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ABSTRACT

Algebraic combinatorics is the area of mathematics that uses the theories and

methods of abstract and linear algebra to solve combinatorial problems, or conversely

applies combinatorial techniques to solve problems in algebra. In particular, spectral

graph theory applies the techniques of linear algebra to study graph theory. Spec-

tral graph theory is the study of the eigenvalues of various matrices associated with

graphs and how they relate to the properties of those graphs. The graph properties of

diameter, independence number, chromatic number, connectedness, toughness, hamil-

tonicity, and expansion, among others, are all related to the spectra of graphs. In

this thesis we study the spectra of various families of graphs, how their spectra relate

to their properties, and when graphs are determined by their spectra. We focus on

three topics (Chapters 2–4) in spectral graph theory. The wide range of these topics

showcases the power and versatility of the eigenvalue techniques such as interlacing,

the common thread that ties these topics together.

In Chapter 1, we review the basic definitions, notations, and results in graph

theory and spectral graph theory. We also introduce powerful tools for determining

the structure of a graph and its subgraphs using eigenvalue interlacing. Finally, we

discuss which graph properties can be deduced from the spectra of graphs, and which

graphs are determined by their spectra.

In Chapter 2, we use eigenvalue interlacing to determine whether the friend-

ship graphs and, more generally, graphs with exactly four distinct eigenvalues, are

determined by their spectra. We show that friendship graphs are determined by their

adjacency spectra with one exception, settling a conjecture in the literature. We also

characterize the graphs with all but two eigenvalues equal to ±1 and determine which

of these graphs are determined by their spectra.

xi



In Chapter 3 we study the simplicial rook graphs. We first determine several

general properties of these graphs. Next, we determine the spectrum of some sub-

families of the simplicial rook graphs, find partial spectra for all simplicial rook graphs,

and confirm several conjectures in the literature on the spectra of simplicial rook graphs,

including the fact that the simplicial rook graphs have integral spectra.

In Chapter 4 we study the second largest adjacency eigenvalue of regular graphs.

We determine upper bounds on the number of vertices in a regular graph with various

given valencies and second eigenvalues, confirming or disproving many conjectures in

the literature. In many cases we find the graphs, often unique, that meet these bounds.

These graphs are called extremal expanders. We discuss a linear programming bound

that guarantees that distance-regular graphs with certain parameters, if they exist, are

extremal expanders.

In Chapter 5 we discuss open problems and questions for further research on

the topics covered in Chapters 2–4.
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Chapter 1

INTRODUCTION

1.1 Algebraic Combinatorics

Combinatorics is the branch of discrete mathematics that studies finite or count-

able discrete structures. Combinatorics has many areas of active research in the mathe-

matical community, including graph theory, design theory, enumerative combinatorics,

and extremal combinatorics. Algebraic combinatorics is the area of mathematics that

uses the theories and methods of abstract and linear algebra to solve combinatorial

problems, or conversely applies combinatorial techniques to solve problems in algebra.

For general reference in combinatorics, see [20, 42, 63, 90].

In particular, spectral graph theory applies the techniques of linear algebra to

study graph theory. Spectral graph theory is the study of the eigenvalues of various

matrices associated with graphs and how they relate to the properties of those graphs.

In general it is possible that two nonisomorphic graphs have the same spectrum (that

is, multiset of eigenvalues), but the spectrum of a graph does give a large amount of

information about the graph. For example, the spectrum of the adjacency matrix of a

graph determines its number of vertices, edges, and closed walks of any fixed length,

whether the graph is bipartite, whether it is regular, and, if it is regular, its girth. The

spectrum of the Laplacian matrix of a graph determines its number of vertices, edges,

connected components, and spanning trees, as well as whether the graph is regular,

and, if it is regular, its girth. The graph properties such as diameter, independence

number, chromatic number, connectedness, toughness, hamiltonicity, and expansion,

among others, are all related to the spectrum. For an excellent reference on what is

known about the spectra of graphs (and for definitions of the properties mentioned

1



above), see [17]. In this thesis we study the spectra of various families of graphs,

how their spectra relate to their properties, and when graphs are determined by their

spectra. We will focus on three topics (Chapters 2–4).

In this chapter, we review the basic definitions, notations, and results in graph

theory and spectral graph theory and describe tools for finding information about the

structure of a graph and its subgraphs using eigenvalue interlacing. Finally, we discuss

which graph properties can be determined using the spectra of graphs, and which

graphs are determined by their spectra.

In Chapter 2, we study the friendship graphs and, more generally, graphs with

exactly four distinct eigenvalues. The friendship graphs are known to be determined

by their Laplacian and signless Laplacian spectra, and it has been conjectured that

they are determined by their adjacency spectra. We use eigenvalue interlacing to show

that friendship graphs are determined by their adjacency spectra with one exception.

Then we characterize the set of graphs with exactly two eigenvalues not equal to ±1

(the friendship graphs are among them), and determine which of these graphs are

determined by their spectra.

In Chapter 3 we study the simplicial rook graphs. We determine several general

properties of the simplicial rook graphs and relate these to their spectra. We find a

partial spectrum of the simplicial rook graphs and determine the full spectrum of some

sub-families. We also confirm several conjectures in the literature on the spectra of

simplicial rook graphs, including the fact that the simplicial rook graphs have integral

spectra.

In Chapter 4 we study the second largest adjacency eigenvalue of regular graphs.

For various fixed k and λ, we determine upper bounds on the number of vertices in a

k-regular graph with second eigenvalue at most λ, confirming or disproving many con-

jectures in the literature. In most cases we find the graphs, called extremal expanders,

that meet these bounds. We discuss a linear programming bound that guarantees

that when distance-regular graphs with certain parameters exist, they are extremal

expanders.

2



In Chapter 5 we discuss open problems and questions for further research on

the topics covered in Chapters 2–4.

Of course, all of the work done by me was under the supervision and advisement

of Sebastian Cioabă.

1.2 Definitions, Notation, and Basics of Graph Theory

Definition 1.1. A graph G is a pair (V (G), E(G)), where V (G) is a set of points (called

vertices) and E(G) is a set of pairs of vertices (called edges). If {x, y} ∈ E(G) then we

say x and y are adjacent and we write x ∼ y; otherwise x and y are called nonadjacent

and we write x 6∼ y. A vertex is said to be incident with the edges containing it (and

vice versa). The order of a graph is |V (G)|.

To visualize graphs, we draw the vertices as dots, and when two vertices are

adjacent, we draw a line connecting them. For example, if G = P3 = ({x, y, z},

{{x, y}, {y, z}}) and H = C5 = ({u, v, x, y, z}, {{u, v}, {v, x}, {x, y}, {y, z}, {u, z}}),

then G and H can be visualized as the graphs in Figure 1.1 (the graphs Pn and Cn

w w wx y z w w
w w
w

u z

v y

x

B
B
B
B

�
�
�
�

Z
Z
ZZ

�
�

��

Figure 1.1: The Graphs P3 and C5.

will be defined in general in Definition 1.9). Implicit in our definition of graphs is

that no edge appears twice in E(G) (that is, E(G) is strictly a set, not a multiset)

and {x, x} /∈ E(G) for any x ∈ V (G) (that is, the edges are also strictly sets, not

multisets). This means that no vertex is adjacent to itself, and no pair of vertices are

adjacent more than once.

Definition 1.2. Let G be a graph. A clique in G is a subset S ⊂ V (G) such that every

pair of vertices in S are adjacent. The clique number of G, denoted ω(G), is the size

of a largest clique in G. An independent set (or coclique) in G is a subset T ⊂ V (G)

3



such that no two vertices in T are adjacent. The independence number of G, denoted

α(G), is the size of a largest independent set in G.

For example, in Figure 1.1 the set {x, y} is a clique in both P3 and C5, while

the set {x, z} is an independent set in both graphs. Note that cliques and cocliques

can contain more than two vertices; however, there are none larger than two vertices

in P3 or C5, which implies that α(P3) = ω(P3) = α(C5) = ω(C5) = 2.

Definition 1.3. A subgraph H of G is a graph H such that V (H) = S ⊆ V (G)

and E(H) ⊆ E(G). A subgraph is called induced if for every x, y ∈ V (H) we have

{x, y} ∈ E(H) if and only if {x, y} ∈ E(G). If H is an induced subgraph of G, we say

that G induces H (or that S induces H) and we write H = G|S.

Seen another way, an induced subgraph is obtained from a graph by deleting

some vertices and deleting only those edges that were incident with deleted vertices;

all other edges are kept. For example, in Figure 1.1 we see that P3 is a subgraph of

C5, and in fact P3 is induced by C5.

Definition 1.4. Let G be a graph, S, T ⊂ V (G), and H,K subgraphs of G. We define

E(S, T ) = {{u, x} ∈ E(V ) | u ∈ S, x ∈ T}, the set of edges from S to T . We define

E(H,K) = E(V (H), V (K)).

Definition 1.5. A walk in a graph G is a sequence of vertices in V (G) such that

consecutive vertices are adjacent. The length of a walk is the number of edges traversed.

A walk is called closed if the first and last vertex are the same. A path is a walk in

which no vertex occurs more than once, except that the first vertex may also be the

last, in which case the path is called closed. A closed path is also called a cycle. A

graph G is connected if there is a path from x to y for every x, y ∈ G. For x, y ∈ V (G),

the distance between x and y, denoted dist(x, y), is the length of the smallest path

containing both x and y. If no such path exists we say dist(x, y) =∞. By convention

we say dist(x, x) = 0. We say G is connected if dist(x, y) is finite for all x, y ∈ V (G).

Otherwise G is called disconnected. If G is disconnected and we partition V (G) into

4



sets X1, . . . , Xk such that G|Xi
is connected for each i and x 6∼ y for x ∈ Xi and y ∈ Xj

when i 6= j, then we call the sets X1, . . . , Xk the connected components of G. If G is

connected, the diameter of G is diam(G) = maxx,y∈V (G) dist(x, y), the largest distance

between any two vertices in G. For v ∈ V (G) and S ⊂ V (G), the distance between v

and S is dist(v, S) = minu∈S dist(u, v). For S, T ⊂ V (G), the distance between S and

T is dist(S, T ) = minu∈S dist(u, T ) = minu∈S,x∈T dist(u, x).

For example, in Figure 1.1 (u, v, x, y) is a path of length 3 in C5 (the edges

traversed are {u, v}, {v, x}, and {x, y}), while (u, v, x, y, z, u) is a cycle of length 5 in

C5. In the graphs P3 and C5 we find that dist(x, y) = 1 and dist(x, z) = 2. Similarly,

in C5 we find that dist(u, {v, y}) = 1 and dist(u, {x, y}) = 2. Both P3 and C5 are

connected and have diameter 2.

Definition 1.6. Let G be a graph, x ∈ V (G), X ⊂ V (G), and H a subgraph of G.

We define the neighborhood of x by Γ(x) = {v ∈ V (G) | v ∼ x}. The elements of

Γ(x) are called the neighbors of x. We define Γk(x) = {v ∈ V (G) | dist(v, x) = k} and

Γ≥k(x) = {v ∈ V (G) | dist(v, x) ≥ k}, the sets of vertices at distance exactly k and at

least k, respectively, from x. The elements of Γk(x) are called the distance-k neighbors

of x. We define Γk(X) = {v ∈ V (G) | dist(v,X) = k} and Γ≥k(X) = {v ∈ V (G) |

dist(v,X) ≥ k}. We define Γk(H) = Γk(V (H)) and Γ≥k(H) = Γ≥k(V (H)).

Note that Γ(x) = Γ1(x). For example, in Figure 1.1 the graphs P3 and C5

we have Γ(y) = {x, z}, and in C5 we have Γ2(y) = {u, v}, Γ1({u, v}) = {x, z}, and

Γ1({x, z}) = {u, v, y}.

Definition 1.7. Let G be a graph. Then the complement of G, denoted G, is the

graph with vertex set V (G) and for all x, y ∈ V (G), {x, y} ∈ E(G) if and only if

{x, y} /∈ E(G).

For example, the complements of P3 and C5 in Figure 1.1 are given in Figure

1.2.
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Figure 1.2: The complements of P3 and C5.

Definition 1.8. A graph G is said to be bipartite if we can partition V (G) into disjoint

sets X and Y such that each of X and Y are independent sets (so the only edges are

those from a vertex in X to a vertex in Y ).

For example, in Figure 1.1 P3 is bipartite because we can partition V (P3) into

the sets {x, z} and {y}, and clearly every edge has one vertex in {x, z} and one vertex

in {y}.

Definition 1.9. The complete graph Kn is a graph with n vertices, every pair of which

are adjacent. The complete bipartite graph Km,n is a graph with vertices partitioned

into independent sets X and Y with |X| = m and |Y | = n such that every vertex in

X is adjacent to every vertex in Y . The cycle graph Cn is a graph with n vertices

such that the only edges in Cn are those in a cycle of length n. The path graph Pn is

a graph with n vertices such that the only edges in Pn are those in a path of length

n − 1. The empty graph En is a graph with n vertices and no edges. A circulant

graph Cin(a1, a2, . . . , ak) is a graph on n vertices that can be labeled v1, v2, . . . , vn so

that for every i ∈ {1, 2, . . . , n}, vi ∼ vj if and only if j = i ± a` (mod n) for some

` ∈ {1, 2, . . . , k}. The complete m-partite graph Ka1,...,am is a graph with vertices

partitioned into independent sets Xi with |Xi| = ai such that each vertex in Xi is

adjacent to every vertex in Xj for all j 6= i. A complete m-partite graph is also called

a complete multipartite graph. The complete m-partite graph K2,2,...,2 is also called the

cocktail party graph CP (m).

We see that in Figure 1.1 P3 is indeed a path graph on 3 vertices, and C5 is a

cycle graph on 5 vertices. We see also that P3
∼= K1,2. For more examples of the graphs
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Figure 1.3: The graphs K5, K3,2, Ci10(1, 4), and K2,2,2
∼= CP (3).

in Definition 1.9, see Figure 1.3. Here we point out that if we relabel the vertices of

the graphs in Figure 1.1, they are still known as P3 and C5, since they are still the

“same” graph. Of course, we must now more precisely define what we mean by the

“same” graph.

Definition 1.10. Graphs G and H are isomorphic, denoted G ∼= H, if there exists

a bijection f : V (G) → V (H) such that {x, y} ∈ E(G) if and only if {f(x), f(y)} ∈

E(H).

Seen another way, G and H are isomorphic if each is simply a relabeling of the

vertices of the other. For example, the graph C5 as labeled in Figure 1.1 is isomorphic

to C5 as labeled in Figure 1.2 under the bijection f : V (C5)→ V (C5) defined as follows:

f(u) = u, f(v) = x, f(x) = z, f(y) = v, and f(z) = y. Less formally, we might simply

observe that both C5 and C5 are cycles on 5 vertices. Similarly, C5 with vertices labeled

in any way is still C5.

Definition 1.11. Let G and H be graphs. The graph union G ∪H is the graph with

vertex set V (G)∪V (H) and edge set E(G)∪E(H). If V (G) and V (H) are disjoint, we

call G∪H a disjoint union and write it as G+H. The graph kG is the disjoint union of

k copies of G. If V (G) and V (H) are disjoint, the graph join G∇H is the graph with

vertex set V (G)∪ V (H) and edge set E(G)∪E(H)∪ {{x, y} | x ∈ V (G), y ∈ V (H)}.

We see that the cocktail party graph CP (k) is the complement of the disjoint

union kK2. See Figures 1.4 and 1.5 for more examples of a graph union, disjoint union,

and join.
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Figure 1.4: The graphs P3, C3, and P3 ∪ C3.
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Figure 1.5: The graphs P3, C3, P3 + C3, and P3 ∇ C3.

Definition 1.12. The graph Cartesian product of two simple graphs G and H, denoted

G�H, is the graph with vertex set V (G) × V (H) such that for any u, v ∈ V (G) and

x, y ∈ V (H), the vertices (u, x) and (v, y) are adjacent in G�H if and only if either

u = v and x ∼ y in H or x = y and u ∼ v in G. The Cartesian product of k simple

graphs G1, . . . , Gk, denoted
∏k

i=1Gi is the graph with vertex set V (G1)× . . .× V (Gk)

such that (x1, . . . , xk) ∼ (y1, . . . , yk) if and only if there exists i such that xi ∼ yi ∈ Gi

and xj = yj for j 6= i. The t-fold Cartesian product G�tH denotes the graph obtained

by performing the graph Cartesian product t times: G�0H = G, G�1H = G�H, and

G�tH = (G�t−1H)�H for t > 1.

Another way to view G�H is as follows: replace each vertex in G by a copy of

H. A vertex in a copy of H is adjacent to the same vertex in another copy of H if

there was an edge in G between the vertices that those two copies of H replaced. See

Figure 1.6 for an example.
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Figure 1.6: The graphs P3, C3, and P3�C3.
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Definition 1.13. The n-cube Qn the n-fold Cartesian product K1�nK2.

See Figure 1.7 for a picture of Qn for the first few values of n.
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Figure 1.7: The graphs Q0, Q1, Q2, Q3, and Q4.

When a graph is made up of smaller graphs with some edges between them (for

example, as in the case of the graph join or graph Cartesian product), it is sometimes

convenient to draw the graph in blocks. We use large open circles to denote multiple

vertices, and label the circles according to the subgraph induced by those vertices.

Solid lines between two large circles, or between a large circle and a vertex, indicate

that every possible edge is present (for example, in a graph join). Dashed or dotted

lines between large circles that induce isomorphic copies of the same graph represent a

matching between corresponding vertices (for example, in a graph Cartesian product)

or every edge except a matching between corresponding vertices, respectively. See

Figure 1.8 for examples.
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Figure 1.8: Block and standard representation of graphs.

Definition 1.14. Let G be a graph and u, v ∈ V (G). The degree of v, denoted

deg(v), is the number of vertices adjacent to v (that is, deg(v) = |Γ(v)|). We denote
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by deg(u, v) the number of vertices adjacent to both u and v (that is, deg(u, v) =

|Γ1({u, v})|). The average degree ofG, denoted d(G), is the average of the degrees of the

vertices in G. The minimum degree of G, denoted δ(G), is equal to minx∈V (G) deg(x).

The maximum degree of G, denoted ∆(G), is equal to maxx∈V (G) deg(x). If deg(u) =

d(G) = k for all u ∈ V (G), then we say G is k-regular. The valency of a k-regular

graph is k.

For example, in the graph P3 ∪C3 as labeled in Figure 1.4, we have deg(y) = 3,

deg(w, x) = 1, and d(P3 ∪ C3) = 2. It is a straightforward counting exercise to verify

that the sum of degrees of the vertices in a graph is twice the number of edges in the

graph. Any disjoint union of cycle graphs is 2-regular, and it is straightforward to see

that conversely any 2-regular graph is a disjoint union of cycle graphs. The complete

graph Kn is (n− 1)-regular, and the complete bipartite graph Kn,n is n-regular.

Definition 1.15. The girth of a graph G is the size of the smallest cycle contained in

G. If G contains no cycles, we say that the girth of G is infinite.

For example, the complete graph Kn has girth 3 for n ≥ 3, the n-cube Qn

has girth 4 if n ≥ 2, and the cycle graph Cn has girth n. The Petersen graph (see

Figure 1.9) has girth 5, the Heawood graph (see Figure 1.11) has girth 6, and the

Tutte–Coxeter graph (see Figure 1.12) has girth 8.

The girth of a graph gives a lower bound on the number of vertices in the graph.

Trivially a graph G with girth g must have at least g vertices (since G contains a cycle

on g vertices). This implies that there is a smallest graph (or graphs) with girth g

for each g. Indeed, the cycle Cg is obviously the smallest graph with girth g. When

G is not 2-regular, G must be larger, but there is still a smallest graph (or graphs)

with girth g. Let n(k, g) denote the number of vertices in a smallest k-regular graph

with girth g. A (k, g)-cage is a k-regular graph with girth g on n(k, g) vertices. The

following lower bound on n(k, g) due to Tutte [94] will be useful.
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Lemma 1.1. Define nl(k, g) by

nl(k, g) =


k(k−1)(g−1)/2−2

k−2
if g is odd,

2(k−1)g/2−2
k−2

if g is even.

Then n(k, g) ≥ nl(k, g).

Definition 1.16. Let G be a k-regular graph on n vertices. If there exist integers λ

and µ such that deg(x, y) = λ for all x, y ∈ V (G) such that x ∼ y and deg(x, y) = µ

for all x, y ∈ V (G) such that x 6∼ y, then G is called strongly regular with parameters

(n, k, λ, µ).

For example, the graph C5 is strongly regular with parameters (5, 2, 0, 1), the

Petersen graph (see Figure 1.9) is strongly regular with parameters (10, 3, 0, 1), and the
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Figure 1.9: The Petersen graph.

rook graph R(2, 3) (see Figure 1.10 and Section 3.1) is strongly regular with parameters

(9, 4, 1, 2).

w
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w
w

w
w
w

Figure 1.10: The Rook graph R(2, 3).
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Figure 1.11: The Heawood graph.

Figure 1.12: The Tutte–Coxeter graph.

Definition 1.17. A k-regular graph G is called distance-regular if, for every x ∈ V ,

any y in Γi(x) has the same number ci of neighbors in Γi−1(x) and the same number

bi of neighbors in Γi+1(x) (and the numbers ci and bi do not depend on the choice

of x). The intersection array of a distance-regular graph with diameter d is {b0 =

k, b1, . . . , bd−1; c1 = 1, c2, . . . , cd}.

We note that, because a distance-regular graph is regular with valency k for some

k, the vertices in Γi(x) also have the same number ai = k−bi−ci of neighbors in Γi(x).

A strongly regular graph is distance-regular with diameter 2. The Heawood graph (see

Figure 1.11) is a distance-regular graph with intersection array {3, 2, 2; 1, 1, 3} (see

[9]). The Tutte-Coxeter graph (see Figure 1.12) is distance-regular with intersection

array {3, 2, 2, 2; 1, 1, 1, 3} (see [14, Theorem 7.5.1]). We give a few examples of infinite
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families of distance-regular graphs below.

Definition 1.18. Let X = {1, 2, . . . , n}. The Hamming graph H(m,n) is the graph

whose vertices are the elements of Xm, where two vertices are adjacent when they differ

in exactly one coordinate.

The Hamming graph H(m, 2) is isomorphic to the m-cube Qm (see Figure 1.7).

Note also that H(2, 3) is isomorphic to the Rook graph R(2, 3) in Figure 1.10. The

Hamming graphs H(m,n) are distance-regular with valency m(n − 1), parameters

ci = i, bi = (n− 1)(m− i), and diameter m (see, for example, [14, Section 9.2] and [17,

Section 12.4.1]).

Definition 1.19. The Johnson graph J(m,n) is the graph whose vertices are the n-

element subsets of {1, 2, . . . ,m}, where two vertices are adjacent when they have n− 1

elements in common.

The Johnson graph J(5, 2) is isomorphic to the complement of the Petersen

graph (see Figure 1.9). The Johnson graphs are distance-regular with valency n(m−n),

parameters ci = i2, bi = (n−i)(m−n−i), and diameter min{n,m−n} (see, for example,

[14, Section 9.1] and [17, Section 12.4.2]).

Definition 1.20. A permutation of the set {1, 2, . . . ,m} is a reordering of the elements

of the set. We denote by Sm the set of all permutations of the set {1, 2, . . . ,m}.

Definition 1.21. [63, p. 233–240] A Steiner triple system STS(m) is a set of 3-element

subsets of {1, 2, . . . ,m} (called triples) such that every 2-element subset of {1, 2, . . . ,m}

(called a pair) is contained in exactly one triple. A Kirkman triple system KTS(m) is

an STS(m) with the additional property that the set of triples can be partitioned into

subsets such that each element in {1, 2, . . . ,m} is contained in exactly one triple in

each subset of triples. This additional property is called parallelism, and these subsets

of triples are called the parallel classes of the KTS(m).
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For example, both an STS(9) and a KTS(9) are given by the set

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9},

{1, 4, 7}, {2, 5, 8}, {3, 6, 9},

{1, 5, 9}, {2, 6, 7}, {3, 4, 8},

{1, 6, 8}, {2, 4, 9}, {3, 5, 7}}.

Each line above is a parallel class in the KTS(9). Indeed, we can easily verify that each

number 1–9 appears once per line. Steiner and Kirkman triple systems exist only for

certain values of m, but they have been shown to always exist for those values [57, 80]:

Proposition 1.2. A Steiner triple system STS(m) exists if and only if m ≡ 1, 3

(mod 6). A Kirkman triple system KTS(m) exists if and only if m ≡ 3 (mod 6).

