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ABSTRACT

Today, Big Data is a hot topic both in industrial and academic fields. Hadoop is

developed as a solution to Big Data. It provides reliable, scalable, fault-tolerance and

efficient service for large scale data processing based on HDFS and MapReduce. HDFS

stands for the Hadoop distributed file system and provides the distributed storage for

the system. MapReduce provides the distributed processing for Hadoop. However,

MapReduce is not suitable for all classes of applications. An alternative to overcome

the limitation of Hadoop is new in-memory runtime systems such as Spark, that is

designed to support applications reuse a working set of data across multiple parallel

operations [31]. The weakness of Spark is that the performance is restricted by the

memory. HAMR is a new technology that runs faster than Hadoop and Spark with

less memory and CPU consumptions.

At the time I started this thesis, CAPSL didn’t have a platform to provide

students an environment to test big data applications. The purpose of the thesis is

not to perform an extensive research but to construct a main eco-system that Hadoop

and Spark can be in a same working condition. In additional, HAMR has also been

installed as a test platform in the research eco-system. I also engaged the work of a

selected of big data benchmarks, and took a preliminary test in all three eco-systems.

To stress the different aspects of three big data runtimes, we selected and ran

PageRank, WordCount, Sort, TeraSort, K-means and Naive Bayes benchmarks on

Hadoop and Spark runtime systems, and ran PageRank and WordCount on HAMR

runtime system. We measured the running time, maximum and average memory and

CPU usage, the throughput to compare the performances difference among these plat-

forms for the six benchmarks. As result, we found Spark has a outstanding performance

on machine learning applications including K-means and Naive Bayes. For PageRank,

x



Spark runs faster with small input size. Spark is faster on WordCount. For Sort and

TeraSort, Spark runs faster with large input. However, Spark consumes more mem-

ory capacity and the performance for Spark is restricted by the memory. HAMR is

faster than Hadoop for both two benchmarks with improvements on CPU and memory

usage.
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Chapter 1

INTRODUCTION

Data now is generated from everywhere: from smart phones; from social me-

dias; from the ecommerce and credit cards; from transportation; from wireless sensor

monitoring systems; from industrial productions; and from scientific and engineering

computing. The following data was posted by DOMO in the Data Never Sleeps 3.0

[20] in 2015 that in every minute: Facebook users posted over 4,166,667 likes; Insta-

gram users liked 1,736,111 photos; Twitter users sent 347,222 tweets; Skype users made

110,040 calls; Apple users downloaded 51,000 apps. All these big numbers have referred

people to a hot topic today - the Big Data.

Figure 1.1: Data Growth from 2009 to 2020 [11]

Data is growing explosively every minute and it is not going to slow down. In

2012, Google received over 2,000,000 [18] search queries every minute but in 2014 that
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number was doubled to 4,000,000 [19]. As shown in Figure 1.1, published by IDC in

2012 [11], data was exponential growing and expected to reach around 40 ZB in 2020.

The size is doubled every two years. That huge amount of data exceeds the capacity

of current storage systems and processing systems, and brings technology challenges

in developing big data computing models. Those challenges were defined by the U.S.

Department of Energy [21] and summarized in paper “Exascale Computing and Big

Data: The Next Frontier” in following fields [22]:

• Energy efficient circuit, power and cooling technologies

• High performance interconnect technologies

• Advanced memory technologies to improve capacity and bandwidth

• Scalable system software that is resilience ware

• Data management software that can handle the volume, velocity and diversity of
data

• Programming environments to express massive parallelism, data locality and re-
silience

• Reformulation of science problems and refactoring solution algorithms

• Ensuring correctness in face of faults, reproducibility and algorithm verification.

• Mathematical optimization and uncertainty quantification for discover, design,
and decision

• Software engineering and supporting structures to enable scientific productivity.

1.1 Background

The idea of solving big data problem firstly came from Google. Google is the

most widely used search engine, that it collects huge amount of data everyday. Google

figured out two key technologies to handle the amount data they want to store and

analyze.

First, Google developed a distributed storage model called Google File Sys-

tem, which became the underlining storage architecture for the massive amount of

data they need to store. GFS runs on a large array of cheap hardware. And it is

2



designed to accepted and accommodate frequent hardware failure. Google published

the paper in 2003, releasing the GFS concept to the public [15]. Then in 2004, they

published another paper on their distributed computing system called MapReduce [14].

