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ABSTRACT

In recent years, improvements in electromagnetic sources,
detectors, optical components, and computational imaging
have made it possible to achieve three-dimensional atomic-
scale resolution using tomographic phase-contrast imaging
techniques. These greater capabilities have placed a pre-
mium on improving the efficiency and stability of phase re-
trieval algorithms for recovering the missing phase informa-
tion in diffraction observations. In some cases, so calleddi-
rect methodssuffice, but for large macromolecules and non-
periodic structures one must rely on numerical techniques
for reconstructing the missing phase. This is the principal
motivation of our work. We report on recent progress in
algorithms for iterative phase retrieval. The theory of con-
vex optimisation is used to develop and to gain insight into
counterparts for the nonconvex problem of phase retrieval.
We propose a relaxation of averaged alternating reflectors
and determine the fundamental mathematical properties of
the related operator in the convex case. Numerical studies
support our theoretical observations and demonstrate the ef-
fectiveness of the newer generation of algorithms compared
to the current state of the art.

1. INTRODUCTION

The phase retrieval problem is an inverse problem, well
known in optics, that has received renewed interest in ap-
plications to nonperiodic scatterers and macromolecules. In
a typical x-ray crystallography experiment, for example, a
crystalline specimen is illuminated with a monochromatic
x ray and the resulting diffraction pattern is recorded. In
the far field of the crystal the complex amplitude of the
diffracted x rays is equal to the (scaled) Fourier transform
of the electron density distribution of the specimen. The
problem is that only the intensity of the diffracted field can
be measured. The missing phase information is critical for
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determining the electron density. In some cases, such as x
ray crystallography of “small” (relative to the source wave-
length) periodic molecules, it is possible to determine the
electron density by what are referred to asdirect methods.
For large macromolecules and nonperiodic structures, how-
ever, one must rely on numerical techniques for reconstruct-
ing the missing phase. So callediterative transform meth-
odsare well established generic iterative techniques for re-
covering the phase in a variety of settings. Recent trends in
phase contrast tomography have placed a premium on im-
proving the efficiency and stability of these types of algo-
rithms [1,2].

In this work we derive stable and fast new strategies
for phase retrieval. Recently, we identified two important
methods for phase retrieval, namely Fienup’s Basic Input-
Output (BIO) and Hybrid Input-Output (HIO) algorithms,
with classical convex projection methods and suggested that
further connections between convex optimization and phase
retrieval should be explored [3]. Following up on this funda-
mental work, we have derived several new projection-based
methods, termed the Hybrid Projection Reflection (HPR) al-
gorithm [4], and the Relaxed Averaged Alternating Reflec-
tion (RAAR) algorithm [5]. These methods are particularly
effective for solving phase retrieval problems featuring non-
negativity constraints in the object domain.

A precise statement of the leading algorithms is given
in Section 2 In this same section we provide a terse outline
of the mathematical justification for the HPR and RAAR
algorithms. In Section 3 we demonstrate the effectiveness
of the algorithms.

2. PHASE RETRIEVAL AND ITERATIVE
TRANSFORM ALGORITHMS

2.1. Phase retrieval

In its general form, the signal recovery problem is to esti-
mate the original form of a signalu in a functional space
L from the measurements of physically related signals and
a priori information. In phase retrieval problems, the mea-



surements consist of the modulusm of the Fourier trans-
form Fu of u. In other words, the imaging model is de-
scribed by the relationship

|Fu| = m, (1)

andu is commonly referred to as theobjector input of the
imaging model.

A general signal space that appropriately models the
underlying physics is the complex Hilbert spaceL =
L2[RN , C]. Hence, a signalu in L is a square-integrable
function mapping a continuous variablex ∈ RN to a com-
plex numberu(x) ∈ C. The set of signals that satisfy the
Fourier domain constraint(1) is

M =
{
v ∈ L : |Fv| = m a.e.

}
. (2)

In addition to the imaging model, an important piece
of information that is typically available in phase retrieval
problems is that the support ofu is contained in some set
D ⊂ RN . If we let 1E denote the characteristic function of
a setE ⊂ RN and{E its complement, thisobject domain
constraintconfinesu to the set

S =
{
v ∈ L : v · 1{D = 0

}
. (3)

It is also sometimes useful to include the additional con-
straint thatu be nonnegative, as would be natural whenu
represents the electron density of a crystal. Writing this in
terms of constraints, we haveu∗ ∈ S+ ⊂ L, whereS+ is
the set of nonnegative functions inL with support onD.
The setsS andS+ are referred to as thephysical domain
constraints.

