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ABSTRACT

The dynamics and rheology of an emulsion of viscous drops in shear flow is

investigated computationally. The simulations are performed using a three-dimensional

front tracking method. An emulsion gives rise to an effective non-Newtonian rheology

with finite normal stress differences and shear-dependent viscosity.

Previous estimates about the bulk properties of emulsions were limited to Stokes

conditions under which a positive first normal stress difference and a negative second

normal stress difference are predicted. However, the introduction of finite inertia sig-

nificantly modifies the behaviour of emulsions. The normal stress differences change

sign and the emulsion shows a shear-thickening behaviour with inertia. Computed

rheological properties (effective shear viscosity and first and second normal stress dif-

ferences) in conditions close to Stokes limit match well with the existing theoretical

and simulated results. The first component of the rheology arising from the interfacial

stresses at the drop surface is investigated as functions of particle Reynolds number,

capillary number and volume fraction. The sign change is caused by the increase in

drop inclination in presence of inertia, which in turn directly affects interfacial stresses

due to drops. Increasing volume fraction or capillary numbers increases the critical

Reynolds numbers for sign reversals due to increasing alignment of the drops with the

flow directions. The Reynolds stresses which form the second component of the stress

formulation are also considered in detail. The primary components of the Reynolds

stress showed a simple scaling with Reynolds number for moderate values of inertia.

They showed a non-linear increase at larger values of Reynolds number. A compar-

ison of the estimated effective viscosity with an established empirical relation is also

presented.

xi



Presence of finite surface tension results in a characteristic stress relaxation

time scale for emulsions. This is investigated for both dilute and concentrated systems

and the results are verified against the standard theoretical expressions. Finally, to

enhance the capabilities of the current computational method to handle extremely low

Reynolds number flows, a parallel version of the Alternate Direction Implicit method

is implemented.

xii



Chapter 1

INTRODUCTION

Emulsions which are a mixture of two or more immiscible liquids are ubiquitous

in our day to day life. They find numerous applications in different mechanical and

chemical engineering industries such as in the oil extraction process, food processing,

pharmaceutical manufacturing, etc. The properties of emulsions are determined by

their constituting phases as well as their internal arrangement. The small scale ar-

rangement of the constituting phases is termed as the microstructure [1]. Emulsions

of desirable mechanical properties can be obtained by manipulating their small scale

morphology [2]. Consequently it is of significant importance to establish the close

connection between the bulk properties of emulsions and their microstructure.

(a) Milk (commons.wikimedia.org) (b) Mayonnaise (commons.wikimedia.org)

Figure 1.1: Common examples of emulsions
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The following section outlines some of the research attempts that have been

made to predict the effective properties of emulsions by understanding the above men-

tioned link. The subsequent section provides a motivation and the main objectives of

the present work.

1.1 Emulsion Rheology

It is of great practical importance to understand the behaviour a complex liquid

like emulsion under different geometries and flow conditions. The solution to the ve-

locity and pressure fields (which essentially describe the behaviour of the liquid) under

a particular fluid flow would require a general stress-strain rate relationship. This is

well established for a simple Newtonian liquid like water phenomenologically, where a

single viscosity coefficient is sufficient to describe the relationship. A similar consti-

tutive equation for emulsions is very difficult to determine phenomenologically. So a

possible approach is to derive them from first principles by resolving the small scales

as well. Derivation of the constitutive equations from first principles under general

flow conditions can be a very complicated problem. However valuable insights into the

behaviour of emulsions can be obtained by studying the constitutive relations under

simple flow conditions such as steady shear flow, extensional flow and oscillatory flow.

Steady shearing type of flows impose a constant shearing condition at the macroscale

and its impact on the microscale is calculated. Extensional flow imposes a vorticity

free condition and oscillatory flow imposes a time varying condition. Among these flow

fields, steady shear flow conditions can be achieved in experiments easily (e.g. cone

and plate rheometer). Consequently a significant amount of research efforts have been

focussed on the development of constitutive equations (by resolving the smaller scales)

under steady shearing conditions.

The earliest work relating the effective properties of emulsion to its internal

micro-structure dates back to the seminal work of Taylor [3] in which he derived the

effective viscosity of a dilute emulsion under small deformation conditions. This was

an extension for the Einstein’s viscosity [4] expression for a rigid particle suspension.

2



Figure 1.2: A representative element of emulsion under shearing conditions

Using pertubative methods and assuming a Stokes flow condition Taylor predicted the

following expression for effective viscosity:

µeff = µ

[

1 + 2.5φ

(

λ+ 2
5

λ+ 1

)]

This was a zeroth order result and assumed spherical shapes of the drops. Consequently

it did not predict the presence of normal stress differences. Oldroyd [5] considered the

elastic properties of the emulsion and assumed a linear stress-strain relation which

involved their time derivatives as well. Using perturbation techniques he obtained the

Taylor’s viscosity expression (this was also a zeroth order solution) and also found

the relaxation and retardation times. These time scales are another characteristic

behaviour of non-Newtonian fluids. Schowalter et al. [6] obtained expressions for the

normal stress differences by solving the first order perturbative solutions. They took

into consideration the deviations in the spherical shape of the drop. Using perturbation
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techniques Frankel et al. [7] developed the general expressions of the stress tensor of

an emulsion in a time dependent shearing flow. From the general expressions, they

matched with the existing published results as special cases. Choi and Schowalter [8]

extended the results for a semi dilute system. They used a cell model approach to

account for the inter-drop interactions and gave an order φ2 expression for the shear

stress and the normal stress differences.

The approach adopted by the previous papers was essentially a pertubative one

and the results were mostly valid under their assumed asymptotic conditions. Certain

semi-phenomenological approach which involve some modelling at the small scales have

achieved success in the prediction of the behaviour of emulsions under more general

conditions. These methods are based on the modelling of the time evolution of tenso-

rial quantities which capture the geometry of the dispersed drops. Doi and Ohta [9]

developed such a model for bi-continuous blend with a 50% volume fraction. They di-

vided the time dependence of the geometric tensors as additive contributions from drop

relaxation (surface tension) and drop deformation (external flow deformation). Since

the formulation was for bi-continuous blend, the model lacked an intrinsic length/time

scale. Using their model they obtained a linear relationship between stresses and ve-

locity gradient. Following this work, various modifications were made to the Doi-Ohta

model and a review of those is avoided here. Maffettone and Minale [10] developed

a similar phenomenological model assuming an ellipsoidal shape for the drop. They

compared the prediction of their model with experiments for the drop deformation and

orientation in shear flow for a range of Capillary numbers. Almusallam and coworkers

[11] proposed a phenomenological model where the volume of the drops were conserved

and so their model had an intrinsic length/time scale. They obtained good agreement

of the drop shape evolution with experiments.

Numerical simulations offer a good alternative approach where most of the as-

sumptions of the theoretical models can be relaxed. Computational techniques like

Stokesian dynamics [13] have been successful in the prediction of rheology of rigid

particle suspensions and have provided a deep insight into the internal structure of

4



Figure 1.3: Microstructure of a sheared emulsion (Reprinted with permission from Iza
& Bousmina (2000) [12]. c© 2000, The Society of Rheology)

suspensions. Stokesian dynamics has been employed for understanding the behaviour

and dynamics of Brownian as well as non-colloidal suspensions of hard spheres under

Stokes flow condition. They predict a range of non-Newtonian behaviour which arise

due to the break down of the reversibility of Stokes flow. A suspension of hard spheres

under low Peclet condition (which is a measure of the relative strengths of hydrody-

namics and Brownian forces) exhibit shear thinning and a positive first normal stress

difference and a negative second normal stress difference. Increasing Peclet number

modifies the behaviour of the system. As the relative strength of the hydrodynamic

forces increase the suspension exhibits shear thickening and the first normal stress dif-

ference becomes negative. The shear thickening occurs because of the formation of

the hydrodynamic clusters [14]. There also have been some recent experimental con-

firmation of the existence of finite normal stress differences in the case of non-colloidal

suspensions [15].

In case of deformable particle suspensions, numerical simulations have been

fewer as they are computationally more intensive. Secondly, numerical simulations
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generally do not take into account the complicated phenomenons like the drops coales-

cence and breakup. Therefore it gets difficult to match up these results with realistic

experiments. Zhou and Pozrikidis [16] studied the dynamics of two-dimensional peri-

odic and random suspensions in closed channels using numerical simulations. Lowen-

berg and Hinch [2] did boundary integral simulations of concentrated emulsions. They

provided deep insight into the connection between the small scale morphology and the

bulk properties. They predicted a shear thinning behaviour and a positive first normal

stress difference and a negative second normal stress difference. In case of the drops

(i.e. deformable particles) the deformation in the shape produces anisotropy in the

flow field and the non-Newtonian behaviour can be explained by considering simple

parameters like orientations and deformations. Zinchenko and Davis [17] did boundary

integral simulations of highly concentrated emulsions and discussed in detail about se-

lecting the correct parameters for accurately predicting the rheology. They computed

the dependence of the normal stress differences and shear stress on capillary number

for very high volume fractions and noticed that most of the shear thinning at very high

concentrations occur at small deformation conditions.

Investigation of the dynamics and rheology of emulsions and suspensions in

presence of finite inertia has been quite limited. Lin and Scholwater [18] accounted

for the effect of finite fluid inertia on the rheology of rigid particle suspensions (dilute

system). They assumed a condition of zero forces and torques on the particles and

using asymptotic techniques they found that the effect of inertia was to produce a

negative first normal stress difference. Patankar et al. [19], performed two dimensional

simulations for a similar system where they included finite forces on the particle. They

also predicted a negative first normal stress difference and a shear thickening behaviour.