MapReduce vastly simplifies the distributed programming but hides the messy details

of parallelization, fault-tolerance, data distribution and load balancing in a library [14].

Based on these two fundamental technologies from Google, Hadoop [13] was cre-

ated as an open source version of the google technologies. It is a framework for running

applications on large clusters of commodity hardware that can deal with complexities

of high volume, velocity and variety of data. Hadoop provides reliable, scalable, fault-

tolerance and efficient service for distributed computing. The cluster is designed to

extended to thousands of nodes that each nodes can provides computation and stor-

age. Hadoop consists of two components: the HDFS (Hadoop Distributed File System)

which provides the distributed storage for the system and the MapReduce which is the

processing model for Hadoop. The Hadoop project includes another module called

YARN, which is a resource negotiator. It can also provide services for other big data

runtimes such as Spark and HAMR. Hadoop is used by a wide variety of companies

and organizations. Its users include Amazon, EBay, Facebook, Google, IBM, LinkedIn,

Twitter and Yahoo! [7].

MapReduce has been successful in processing big data applications. While there

are a class of applications that can not implemented efficiently by Hadoop [31]. Another

framework called Spark [1] is designed to support applications that resue a working set

of data across multiple parallel operations [31]. To achieve that goal, Spark introduces

a new technology called resilient distributed datasets, or RDD, that enables data reuse

by allowing persisting intermediate results in memory. In the event of failure, a lost

RDD can be recovered by lineage information instead of checkpoints. It provides a

friendly programming interface and a stack of libraries including SQL, MLib, GraphX

and Spark Streaming. Spark SQL is Spark’s module for working with structured data;

MLib is Spark’s scalable machine learning library; GraphX is an API for graphs and

graph-parallel computation; and Spark Streaming allows Spark to build streaming

3



applications. It was first developed in the AMPLab in 2009. Now it has been widely

used by lots of companies including Amazon, Baidu, EBay, Tencent and Yahoo! [8].

Spark can provide a faster speed than Hadoop for many applications. However,

it also requires more memory resource to support the in memory computing. HAMR

[3] is a new cluster computing framework for processing and analyzing large scales of

data. It is developed and first released by ET International Inc. HAMR is even faster

than Hadoop and Spark with less memory consumptions.

1.2 Main Work

At the time I started this thesis, CAPSL didn’t have a platform to provide

students an environment to test big data applications. The purpose of the thesis is

not to perform an extensive research but to construct a main eco-system that Hadoop

and Spark can be in a same working condition. In additional, HAMR has also been

installed as a test platform in the research eco-system. I also engaged the work of a

selected of big data benchmarks, and took a preliminary test in all three eco-systems.

Our experiment is based on these platforms: Hadoop 2.7.1, Spark 1.3.1 and HAMR

0.4.1. The detail can be found in the first section of chapter 5. The main work during

this research includes:

• We set up Hadoop, Spark and HAMR clusters to run six benchmarks includ-
ing PageRank, WordCount, Sort, TeraSort, Naive Bayes and K-means. These
benchmarks are classified into three categories that are micro benchmark, web
search and machine learning. And the three distributed systems are built on a
four nodes cluster.

• We measured the running time, speedup, throughput, maximum and average
memory and CPU usage for all the benchmarks on the three platforms of Hadoop,
Spark and HAMR. And we compared the performance differences among these
three platforms based on the characteristics of the benchmarks. Also, the ex-
perimental results are shown in following chapters and analyzed separately for
different benchmarks.

• We compared the performances between Hadoop and Spark on PageRank, Word-
Count, Sort, TeraSort, Naive Bayes and K-means. The experimental results
showed that Spark is faster than Hadoop. Specifically, Spark has a outstand-
ing performance on machine learning applications including K-means and Naive

4



Bayes since these applications apply a function repeatedly to the same dataset.
For PageRank, Spark runs faster with small input size. It begins to fail behind
Hadoop with 16 million pages input since the memory resource is not enough.
Spark is faster on WordCount. For Sort and TeraSort, Spark runs faster with
large input. However, Spark consumes more memory capacity and the perfor-
mance for Spark is restricted by the memory.

• We compared the performance between HAMR and Hadoop on PageRank and
WordCount. The experimental results showed that HAMR runs faster than
Hadoop for these two benchmarks. HAMR requires less memory usage com-
pared with Spark. Compared with Spark, HAMR is faster when runs PageRank
but is slower when runs WordCount.

