosylation controllers developed in this kvoan form the basis of future cell
engineering and media design efforts.

However, it must be noted that the glycosylationtoalers designed on the
basis of controllability analysis are batch-to-lbatontrollers, with the control action
performed on every successive batch to ensurestensiglycan distribution. To
achieve real time control of glycosylation, it Bsocessary to measure the glycosylation
profile continuously or at reasonably frequentivéds compared to the time-scale of
the process. As noted in our brief review in Chapteurrent assays for glycosylation
are performed offline, at irregular or less frequatervals and are associated with
long measurement delays. Consequently, in the abs®rany real-time measurement
of the glycan distribution there is a need to depdechniques to infer the glycan
profile based on a process understanding of thesydVe have addressed this
challenge using two approaches. First, using olagdity analysis and by exploiting
the underlying connectivity inherent in glycan réac networks, we have identified a

particular subset of glycan measurements that wiessured together would give us
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ample information about the complete glycoformritisttion. Such an approach can
lead to the rational development of shorter or $&mglycan assays that do not require
measuring the entire glycosylation profile. Nexg ave used the multi-scale model
presented in Chapter 2 in a state estimation schemiatain estimates of the glycan
distribution profile over the course of a batch amd compared these to a set of
simulated ‘measurements’. As and when the measuntsmere available, the
predicted estimates would be corrected and a nemags would be obtained. In our
simulations, we tested a constant, time-invariantaction gain matrix and the
resulting estimates were closer to the measurethantthe values obtained without
state estimation. The state estimation performagwained robust even when
evaluated against measurement noise. To our kngeedis is the first such design
of a state estimation scheme to achieve real-tstimates of the glycosylation profile.
The state estimator designed here will be an iategmrmponent in the development of
an online glycosylation controller.

In the following section, we briefly consider someenues of research that can

be considered to extend the work presented irdibgertation.

6.2 Future Work

6.2.1 Expanding the Scope of the Multi-scale Model

In this dissertation, we have established thatthki-scale modeling approach
presented here is critical to our understandingjyfosylation and for obtaining
reasonable estimates of the different glycan staitesrefore, enhancing the fidelity of
the model will be vital to the development of robesntrollers. Some of the

approaches to extend the scope of the multi-scatéehrare listed below:

178



Mechanistic model development: In order to enhdheautility of a

mathematical model, it is necessary to ensurettieatnodel is valid and has
acceptable predictive capabilities over a wide eaofginput conditions beyond those
in the model identification set. To improve modalability, it is necessary to perform
informed experiments that can be used to refinertbeel systematically (Kontoravdi
et al. 2010; Lencastre Fernandes et al. 2013)bietwgical systems, the resulting
mathematical models typically contain several mg@ebmeters whose values are
either based on historical manufacturing data,inbthfrom literature, or they are fit
to suit the available experimental data. Howevechsan approach limits the utility of
the model and hence, there is a need for systemsttimation of the model

parameters, as shown in Figure 6.1
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Figure 6.1: Schematic representation of systemadidel development. Adapted from
Lencastre Fernandes et al (2013).
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Given that the number of model parameters in ma@athematical models of
biological systems far exceeds the available outpeperimental measurements (for
instance, the macro-scale model developed in thgedation consists of 21 model
parameters and 6 output measurements), it is ir@pioid understand which
parameters are ‘identifiable’, i.e. the parametensse values can be estimated with a
high degree of certainty. Of the subset of idealié parameters, only some are
estimable using the available data. By performilofpg sensitivity analysis, the
dependence of the output variance on the modehpeas can be assessed. Such a
systematic approach is necessary to increase rfidditly and robustness.

Incorporating the effect of multiple input factols:this dissertation, cell

growth and productivity were modeled consideringsstate consumption and by-
product inhibition rates. However, cell growth Is@maffected by the addition of
different media supplements such as amino acidgyeeature shifts, pH and shear
rate. Each of these factors is also known to imiteethe glycosylation profile and
hence an extended multi-scale model would incotpdfee effect of each of these
input factors at multiple scales.

Bioreactor pH is one such input factor that affeet growth, productivity, as
well as glycan distribution. During manufacturig]lular metabolism and by-product
formation results in a drift in bioreactor pH, whits controlled within a specific range
to maintain cell growth at optimal levels by usoamplex buffer and base additions
(Gramer and Ogorzalek 2007). By generating empidcanechanistic models linking
pH measurements at the cellular level to the ieftalar pH (Wu et al. 1993) and then
extending these model to assess organelle levehpHges, it would be possible to

estimate how bioreactor pH can influence the ptheGolgi, changes in which are
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known to affect the glycosylation profiles and giggltransferase enzyme localization
(Hassinen et al. 2011, Rivinoja et al. 2009; Riyanet al. 2012). Similar models can
be built to relate other inputs such as temperatlissolved oxygen content, shear
rate, at the macro-scale to changes at the miale;sithereby providing us with
manipulated variables at the macro-scale that eamsbd to fine-tune the
glycosylation profile.