By a simple counting argument, both an STS(m) and a KTS(m) contain
(
m
2

)
/3 =

1
6
m(m− 1) triples. By definition each pair in {1, 2, . . . ,m} is contained in exactly one

triple, which implies that each element is contained in (m− 1)/2 triples.

1.3 Spectra of Graphs

We first state some basic results from linear algebra that will be helpful. For

general reference see [4, 61]. For a matrix M , we denote by M(i,j) the entry in the

i-th row and j-th column of M . The multiset of eigenvalues of a matrix is called the

spectrum of the matrix.

Definition 1.22. The identity matrix In is the n × n matrix with diagonal entries 1

and all other entries 0. The matrix Jm,n is the m × n matrix with every entry 1. We

denote Jn = Jn,n and 1n = J1,n (the all ones vector). The matrix Om,n is the m × n

matrix with every entry 0. We denote On = On,n and 0n = O1,n (the zero vector).

When the size is implicit, we often write simply I, J , O, 1, and 0 for these matrices.

For any matrix M , the transpose M> is the matrix with (i, j)-entry equal to M(j,i). A

matrix M is called symmetric if M> = M .
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Proposition 1.3. ([61, p. 106]) A real, symmetric n×n matrix has n real eigenvalues

(including multiplicities), and there is a set of n orthonormal eigenvectors for these

eigenvalues.

Proposition 1.4. The eigenvalues of Mk are {λk | λ is an eigenvalue of M}. The

eigenvalues of M − kI are {λ− k | λ is an eigenvalue of M}.

Definition 1.23. A real matrix M is called positive semidefinite if x>Mx ≥ 0 for all

real vectors x. Equivalently, M is positive semidefinite if all of the eigenvalues of M

are nonnegative.

Proposition 1.5. For any real, symmetric matrix M , the matrices M>M and MM>

are positive semidefinite. The matrices M>M and MM> have the same rank and the

same nonzero eigenvalues (including multiplicity).

Definition 1.24. The trace Tr(M) of a square matrix M is the sum of the diagonal

entries of M .

Proposition 1.6. The sum of the eigenvalues of a matrix M equals Tr(M).

Since all of the diagonal entries of the adjacency matrix of any graph are 0,

Proposition 1.6 gives the following corollary:

Corollary 1.7. For any graph G, the sum of the eigenvalues of G equals 0.

For a real, symmetric matrix M we denote by λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M)

the eigenvalues of M .

Theorem 1.8 (Ky Fan Inequality [40]). Let A and B be real, symmetric matrices of

size n. Then for any 1 ≤ k ≤ n,

k∑
i=1

λi(A+B) ≤
k∑
i=1

λi(A) +
k∑
i=1

λi(B).

By Proposition 1.6, taking k = n in Theorem 1.8 obviously gives equality.

Combining this with the inequality obtained by taking k = n− 1 in Theorem 1.8, we

obtain the following corollary:
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Corollary 1.9. Let A and B be real symmetric matrices of size n. Then λn(A+B) ≥

λn(A) + λn(B).

For the remainder of this section we will give basic results of spectral graph

theory and give the spectra of some common graphs. For a general reference on spectral

graph theory, see [17]. There are several matrices that are associated with a given

graph. When we discuss a matrix associated with a graph, we assume the rows and

columns of the matrix are indexed by the vertices of the graph.

Definition 1.25. Let G be a graph. The adjacency matrix A = A(G) of G is the

matrix with A(x,y) = 1 if x ∼ y and A(x,y) = 0 if x 6∼ y. The degree matrix D = D(G)

of G is the diagonal matrix with D(x,x) = deg(x). The Laplacian matrix L = L(G)

satisfies L = D−A. The signless Laplacian matrix |L| = |L(G)| satisfies |L| = D+A.

The normalized Laplacian L = L(G) satisfies L = D−1/2LD−1/2.

In this thesis we will focus on the adjacency matrix, but each matrix contains

information about the graph. For example, one can prove that the nullity of L(G) is

the number of connected components in G, and one can prove by induction that the

x, y entry in A(G)k is the number of walks of length k in G beginning at the vertex x

and ending at the vertex y.

Each of the graphs in Definition 1.25 is a real, symmetric matrix, and hence

have n real eigenvalues (including multiplicities) if G has n vertices. The eigenvalues

of the adjacency, Laplacian, signless Laplacian, and normalized Laplacian matrices

of a graph are called the adjacency, Laplacian, signless Laplacian, and normalized

Laplacian eigenvalues of the graph. We will refer to the adjacency eigenvalues of a

graph as simply the eigenvalues of the graph. We will refer to the adjacency spectrum

as simply the spectrum of the graph. When we write the spectrum of a graph, we use

exponents to denote the multiplicities. We denote by λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G)

the adjacency eigenvalues of G. We denote by λmin(G) and λmin−1(G) the smallest and

second smallest eigenvalues of G (so λmin(G) = λn(G) and λmin−1(G) = λn−1(G) if G

has n vertices).
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For example, the adjacency matrices of P3 and C5 (as labeled in Figure 1.1) are

A(P3) =


0 1 0

1 0 1

0 1 0


and

A(C5) =



0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0


.

Thus we find that the spectrum of P3 is {
√

2
1
, 01,−

√
2

1}, and the spectrum of C5

is {21, 1
2
(
√

5− 1)2, 1
2
(−
√

5− 1)2} (recall that exponents on eigenvalues indicated their

multiplicity). The spectra of many of the graphs defined in Section 1.2 are given below.

The results are well known (see, for example, [17, Section 1.4])

Proposition 1.10. The spectrum of Kn is {(n−1)1,−1n−1}. The spectrum of Km,n is

{
√
mn

1
, 0m+n−2,−

√
mn

1}. The spectrum of Cn is
{

2 cos
(

2πj
n

)1 | j = 0, 1, . . . , n− 1
}

.

The spectrum of Pn is
{

2 cos
(
πj
n+1

)1 | j = 1, . . . , n
}

. The spectrum of En is 0n.

Definition 1.26. Let M be a matrix with eigenvalues µ1, . . . , µn. The spectral radius

of M , denoted ρ(M), is equal to max{|µ1| , . . . , |µn|}. The spectral radius of a graph

G, denoted ρ(G), is equal to ρ(A(G)).

Clearly ρ(G) = max{λ1(G),−λn(G)}. However, it turns out ρ(G) = λ1(G)

due to the following corollary, which follows immediately from the Perron-Frobenius

Theorem for irreducible matrices (see [17, Section 2.2] and [45, Section 8.8]).

Corollary 1.11. The spectral radius of a graph is the largest eigenvalue of the graph.

This also implies that if s is an eigenvalue of a graph G, then G has an eigenvalue

r > 0 such that r ≥ |s|.

The spectral radius of a graph is related to the average degree.
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Proposition 1.12. ([17, Proposition 3.1.2]) Let G be a connected graph. If G is k-

regular, then ρ(G) = k. Otherwise we have δ(G) < d(G) < ρ(G) < ∆(G).

In particular, we obtain the following corollary.

Corollary 1.13. If G is a k-regular graph then λ1(G) = k.

The next two Propositions relate graph properties to the spectrum.

Proposition 1.14. ([17, Proposition 1.3.3]) A graph with diameter d has at least d+1

distinct adjacency eigenvalues.

The Hoffman ratio bound relates the independence number of regular graphs to

their smallest eigenvalue (see, for example, [17, Theorem 3.5.2]).

Proposition 1.15. If G is a connected, k-regular graph on n vertices, then

α(G) ≤ n
−λn(G)

k − λn(G)
.

The eigenvalues of a graph Cartesian product G�H can be given in terms of

the eigenvalues of G and H (see, for example, [17, Section 1.4.6]).

Definition 1.27. If A is an m×n matrix and B is a p× q matrix, then the Kronecker

product A⊗B is the mp× nq block matrix given by
A(1,1)B · · · A(1,n)B

...
. . .

...

A(m,1)B · · · A(m,n)B

 .

Proposition 1.16. Let G and H be graphs on n and m vertices, respectively. The

adjacency matrix of G�H is A(G�H) = A(G)⊗ Im + In ⊗A(H). The eigenvalues of

G�H are λi(G) + λj(H) for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Corollary 1.17. The spectrum of Qn is
{

(n− 2i)(
n
i) | i = 0, 1, . . . , n

}
.

Proposition 1.18. The spectrum of a disconnected graph is the multiset sum of the

spectra of the subgraphs induced by connected components.
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That is, if G has connected components X1, . . . , Xk and λ is an eigenvalue of

G|Xi
with multiplicity ai for each i, then λ is an eigenvalue of G with multiplicity

a1 + · · · + ak. Proposition 1.18 leads immediately to following corollary, since the set

of connected components of a disjoint union G + H is the union of the connected

components of G and those of H.

Corollary 1.19. Let G and H be graphs on n and m vertices, respectively. The

adjacency matrix of G+H is A(G) On,m

Om,n A(H)

 .

The spectrum of G+H is the multiset sum of the spectra of G and H.

Proposition 1.20. ([17, Section 1.2.3]) If G is a connected, k-regular graph on n

vertices with eigenvalues k = λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G), then its complement G has

eigenvalues n−k−1 ≥ −1−λn(G) ≥ −1−λn−1(G) ≥ · · · ≥ −1−λ3(G) ≥ −1−λ2(G).

Proposition 1.20 follows from the fact that A(G) = J −A(G)− I, and the fact

that the eigenvector for k is 1 while the eigenvectors for λ2, . . . , λn are orthogonal to

1.

Proposition 1.21. ([14, Section 9.2] and [17, Section 12.4.1]) The adjacency eigen-

values of the Hamming graph H(m,n) are (n− 1)m− ni with multiplicity
(
m
i

)
(n− 1)i

for i = 0, 1, . . . ,m.

Proposition 1.22. ([14, Section 9.1] and [17, Section 12.4.2]) The adjacency eigenval-

ues of the Johnson graph J(m,n) are (n− i)(m−n− i)− i with multiplicity
(
m
i

)
−
(
m
i−1

)
for i = 0, 1, . . . , n.

1.4 Vertex Partitions, Quotient Matrices, and Eigenvalue Interlacing

In this section we give powerful tools for determining the structure of graphs

with given spectrum. The results in this section involve eigenvalue interlacing and

will be extremely useful throughout this thesis. For general reference see [17, Sections

2.3–2.5].
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Definition 1.28. Let M be a real, symmetric matrix with rows and columns indexed

by X = {1, 2, . . . , n}, and let P = {X1, . . . , Xm} be a partition of X. The characteristic

matrix S of P is the n ×m matrix with S(i,j) = 1 if i ∈ Xj and S(i,j) = 0 if i /∈ Xj.

The cardinality matrix K of P is the m ×m diagonal matrix with K(i,i) = ni, where

ni = |Xi|. Let the rows and columns of M be indexed by P , so that

M =


M1,1 · · · M1,m

...
. . .

...

Mm,1 · · · Mm,m

 ,

where Mi,j denotes the submatrix of M indexed by rows in Xi and columns in Xj. Then

the quotient matrix of M with respect to P is the m×m matrix Q with Q(i,j) = qi,j,

where qi,j is the average row sum of Mi,j. If the row sum of every row in each Mi,j is

equal to qi,j, then we say the partition P is equitable.

From Definition 1.28 we immediately obtain:

Proposition 1.23. If M is a real, symmetric matrix with P, S, K, Q, and Mi,j as in

Definition 1.28, then we have S>MS = KQ and S>S = K. If the partition is equitable

then we additionally have MS = SQ.

The fact that S>S = K is straightforward. The (i, j)-entry in S>MS is the

sum of the entries in Mi,j, while the (i, j)-entry in KQ is niqi,j, which is also the sum

of the entries in Mi,j. If i ∈ Xk, then the (i, j)-entry of SQ is qk,j, while the (i, j)-entry

of MS is one of the row sums in Mk,j. If P is an equitable partition of M , then every

row sum in Mk,j is qk,j, so in this case MS = SQ. We note also that if the partition

is equitable, then Mi,j1 = qi,j1 for all i, j ∈ {1, 2, . . . ,m}. These results imply the

following useful proposition.

Proposition 1.24. If M is a real, symmetric matrix with P, S, K, Q, and Mi,j as in

Definition 1.28, then for each eigenvector v of Q with eigenvalue λ, Sv is an eigenvector

of M with eigenvalue λ. Then M has two types of eigenvalues:

(i) the eigenvalues of Q, with eigenvectors constant on Xj for all j, and

20



(ii) the remaining eigenvalues, with eigenvectors summing to 0 on Xj for each j.

These remaining eigenvalues are unchanged if blocks Mi,j are replaced by blocks

Mi,j + ci,jJ for some constants ci,j.

Indeed, Qv = λv implies MSv = SQv = Sλv = λSv. To see that (i) is true,

note that (Sv)i is equal to vj for all i ∈ Xj. To see that (ii) is true, note that the

remaining eigenvectors must be orthogonal to those from (i), which proves they sum

to 0 on each Xj. Adding a multiple of the all ones matrix to a block does not change

these eigenvalues precisely because their eigenvectors sum to 0 on each Xj.

If the matrix M above is the adjacency or Laplacian matrix of a graph G and

X is the set V (G), then the partition P is equitable precisely when every vertex in Xi

has the same number of neighbors qi,j in Xj. For example, if G is a distance-regular

graph with valency k, diameter d, and parameters bi, ci, and ai = k − bi − ci as in

Definition 1.17, then for any x in V (G) we can partition the vertices according to their

distance from x, that is, by P = {X0, X1, . . . , Xd} where Xi = Γi(x) (this is called the

distance-partition of G with respect to x). We see that each vertex in Xi has the same

number qi,j of neighbors in Xj. Indeed, if |i− j| ≥ 2, then qi,j = 0, and we clearly have

qi,i = ai, qi,i+1 = bi, and qi,i−1 = ci. This yields the following lemma.

Lemma 1.25. The quotient matrix Q with respect to the distance partition of a distance-

regular graph with intersection array {b0, b1, . . . , bd−1; c1, c2, . . . , cd} is the tridiagonal

matrix

Q =



a0 = 0 b0 = k 0 · · · 0

c1 = 1 a1 b1
. . .

...

0 c2
. . . . . . 0

...
. . . . . . ad−1 bd−1

0 · · · 0 cd ad


.

From Proposition 1.24 and Lemma 1.25 it follows that the eigenvalues of the

matrix Q given above are also eigenvalues of the distance-regular graph G, and the

remaining eigenvalues of G have eigenvectors which sum to 0 on each part of the

distance partition.
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Definition 1.29. For a real, symmetric matrix M and a nonzero vector u, the Rayleigh

quotient of u with respect to M is

Ray(M,u) =
u>Mu

u>u
.

We have the following inequalities for the Rayleigh quotient, called the Rayleigh

inequalities:

Proposition 1.26. ([17, Section 2.4]) If M is a real, symmetric n × n matrix and

u1, . . . , un is a set of orthonormal eigenvectors such that Mui = λi(M)ui for i =

1, . . . , n, then for a vector u we have

(i) Ray(M,u) ≥ λi(M) if u ∈ span{u1, . . . , ui}, and

(ii) Ray(M,u) ≤ λi(M) if u ∈ span{u1, . . . , ui−1}⊥.

In either case, equality implies u is an eigenvector of M for the eigenvalue λi.

Definition 1.30. Let λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µm be two sequences

of real numbers with m < n. The second sequence is said to interlace the first if

λi ≥ µi ≥ λn−m+i for each i = 1, . . . ,m.

Using the Rayleigh inequalities (Proposition 1.26), one can prove the following

two useful propositions about eigenvalue interlacing.

Proposition 1.27. If M is a real, symmetric matrix with quotient matrix Q with

respect to some partition P, then the eigenvalues of Q interlace those of M .

This result is due to Haemers (see [48, 49]). Note that for Proposition 1.27 we

do not require that the partition is equitable. If M is the adjacency matrix of a graph

G, then Proposition 1.27 implies that the eigenvalues of the quotient matrix of any

partition of V (G) interlace those of G. Note that if the partition P = {X1, . . . , Xm} is

not equitable, then the (i, j)-entry qi,j of Q is the average number of neighbors in Xj

of the vertices in Xi.
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Definition 1.31. A principal submatrix of a matrix M is a matrix obtained by deleting

some rows and the corresponding columns from M .

Proposition 1.28 (Cauchy Interlacing). If N is a principal submatrix of M , then the

eigenvalues of N interlace those of M .

Note that the adjacency matrix of an induced subgraph is a principal submatrix

of the adjacency matrix of the graph. Indeed, one simply deletes the rows and columns

in the adjacency matrix indexed by the vertices that were removed to obtain the in-

duced subgraph. Proposition 1.28 often gives a large amount of information about the

structure of a graph G with given spectrum, since the spectra of any induced subgraphs

of G must interlace the spectrum of G. We give the following lemma as an example.

Lemma 1.29. A graph G with λ2(G) < 0 or λmin(G) > −
√

2 is a disjoint union of

complete graphs.

Proof. If G has no connected component with at least 3 vertices, then G is a disjoint

union of copies of complete graphs of orders 1 and 2, and we are done. Otherwise, if G

is not a disjoint union of complete graphs, then G must induce a subgraph isomorphic

to K1,2. Indeed, since G has a connected component with at least 3 vertices that is not

a complete graph, that component contains a subgraph on three vertices isomorphic to

K1,2. Then Proposition 1.28 implies λ2(G) ≥ λ2(K1,2) = 0 and λmin(G) ≤ λmin(K1,2) =

−
√

2, which contradicts that λ2(G) < 0 or λmin(G) > −
√

2.

We note that in the case where λ2(G) < 0 we can further say that G is a

complete graph, since a graph with k connected components has at least k positive

eigenvalues by Corollaries 1.11 and 1.19.

The following Lemma due to Petrović [78] (see also [14, page 89]) is proved in

a similar (but slightly more involved) way:

Lemma 1.30. Let G be connected graph. Then G has exactly one positive eigenvalue

if and only if G is a complete multipartite graph.
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1.5 Which Graphs are Determined by Their Spectra?

Since we have seen that the spectrum of a graph gives a large amount of infor-

mation about the structure of a graph, it is natural to ask specifically what properties

of a graph are determined by the spectrum, and whether the spectrum has enough

information to recover the graph. For general graphs, this question has a different

answer depending on whether we mean the adjacency, Laplacian, signless Laplacian,

or some other spectrum of the graph.

Definition 1.32. If G and H are graphs with the same spectrum, then G and H

are called cospectral. If G is a graph such that every graph H cospectral with G is

isomorphic to G, then G is said to be determined by its spectrum, and we say that G

is DS for short.

Definition 1.32 is used to refer to the spectra of many of the matrices associ-

ated with a graph G. We will use it to refer to adjacency spectra, unless specifically

mentioned otherwise.

For general reference on what is known about which graphs are determined by

their spectra, see [31, 32]. The question of which graphs are determined by their spectra

originated in 1956 in a paper by Günthard and Primas [46] on Hückel’s theory from

chemistry. At that time, it was believed that every graph was DS. However, there is a

pair of nonisomorphic graphs on 5 vertices first noted by Collatz and Sinogowitz [29]

(see Figure 1.13). The graphs in Figure 1.13 each have spectrum {21, 03,−21}. Indeed,

w
w

w
w

w
w
w

w
w

w
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Figure 1.13: Two nonisomorphic graphs with spectrum {21, 03,−21}.

the graphs are K1 + C4
∼= K1 + K2,2 and K1,4, so the stated spectrum follows by

Proposition 1.10 and Corollary 1.19. It is obvious that the graphs are not isomorphic,

since one is connected and the other is not. Thus not all graphs are determined by
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their spectra (though a quick search of graphs on 1–4 vertices shows that the graphs

in Figure 1.13 are the smallest nonisomorphic cospectral graphs).

The question still remains, which graphs are DS? Further, one can ask: are most

graphs DS? Schwenk [84] proved that most trees (that is, connected graphs without

cycles) are not DS. It is not known whether most graphs in general are DS or not,

but Haemers [31] conjectures that most graphs are DS. Recently the question of which

graphs are DS has been an active area of research in spectral graph theory.

Typically it is much easier to show that a graph is not DS than to show that a

graph is DS. Indeed, to show that a graph is not DS one needs only to find a single

example of a nonisomorphic cospectral graph. Conversely, to show that a graph G

is DS one must prove that among all graphs, no nonisomorphic graph has the same

spectrum as G. Below we give a few results on which graphs are DS. Each can be

found in [31].

Proposition 1.31. The following properties are determined by each of the adjacency,

Laplacian, and signless Laplacian spectra of a graph G:

(i) The number of vertices.

(ii) The number of edges.

(iii) Whether G is regular.

(iv) Whether G is regular with any fixed girth.

The following properties are determined by the adjacency spectrum of a graph G:

(v) The number of closed walks of any fixed length.

(vi) Whether G is bipartite.

The following properties are determined by the Laplacian spectrum of a graph G:

(vii) The number of connected components.

(viii) The number of spanning trees.
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One can use Proposition 1.31 to prove a graph is DS with respect to some matrix

by excluding from consideration all graphs that do not share the properties that are

determined by that matrix.

Proposition 1.32. If G is a regular graph, then G is DS if and only if G is DS.

Proposition 1.33. The path graph Pn is determined by its spectrum. The complete

graph Kn, complete bipartite graph Kn,n, and cycle graph Cn are determined by their

spectra, as are their complements. Any disjoint union of complete graphs is determined

by its spectrum.

A useful tool for finding graphs cospectral to a given graph G is called Godsil-

McKay switching, or GM-switching for short. The method is given in the following

Theorem from [44].

Theorem 1.34. Let G be a graph and let P = {C1, C2, . . . , Ck, D} be a partition of

V (G). Suppose P \ D is an equitable partition of V (G) \ D and for any v ∈ D and

1 ≤ i ≤ k, v has exactly 0, |Ci| /2, or |Ci| neighbors in Ci. Let G′ be the graph obtained

as follows. For each v ∈ D and 1 ≤ i ≤ k such that v has |Ci| /2 neighbors in Ci,

delete these |Ci| /2 edges and add edges from v to the other |Ci| /2 vertices in Ci. Then

G and G′ are cospectral.

The process of adding and deleting edges in the above theorem is called Godsil-

McKay-switching, or GM-switching for short, and the sets C1, . . . , Ck are called a

GM-switching sets. Once a switching set is found, switching is taking the vertices that

are adjacent to half of Ci and changing them so they are adjacent to the other half

of Ci. The theorem follows from the fact that the adjacency matrix of G′ is equal to

Q>A(G)Q for a particular regular orthogonal matrix Q. It is possible that the graph

G′ is isomorphic to G, in which case nothing is gained. However, in the case that G′ is

not isomorphic to G, Theorem 1.34 implies that neither G nor G′ are determined by

their spectrum.
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Figure 1.14: A pair of nonisomorphic cospectral graphs on 9 vertices obtained by
GM-switching.

Typically, it is difficult to find switching sets with k > 1. However, when k = 1

it is often not difficult. For example, Figure 1.14 shows a particular graph before and

after GM-switching. Theorem 1.34 implies that the graphs in Figure 1.14 have the

same spectrum. The switching set C = C1 is the set of all vertices except the center

vertex. The set C induces C8, a regular graph, and the vertex not in C is adjacent to

half of the vertices in C. We can see that the graphs are not isomorphic because, for

example, one graph induces a cycle on four vertices, while the other does not. This

example was originally given in [44].

Figure 1.15 shows another pair of cospectral graphs obtained by using GM-
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Figure 1.15: A pair of nonisomorphic cospectral graphs on 7 vertices obtained by

GM-switching.

switching. The switching set C = C1 consists of the circled vertices. Clearly C induces

a 0-regular graph, and every vertex not in C is adjacent to half of C. One of these

graphs is connected and one is not, so they are another pair of nonisomorphic cospectral

graphs.
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Chapter 2

THE FRIENDSHIP GRAPH AND GRAPHS WITH 4 DISTINCT
EIGENVALUES

2.1 The Friendship Graph

The friendship graph Fk (also called the Dutch windmill graph, or k-fan) is the

graph consisting of k edge-disjoint triangles that meet in a single vertex (see Figure

2.1). The graph Fk can also be realized as the join K1 ∇ kK2 (see Definition 1.11),
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Figure 2.1: The Friendship graph Fk for several values of k.

that is, the cone over kK2. The friendship graph was made famous by the Friendship

Theorem due to Erdős, Rényi and Sós [38], and independently Wilf [97]:

Theorem 2.1 (Friendship Theorem). In a group of people such that every pair of

people have exactly one friend in common, there must be one person who is a friend to

all the others.