This paper is organized as follows. Chapter 2 describes more details on Hadoop

including HDFS, MapReduce and YARN. Chapter 3 describes more details on Spark

including RDD. Chapter 4 discusses HARM and its Flowlet technology. Chapter 5

presents our experiments design and results. We give the conclusion in Chapter 6.
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Chapter 2

HADOOP

Apache Hadoop is an open source software project. It is designed as a big data

solution. In this chapter, we introduce HDFS, MapReduce and YARN which are three

main technologies of Hadoop. In this chapter, we introduce Hadoop based on its official

document [13].

2.1 HDFS

The Hadoop Distributed File System (HDFS) is a scalable file system for large

distributed data-intensive applications. Unlike other distributed file system, HDFS is

designed to be built from low-cost commodity component which requires it to be highly

fault-tolerant.

A HDFS cluster consists a master server called NameNode and several slave

servers called DataNodes. The architecture of HDFS is illustrated in Figure 2.1. Figure

2.1 was drawn based on the Hadoop website [13].The NameNode manages the meta-

data including file names, locations, replications and the client’s access to files. The

DataNode manages the storage. Data in Hadoop cluster is split into smaller pieces

called blocks and will be stored in DataNodes throughout the cluster. The block size

can be set by users for optimization. These blocks are automatically replicated for

fault tolerance. The replication factor is configurable and the default value is set to

3. The first two replications are put on the same rack but different DataNodes, and

the third replication is put on different rack. The placements of replication is key to

HDFS reliability and performance.

When a client wants to read from HDFS or write to HDFS, it first talks to

the NameNode to get the locations of files and the access permit. Then it contacts
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Chapter 3

SPARK

Spark is an open source cluster computing framework for solving big data prob-

lems. It was first developed in the AMPLab at UCBerkeley in 2009. Now it has

become one of the most widely used programs to solve big data problems. Spark is

designed to support applications which resue a working set of data across multiple par-

allel operations while also providing the same scalability and fault tolerance properties

as MapReduce [31]. These applications are mainly classified in two types: iterative

jobs and interactive analysis.

According to its website, Spark runs programs up to 100x faster than Hadoop

MapReduce if it is used in-memory computing only. It can run 10x faster if it is used

with combination of memory and disks. RDD, or resilient distributed dataset, is a

distributed shared memory system and support reuse of data and intermediate results

in memory. Spark is also designed to be used easily. It provides APIs in Java, Scala,

Python and R shells. It can run on YARN and accessing data from HDFS. In this

chapter we introduce Spark according its official document [1].

3.1 Spark Components

According to Spark document, Figure 3.1 drawn based on Spark website [1],

gives a short overview about how Spark runs on clusters. The driver program is the

main program that contains the SparkContext and coordinates the applications. The

SparkContext needs to connect to a cluster manager to get memory and processing

resource to execute the programs. Spark can run on three cluster managers:

• Standalone mode. It is provided by Spark distribution. The cluster can be
launched manually or by launch scripts. It can be simply used on a single node
for testing.
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job will be assign to slave nodes by the master. Nodes included in one cluster are

interconnected with each other. A HAMR workload can be illustrated as a structure

called directed acyclic graph or DAG as shown in Figure 4.1. A DAG is a directed

graph consisting of nodes and edges with no cycles. In HAMR workload, the node is

called Flowlet and the directed edge connecting nodes represents the transformation

of data.

HAMR can read data from a HDFS and a network file system. Data will be con-

verted to key-value pairs which is the required data format by HAMR and transferred

between Flowlets. HAMR supports both batch and stream models.

To manage the allocation of memory and processor resources, HAMR supports

two resource negotiators:

• HORN: HAMR’s Other Resource Negotiator

• YARN: Yet Another Resource Negotiator

HORN is provided by HAMR for convenient testing. It is easy to use and works

with small clusters. However, HORN only supports a single user. In our experiment,

we ran HAMR with HORN.

4.1 Flowlet

Each Flowlet stands for a stage of the processing in a HAMR workload. The

directed edges between them are provided by binding ports and slots together. There

are two models to transmit key-value pairs between flowlets: push mode which is

normally used and pull mode which is used to retrieve data and provide random access

to storage sink. A Flowlet consists of one or more partitions. And the number of

partitions is a parameter that determines the level of concurrency in each Flowlet.

These partitions are distributed on slave nodes as shown in figure 4.2. Each Flowlet

has a partitioner for determining the mapping of income key-value pairs to partitions.