In the absence of extensive mechanistic modelgratability analysis can be
used to generate quantitative input-output relatiqrs between macro-scale factors
and the glycan distribution profile. Ideally, theeuof micro-bioreactors should be
explored to perform the necessary factorial expenitsiunder high throughput
conditions. Further, if intermittent glycan measueats are available, the current
steady state controllability analysis can be ex¢en quantify the effect of input
parameters on the output glycan distribution asatfon of time. By evaluating the
total change in the glycosylation profile at a giymint of time as well as the
fractional difference in the glycan distributiorofite between measurements, a
dynamic gain matrix can be generated and matheatigtemalyzed to identify how

different combinations of glycans can be controb¢different stages of cell culture.

6.2.2 Multi-attribute Analytics and Control

Protein therapeutics have multiple quality attrésuthat need to be monitored
both in-process and offline. The increasing nundéemnalytical tools employed for
protein characterization have added to the costamplexity of drug testing,
necessitating the development of simpler, multiaite analytical methods (Rogers
et al. 2015). However, existing analytical methadslaborious and expensive, with

fewer options for in-process monitoring. To redtloe cost, complexity and analysis
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time, a representative set of attributes that ¢ontdormation about other quality
attributes can be analyzed. The observability amkgchnique developed in Chapter
5 can be used in determining if the choice of meaments would yield adequate
information about the entire quality profile of thrédb.

For instance, thermal unfolding experiments — wispectroscopic techniques
are used to determine changes in the conformafiarpomotein heated at a constant
rate — are typically carried out to test the thettymamic stability of proteins. Recent
research has indicated (Zheng et al. 2014) that#renal unfolding of antibodies
differs based on the abundance of oligomannosepgratiached to the constant heavy
chain (CH2) domain (Fig. 6.2). Conversely, we caw examine changes in the
thermal unfolding of the CH2 domain as a potersiiatogate for mannose
measurement. Such an analysis can lead to thendafsigtional multi-attribute

assays.
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Figure 6.2: Thermal unfolding from DSC measuremémntslifferent glycan
isoforms. Adapted from Zheng et al (2014)

182



Further, it will be interesting to consider howghemultiple quality attributes
can be controlled using common inputs. For instaheterogeneity that arises from
modifications to the antibody such as the losslgEme residue on the C-terminal of
the antibody (C-terminal heterogeneity) and acatid basic variants (charge
variants), affects protein stability and binding #hese changes depend on the amino
acid profile in the cell culture, we could evaludtthe addition of specific amino acid
supplements to the media alter multiple qualityilaiites such as C-terminal
heterogeneity and charge variants in the mAb. lhsewv do we develop a framework
for achievingmultiple objectives of controlling charge and sequence variants usiag
same set of inputs? The answers to these questions will be criticéhe
manufacturing of generic biologics (biosimilarsatlare expected to match every

quality attribute of the innovator drug.

6.2.3 Validating the State-estimator and Implementing Online Glycosylation
Control

The state estimator designed in this dissertaiontégral to the development
of an on-line glycosylation control scheme. Prelgetite state estimation has been
designed using the multi-scale model. However litve essential to validate the state
estimation with actual, real-time measurementsrtakgrocess. The in-house glycan
assay described in Chapter 5 will be useful in mgkntermittent measurements of
the glycan distribution.

Having evaluated the validity of the state estimatee can then implement the
state-estimation scheme in an on-line glycosylatiomtrol scheme (St Amand et al.
2011). Figure 6.3 shows the proposed hierarchicdti+tmop control scheme where

the inner loop controllers maintain the bioreaetbdefined in-process set-points and
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the outer-loop controller takes control action ¢biave the desired glycan set-point.
The state estimator is used to predict the glyatey profile on the basis of the
multi-scale model and in-process measurementssamgidated when the glycosylation

measurement becomes available.
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Figure 6.3: Strategy for on-line control of glyctaion. Adapted from St.Amand et
al (2011)

The development and experimental validation of arclnline glycosylation
control scheme will establish a new basis for oe-ljuality control of

biopharmaceuticals and will ensure consistent prbduality during manufacturing.
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Appendix A
EXPERIMENTALLY OBSERVED GLYCAN SPECIES