Using a volume of fluid method, Renardy et al. [20] studied the effect of inertia on

the geometry and break of a single drop under shear flow condition. Li and Sarkar

[21] investigated the influence of increasing inertia on the rheology of a dilute emulsion

(i.e. a single drop) using front tracking simulations. They predicted the reversal of the

signs of normals stress differences with increasing Reynolds number. A similar study

6



was also pursued by Raja et al. [22] analytically and they found qualitatively similar

results. Singh and Sarkar [23] found out that the normal stress differences change their

signs with Reynolds number only for a range of capillary numbers. These studies have

however been limited to a dilute system i.e. a single drop problem.

Numerical simulations of the dynamics of emulsions is essentially a two phase

(or multiphase if generalized more) flow problem. Currently a number of sophisticated

techniques are available for the simulations of such a problem. Some of the popular

methods among them are the volume of fluid method [24], level set [25], a coupled level

set and volume of fluid method [26] and front tracking method [27]. Front tracking

though computationally more expensive than the other methods provides a very accu-

rate tracking of the drop’s motion and prevents the artificial diffusion of the interfaces

between the separate phases. Consequently it has been extensively used for studying

multiphase flow problems [28–37]. Recently Lattice Boltzmann method [38] has also

made significant advances on the simulation of deformable particle suspensions [39].

1.2 Motivation and Scope

The objective of the present work is to study the behaviour and effective prop-

erties of a concentrated emulsion in steady shear. The focus of the research is to un-

derstand the effects of inertia and concentration on the effective rheology of emulsions.

It is a simple system, consisting of mono-dispersed Newtonian drops in a Newtonian

matrix. The bulk properties of the emulsion are estimated by volume averaging the

microscopic quantities as proposed by the Batchelor stress formulation [40]. The for-

mulation assumes that the scale of the macroscopic flow is larger than the size of the

droplets. This means that we can find an averaging volume element smaller than the

macroscopic flow scales and much larger than the droplet size. The coalescence and

breakup have not been considered. Nevertheless, the simple system provides valuable

insights about emulsions and exhibits a number of non-Newtonian properties such as

shear thinning and presence of non-zero normal stress differences. It captures the ef-

fects of increasing concentration and demonstrates that presence of small amount of
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inertia can qualitatively change the rheological behaviours such as a change of the signs

of normal stress differences.

Chapters 2 and 3 provide the details of the mathematical modelling of the prob-

lem and the numerical method used for its solution. Chapter 4 presents the background

required for understanding the idea of rheology and finally chapter 5 presents the re-

sults of this study. Chapter 6 discusses about the implementation of a parallel version

of the Alternate Direction Implicit method which will enhance the capability of the

code to deal with extremely low Reynolds number flows. Some of the possible future

works are provided in chapter 7.
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Chapter 2

MATHEMATICAL MODELLING OF THE SYSTEM

The emulsion is modelled as a mixture of spherical droplets dispersed in a matrix

fluid. The drops are mono-dispersed i.e. every drop has identical shape, size and

property. The matrix liquid and the droplets are considered as Newtonian fluid. This

essentially is a two phase system (see fig 2.1). This problem can be approached by

solving separate sets of Navier Stokes equations for the matrix fluid and the droplets

and connecting them via appropriate boundary conditions at the drops’ interface. An

alternate to this approach is to pose this problem as a single fluid formulation. This can

be done by including the surface tension force as a body force term in the momentum

equation. This body force term involves a dirac delta function which ensures that the

boundary conditions are felt only at the interface of the drops.

2.1 Governing Equations for the One Liquid Formulation

The derivation of the one liquid formulation is avoided here. The key idea be-

hind this approach is the use of dirac delta functions to convert surface integrals to

volume integrals. The formulation consists of the following set of equations:

Continuity equation

∇.u = 0 (2.1)

Momentum equation

∂(ρu)

∂t
+∇.(ρuu) = −∇p +∇.[µ{∇u+ (∇u)T}]−

∫

∂B

κnΓδ(x− x
′

)dS(x
′

) (2.2)
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State equation

Dρ

Dt
= 0 (2.3)

Dµ

Dt
= 0 (2.4)

For the above set of equations u is the fluid velocity, ρ and µ are the density

and viscosity respectively which take appropriate values for the matrix liquid and the

droplets, Γ is surface tension and κ is the local curvature of the droplets. The first

equation specifies that both the liquids are incompressible. The momentum equation

has a surface tension force as an area integral (integrated over the surface of drops).

It is this term which captures the two fluid system in a single equation. The last two

equations specify that the density and viscosity for each liquid is constant.

2.2 Non-Dimensional Parameters

The dynamics of this two phase system is governed by a number of non-dimensional

parameters. The analysis that will be presented in the later sections is reported in terms

of these parameters. The non-dimensional parameters are:

Reynolds number: The velocity scale is formed using the imposed shear rate and

the drop’s radius. The length scale is taken as the drop’s radius itself.

Reynolds number (Re) =
ρ0γ̇a

2

µ0

Capillary number: The capillary number indicates the strength of the deforming

viscous stresses acting on the drops relative to the restoring surface tension force.

Capillary number (Ca) =
µ0γ̇a

Γ

10



a

µ1 ρ1

µ0 ρ0

Figure 2.1: Two-phase system.

Volume fraction: This is the fraction of the volume constituted by the dispersed

droplets.

Volume fraction(φ) =
4πa3N

3V
(2.5)

Density ratio: This is the ratio of the drop and matrix liquid density. This parameter

will be fixed at unity for the entire study.

Density ratio(λp) = ρ1/ρ0

11



Viscosity ratio: It is the ratio of the drop and matrix liquid viscosity. This parameter

is also fixed at unity for the entire study.

Viscosity ratio(λ) = µ1/µ0

12



Chapter 3

COMPUTATIONAL METHOD: FRONT TRACKING

As mentioned before the emulsion is modelled by dispersing spherical drops in

a matrix liquid and the objective is to study the bulk properties of the system under

shearing condition. This is achieved via numerical simulations and the problem set up

is shown in the figure below. Figure 3.1 below shows the three dimensional domain

in which spherical drops are suspended in an ambient fluid. The domain is periodic

in x-direction and z-direction. It is subjected to wall boundary conditions along the

y-direction. The top and bottom walls move with a constant speed U in opposite

directions. This imposes a shearing condition, the flow condition under which we

are interested in investigating the effective properties of the emulsion. The system is

mathematically modelled using the single fluid formulation outlined in the previous

chapter.

Figure 3.1: Problem set-up
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Commonly used methods for solving the single fluid formulation such as the

volume of fluid method involves an extra scalar for distinguishing the two liquids.

This extra scalar satisfies an advection equation. Using this approach the entire set of

equations is solved on a single fixed mesh. The computational method used presently

is a front tracking method and it does not use an extra scalar for distinguishing the

two liquids. It involves a second moving mesh for explicitly tracking the motion of the

drops. The front tracking method is outlined in detail in the following sections.

3.1 Front Tracking Method

This computational method uses two separate mesh for simulating the flow. The

first is a fixed cartesian mesh on which the set of Navier stokes equations are solved.

The second mesh is a moving mesh that explicitly tracks the motion of the drops. This

is a surface mesh and is composed of triangular elements. Figures 3.2 and 3.3 below

show the two meshes.

Figure 3.2: Fixed mesh Figure 3.3: Moving mesh

3.2 Surface Tension Calculation

Along with tracking the motion of the drops, the surface mesh is also used for

calculating the surface tension force. This force is calculated as a surface force term

14



on the moving mesh. Figure 3.4 shows a typical triangular element along with its

adjoining neighbours. The surface tension force on an element a is given by the surface

integral:

Figure 3.4: Calculation of the surface tension force

∂Fa = Γ

∫

∂A

κndA = Γ

∮

S

(t× n)dS

Here Γ is the surface tension coefficient, κ is the curvature, t is the tangential vector

(shown in the figure) and n is the normal to the surface. The surface integral is a well

known result and it has been converted into a line integral using Stokes theorem. The

surface tension force is calculated using the line integral. The tangential vector t is

calculated easily by finding the unit vectors aligned along the edges of the element.

The calculation of the normal vector involves a quadratic surface fitting. A quadratic

surface of the form shown below is fitted through the nodal points of the element a

and the nodal point of the three adjoining elements.

Quadratic surface

z = ax+ by + cxy + dx2 + ey2
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Once the quadratic fitting is completed the gradient of the surface gives the normal

vector which is then plugged in the previous expression for the surface tension force.

This completes the evaluation of the surface tension force on every such element a.

3.3 Moving Mesh to Fixed Mesh Interpolation

The surface tension force calculated on the moving mesh is a surface force and

the one fluid formulation requires this force as a body force term on the fixed mesh.

This necessitates the interpolation of the surface tension force from the moving mesh

to the fixed mesh. The key idea behind this is that the total strength of the inter-

polated quantity should remain conserved, which in turn provides the relation for the

interpolated body force term on the fixed mesh.

∫

S

φf(x
′

)dS
′

=

∫

V

φg(x)dV =⇒ φg =

∫

S

φf(x
′

)δ(x− x
′

)dS
′

Here φf is the surface force calculated on the moving mesh and φg is the interpolated

body force term on the fixed mesh.

The Dirac delta function δ(x− x
′

) occurring in the previous relation is approx-

imated by a function D(x− x
′

) which has a finite support i.e. having a finite width.

This is done by using the Peskin Cosine [41] function which has a width of four grid

spacing in each direction.

δ(x− x
′

) ≈ D(x− x
′

) =

3
∏

i=1

Di(x− x
′

)

Di(xi − xi

′

) =











1
4hi

(1 + cos π(xi−xi

′

)
2hi

) |(xi − xi
′

)| < 2h

0 |(xi − xi
′

)| > 2h
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3.4 Density and Viscosity Field

The densities and the viscosities of the matrix liquid and the drops can be

different in general. So from a given location of the fronts, these scalar fields need to

be created. The scalar fields will be required in the solution of Navier-Stokes equations.