In figure, Flowlet A and Flowlet B both contain four partitions and distributed on two

slave nodes. When a key-value pair is pushed into Flowlet B from A, the network layer

15







data to destination nodes [6]. At least one installation of ZooKeeper is requested for

one cluster. However, RabbitMQ needs to be placed on every node.
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Chapter 5

EXPERIMENT RESULTS AND ANALYSIS

5.1 Cluster Setup

The experimental cluster we used consists of four computers. One of them is

designed to serve as both a master and a slave node. The other three are designed to

be slave nodes. The hardware information for the cluster is shown as following:

• 4 nodes interconnected by Each node 10G-Ethernet.

• Each node has 2 Intel Xeon CPU E5-2670 running at 2.60GHz

• Each CPU has 8 cores, each core has 2 threads (hyper-threading).

• Each node has 64GB memory.

• The configured capacity for HDFS is 6.49 TB with 1.62 TB per node.

We use the CentOS 6.7 operating system and JAVA 1.7.0 version for all the

nodes. We installed Hadoop 2.7.1, Spark 1.3.1 and HAMR 0.4.1 for running all the

benchmarks described below. The version for Hadoop and Spark are stable released and

the version for HAMR is the latest release. We use the Hadoop and Spark benchmarks

and data generators provided in HiBench Benchmark Suite 4.0 version [4]. For Hadoop

Naive Bayes and K-means benchmarks, we use Mahout 0.10.1 distribution instead of

Mahout 0.9 which is included in HiBench. The HiBench Benchmark Suite can be found

and downloaded from the following web page:https://github.com/intel-hadoop/

HiBench. The benchmarks for HAMR are included in HAMR 0.4.1 distributed. Table

5.1 shows the paths for all the benchmarks.

We configure the YARN and MapReduce memory allocation according to the

convention set by Hortonworks (http://docs.hortonworks.com/HDPDocuments/HDP2/
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Benchmark Platform Source

PageRank Hadoop
HIBENCH HOME/src/pegasus/target/
pegasus-2.0-SNAPSHOT.jar

PageRank Spark org.apache.spark.examples.SparkPageRank
PageRank HAMR com.etinternational.hamr.benchmark.pagerank

WordCount Hadoop
HADOOP HOME/share/hadoop/mapreduce/
hadoop-mapreduce-examples-2.7.1.jar

WordCount Spark com.intel.sparkbench.wordcount.ScalaWordCount
WordCount HAMR com.etinternational.hamr.examples.wordcount.WordCount

Sort Hadoop
HADOOP HOME/share/hadoop/mapreduce/
hadoop-mapreduce-examples-2.7.1.jar

Sort Spark com.intel.sparkbench.sort.ScalaSort

TeraSort Hadoop
HADOOP HOME/share/hadoop/mapreduce/
hadoop-mapreduce-examples-2.7.1.jar

TeraSort Spark com.intel.sparkbench.terasort.ScalaTeraSort

Naive Bayes Hadoop
MAHOUT HOME/bin/mahout seq2sparse
MAHOUT HOME/bin/mahout trainnb

Naive Bayes Spark org.apache.spark.examples.mllib.SparseNaiveBayes
K-means Hadoop MAHOUT HOME/bin/mahout kmeans
K-means Sparks org.apache.spark.examples.mllib.DenseKMeans

Table 5.1: Benchmarks

HDP-2.0.6.0/bk_installing_manually_book/content/rpm-chap1-11.html). We set

the HDFS block replication to be 3 and the block size to be 128MB.
We run Spark on YARN with yarn-client mode. We changed each parameter to

tune the Spark. As a result, we configured the Spark with the following parameters to
get the best performance:

• 20G executor memory

• 10G driver memory

• 8 executors

• 8 executor cores

We run HAMR on HORN. For the software dependencies requirement, we use

ZooKeeper 3.4.6 and RabbitMQ 3.5.4. Both of them are the least release version.
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5.2 Benchmarks

In this section we describe the six benchmarks we used to compare the Hadoop,

Spark and Hamr performances. These benchmarks including Sort, WordCount, Tera-

Sort, PageRank, Naive Bayes, K-means are classified into three categories as shown in

table 5.2. One thing we need to mention is that only two workloads were ran on Hamr.

These Hadoop and Spark workloads are contained in HiBench suite which is provided

by Intel. The Hamr programs are included in Hamr distributed system. All the input

files are created by the data generator provided in HiBench suite.