If the people are vertices in a graph, and two people are adjacent if and only if

they are friends, then the Friendship Theorem states that in a graph such that every

pair of vertices has exactly one common neighbor, there is a vertex x adjacent to every

other vertex. Then, since each vertex has exactly one common neighbor with x, such

a graph must be isomorphic to Fk for some k. Thus the friendship graphs are the only
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graphs with the property that every pair of vertices has exactly one common neighbor.

In addition to the proofs in [38] and [97], the friendship theorem has been independently

proved by Longyear and Parsons [64], Brunat [18], Huneke [56], Mertzios and Unger

[70], and Bataineh [6].

Clearly Fk has 2k + 1 vertices and 3k edges. Let x be the vertex in Fk which

is adjacent to every other vertex. To find the spectrum of the adjacency matrix Ak of

Fk, consider the partition {{x}, V (Fk) \ {x}}. Then, labeling the vertices according to

the partition, we have

Ak =

 0 1>2k

12k R2k

 ,

where R2k is the adjacency matrix of kK2 (so the eigenvalues of R2k are 1k,−1k).

Clearly the partition {{x}, V (Fk) \ {x}} is equitable with quotient matrix

Q =

0 2k

1 1

 .

By Proposition 1.24 the eigenvalues 1
2
± 1

2

√
1 + 8k of Q are also eigenvalues of Ak.

Also, Proposition 1.24 implies that the remaining eigenvalues of Ak are unchanged by

subtracting multiples of J from some blocks. Thus they are the eigenvalues of the

matrix

A′k =

 0 0>2k

02k R2k


that are not eigenvalues of the corresponding quotient matrix

Q′ =

0 0

0 1

 .

The matrix A′k has eigenvalues 01, 1k, and −1k, while Q′ has eigenvalues 0 and 1. Thus

the eigenvalues of Ak that are not eigenvalues of Q are 1k−1 and −1k. We have proved:

Proposition 2.2. The spectrum of Ak is {1
2
± 1

2

√
1 + 8k, 1k−1, −1k}.

In 2010, Belardo, Borovićanin, Huang, and Wang [7] showed that Fk is deter-

mined by the spectrum of its signless Laplacian matrix. They also note that the results
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of Gui, Liu, and Zhang [47] imply that Fk is determined by its Laplacian spectrum.

Belardo, Borovićanin, Huang, and Wang made the following conjecture:

Conjecture 2.3. The friendship graph Fk is determined by its adjacency spectrum.

Conjecture 2.3 has caused some activity in the last few years on the spectral

characterization of Fk. Combining Propositions 1.28 and 2.2, we have the following

corollary.

Corollary 2.4. If G is a graph cospectral to the friendship graph, then for any induced

subgraph H of G on n vertices, we have λ2(H) ≤ 1 and λn−1(H) ≥ −1.

Das [35] claimed to have a proof of Conjecture 2.3, but Abdollahi, Janbaz, and

Oboudi [1] noted that the proof contained a mistake. Corollary 2.4 implies that for any

graph H on n vertices, if either λ2(H) > 1 or λn−1(H) < −1 then H cannot be induced

by Fk. However, the supposed proof of Conjecture 2.3 in [35] applies Corollary 2.4 to

exclude subgraphs that are not necessarily induced. In addition, Abdollahi, Janbaz,

and Oboudi [1] proved that Conjecture 2.3 holds for graphs in certain special cases:

Proposition 2.5. Suppose G is a graph cospectral to Fk and one of the following holds:

(i) G is connected and planar.

(ii) G is connected and does not contain C5 as a subgraph.

(iii) G has two adjacent vertices of degree 2.

(iv) G is disconnected.

Then G is isomorphic to Fk.

In Section 2.2, we prove that Conjecture 2.3 holds for connected graphs. In

Section 2.3, we classify all graphs with all but two eigenvalues equal to ±1, a family

of graphs that includes the friendship graphs. These results immediately imply that

Conjecture 2.3 is true if k 6= 16, and there is exactly one counterexample if k = 16.
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Portions of the remainder of this chapter represent joint work with Sebastian

Cioabă, Willem Haemers, and Wiseley Wong on the paper “The graphs with all but

two eigenvalues equal to ±1” in Journal of Algebraic Combinatorics 41 (2015), 887–

897 [26]. In particular, Wong gave a partial proof of Theorem 2.10 and an alternate

proof of Corollary 2.8, although the proofs contained here are independent of them.

Haemers gave the original proofs to Lemmas 2.7, 2.12, 2.13 and 2.19, Proposition 2.11,

and Corollary 2.14, and a nearly completed a proof of Theorem 2.15. I improved the

proof of Theorem 2.15 given by Haemers and fixed some gaps and mistakes, and in

this thesis I added many details. Haemers also noted Corollaries 2.16 and 2.18, and

Theorem 2.17, which follow directly from the other results. The remaining results are

mine.

2.2 Connected Graphs Cospectral to the Friendship Graph

In this section we prove that any connected graph with the same adjacency

spectrum as Fk must be isomorphic to Fk.

Any graph G cospectral to Fk must have the same number of vertices, edges,

and triangles as Fk by Proposition 1.31. That is, G must have 2k+1 vertices, 3k edges,

and k triangles. If G is connected, the diameter of G is at most 3 by Proposition 1.14,

since its spectrum has only 4 distinct eigenvalues.

The fact that all but exactly two eigenvalues of Fk are either 1 or −1 and

the other two have absolute value more than 1 implies that A2
k − I is positive semi-

definite and has rank 2. Indeed, it is straightforward to verify that all but exactly two

eigenvalues of A2
k − I are 0 and the other two are positive. This also implies that any

principal submatrix of A2
k − I is positive semi-definite and has rank at most 2, which

leads to the following pair of very useful lemmas.

Lemma 2.6. If G is a graph cospectral to Fk, then one connected component of G has

minimum degree at least 2 and all other components are isomorphic to K2.

Proof. Note that G cannot have two connected components with minimum degree at

least 2, since G has only one eigenvalue more than 1. Suppose u is a vertex of degree
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1 in G. We will show that the component containing u is isomorphic to K2, which

completes the proof. Let v be the neighbor of u and suppose that v has another

neighbor w. Note that v is the only common neighbor of u and w. Then the 2 × 2

principal submatrix of A2 − I corresponding to u and w equals

S =

0 1

1 deg(w)− 1

 .

We have detS = −1 < 0, but A2 − I is positive semi-definite. This is a contradiction,

so v must have degree 1.

Lemma 2.7. Suppose u and v are distinct vertices in a graph G cospectral to Fk, and

each neighbor of u is also a neighbor of v. Then deg(v) ≥ deg(u) + 3.

Proof. Note that u and v have exactly deg(u) common neighbors. Then the 2 × 2

principal submatrix of A2 − I corresponding to u and v equals

S =

deg(u)− 1 deg(u)

deg(u) deg(v)− 1

 .

If deg(v) ≤ deg(u) + 2, then

detS = (deg(u)− 1)(deg(v)− 1)− deg(u)2

≤ (deg(u)− 1)(deg(u) + 1)− deg(u)2

= deg(u)2 + deg(u)− deg(u)− 1− deg(u)2 = −1 < 0,

which is a contradiction.

Lemma 2.6 gives the following corollary:

Corollary 2.8. If G is a connected graph cospectral to Fk, then the minimum degree

of G is 2, and there exists u ∈ V (G) such that deg(u) = 2.

Proof. The former statement follows directly from Lemma 2.6. The latter statement

follows from the fact that G has 2k+ 1 vertices and 3k edges, so the average degree in

G must be less than 3.

32



Corollary 2.4 immediately implies the following:

Corollary 2.9. If G is a graph cospectral to Fk, then none of the graphs in Figure 2.2

can be an induced subgraph of G.

Proof. For each graph it is straightforward to verify that either the second eigenvalue

is more than 1 or the second least eigenvalue is less than −1.
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Figure 2.2: Graphs with λ2 > 1 or λmin−1 < −1.

We now have the necessary tools to prove the following theorem, which improves

upon Proposition 2.5 and brings us closer to a proof of Conjecture 2.3.
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Theorem 2.10. If G is a connected graph cospectral to Fk, then G is isomorphic to

Fk.

Proof. It is easily verified that the theorem is true for k < 3, so we assume k ≥ 3. Let

u be a vertex of degree 2 in G. Let u′ and u′′ be the neighbors of u, U = {u, u′, u′′},

and X = V (G) \ U . We consider cases on whether or not u′ and u′′ are adjacent and

whether they have common neighbors in X.

Case 1: u′ and u′′ are adjacent and have no common neighbors in X.

In this case we see that Corollary 2.9 implies that one of u′ and u′′ has no

neighbors in X. Indeed, if x, x′ ∈ X such that x is a neighbor of u′ and x′ is a neighbor

of u′′, then the set {u, u′, u′′, x, x′} induces one of graphs H2
5 or H3

5 , depending on

whether x ∼ x′. Without loss of generality we suppose that u′′ has no neighbors in X.

Next we use Corollary 2.9 to show that each x ∈ X has at most one neighbor in X.

Indeed, suppose that x has two neighbors x′ and x′′ in X. First suppose x ∼ u′. If

neither x′ nor x′′ is adjacent to u′, then {u, u′, u′′, x, x′, x′′} induces H7
6 or H9

6 , depending

on whether x′ ∼ x′′. If exactly one of x′ and x′′ are adjacent to u′, then {u, u′, x, x′, x′′}

induces H2
5 or H4

5 , depending on whether x′ ∼ x′′. If both x′ and x′′ are adjacent to

u′, then {u, u′, x, x′, x′′} induces H4
5 or {u, u′, u′′, x, x′, x′′} induces H12

6 , depending on

whether x′ ∼ x′′. Next suppose x 6∼ u′. Then, since diam(G) ≤ 3, at least one of x′

and x′′ is adjacent to u′. Without loss of generality, we assume x′ ∼ u′. Then we have

already seen that x′ has only one neighbor in X, so x′ 6∼ x′′. Then {u, u′, u′′, x, x′, x′′}

induces H5
6 or H8

6 , depending on whether x′′ ∼ u′. Thus we have proved that each

x ∈ X has at most one neighbor in X. By Corollary 2.8 this implies that every vertex

in X is adjacent to u′ and has exactly one neighbor in X. Then X induces (k − 1)K2

and G ∼= Fk with u′ as the vertex adjacent to all others.

Case 2: u′ and u′′ are adjacent and have common neighbors in X.

Let Y be the set of common neighbors of u′ and u′′ in X, and let Z = X \ Y .

Corollary 2.9 implies that neither u′ nor u′′ has neighbors in Z. Indeed, if y ∈ Y and z

is a neighbor of u′ in Z, then {u, u′, u′′, y, z} induces H4
5 or H5

5 , depending on whether
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y ∼ z (note that u′ ∼ z implies u′′ 6∼ z since z /∈ Y ). A similar argument holds if z ∈ Z

is a neighbor of u′′. Then, since diam(G) ≤ 3, every vertex in Z has a neighbor in Y .

Furthermore, we see that Z is an independent set. Indeed, if {z, z′} is an edge in Z and

y is a neighbor of z′ in Y , the set {u, u′, u′′, y, z, z′} induces H10
6 or H11

6 , depending on

whether y ∼ z. With Corollary 2.8 this implies that every vertex in Z has two neighbors

in Y . Since every vertex in Y has two neighbors in U (u′ and u′′), this implies that

|E(G)| ≥ 3 + 2 |Y |+ 2 |Z| = 3 + 2(|Y |+ |Z|) = 3 + 2 |X| = 3 + 2(2k−2) = 4k−1 > 3k,

a contradiction. Thus Case 2 is not possible.

Case 3: u′ and u′′ are not adjacent and have no common neighbors in X.

Let V and W be the sets of neighbors of u′ and u′′ in X, respectively, and

let Z = X \ (V ∪W ). By Corollary 2.8 the sets V and W are not empty. However,

Corollary 2.9 implies |E(V,W )| = 0, since otherwise there exist v ∈ V and w ∈ W with

v ∼ w, so {u, u′, u′′, v, w} induces H1
5 . We find that every vertex in Z is adjacent to

every vertex in V ∪W . Indeed, let z ∈ Z. Since G is connected, we may assume without

loss of generality that z ∼ v for some v ∈ V . For each w ∈ W , Corollary 2.9 implies

z ∼ w. Otherwise, we see that {u, u′, u′′, v, w, z} induces H3
6 . Fixing some w ∈ W , we

then find that z is adjacent to every v ∈ V , since otherwise {u, u′, u′′, v, w, z} induces

H3
6 . Next, Corollary 2.9 implies that Z is an independent set. Indeed, if {z, z′} is

an edge in Z, v ∈ V and w ∈ W , then {u′, v, w, z, z′} induces H4
5 . Since there are k

triangles in G, this implies there must be an edge induced in V or W . Without loss

of generality we assume {v, v′} is an edge in V . Let w ∈ W and suppose there exists

z ∈ Z. Then {u′, v, v′, y, z} induces H4
5 , so Corollary 2.9 implies Z is empty. With

Corollary 2.8 this implies that every vertex in V has a neighbor in V and every vertex

in W has a neighbor in W . Then every vertex in V ∪W is in a triangle. There is a

vertex x ∈ V ∪W with deg(x) = 2, since otherwise the sum of degrees of the vertices

in G is at least 2 + 2k − 1 + 3(2k − 3) = 8k − 5 > 6k (since k ≥ 3), a contradiction.

Relabeling x as u, we find we are in Case 1 or 2, so we are done.
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Case 4: u′ and u′′ are not adjacent and have common neighbors in X.

Let Y be the set of common neighbors of u′ and u′′ in X, let V and W be the

sets of neighbors of u′ and u′′ in X \ Y , respectively, and let Z = X \ (V ∪W ∪ Y ).

As in Case 3, Corollary 2.9 implies that |E(V,W )| = 0. Corollary 2.9 also implies

|E(V ∪W,Y )| = |E(V )| = |E(W )| = 0. Indeed, suppose x ∈ V ∪W and y ∈ Y are

adjacent. Then {u, u′, u′′, x, y} induces H3
5 . If {x, x′} is an edge in V or W and y ∈ Y ,

then {u, u′, u′′, x, x′, y} induces H8
6 . By Corollary 2.8, each vertex in V ∪W must have

a neighbor in Z. Corollary 2.9 implies that every vertex in Z with a neighbor in V ∪W

must be adjacent to every vertex in Y . Indeed, if there exist z ∈ Z, x ∈ V ∪W , and

y ∈ Y such that z ∼ x but z 6∼ y, then the set {u, u′, u′′, x, y, z} induces H6
6 . Since

diam(G) ≤ 3 implies that every vertex in Z has a neighbor in V ∪W ∪ Y , this implies

that every vertex in Z has a neighbor in Y . Then Corollary 2.9 implies |E(Z)| = 0.

Indeed, if {z, z′} is an edge in Z and y is a neighbor of z in Y , then {u, u′, u′′, y, z, z′}

induces H6
6 or H8

6 , depending on whether y ∼ z′. Then Corollary 2.8 implies that every

vertex in Z has at least 2 neighbors in Y (unless |Y | = 1). Since V ∪W is nonempty

(otherwise u′ and u′′ have precisely the same neighbors, which contradicts Lemma 2.7),

there must be a vertex in Z adjacent to every vertex in Y . Since G must have triangles

by Proposition 1.31, there must be at least one edge in Y , so |E(Y )| ≥ 1 and |Y | ≥ 2.

Note that |Y |+ |Z| = 2k − 2− |V ∪W |. The above results imply that

3k = |E(G)| = |E(U)|+ |E(U, Y )|+ |E(U ∪ Z, V ∪W )|+ |E(Y, Z)|+ |E(Y )|

≥ 2 + 2 |Y |+ 2 |V ∪W |+ (|Y |+ 2(|Z| − 1)) + |E(Y )|

= 2 |V ∪W |+ |Y |+ 2(|Y |+ |Z|) + |E(Y )|

≥ 2 |V ∪W |+ 2 + 2(2k − 2− |V ∪W |) + 1

= 4k − 1.

This implies k ≤ 1, a contradiction, so Case 4 is not possible.

If one could prove that a graph cospectral to a friendship graph is necessarily

connected, then Theorem 2.10 would prove Conjecture 2.3. However, despite the fact
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that Lemma 2.6 seems to severely restrict the possible structure of disconnected graphs

cospectral to friendship graphs, such a proof could not be found. As we will see in

Section 2.3, that is because when k = 16 it is not true.

2.3 The Graphs With All But Two Eigenvalues Equal to ±1

The spectrum of Ak led to several very useful tools for determining the structure

of a graph cospectral to Fk. In particular, the fact that Fk has one eigenvalue greater

than 1, one eigenvalue less than −1, and the rest of the eigenvalues ±1 led to Corollary

2.9, considerably reducing the possible induced subgraphs graphs cospectral to Fk, as

well as implying that A2
k − I has rank 2 and is positive semi-definite, which led to

Lemmas 2.6 and 2.7 and Corollary 2.8. In light of these observations, we take a more

general approach in section 2.3, and consider all graphs with these properties. That is,

we consider all graphs with exactly two eigenvalues r > 1 and s < −1 different from

±1. For completeness, we first consider all graphs with all but at most two eigenvalues

not equal to ±1. We will see that such a graph must either be one of the graphs we

wish to consider (those with exactly two eigenvalues r > 1 and s < −1 different from

±1), or the graph must be a particular disjoint union of complete graphs.

Proposition 2.11. Let G be a graph with n vertices and adjacency matrix A.

(i) If A has all its eigenvalues equal to ±1, then G = n
2
K2.

(ii) If A has all but one eigenvalue equal to ±1, then G is a disjoint union of complete

graphs with all but one connected components equal to K2.

(iii) If A has all but two eigenvalues equal to ±1 and smallest eigenvalue at least

−1, then G is a disjoint union of complete graphs with all but two connected

components equal from K2.

(iv) If A has all but two eigenvalues equal to ±1 and smallest eigenvalue s < −1, then

the largest eigenvalue of A is r > 1.

Proof. Case (i) follows from the fact that any disjoint union of complete graphs is

determined by its spectrum (Proposition 1.33). Case (ii) follows from the same fact
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and Corollary 1.11. Case (iii) follows from the same fact and Lemma 1.29. For Case

(iv), note that if s < −1 then Corollary 1.11 implies r > 1.

Proposition 2.11 illustrates that in order to characterize the graphs with at most

two eigenvalues different from ±1, we need only characterize the graphs with exactly

two eigenvalues r > 1 and s < −1 different from ±1. We see that Lemmas 2.6 and 2.7

and Corollary 2.9 hold for these graphs with identical proofs. That is, we have:

Lemma 2.12. If r > 1 and s < −1 are the only eigenvalues of G different from

±1, then one connected component of G has minimum degree at least 2 and all other

components are isomorphic to K2.

Lemma 2.13. If r > 1 and s < −1 are the only eigenvalues of G different from ±1

and u and v are distinct vertices in G such that each neighbor of u is also a neighbor

of v, Then deg(v) ≥ deg(u) + 3.

Corollary 2.14. If r > 1 and s < −1 are the only eigenvalues of G different from ±1,

then none of the graphs in Figure 2.2 can be an induced subgraph of G.

By Lemma 2.12 we can even further reduce our search to only the set G of

connected graphs for which r > 1 and s < −1 are the only eigenvalues different from

±1. Then, any graph which has at most two eigenvalues different from ±1 must be

one of cases (i)–(iii) from Proposition 2.11 or the disjoint union of some isolated edges

and a graph in G.

2.4 Characterization of the Graphs in G.

In this section we give a complete characterization of the graphs in G and their

spectra, and give some results that immediately follow from this characterization.

Theorem 2.15. If G is a graph in G, then G is one of the following graphs:

(i) the graph B1(m) with adjacency matrix

 Om Jm − Im
Jm − Im Om

 (m ≥ 3)

and spectrum {±(m− 1), 1m−1, −1m−1},
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(ii) the graph B2(a, k) with adjacency matrix

Ja − Ia Ja,2k

J2k,a R2k

 (a ≥ 1, k ≥ 2)

and spectrum {a
2
± 1

2

√
a2 + 8ak − 4a+ 4, 1k−1, −1a+k−1},

(iii) the graph B3(`,m) with adjacency matrix

 R2` J2`,2m

J2m,2` R2m

 (` ≥ m ≥ 2)

and spectrum {1± 2
√
`m, 1`+m−2, −1`+m},

(iv) the graph B4(m) with adjacency matrix

Om+1 N

N> Om+1

,

where m = 4 and N =

 1 1>4

14 I4

 or m = 5 and N =

J3 − I3 J3

O3 J3 − I3

,

and spectra {±3, 14, −14} or {±4, 15, −15}, respectively,

(v) the graph B5(a, b) with adjacency matrix


Ja − Ia Ja,b 1a

Jb,a Jb − Ib 0b

1>a 0>b 0

,

where (a, b) = (6, 5), (4, 6), or (3, 8),

and spectra {4± 2
√

10, 11, −19}, {(7±
√

129)/2, 11, −18}, or

{4±
√

37, 11, −19}, respectively,

(vi) the graph B6(a,m) with adjacency matrix


Ja − Ia Ja,m Oa,m

Jm,a Om Jm − Im
Om,a Jm − Im Om

,

where (a,m) = (3, 5) or (4, 4),

and spectra {(1±
√

129)/2, 15, −16} or {1± 2
√

7, 14, −16}, respectively.

We postpone the proof of Theorem 2.15 until Section 2.5. The graphs in G

described in Theorem 2.15 are pictured in Figure 2.3. We see that G contains three

infinite families and seven sporadic graphs. Note that B2(1, k) is the friendship graph

Fk. From the given spectra, the following corollary is immediate:

Corollary 2.16. No two graphs in G are cospectral.
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Figure 2.3: The graphs in G.

We can also completely classify which graphs with at most two eigenvalues

different from ±1 are determined by their spectra:

Theorem 2.17. Suppose G and G′ are nonisomorphic cospectral graphs with at most

two eigenvalues different from ±1. Then G = H +αK2 and G′ = H ′+α′K2, where H

and H ′ are one of the following pairs of graphs in G:

(i) H = B3(`,m) and H ′ = B3(`′,m′), where `m = `′m′,

(ii) H = B3(`,m) with `,m ≥ 2, and H ′ = B2(2, k) with k = `m,

(iii) H = B1(m) and H ′ = B4(m) with m = 4 or 5,

(iv) H = B2(1, 16) and H ′ = B6(3, 5) or H = B2(2, 7) and H ′ = B6(4, 4).

Proof. Recall that by Proposition 1.33 the disjoint union of complete graphs is deter-

mined by its spectrum. Thus, by Proposition 2.11 and Lemma 2.12, G and G′ must be
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of the form described above. The components H and H ′ must share the eigenvalues

r > 1 and s < −1, which easily leads to the stated possibilities for H and H ′ by

Theorem 2.15.

By taking α = 0 in Theorem 2.17, we find the graphs in G that are not deter-

mined by their spectra.

Corollary 2.18. A graph in G is determined by its spectrum unless G is one of the

following

(i) B2(1, 16) or B2(2, 7),

(ii) B2(2, k), where k is a composite number,

(iii) B3(`,m), where `m has a divisor strictly between ` and m,

(iv) B4(m), where m = 4 or 5.

Thus we have that the friendship graph Fk ∼= B2(1, k) is determined by its

spectrum unless k = 16. We see that the friendship graph F16 is cospectral with

B6(3, 5) + 10K2 (See Figure 2.4)
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Figure 2.4: The graph F16 and its cospectral mate B6(3, 5) + 10K2.
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2.5 The Proof of the Characterization of G

In this section we prove Theorem 2.15.

Van Dam and Spence [33] classified all bipartite graphs with four distinct eigen-

values. Proposition 8 in [33] gives the bipartite graphs in G, which are the graphs

B1(m) (m ≥ 3) and B4(m) (m = 4 or 5). Thus it remains only to show that the

nonbipartite graphs in G are exactly the graphs B2(a, k) (a ≥ 1, k ≥ 2), B3(`,m)

(` ≥ m ≥ 2), B5(6, 5), B5(4, 6), B5(3, 8), B6(3, 5), or B6(4, 4).