Glycan structures Glycan structures drawn using@¥prm software with
sugar symbol set specified as per Consortium ottamal Glycomics. The masses
correspond to the permethylated masses for thecagp glycan peaks observed

following mass spectrometry.
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O—.—L
FA2 1835.92
| O]
" em
FA2G1 04{ o = 2040.02
| O
| O]
A2 O = == 1661.83
e
BOo
A2G1 O—I{ omE 1865.93
Bo
O
Al1G1 O—|‘|: omnE 1620.8
-@
°q
M5 OF = == 1579.78
o
@
Al O = = 1416.7
BO

203



FA2G2

A3

FAl

FA2BG1

M5A1

FA1G1

FM5A1

A2G2

FA2G1S1

FA2G2S1

224412

1906.9

1590.79

2285.2

1824.9

1794.89

1998.9

2070.036

2401.19

2605.29
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Appendix B
MIXED LEVEL DESIGN OF EXPERIMENTS

The accompanying table lists the full factoriad,82) experimental design as

well as the labels associated with each experirheatalition.

ExperimentfMnCl z2levelEDTA level[MnCl 2 Addition[EDTA Addition |Label
1 -1 -1 -1 -1

2 -1 -1 -1 0

3 -1 -1 -1 +1

4 -1 -1 0 -1

5 -1 -1 0 0 Control
6 -1 -1 0 +1

7 -1 -1 +1 -1

fe] -1 -1 +1 0

9 -1 -1 +1 +1

10 -1 +1 -1 -1

11 -1 +1 0 -1 ED DO
12 -1 +1 +1 -1
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Table continued

13 -1 +1 -1 0

14 -1 +1 0 0 ED D3

15 1 +1 +1 0

16 -1 +1 -1 +1

17 1 +1 0 +1 ED D6

18 -1 +1 +1 +1

19 +1 -1 -1 -1

20 +1 -1 1 0 Mn DO

21 +1 -1 1 +1

22 +1 -1 0 -1

23 +1 1 0 0 Mn D3

24 +1 -1 0 +1

25 +1 -1 +1 1

26 +1 1 +1 0 Mn D6

27 +1 -1 +1 +1

28 +1 +1 1 1 [E)g DO/ Mn
29 1 1 1 0 oo D3/ Mn
30 +1 +1 1 +1 oo DO/Mn
31 +1 +1 0 -1 [E)g DO/Mn
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Table continued

32 1 1 0 0 o D3/ Mn
33 +1 +1 0 +1 = D6/ Mn
34 +1 +1 +1 -1 Eg DO/Mn
35 +1 +1 +1 0 o0 D3/Mn
36 +1 +1 +1 +1 Eg D6/Mn

tDO, D3, D6 refer to the time of addition of theoplement MnCl (Mn) or EDTA
(ED) on day 0, day 3, or day 6 respectively.
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80¢

Gain matrix generated from statistically significgm<0.05) coefficients obtained from ANOVA of the fiictorial design