Category Benchmark Hadoop Spark Hamr

Micro Benchmark Sort yes yes
WordCount yes yes yes
TeraSort yes yes

Web Search PageRank yes yes yes
Machine Learning Naive Bayes yes yes

K-means yes yes

Table 5.2: Benchmarks Used in the experiment and their categories

5.2.1 Micro Benchmark

The Sort, WordCount and TeraSort are provided as examples in Hadoop library

files and the Spark versions are provided by HiBench. The function of Sort is to sort the

input text file by key. The WordCount program reads a text input file and count how

many times each word occurs. TeraSort is a well-know benchmark on Hadoop. It is

writen by Owen O’Malley at Yahoo Inc. and won the annual general purpose terabyte

sort benchmark in 2008 and 2009. The Terasort package includes three applications:

Teragen which is a MapReduce program and can be used to generate input data,

TeraSort which can be used to sorts the input data, and TeraValidata which can be

used to check the output.
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5.2.2 Web Search

PageRank was named by Larry Page at Google. It wass first used by Google to

rank the website pages by their importance. Each page is assigned a numerical value

called PageRank which can represent the importance. When a page links to another,

it will cast votes to another one. Also, a page with higher PageRank has more weight

to vote. That means a page gets more important if it is linked by more pages with

higher PageRank values. The Hadoop version benchmark is provided by Intel and the

Spark version is contained in Spark distribution.

5.2.3 Machine Learning

Machine learning is an branch of artificial intelligence that allows the computer

builds models based on data rather than being decided by the developer. The Naive

Bayes Classifier algorithm is based on Bayes’ theorem with independence assumptions

between the features to categorize text. There are two steps in Naive Bayes: training

and testing. In the training step, the classifier is trained by the sample text file and

get a model. In the testing step, the classifier processes the input data based on the

model [16].

K-Means algorithm is used to group items into k clusters. And the value of k

can be decided by users. The algorithm first randomly select k data points as centroids

for each cluster. Then the input data points are assigned to clusters depending on

which centroid is closest to them. After that the algorithm computes new centroids for

all clusters by the average of all the points and assigns all points to clusters with new

centroids. This processing will be repeated until it converges [16].

5.3 Results and Analysis

In this section, we present the experiment results and analysis for benchmarks

described above. We ran all benchmarks on Hadoop and Spark distributed systems

and ran PageRank and WordCount on HAMR cluster. To compare their performance,

we record the running time, the maximum and average CPU usage, the maximum and
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In our experiment, we set up a platform for running big data applications.

Also, we selected representative benchmarks from industry and academia, that stress

different aspects of big data runtimes. By comparing the experiment results for running

different benchmarks, we found that Spark is faster than Hadoop by using in memory

processing. Spark is very efficient about machine learning and web search such as

K-means and Naive Bayes since it is design to implement applications that apply a

function repeatedly to the same dataset. For PageRank, Spark runs faster with small

input size. It begins to fail behind Hadoop with 16 million pages input because of

the memory restriction. The maximum memory usage has reached 100 percent. Spark

is faster on WordCount. For Sort and TeraSort, Spark runs faster with large input.

However, Spark consumes more memory resource than Hadoop. Also, when the input

size is large and the system does not have abundant memory, the performance is

restricted and can be slower than Hadoop.

Therefore, Spark is a good choice for implementing iterative applications. For

programs with huge input size but not enough memory, Hadoop should be considered.

Lei Gu and Huan Li also have a similar conclusion with us in paper “Memory or Time:

Performance Evaluation for Iterative Operation on Spark and Hadoop” [17].

HAMR also provides improvements than Hadoop in both two benchmarks. The

improvements on speedup, memory utilization and CPU utilization are contributed

by the data flow and Flowlet technology. Compared with Spark, HAMR is efficient

on the consumption of memory and CPU resource. HAMR is faster than Spark in
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implementing PageRank but slower in implementing WordCount. The performance of

running time is not influenced by the memory capacity on HAMR cluster.

HAMR provides better performance than Hadoop. To compare with Spark, we

still need more experiments.

6.2 Future Work

As our future work, we plan to set up Hadoop, Spark and HAMR on a bigger

cluster to test the scalability of each platform. Also, we want to increase the memory

capacity of the clusters to explore the influence of memory restriction on running time

of Spark. To analyze the performance of HAMR distribution, we need to run more

testing programs.