We first show that the nonbipartite graphs listed in Theorem 2.15 have the

stated spectra and are thus in G. For the sporadic graphs, it is straightforward to

simply compute the spectra. For B2(a, k) we have adjacency matrix

A =

Ja − Ia Ja,2k

J2k,a R2k

 .

Partitioning the vertices according to the blocks of A, we obtain an equitable partition

with quotient matrix

Q =

a− 1 2k

a 1

 .

By Proposition 1.24, the eigenvalues a
2
± 1

2

√
a2 + 8ak − 4a+ 4 of Q are also eigenvalues

of A, and the remaining eigenvalues are unchanged by subtracting multiples of J from

some blocks of A. Thus the remaining eigenvalues of A are the eigenvalues of

A′ =

 −Ia Oa,2k

O2k,a R2k


that are not eigenvalues of the corresponding quotient matrix

Q′ =

−1 0

0 1

 .

The matrix A′ has eigenvalues 1k, and −1a+k, while Q′ has eigenvalues 1 and −1. Thus

the eigenvalues of A that are not eigenvalues of Q are 1k−1 and −1a+k−1, so B2(a, k)

has the spectrum stated in Theorem 2.15.
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For B3(`,m) we have adjacency matrix

A =

 R2` J2`,2m

J2m,2` R2m

 .

Partitioning the vertices according to the blocks of A, we obtain an equitable partition

with quotient matrix

Q =

 1 2m

2` 1

 .

By Proposition 1.24, the eigenvalues 1± 2
√
`m of Q are also eigenvalues of A, and the

remaining eigenvalues are unchanged by subtracting multiples of J from some blocks

of A. Thus the remaining eigenvalues of A are the eigenvalues of

A′ =

 R2` O2`,2m

O2m,2` R2m


that are not eigenvalues of the corresponding quotient matrix

Q′ =

1 0

0 1

 .

The matrix A′ has eigenvalues 1`+m, and −1`+m, while Q′ has eigenvalues 12. Thus the

eigenvalues of A that are not eigenvalues of Q are 1`+m−2 and −1`+m, so B3(`,m) has

the spectrum stated in Theorem 2.15. Thus all graphs of Theorem 2.15 are in G.

It remains to show that every graph in G must be one of the stated graphs.

Recall that the case of bipartite graphs is already settled in [33]. For the rest of the

proof we assume that G ∈ G is a nonbipartite graph on n vertices and show that G

must be one of the nonbipartite graphs in Theorem 2.15. Let C be a clique in G with

maximum size. By Corollary 2.14, G contains no induced odd cycles of length five or

more. Indeed, an odd cycle of length 5 is H1
5 , and any cycle of length more than 6

induces H3
6 . Thus, since G is not bipartite, G contains a cycle of length 3 and we have

|C| ≥ 3. If there are more than one cliques of maximum size, we let C be the one for

which the number of outgoing edges is minimal. The following lemma, which allows us

to partition V (G) into a few manageable sets, is the key to the remainder of the proof.
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Lemma 2.19. The vertices in C can be partitioned into two nonempty subsets X and

Y such that the neighborhood of any vertex outside C intersects C in X, Y , or ∅.

Proof. If |C| = n − 1 the result is obvious. Indeed, let x be the vertex in V (G) \ C.

Then X = Γ(x), Y = C \X, and we are done. Thus we may assume 3 ≤ |C| ≤ n− 2.

Let u and v be distinct vertices outside C such that U = Γ(u) ∩ C and V = Γ(v) ∩ C

are not empty. We will show that either U = V , or U ∩ V = ∅ and U ∪ V = C, which

completes the proof. Note that U and V are proper subsets of C, since otherwise

C is not maximal. Suppose that U ∩ V 6= ∅ but U 6⊂ V . Then there exist vertices

x ∈ U ∩ V and y ∈ U \ V . Let w be a vertex in C \ U . Then depending on whether

u ∼ v, v ∼ w, both, or neither, the set {u, v, w, x, y} induces H4
5 , H5

5 , or H6
5 , which

contradicts Corollary 2.14. Thus if U and V are not disjoint, then U ⊂ V , and by the

same argument V ⊂ U (just choose y ∈ V \U and w ∈ C \V ). Thus U ∩V 6= ∅ implies

U = V . If U ∩ V = ∅, we will show that C = U ∪ V . Suppose not. That is, suppose

there exist vertices x ∈ U , y ∈ V , and z ∈ C \ (U ∪ V ). Then depending on whether

u ∼ v the set {u, v, x, y, z} induces H2
5 or H3

5 , which contradicts Corollary 2.14. Then

every vertex in C is either in U or V , so C = V ∪ U , which completes the proof.

Let ΓX = Γ(X) \ Y and ΓY = Γ(Y ) \X. Note that Lemma 2.19 implies that

every vertex in ΓX is adjacent to every vertex in X, and similarly for ΓY and Y . Let

Z be the set of vertices not adjacent to any vertex of C. Some of the sets ΓX, ΓY , and

Z may be empty, but clearly either ΓX or ΓY is nonempty, since otherwise G would

be disconnected or complete. We assume ΓX 6= ∅ and consider three cases: (1) both

ΓY and Z are empty, (2) only Z is empty, and (3) Z is nonempty. For convenience we

define a = |X|, b = |Y |, c = |C| = a+ b, g = |ΓX|, and h = |ΓY |.

Case 1: ΓY and Z are empty

Suppose b = 1. Then ΓX contains no edges. Indeed, if {u, u′} is an edge in ΓX,

then the set {u, u′} ∪X is a clique of size c + 1, which contradicts the fact that C is

maximal. Then the vertex y ∈ Y and any vertex in ΓX have the same set of neighbors

(the set X), which contradicts Lemma 2.13. Therefore b ≥ 2. Let y and y′ be distinct
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vertices in Y and let x ∈ X. Corollary 2.14 implies that each vertex in ΓX has at

most one neighbor in ΓX. Indeed, if u ∈ ΓX has two neighbors u′ and u′′ in ΓX,

then {u, u′, u′′, x, y, y′} induces H12
6 or {u, u′, u′′, x, y} induces graph H4

5 , depending on

whether or not u′ ∼ u′′. By Lemma 2.13, it cannot be the case that u ∈ ΓX has a

neighbor in ΓX and u′ ∈ ΓX does not, so either every vertex in ΓX has exactly one

neighbor in ΓX, or ΓX is an independent set.

If every vertex in ΓX has exactly one neighbor in ΓX, then ΓX induces a disjoint

union of edges and g ≥ 2 is even. Partitioning the vertices of G by V (G) = {X, Y,ΓX},

we find G has adjacency matrix

A =


Ja − Ia Ja,b Ja,g

Jb,a Jb − Ib Ob,g

Jg,a Og,b Rg

 .

The partition is clearly equitable with quotient matrix

Q =


a− 1 b g

a b− 1 0

a 0 1

 .

By Proposition 1.24, every eigenvalue of Q is an eigenvalue of A. Thus, if G ∈ G, at

least one eigenvalue of Q must be 1 or −1. Since det(Q + I) = −abg 6= 0, 1 is not an

eigenvalue of Q. Since det(Q− I) = −ag(b− 2), 1 is only an eigenvalue of Q if b = 2.

Thus b = 2 and we rewrite A as

A =

Ja − Ia Ja,2k

J2k,a R2k


with 2k = g + b = g + 2 ≥ 4, so k ≥ 2. Thus G = B2(a, k) with a ≥ 1 and k ≥ 2.

If ΓX has no edges and at least two vertices, then these two vertices have the

same neighbors, which contradicts Lemma 2.13. So g = 1 and, partitioning the vertices

of G as before, we find

A =


Ja − Ia Ja,b 1a

Jb,a J − Ib 0b

1>a 0>b 0

 .
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Again the partition is equitable, and the quotient matrix is

Q =


a− 1 b 1

a b− 1 0

a 0 0

 .

As before, Proposition 1.24 implies that at least one eigenvalue of Q must be 1 or

−1. We have det(Q + I) = −ab 6= 0, so −1 is not an eigenvalue of Q. We have

det(Q−I) = 2a−(a−2)(b−2), so Q has an eigenvalue 1 if and only if b = 2a/(a−2)+2

is a positive integer for some positive integer a. The only positive integers a for which

a− 2 divides 2a are 3, 4, and 6, so Q has an eigenvalue 1 if and only if (a, b) = (6, 5),

(4, 6), or (3, 8). Thus G = B5(3, 8), B6(3, 5), or B6(4, 4).

Case 2: ΓX and ΓY are nonempty, and Z is empty

We first claim that a ≤ 2 or b ≤ 2. Suppose not, that is, suppose a ≥ b ≥ 3.

Then Corollary 2.14 implies that ΓX is an independent set. Indeed, if {u, u′} is an

edge in ΓX, y, y′, y′′ are three distinct vertices in Y , and x ∈ X, then {u, u′, x, y, y′, y′′}

induces H12
6 . So ΓX contains no edges, and by the same argument ΓY has no edges.

Then Corollary 2.9 implies that each vertex in ΓX has at least h − 1 neighbors in

ΓY . Indeed, if u ∈ ΓX is not adjacent to either of v, v′ ∈ ΓY , then for x, x′ ∈ X and

y, y′ ∈ Y we find that the set {u, v, v′, x, x′, y, y′} induces H2
7 . Similarly, every vertex in

ΓY has at least g−1 neighbors in ΓX. In fact, Lemma 2.13 implies that, unless g = 1,

every vertex in ΓX has exactly h−1 neighbors in ΓY , and similarly unless h = 1 every

vertex in ΓY has exactly g − 1 neighbors in ΓX. Indeed, if some u ∈ ΓX is adjacent

to every vertex in ΓY and u′ is another vertex in ΓX, then we have Γ(u′) ⊆ Γ(u) and

deg(u′) ≥ deg(u)− 1, which contradicts Lemma 2.13. The same argument shows that

a vertex in ΓY cannot be adjacent to every vertex of ΓX unless h = 1. Lemma 2.13

also implies that no two vertices in ΓX have the same h − 1 neighbors in ΓY , and

similarly for two vertices in ΓY .

This implies that g = h and the subgraph induced by ΓX ∪ ΓY is either K2

(only if g = h = 1) or a complete bipartite graph with the edges of a perfect matching
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deleted. In the former case, partitioning the vertices of G by V (G) = {X, Y,ΓX,ΓY }

we find that G has adjacency matrix

A =


Ja − Ia Ja,b 1a 0a

Jb,a Jb − Ib 0b 1b

1>a 0>b 0 1

0>a 1>b 1 0

 .

Clearly the partition is equitable with quotient matrix

Q =


a− 1 b 1 0

a b− 1 0 1

a 0 0 1

0 b 1 0

 .

We see that Q has at least 3 eigenvalues different from ±1, which contradicts Propo-

sition 1.24. Indeed, since det(Q + I) = −3ab 6= 0, −1 cannot be an eigenvalue of Q.

Since det(Q− I) = a(b− 2)− 2b, a > 2, and b > 2, we see that Q has an eigenvalue 1

if and only if a = 2b/(b − 2) is an integer greater than 2 for some integer b > 2. The

only b > 2 for which b − 2 divides 2b are 3, 4, and 6, so Q has an eigenvalue 1 if and

only if (a, b) = (6, 3), (4, 4), or (3, 6). However, in each case it is straightforward to

verify that none of the other 3 eigenvalues of Q are ±1. Thus this case is not possible

for G ∈ G.

In the latter case, using the same partition we find that G has adjacency matrix

A =


Ja − Ia Ja,b Ja,m Oa,m

Jb,a Jb − Ib Ob,m Jb,m

Jm,a Om,b Om J − Im
Om,a Jm,b Jm − Im Om

 ,

where m = g = h. Again the partition is equitable, and we see that the quotient
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matrix is

Q =


a− 1 b m 0

a b− 1 0 m

a 0 0 m− 1

0 b m− 1 0

 .

We again find that Q has at least 3 eigenvalues different from ±1, which contradicts

Proposition 1.24. Indeed, since det(Q+ I) = −abm2 6= 0, −1 cannot be an eigenvalue

of Q. Since det(Q − I) = m(2(a + b − 4) − (m − 4)(a − 2)(b − 2)), m ≥ 1, a > 2

and b > 2 we see that Q has an eigenvalue 1 if and only if m = 0 (a contradiction) or

m = 4+2(a+b−4)/((a−2)(b−2)) is a positive for some integers a > 2 and b > 2. The

only integer pairs (k, `) with k, ` > 0 such that k` divides 2(k + `) are (k, `) = (1, 1),

(1, 2), (2, 1), (2, 2), (3, 6), (4, 4), and (6, 3). Letting (a, b) = (k+2, `+2), we find that the

only integer triples (a, b,m) with a > 2, b > 2, and m = 4+2(a+b−4)/((a−2)(b−2)),

so that Q has an eigenvalue 1, are (3, 3, 8), (3, 4, 7), (4, 3, 7), (4, 4, 6), (5, 8, 5), (6, 6, 5),

and (8, 5, 5). However, in each case it is straightforward to verify that none of the other

3 eigenvalues of Q are ±1. Thus this case is also not possible for G ∈ G, and we have

proved that a ≤ 2 or b ≤ 2.

Next, we claim that actually a = b = 2. First, assume a > b = 1. Then ΓX

contains no edges, because otherwise C would not be maximal. Indeed, if {u, u′} is an

edge in ΓX, then the set {u, u′} ∪X is a clique of size c + 1. We also find that each

u ∈ ΓX is adjacent to every vertex in ΓY . Otherwise, the set X ∪ {u} is a clique of

size c with fewer outgoing edges than C (the vertex in Y is adjacent to every vertex in

ΓY , while u is not), a contradiction. However, if u is adjacent to every vertex of ΓY

then u and the vertex in Y have the same neighbors, which contradicts Lemma 2.13.

Thus it is not the case that a > b = 1 (nor, similarly, b > a = 1).

Suppose a > b = 2. Since in this case a ≥ 3, Corollary 2.14 implies that ΓY

contains no edges. Indeed, if {v, v′} is an edge in ΓY , x, x′, x′′ ∈ X, and y ∈ Y , then

the set {v, v′, x, x′, x′′, y} induces H12
6 . Corollary 2.14 also implies that no vertex in

ΓX has more than one neighbor in ΓX. Indeed, if x ∈ X, y, y′ ∈ Y , and u, u′, u′′ ∈ ΓX
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with u adjacent to both u′ and u′′, then depending on whether u′ ∼ u′′ or not, the set

{u, u′, u′′, x, y, y′} induces H12
6 or the set {u, u′, u′′, x, y} induces H4

5 .

By the same argument as the one in the beginning of Case 2, we find that

every vertex in ΓX is adjacent to at least h − 1 vertices in ΓY , otherwise G contains

an induced subgraph H2
7 . Then Lemma 2.13 implies that every vertex in ΓX has a

neighbor in ΓX. Indeed, if u ∈ ΓX has no neighbors in ΓX, then every neighbor of u

is a neighbor of y ∈ Y , but deg(y) ≤ deg(u) + 2, a contradiction. Thus every vertex

in ΓX has exactly one neighbor in ΓX, so ΓX induces a disjoint union of edges. This

implies that every vertex in ΓX is adjacent to every vertex in ΓY . Indeed, if u ∈ ΓX is

not adjacent to every vertex in ΓY and {u, u′} is an edge in ΓX, then X ∪ {u, u′} is a

clique of size c with fewer outgoing edges than C (since the vertices in Y are adjacent

to every vertex in ΓY , but u is not), a contradiction. Then Lemma 2.13 implies h = 1,

since two vertices in ΓY have precisely the same neighbors. Then, partitioning the

vertices of G by V (G) = {X, Y ∪ ΓX,ΓY }, we have

A =


Ja − Ia Ja,2m 0a

J2m,a R2m 12m

0>a 1>2m 0

 ,

where 2m = b+ g = 2 + g. The partition is clearly equitable with quotient matrix

Q =


a− 1 2m 0

a 1 1

0 2m 0

 .

Since det(Q− I) = 4m 6= 0, 1 is not an eigenvalue of Q. Since det(Q+ I) = −2a(2m−

1) 6= 0, −1 is not an eigenvalue of Q. Thus Q has three eigenvalues not equal to ±1.

By Proposition 1.24, A also has these three eigenvalues, a contradiction. Thus it is

not the case that a > b = 2, (nor, similarly, b > a = 2). Thus we have proved that

a = b = 2.

Let X = {x, x′} and Y = {y, y′}. The argument above that each vertex in

ΓX has at most one neighbor in ΓX still holds in this case. We again find that each
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vertex in ΓX is adjacent to at least h − 1 vertices in ΓY . Indeed, if u ∈ ΓX and

both v, v′ ∈ ΓY are not adjacent to u, then depending on whether or not v ∼ v′ we

have {u, v, v′, x, x′, y} induces H11
6 or {u, v, v′, x, x′, y, y′} induces H2

7 . Then, as before,

Lemma 2.13 implies that every vertex in ΓX has a neighbor in ΓX, since otherwise

every neighbor of a vertex u ∈ ΓX with no neighbors in ΓX is a neighbor of y while

deg(y) ≤ deg(u) + 2. Thus, again, every vertex in ΓX has exactly one vertex in ΓX,

so ΓX induces a disjoint union of edges. Also as before, every vertex of ΓX must be

adjacent to every vertex of ΓY , since otherwise we find a clique of size c with fewer

outgoing edges than C. By the same arguments as above (but swapping X with Y and

ΓX with ΓY ), we see that ΓY is also a disjoint union of edges. Thus, partitioning the

vertices of G by V (G) = {Y ∪ ΓX,X ∪ ΓY }, we find that A is as follows:

A =

 R2` J2`,2m

J2m,2` R2m

 ,

where 2` = g+ 2 and 2m = h+ 2, so `,m ≥ 2. Without loss of generality ` ≥ m, so in

this case G = B3(`,m) with ` ≥ m ≥ 2.

Case 3: Z is not empty.

Since G is connected there exists an edge from a vertex in Z to a vertex in

ΓX ∪ ΓY . Without loss of generality we assume there is a vertex u ∈ ΓX with a

neighbor z ∈ Z. Then Corollary 2.14 implies that b = 1. Suppose not, that is, suppose

there are two vertices y, y′ ∈ Y , let x ∈ X, and let w be a neighbor of z different from

u. If w ∈ ΓY , then the set {u,w, x, y, z} induces H1
5 or H3

5 , depending on whether

or not u ∼ w. If w ∈ ΓX, then {u,w, x, y, y′, z} induces H8
6 or H11

6 , depending on

whether or not u ∼ w. If w ∈ Z, then {u,w, x, y, y′, z} induces H5
6 or H9

6 , depending

on whether or not u ∼ w. Thus b = 1.

Let Y ′ = Y ∪ ΓX and Z ′ = ΓY ∪ Z. Let m = |Y ′| = g + b = g + 1 ≥ 2. We see

that Y ′ is an independent set, since every vertex in Y ′ is adjacent to every vertex in

X (so X and an edge in Y ′ would induce a clique of size c+ 1).
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Figure 2.5: A subgraph induced by G if a vertex in Z ′ has two neighbors in Z ′.

Corollary 2.14 implies that each vertex in Z ′ has at most one neighbor in Z ′.

Indeed, suppose a vertex z ∈ Z ′ has two neighbors z′, z′′ ∈ Z ′ and let w,w′, w′′ ∈ C.

Note that at most one of most one vertex in C has neighbors among z, z′, z′′ ∈ Z ′,

since b = 1 and Z ′ = ΓY ∪Z. Without loss of generality we assume w′ and w′′ have no

neighbors among z, z′, z′′. Thus the subgraph induced by B = {w,w′, w′′, z, z′, z′′} is

the graph in Figure 2.5, where the solid edges must be present, the dashed edges may

or not be present, and no other edges may be present. If no dashed edges are present,

then B induces H2
6 . Suppose one dashed edge is present. If it is {w, z′} or {w, z′′},

then B induces H5
6 . If it is {w, z}, then B induces H7

6 . If it is {z′, z′′}, then B induces

H4
6 . Suppose two dashed edges are present. If they are {w, z′} and {w, z′′}, then B

induces H8
6 . If they are {w, z} and one of {w, z′} or {w, z′′}, then B \{w′} induces H2

5 .

If they are {z′, z′′} and one of {w, z}, {w, z′}, or {w, z′′}, then B induces H9
6 . Suppose

three dashed edges are present. If they are {w, z}, {w, z′}, and {w, z′′} , then B \ {w′}

induces H4
5 . If they are {w, z′}, {w, z′′}, and {z′, z′′}, then B induces H11

6 . If they are

{w, z}, {z′, z′′}, and one of {w, z′} or {w, z′′}, then again B induces H11
6 . If all four

dashed edges are present, then B induces H12
6 . Thus in all cases a contradiction arises,

so each vertex in Z ′ has at most one neighbor in Z ′, and since all vertices have degree

at least two, each vertex in Z ′ has a neighbor in Y ′. We partition Z ′ by Z ′ = Z1 ∪ Z2,

where the vertices in Z2 are adjacent to every vertex in Y ′, while the vertices in Z1 are

not.

Next we will show that every vertex in Y ′ has the same degree, and for any pair

of vertices in Y ′, each has exactly one neighbor that is not a neighbor of the other.

Let x ∈ X and y, y′ ∈ Y ′, and without loss of generality assume deg(y) ≤ deg(y′). We
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consider the 3× 3 principal submatrix S of A2 − I corresponding to x, y, y′. We have

S =


deg(x)− 1 a− 1 a− 1

a− 1 deg(y)− 1 deg(y, y′)

a− 1 deg(y, y′) deg(y′)− 1

 ,

since x has a − 1 neighbors in common with each of y, y′ (namely, the other a − 1

vertices in X). We have S = (a− 1)J + S ′, where

S ′ =

deg(x)− a 0>2

02 T

 and T =

 deg(y)− a deg(y, y′)− a+ 1

deg(y, y′)− a+ 1 deg(y′)− a

 .

Note that deg(x) > a and deg(y′) ≥ deg(y) ≥ deg(y, y′) ≥ a. Corollary 2.14 implies

that y′ has at most two neighbors in Z ′ that are not neighbors of y. Indeed, if y′ has two

adjacent neighbors z, z′ that are not neighbors of y, and x′ ∈ X, then {x, x′, y, y′, z, z′}

induces H11
6 . Otherwise, if y′ has three neighbors z, z′, z′′ that are not neighbors of y,

and x′ ∈ X, then {z, z′, z′′} is an independent set and {x, x′, y, y′, z, z′, z′′} induces H1
7 .

Thus we have

deg(y, y′) ≤ deg(y) ≤ deg(y′) ≤ deg(y, y′) + 2 ≤ deg(y) + 2. (2.1)

We see that if T is positive definite, then so are S ′ (because deg(x) − a > 0) and S

(because (a−1)J is positive semi-definite), which contradicts rankS ≤ rank(A2−I) =

2. Therefore detT = (deg(y)− a)(deg(y′)− a)− (deg(y, y′)− a+ 1)2 ≤ 0. By (2.1), we

have deg(y), deg(y′) ∈ {deg(y, y′), deg(y, y′) + 1, deg(y, y′) + 2} and deg(y) ≤ deg(y′).

If deg(y) = deg(y, y′) then every neighbor of y is a neighbor of y′ and Lemma 2.13

implies deg(y′) ≥ deg(y) + 3, which contradicts (2.1). If deg(y) = deg(y, y′) + 2, then

also deg(y′) = deg(y, y′) + 2 and detT = 3 + 2(deg(y, y′)− a) > 0, a contradiction. If

deg(y) = deg(y, y′)+1 and deg(y′) = deg(y, y′)+2, then detT = 1+deg(y, y′)−a > 0,

a contradiction. Thus we must have deg(y) = deg(y′) = deg(y, y′) + 1 (in this case

detT = 0), so every vertex in Y ′ has the same degree, and for any pair of vertices in

Y ′, each has exactly one neighbor that is not a neighbor of the other. Further, since Y ′

is an independent set and every vertex in Y ′ is adjacent to every vertex in X and Z2,
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every vertex in Y ′ has the same number of neighbors in Z1 and for any pair of vertices

in Y ′, each has exactly one neighbor in Z1 that is not a neighbor of the other. The

only possibilities are that each vertex in Y ′ has exactly one neighbor in Z1 (a different

neighbor for each vertex in Y ′) or each vertex in Y ′ has exactly one non-neighbor in

Z1 (a different non-neighbor for each vertex in Y ′).