The scalar fields (of density and viscosity) are generated by determining their gradients

by the following relation:

∇φ(x) =

∫

S

∆φδ(x− x
′

)ndS
′

Here φ can represent either density or viscosity. This equation can be integrated

directly to obtain the appropriate scalar field. In the present code, divergence of the

above equation is calculated, which results in a Poisson’s equation. The resulting

Poisson’s equation is solved with a multigrid subroutine.

3.5 Navier Stokes Equation Solver

Once the density and viscosity field have been generated from the location of the

fronts and the interpolated surface tension force has been estimated, all the components

necessary for setting up the Navier Stokes equations are present. The set of Navier

Stokes equations are solved explicitly on the fixed mesh using a projection method.

In the first step of the projection method an intermediate velocity field is generated

using the values of the previous time step.

ρn+1u∗ − ρun

δt
= −∇ · (ρuu)n +∇ · τn + fn

Here the spatial derivatives are discretised using a second order central differencing

scheme. fn is the interpolated surface tension force. The intermediate velocity field

is used to create the pressure Poisson’s equation which guarantees that the continuity
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equation is satisfied.

∇ · (
1

ρn+1
∇pn+1) =

1

δt
∇ · u∗

The newly constructed field is then used for projecting the intermediate velocity field

onto a divergence free velocity field, which is the new velocity field.

un+1 − u∗

δt
= −

1

ρn+1
∇pn+1

The Poisson’s equation arising in the previous step is solved using a geometric

multigrid solver. Since this is an explicit scheme it suffers from different stability

criteria. The convective restriction i.e. δt < 2.0µ
ρUmax

2 and the CFL criteria of δt < δx
Umax

do not affect the simulations as the Reynolds numbers for the simulations are quite low.

The viscous stability criteria: δt < 0.125ρδx2

µ
dictates the time stepping limit. This can

be alleviated to some extent by including some of the viscous terms implicitly and this

approach is called the Alternate Direction Implicit (ADI) method. The development

of the parallel subroutines for ADI was a separate part of the research and will be

discussed in a later chapter. The results for the emulsion rheology do not include the

ADI subroutines.

The solution of the set of Navier-Stokes equations gives the updated velocity

field on the fixed mesh. The advection of the front requires this time an interpolation

from the fixed mesh to moving mesh and this is discussed in the following section.

3.6 Advection of the Fronts

Once the updated velocity field have been calculated it has to be interpolated

on the moving mesh to advect the fronts. This is achieved by the use of the following
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relation:

u(xf ) =

∫

V

u(x)δ(x− xf)dV

xf
n+1 = xf

n + u(xf)δt

The delta function is again numerically approximated by using the Peskin Cosine func-

tion. The advection of fronts may lead to a decrease or increase in the size of the front

elements. This may result in “ poor front quality ” and this is prevented in the code

by employing an adaptive regriding. Certain threshold limits are place below or above

which the sizes of the elements cannot decrease or increase respectively. The details of

this is avoided here and the reader is directed to the paper by Trygvasson et al. [27].

3.7 Parallelization

The front tracking code that is used for the simulations has been parallelized

using MPI libraries. A domain decomposition methodology is used for the fixed mesh

on which the set of Navier Stokes equation are solved. The entire domain is subdivided

into a number of smaller sub-domains and a processor is attached to each subdomain.

Since the Navier Stokes equations are solved explicitly the parallelization of the Navier

Stokes solver on the fixed mesh is relatively easy.

The calculation of the front quantities such as the surface tension force uses a

different methodology. It uses a Master-Slave approach where each front has associ-

ated with it a master processor. The master processor does all the calculation for its

associated front and then it passes this information to the remaining slave processors

associated with the front. The master processor is determined by finding out the sub-

domain on the fixed mesh which has the maximum number of nodal points of a front.

The processor associated with that sub-domain becomes the master processor of that

front. The processors of the remaining sub-domains which share some of the nodal

points of the given front become the slave processors. The master processor does all

the calculation associated with the given front and then it passes this information to
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the slave processors. The slave processor uses this information for the interpolation

between the moving and fixed mesh. The reader is directed to the following reference

[42] for the details of this procedure and the scalability of the code.
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Chapter 4

RHEOLOGY

The previous chapters gave a brief description of our problem and the compu-

tational method used for simulating the fluid flow. The present chapter will discuss

in detail about the physical quantities we are interested in calculating. The procedure

used for estimating these quantities will also be discussed.

The main goal of a rheological study is to develop the constitutive equations of a

complex liquid. This can be stated as the following question: We have a homogeneous

fluid. We take a representative element of the fluid subjected to given strain rates.

What are the stresses developed on the faces of this element? This question is well

answered for a Newtonian liquid like water phenomenologically. Such a general stress-

strain relationship for a complex liquid like emulsion is very hard to formulate. As it

was mentioned in the preceding chapters, the constitutive equations are derived from

the first principles under simple flow conditions and this gives us a valuable insight into

the dynamics of such liquids. Steady shearing condition is one of the most commonly

used type of flow for such a study and the present work is also completely focussed on

shear rheology.

4.1 Batchelor Stress Formulation

Batchelor [40] gave a mathematical expression for determining the bulk proper-

ties of emulsions by establishing a connection between the macroscopic and microscopic

quantities. Here macro-scale corresponds to the scale associated with the emulsion fluid

flow and the micro-scale is that associated with the drop’s motion. The key idea is

to take a statistical approach in determining the bulk quantities. To determine the

stress developed on the faces of a representative element of the emulsion subjected to
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a given straining condition, an ensemble of such elements needs to be considered. The

average of the stresses over all such ensembles gives the required stress which is termed

as macroscopic stress. This is a macroscopic property in the sense that the scale over

which they vary is governed by the macro-scales associated with the emulsion fluid

flow. To evaluate the ensemble average, the property of ergodicity has to be invoked

and the ensemble average is converted into an integral of the stresses over the volume

of the representative element. This is expressed by the following relation:

σ
ave =

∫

V

(σ − ρu
′

u
′

)dV (4.1)

Here V is the volume of the representative element being sampled. σave is the macro-

scopic stresses developed and is called the average stress since it is estimated through

an averaging process. The term σ inside the integration sign is the stress developed in-

side the emulsion element (i.e. the stress generated on the microscopic scale). The final

term ρu
′

u
′

under the integration sign captures the additional momentum fluxes due

to the disturbances generated by the presence of drops. This stress can be viewed as

the Reynolds stress arising in turbulent flows and consequently is also called Reynolds

stress. The details of this stress will be explained in the following sections. Equation 4.1

can also be written as a sum of the following terms:

σ
ave = P ave

I + τ
ave + σ

excess (4.2)

Here the left hand term is the average or macroscopic stress. The first two terms

on the right hand side arise due to the macroscopic or bulk shearing. This can be

obtained from the stress-strain relationship of the matrix liquid (which is Newtonian).

The last term called the excess stress captures the effect of the presence of drops on

the macroscopic stress and is a complicated quantity. This has to be calculated from

numerical simulations.

Further mathematical manipulations show that the excess stresses can be broken
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down into two terms:

σ
excess =

−Γ

V

∑

∫

Ad

(nn−
I

3
)dA+

−1

V

∫

V

ρu
′

u
′

dV (4.3)

In the above expression the second term of the right hand side is the Reynolds stress

which was explained before. It shows up as a part of the excess stress (and this should

be as excess stress captures the effects of drops). The first term is called the interfacial

stress. Both the above stresses are explained in detail in the section below.

4.2 Interfacial Stress

σ
int =

−Γ

V

∑

∫

Ad

(nn−
I

3
)dA (4.4)

The interfacial stress defined above is one of the components of the stresses

generated by the presence of drops. This is an interesting quantity as it is completely

determined by the geometry of the drops. It does not involve any pressure or velocity

terms. This quantity gives a measure of how much the drops are deformed and the

direction along which they are oriented due to the imposed flow condition.

Figure 4.1 shows a snapshot of a drop inside the emulsion. The integral of the

quantity Γ(nn− I

3
) over the drop’s surface is calculated. This requires the knowledge

of the normal vectors over the drop’s interface and this is already calculated as part of

the front tracking method. The above quantity is computed for all the drops and the

summation of them normalized with the volume of the element (being sampled) gives

the interfacial stresses.
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Figure 4.1: Interfacial tensor calculation

4.3 Reynolds Stress

σ
re =

−1

V

∫

V

ρu
′

u
′

dV (4.5)

u
′

= U− Ū (4.6)

The Reynolds stress captures the disturbances in the velocity field produced by

the presence of the drops. In the above equation U represents the actual velocity field

inside the element and Ū is the bulk velocity. This quantity is similar to the Reynolds

stress term arising in turbulent flows. The idea behind including this term is to include

the additional momentum fluxes which were lost because of the averaging process.
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4.4 Effective Properties

4.4.1 Effective viscosity

While studying the rheology of any complex liquid we are first of all interested

in estimating its effective viscosity. The expression of the viscosity can be obtained

from the equation 4.2 defined above for the calculation of the average stresses. The

following expression gives this relation with the viscosity scaled with that of the matrix

fluid.

µave

µ
= 1 +

σexcess

γ̇µ
(4.7)

4.4.2 Normal stress differences

Along with the effective viscosity we are interested in calculating the normal

stress differences as defined below. Note that we are interested only in their differences

and not the normal stresses themselves as both the liquids involved here are incom-

pressible and the normal stresses can be determined only up-to a constant value for

incompressible liquids.