Also, we plan to design an intelligent system that can help us to choose a

platform and the configuration parameters based on the applications and the input

data sizes to get the optimized performance.
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Appendix A

MANUAL FOR HADOOP, SPARK AND HAMR INSTALLATION

A.1 SSH keyless setup

Hadoop, Spark and HAMR cluster require SSH keyless setup for every node in

the cluster. Follow the 5 steps to setup SSH login without password from fatnode0 to

fatnode1:

1. Log in fatnode0 and generate a pair of authentication keys.

$ ssh-keygen -t rsa

2. Stay on fatnode0 and create .ssh directory on the fatnode1 by the following
command.

$ ssh username@fatnode1.capsl.udel.edu mkdir –p .ssh

3. Copy the public key to fatnode1.

$ cat .ssh/id rsa.pub | ssh username@fatnode1.capsl.udel.edu ‘cat>> .ssh/authorized keys’

4. Change the file permission for the key file and the .ssh directory.

$ ssh username@fatnode1.capsl.udel.edu “chmod 700 .ssh; chmod 640 .ssh/authorized keys”

5. Login to fatnode1 from fatnode0 without entering the password

$ ssh username@fatnode1

6. A keyless login has been created from fatnode0 to fatnode1. Repeat steps from 2
to 5 for fatnode0, fatnode2 and fatnode 3 to create the keyless login from fatnode0
to fatnode0, fatnode2 and fatnode3.

Repeat the steps from 1 to 6 on fatnode1, fatnode2 and fatnode3 to set up SSH

login without password for all nodes. This manual can also be found here: http://www.

tecmint.com/ssh-passwordless-login-using-ssh-keygen-in-5-easy-steps
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A.2 Hadoop setup

1. Hadoop requires SSH keyless setup for every node in the cluster. Follow the SSH
keyless setup section as the prerequirement.

2. Download the Hadoop file from its website: http://www.apache.org/dyn/closer.
cgi/hadoop/common/hadoop-2.7.1/hadoop-2.7.1.tar.gz

3. Extract the tar file on the node.

$ tar –xvf Hadoop-2.7.1.tar.gz

4. Update the .bashrc file for each node. Open the .bashrc file and copy the following
to the file. We assume that the JAVA jdk has already been installed on the cluster.
And the JAVA HOME has been set pointing to the JAVA directory.

$ export HADOOP HOME=<path to Hadoop>

$ export PATH=$HADOOP HOME/bin:$HADOOP HOME/sbin:$JAVA HOME/
bin:$PATH

5. Use the following command to get the .bashrc file work.

$ source .bashrc

6. Configuration.

(a) Open this file: HADOOP HOME/etc/hadoop/core-site.xml and copy the
following into the file between two <configuration>. The hadoop.tmp.dir is
used as the base for temporary directories locally. You can change the path
as needed.

<property>

<name>hadoop.tmp.dir</name>

<value>/home/lu/tmp/ </value>

<description >A base for other temporary directories.</description>

</property>

<property>

<name>fs.defaultFS</name>

<value>hdfs://fatnode0:9000</value>

</property>

(b) Open this file: HADOOP HOME/etc/hadoop/mpred-site.xml and copy the
followings into the file between two <configuration>.

<property>

<name>mapreduce.framework.name</name>

44



<value>yarn</value>

</property>

(c) Open this file: HADOOP HOME/etc/hadoop/hdfs-site.xml and copy the
followings into the file between two <configuration>. The dfs.replication is
used to decided the number of replications for the hdfs. The dfs.namenode.name.dir
and dfs.datanode.data.dir is pointed to the local temporary directory for the
namenode and datanode. The path should be changed as needed.

<property>

<name>dfs.replication</name>

<value>3</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>/home/lu/hadoop/tmp/dfs/name</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>/home/lu/hadoop/tmp/dfs/data</value>

</property>

(d) Open this file: HADOOP HOME/etc/hadoop/yarn-site.xml and copy the
followings into the file between two <configuration>.

<property>

<name>yarn.resourcemanager.hostname</name>

<value>fatnode0</value>

</property>

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce shuffle</value>

</property>

</property>

<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>

<value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>
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<property>

<name>yarn.nodemanager.vmem-check-enabled</name>

<value>false</value>

</property>

(e) Open the file: HADOOP HOME/etc/hadoop/slave. Copy the hostname of
each slave node into this file as the following example.
fatnode0
fatnode1
fatnode2
fatnode3

7. Repeat the installation and configuration steps from 1 to 6 on each node.

8. If there is another installation of Hadoop working on the cluster, you may have
the port binding error. The following files can be changed to solve that problem.