To see that this is true, suppose that the vertices in Y ′ have at least two neigh-

bors and at least two non-neighbors in Z1. Let y, y′ ∈ Y ′. Then each of y, y′ has a

neighbor in Z1 that the other does not. Let z, z′ ∈ Z1 such that z ∼ y, z′ ∼ y′, z 6∼ y′,

and z′ 6∼ y. Since deg(y) = deg(y′) = deg(y, y′) + 1, the rest of the neighbors of y are

neighbors of y′, and vice versa. Now, each of y and y′ must have at least one more

neighbor and one more non-neighbor, and they must have them in common, so there

exist v, v′ ∈ Z1 such that y, y′ ∼ v and y, y′ 6∼ v′. Since v ∈ Z1, there must exist some

u ∈ Y ′ such that u 6∼ v. Then u ∼ z, since otherwise y has two neighbors in Z1 which

u does not. Similarly, we must have u ∼ z′. We have u 6∼ v′, since otherwise u has two

neighbors that y does not. Since v′ ∈ Z1, there is a vertex u′ ∈ Y ′ such that u′ ∼ v′.

Since none of u, y, y′ are adjacent to v′, u′ cannot have any other neighbor that is not a

neighbor of each of u, y, y′. Thus, since u 6∼ v, y 6∼ z′, and y′ 6∼ z, we have u′ 6∼ z, z′, v.

Then each of u, y, y′ has two neighbors which u′ does not, a contradiction. We have

proved that either each vertex in Y ′ has exactly one neighbor in Z1, or each vertex in

Y ′ has exactly one non-neighbor in Z1. In the former case, we find that each z ∈ Z1

also has exactly one neighbor in Y ′ (clearly a different neighbor for each vertex in Z1,

since a vertex in Y ′ has only one neighbor in Z1), since otherwise two neighbors of z

which are in Y ′ have the same neighborhood in Z1, contradiction. Thus in this case

the principal submatrix of A corresponding to Y ′ ∪ Z1 isOm Im

Im M

 ,

where M is the adjacency matrix of the subgraph of G induced by Z1. In the latter

case, the same argument (replacing the word neighbor with non-neighbor) shows that

each vertex in Z1 also has exactly one non-neighbor in Y ′ (again, clearly a different
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non-neighbor for each vertex in Z1). Thus in this case the principal submatrix of A

corresponding to Y ′ ∪ Z1 is  Om Jm − Im
Jm − Im M

 ,

where M is defined as before. In either case we clearly have |Z1| = |Y ′| = m ≥ 2.

Next we find that Corollary 2.14 implies that adjacent vertices in Z ′ have the

same neighbors in Y ′. Indeed, suppose {z, z′} is an edge in Z ′, and suppose there is a

vertex y ∈ Y ′ adjacent to z but not to z′. Let x ∈ X, and let y′ ∈ Y ′ be a neighbor of z′

(which must exist, since every vertex in Z ′ has a neighbor in Y ′). Then {x, y′, y, z, z′}

induces H1
5 or H3

5 , depending on whether or not y′ ∼ z. So z and z′ have the same

set of neighbors in Y ′, and hence z, z′ ∈ Z2. This implies that vertices in Z1 have no

neighbors in Z ′, so by Lemma 2.12 each vertex in Z1 has at least two neighbors in Y ′

and the principal submatrix of A corresponding to Y ′ ∪ Z1 is Om Jm − Im
Jm − Im Om

 .

Finally, Lemma 2.13 implies that Z2 is empty. Indeed, if z ∈ Z1 and z′ ∈

Z2, then every neighbor of z is also a neighbor of z′, but deg(z′) ≤ deg(z) + 2, a

contradiction. Thus such z and z′ cannot both exist. Since Z1 is not empty, this implies

Z2 is empty, and we find that partitioning the vertices of G by V (G) = {X, Y ′, Z ′} we

have

A =


Ja − Ia Ja,m Oa,m

Jm,a Om Jm − Im
Om,a Jm − Im Om

 .

Clearly the partition is equitable with quotient matrix

Q =


a− 1 m 0

a 0 m− 1

0 m− 1 0

 .
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Since det(Q+ I) = −am(m−1) 6= 0, −1 is not an eigenvalue of Q. Since det(Q− I) =

−m(a(m− 3)− 2(m− 2)), Q has eigenvalue 1 if and only if a = 2(m− 2)/(m− 3) is an

integer greater than 1 (a > 1 since b = 1) for some integer m ≥ 2. The only integers

m ≥ 2 such that m − 3 divides 2(m − 2) are 4 and 5, so Q has all three eigenvalues

not equal to ±1 unless (a,m) equals (4, 4) or (3, 5). By Proposition 1.24, A also has

three eigenvalues not equal to ±1 unless (a,m) equals (4, 4) or (3, 5). Thus in this case

G = B6(3, 5) or B6(4, 4).
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Chapter 3

SIMPLICIAL ROOK GRAPHS

3.1 Rook Graphs and Simplicial Rook Graphs

For any chess piece, one can define a graph whose vertices are the tiles of a

chess board, with two vertices adjacent if and only if the given chess piece can travel

from one to the other by a legal chess move. (see, for example, [96]). Elkies [36] noted

that the rook is the only chess piece whose graph formed in this way is regular. The

rook graph is the graph defined above such that the chess piece used is the rook. This

graph can be extended to higher dimensions and a different number of tiles in each

direction. To generalize, the rook graph R(m,n) is the graph whose vertices are the

tiles in an m dimensional chessboard with n tiles in each direction (so R(2, 8) is the

original rook graph), with the same adjacency relation. Seen another way, the graph

R(m,n) is the graph whose vertices are m-tuples of nonnegative integers at most n,

with two vertices adjacent if and only if they differ in only one coordinate. We observe

that R(m,n) is isomorphic to the Hamming graph H(m,n) (indeed, the chess board

tile locations can be given as m-tuples, and a rook can travel between two tiles precisely

when they differ in exactly one coordinate). Thus the rook graph R(m,n) is regular

with valency m(n−1), when m = 2 the rook graph is strongly regular with parameters

(n2, 2(n−1), n−2, 2), and for m > 2 the rook graph is distance-regular with intersection

array {m(n−1), (m−1)(n−1), . . . , (m−i)(n−1), . . . , n−1; 1, 2, . . . ,m−1,m}, because

the Hamming graphs have these properties (see Definition 1.18, [14, Section 9.2] and

[17, Section 12.4.1]). In answer to a question on Mathoverflow, Godsil [43] showed that

the independence number of the Hamming graph H(m,n) (and hence also the rook

graph R(m,n)) is nm−1.
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Similarly, a simplicial rook graph is a graph whose vertices are the tiles of a

simplicial chessboard, where again tiles are adjacent when a rook can travel from one

to the other by a legal move. Of course, we must define what we mean by a simplicial

chess board, and what a rook’s legal move on that board looks like. In the space Rm,

the standard basis vectors e1, . . . , em are the vectors such that ei equals 1 in the i-th

coordinate and 0 elsewhere. The standard simplex in Rm is the convex hull of the

standard basis vectors in Rm, and the n-th dilate of standard simplex is the convex

hull of ne1, . . . , nem. Then the simplicial rook graph SR(m,n) is the graph whose

vertices are the integer lattice points in the n-th dilate of the standard simplex in Rm

(see Figure 3.1) with two vertices adjacent if and only if their difference is a multiple

Figure 3.1: The integer lattice points in the n-th dilate of the standard simplex in R3,
n = 1, 2.

of ei − ej for some pair i, j. Seen another way, SR(m,n) is the graph with vertex

set V (m,n) = {(x1, x2, . . . , xm) | 0 ≤ xi ≤ n,
∑m

i=1 xi = n}, the set of m-tuples

of nonnegative integers whose coordinates sum to n (see Figure 3.2), such that two

vertices are adjacent if and only if they differ in exactly two coordinates.

The graph SR(1, n) is clearly just the isolated vertex ne1. The graph SR(2, n)

is isomorphic to Kn+1, since every pair of vertices in V (2, n) = {(x1, x2) | 0 ≤ xi ≤

n, x1 + x2 = n} must differ in exactly two coordinates. Similarly, the graph SR(m, 1)
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Figure 3.2: Lattice points in the n-th dilate of the standard simplex in R3 viewed as
3-tuples summing to n, n = 2, 3.

is isomorphic to Km, since every pair of vertices ei and ej in V (m, 1) = {ei | 1 ≤ i ≤ n}

differ by ei − ej. The graph SR(m, 2) is isomorphic to the Johnson graph J(m+ 1, 2)

(or equivalently to the triangular graph T (m + 1), the line graph of Km+1) under the

following bijection: for 1 ≤ i < j ≤ m, the vertices ei + ej ∈ V (m, 2) correspond the

the vertices {i, j} ∈ V (J(m + 1, 2)), while for 1 ≤ i ≤ m the vertices 2ei ∈ V (m, 2)

correspond to the vertices {i,m+ 1} ∈ V (J(m + 1, 2)). It is straightforward to verify

that this bijection preserves adjacency, so the graphs are isomorphic. As we have seen,

for m or n at most 2 the simplicial rook graphs are familiar graphs that are strongly

regular, distance-regular, or line graphs. However, as noted by Martin and Wagner

[68], for m,n ≥ 3 simplicial rook graphs are not strongly regular, distance-regular, or

line graphs. The simplicial rook graphs SR(3, 4) and SR(4, 3) are pictured in Figure

3.3.

The simplicial rook graphs were first introduced by Martin and Wagner [68].

Those authors showed that SR(m,n) is a regular graph of valency n(m − 1) and

has
(
n+m−1
m−1

)
vertices. To see the latter, the definition V (m,n) = {(x1, x2, . . . , xm) |

0 ≤ xi ≤ n,
∑m

i=1 xi = n} is helpful: the vertices are weak compositions of n into

m parts, so there are
(
n+m−1
m−1

)
of them. To see the former, note that for a vertex

58



v
v
v
v
v

v
v
v
v

v
v
v

v
v
vTTT

T
T
T
T
T
T
T
T
T
T�

�
�
�
�
�
�
�
�
�
�
�
�

T
T
T
T�
�
�
�
�
�
�
�
�
�

T
T
T
T
T
T
T�
�
�
�
�
�
�

T
T
T
T
T
T
T
T
T
T�
�
�
�

Figure 3.3: The Simplicial Rook graphs SR(3, 4) and SR(4, 3).
In this figure, a line through multiple vertices indicates that the vertices on that line

are all pairwise adjacent.

x = (x1, x2, . . . , xm) ∈ V (m,n) there are xi + xj vertices that differ from x in only the

coordinates i, j for any pair i, j, so x has valency

∑
1≤i<j≤m

(xi + xj) = (m− 1)
m∑
i=1

xi = n(m− 1).

We denote by Vi the set of vertices in V (m,n) with exactly i nonzero coordinates.

If x ∼ y and the two coordinates where x and y differ are i and j, then we say the edge

{x, y} is an (i, j)-edge, or that the edge is in the i, j direction, and we say that x and

y are (i, j)-neighbors. We denote by A(m,n) the adjacency matrix of SR(m,n).

Portions of the remainder of this chapter represent joint work with Andries

Brouwer, Sebastian Cioabă, and Willem Haemers on the paper “Notes on simplicial

rook graphs”, submitted to the Journal of Algebraic Combinatorics [13]. In particu-

lar, Haemers gave an outline of the proof of Proposition 3.11 and gave the idea for

Propositions 3.17 and 3.18 without proof. Brouwer gave brief (but complete) proofs to

Propositions 3.2, 3.5, and 3.24, and Theorem 3.13, to which I have added many details.

Brouwer also gave the alternate proof to Proposition 3.11. The proof of Proposition

3.22 is completely due to Brouwer, with very few details added. The conjectured spec-

tra of SR(m, 5) and SR(4, n) are also due to Brouwer. The remaining results are

mine.
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3.2 Independence Number

We denote by α(m,n) the independence number of SR(m,n). The independence

number α(m,n) is the number of pairwise non-attacking rooks that can be placed on a

simplicial chessboard of dimension m−1 with n+1 tiles in each direction. Martin asked

for the value of α(3, n) on Mathoverflow. An interesting discussion followed, concluding

with the proof of the following proposition by Elkies [37]. We remark that after Elkies

et al. proved Proposition 3.1 on Mathoverflow, it was pointed out that the value of

α(3, n) had already been found by Nivasch and Lev [75] using a combinatorial method

and, independently, Blackburn, Paterson, and Stinson [10] using linear programming.

However, the proof in [37] is less complicated and independent of the others.

Proposition 3.1. The independence number of SR(3, n) is α(3, n) =
⌊

2n
3

+ 1
⌋
.

Proof. We begin by noting that in any set of vertices in SR(3, n), one of the coordinates

must have an average value of no more than n/3. Indeed, the average sum of coordinates

is always exactly n, so not all three coordinates can have an average value of more than

n/3. In an independent set in SR(3, n), no two vertices can agree in any coordinate,

since such vertices would differ in the other two coordinates and thus be adjacent.

Since the largest number of distinct nonnegative integers whose average is at most n/3

is
⌊

2n
3

+ 1
⌋

(namely, the integers 0, 1, . . . , b2n/3c), we see that α(3, n) ≤
⌊

2n
3

+ 1
⌋
. To

see that equality can always be achieved, we first suppose n = 3k and consider the set

S = {(2k− 2i, k + i, i) | i = 0, 1, . . . , k} ∪ {(2k− 2i− 1, i, k + 1 + i) | i = 0, . . . , k − 1}.

Clearly S is an independent set. Indeed, no two vertices in S are equal in any coordi-

nate, since each coordinate equals each of the numbers 0, 1, . . . , 2k exactly once. Since

n = 3k, S is an independent set of size 2k+1 = 2n/3+1 =
⌊

2n
3

+ 1
⌋
. For n = 3k+1, the

set S ′ obtained by adding 1 to the first coordinate of every vertex in S is still an indepen-

dent set of size 2k+1, but in this case 2k+1 = b2k + 5/3c =
⌊

2(3k+1)
3

+ 1
⌋

=
⌊

2n
3

+ 1
⌋
.

For n = 3k− 1, the set S ′′ obtained by subtracting 1 from the first coordinate of every

vertex in S (and removing (−1, 2k, k), which is not a vertex) is an independent set of
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size 2k = b2k + 1/3c =
⌊

2(3k−1)
3

+ 1
⌋

=
⌊

2n
3

+ 1
⌋
. Thus for any value of n we have

α(3, n) =
⌊

2n
3

+ 1
⌋
.

See Figure 3.4 for maximal independent sets in SR(3, n) when n = 8, 9, 10.
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Figure 3.4: Maximal independent sets in SR(3, 8), SR(3, 9), and SR(3, 10).

Martin and Wagner [68] asked the value of α(m,n) for other values of m and n.

We give the answer when n = 3.

Proposition 3.2. The independence number of the graph SR(m, 3) is

α(m, 3) =



1
6
(m+ 1)(m+ 2) for m ≡ ±1 (mod 6),

1
6
m(m+ 3) for m ≡ 3 (mod 6),

1
6
m(m+ 2) for m ≡ 0, 4 (mod 6),

1
6
(m2 + 2m− 2) for m ≡ 2 (mod 6).

Proof. We first prove that

α(m, 3) ≤ m+

⌊
1

3

(
m

⌊
1

2
(m− 3)

⌋
+ 1

)⌋
Let S be a maximal independent set in SR(m, 3). To give an upper bound on the size

of S, we count edges in a graph K ∼= Km (with vertices labeled 1, 2, . . . ,m) covered

by vertices of S in the following way: A vertex of the form 3ei (a singleton) covers

no edges. A vertex of the form 2ei + ej (a pair) covers the edge {i, j}. A vertex of

the form ei + ej + ek (a triple) covers the edges {i, j} and {i, k} and {j, k}. We see

that if any edge is covered twice, then the two corresponding vertices are adjacent.
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Thus the vertices in S cover each edge in K at most once. We say the singleton 3ei is

located at the vertex i in K and the pair 2ei + ej is located at the vertex i in K and

touches the vertex j in K (a triple ei + ej + ek is not located at any vertex in K, but

touches i, j, and k). We note that S contains at most m singletons plus pairs. Indeed,

for each coordinate i, S contains at most one vertex located at i in K (since any two

vertices located at i are adjacent). Furthermore, there can be at most one singleton

in S (since all singletons are adjacent). Since a triple covers 3 edges, a pair covers

only 1, and a singleton covers 0, we find an upper bound by assuming that there are 1

singleton and m− 1 pairs in S (as we have seen, each is located at a different vertex,

and similarly each pair touches a different vertex and does not touch the vertex at

which the singleton is located). The vertex in K at which the singleton is located still

has m − 1 edges uncovered, while the m − 1 vertices at which pairs are located each

have m−3 edges uncovered (for each i, one edge is covered by the pair located at i and

one edge is covered by the pair that touches i). A triple that touches i covers two edges

incident with i (namely, the triple ei + ej + ek touches i and covers the edges {i, j}

and {i, k} incident with i), so at most 1
2
(m− 3) triples can touch each vertex at which

a pair is located, while at most 1
2
(m− 1) = 1

2
(m− 3) + 1 triples can touch the vertex

at which the singleton is located. Since each triple touches three vertices, there can

be at most 1
3
(m
⌊

1
2
(m− 3)

⌋
+ 1) triples in S. Thus |S| ≤ m+

⌊
1
3

(
m
⌊

1
2
(m− 3)

⌋
+ 1
)⌋

,

which proves that the given upper bound on α(m,n) holds.

Separating into cases on the value of m (mod 6), it is straightforward to verify

that this upper bound is identical to the claimed value of α(m,n), so to complete the

proof we need only show that we can always construct an independent set which meets

the bound. We will construct the independent sets using Steiner triple systems and

Kirkman triple systems.

If m ≡ ±1 (mod 6), consider a Steiner triple system STS(m + 2), which exists

by Proposition 1.2. This system contains
(
m+2

2

)
/3 = 1

6
(m+2)(m+1) triples containing

the integers 1, 2, . . . ,m+ 1,m+ 2. By definition of a Steiner triple system, one of these

triples contains both m+1 and m+2, say {x,m+1,m+2} for some x ∈ {1, 2, . . . ,m}.
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Furthermore, since each pair {y,m+1} and {y,m+2} must be contained in some triple

for each y ∈ {1, 2, . . . ,m} \ {x}, and since each triple containing exactly one of m+ 1

and m + 2 contains two such pairs, there are (m − 1)/2 triples containing m + 1 but

not m+2, and (m−1)/2 triples containing m+2 but not m+1. Removing each triple

containing at least one of m+1 or m+2, we obtain a system S of 1
6
(m+2)(m+1)−m

triples containing only the integers 1, 2, . . . ,m. For each triple {i, j, k} ∈ S, we include

the triple ei + ej + ek in S, and consider the edges covered in K as above. For each

y ∈ {1, 2, . . . ,m} \ {x}, y was in two of the removed triples, so there are two edges in

K incident with y which are not covered (the edges {y, z} and {y, z′} are not covered

if {y, z,m + 1} and {y, z′,m + 2} were removed from the STS(m + 2)). Every other

edge is covered, since every other pair in {1, 2, . . . ,m} is in a triple in S. Thus the

graph induced by the uncovered edges is regular of valency 2, and is therefore a union

of cycles. We orient the cycles arbitrarily, and for each oriented edge (i, j) in a cycle,

we add the pair 2ei + ej to S. By this construction, no edges are covered twice and

no two pairs are located at the same vertex in K. Finally, we add ex to S. No other

vertex in S is located at x (and no pair touches x), so S is still an independent set. S

contains
(

1
6
(m+ 2)(m+ 1)−m

)
+ (m− 1) + 1 = 1

6
(m+ 2)(m+ 1) vertices, so we are

done in this case.

If m ≡ 0, 4 (mod 6), let m′ = m + 1 so that m′ ≡ ±1 (mod 6). Consider

the independent set S in SR(m′, 3) obtained as above from a Steiner triple system

STS(m′ + 2) containing a triple {x,m′ + 1,m′ + 2}. Note |S| = 1
6
(m′ + 2)(m′ + 1).

Then each coordinate y ∈ {1, . . . ,m′} \ {x} is nonzero in (m′ + 1)/2 vertices in S.

Indeed, before the triples containing m′ + 1 and m′ + 2 are removed, every element

in {1, 2, . . . ,m′ + 2} is contained in (m′ + 1)/2 triples in STS(m′ + 2). Each y is

contained in two of the removed triples, so (m′ + 1)/2 − 2 triples in S are nonzero at

the coordinate y. Finally, the two pairs 2ey +ez and 2ez′+ey (added when considering

the oriented cycles) are nonzero at y. Thus each coordinate in {1, . . . ,m′} \ {x} is

nonzero for precisely (m′ + 1)/2 vertices in S. Choose a coordinate, delete it, and

remove any vertices that did not equal 0 in that coordinate. The resulting set S ′

63



contains 1
6
(m′+2)(m′+1)− (m′+1)/2 vertices and is an independent set in SR(m, 3).

We have |S ′| = 1
6
(m′ + 2)(m′ + 1)− (m′ + 1)/2 = 1

6
(m′ − 1)(m′ + 1) = 1

6
m(m+ 2), so

we are done in this case.

If m ≡ 3 (mod 6), consider a KTS(m), which exists by Proposition 1.2 and

contains
(
m
2

)
/3 = 1

6
m(m − 1) triples. Let S be the set of all of the triples in the

KTS(m) except those from a single parallel class. For each triple {i, j, k} ∈ S, we

include the triple ei + ej + ek in S. The removed class contained m/3 triples, so the

triples in S cover all but m edges in K. Each x ∈ {1, . . . ,m} was contained in exactly

one removed triple. For each triple {i, j, k}, i < j < k, which was removed, we add the

pairs 2ei + ej, 2ej + ek, and 2ek + ei to S. This process adds m pairs to S, no two

located at the same vertex in K and no two touching the same vertex in K. Thus S

is an independent set on
(

1
6
m(m− 1)

)
− m

3
+m = 1

6
m(m+ 3) vertices, so we are done

in this case.

If m ≡ 2 (mod 6), let m′ = m + 1 so that m′ ≡ 3 (mod 6). Consider the

independent set S in SR(m′, 3) obtained from a KTS(m′) as above. Each coordinate

in {1, . . . ,m′} is nonzero for (m′ − 1)/2 − 1 triples in S and 2 pairs in S. Thus each

coordinate is nonzero for precisely (m′+1)/2 vertices in S. Choose a coordinate, delete

it, and remove any vertices that were not 0 in that coordinate. The resulting set S ′

contains 1
6
m′(m′+ 1)− (m′+ 1)/2 vertices and is an independent set in SR(m, 3). We

have |S ′| = 1
6
m′(m′+3)−(m′+1)/2 = 1

6
((m′)2−3) = 1

6
((m+1)2−3) = 1

6
(m2 +2m−2),

so we are done in this case.

See Figure 3.5 for an example of an independent set in SR(m, 3) for m = 3, 4.

3.3 Smallest Eigenvalue

Recall that the Hoffman ratio bound (Proposition 1.15) gives an upper bound

on the independence number of a regular graph in terms of the smallest eigenvalue of

the graph. Thus, when studying the independence number of a regular graph, it is

sometimes useful to know the value of the smallest eigenvalue. Martin and Wagner

[68] (see also Elkies [37]) found the smallest eigenvalue of SR(m,n) when n ≥
(
m
2

)
.
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Figure 3.5: Maximal independent sets in SR(3, 3) and SR(4, 3).

Proposition 3.3. If n ≥
(
m
2

)
, then the smallest eigenvalue of SR(m,n) is −

(
m
2

)
.

Proof. Martin and Wagner show directly that −
(
m
2

)
is an eigenvalue of SR(m,n) by

constructing eigenvectors for that eigenvalue (see Proposition 3.19 in Section 3.10).

Thus the smallest eigenvalue is at most −
(
m
2

)
. For each pair 1 ≤ i < j ≤ m, let

SR(m,n)i,j denote the vertex-spanning subgraph of SR(m,n) containing only edges

which are in the i, j direction. We see that SR(m,n)i,j is a disjoint union of complete

graphs, so the smallest eigenvalue of SR(m,n)i,j is −1. Since A(m,n) is the sum of

the adjacency matrices of SR(m,n)i,j, where the sum is taken over all
(
m
2

)
pairs (i, j)

with 1 ≤ i < j ≤ m, the smallest eigenvalue of A(m,n) is at least −
(
m
2

)
(by Corollary

1.9 applied
(
m
2

)
times).