experimental data

FA2 [FA2G1 A2 |IA2GIALIGY M5 | Al [FA2G2 A3 |FAL [FA2BG1M5A1IFA1IG1IFM5A1M6A1IA2G2FA2G1SIFA2G2S]
MnCI2 2.17] 0.0C |-2.27-0.5C] 0.37|-0.8€/0.0C| 0.0C |0.0¢0.0C] 0.0C |0.27| 0.2z | 0.1% | 0.15)|0.07] 0.0C 0.0C
EDTA 0.00] -1.79|2.34 0.80| 0.00|0.00/0.00] -0.48 | 0.000.55 0.12 | 0.00] -0.09 0.0 0.00 -0.p70.00 -0.05
Mn Time 1 0.0C] -0.87 [1.45| 0.7€] 0.0C|0.0C|0.0C| 0.0C |0.0¢{0.0C] 0.1¢ | 0.0C| 0.0C | 0.0C | 0.0C|0.0C|] 0.0C 0.0c
Mn Time 2 -1.08 0.00 | 0.450.00{ 0.00/0.00[0.00] 0.00 [0.000.00f 0.00 | 0.00; 0.00f 0.00 0.00 0.0 0.00 0.00
ED Time 1 0.00] 2.67 [-0.920.00| 0.00|0.00-0.57 0.59 [0.000.32 0.00 | 0.00f 0.00f 0.1 0.09 0.12 0.00 0.06
ED Time 2 0.0C] -1.6€ [0.0C| 0.0C| 0.0C|0.0C|0.51] -0.27 |0.0C{0.62z] 0.0C | 0.0C| 0.1 | 0.0C | 0.0C|0.0C| 0.0C 0.0C
MnCI2 - EDTA 2.35| 1.76 |-2.120.00| 0.00-0.99-0.87 0.18 |0.200.23 0.00 | 0.00f 0.00, 0.0 0.00 0.00 0.00 0.00
MnCI2 - Mn Timel 0.00] 0.87 |-1.45-0.78) 0.00|0.00/0.00] 0.00 |0.000.00] -0.19 | 0.00f 0.00, 0.0 0.00 0.00 0.00 0.00
MnCI2 - Mn Time2 1.08| 0.00 [-0.450.00| 0.00{0.00/0.00] 0.00 |0.000.00{ 0.00 | 0.00f 0.00f 0.00 0.00 0.00 0.00 0.00
MnCI2 - ED Timel 0.0C] 0.0C [0.0C| 0.0C] 0.0C|0.0C|0.0C| 0.0C |0.0¢0.0C] 0.0C |0.0C|] 0.0C | 0.0C |0.0C|0.0C] 0.0C 0.0C
MnCI2 - ED Time2 0.0C] 0.0C [0.0C| 0.0C] 0.0C|0.0C|0.0C| 0.0C |0.0C/0.1€] 0.0C |0.0C| 0.0C | 0.0C |0.0C|0.0C] 0.0C 0.0cC
EDTA - Mn Time 1 0.00] 0.00 | 0.840.00| 0.00|{0.00/0.00] 0.00 |0.000.00] 0.00 | 0.00f 0.00, 0.00 0.00 0.00 0.00 0.00
EDTA - Mn Time 2 0.0C] 0.0C [0.0C| 0.0C] 0.0C|0.0C|0.0C| 0.0C |0.0¢0.0C] 0.0C |0.0C| 0.0C | 0.0C |0.0C|0.0C] 0.0C 0.0C
EDTA-EDTime 1 0.00] -2.67[0.92 0.00| 0.00{0.00/0.57] -0.59 | 0.000.32] 0.00 | 0.00] 0.00, -0.10 -0.090.12] 0.00 -0.06
EDTA - ED Time 2 0.0C] 1.6€ [0.0C| 0.0C| 0.0C|0.0C|-0.57 0.27 |0.0¢-0.62) 0.0C | 0.0C| -0.18 | 0.0C | 0.0C|0.0C| 0.0C 0.0C




60¢

Table continued

MnT1-EDT1 0.00{ -0.92 | 0.00 0.00| 0.00|{0.00/0.00] 0.00 |0.000.00] 0.00 | 0.00] 0.00 | 0.00| 0.000.00{ 0.00 0.00
MnT1-ED T2 0.00{ 0.00 [ 0.000.00| 0.00{0.00/0.00[ 0.00 |0.000.00] 0.00 | 0.00] 0.00 | 0.00| 0.000.00{ 0.00 0.00
MnT2-EDT1 0.00{ 0.69 | 0.000.00| 0.00|{0.00/0.00[ 0.00 |0.000.00] 0.00 | 0.00] 0.00 | 0.00| 0.000.00{ 0.00 0.00