(a) HADOOP HOME/etc/hadoop/hdfs-site.xml

<property>

<name>dfs.namenode.http-address</name>
<value>0.0.0.0:51070</value>
</property>

<property>

<name>dfs.datanode.http.address</name>

<value>0.0.0.0:51075</value>

</property>

<property>

<name>dfs.datanode.address</name>

<value>0.0.0.0:51010</value>

</property>

<property>

<name>dfs.datanode.ipc.address</name>

<value>0.0.0.0:51020</value>

</property>

<property>

<name>dfs.namenode.secondary.http-address</name>
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<value>fatnode0:51090</value>

</property>

<property>

<name>dfs.namenode.secondary.https-address</name>

<value>0.0.0.0:51091</value>

</property>

(b) HADOOP HOME/etc/hadoop/yarn-site.xml

<property>

<name>yarn.resourcemanager.resource-tracker.address</name>

<value>fatnode0:8131</value>

</property>

9. Format the HDFS fily system

$ hdfs namenode –format

10. Start the Hadoop cluster and the YARN

$ HADOOP HOME/sbin/start-all.sh

11. Start the Hadoop cluster and the YARN

$ HADOOP HOME/sbin/stop-all.sh

A.3 Spark Setup

1. Spark SSH keyless setup for every node in the cluster. Follow the SSH keyless
setup section as the prerequirement.

2. Install Scala on each node. Download Scala from its website: http://www.

scala-lang.org/download/. Extract it to local file.

$ tar –zxvf scala-2.11.7.tgz

3. Update the .bashrc file for each node.

export SCALA HOME=/home/lu/scala-2.11.7
export PATH=$PATH:$SCALA HOME/bin

4. Use the command to get the .bashrc file work

$ source .bashrc
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5. Download the Spark from its website: http://spark.apache.org/downloads.
html. And extract it. I downloaded the spark-1.3.1-bin-hadoop2.6.tgz.

$ tar –zxvf spark-1.3.1-bin-hadoop2.6.tgz

6. Configuration

(a) Copy the spark-env.sh.template to spark-env.sh.

(b) Open this file: SPARK HOME/conf/spark-env.sh. Copy the following set-
ting into the file. The path to each file should be changed as needed.

export SCALA HOME=/home/lu/scala-2.11.7
export JAVA HOME=/share/pinogal/opt/jdk1.7
export HADOOP HOME=/home/lu/hadoop-2.7.1
export HADOOP CONF DIR=$HADOOP HOME/etc/hadoop
export SPARK MASTER IP=fatnode0
export SPARK LOCAL DIR=/home/lu/spark-1.3.1-bin-hadoop2.6
export SPARK DRIVER MEMORY=1G

(c) Open the file: SPARK HOME/conf/slaves. Add the hostname of each slave
node into it.
fatnode0
fatnode1
fatnode2
fatnode3

7. Repeat the install and configuration steps on each node.

8. Start Hadoop and YARN before staring Spark.

$ start-all.sh

9. Start the Spark

$ SPARK HOME/sbin/start-all.sh

10. Stop the Spark

$ SPARK HOME/sbin/stop-all.sh

A.4 HAMR Setup

1. The installation of HAMR is provided on HAMR website and can be found by
the following address: http://hamrtech.com/docs.php?page=documentation

2. HAMR requires at least on install of ZooKeeper for a cluster. It is important to
install version 3.4.6 or later.

48



(a) Download the correct version from: http://zookeeper.apache.org/releases.
html

(b) Extract the file

$ tar –xzvf zookeeper-3.4.6.tar.gz

(c) Copy zoo sample.cfg to zoo.cfg

$ cp zoo sample.cfg zoo.cfg

3. HAMR requires RabbitMQ to send messages between running HAMR processes.it
is important to install version 3.3.5 or later.

(a) Download the correct version from: https://www.rabbitmq.com/releases/
rabbitmq-server/v3.3.5/.