N1 = σxx
ave − σyy

ave

N1

µγ̇
=

σxx
excess − σyy

excess

µγ̇

N2 = σyy
ave − σzz

ave

N2

µγ̇
=

σyy
excess − σzz

excess

µγ̇

From the above expressions it should be noted that the normal stress differences arise

only due to the excess stresses (i.e. due to the presence of the drops).The bulk shearing

terms do not produce any normal stress differences and this is because of the Newtonian

nature of the matrix liquid.

The significance of the shear viscosity is easy to understand, it gives a measure of
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the opposing shearing stresses that will be generated when an element of the emulsion

is sheared. Presence of normal stress differences under shearing condition is sort of

counter-intuitive. However in reality they affect the flow properties of the emulsion in

a very perceptible way and they show up in a number of peculiar behaviours of complex

liquids. A very good example of this would be the Weissenberg effect popularly referred

to as “rod climbing effect”. Figure 4.2 below shows this. A Newtonian liquid when

stirred moves away from the stirrer due to the centrifugal forces (left picture). However

certain liquids move radially inward and actually climb up the rod (right picture). This

is a manifestation of the normal stress differences.

Figure 4.2: Rod climbing effect

4.5 Previous Rheological Results

This section will present some of the established rheological results and will

motivate the focus of this research.

4.5.1 Newtonian liquids

Figure 4.3 below shows a Newtonian liquid subjected to shearing conditions.

The shear stress developed will be a linear function of the imposed shear rate. The

normal stresses developed will be equal in all directions and equal to the pressure.

Therefore normal stress differences will be zero. This is a Newtonian behaviour and

the description is complete just with the use of a single viscosity coefficient.
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Figure 4.3: Shear rheology for a Newtonian liquid

4.5.2 Emulsion: Stokes flow

Figure 4.4 below shows Newtonian drops dispersed in a Newtonian liquid and

the system is subjected to shearing conditions. It has been calculated (Choi-Schowalter

model) [8] that the system exhibits shear thinning i.e. viscosity decreases with shear

rate. The normal stress differences are non-zero with N1 > 0 and N2 < 0. These

results are valid under Stokes flow condition i.e. negligible inertia. The normal stress

differences arise because of the stretching of the drops (this will be explained in detail

in later sections). This behaviour is called viscoelastic: visco due to the presence of

viscosity and elastic due to normal stress differences. This description has also been

verified by the simulations of Lowenberg and Hinch [2] and Zinchenko and Davis [17].

4.5.3 Rigid particle suspension

Suspensions have been investigated thoroughly using Stokesian dynamics and

experiments. A review of some of the results was presented in the chapter 1 and is

repeated here. Stokesian dynamics predicts different behaviour under differing con-

ditions. It predicts shear-thinning and N1 > 0 and N2 < 0 for low Peclet numbers.

The behaviour changes to shear-thickening and N1 < 0 and N2 < 0 as the strength

of the hydrodynamic forces increase [14]. Zarraga et al. [15] experimentally verified
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Figure 4.4: Shear rheology for an emulsion under Stokes flow

the presence of non-zero normal stress differences for non-colloidal suspensions (under

Stokes flow condition) with N1 < 0 and N2 < 0. The presence of non-zero normal

stress differences for rigid particle suspensions is explained by the asymmetry in the

micro-structure by the use of pair-distribution function.

4.5.4 Dilute emulsion: Finite inertia

Li and Sarkar [21] using numerical simulations showed that increasing inertia

results in the reversal of the signs of normal stress differences. The study was for a

dilute emulsion using a single drop. This qualitative behaviour was also verified by the

subsequent pertubative analysis of Raja et al. [22].

The current research investigates finite inertia effects in a concentrated emulsion

consisting of multiple drops.

28



Chapter 5

STEADY SHEAR RHEOLOGICAL RESULTS

The previous few chapters served to describe the problem and the different

ideas used for studying the rheology of a complex liquid like emulsion. This chapter

will present the main results of this thesis. After showing the validation of the code

and tuning the parameters for an accurate prediction of rheology, the main results will

be discussed. A physical insight into the behaviour of the emulsion under shearing

condition will also be provided as an explanation of the results. The problem set-

Figure 5.1: Schematic diagram showing the computational domain

up is recapitulated and is shown in figure 5.1. The shear flow velocity direction is

demarcated as the X-axis, the velocity gradient as the Y-axis and the vorticity as the

Z-axis. The top and the bottom Y walls (parallel to x-z plane) move with a +U and -U

velocity, respectively, so as to a create uniform velocity gradient of γ̇. The boundary
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conditions at these Y walls are that of no slip condition and at the X and Z walls are

of periodic nature. Inside this domain multiple drops are positioned randomly with an

initial velocity distribution of uniform steady shear. Using the simulations from the

front tracking code, effective properties are calculated by employing the rheological

concepts that were outlined in the previous chapter.

5.1 Validation

The code was first validated by considering a dilute emulsion of volume fraction

of 0.25% and comparing the results with the predictions of Choi-Schowalter (C-S)

model [8]. As this is a Stokes flow model, the Reynolds number for the simulations was

kept at a low value of 0.1. The dilute emulsion consists of four drops initially positioned

at random locations. The size of the domain was fixed as l × 2l × l (l/a = 15) and

the grid resolution is 128× 256× 128. These parameters were adjusted to get a good

match with the theoretical values. Figure 5.2 shows the comparison of the normal

stress differences and the inset of the figure compares the shear stress. The stresses

have been scaled by µγ̇φ. The normal stress differences match is quite good and the

shear stress match well at the low capillary numbers. At higher Ca, the curves show

deviation and this is expected because the C-S model is valid under small deformation

of the drops and at higher Ca the drops deformation violate the assumption of this

model. These comparisons confirm the ability of the code to predict the rheology of

emulsions.
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Figure 5.2: Comparison of the simulation and C-S model. The stresses are scaled by
µγ̇φ

5.2 Concentrated Emulsion

We investigated the rheology of emulsions at varying capillary numbers and

inertia in the volume fraction range of: 5-27%. Accurate rheological predictions can

be made by first studying the sensitivity of the results on the grid resolution, number

of drops, their size relative to domain and their initial position. This is discussed in

detail in the following section. The data that will be reported in the tables and figures

in the later sections invoke time averaging. The curves for the interfacial stresses show

a lot of fluctuation as they involve multiple drop interactions, which will continue to

occur throughout the simulations. To give a good estimate of the data, the statistical
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uncertainties associated with it also needs to be considered. Figures 5.3- 5.5 below show

the plots for the evolution of the interfacial stresses with the non-dimensional time.

The fluctuating behaviour of these data is evident. The method used for determining

the mean values for all the simulations is this: First of all, an initial transient part

of the simulation is discarded. This is done by looking at the curves and most of

the time this developing part is evident. After discarding that portion, the remaining

parts of the curves are divided into subdivisions of 30-40 time units. In each of the

subdivisions, the average is calculated and the mean of these averages are reported as

the time averaged data (or rather ensemble averaged if the system is ergodic). The

standard deviation of the different averages are reported as the error bars. This ensures

that the separate average values are approximately uncorrelated values. Most of the

simulations are run upto 200-300 time units.
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5.3 Grid Resolution

Front Tracking method has two grids. The first mesh is a Cartesian fixed mesh,

and the second is a moving surface mesh. The resolution of the fixed mesh affects

the calculations of Navier Stokes equations. It also determines how well the drops are

resolved to accurately capture their morphology. The surface mesh is composed of

triangular elements and its resolution is important to accurately calculate the surface

tension forces. The surface mesh involves adaptive regridding and the number of ele-

ments it contains keeps on changing as was described briefly in the previous chapter.

The initial number of elements that are present on each drop is a squared function of

the ratio of drop’s radius and fixed mesh spacing.
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Figure 5.6: Grid resolution test for N1
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Figure 5.7: Grid resolution test for Σxy

Figure 5.6 and 5.7 show the grid resolution tests for volume fractions of φ = 20%

and φ = 0.05% respectively. The simulations were run on grid resolutions of 64×64×64,

98× 98× 98, 128× 128× 128 and 192× 192× 192. The drop number was fixed at 64,

Ca at 0.05 and Re at 1.0. The main plot shows the curves for φ = 20% and the insets

in the plots are for φ = 5%. The plots are just a snapshot of the results for the first 10

time units. The entire range of data is avoided for clarity, however the average values

(time average) reported in the tables below are obtained by running simulations upto

200-300 strains.

The data in tables 5.1, 5.2, 5.3 are taken by the method outlined before. The

results in table 5.1 show that normal stress differences show more sensitivity to the grid
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Table 5.1: Table showing the grid resolution test for φ = 20%, Re=1.0 and Ca=0.05

Grid resolution N1(×1E − 01) N2(×1E − 02) Σxy(×1E−01) Deformation
(×1E − 01)

64x64x64 2.21± 0.0547 −6.74±0.4711 6.06± 0.00481 1.20± 0.0307
96x96x96 1.54± 0.103 −4.96± 0.706 5.59± 0.00358 1.11± 0.0099

128x128x128 1.33± 0.0433 −3.22± 0.851 5.23± 0.00702 9.96± 0.0262
192X192X192 1.17± 0.0916 −3.13± 0.502 5.19± 0.00223 9.89± 0.0205

Table 5.2: Table showing the grid resolution test for φ = 20%, Re=1.0 and Ca=0.20
(average values only)

Grid resolution N1(×1E − 01) N2(×1E − 01) Σxy(×1E − 01)
128x128x128 5.12 −1.29 4.11
192x192x192 4.90 −1.23 4.02

resolution while the shear stresses and deformations are more robust. The normal stress

differences at the low Ca of 0.05 are small quantities and therefore are more difficult to

capture accurately. For Ca= 0.20 the normal stresses are of larger magnitude and show

much less sensitivity to grid resolution as suggested by table 5.2. The lesser volume

fraction case of 5% is more difficult because at lower volume fractions the drops sizes

are smaller and finer grids are needed to resolve the drops accurately. Along with

this the small magnitude of the stresses compounds the difficulty. The above two-

volume fraction cover the range in which we want to operate. The grid resolution of

128×128×128 gives satisfactory convergence especially for the higher volume fraction

and is fixed for the entire study considering the accuracy of the results and the time

limitations for running the simulations.