MnT2 -ED T2 0.0C| -1.07 [0.0C| 0.0C| 0.0C|0.0C|0.0C| 0.0C |0.0¢0.0C] 0.0C |0.0C| 0.0C | 0.0C |0.0C]0.0C] 0.0C 0.0C
MnCI2-EDTA-Mn T1 0.00{ 0.00 [-0.840.00| 0.00|{0.00/0.00] 0.00 |0.000.00] 0.00 | 0.00] 0.00 | 0.00| 0.000.00{ 0.00 0.00
MnCI2-EDTA-Mn T2 0.0C| 0.0C [0.0C| 0.0C] 0.0C|0.0C|0.0C| 0.0C |0.0¢0.0C] 0.0C |0.0C| 0.0C | 0.0C |0.0C]0.0C] 0.0C 0.0C
MnCI2-EDTA-ED T1 0.00{ 0.00 [ 0.000.00|0.00{0.00/0.00[ 0.00 |0.000.00] 0.00 | 0.00] 0.00 | 0.00| 0.000.00{ 0.00 0.00
MnCI2-EDTA-ED T2 0.0C| 0.0C [0.0C| 0.0C| 0.0C|0.0C|{0.0C| 0.0C |0.0C-0.1€) 0.0C |0.0C| 0.0C | 0.0C | 0.0C|0.0C| 0.0C 0.0c
MnCI2-MnT1-ED T1 0.00{ 0.92 [ 0.000.00| 0.00{0.00/0.00[ 0.00 |0.000.00] 0.00 | 0.00] 0.00 | 0.00| 0.000.00{ 0.00 0.00
MnCI2 -Mn T1 - ED T2 0.0C| 0.0C [0.0C| 0.0C| 0.0C|0.0C|{0.0C| 0.0C |0.0¢[0.0C] 0.0C |0.0C| 0.0C | 0.0C |0.0C|0.0C] 0.0C 0.0c
MnCI2 -MnT2 -ED T1 0.0C| -0.6€ [0.0C| 0.0C| 0.0C|0.0C|0.0C| 0.0C |0.0¢/0.0C] 0.0C |0.0C| 0.0C | 0.0C |0.0C|0.0C] 0.0C 0.0c
MnCI2 - Mn T2 - ED T2 0.00{ 1.07 [ 0.000.00| 0.00|{0.00/0.00] 0.00 |0.000.00] 0.00 | 0.00] 0.00 | 0.00| 0.000.00{ 0.00 0.00
EDTA-MnT1-EDT1 0.0C| 0.9z [0.0C| 0.0C] 0.0C|0.0C|0.0C| 0.0C |0.0¢0.0C] 0.0C |0.0C| 0.0C | 0.0C |0.0C]0.0C] 0.0C 0.0C
EDTA-MnT1-EDT2 0.00{ 0.00 | 0.000.00| 0.00|{0.00/0.00] 0.00 |0.000.00] 0.00 | 0.00] 0.00 | 0.00| 0.000.00{ 0.00 0.00
EDTA-MnT2 -EDT1 0.0C| -0.6€ [0.0C| 0.0C| 0.0C|0.0C|0.0C| 0.0C |0.0¢0.0C] 0.0C |0.0C| 0.0C | 0.0C |0.0C]0.0C] 0.0C 0.0C
EDTA-MnT2-EDT2 0.00{ 1.07 [ 0.000.00|0.00{0.00/0.00[ 0.00 |0.000.00] 0.00 | 0.00] 0.00 | 0.00| 0.000.00{ 0.00 0.00
MnCI2 - EDTA-Mn T1-ED T1|0.0(| -0.92 |0.0(] 0.0C | 0.0C|0.0¢{0.0C| 0.0C ]0.0¢/0.0C|] 0.0C ] 0.0C| 0.0C | 0.0C | 0.0C|0.0C| o0.0C 0.0c
MnCI2 - EDTA-Mn T1 - ED T2|0.00] 0.00 | 0.000.00| 0.00|{0.00/0.00] 0.00 |0.000.00, 0.00 | 0.00| 0.00 | 0.00| 0.000.00] 0.00 0.00
MnCI2 - EDTA-Mn T2 -ED T1|0.00] 0.69 | 0.000.00| 0.00|{0.00[0.00] 0.00 |0.000.00, 0.00 | 0.00| 0.00 | 0.00| 0.000.00] 0.00 0.00
MnCI2 - EDTA -Mn T2 - ED T2/0.0(| -1.07 |0.0(] 0.0C | 0.0€|0.0¢{0.0C| 0.0C ]0.0¢0.0C] 0.0C ] 0.0C| 0.0C | 0.0C | 0.0C|0.0C] o0.0C 0.0c




Main and interaction effects and corresponding conéling factors

EDTA
MnCl,
MnCl> — EDTA
EDT1 = -1*EDTA-ED T1
ED T2 = -1*EDTA-ED T2
Mn T1 = -1*MnCh - Mn T1
Mn T2 = -1*MnCb - Mn T2
MnT1-EDT1 = -1I*MnCi-MnT1-EDT1
MnT2-EDT1 = -1*MnCt-MnT2-ED T1
MnT2-ED T2 = -1*MnCt-Mn T2 -ED T2
MnT1-EDT2 = -1*MnCt-Mn T1-ED T2
EDTA-MnT1 = -1*MnCb-EDTA-Mn T1
MnClz - ED T2 = -1*MnCh-EDTA-ED T2
EDTA-Mn T2 = -1*MnCb-EDTA-Mn T2
EDTA-MnT1-EDT1 = -1*MnCl2 - EDTA-MnT1-ED T1
EDTA-MnT2-ED T1 = -1*MnCl2 - EDTA-MnT2-ED T1
EDTA-MnT2-ED T2 = -1*MnCl2 - EDTA-Mn T2 -ED T2
EDTA-MnT1-ED T2 = -1*MnCl, - EDTA-Mn T1 - ED T2
MnCl; - ED T1 = -1*MnCh-EDTA-ED T1
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“Reduced” gain matrixK) obtained by eliminating the redundant rows fréwa gain matrix listed in Table A2