(b) Install according to RAbbitMQ’s documentation: http://www.rabbitmq.

com/download.html

(c) If a RabbitMQ server was already installed, the following setup steps are
needed on each host running RabbitMQ to ensure that the new software is
correctly installed. Create the file: RABBIT HOME/etc/rabbitmq/rabbitmq-
env.conf and add the following lines:

RABBITMQ HOME PORT=<nnnn>
RABBITMQ NODENAME=hamr rabbit@<hostname>

4. Download HAMR from http://hamrtech.com/download.php

5. Extract the file

$tar –xzvf hamr-0.4.1.tgz

6. Open the file: HAMR HOME/conf/hamr-site.xml and edit the following proper-
ties. The path can be changed as needed.

<property name=‘rabbitmq.connection.server’>fatnode0, fatnode1, fatnode2, fatn-
ode3</property>

<property name=‘zookeeper.connection.servers’>fatnode0:2181, fatnode1:2181,
fatnode2:2181, fatnode3:2181</property>

<property name=‘cluster.home’>/home/lu/hamr-0.4.1</property>

<property name=‘license.file’>/home/lu/hamr-0.4.1/conf/license.xml</property>

<property name=‘cluster.tmpdir’>/share/lu/tmp/hamr</property>

<property name=‘cluster.java’</share/pinogal/opt/jdk1.7/bin/java</property>

<property name=‘cluster.javaArg’>

<value>-Djava.library.path=/home/lu/hadoop-2.7.1/lib/native</value>

</property>
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<property name=‘rn.horn.master.host’>fatnode0</property>

<property name=‘rn.horn.slave.host’>

<value>fatnode0</value>
<value>fatnode1</value>
<value>fatnode2</value>
<value>fatnode3</value>

</property>

7. Repeat the installation and configuration steps from 3 to 5 on each node.

A.5 Running WordCount

This example assumes that Hadoop, Spark and HAMR are already installed and
configured.

1. The HiBench requires an installation of Maven on the same node of HiBench.
Download the Maven from: https://maven.apache.org/download.cgi

2. Create the MAVEN HOME in the .bashrc file and add it to the PATH.

export MAVEN HOME=/home/lu/apache-maven-3.3.3
export PATH=$MAVEN HOME/bin:$PATH

3. Update the .bashrc file

$ source .bashrc

4. Install Hibench benchmark suite

(a) Get the HiBench from https://github.com/intel-hadoop/HiBench. Ex-
tract it.

(b) Build HiBench

$ HIBENCH ROOT/bin/build-all.sh

(c) Configuration. Create and edit the file: HIBENCH ROOT/conf/99-user
defined properties.conf.

$ cd conf

$ cp 99-user defined properties.conf.template 99-user defined properties.conf

(d) Set the following properties the path can be changed as needed.

hibench.hadoop.home /home/lu/hadoop-2.7.1
hibench.spark.home /home/lu/spark-1.3.1-bin-hadoop2.6
hibench.hdfs.master hdfs://fatnode0:9000
hibench.spark.master yarn-client
hibench.hadoop.version hadoop2
hibench.hadoop.release apache

50



hibench.masters.hostnames fatnode0
hibench.slaves.hostnames fatnode0 fatnode1 fatnode2 fatnode3
hibench.spark.version spark1.3

5. The size of input data can be chosen in HIBENCH HOME/conf/99-user defined
properties.conf by changing this property: hibench.scale.profile. You can also
added more scale profiles in HIBENCH HOME/conf/10-data-scale-profile.conf

6. Generate the input data for WordCount

$ cd HIBENCH ROOT/workloads/wordcount/prepare

$ ./prepare.sh

7. Run the WordCount on Hadoop

$ cd ../mapreduce/bin/

$ ./run.sh

8. To optimize Hadoop, the YARN andMapReduce configuration such as the amount
of memory, the number of CPU cores and the number of disks, can be set ac-
cording to this website: http://docs.hortonworks.com/HDPDocuments/HDP2/

HDP-2.0.6.0/bk_installing_manually_book/content/rpm-chap1-11.html. These
files are located in HADOOP HOME/etc/hadoop/mapred-site.xml;
HADOOP HOME/etc/hadoop/yarn-site.xml.

9. Run the WordCount on Spark

$ cd ../../spark/scala/bin/

$ ./run.sh

10. Memory, cores and executors number Spark can be tuned in this file: HIBENCH HOME/
conf/99-user defined properties.conf

hibench.yarn.executors.num
hibench.yarn.executors.cores
spark.executors.memory
spark.driver.memory

11. Run the WordCount on HAMR

$ cd

$ hamr horn com.etinternational.hamr.examples.wordcount.WordCount
/HiBench/WordCount/Input -o <path>/myOutputfile.out
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