2.2. Feasibility problems and fixed point algorithms

We formulate the problem of phase retrieval as a feasibility
problem:

find u ∈ S+ ∩M. (4)

This formulation exhibits the phase retrieval problem as a
problem of finding a point in the intersection of constraint
sets, i.e., aset theoretic estimation problem. In mathematics
(especially in optimization) problems of this kind are called
feasibility problems.

Iterative transform techniques are built upon combin-
ing projections onto the setsS+ andM in some fashion.
They can usually be put into the formun+1 = T un where
T is a generic operator in which the projections and aver-
aging operations are embedded (see [3, 4, 6]). For added
control and flexibility, one often includes arelaxationstrat-
egy parameterised byβ. We write the relaxed operator with
generic, single parameter relaxation strategyV (there can be
infinitely many such strategies) asV(T , β). In order effec-
tively to exploit relaxations for improved algorithm perfor-
mance it is necessary to understand the mathematical prop-
erties of the operatorV(T , β). We return to this issue at the
end of this section.

2.3. Projectors and Reflectors

The operators we study are built upon projectors and re-
flectors. Denote byPC an arbitrary but fixed selection, or
projector, from the possibly multi-valuedprojectiononto a
subsetC of L. Closely related is the correspondingreflector
with respect toC

RC = 2PC − I, (5)

whereI is the identity operator. By definition, for every
u ∈ L, PC(u) is the midpoint betweenu andRC(u). Spe-
cialising to our application, the projector,PMu, of a signal
u ∈ L onto the Fourier magnitude constraint setM is given
by where

PM(u) = F−1(v̂0) (6)

where

v̂0(ξ) =

m(ξ)
Fu(ξ)
|Fu(ξ)|

, if Fu(ξ) 6= 0;

m(ξ), otherwise.
(7)

Here,F−1 is the discrete inverse Fourier transform andv̂0 a
selection from the multi-valued Fourier domain projection.
The projection of a signalu ∈ L ontoS+ is single-valued
(sinceS+ is convex), and is given by

(∀x ∈ ZN )
(
PS+

(u)
)
(x) =

{
max{0, u(x)}, if x ∈ D;

0, otherwise.
(8)

2.4. Iterative Transform Algorithms

One of the best known iterative transform algorithms is
Fienup’s Hybrid Input-Output algorithm (HIO) [7]. We use
this as our benchmark for performance. In the present set-
ting, HIO is given as: for all∀x ∈ ZN

un+1(x) =


(
PM(un)

)
(x), if x ∈ D

and
(
PM(un)

)
(x) ≥ 0;

un(x)− βn

(
PM(un)

)
(x), otherwise.

(9)
There have been several attempts to identify the HIO

algorithm with a broader class of relaxation strategies that
can be written as fixed point iterations, that is, in the form
un+1 = V(T , βn)un. We proved that, when only a sup-
port constraint, as opposed to support and nonnegativity,
is applied in the physical domain, then the HIO algorithm
with β = 1 corresponds to the classical Douglas-Rachford
algorithm for which convergence results in the convex set-
ting are well known [3] . In a subsequent article [4] we
proved that, for physical domain support constraints only,



the HIO algorithm corresponds to a particular relaxation of
the Douglas-Rachford algorithm, that is, for allx ∈ ZN

un+1(x) =

{(
PM(un)

)
(x), if x ∈ D

un(x)− βn

(
PM(un)

)
(x), otherwise,

(10)
is equivalent to

un+1 = 1
2

(
RS(RM +(βn− 1)PM)+ I +(1−βn)PM

)
(un).
(11)

A subtlety of these algorithms (one that is often confused in
the optics literature) is that seemingly simple changes in the
constraint structure of the problem leads to very different
algorithms when written in the form (9) and (10). Indeed,
replacingS in (11) withS+ yields

un+1 = 1
2

(
RS+

(RM +(βn−1)PM)+I +(1−βn)PM

)
(un).
(12)

It has been incorrectly assumed that recurrence (12) is
equivalent to (9). Instead, we have shown in [4, Proposi-
tion 2] that (12) is an entirelynewalgorithm, what we call
the Hybrid Projection Reflection (HPR) algorithm, for all
x ∈ ZN

un+1(x) =


(
PM(un)

)
(x), if x ∈ D and(

RM(un)
)
(x) ≥ (1− βn)

(
PM(un)

)
(x);

un(x)− βn

(
PM(un)

)
(x), otherwise.