FA2 |[FA2G1| A2 |A2G1|A1G1| M5 | Al |[FA2G2| A3 |FA1|FA2BG1|M5A1|FAL1G1|FM5A1 IM6A1|A2G2|FA2G1S1FA2G2S]
MnCl 2.17] 0.0C |-2.21/-0.5C| 0.37 |-0.8€/0.0C| 0.0C |0.0¢j0.0C] 0.0C | 0.27| 0.2z | 0.1% | 0.1c | 0.07 0.0C 0.0C
EDTA 0.00] -1.79 | 2.34 0.80| 0.00[ 0.000.00{ -0.48 | 0.000.55§ 0.12 0.00f -0.09f 0.000 0.0p -0.07 0.00 -0.05
MnCl. — EDTA 2.35] 1.76 |-2.120.00| 0.00| -0.990.87 0.18 0.2(|}0.23 0.00 0.00f 0.00{ 0.07] 0.0p 0.00 0.00 0.0
Mn Time 1 0.0C| -0.87 |1.45| 0.7¢ ] 0.0C |0.0€C{0.0C|] 0.0C |0.0Cj0.0C|] 0.1¢ | 0.0C| 0.0C | 0.0C | 0.0C | 0.0C 0.0c 0.0c
Mn Time 2 -1.08§ 0.00 | 0.45 0.00| 0.00] 0.000.00{ 0.00 |0.000.00] 0.00 0.00f 0.00{ 0.00f 0.0p 0.00 0.00 0.0
ED Time 1 0.0C| 2.67 |-0.92| 0.0C | 0.0C |0.0C|-0.57] 0.5¢ |0.0¢-0.32] 0.0C | 0.0C| 0.0C | 0.1C | 0.0¢ | 0.1Z2 0.0c 0.0¢
ED Time 2 0.00| -1.66 | 0.00 0.00| 0.00] 0.000.51| -0.27 | 0.000.62| 0.00 0.00f 0.15| 0.00f 0.0p 0.00 0.00 0.0
MnCl 2 - ED Time2 0.0C| 0.0C |0.0C| 0.0C | 0.0C |0.0C{0.0C|] 0.0C |0.0C|0.1€] 0.0C | 0.0C| 0.0C | 0.0C | 0.0C | 0.0C 0.0c 0.0C
EDTA - Mn Time 1 0.0C| 0.0C |0.84] 0.0C | 0.0C |0.0C|{0.0C] 0.0C |0.0¢0.0C] 0.0C |0.0C| 0.0C | 0.0C | 0.0C]|0.0C 0.0C 0.0cC
MnT1-EDT1 0.00] -0.92 | 0.00 0.00| 0.00[ 0.000.00{ 0.00 |0.000.00[{ 0.00 0.00f 0.00{ 0.00f 0.0p 0.00 0.00 0.0
MnT2 -EDT1 0.0C| 0.6¢ |0.0C| 0.0C | 0.0C |0.0C{0.0C] 0.0C |0.0¢0.0C] 0.0C |0.0C| 0.0C | 0.0C | 0.0C]|0.0C 0.0C 0.0cC
MnT2-ED T2 0.00] -1.07 | 0.0 0.00| 0.00[ 0.000.00{ 0.00 |0.000.00[{ 0.00 0.00f 0.00{ 0.00f 0.0p 0.00 0.00 0.0
EDTA-MnT1-EDT1 |0.0C| 0.9z |0.0C| 0.0C | 0.0C|0.0C{0.0C] 0.0C ]0.0Cj0.0C] 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C 0.0C 0.0cC
EDTA-MnT2-EDT1 |0.00] -0.69 | 0.0 0.00| 0.00] 0.000.00] 0.00 |0.000.00] 0.00 0.00f 0.00{ 0.00f 0.0p 0.00 0.00 0.0
EDTA-MnT2-EDT2 |0.00[ 1.07 | 0.0 0.00| 0.00] 0.000.00] 0.00 0.0(})0.00 0.00 0.00f 0.00{ 0.000 0.0p 0.00 0.00 0.0
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Unitary matrixXW obtained from SVD of gain matrix