Table 5.3: Table showing the grid resolution study for φ = 0.05%, Re=1.0 and Ca=0.05

Grid resolution N1(×1E − 02) N2(×1E − 03) Σxy(×1E−01) Deformation
(×1E − 02)

96x96x96 1.67± 0.0654 4.63± 0.517 1.21± 0.00589 8.32± 0.0872
128x128x128 1.07± 0.0265 6.04± 0.232 1.11± 0.00755 7.58± 0.0821
192x192X192 0.760± 0.0442 7.06± 0.442 1.06± 0.00336 7.05± 0.0807
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5.4 Drop Number Dependence

The number of drops used for simulating the flow can affect the calculated rhe-

ology. Zinchenko and Davis [17] studied how the number of drops used for rheology

calculation can be a source of both systematic and statistical errors. The statistical

errors arise due to finite time averaging and can be decreased by averaging over longer

time units so that sufficient non-correlated drops interactions are captured. However,

the systematic errors may persist due to finite domain size (periodic boundary condi-

tions) and especially due to the presence of walls.

The presence of a wall creates additional physical complexities. They result

in the migration of drops towards the domain centerline and this has been carefully

studied and understood theoretically, experimentally and numerically [43, 44]. Silbilo

et al. [45] did a careful study of the single drop deformation and breakup in confined

domains. They found that confinement enhances drop deformations and stabilizes

large deformed drops, which would otherwise break in non-confined flows. Janssen et

al. [46] studied the drop deformation and orientation changes with confinement using

boundary integral simulations. These studies were however focused on the cases where

the drop radius was comparable to the domain size and so completely new physics was

observed. The aim of the present study is to predict free shear properties and so wall

effects should be minimal.

When sufficient number of drops are considered, the rheological properties should

show less variation with further increase in drops. It should also be noted that consid-

ering larger number of drops ensures that their size relative to the wall separation is

less and thus the wall effects are minimal. Therefore considering large number of drops

for predicting the rheology is essential, though it adds to the computational costs. Ta-

ble 5.4 shows the dependence of the interfacial and Reynolds stresses on the number

of drops for a low capillary number of 0.05 and a Reynolds number of 1.0. This table

shows that 16 drops =O(10) would predict a significantly higher N1 and lower shear.

The mean values of the stresses show less variation as the drops number is increased

beyond 32. The ratio of l/a (i.e. wall separation to drop radius) varies between 7-13
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(approximately) for the 16-100 drops range. This table suggests that 64 drops should

be sufficient.

Table 5.4: Table showing the drop’s number study for φ = 20%, Re=1.0 and Ca=0.05

Drops N1(×1E − 01) N2(×1E − 02) Σxy(×1E − 01) Rxx(×1E−
02)

Ryy(×1E−
02)

16 1.57± 0.22 −2.74± 1.1 4.795± 0.068 5.64 2.34
32 1.370± 0.089 −2.64± 0.37 5.097± 0.08 6.48 2.76
64 1.33± 0.0433 −3.22± 0.851 5.23± 0.00702 6.26 2.91
100 1.2564± 0.11 −2.997± 0.71 5.264± 0.099 6.15 3.09

Using 64 drops gives a l/a ratio of around 11. Fixing the number of drops as 64, the

wall separation was doubled to get a higher l/a ratio of 18. This was done to further

verify that the wall effects are minimal. The results are presented in table 5.5. Even

after doubling the wall separation to get a higher l/a ratio the changes in the stresses

are quite less. It is somewhat significant for N2 but this maybe because N2 itself is too

small to be accurately computed. Therefore these two tables suggests that 64 drops

(giving a l/a ratio of 11) should be adequate for the prediction of the rheology for

φ = 0.20%.

Table 5.5: Table showing relative domain size influence for φ = 20%, Re=1.0 and
Ca=0.05

Domain size N1(×1E − 01) N2(×1E − 02) Σxy(×1E − 01) Rxx(×1E − 02)
1x1x1 1.33± 0.0433 −3.22± 0.851 5.23± 0.00702 6.26
1x2x1 1.17± 0.0602 −1.87± 0.371 5.10± 0.00616 6.92

Finally tables 5.6, 5.7 and 5.8 further justify the choice of the number of drops by

showing the dependence of the stresses at Ca=0.20 (Re=1.0) and Re=5.0 (Ca=0.05)

for φ = 0.20% and at Re=1.0 (Ca=0.05) for a lower volume fraction of φ = 5% respec-

tively.
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Table 5.6: Table showing the drop’s number study for φ = 20%, Re=1.0 and Ca=0.20

Drops N1(×1E − 01) N2(×1E − 01) Σxy(×1E − 01)
64 5.12± 0.0562 −1.29± 0.0662 4.11± 0.0106
100 5.40± 0.0405 −1.41± 0.0244 4.21± 0.0146

Table 5.7: Table showing the drop’s number study for φ = 20%, Re=5.0 and Ca=0.05
(average values only)

Drops N1(×1E − 02) N2(×1E − 02) Σxy(×1E − 01)
64 −2.02 7.63 6.60
100 −2.01 7.43 6.73

Table 5.8: Table showing the drop’s number study for φ = 0.05%, Re=1.0 and Ca=0.05
(average values only)

Drops N1(×1E − 02) N2(×1E − 03) Σxy(×1E − 01)
16 0.9647 6.60 1.04
32 0.922 6.34 1.07
64 1.07 6.04 1.1

5.5 Initial Position

The rheology estimated should be independent of their initial positions. How-

ever, choosing an initially random positioning of the drops is important to reduce the

time it takes for the system to forget about its past history. This was investigated by

fixing the volume fraction, Reynolds number and capillary number while varying the

initial positions. Figure 5.8 compares the time evolution of the shear stress for two

cases. The first case corresponds to an initial ordered positioning of the drops and the

second case corresponds to an initial random positioning. It is clear that the ordered

system takes a large amount of time to break the structure. During the initial 70

time units the drops move in layers (which is how they are initially distributed) for the
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ordered case. The shear stress is considerably low since the drop-drop interactions are

minimal. After the structure breaks, inter drop interactions results in shear stresses

close to those obtained from the second case. Therefore this illustrates two points: first

of all, the stresses are independent of the initial configuration (which is expected). Sec-

ondly, the initial positioning of the drops should be random to get good time-averaged

quantities in a reasonable number of cycles. So, for all the simulations, the drops are

initially randomly positioned.
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Figure 5.8: Influence of the initial drops’ positions

5.6 Comparisons with Numerical Results

After fixing the main parameters of the problem, we first compare our results

with some of the existing concentrated emulsion results. Using boundary element

methods, Lowenberg and Hinch [2] and Zinchenko and Davis [17] estimated the rheology

of concentrated emulsion and we aim to compare our results with them. Figure 5.9

shows a comparison of our results with that of Lowenberg and Hinch. This is for a
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volume fraction of 20%. The Reynolds number is fixed at 1.0. The stresses have been

scaled with σ
aφ
. Figure 5.10 shows the comparisons of the results with that of Zinchenko

and Davis. The volume fraction is 30% and the Reynolds number is kept at 1.0. For

this case, the stresses have been scaled with µγ̇. The scaling of the stresses for both

the comparisons have been done according to the respective papers.

The comparisons of the viscosity with that of Zinchenko et al. (figure 5.10) is

quite good and the differences lie within 5%. For N1 they lie within a range of 10% for

all the capillary numbers except 0.20. At that Ca it increases upto 20%. The differences

between N2 is not very apparent from the figure but for the lowest Ca of 0.0375 the

difference shoots up to 35%. This may be because at this low value of Ca, N2 is too

small to capture it accurately. However, the main reason for the differences should be

finite inertial effects. The results of both Loewenberg et al. [2] and Zinchenko et al.

[17] were at Stokes flow while the present simulations are at a finite Re of 1.0. Running

simulations at smaller Reynolds numbers can be very restrictive due to viscous time

stepping restrictions. Figure 5.9 shows the comparisons with Lowenberg and Hinch

[2]. The differences for the shear stress in this case remains roughly within 10% range.

For N1 and N2 they lie within this range for all capillary numbers except 0.20. At

this values the N1 predicted from simulations is roughly 20% lower and N2 is 25%

higher. This again is largely due to the inertial effects, since it will be seen later that

increasing inertia causes N1 to decrease and N2 to increase respectively. Another source

of differences may be the relatively smaller number of drops used for simulations by

Lowenberg and Hinch.
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5.7 Dependence of the Interfacial Stresses on Reynolds Number

Figure 5.11 - 5.13 show the dependence of the interfacial stresses with Reynolds

number for 4 different volume fractions: 5%, 10%, 20%, 27%. The plots also include

the dilute emulsion results of Li and Sarkar [21] where the sign reversal of the normal

stress differences with Reynolds number was first noticed. The stresses have been scaled

by φ to allow comparisons between different volume fractions. The capillary number

was fixed at 0.05. Error bars (dashed lines) have also been shown only for interfacial

N1 for volume fraction of 20%. These bars correspond to the statistical fluctuations of

the data and the purpose of this is to show that the deviations in the results due to

finite time averaging is quite less compared to the changes due to inertia and volume

fraction. Similar trends are seen for N2 and shear stress, and all the remaining error

bars are therefore avoided.
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43



Re

N
in

t 2/
µγ

. φ

0 2 4 6 8 10
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Li & Sarkar (2005)
φ= 0.05
φ= 0.10
φ= 0.20
φ= 0.27

Figure 5.12: Variation of N2
int with Re and φ at Ca=0.05

These plots show that the interfacial N1 and N2 decrease and increase with

Reynolds number respectively for the entire range of volume fraction considered. The

curves for different volume fractions do not overlap as the concentration is increased.