Martin and Wagner show that when n <
(
m
2

)
, the graph SR(m,n) has an

eigenvalue −n by constructing eigenvectors for that eigenvalue (see Proposition 3.20 in

Section 3.10). Based on numerical evidence, they conjecture that −n is the smallest

eigenvalue in this case:

Conjecture 3.4. ([68, Conjecture 3.9]) If n <
(
m
2

)
, then the smallest eigenvalue of

SR(m,n) is −n.

We prove this conjecture and find the value of the smallest eigenvalue of SR(m,n)

for any m,n.

Proposition 3.5. The smallest eigenvalue of SR(m,n) is max(−n,−
(
m
2

)
).
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Proof. By the results above we see that the smallest eigenvalue is at least −
(
m
2

)
. Fur-

thermore, if n <
(
m
2

)
then −n is an eigenvalue, while if n ≥

(
m
2

)
then −

(
m
2

)
is an

eigenvalue. It remains to show that the smallest eigenvalue is at least −n.

Consider the bipartite graph ∆(m,n) whose vertices are the m-tuples of nonneg-

ative integers whose coordinates sum to at most n (that is, the union of V (m,n) and

the set V ′(m,n) = {(x1, x2, . . . , xm) | 0 ≤ xi ≤ n,
∑m

i=1 xi < n}), where two vertices

are adjacent when one has coordinate sum n, the other coordinate sum less than n,

and they differ from each other in exactly one coordinate. Clearly ∆(m,n) is bipartite

with partition {V (m,n), V ′(m,n)}. We see that two vertices in V (m,n) are adjacent

in SR(m,n) precisely when they have distance 2 in ∆. Indeed, if x, y ∈ V (m,n) are

(i, j)-neighbors in SR(m,n), then they have all coordinates equal except i and j, and

without loss of generality we have xi > yi and xj < yj. Then the vertex z ∈ V ′(m,n)

with zi = yi, zj = xj, and all other coordinates equal to those of x and y is adjacent to

both x and y in ∆(m,n). In fact, we see that z is the only common neighbor of x and

y in ∆(m,n). Conversely, we see that if z ∈ V ′(m,n) differs from x ∈ V (m,n) only in

the i coordinate and from y ∈ V (m,n) only in the j coordinate, then x and y must be

(i, j)-neighbors in SR(m,n). If the adjacency matrix of ∆(m,n) is
(

0 N
N> 0

)
, where the

vertices are indexed by the partition {V (m,n), V ′(m,n)}, then the x, y entry in NN>

is the number of common neighbors (in the graph ∆(m,n)) in V ′(m,n) of the vertices

x, y ∈ V (m,n). We find that

NN>(x,y) =


1, if x ∼ y in SR(m,n),

0, if x 6= y and x 6∼ y in SR(m,n),

n, if x = y.

Indeed, we have already seen that if x, y ∈ V (m,n) are adjacent in SR(m,n), then

they have exactly one common neighbor in V ′(m,n) in the graph ∆(m,n), while if

x, y ∈ V (m,n) are not adjacent in SR(m,n) then they have no common neighbors in

V ′(m,n) in the graph ∆(m,n). If x = y, the x, y entry of NN> counts the number

of neighbors in V ′(m,n) of the vertex x ∈ V (m,n). Clearly every vertex in V (m,n)
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has n neighbors in V ′(m,n). Indeed, for each coordinate i at which x has a nonzero

entry, the vertex x ∈ V (m,n) has xi neighbors in V ′(m,n) that are equal to x in every

coordinate except i (namely, the vertices which equal x everywhere except i, and in

the coordinate i equal one of 0, 1, . . . , xi − 1). Summing over all coordinates, we find

that x has n neighbors in V ′(m,n). Thus NN> has the form claimed above, so we

find A(m,n)+nI = NN>. Since MM> is positive semidefinite for any matrix M , this

implies A(m,n) + nI is positive semidefinite, so the smallest eigenvalue of A(m,n) is

at least −n.

Combining Propositions 1.15 and 3.5 (and simplifying), we obtain the following

bounds on α(m,n):

Corollary 3.6. The independence number of SR(m,n) satisfies

α(m,n) ≤


(
n+m−1
m−1

)
/m if n <

(
m
2

)
,(

n+m−1
m−1

)
m

m+2n
, if n ≥

(
m
2

)
.

However, we note that the bound given by Corollary 3.6 is not tight. For

example, when m = 3 and n = 4 (so n ≥
(
m
2

)
) Corollary 3.6 implies α(3, 4) ≤ 4, but by

Proposition 3.1 we have α(3, 4) = 3. When m = 4 and n = 3 (so n <
(
m
2

)
) Corollary

3.6 implies α(4, 3) ≤ 5, but by Proposition 3.2 we have α(4, 3) = 4.

3.4 Partial Spectrum

In this section, we construct an equitable partition of SR(m,n) and calculate

the eigenvalues of the corresponding quotient matrix. By Proposition 1.24, these eigen-

values are also eigenvalues of SR(m,n). Recall that Vi is the set of vertices in V (m,n)

with exactly i nonzero coordinates.

Lemma 3.7. Let p = min{m,n}. Then the set {V1, V2, . . . , Vp} is an equitable partition

of V (m,n) with a tridiagonal quotient matrix. For 1 ≤ i ≤ p, each vertex in Vi has

i(i− 1) neighbors in Vi−1, (n− i)(i− 1) + i(m− i) neighbors in Vi, and (n− i)(m− i)

neighbors in Vi+1.
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Proof. Consider a vertex v = (v1, . . . , vm) ∈ Vi, and let I be the set of coordinates of

v which are nonzero (so |I| = i). Any vertex with more than i+ 1 or fewer than i− 1

nonzero coordinates cannot be adjacent to v, since such a vertex would differ from v

in more than two coordinates.

Suppose u = (u1, . . . , um) ∈ Vi−1 is adjacent to v. Then each of the i−1 nonzero

coordinates of u must be in I, and there exists unique j ∈ I such that uj = 0 (so u and

v differ in coordinate j). Since u must differ from v in exactly one other coordinate,

there exists k ∈ I \ {j} such that uk = vj + vk and u` = v` for ` 6= j, k. There are

i possible coordinates j and i − 1 possible coordinates k for each j, so v has i(i − 1)

neighbors in Vi−1.

Suppose u ∈ Vi is a neighbor of v. In this case there are two possibilities. First,

it may be the case that u is also nonzero for each coordinate in I (and 0 elsewhere).

In this case, there exist j, k ∈ I such that vj + vk = uj + uk and v` = u` for ` 6= j, k.

There are vj + vk − 2 possible pairs uj, uk for each j, k. Thus we find v has∑
j,k∈I

(vj + vk − 2) = (i− 1)
∑
j∈I

vj −
∑
j,k∈I

2 = (i− 1)n− 2

(
i

2

)
= (n− i)(i− 1)

such neighbors in Vi. The other possibility is that u and v share only i − 1 nonzero

coordinates. Then there exist j ∈ I and k ∈ {1, . . . ,m} \ I such that uj = 0, uk = vj,

and v` = u` for ` 6= j, k. There are i possible coordinates j and m − i possible

coordinates k for each j, so v has i(m− i) such neighbors.

Finally, suppose u ∈ Vi+1 is a neighbor of v. Then u is nonzero in each coordinate

in I as well as in one other coordinate. Then there exist j ∈ I and k ∈ {1, . . . ,m} \ I

such that uj+uk = vj and v` = u` for ` 6= j, k. For any j there are m−i choices for k, so

for fixed j there are (vj−1)(m− i) such pairs uj, uk. Thus v has
∑

j∈I(vj−1)(m− i) =

(n− i)(m− i) neighbors in Vi+1.

Since v ∈ Vi was chosen arbitrarily, this proves that {V1, V2, . . . , Vp} is an equi-

table partition of V (m,n).

By Lemma 1.24, the eigenvalues of the quotient matrix of this partition are

eigenvalues of SR(m,n). To find the eigenvalues of the quotient matrix, we must first
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prove the following lemma. Let (x)k denote the falling factorial of x with k terms, that

is, (x)k = x(x− 1) · · · (x− (k − 1)).

Lemma 3.8. Let F (`, k) = (−1)`
(
i−1
`

)
(n − k)i−1−`(m − k)i−1−`(k − 1)`(k − 2)` and

S(j) =
∑j−2

`=0 F (`, j). If j ≥ 2 is an integer then

j(j − 1)S(j)−
(
j(j + 1) + (n− j)(m− j)− i(n+m− i)

)
S(j + 1)

+ (n− j − 1)(m− j − 1)S(j + 2) = 0. (3.1)

Proof. We first note that we have

j(j − 1)F (`, j)−
(
j(j + 1) + (n− j)(m− j)− i(n+m− i)

)
F (`, j + 1)

+ (n− j − 1)(m− j − 1)F (`, j + 2)

= F (`+ 1, j)R(`+ 1, j)− F (`, j)R(`, j), (3.2)

where

R(`, j) =

(
j(j − 1)`(m− (i− `− 1)− j)(n− (i− `− 1)− j)(

j2(m+ n+ 1− 3i)− j
(
2i2 − i(2m+ 2n+ 4`− 1) + `(m+ n+ 1) + 2mn

)
+ i2(`− 1)− i(`− 1)(m+ n+ `) +mn(`− 1)

))
/(

(n− j)(m− j)
(
(j − `)2 − 1

)
(j − `)2

)
.

Equation (3.2) is easily checked by dividing both sides by F (`, j) and simplifying both

sides. Then, since F (j+1, j)R(j+1, j) = F (0, j)R(0, j) = 0 and F (j−1, j) = F (j, j) =

F (j, j + 1) = 0, the lemma follows from summing both sides of (3.2) from ` = 0 to

j.

The recurrence (3.1) and the function R(`, j) were found using Zeilberger’s al-

gorithm (see [99]) as implemented in the fastZeil package for Mathematica by Paule

and Schorn [77], which also provided an outline of the proof that (3.1) holds. For any

fixed n and m we can now identify a subset of the eigenvalues of SR(m,n).
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Proposition 3.9. For fixed m,n, let p = min{m,n}. For each i ∈ {0, 1, . . . , p − 1},

(m− i)(n− i)− n is an eigenvalue of SR(m,n).

Proof. By Lemma 3.7 we find that the p× p matrix

Q =



a1 b1 0 · · · 0

c2 a2 b2
. . .

...

0 c3
. . . . . . 0

...
. . . . . . ap−1 bp−1

0 · · · 0 cp ap


with ai = (n − i)(i − 1) + i(m − i), bi = (n − i)(m − i), and ci = i(i − 1) is a

quotient matrix of A(m,n) with respect to the equitable partition {V1, V2, . . . , Vp}. By

Proposition 1.24, each eigenvalue of Q is also an eigenvalue of A(m,n). We will see

that the eigenvalues of Q are µi = (m− i)(n− i)− n with eigenvectors

vi = (vi,j)
p
j=1 =

(
(−1)i(n− 1)i(m− 1)i + (−1)i+1i(n+m− i)

j∑
k=2

S(k)

)p

j=1

,

for 0 ≤ i ≤ p − 1. Indeed, by the structure of Q we have Qvi = µivi if and only if

cjvi,j−1 + ajvi,j + bjvi,j+1 = µivi,j for 1 ≤ j ≤ p. We prove the latter by induction on j.

Simplifying, we find that we must show that

i(n+m− i)

(
(n− 1)i(m− 1)i + j(j − 1)S(j)

− (n− j)(m− j)S(j + 1)− i(n+m− i)
j∑

k=2

S(k)

)
= 0,

for 1 ≤ j ≤ p. If i = 0, we are done. Otherwise, we must show that G(j) = 0 for

1 ≤ j ≤ p, where

G(j) = (n− 1)i(m− 1)i + j(j − 1)S(j)

− (n− j)(m− j)S(j + 1)− i(n+m− i)
j∑

k=2

S(k).
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It is straightforward to show that G(1) = 0 and G(2) = 0. For the induction step, we

suppose that G(j) = 0 and show that G(j+1) = 0. We have G(j+1) = G(j+1)−G(j)

which, after simplifying, is equal to

−
(
j(j − 1)S(j)−

(
j(j + 1) + (n− j)(m− j)− i(n+m− i)

)
S(j + 1)

+ (n− j − 1)(m− j − 1)S(j + 2)

)
,

which is 0 by Lemma 3.8. This completes the proof.

3.5 Spectrum of SR(m,n) for m ≤ 3 or n ≤ 3

The graph SR(1, n) is isomorphic to K1 and thus has spectrum 01. The graph

SR(2, n) is isomorphic to Kn+1 and has spectrum n1, −1n. The graph SR(m, 1) is iso-

morphic to Km and has spectrum (m−1)1, −1m−1. The graph SR(m, 2) is isomorphic

to the Johnson graph J(m+1, 2) and has spectrum 2(m−1)1, (m−3)m, −2(m+1)(m−2)/2

by Proposition 1.22.

Martin and Wagner [68] construct a complete set of eigenvectors for SR(3, n)

to prove:

Proposition 3.10. The spectrum of SR(3, n) is given by Table 3.1.

If n = 2k + 1: If n = 2k:
Eigenvalue Multiplicity Eigenvalue Multiplicity

−3
(

2k
2

)
−3

(
2k−1

2

)
−2,−1, . . . , k − 3 3 −2,−1, . . . , k − 4 3

k − 1 2 k − 3 2
k, . . . , 2k − 1 3 k − 1, . . . , 2k − 2 3

2n 1 2n 1

Table 3.1: Spectrum of SR(3, n).

By refining the partition {V1, V2, V3} and noting a similarity between SR(m, 3)

and the Johnson graph J(m+ 2, 3), we find the spectrum of SR(m, 3).

Proposition 3.11. The spectrum of SR(m, 3) is given by Table 3.2.
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Eigenvalue Multiplicity
3(m− 1) 1
2m− 5 m
m− 3 m− 1
m− 5

(
m
2

)
−3 m(m2 − 7)/6

Table 3.2: Spectrum of SR(m, 3).

Proof. We consider the refinement P ′ of P = {V1, V2, V3} obtained by considering also

location of the nonzero elements. That is, let P ′ be the partition made up of the sets

V i
1 = {3ei} for 1 ≤ i ≤ m, V i,j

2 = {ei + 2ej, 2ei + ej} for 1 ≤ i < j ≤ m, and

V i,j,k
3 = {ei + ej + ek} for 1 ≤ i < j < k ≤ m. It is straightforward to show that P ′

is also equitable. Let R be the quotient matrix of the partition P ′. Then by Lemma

1.24 each eigenvalue of R is an eigenvalue of SR(m, 3)

Next, we consider the following correspondence between vertices in SR(m, 3)

and vertices in the Johnson Graph J(m + 2, 3). For 1 ≤ i ≤ m, the vertex 3ei ∈

V i
1 ⊂ V (m, 3) corresponds to the vertex {i,m + 1,m + 2} ∈ V (J(m + 2, 3)). For

1 ≤ i < j ≤ m, the vertex ei + 2ej ∈ V i,j
2 ⊂ V (m, 3) corresponds to the vertex

{i, j,m + 1} ∈ V (J(m + 2, 3)) and the vertex 2ei + ej ∈ V i,j
2 ⊂ V (m, 3) corresponds

to the vertex {i, j,m + 2} ∈ V (J(m + 2, 3)). For 1 ≤ i < j < k ≤ m, the vertex

ei + ej + ek ∈ V i,j,k
3 ⊂ V (m, 3) corresponds to the vertex {i, j, k} ∈ V (J(m+ 2, 3)). If

we partition the vertices of J(m+2, 3) according to the partition P ′ of the corresponding

vertices of SR(m, 3), it is straightforward to show that this partition P∗ is also equitable

with the same quotient matrix R as before. Thus by Lemma 1.24 the eigenvalues of R

are common to SR(m, 3) and J(m+ 2, 3).

Let E be the space orthogonal to the characteristic vectors of the partition P ′

(and thus, also of P∗), or equivalently the space of vectors that sum to 0 on each set

in P ′ (and thus, also in P∗). By Proposition 1.24, to find the eigenvalues of R we can

take the spectrum of J(m + 2, 3) and remove those eigenvalues whose corresponding

eigenvectors are in E (we call these eigenvectors E-eigenvectors and the corresponding
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eigenvalues E-eigenvalues). We note that the E-eigenvectors of J(m + 2, 3) must be

zero on all sets in the partition P∗ containing only one vertex. Thus we can restrict

ourselves to the subgraph induced by the sets in P∗ containing two vertices (namely,

V i,j
2 for 1 ≤ i < j ≤ m). That is, we restrict ourselves to the subgraph GJ whose

vertices are those containing exactly one of m+ 1 and m+ 2. Those containing m+ 1

induce a copy of J(m, 2), as do those containing m+2. The only edges between a vertex

containing m+ 1 and a vertex containing m+ 2 are those between vertices which have

their other two elements equal (that is, those in the same set V i,j
2 for some i, j. Thus

GJ is isomorphic to J(m, 2)�K2 , and by Proposition 1.16 the adjacency matrix AJ

of GJ is the matrix T ⊗ I2 + I ⊗ (J2− I2), where T is the adjacency matrix of J(m, 2)

(or equivalently of the triangular graph T (m)). That is, AJ is the matrix obtained by

replacing the 1’s in T by I2, the diagonal 0’s by J2− I2, and the other 0’s by O2. With

respect to the restriction of P∗ to sets with 2 vertices, the adjacency matrix AJ of GJ

has quotient matrix T + I. The E-eigenvalues of J(m + 2, 3) are the eigenvalues of

GJ with eigenvectors summing to 0 on each part of the partition P∗, which (again by

Lemma 1.24) are precisely the eigenvalues of AJ with the eigenvalues of the quotient

matrix T +I removed. The spectrum of J(m, 2) is {(2m−4)1, (m−4)m−1,−2m(m−3)/2}

(by Proposition 1.22), so the spectrum of T + I is {(2m− 3)1, (m− 3)m−1,−1m(m−3)/2}

and by Proposition 1.16 the spectrum of AJ is {(2m−3)1, (2m−5)1, (m−3)m−1, (m−

5)m−1,−1m(m−3)/2,−3m(m−3)/2}. Thus the E-eigenvalues of J(m + 2, 3) are {(2m −

5)1, (m− 5)m−1,−3m(m−3)/2}. Since the spectrum of J(m+ 2, 3) is {3(m− 1)1, (2m−

5)m+1, (m − 5)(m+2)(m−1)/2,−3(m+2)(m+1)(m−3)/6} by Proposition 1.22, the spectrum of

R is {3(m− 1)1, (2m− 5)m, (m− 5)(
m
2 ),−3(m2+2)(m−3)/6}.

To complete the spectrum of SR(m, 3), we need only find the E-eigenvalues

of SR(m, 3) and combine these with the eigenvalues of R. By the same argument

as before, we can restrict ourselves to the subgraph GS induced by the sets in P ′

containing two vertices. We build the adjacency matrix AS of GS as follows. Let K

be the directed complete graph Km with vertices labeled {1, . . . ,m} and edges oriented

toward the vertex with larger label. Let M denote the signed vertex-edge incidence
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matrix of K. That is, M is the matrix with rows indexed by the vertices of K and

columns indexed by the edges of K such that in the column of edge (i, j), i < j, there

is a -1 in row i, a 1 in row j, and a 0 in every other row. Let T ′ = M>M . The rows

and columns of T ′ are indexed by the edges of K, which are of the form (i, j), i < j.

We see that we have

T ′(i,j),(k,`) =



2, if (i, j) = (k, `),

1, if i = k or j = ` (but not both),

−1, if i = ` or j = k,

0, else.

We identify the oriented edge (i, j), i < j, with the vertex ei + 2ej ∈ V (GS) and the

opposite oriented edge (j, i), i < j, which is not in K, with the vertex 2ei+ej ∈ V (GS).

We extend T ′ as follows: we replace each 1 by I2, each -1 by J2− I2, each 2 by J2− I2,

and each 0 by O2. We will show that the resulting matrix is AS. There are
(
m
2

)
blocks

of size 2×2 in the extended matrix T ∗. Let the first row and column of the (i, j), (k, `)

block correspond to the vertices (i, j) and (k, `), and the second row and column of the

same block correspond to the vertices (j, i) and (`, k). By construction, if (i, j) = (k, `)

then the (i, j), (k, `) block is


(i, j) (j, i)

(k, `) = (i, j) 0 1

(`, k) = (j, i) 1 0

.
These are the correct entries in that block of AS, since (i, j) 6∼ (i, j) and (j, i) 6∼ (j, i),

but (i, j) ∼ (j, i). If i = k or j = ` (but not both), then the (i, j), (k, `) block is


(i, j) (j, i)

(k, `) = (i, `) 1 0

(`, k) = (`, i) 0 1

 or


(i, j) (j, i)

(k, `) = (k, j) 1 0

(`, k) = (j, k) 0 1

,
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respectively. Again, we can easily verify that these are the correct entries in AS. If

i = ` or j = k, then the (i, j), (k, `) block is


(i, j) (j, i)

(k, `) = (k, i) 0 1

(`, k) = (i, k) 1 0

 or


(i, j) (j, i)

(k, `) = (j, `) 0 1

(`, k) = (`, j) 1 0

,
respectively. As before, we can easily verify that these are the correct entries in AS.

Finally, if {i, j} and {k, `} are disjoint, the (i, j), (k, `) block is O2, which is correct

in AS. Thus the matrix T ∗ obtained by expanding T ′ as described is indeed AS. By

Lemma 1.24, the E-eigenvalues of GS are the eigenvalues of AS whose eigenvectors

sum to 0 on each block. Equivalently, if the blocks equal to J2 − I2 are replaced by

−(J2−I2), they are the eigenvalues (of the new matrix) whose eigenvectors are constant

on each block. These are the eigenvalues of the quotient matrix T ′′ of the new matrix

(with respect to the partition P ′ restricted to sets of two vertices). By construction,

T ′′ = M>M − 3I. Since MM> is the Laplacian matrix of the complete graph Km, its

eigenvalues are mm−1 and 01. Since M>M and MM> have the same nonzero eigenval-

ues and the same rank by Proposition 1.5, this implies that the spectrum of M>M is

{mm−1, 0(m−1)(m−2)/2}, so the E-eigenvalues of GS are {(m − 3)m−1,−3(m−1)(m−2)/2}.

Combining these with the spectrum of R, we find that the spectrum of SR(m, 3) is

{3(d− 1)1, (2m− 5)m, (m− 3)m−1, (m− 5)(
m
2 ),−3m(m2−7)/6}.

There is a good reason for the similarity between the spectrum of SR(m, 3) and

that of J(m+ 2, 3). Note the similarity between T and T ′: If we replace the diagonal

entries of T by 2 and some (certain) 1’s in T by -1, we obtain T ′. Viewed another way,

if B is the unsigned vertex-edge incidence matrix of Km, then B>B = T + 2I. Then,

replacing the diagonal 2’s with J − I2 and the 1’s with I2, we obtain AJ . Thus AS

can be obtained from AJ by replacing certain I2 blocks with J − I2 blocks. In other

words, SR(m, 3) can be obtained from J(m + 2, 3) by switching the adjacencies of a

few vertices in V2 according to which I2 blocks were replaced by J − I2 blocks.
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3.6 Integrality of the Spectrum of SR(m,n)

A graph is called integral if all of its eigenvalues are integers. We have seen

that SR(m,n) is integral for m ≤ 3 or n ≤ 3. Martin and Wagner [68] checked by

computer and found that if m = 4 and n ≤ 30 or m = 5 and n ≤ 25 then the spectrum

of SR(m,n) consists only of integers. This numerical evidence led them to make the

following conjecture.

Conjecture 3.12. ([68, Conjecture 1.3]) The graph SR(m,n) is integral for any m,n.

Integrality of a graph typically implies that the graph has some nice combinato-

rial structure. Integral graphs are apparently very rare. For example, for fixed valency

k there are only finitely many connected, k-regular integral graphs (see [5] for a survey

on integral graphs, including a proof of this fact). Also, for fixed n almost all graphs

on n vertices are not integral (see [2]). Integral graphs have applications in quantum

computing and quantum physics (see [91]).