nl n2 n3 n4 15 n6 n/ 18 n9 n10 | 911 | 912 | 13 | n14 | n15 | 916 | 917 | n18
FA2 -0.3¢ | 0.5€ | 0.5¢ | -0.3C | -0.0z | 0.0¢ | 0.358 | -0.2C | 0.01 | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C
FA2G1 -062| -0.71| 0.18f -0.27 -0.08 -0.03 -0.04 0.4 0/00.00| 0.00] 0.00f 0.0 0.00 0. 0.00 0jo0 0j00
A2 0.64 | -0.33)] 054 -029 -0.11 000 0.01 -032 0j0301Q. 0.00| 0.00f 0.00 0.00 0.0 0.0 0/o0 0jo0
A2G1 0.1z | -0.08 | 0.3¢ | 0.1¢ | 0.5¢ | 0.1¢ | -0.11 ] 0.6C | -0.0Zz | -0.01 | 0.0z | -0.0€ | 0.0z | -0.1¢ | -0.0€ | -0.07 | 0.0C | -0.0¢
Al1G1l -0.02| 0.06| 0.00f -0.08 -0.28 040 -023 0.p1 -019.44| 039| 044 025 -026 -0.05 0.01 0j00 -0.10
M5 0.1t | -0.2C | -0.2C | -0.02 | 0.01 | 0.1¢ | 0.8z | 0.2z | 0.1% | -0.2¢ | -0.0€ | 0.1z | 0.21 | 0.0¢ | 0.11 | 0.01 | 0.0C| -0.01
Al 0.13 | 0.06| -027 -0.60 -0.1f 025 0.01 0.4 -020460.-0.06] 0.03] -0.20 -0.08 -0.17 -0.09 0/00 -0.03
FA2G2 -0.1C | -0.11 | -0.04 | 0.2¢ | 0.2¢€ | 0.57 | 0.2C | -0.5C | -0.2¢ | 0.31 | -0.01 | -0.0¢ | -0.0€ | -0.0¢ | -0.11 | -0.1€ | 0.0C | -0.1C
A3 -0.02| 0.01| 0.04 004 011 -022 -0.06 -0/05 0/06260.-048| 065 038 -0.06 -0.24 -0.03 0/00 -0,09
FAl 0.0z | 0.0€ | -0.3C | -0.51| 0.65 | -0.1C | -0.0€ | -0.31 | 0.0¢ | -0.31 | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C| 0.0C
FA2BG1 002 | 001 007, 00O 0211 019 -009 0P8 -034 000.06| 0.26] -0.07 0.7 0.24 0.29 0.00 o011
M5A1 -0.02| 0.04| 0.00f -0.06 -0.1fy 029 -0.17 O0.01 -0.14.32| -0.72| -0.33] 0.17 -0agp 0.1 -0.10 0j00 0f18
FA1G1 -0.0z | 0.0¢ | -0.08 | -0.1¢ | 0.0¢ | 0.2¢ | -0.1€ | -0.01 | 0.4 | 0.3 | 0.17 | -0.1€ | 0.5¢ | 0.1z | 0.3€ | 0.01 | 0.0C | -0.07
FM5A1 -0.02| 0.01| 0.02f 0.074 -003 0.18 -0.10 0.0 0/47 090.-0.10] 0.34| -050 0.09 03 -0.50 0J00 -0,06
M6A1 -001| 0.01| 0.000 0.0 -0.0f 025 -0.08 0.p2 0/40 180.-0.03] -0.16f 0.03 0.41 -0.7 0.01 0/00 -0,07
A2G2 -0.02| -0.01] -002 0.0 0.02 023 -0.02 -0/04 0/33.030 -0.17| 0.10f -0.30 -0.2p 0.0 0.79 0J00 -0.05
FA2G1S] 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 0.0C | 1.0C| 0.0C
FA2G2S1 -0.01| -0.01) -004 0.0y 0.04 008 001 -0/04 0f13090. 0.13]| 0.14f 003 -0.0p -0.270 -0.03 0J00 0J95
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Diagonal matrix of singular valueE) obtained from SVD of reduced gain matkix