(13)
It is easy to see by comparing (13) with (9) that these are
fundamentally different algorithms. Moreover, a reformula-
tion of (9) in terms of a fixed point iteration does not appear
to be possible due to the nonlinearity of thePS+

operator [4].
We show below that HPR is a promising alternative to

HIO, however we have not found an analysis that suggests
how to choose the relaxation parameterβ. Moreover, at the
initial phase of the iteration, the HIO algorithm appears to
reach a neighbourhood of a solution to the feasibility prob-
lem (4) in feweriterations than HPR, though at later stages
of the iteration HPR clearly delivers better quality images
more stably.

To address these drawbacks to the HPR algorithm, we
focus on the intermediate stage of these algorithms where
HIO appears to outperform HPR. The RAAR algorithm dis-
cussed next achieves improved performance at the interme-
diate stage and the superior stability/quality of the HPR al-
gorithm at later iterations through an analytically motivated
relaxation strategy. The relaxed averaged alternating reflec-
tion (RAAR) algorithm is a relaxation of the averaged al-
ternating reflection algorithm studies in [6] and is given by
the following: given anyu0 ∈ L , generate the sequence
u0, u1, u2, . . . by

un+1 = V (T∗, βn)un (14)

where

V (T∗, β) = βT∗+(1−β)PM and T∗ = 1
2 (RS+

RM +I).
(15)

For β = 1 the RAAR and HPR algorithms are equivalent.
For β 6= 1 the RAAR algorithm is fundamentally different
than HPR. In [5, Proposition 2.1] Luke shows that the re-
cursion (14) is equivalent to the following algorithm: for all
x ∈ ZN

un+1(x) =


(
PM(un)

)
(x), if x ∈ D

and
(
RM(un)

)
(x) ≥ 0;

βnun(x)− (1− 2βn)
(
PM(un)

)
(x), else.

(16)

3. COMPARISONS

The principal criteria we use to assess the performance of
these algorithms are iteration counts, quality of solutions
and stability. Preliminary numerical results indicate that,
once in the neighbourhood of a solution, the HPR iter-
ates stay in that neighbourhood [4], unlike iterates of HIO.
Moreover, by both the error metric and the subjective eye-
ball norm, eventually the images delivered by the HPR algo-
rithm are superior to those of the HIO algorithm [4]. The re-
laxed RAAR algorithm is superior to HIO and HPR with re-
spect to stability, though image quality suffers with greater
relaxation.

Our goal with the RAAR algorithm is to use dynamic re-
laxations to shorten the initial “warm-up” phase of the HPR
algorithm and to stabilise the algorithm near a local solu-
tion. The relaxation strategy we consider is

βn+1 = β0 + (1− β0)
(
1− exp

(
−(n/7)3

))
. (17)

The data consists of the support/nonnegativity con-
straint, shown in Figure 3(c), and Fourier magnitude data
m, shown in Figure 3(b), with additive noiseη – a symmet-
ric, randomly generated array with a zero mean Gaussian
distribution. Following the experimental design of [4], the
signal-to-noise ratio (SNR) is20 log10 ‖m‖/‖u‖ = 34 dB.
We compute the mean value of the error measureES+ over
100 trials with different realizations of the noise and the
same initial guess.

We compare the mean behaviour over 100 iterations
of two sets of realizations of the algorithms, each corre-
sponding to different relaxation strategies,β = 0.75, β =
0.87, β = 0.99 and variableβn governed by (17) with
β0 = 0.75. The average value of the error metric at iter-
ationn,

ES+
(xn) =

∥∥PS+

(
PM(un)

)
− PM(un)

∥∥2∥∥PM(un)
∥∥2 (18)

is shown in Figure 1.



(a) (b)

(c) (d)

Fig. 1. Error metricES+(xn) averaged over100 realizations of
noise (SNR=34 dB). For (a)-(c) the relaxation parameter for the
respective algorithms,βn, is fixed. For (d)βn varies from0.75 to
1.0 according to (17).
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Fig. 2. Typical images recovered after35 iterations ((a)-(c))
of the HIO, HPR, and RAAR algorithms for different relaxation
strategies with the same realization of data noise (SNR=34 dB) and
the same normalised initial guess. (a)β = 0.75; (b) β = 0.87;
(c) variableβ = 0.75 → 1.0; (d) β = 0.99 and100 iterations.
The variableβn trials were generated according to the rule given
by (17).

(a) (b) (c)

Fig. 3. Original images and corresponding data used for the com-
parison of the HIO and HPR algorithms. (a) True38 × 38 pixel
signal, zero-padded to128 × 128. (b) the noiseless Fourier mag-
nitude datam corresponding to (a). (c) object domain support
constraint (and initial guess),64× 64 pixels.
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