This indicates that the effect of increasing φ is not merely a case of superposition

of single drop results. It involves inter-particle interactions which can be pairing,

tripling and higher-order interactions (Zhou and Pozrikidis [16]). Increasing volume

fraction delays the reversal of the signs of the interfacial normal stress differences. The

interfacial shear stress increases with Reynolds number over the volume fraction range

considered.

The above observations can be explained by considering the average drops ori-

entations and deformations. Before showing their plots, the connection between the

orientation of a drop to the interfacial normal stress differences is explained. This helps
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in forming a mental picture as how the orientation of drop changes the interfacial nor-

mal stress differences. The expression for the first and second normal stress difference

goes as:

N1 ∼ −

∫

δA

(nx
2 − ny

2)dA (5.1)

N2 ∼ −

∫

δA

(ny
2 − nz

2)dA (5.2)

Figure 5.14 shows different orientations of a drop relative to the flow direction. If the

drop is aligned along the flow direction then the normals will be oriented more along

the velocity gradient direction and this means that nx << ny. From the expressions
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of N1 in equation 5.2 it can be inferred that N1 > 0. The second case is that of the

drop aligned along the velocity gradient direction and in this case it is easy to see

that N1 < 0. The third case is when the drop is aligned along the 45◦ line i.e. the

extensional axis. This should result in N1 ≈ 0. These arguments will be exactly true

when the drop shape is ellipsoidal with the shape symmetric about the major axis

(or major axis plane). This holds for a single drop in a shear flow, but the above

arguments will still hold approximately if the shape is not perfectly symmetrical about

the major axis plane, which is the case when drops are interacting. So the conclusion

that should be drawn is that if a drop is oriented between the extensional axis and

the flow direction, N1 should be positive, and negative when it is oriented between

the extensional axis and the velocity gradient direction. A similar argument can also

be given for N2. As the drop rotates in its shear plane from the flow direction to

the velocity gradient direction, ny decreases but nz should roughly remain unchanged.

Therefore increasing the orientation of the drop should increase N2. It is though more

difficult to predict (even approximately) when N2 would change sign. The above facts

can also be extended for a multiple particle system since the total interfacial stresses

for such a system is just a summation of the interfacial stresses of the individual drops.

So a natural way to define the average orientation of the emulsion would be to calculate

the orientations of each drop and then take the average over all the drops.

Figure 5.15 shows the variation of the average orientation of the drops with

Reynolds number. It should be noted that for a fixed volume fraction, the drops tend

to align themselves more along the velocity gradient direction as the inertia is increased.

Li and Sarkar [21], and Singh and Sarkar [23] investigated this observation in detail for

a single drop problem. The effect of increasing inertia on individual drops is to orient

them along the velocity gradient direction by exerting a torque on the drops. As it was

explained in the previous paragraph the increase in the orientation of the drop would

lead to an increase in N2 and decrease in N1. Another fact that should be noted is that

the orientation of the drops decreases with increasing volume fraction. This behaviour

was also noted by Lowenberg and Hinch [2]. Therefore the reason for the delay in the
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Figure 5.15: Variation of the average orientation with Re and φ (Ca=0.05)

reversal of the signs of the interfacial normal stress differences with increase in volume

fraction can be intuitively understood now.

Figure 5.17 shows the average drops’ deformation variation with Reynolds num-

ber. The deformation of a single drop is the Taylor deformation parameter shown in

figure 5.16 and the average of this value over all the drops gives the deformation of

the emulsion. This parameter should be zero when the drops are completely spherical

and therefore it is an indicator of the deviation in the shape of drops from the initial

spherical geometry. Figure 5.17 show that as the volume fraction is increased the drops

are more deformed. The increased deformations are to reduce the obstructions in the

trajectory of individual drops.

The explanation of the dependence of shear stress on volume fraction and Re is
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Figure 5.16: Taylor deformation parameter

not completely straightforward. The expression for the shear stress goes as:

Σxy ∼ −

∫

δA

(nx ∗ ny)dA (5.3)

Referring back to the equation 5.14, it should be noted that if the drop is

perfectly aligned along the flow direction or the velocity gradient direction, the shear

stress will be very less as its expression involves product of the vectors nx and ny.

Apart from this it is hard to conclude the changes in the interfacial shear stress when

it is oriented at an intermediate angle. So the explanation of the observed shear

thickening property cannot be provided simply by considering orientation effects and

the deformation effects also need to be included. The expressions for the interfacial

stresses for an ellipsoidal-shaped object involves complex elliptic integrals [11]. To

circumvent this, a capsule-shaped drop is considered. This is a crude approximation

but it explains the shear-thickening behaviour with increasing inertia very well. The

shear stress for such a geometry goes as [2]:
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Σxy ≈ sin(2θ) ∗D (5.4)

Here D is the Taylor deformation parameter and θ is the orientation of the drop

relative to the flow direction. (This approximation is true if the deformation is small,

i.e. low capillary number condition.) Due to changes in increasing inertia, orientation

and deformation increases. Increasing deformation will increase the shear stress, but

increase of the angle beyond 45◦ should decrease it. So these two effects are opposing

in nature. Our average deformation plots show that for an increase of inertia over a

range of 1-10, the deformation roughly doubles. The changes in the angle are in the

range of a maximum of ±5◦ relative to 45◦ which means that the sin 2θ will reduce

from 1 (at 45◦) to ∼ 0.98. This change is small compared to the two-fold increase in
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the deformation. So the increase in shear stress with inertia and volume fraction is

dictated by the increase in deformation. Therefore by considering simple parameters

like the average orientation and deformation the observations of figures, 5.11 - 5.13

could be explained.

The effects of inertia on micro-structure is to increase the orientations of the

drops as well as their deformation. Increasing deformation tends to induce drop break

up. So there should be a limit of Reynolds number range in which the drops are able

to sustain the enhanced deformations. This was investigated by Singh and Sarkar [23]

in detail for a dilute emulsion (i.e. single drop study). They showed that the combined

effect of increasing orientation and deformation leads to the reversal of the signs of the

normal stress differences within a particular capillary number range only. This was

because higher deformation required a larger torque to increase the orientation of the

drop and beyond a certain capillary number the enhanced deformation prevented an

increase in orientation. So at high Ca the drop breaks up with a slight increase in Re.

They suggested an Ohnesorge dependence of the reversal of signs, which captures the

ratio of capillary and Reynolds number.

Figure 5.18- 5.20 capture the dependence of the interfacial normal stress differ-

ences and shear stress with inertia over a range of capillary numbers at a fixed volume

fraction of 20%. Figure 5.18 shows that the sign change of the interfacial first nor-

mal stress difference occurs at a lower Reynolds number for Ca=0.02 as compared to

Ca=0.05. The decreasing behaviour of the first normal stress differences with inertia

is captured well in the Ca range of 0.02 to 0.075. At Ca of 0.125 and 0.20 the first

normal stress difference shows a non-monotonic behaviour. This is because of the fact

that for a single drop the sign change of the first normal stress difference is dependent

on Ohnesorge number i.e. the ratio of Reynolds and capillary number. Some of the

drops begin to break beyond Re=5.0 and Re=2.0 for Ca=0.125 and Ca=0.20 respec-

tively. Similar to the first normal stress difference, the second normal stress difference

also shows a delay in the reversal of the signs with increasing capillary number. An

empirical relation between interfacial N1 and shear stress with Reynolds number for
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int variation with Re over a range of Ca. (φ= 20% fixed)

Ca=0.02 is also calculated using a linear fit. The relations are:

N1 = −0.0501 ∗Re+ 0.0886

Σxy = 0.0311 ∗Re+ 0.5458

Figure 5.20 shows that interfacial shear stress increases with Reynolds for the

entire range of capillary numbers considered. This is a pure manifestation of the

enhanced drop deformation with increasing inertia at all the capillary values. It can

also be concluded that the system is exhibit a shear thinning behaviour with increasing

capillary number, which is well known for this type of an emulsion. This is considered

in the next section.
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5.8 Capillary Number Variation

Figure 5.21 and 5.22 show the dependence of the interfacial stresses and the

deformation and orientation parameters on the capillary number. The Reynolds num-

ber was fixed at 1.0 and the volume fraction at 0.20%. Increasing capillary number

results in a shear thinning behaviour, which is a well know fact. The effect of increas-

ing capillary number is to enhance the drop deformation (fig. 8(b)). This is to be

expected because increasing capillary number implies the decrease of surface tension

forces relative to straining viscous forces. The inset of fig 8(b) shows that the aver-

age orientation of the drops is inclined more towards the velocity direction as capillary

number is increased. This is also intuitive because larger straining forces at higher cap-

illary number will decrease their orientations. The decreased orientation of the drops

is responsible for the large interfacial first number stress difference and the shearing

thinning behaviour. The underlying idea behind this was explained in the previous

section by using figure 5.14 and equations 5.2 and 5.3. The shear thinning behaviour

and the increase in first normal stress difference was measured experimentally by Han

and King [47], and these qualitative behaviours agree with the results of Lowenberg

and Hinch [2].
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5.9 Reynolds Stresses

Figure 5.23 shows the velocity profile of the X-component velocity (flow direc-

tion) for φ = 20%, capillary number of 0.05 and Reynolds number of 10. The velocity

has been averaged over x-z plane and over time as well. The velocity has been scaled by

the imposed velocity scale and the distance y with the wall separation. There are small

perturbations of the averages velocity about the linear velocity field and the velocity

remains very close to the linear profile. This type of plot was tried for other range of

capillary and Reynolds numbers as well and the resulting velocity distributions were all

very similar, just displaying small perturbations about the linear profile. These small

disturbances arise from the presence of drops.