Let N = |V (m,n)| =
(
n+m−1
m−1

)
. We prove Conjecture 3.12 by proving that each

basis vector for the space RN can be mapped to the zero vector by
∏

i(A(m,n)− ciI)

for some sequence of integers {ci}.

Associate with each vertex in V (m,n) a distinct number in the set {1, 2, . . . , N}.

A basis for RN is given by the vectors ex (x ∈ V (m,n)) that equal 1 in the coordinate

associated with x and 0 in all other coordinates.

For S ⊆ V (m,n), let eS :=
∑

x∈S ex. For partitions Π of the set of coordinate

positions {1, . . . ,m} and nonnegative integral vectors z indexed by Π that sum to n,

let SΠ,z be the set of all u ∈ V (m,n) with
∑

i∈π ui = zπ for all π ∈ Π. The basis

vector ex can be realized as eS where S = SΩ,z, Ω is the partition of {1, . . . ,m} into

singletons, and z{i} = xi for each i ∈ {1, . . . ,m}.

For a vector y indexed by a partition Π, let ỹ be the sequence of pairs (yπ, |π|)

(π ∈ Π) sorted lexicographically: with the yπ in nondecreasing order, and for given yπ

with the |π| in nondecreasing order.
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For partitions Π and Σ and vectors z and y indexed by Π and Σ, respectively,

order pairs (Π, z) and (Σ, y) by (Σ, y) < (Π, z) when |Σ| < |Π|, or when |Σ| = |Π| and

ỹ 6= z̃, and in the first place j where ỹ and z̃ differ, the pair ỹj is lexicographically

smaller than the pair z̃j.

We are now ready to prove Conjecture 3.12.

Theorem 3.13. All of the eigenvalues of SR(m,n) are integers.

Proof. We show that for each x ∈ V (m,n) there is a sequence of integers cxi (i in

some indexing set Ix dependent on x) such that
(∏

i∈Ix(A(m,n)− cxiI)
)
ex = 0. Then

p(A(m,n)) :=
∏

x∈V (m,n)

∏
i∈Ix(A(m,n)− cxiI)v = 0 for all v ∈ RN , so all eigenvalues

of A(m,n) are among the integers cxi.

We begin with the basis vectors ex for x ∈ V (m,n) (ex = eS for S = SΩ,z) and,

for each x, find an integer c such that (A(m,n) − cI)eS ∈ U , where U is a subspace

spanned by a set of some eT for T = SΣ,y with (Σ, y) < (Ω, z). We repeat the process

for each of these eT (showing that for some integer c, (A(m,n) − cI)eT is 0 or lies in

a subspace spanned by some eT ′ with T ′ = SΣ′,y′ and (Σ′, y′) < (Σ, y)) until there is

no smaller (Σ′, y′), which occurs when Σ′ has only one part, the whole set {1, . . . ,m}.

Then the only possible y′ has only one entry, n, and this pair (Σ′, y′) is smaller than

every other pair, so the process must terminate there, when U = U1 is the space

spanned by eV (m,n) (since SΣ′,y′ = V (m,n)) and we have (A(m,n) − cI)eV (m,n) = 0,

where c = (m − 1)n. Thus, if we can prove that for arbitrary S = SΠ,z we have

(A(m,n) − cI)eS lies in a subspace U spanned by a set of some eT for T = SΣ,y with

(Σ, y) < (Π, z), then we are done.

For j 6= k, let Ajk be the matrix that describes only (i, j)-edges. In other words,

the (x, y) entry of Ajk is 1 if x and y are (j, k)-neighbors and 0 otherwise. Then

A(m,n) =
∑
Ajk. If (Ajk − cjkI)u ∈ U for all j, k then (A(m,n) − cI)u ∈ U for

c =
∑
cjk. For fixed (Π, z), S = SΠ,z, and j 6= k, we will show there exists an integer

cjk such that the image (Ajk − cjkI)eS lies in a subspace U spanned by a set of some

eT for T = SΣ,y with (Σ, y) < (Π, z).
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An integral vector in RN can be viewed as a multiset where the x ∈ V (m,n)

occur with certain multiplicities. For any vertex u and any pair of coordinates j, k, the

u entry of AjkeS (or the number of times u occurs in the multiset AjkeS) is (AjkeS)u =

|{v ∈ S | u, v are (j, k)-neighbors}|, the number of (j, k)-neighbors of u which are in S.

Fix (Π, z) and S = SΠ,z. Recall we wish to show that for each pair j 6= k there

exists an integer cjk such that the image (Ajk − cjkI)eS lies in a subspace U spanned

by a set of some eT for T = SΣ,y with (Σ, y) < (Π, z).

We first handle all pairs j, k that belong to the same part of Π. Note that S

induces a regular subgraph ΓS of SR(m,n), since ΓS is a copy of the Cartesian product∏
π∈Π SR(|π|, zπ). Every edge in ΓS is a (j, k)-edge where j, k are in the same part in

Π. Further, if j, k are in the same part in π then there are no (j, k)-edges from S to

V (m,n) \ S. Thus, if AΠ =
∑

π∈Π

∑
j,k∈π Ajk, then AΠeS is constant on S (the value

is the valency of ΓS) and 0 on V (m,n) \ S. This implies (AΠ − cSI)eS = 0, where cS

is the valency of ΓS. Thus we are done when j, k are in the same part in Π.

Suppose j ∈ π, k ∈ ρ, where π, ρ ∈ Π, π 6= ρ (we label j and k such that

(zπ, |π|) ≤ (zρ, |ρ|) in lexicographic order). Abbreviate π ∪ {k} by π + k and π \ {j}

by π − j. We will show that the image (Ajk + I)eS equals S1 − S2, where S1 is the

sum of all eT with T = SΣ,y, Σ = (Π \ {π, ρ}) ∪ {π − j, ρ + j} (omitting π − j if

it is empty), and y agrees with z except that yπ−j ≤ zπ and yρ+j ≥ zρ (of course

yπ−j + yρ+j = zπ + zρ, and yπ−j = 0 if π − j is empty), and S2 is the sum of all eT

with T = SΣ,y, Σ = (Π \ {π, ρ}) ∪ {π + k, ρ − k}, and y agrees with z except that

yπ+k < zπ and yρ−k > zρ (of course yπ+k + yρ−k = zπ + zρ, and ρ − k is not empty

because yρ−k > 0). Because we label j and k such that (zπ, |π|) ≤ (zρ, |ρ|), we see that

in S1 and S2, (Σ, y) occur only with (Σ, y) < (Π, z), so that S1 − S2 is in a subspace

U spanned by a set of some eT for T = SΣ,y with (Σ, y) < (Π, z). Thus, if we prove

(Ajk + I)eS = S1 − S2, then we are done.

First, note that the entries of S, S1, and S2 are either 0 or 1 (so we can view

them as sets, rather than multisets). Indeed, for fixed Σ, a vertex cannot be in SΣ,y

for two different vectors y. Viewed as sets, S, S1, and S2 satisfy S2 ⊆ S1 (so S1 − S2
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can still be viewed as a set), S ⊆ S1, and S ∩ S2 = ∅. Indeed, if u ∈ S2 then∑
i∈π−j ui ≤

∑
i∈π+k ui < zπ, so u ∈ S1. If s ∈ S, then

∑
i∈π−j si ≤ zπ (so s ∈ S1)

and
∑

i∈π+k si ≥ zπ (so S /∈ S2). Thus, since (AjkeS)s = 0 for s ∈ S (because

the (j, k)-neighbors in S of s ∈ S must have j, k in the same part of Π), we have

((Ajk + I)eS)s = 1 = (S1 − S2)s for every s ∈ S.

Each vertex u /∈ S has at most one (j, k)-neighbor in S, namely that s such that

si = ui for i 6= j, k, sj = zπ −
∑

i∈π−j ui (so
∑

i∈π si = zπ), and sk = zρ −
∑

i∈ρ−k ui (so∑
i∈ρ si = zρ), if such s exists (that is, if sj and sk given above are both nonnegative).

Note that if u is counted in S1 then
∑

i∈π−j ui = yπ−j ≤ zπ, so sj ≥ 0.

Suppose u /∈ S has a (j, k)-neighbor s ∈ S. Since
∑

i∈π si = zπ, it follows that∑
i∈π−j ui =

∑
i∈π−j si ≤ zπ, so that u ∈ S1, but

∑
i∈ρ−k ui =

∑
i∈ρ−k si ≤ zρ, so that

u /∈ S2. Thus if u /∈ S has a (j, k)-neighbor in S, then ((Ajk + I)eS)u = 1 = (S1−S2)u.

If u ∈ S1 (u /∈ S) does not have a (j, k)-neighbor in S, then the candidate s above with

sj = zπ −
∑

i∈π−j ui and sk = zρ −
∑

i∈ρ−k ui does not exist. As we saw above, this

implies that sk < 0, so
∑

i∈ρ−k ui > zρ and u ∈ S2. Then ((Ajk+I)eS)u = 0 = (S1−S2)u

and we have proved that ((Ajk + I)eS)u = (S1 − S2)u for every u ∈ V (m,n). This

completes the proof.

3.7 Diameter

In this section we determine the diameter of SR(m,n). The diameter of a

graph is often related to the spectrum (see, for example, Proposition 1.14 and [17,

Proposition 4.7.1]). To bound the diameter of SR(m,n) from above we will need the

following lemma.

Lemma 3.14. Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be vertices in SR(m,n) in

Vk with the same k coordinates nonzero. Then dist(x, y) ≤ k − 1.

Proof. Without loss of generality, we may assume that the first k coordinates of x and

y are nonzero and the rest are zero. We may also assume that for some ` we have
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yi > xi for 1 ≤ i ≤ ` and yi ≤ xi for ` < i ≤ k. Then we have a chain of adjacencies

y = (y1, y2, y3, y4, . . . , y`, y`+1, . . . , yk, 0, . . . , 0)

∼ (y1 + (y2 − x2), x2, y3, y4, . . . , y`, y`+1, . . . , yk, 0, . . . , 0)

∼ (y1 + (y2 − x2) + (y3 − x3), x2, x3, y4, . . . , y`, y`+1, . . . , yk, 0, . . . , 0)

...

∼ (y1 +
∑̀
i=2

(yi − xi), x2, . . . , x`, y`+1, . . . , yk, 0, . . . , 0)

...

∼ (y1 +
k−1∑
i=2

(yi − xi), x2, . . . , xk−1, yk, 0, . . . , 0)

∼ (x1, . . . , xk, 0 . . . , 0) = x,

which takes exactly ` − 1 steps to get to the 4th line followed by at most k − ` steps

to get to the last line, for a total of at most k − 1 steps. Note that
∑j

i=2(yi − xi) is

positive for 2 ≤ j ≤ `, so every m-tuple up to line 4 is indeed a vertex of SR(m,n),

and
∑k

i=j+1(xi − yi) is nonnegative for ` ≤ j < k, so

y1 +

j∑
i=2

(yi − xj) =

j∑
i=1

yi −
j∑
i=2

xi

=

(
n−

k∑
i=j+1

yi

)
−

(
n− x1 −

k∑
i=j+1

xi

)

= x1 +
k∑

i=j+1

(xi − yi) ≥ x1 > 0

for ` ≤ j < k and every m-tuple after line 4 is also a vertex of SR(m,n).

Proposition 3.15. For any fixed m,n, the diameter of SR(m,n) is min{m− 1, n}.

Proof. We first show that diam(SR(m,n)) ≤ n. For x, y ∈ V (m,n), each of x and y is

a sum of n standard basis vectors for Rm, so there exist sequences (i1, i2, . . . , in) and
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(j1, j2, . . . , jn) such that x =
∑n

k=1 eik and y =
∑n

k=1 ejk Then we have a chain of at

most n adjacencies

y =
n∑
k=1

ejk

∼
n∑
k=1

ejk + (ei1 − ej1)

∼
n∑
k=1

ejk + (ei1 − ej1) + (ei2 − ej2)

...

∼
n∑
k=1

ejk +
∑̀
k=1

(eik − ejk)

...

∼
n∑
k=1

ejk +
n∑
k=1

(eik − ejk)

=
n∑
k=1

eik = x,

so dist(x, y) ≤ n.

Next we show that diam(SR(m,n)) ≤ m − 1. For any x ∈ Vi and y ∈ Vj, we

must show dist(x, y) ≤ m − 1. First, suppose that i + j ≤ m. There is a vertex z in

V1 such that dist(x, z) = i − 1 and dist(y, z) ≤ j (indeed, one can simply choose z so

that the nonzero coordinate in z is one of the nonzero coordinates in x), so in this case

dist(x, y) ≤ i+ j − 1 = m− 1. If i+ j = m+ k for some k ≥ 1, then x and y share at

least k nonzero coordinates and there are vertices zx and zy in Vk which have the same

k nonzero coordinates (k of those coordinates in which both x and y are nonzero) such

that dist(x, zx) = i − k and dist(y, zy) = j − k. By Lemma 3.14, dist(zx, zy) ≤ k − 1,

so dist(x, y) ≤ i− k + j − k + k − 1 = i+ j − k − 1 = m− 1.

We have proved that diam(SR(m,n)) ≤ min{m − 1, n}. It is straightforward

to show that this bound can be reached. Indeed, if m − 1 ≤ n (so m < n), then for

x = ne1 and y = (n−m)e1 +
∑m

i=1 ei we have dist(x, y) = m− 1, and if n ≤ m− 1 (so

n < m) then for x = ne1 and y =
∑n+1

i=2 ei we have dist(x, y) = n.
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In terms of simplicial rooks, Proposition 3.15 implies that one can place a pair

of rooks on a simplicial chess board of dimension m−1 with n+1 tiles in each direction

such that it takes min{m − 1, n} moves for one rook to reach the other, but there is

no way to place the pair so that it takes min{m− 1, n}+ 1 moves.

3.8 Clique Number

In this section we find the clique number ω(m,n) = ω(SR(m,n)) of SR(m,n)

and give examples of maximal cliques of that size.

Proposition 3.16. For any fixed m,n, ω(m,n) = max{m,n+ 1}.

Proof. If m = 1 then SR(1, n) ∼= K1 and ω(1, n) = 1. Since SR(2, n) ∼= Kn+1 and

SR(m, 1) ∼= Km, we have ω(2, n) = n + 1 and ω(m, 1) = m, so in those cases we are

done. We also recall that SR(m, 2) is isomorphic to the Johnson graph J(m+ 1, 2) ∼=

T (m+ 1) with clique number ω(T (m+ 1)) = m (indeed, T (m+ 1) is the line graph of

Km+1, and the m edges incident with a single vertex in Km+1 are pairwise adjacent in

T (m+ 1)). Thus we may assume that m ≥ 3 and n ≥ 3.

Fix m,n ≥ 3. The set V1 is a clique of size m, while the set {xe1 + ye2 | x, y ≥

0, x+ y = n} is a clique of size n+ 1 (see Figure 3.6). Thus ω(m,n) ≥ max{m,n+ 1}.

Figure 3.6: Maximal cliques of size m = 4 and n+ 1 = 4 in SR(4, 3).

Let C be a clique in SR(m,n). We may assume |C| ≥ max{m,n + 1}. For u, v ∈

V (m,n), let D(u, v) denote the set of coordinates where u and v differ. Thus, if u
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and v are (i, j)-neighbors, then D(u, v) = {i, j}, ui + uj = vi + vj, and uk = vk for all

k 6= i, j. Since each pair of vertices in C is adjacent, each pair differs in exactly two

coordinates. Suppose u, v ∈ C and D(u, v) = {i, j}, and let C ′ = C \ {u, v}.

We first note that for all x ∈ C ′, we must also have i ∈ D(u, x) or j ∈ D(u, x) (or

both). To see that this is true, suppose there exists x ∈ C ′ such thatD(u, x)∩{i, j} = ∅.

Then there must be some k, ` 6= i, j such that D(u, x) = {k, `}. This implies that

D(v, x) = {i, j, k, `}, so v 6∼ x, a contradiction.

Next, we see that if D(u,w) = {i, j} for some w ∈ C ′, then D(u, x) = {i, j} for

all x ∈ C ′. Suppose not. That is, suppose D(u,w) = {i, j} and there exists z ∈ C ′

such that D(u, z) = {i, k} for some k 6= j (as noted above, we cannot have both

i /∈ D(u, z) and j /∈ D(u, z)). Note that D(u, v) = {i, j} and D(u,w) = {i, j} implies

D(v, w) = {i, j}. Then must have D(v, z) = {j, k} and D(w, z) = {j, k}, which implies

zi = vi and zi = wi, a contradiction (since vi 6= wi). Thus if any three vertices in C

differ pairwise in the same two coordinates i, j, then every pair of vertices in C differs

at i, j. In this case |C| ≤ ui + uj + 1 ≤ n+ 1.

Next, suppose it is not the case that three vertices in C differ pairwise in the

same two coordinates. That is, suppose for each x ∈ C ′ we have either i ∈ D(u, x)

or j ∈ D(u, x), but not both. Then either i ∈ D(u, x) for all x ∈ C ′ or j ∈ D(u, x)

for all x ∈ C ′. Further, if k ∈ D(u, x) for some x ∈ C ′, k 6= i, j, then k /∈ D(u, y)

for all y ∈ C ′ \ {x}. To prove the first assertion, suppose it is not true. That is,

suppose there exist w, z ∈ C ′ such that D(u,w) = {i, k} and D(u, z) = {j, `}. If k 6= `

then D(w, z) = {i, j, k, `}, a contradiction. Thus k = ` and D(u, z) = {j, k}. Then

we find that D(v, w) = {j, k}, D(v, z) = {i, k}, and D(w, z) = {i, j}. This implies

wi = vi, zj = vj, and wk = zk. Combining these equalities with wi + wk = ui + uk and

zj +zk = uj +uk we obtain ui+uk−vi = wk = zk = uj +uk−vj, from which we obtain

ui − vi = uj − vj. Since ui + uj = vi + vj, this implies ui = vi, a contradiction. Thus

the first assertion is true, and we assume without loss of generality that i ∈ D(u, x)

for all x ∈ C ′. To prove the second assertion, note that if there exist w, z ∈ C ′ such

that k ∈ D(u,w) and k ∈ D(u, z), then D(u,w) = D(u, z) = D(w, z) = {i, k}. This
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contradicts that no three vertices in C differ pairwise in the same two coordinates.

Thus both assertions are true. This implies |C| ≤ m, since for each x ∈ C \ {u} there

is a distinct coordinate k such that D(u, x) = {i, k}. There are only m − 1 possible

values for k (since i 6= k), so |C \ {u}| ≤ m− 1.

Thus ω(m,n) = max{m,n+ 1}.

In terms of simplicial rooks, Proposition 3.16 implies that there is a configuration

of max{m,n+ 1} rooks on a simplicial chess board of dimension m− 1 with n+ 1 tiles

in each direction such that every rook can attack every other rook in one move, but

there is no such configuration of max{m,n+ 1}+ 1 rooks.

3.9 Cospectral Mates

Recall that a graph G is called DS if any graph with the same spectrum of

G is isomorphic to G (see Definition 1.32). Martin and Wagner [68] ask for which

values of the parameters m and n the graph SR(m,n) is determined by its spectrum.

Since SR(1, n), SR(2, n), and SR(m, 1) are complete graphs, they are DS (see [31] or

Proposition 1.33). Since SR(m, 2) is isomorphic to the triangular graph T (m + 1), it

is DS unless m = 7, since T (k) is DS unless k = 8 (there are exactly four graphs with

the spectrum of SR(7, 2) ∼= T (8), namely T (8) and the three Chang graphs, see [22]

and [23]). Since SR(3, 3) is a 6-regular graph on 10 vertices, its complement is a cubic

graph on 10 vertices. It is known that the cubic graphs on at most 12 vertices are DS

(see [79]), so by Proposition 1.32 SR(3, 3) is DS. Alternately, since there are only 19

cubic graphs on 10 vertices (see [83]), one can simply check their spectra and observe

that they are all DS, so by Proposition 1.32 SR(3, 3) is DS. When m = 4 and n ≥ 3

or n = 3 and m ≥ 4, we use GM-switching (Theorem 1.34) to find nonisomorphic

cospectral mates of SR(m,n).

Proposition 3.17. The graph SR(4, n) is not determined by its spectrum for n ≥ 3.

Proof. When m = 4 we see that V1 is a GM-switching set. Indeed, V1 is a clique of

4 vertices, each vertex in V2 has 2 neighbors in V1, and each vertex in V3 ∪ V4 has no
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neighbors in V1 (see Figure 3.7). Furthermore, the resulting graph G after switching is

Figure 3.7: The set V1 as a GM-switching set in SR(4, 3).

not isomorphic to SR(4, n). Indeed, it is not difficult to show that each vertex in V1 or

V3 gains at least one additional distance-2 neighbor after switching, while each vertex

in V2 or V4 retains the same number of distance-2 neighbors after switching, as we will

see below.

Note that when switching with V1 as the GM-switching set, the only possible

changes in edges are between a vertex in V1 and a vertex in V2. Also, for n ≥ 3

the diameter of SR(4, n) is 3 by Proposition 3.15. First consider a vertex v ∈ V1.

Without loss of generality, let v = (n, 0, 0, 0). The neighbors of v in SR(4, n) are

V1 \ {v} and
⋃
x+y=n{(x, y, 0, 0), (x, 0, y, 0), (x, 0, 0, y)}. Thus the distance-2 neighbors

of v in SR(4, n) are
⋃
x+y=n{(0, x, y, 0), (0, x, 0, y), (0, 0, x, y)} and

⋃
x+y+z=n{(x, y, z, 0),

(x, 0, y, z), (x, y, 0, z)} (as well as v itself), for a total of 3(n − 1) + 3
(
n−1

2

)
= 3

(
n
2

)
distance-2 neighbors (not counting v). After switching, the neighbors of v are V1 \

{v} and
⋃
x+y=n{(0, x, y, 0), (0, x, 0, y), (0, 0, x, y)}, so the distance-2 neighbors if v

in G are
⋃
x+y=n{(x, y, 0, 0), (x, 0, y, 0), (x, 0, 0, y)} and

⋃
x+y+z=n{(x, y, z, 0), (x, 0, y, z),

(x, y, 0, z), (0, x, y, z)} (as well as v itself), for a total of 3(n−1)+4
(
n−1

2

)
= 3
(
n
2

)
+
(
n−1

2

)
distance-2 neighbors (not counting v) in G. Note that if n = 2 then V3 is empty (and(

2−1
2

)
= 0), so there are no new distance-2 neighbors gained if n = 2. If n ≥ 3, then

v ∈ V1 has more distance-2 neighbors in G than in SR(4, n).
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Next, consider v ∈ V2. Without loss of generality, assume v = (a, b, 0, 0) for

some fixed a, b such that a+b = n. We see that the distance-2 neighbors of v in V3 and

V4 are the same in SR(4, n) and in G. Also, v has exactly two distance-2 neighbors in V1

in both SR(4, n) and G. If u ∈ V2 is a distance-2 neighbor of v in SR(4, n), then u and

v have a common neighbor in V1, V2, or V3. If they have a common neighbor in V2∪V3,

then u and v are still distance-2 neighbors in G, since they are still not neighbors and

they still have a common neighbor in V2 ∪ V3 (recall that only edges between V1 and

V2 are changed when switching). In SR(4, n), the distance-2 neighbors of v in V2 with

a common neighbor in V1 (that is, with common neighbor (n, 0, 0, 0) or (0, n, 0, 0)) are⋃
x+y=n,x 6=a{(x, 0, y, 0), (x, 0, 0, y), (0, y, x, 0), (0, y, 0, x)} (the requirement that x 6= a

ensures that the vertex is not a neighbor of v). We see immediately that these are

exactly the distance-2 neighbors of v in V2 with a common neighbor in V1 in G, though

the common neighbors in V1 are instead (0, 0, n, 0) or (0, 0, 0, n). Thus v ∈ V2 has the

same number of distance-2 neighbors in SR(4, n) and G.

Now we consider v ∈ V3. Without loss of generality, let v = (a, b, c, 0) for some

fixed a, b, c such that a + b + c = n. The distance-2 neighbors of v in V2, V3, and

V4 are unchanged by switching. Before switching, vertices (n, 0, 0, 0), (0, n, 0, 0), and

(0, 0, n, 0) are the distance-2 neighbors of v in V1. After switching, every vertex in V1

is a distance-2 neighbor of v. Thus v ∈ V3 has one more distance-2 neighbor in G than

in SR(4, n).