ol 6.22 0.00 0.00 0.00 0.0Q 0.00 0.00 0.00 0.00 0/o0 .00 0 0.00 0.00 0.00 0.00
62 0.0C 3.6¢ 0.0c 0.0C 0.0c 0.0C 0.0c 0.0C 0.0c 0.0C 0.0c 0.0C 0.0C 0.0c 0.0C
63 0.00 0.00 2.21 0.00 0.0Q 0.00 0.00 0.00 0.00 0/o0 .00 0 0.00 0.00 0.00 0.00
¢4 0.00 0.00 0.00 0.80 0.0Q 0.00 0.00 0.00 0.00 0/o0 .00 0 0.00 0.00 0.00 0.00
) 0.00 0.00 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0/o0 .00 0 0.00 0.00 0.00 0.00
66 0.00 0.00 0.00 0.00 0.0Q 0.4% 0.00 0.00 0.00 0/o0 .00 0 0.00 0.00 0.00 0.00
o/ 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C 0.41 0.0cC 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C
o8 0.00 0.00 0.00 0.00 0.0Q 0.00 0.00 0.31 0.00 0/o0 .00 0 0.00 0.00 0.00 0.00
69 0.0C 0.0c 0.0C 0.0c 0.0c 0.0C 0.0c 0.0c 0.1c 0.0C 0.0c 0.0c 0.0c 0.0C 0.0C
610 0.00 0.00 0.00 0.00 0.0Q 0.00 0.00 0.00 0.00 0/05 .000 0.00 0.00 0.00 0.00
cll 0.0C 0.0C 0.0c 0.0c 0.0c 0.0C 0.0c 0.0c 0.0c 0.0C 0.0c 0.0c 0.0c 0.0c 0.0C
612 0.00 0.00 0.00 0.00 0.0Q 0.00 0.00 0.00 0.00 0/o0 .00 0 0.00 0.00 0.00 0.00
613 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C
cl4 0.00 0.00 0.00 0.00 0.0Q 0.00 0.00 0.00 0.00 0/o0 .00 0 0.00 0.00 0.00 0.00
615 0.00 0.00 0.00 0.00 0.0Q 0.00 0.00 0.00 0.p0 0/o0 .00 0 0.00 0.00 0.00 0.00
616 0.00 0.00 0.00 0.00 0.0Q 0.00 0.00 0.00 0.00 0/o0 .00 0 0.00 0.00 0.00 0.00
cl7 0.00 0.00 0.00 0.00 0.0Q 0.00 0.00 0.00 0.00 0/o0 .00 0 0.00 0.00 0.00 0.00
cl8 0.0C 0.0C 0.0c 0.0C 0.0c 0.0C 0.0c 0.0C 0.0c 0.0C 0.0c 0.0c 0.0c 0.0c 0.0C
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Unitary matrixVT obtained from SVD of reduced gain matikix

EDTA | EDTA | EDTA -
Mn T1 Mn T2 - Mn - Mn Mn T2
Mn- ED ED Mn- ED- - ED Mn T2 - -ED T1- T2 - -ED
MnCl2 | EDTA | EDTA | MnT1 | Mn T2 T1 T2 EDT2 | MnT1 T1 EDT1 T2 EDT1 | EDT1 T2
pl -0.39 0.44 -0.58 0.2% 0.11 -0.38 0.18 0/00 009 90.0 -0.07 0.11 -0.09 0.0y -0.11
n2 0.6C 0.1z 0.24 0.0z -0.21| -0.47 0.3t 0.0cC -0.07 0.1¢ -0.1: 0.21 -0.1¢ 0.12 -0.21
n3 0.00 0.65 0.45 0.42 -0.1p6 0.10 -0.28 -0J02 0.20 0840. 0.06 -0.09 0.08 -0.06 0.09
n4 -0.18 0.11 0.1¢ -0.0¢ 0.2t 0.27 | -0.3¢ -0.1C -0.3C 0.31 -0.2:2 0.3¢ -0.31 0.28 -0.3¢
n5 -0.39 -0.34 0.33 0.57 -0.0p 0.11 0.48 0/17 -0.15 040. -0.03 0.05 -0.04 0.08 -0.05
n6 0.4¢ -0.0€ -0.4¢ 0.4¢ -0.0¢ 0.5z | -0.0% -0.04 0.01 0.0t -0.04 0.0¢€ -0.0¢ 0.04 -0.0¢€
n7 0.26 0.09 0.12 0.13 091 -0.02 0.16 0/03 -0.03 80.0 0.06 -0.09 0.08 -0.06 0.09
n8 -0.01 -0.28 0.08 0.04 0.1 -0.05 -0.13 0/16 0.87 130. -0.10 0.15 -0.13 0.10 -0.15
n9 -0.05 0.37 0.03 -0.41 -0.04 0.52 0.60 0/06 023 30.0 -0.02 0.03 -0.03 0.0 -0.03
pnlo -0.06 -0.11 0.07 0.07 0.0p -0.01 0.15 -0/96 0.16 .02( 0.00 -0.01 0.01 0.00 0.1
nll 0.Co 0.0cC 0.0cC 0.0C 0.0c¢ 0.0C 0.0cC 0.0cC 0.0C -0.1¢€ 0.4¢ 0.4¢ 0.27 -0.4¢€ -0.4¢
nl2 0.00 0.00 0.00 0.0 0.0p 0.00 0.00 0/00 0.00 -0.52 -0.43 0.18 0.54 0.43 -0.18
nl3 0.0C 0.0cC 0.0cC 0.0C 0.0C 0.0C 0.0cC 0.0cC 0.0C 0.7¢ -0.0: -0.04 0.6¢€ 0.02 0.04
nl4 0.00 0.00 0.00 0.00 0.0p 0.00 0.00 0/00 0.00 0.00 .54 -0.45 0.00 0.54 -0.4p
nls 0.00 0.00 0.00 0.0(i) 0.0p 0.00 0.00 0/00 0.00 (0.00 0.45- -0.54 0.00 -0.4% -0.5¢