Figure 5.24 shows the variation of the drop’s center velocity at different locations

along the Y direction. To estimate this quantity the y separation was divided into 100

equal sized bins. The drops were put in the respective bins according to their centres’ y

coordinate. The velocity in each bin was obtained by averaging over the velocity of the

different drops that occupied the particular bin during the simulation time. This is a

good approximation of the drop’s velocity at different positions along the Y direction.

Figure 5.24 shows that the drops’ average velocity too remains very close to the linear

profile and this means that the drops’ centres move with the local velocity field. The

perturbations that are there in the velocity field are captured by the Reynolds stresses

present in the stress formulation and has been discussed briefly in the rheology section.

Figure 5.25 shows the variation of the Reynolds stresses with volume fraction.

The figure shows the three components Rxx, Ryy and Rzz. The cross components i.e.

Rxy, Rxz, Rzy are relatively much small quantities and they do not influence the total

stresses. They are therefore avoided in the plots. The components Ryy and Rzz show

a roughly linear dependence with volume fraction and if the curves are interpolated

they will become zero at diminishing volume fraction. However, Rxx shows non linear

dependence and this is evident from the fact that the curve has to pass through origin.

The figure suggests that it shows a somewhat square root dependence on the volume

fraction.
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Figure 5.26 and 5.27 show the dependence of the Reynolds stresses with Reynolds

number at two different Ca (0.020 and 0.075) at a fixed volume fraction of 20%. For
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Ca=0.02, the Reynolds stress scale linearly with Reynolds number in the Re range of

1 to 4. For Ca=0.075 the figure indicates that the the Rxx component shows a weak
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Figure 5.27: Reynolds stresses dependence on Re (φ=0.20% and Ca=0.075)

non-linear increase with Re while the remaining components show a linear dependence.

Figure 5.28 shows the dependence of the differences of the Reynolds stresses (which

we call here perturbation stresses) at Ca=0.05. This too shows that over a higher Re

range the N1
ptb shows a weak non-linear increase with Re and this was also observed by

Li and Sarkar [21] for dilute simulations. As the curves indicate, perturbation stresses

should vanish at zero Re.

This linear scaling of the Reynolds stresses with Reynolds number (atleast for

the low Reynolds numbers) can be explained using simple arguments. The Reynolds

stresses have been scaled with µγ̇. The expression for the Reynolds stress goes as

σ
re ∼

∫

V

ρu
′

u
′

dV . In the previous plot of the drop’s centre velocity (figure 5.24) it

was shown that they approximately move with the local velocity field. So the correct

scale for the perturbation velocity should be u
′

∼ γ̇a. Therefore σ
re

µγ̇
∼ Re

∫

V

ρu
′

u
′

dV .

Here the term u
′

is the perturbation velocity scaled with γ̇a .

Figure 5.29 and 5.30 show the time evolution of the Reynolds stresses Rxx and

Ryy for φ=20% and Ca=0.05. The stresses have been scaled with Reynolds number.
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Figure 5.29 shows that the curves for Re=1 and Re=3 are very close and this is a

manifestation of the linear scaling of the Rxx with Reynolds number. The Re=7 and 10
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curves predict higher values which corresponds to the non-linear increase. Figure 5.30

shows that the curves for all the three Reynolds numbers 1,5 and 10 are close to each

other and this shows the linear scaling of the Ryy component with Reynolds number

even upto higher Re. Few more interesting observations can also be made. Figure 5.29

clearly shows that Rxx takes certain amount of time to reach a steady value. This

is somewhat surprising because it is a volume average quantity and probably it is

suggestive of some sort of configuration time-scale. It should also be noted that the

lower Reynolds numbers cases take more time to reach a steady value.

Finally fig. 5.31 shows the variation of the Reynolds stresses with capillary

number at a fixed Reynolds number of 1.0 and volume fraction of 0.20. Increasing

capillary number increases the magnitude of Rxx and decreases the magnitude of Ryy

and Rzz. This means that increasing capillary number is increasing the disturbances

along the x direction (flow direction). This can be explained by the fact that increasing

capillary number orients and deforms the drops more along the x- direction and this

increases the disturbances along that axis.
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5.10 Excess Stresses

The bulk properties of the emulsion or its constitutive relation is captured by the

excess stresses which are a combination of both the interfacial and Reynolds stresses.

The previous two sections discussed about these two terms individually. Near the

Stokes flow condition, the behaviour of the excess stresses are governed by the inter-

facial terms only as the Reynolds stresses are negligible. Increasing inertia enhances

the influence of the Reynolds stresses on the total quantity. This influence is limited

to the normal stress differences only as the Reynolds stresses affecting the excess shear

stress remain small for the range of Reynolds numbers considered.

σexcess = σint + σre

For a volume fraction of 20-27%, both the stresses influence the excess stress in

the Reynolds number range of 2-5 (provided the drops do not break). Beyond that,

the behaviour specially for the first normal stress difference is completely dictated by

the Reynolds stresses. This occurs from a lower Reynolds number for the lower volume
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fractions.

Figure 5.32, 5.33 and 5.34 show the dependence of the excess stresses with

Reynolds number. The scaling of the plots are same as that of the interfacial stresses

plots. The figures indicate that qualitatively the behaviour of the excess stress plots

remain the same as the interfacial stress curves. The addition of the Reynolds stresses

make theN1 curves steeper and they remain negative for most of the Reynolds numbers.

This negative sign (with increasing inertia) for N1 is now contributed by both the

interfacial and Reynolds stresses. The addition of the Reynolds stresses to N2 makes

these curves relatively flat. This is because of the opposite behaviour of the interfacial

and Reynolds stress component of N2 with increasing Re. As pointed out earlier, the

Reynolds stresses have very little effect on the shear stresses.
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Figure 5.32: N1
excess variation with Re (Ca0.05 fixed)

The significance of the signs of the normal stress differences show up in the cone

and plate rheometer. If the rheometer contains a Newtonian liquid, no forces would be

felt on the bottom plate. For an emulsion composed of Newtonain drops dispersed in
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Newtonian liquid, if the hydrodynamics conditions are close to Stokes flow, a positive

resulting N1 is responsible for a compressive forces on the bottom plate. Now, the
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previous figure 5.32 indicates that even a small inertia (at the particle level) in the

range of 2-5 is sufficient to develop a negative N1. Therefore in this case, one should

expect a tensile force on the bottom plate.

Figure 5.35 shows the dependence of the excess stresses with volume fraction and

the empirical relations are also presented by the use of curve fitting. Figure 5.36 shows

the comparison of the viscosity v/s volume fraction relation predicted by the simulation

with the empirical relations provided by Pal [48]. He derived three empirical models

and tested them against a range of experiments [49–56]. The third model in that paper

was shown to give the best match with experiments. The current comparisons have

also been made with the third model. Figure 5.36 shows that the comparison is quite

good and the differences are in the range of 5%.

N1 = 3.87φ2 − 0.172φ− 0.03 (5.5)

N2 = −1.59φ2 + 0.082φ (5.6)

(5.7)
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5.11 Relaxation Times

Emulsions exhibit non-Newtonian behaviour such as the presence of normal

stress differences, shear rate dependent shear viscosity. Due to the interfacial tension,

they also have associated with them a stress relaxation time. This means that if an

emulsion is sheared and then the shearing is stopped after sometime, the stresses take

a finite amount of time to die out even under Stokes flow condition. This is because

it takes finite amount of time for the interfacial tension to restore the spherical shape

of the droplets. Consequently this is a capillary time scale. Oldroyd [5] derived the

expressions for the relaxation time using perturbation analysis. Choi and Schowalter

[8] extended the results for relaxation time for a concentrated system. Almusallam et

al. [11] performed relaxation experiments and calculated the stress relaxation time.

Using this they fixed the unknown parameters in their phenomenological relations.

The current aim is to determine the relaxation times for a concentrated emul-

sion. To do this we first revisit the dilute emulsion problem containing a single drop

and determine the stress relaxation time for this problem. After verifying these pre-

dictions, the relaxation time for a concentrated system is calculated. To determine

the relaxation time the system is sheared to a steady state and then the shearing is

stopped (numerically). Plotting the variation of the logarithm of the interfacial shear

stress gives us the time scales for stress relaxation. Table 5.10 shows the variation of

the time scale with different capillary numbers. The time scale predicted by Oldroyd

i.e. τ0 =
(3+2λ)(16+19λ)aµ

40(λ+1)Γ
(λ = 1) is also shown in the table.

Table 5.9: Table showing relaxation time for a single drop problem, Re=0.05 fixed

capillary number τ relaxation time τ0 (Oldroyd) τ /τ0
0.05 0.152 0.1094 1.390
0.10 0.240 0.2179 1.097
0.20 0.4796 0.4375 1.096

This table shows that the time scales obtained from the simulations agree well
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with those predicted by Oldroyd. The value at Ca=0.05 is a bit higher. At this low

capillary number the capillary time scale is very small. The ambient fluid too has

associated with it a time scale for the decay of velocity field (viscous time scale) since

we are not solving Stokes flow. So if the time scale for decay of the velocity gradient

of the ambient fluid becomes close to the capillary time scale of the drops, then shear

stresses may not relax according to the capillary time scale. This is what is happening

for Ca=0.05.

After verifying the ability of the code to correctly predict the relaxation time

for a dilute emulsion, a similar exercise is repeated for a concentrated emulsion at a

volume fraction of 20%.

Table 5.10: Table showing relaxation time for φ = 20%, Re=0.10 fixed

capillary number τ0 (Oldroyd) τ relaxation time τ / τ0
0.15 0.3281 0.5753 1.7535
0.20 0.4375 0.7475 1.708
0.25 0.5469 0.9043 1.6536

For the case of concentrated emulsion it should be noted that the relaxation time

for the shear stress is higher than the Oldroyd’s prediction. They are however closer to

the value predicted by Choi-Schowalter model for a concentrated system ( τ
τ0

= 1.88).
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Chapter 6

ALTERNATE DIRECTION IMPLICIT METHOD

It was mentioned briefly in the chapter on front tracking method that the sim-

ulation time step is restricted by the viscous time limit criteria (δt < 0.125ρδx2

µ
). This

can be relieved by treating some of the viscous terms implicitly. This idea was fol-

lowed in the serial version of the front tracking code [57]. A parallel version for this is

presented here. This method involves the solution of tridiogonal matrices (including

cyclic tridiogonal matrices associated with periodic boundary conditions). A simple

algorithm (Thomas algorithm) for solving tridiogonal matrices is inherently serial in

nature but even using this algorithm, the additional computational cost is outweighed

by the benefits from the relaxed time stepping criteria. The following sections discusses

the formulation of the Alternate Direction Implicit method (ADI) and then gives the

procedure used for the numerical implementation.

6.1 Formulation

The first step for the projection method involves the following computation:

ρn+1u∗ − (ρu)n

δt
= −∇ · (ρuu)n +∇ · τn + fn

Instead of treating all the viscous terms explicitly, only the cross terms are treated so.

The remaining terms are considered implicitly. This is shown below:

∇ · τ = {Dxx +Dyy +Dzz +Dxy +Dxz +Dyz}u

Here Dxy +Dxz +Dyz are the mixed terms and are treated explicitly. Dxx+Dyy +Dzz

are considered implicitly. So the first step of the projection method is itself subdivided
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into a number of step where some of the viscous terms are treated implicitly one by

one:

ρn+1u∗∗∗∗ − (ρu)n

δt
= −∇ · (ρuu)n + {Dxy +Dxz +Dyz}(u)

n + fn (6.1)

ρn+1(u∗∗∗ − u∗∗∗∗)

δt
= Dxx(u)

∗∗∗ (6.2)

ρn+1(u∗∗ − u∗∗∗)

δt
= Dyy(u)

∗∗ (6.3)

ρn+1(u∗ − u∗∗)

δt
= Dzz(u)

∗ (6.4)

The following boundary condition is imposed for the intermediate velocity fields:

u∗ = u∗∗ = u∗∗∗ = u∗∗∗∗ = un+1 (6.5)

Equations 6.2 and 6.4 involve solving cyclic Tridiogonal matrices (due to periodic

boundary conditions) and equation 6.3 involves the usual tridiogonal matrix (due to

wall boundary condition). The solution procedure is outlined in the next section.

6.2 Procedure

Equation 6.3 which involves a simple tridiogonal system can be solved by the

well known Thomas Algorithm. Equations 6.2 and 6.4 which involve cyclic tridiogo-

nal matrices can be solved by the use of Sherman Morrison formula [58]. These are

frequently used standard algorithms for the serial computation. A solution to equa-

tions 6.2, 6.3 and 6.4 using a parallel algorithm has other sophisticated approaches.

Johnsson et al. [59] investigated the performances of different parallel implementations

of the method. Van der Wijngaart [60] used the standard Thomas algorithm for the
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solution of tridiogonal matrices in a parallel environment but they considered different

decomposition strategies.

The domain decomposition of the current code in dictated by its main Navier

Stokes solver and the approach taken for the ADI was based on this decomposition.

Therefore a simple parallel version of the Thomas algorithm (and the Sherman Morrison

variant for periodic boundary conditions) was implemented. Though this involved a

number of message passing steps, the use of derived datatypes helped in reducing the

number of messages passed to some extent. The validations, computational efficiency

and the time stepping benefits are presented below.

6.3 Validation

To validate the code with the ADI subroutines included, a simple single drop

problem was studied. The domain size was fixed at roughly 10a, grid resolution at 128×

128× 128. The capillary number was kept at 0.05. The density (density ratio is unity)

was varied to decrease the kinematic viscosity as the viscous time step criteria depends

inversely on this parameter. Two cases were considered. The first case (figure 6.1)

was for a density value which gave viscous time step criteria of 1E-03. The plots below

show the results for the interfacial stresses (Reynolds stresses were also checked but are

avoided here) with and without ADI. The curves overlap which show that the method

has been correctly implemented.

A second case (figure 6.2) was considered which gave a time step criteria of

0.38E-04 and the plots show that the curves are very close. Slight differences are

there because the simulation without ADI is run at the time step of 0.38E-04 while

the simulation incorporating the ADI method was still simulated at 1E-03 (no stability

issue) time step. This shows that the method is still stable. Infact the method is stable

for a case in which time stepping criteria was as restrictive as 0.38E-05. Therefore it

can be concluded that the inclusion of the ADI subroutines gives at least an order of

magnitude time stepping benefit.
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Figure 6.2: Validation of the ADI scheme with the second case
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6.4 Computational Costs

The table below compares the computational cost of the ADI subroutines for

unit cycle of computation. It presents the percentage of the total cost used by the ADI

subroutines.

Table 6.1: Table showing the computational cost of the ADI method

No. of Procs total time (s) ADI time (s) percentage
1 5.03 2.48 49
8 1.8 0.50 27
64 0.517 0.07 13

6.5 Conclusion

The main conclusion that can be drawn from the above data is that the frac-

tion of the additional computational cost of the ADI method can be reduced if more

processors are used. In such case the time stepping benefit completely outweighs the

extra computational costs.
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Chapter 7

SUMMARY AND FUTURE WORK

7.1 Summary

A computational study of the rheology of concentrated emulsions was under-

taken with the use of a finite difference based front tracking method. A simple emulsion

system consisting of Newtonian drops dispersed in a Newtonian matrix liquid is consid-

ered and even such a simple system exhibits complex non Newtonian behaviour. The

constitutive relations for the emulsion was studied under a shearing condition. The

effective properties were determined using Batchelor stress formulation.

The bulk stress was estimated for a range of volume fractions, capillary num-

bers and Reynolds number. The behaviour of the individual stress components (of the

stress formulation): interfacial stresses and Reynolds stresses was studied under differ-

ent conditions. The interfacial stresses exhibit interesting behaviours under increasing

inertial effects. The interfacial first normal stress difference decreased and became neg-

ative with increasing Reynolds number. The interfacial second normal stress difference

exhibited an opposite trend. Increasing concentration resulted in a larger first normal

stress difference and consequently increasing volume fraction delayed the reversal of

the signs of the normal stress differences. Interfacial shear stress exhibited a shear

thickening behaviour with increasing Reynolds number and it also increased with vol-

ume fraction. Since the interfacial stresses are geometric quantities, their behaviour

was explained by looking at simple geometric parameters like the average deformation

and average orientation. Increasing inertia resulted in drops aligned along the velocity

gradient direction and this was responsible for the reversal of the signs of the nor-

mal stress differences. Increasing inertia resulted in larger deformation which caused
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a shear thickening behaviour. Increasing capillary number resulted in drops aligned

towards the flow direction and consequently larger first normal stress difference and

small shear stress (i.e. a shear thinning behaviour) was observed.

Reynolds stresses which form the second component of the stress formulation

was also considered in detail. These stresses showed a simple scaling with Reynolds

number for moderate values of Reynolds number. Beyond that range they showed a

non-linear increase. Increasing capillary number increased the disturbances along the x

direction and caused the Reynolds stress involving the x-component velocity to increase.

It was also observed that the Reynolds stresses showed a time scale for achieving a

steady value and this decreased with increasing inertia. The excess stress which is the

total contribution to the bulk stresses from the drops presence is composed of both the

interfacial and Reynolds stresses. It was noted that for low values of Reynolds number,

the excess stress behaviour was dictated by interfacial stresses and beyond a Re of 2−5

the behaviour was completely governed by Reynolds stresses. This range of Re also

depended on the volume fraction. The comparisons of the effective viscosity with some

established empirical relations was also quite good. Stress relaxation time was also

studied and comparisons were made against the standard relaxation time theoretical

expressions.

Finally to improve the capabilities of the existing code to deal with extremely

low Reynolds number flows a parallel version of the Alternate Direction Implicit method

was implemented and tested .

7.2 Future Work

In this study a range of different parameters was considered to investigate the

emulsion rheology. However there is scope for a number of different studies without

major modification in the tools (code as well as theory) used in the current study.
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7.2.1 Shear-induced self-diffusion

Brownian forces lead to diffusion of particles. For emulsions, the size of drops

are large enough for the Brownian effects to be insignificant. Shearing forces result in

a different type of diffusion termed as self diffusion which markedly affects the mixing

properties of emulsions [61]. Therefore a rigorous investigation of this property has

significant practical applications. Accurate prediction of the shear induced diffusion

involves the use of very large number of drops [39] which the current study lacks.

However the parallel code should be able to tackle this easily.

7.2.2 Rheology in poiseulle flow

The focus of the current research was to understand the behaviour and the

dynamics of emulsions under shearing conditions. A systematic study can also be

made for Poiseuille flow. The principle difference between these two is the existence of

non-uniform shearing condition in Poiseulle flow. This results in interesting phenomena

like shear-induced migration, which has been investigated in detail for rigid particle

suspensions [62]. The current code is well suited for this type of problem since the

existence of wall boundary conditions will no longer be an issue.
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