Finally, the distance-2 neighbors of a vertex in V4 are unchanged by switching.

Thus G is not isomorphic to SR(4, n).

Proposition 3.18. The graph SR(m, 3) is not determined by its spectrum for m ≥ 4.

Proof. For m ≥ 4 the diameter of SR(m, 3) is 3 by Proposition 3.15. Consider the set

C = {3e1, 2e1 + e2, e1 + 2e2, 3e2} ⊂ V (d, 3). Clearly C is a clique in SR(m, 3). Any

vertex with more than one nonzero entry in the last m − 2 coordinates is clearly not

adjacent to any vertex of C. As we will see below, every other vertex in V (m, 3) \C is

adjacent to exactly 2 vertices in C.
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Each vertex in the set {e1 + 2ej | j ≥ 3} is adjacent to e1 + 2e2 and 3e1.

Each vertex in the set {e2 + 2ej | j ≥ 3} is adjacent to 2e1 + e2 and 3e2. Each

vertex in the set {2e1 + ej | j ≥ 3} is adjacent to 2e1 + e2 and 3e1. Each vertex in

the set {2e2 + ej | j ≥ 3} is adjacent to e1 + 2e2 and 3e2. Each vertex in the set

{e1 + e2 + ej | j ≥ 3} is adjacent to e1 + 2e2 and 2e1 + e2. Finally, each vertex in the

set {3ej | j ≥ 3} is adjacent to 3e1 and 3e2. Thus C is a GM-switching set (see Figure

3.8).

Figure 3.8: The set {3e1, 2e1 + e2, e1 + 2e2, 3e2} as a GM-switching set in SR(4, 3).

Before switching, it is not difficult to show (using the same technique as in

the proof of Proposition 3.17) that the m vertices in V1 have distance-degree se-

quence
(
3(m− 1), 3

(
m−1

2

)
,
(
m−1

3

))
, the 2

(
m
2

)
vertices in V2 have distance-degree se-

quence
(
3(m− 1),

(
2m−3

2

)
,
(
m−2

3

))
, and the

(
m
3

)
vertices in V3 have distance-degree se-

quence
(
3(m− 1), 3

(
m−1

2

)
,
(
m−1

3

))
. After switching, the m−2 vertices in V1\C, the 2

(
m
2

)
vertices in V2, and them−2+

(
m−2

2

)
vertices in the set {e1+e2+ej | j ≥ 3}∪{ej+ek+e` |

j > k > ` ≥ 3} have not changed their distance-degree sequence, but the 2 vertices 3e1

and 3e2 now have distance-degree sequence
(
3(m− 1),

(
2m−3

2

)
,
(
m−2

3

))
, and the

(
m−2

2

)
vertices in the set {ej + ek + e` | j ∈ {1, 2}, k > ` ≥ 3} now have distance-degree

sequence
(
3(m− 1), 3

(
m−1

2

)
+ 1,

(
m−1

3

)
− 1
)
. It is not difficult to see that for m ≥ 4

this results in a graph which is not isomorphic to SR(m, 3).

It is worth noting that the cospectral mates obtained for SR(4, 3) in Propositions
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3.17 and 3.18 are not isomorphic to each other, so we have found 3 nonisomorphic

graphs with spectrum {91, 34, 13, −16, −36}. In fact, we found that there are at

least 336 pairwise nonisomorphic graphs cospectral to SR(4, 3), obtained by repeated

GM-switching with respect to regular subgraphs of size 4.

3.10 Multiplicity of the Smallest Eigenvalue

As we mentioned in Section 3.3, Martin and Wagner [68] constructed eigenvec-

tors for the eigenvalues −
(
m
2

)
and −n when n ≥

(
m
2

)
or n <

(
m
2

)
, respectively. For

details on these constructions, see Section 5.2. The number of linearly independent

eigenvectors that they construct for each eigenvalue is a lower bound for the multiplic-

ity of that eigenvalue. Thus Martin and Wagner proved the following Propositions.

Proposition 3.19. The multiplicity of the eigenvalue −
(
m
2

)
in SR(m,n) is at least(n−(m−1

2 )
m−1

)
.

Note that this multiplicity is 0 when n <
(
m
2

)
. The Mahonian number M(m,n)

is the number of permutations on m letters that have precisely n inversions (see [88]).

Proposition 3.20. The multiplicity of the eigenvalue −n in SR(m,n) is at least

M(m,n).

Note that this multiplicity is 0 when n >
(
m
2

)
As we have mentioned (see Con-

jecture 3.4), Martin and Wagner conjectured that the smallest eigenvalue of SR(m,n)

is max{−n,−
(
m
2

)
}, which we proved in Section 3.3 (see Proposition 3.5). Martin and

Wagner also conjectured that the multiplicity given in Proposition 3.20 is correct.

Conjecture 3.21. ([68, Conjecture 3.9]) The multiplicity of the eigenvalue −n in

SR(m,n) is exactly M(m,n).

We prove Conjecture 3.21 and also confirm that the multiplicity in Proposition

3.19 is correct.

Proposition 3.22. The multiplicity of the eigenvalue −
(
m
2

)
in SR(m,n) is

(n−(m−1
2 )

m−1

)
.

The multiplicity of the eigenvalue −n in SR(m,n) is M(m,n).
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The proof below, primarily due to Brouwer, is substantially unchanged from

[13].

Proof. We first consider the multiplicity of the eigenvalue −
(
m
2

)
.

For each vertex u, and 1 ≤ j < k ≤ m, let Cjk(u) be the (j, k)-clique on u, that

is the set of all vertices v with vi = ui for i 6= j, k. An eigenvector a = (au) for the

eigenvalue −
(
m
2

)
must be a common eigenvector of all Ajk for the eigenvalue −1 (see

the proof to Proposition 3.3). That means that
∑

v∈C av = 0 for each set C = Cjk(u).

Order the vertices by u > v when ud > vd when d = duv is the largest index

where u, v differ. Suppose ui = s for some index i and s ≤ m−i−1. We can express au

in terms of av for smaller v with duv ≥ m− s via
∑

v∈C av = 0, where C = Ci,m−s(u).

Indeed, this equation will express au in terms of av where ui + um−s = vi + vm−s and

vj = uj for j 6= i,m−s. If vi > s this is not a problem since vm−s < um−s. If t = vi < s,

then by induction av in its turn can be expressed in terms of aw where w is smaller

and dvw ≥ m− t > m− s, so that w is smaller than u, and duw > m− s.

In this way we expressed au when ui ≤ m− i− 1 for some i. The free au have

ui ≥ m− i for all i, and the vector u′ with u′i = ui− (m− i) is nonnegative and sums to

n−
(
m
2

)
. There are

(n−(m
2 )+m−1

m−1

)
=
(n−(m−1

2 )
m−1

)
such vectors, so this is an upper bound for

the multiplicity. We recall that by Proposition 3.19 this is also a lower bound. Thus

the multiplicity of the eigenvalue −
(
m
2

)
is exactly

(n−(m−1
2 )

m−1

)
.

By Proposition 3.20 the eigenvalue −n has multiplicity at least as large as the

Mahonian M(m,n). We first note that the Mahonian number M(m,n) is equal to the

coefficient of tn in the product
∏m

i=2(1 + t+ · · ·+ ti−1) [88, Sequence #A008302].

Define N as in the proof of Proposition 3.5. Since A+nI = NN>, the multiplic-

ity of the eigenvalue −n is the nullity of N . We have already a lower bound, M(m,n),

so we need only to show that this is also an upper bound.

We first define a matrix P , and observe that N and P have the same column

space, and hence the same rank. For u, v ∈ Nm, write u � v when ui ≤ vi for all i. Let

P be the 0-1 matrix with the same row and column indices (elements of Nm with sum
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m and sum smaller than m, respectively) where P(x,y) = 1 when y � x. Recall that

N is the 0-1 matrix with N(x,y) = 1 when x and y differ in precisely one coordinate

position. Let M(y) denote column y of the matrix M .

For d = n−
∑
yi we find that

N(y) =
d−1∑
i=0

(−1)i(d− i)
∑
z∈Wi

P (y + z),

where Wi is the set of vectors in {0, 1}m with sum i. Indeed, suppose that x and y

differ in j positions. Then j ≤ d, and N(x,y) = δ1j, while the x-entry of the right hand

side is
∑d

i=0(−1)i(d − i)
(
j
i

)
= j

∑j
i=1(−1)i−1

(
j−1
i−1

)
= j(1 − 1)j−1 = δ1j. We see that

N(y) and dP (y) differ by a linear combination of columns P (y′) where
∑
y′i >

∑
yi,

and hence that N and P have the same column space.

Aart Blokhuis remarked that the coefficient of tn in the product
∏m

i=2(1 + t +

· · ·+ ti−1) is precisely the number of vertices u satisfying ui < i for 1 ≤ i ≤ m. Thus,

it suffices to show that the rows of N (or P ) indexed by the remaining vertices are

linearly independent.

Consider a linear dependence between the rows of P indexed by the remaining

vertices, and let P ′ be the submatrix of P containing the rows that occur in this

dependence. Order vertices in reverse lexicographic order, so that u is earlier than u′

when uh < u′h and ui = u′i for i > h. Let x be the last row index of P ′ (in this order).

Let h be an index where the inequality xi < i is violated, so that xh ≥ h. Let ei be the

element of Nm that has all coordinates 0 except for the i-coordinate, which is 1. Let

z = x− heh. Let H = {1, . . . , h− 1}. For S ⊆ H, let χ(S) be the element of Nm that

has i-coordinate 1 if i ∈ S, and 0 otherwise.

Consider the linear combination p =
∑

S(−1)|S|P ′(z + χ(S)) of the columns

of P ′. We shall see that p has x-entry 1 and all other entries equal to 0. But that

contradicts the existence of a linear dependence.

If u is a row index of P ′, and not z � u, then pu = 0. If z � u, and zi < ui for

some i < h, then the alternating sum vanishes, and pu = 0. So, if pu 6= 0, then u agrees

with x in coordinates i, 1 ≤ i ≤ h− 1. For row x only S = ∅ contributes, and px = 1.
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Finally, if u 6= x then ui ≥ xi for i 6= h and
∑
xi =

∑
ui = n imply that uh < xh

and ui > xi for some i > h, which is impossible, since x is the reverse lexicographically

latest row index of P ′.

3.11 Spectrum of SR(m,n) for m,n ≥ 4

In the proof to Proposition 3.11 we saw that SR(m, 3) and the Johnson graph

J(m + 2, 3) are very similar graphs, and they have in common the eigenvalues of the

quotient matrix of a common equitable partition that is a refinement of the partition

{V1, V2, . . .}, splitting each set further by location of the nonzero elements. This can

be generalized to any m.

Both SR(m,n) and J(m + n − 1, n) are regular graphs of valency n(m − 1)

on
(
n+m−1
m−1

)
vertices. We partition the vertices of each graph into sets V S

i , where

S ⊂ {1, 2 . . . ,m} and |S| = i. In SR(m,n) the set V S
i consists of the vertices in

V (m,n) which are nonzero in the i coordinate if and only if i ∈ S. In J(m+ n− 1, n)

the set V S
i is the set of vertices containing every element of S and no other elements

in {1, . . . ,m}. One can show that this partition is equitable for both graphs, and the

corresponding quotient matrix is the same for both graphs (see Proposition 3.23 below).

Proposition 1.24 implies that the eigenvalues of this quotient matrix are eigenvalues

of both graphs. We find that these eigenvalues are precisely the eigenvalues of the

unrefined partition, but with larger multiplicities.

Proposition 3.23. The graphs SR(m,n) and J(m+n−1, n) have equitable partitions

with the same quotient matrix Q, where Q has eigenvalues (n − i)(m − i) − n with

multiplicity
(
m
i

)
for 0 ≤ i ≤ n − 1, and multiplicity

(
m
n

)
− 1 for i = n. In particular,

the spectrum of Q is a common part of the spectra of SR(m,n) and J(m+ n− 1, n).

We omit here the proof due to Brouwer; it can be found in [13].

Propositions 3.22 and 3.23 can be used to more easily find the spectrum of

SR(m,n) for fixed n. We first give an alternate proof of Proposition 3.11, which states

that the spectrum of SR(m, 3) is (3m − 3)1, (2m − 5)m, (m − 3)m−1, (m − 5)(
m
2 ),

(−3)m(m2−7)/6.
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Alternate proof of Proposition 3.11. Propositions 3.5 and 3.22 imply that −3 is the

smallest eigenvalue of SR(m, 3) with multiplicity M(m, 3) = m(m2−7)/6. Proposition

3.23 implies that (3m − 3)1, (2m − 5)m, and (m − 5)(
m
2 ) are part of the spectrum of

SR(m, 3). Thus we need only to show that m − 3 is an eigenvalue of SR(m, 3) with

multiplicity m− 1.

Fix an index h, 1 ≤ h ≤ m and consider the vector p indexed by V (m, 3) that

is 1 on vertices 2eh + ei, −1 on vertices eh + 2ei, and 0 elsewhere. It is straightforward

to verify that p is an eigenvector with eigenvalue m − 3 and the m vectors defined in

this way have only a single dependency (namely, they sum to 0). Thus m − 3 is an

eigenvalue of SR(m, 3) with multiplicity m− 1, and we are done.

An even simpler proof is that, once we know all the eigenvalues except (m −

3)m−1, the fact that the sum of the eigenvalues is the trace of A(m, 3), which is 0,

and the sum of the squares of the eigenvalues is the trace of (A(m, 3))2, which is the

number of vertices times the valency, we immediately have (m−3)m−1 as the remaining

eigenvalues. This follows because the sum of the other eigenvalues is −(m− 1)(m− 3)

and the sum of their squares is 3(m−1)
(
m+2
m−1

)
−(m−1)(m−3)2, so the remaining m−1

eigenvalues must sum to (m−1)(m−3) and their squares must sum to (m−1)(m−3)2.

Since the sum of numbers with fixed sum of squares is maximized when the numbers

are all equal, this implies that the remaining m−1 eigenvalues are all m−3. This proof

takes longer to write, but is conceptually simpler than the one above, which required

us to find the eigenvectors of the missing eigenvalues.

Using the same technique, we can find the spectrum for larger fixed n:

Proposition 3.24. The graph SR(m, 4) has spectrum given by Table 3.3.

Proof. Propositions 3.5 and 3.22 imply that −4 is the smallest eigenvalue of SR(m, 4)

with multiplicity M(m, 4) = m(m3 + 2m2 − 13m − 14)/24. Proposition 3.23 implies

that (4m − 4)1, (3m − 7)m, (2m − 8)(
m
2 ), and (m − 7)(

m
3 ) are part of the spectrum of

SR(m, 4). Thus we need only to show that (2m− 5)m, (m− 4)(
m
2 )−1, and (m− 6)(

m
2 )

are eigenvalues of SR(m, 4).
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Eigenvalue Multiplicity
4(m− 1) 1
3m− 7 m
2m− 5 m
2m− 8

(
m
2

)
m− 4

(
m
2

)
− 1

m− 6
(
m
2

)
m− 7

(
m
3

)
−4 m(m3 + 2m2 − 13m− 14)/24

Table 3.3: Spectrum of SR(m, 4).

By Proposition 1.24, any eigenvector for one of the missing eigenvalues sums to

zero on each part of the partition from Proposition 3.23, that is, on each set of vertices

with given support S. Since there are unique vertices with support of sizes 1 or 4, these

eigenvectors are 0 there, and we need only look at the vertices 3ei + ej and 2ei + 2ej

and 2ei + ej + ek.

Fix an index h, 1 ≤ h ≤ m and consider the vector p (indexed by the vertices)

that vanishes on each vertex where h is not in the support, is −1 on 2eh + 2ei and

on 3eh + ei, is 2 on eh + 3ei, is −2 on 2eh + ei + ej, and is 1 on eh + 2ei + ej. It

is straightforward to verify that this is an eigenvector with eigenvalue 2m − 5, and

that the m vectors defined in this way are linearly independent. Thus (2m − 5)m are

eigenvalues of SR(m, 4).

Fix a pair of indices h, i, 1 ≤ h < i ≤ m, and consider the vector p (indexed

by the vertices) that is 1 on eh + 3ej, 2ei + 2ej and 2eh + ei + ej, is −1 on ei + 3ej,

2eh + 2ej and eh + 2ei + ej, and is 0 elsewhere. It is straightforward to verify that this

is an eigenvector with eigenvalue m− 6, and that the
(
m
2

)
vectors defined in this way

are linearly independent. Thus (m− 6)(
m
2 ) are eigenvalues of SR(m, 4).

Having found all desired eigenvalues except one, it is not necessary to construct

eigenvectors for the final one. By the same argument following the alternate proof to

Proposition 3.11, and noting that the sum of the known eigenvalues is −(
(
m
2

)
−1)(m−4)

and the sum of their squares is 4(m − 1)
(
m+3
m−1

)
− (
(
m
2

)
− 1)(m − 4)2, we find that the
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remaining eigenvalues are (m− 4)(
m
2 )−1

For larger values of m and n, we have only conjectures and tables of spectra.

For the first several values of m, the spectrum of SR(m, 5) is given by Table 3.4. The

Eigenvalue Multiplicity
5(m− 1) 1
4m− 9 m
3m− 7 m
3m− 11

(
m
2

)
2m− 5 m− 1
2m− 7

(
m
2

)
2m− 11

(
m
3

)
m− 5

(
m
3

)
− 1

m− 6 m(m− 2)
m− 8 2

(
m
3

)
m− 9

(
m
4

)
−5 M(m, 5)

Table 3.4: Spectrum of SR(m, 5).

spectra of SR(4, n) and SR(5, n) are given for the first several values of n in Tables

3.5 and 3.6. For SR(4, n), we give the following description of the spectrum, which is

correct for the values in the table.

Let am ↓ b denote sequence of eigenvalues and multiplicities found as follows:

the eigenvalues are the integers c with a ≥ c ≥ b, where the first multiplicity is m, and

each following multiplicity is 2 larger for even c, and 10 larger for odd c. For the first

several values of n, the spectrum of SR(4, n) consists of:

(i) (3n)1,

(ii) b4 for all odd integers b, where 2n− 3 ≥ b ≥ n− 1,

(iii)
n = 2r (n− 4)3n−1, (n− 6)6, (n− 7)16 ↓ (n− 8)/2

n = 2r + 1 (n− 2)3, (n− 4)3n−3, (n− 6)9, (n− 7)12 ↓ (n− 7)/2
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(iv) for q = dn/3− 4e:
n = 4s (2s− 5)3n−12, (2s− 6)3n−26 ↓ q

n = 4s+ 1 (2s− 4)3n−7, (2s− 5)3n−21, (2s− 6)3n−23 ↓ q

n = 4s+ 2 (2s− 4)3n−16, (2s− 5)3n−22 ↓ q

n = 4s+ 3 (2s− 3)3n−3, (2s− 4)3n−25, (2s− 5)3n−19 ↓ q

(v) if n ≡ 0 (mod 3) one additional eigenvalue n/3− 4,

(vi)

n = 6t (2t− 5)4n−12, (2t− 6)4n−16, (2t− 7)4n−16 ↓ (−5)

n = 6t+ 1 (2t− 4)4n−32, (2t− 5)4n−7, (2t− 6)4n−20, (2t− 7)4n−14 ↓ (−5)

n = 6t+ 2 (2t− 4)4n−24, (2t− 5)4n−8, (2t− 6)4n−21, (2t− 7)4n−12 ↓ (−5)

n = 6t+ 3 (2t− 4)4n−16, (2t− 5)4n−12, (2t− 6)4n−20 ↓ (−5)

n = 6t+ 4 (2t− 3)4n−28, (2t− 4)4n−11, (2t− 5)4n−16, (2t− 6)4n−18 ↓ (−5)

n = 6t+ 5 (2t− 3)4n−20, (2t− 4)4n−12, (2t− 5)4n−17, (2t− 6)4n−16 ↓ (−5)

(vii) (−6)(
n−3
3 ).
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n Spectrum of SR(4, n)
0 01

1 31 −13

2 61 14 −25

3 91 34 13 −16 −36

4 121 54 34 011 −26 −34 −45

5 151 74 54 33 112 −19 −28 −34 −48 −53

6 181 94 74 54 217 06 −116 −23 −312 −48 −58 −61

7 211 114 94 74 53 318 19 012 −118 −321 −48 −514 −64

8 241 134 114 94 74 423 26 116 018 −112 −28 −324 −411 −520 −610

9 271 154 134 114 94 73 524 39 212 122 020 −17 −220 −324 −416 −526 −620

10 301 174 154 134 114 94 629 46 316 218 128 014 −112 −229 −324 −422 −532 −635

11 331 194 174 154 134 114 93 730 59 412 322 224 130 08 −124 −232 −327 −428 −538

−656

12 361 214 194 174 154 134 114 835 66 516 418 328 230 124 011 −136 −232 −332 −434

−544 −684

13 391 234 214 194 174 154 134 113 936 79 612 522 424 334 232 118 020 −145 −232

−338 −440 −550 −6120

14 421 254 234 214 194 174 154 134 1041 86 716 618 528 430 340 226 120 032 −148 −235

−344 −446 −556 −6165

15 451 274 254 234 214 194 174 154 133 1142 99 812 722 624 534 436 342 220 127 044

−148 −240 −350 −452 −562 −6220

Table 3.5: Spectra of SR(4, n).
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n Spectrum of SR(5, n)
0 01

1 41 −14

2 81 25 −29

3 121 55 24 010 −315

4 161 85 55 210 19 −110 −210 −420

5 201 115 85 54 410 310 110 09 −125 −320 −45 −522

6 241 145 115 85 610 510 49 310 130 010 −110 −245 −425 −515 −620

7 281 175 145 115 814 710 610 510 329 210 135 −155 −216 −335 −425 −525 −625 −715

8 321 205 175 145 115 1010 910 810 719 520 410 340 214 115 075 −125 −220 −372 −415

−555 −625 −730 −89

9 361 235 205 175 145 1210 1114 1010 920 720 69 540 410 345 25 186 045 −140 −250

−365 −451 −560 −645 −740 −825 −94

10 401 265 235 205 175 1415 1310 1210 1120 109 920 740 610 554 410 325 2110 150 036

−190 −260 −365 −4100 −555 −680 −750 −845 −915 −101

11 441 295 265 235 205 175 1610 1510 1414 1320 1210 1120 939 810 750 610 560 3125 280

155 050 −1137 −250 −3115 −4110 −580 −6104 −775 −865 −935 −105

12 481 325 295 265 235 205 1810 1715 1610 1520 1410 1329 1130 1010 950 814 760 610

540 4135 386 270 185 090 −1140 −276 −3175 −495 −5140 −6110 −7119 −885 −965

−1015

13 521 355 325 295 265 235 2015 1910 1810 1724 1610 1530 1330 129 1150 1010 960 815

765 5170 4105 385 271 1145 0110 −1140 −2145 −3201 −495 −5215 −6110 −7175 −8109

−9105 −1035

14 561 385 355 325 295 265 235 2210 2110 2015 1920 1810 1730 169 1530 1350 1210 1164

1010 970 815 745 6165 5130 495 3105 295 1202 0110 −1180 −2215 −3200 −4134 −5275

−6125 −7235 −8140 −9155 −1070

Table 3.6: Spectra of SR(5, n).
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Chapter 4

LARGE REGULAR GRAPHS WITH FIXED VALENCY AND SECOND
EIGENVALUE

4.1 The Second Eigenvalue of Regular Graphs

The second adjacency eigenvalue of a regular graph is a parameter of interest

in the study of graph connectivity and expanders (see [3, 17, 54], for example). In

this chapter, we investigate the maximum order v(k, λ) of a connected k-regular graph

whose second largest eigenvalue is at most some given parameter λ. As a consequence

of work of Alon and Boppana, and of Serre [3, 25, 66, 71, 73, 74, 86], we know that

v(k, λ) is finite for λ < 2
√
k − 1. The recent proof of Marcus, Spielman and Srivastava

[67] of the existence of infinite families of Ramanujan graphs of any degree at least 3

implies that v(k, λ) is infinite for λ ≥ 2
√
k − 1.

In this chapter, we will investigate v(k, λ) for various values of k and λ. The

graphs meeting this bound are called extremal expanders. The parameter v(k,−1)

can be determined using the fact that a graph with second eigenvalue at most −1 is a

complete graph (see Lemma 1.29 and the following comments). Thus v(k,−1) = k+ 1

and the unique graph meeting this bound is Kk+1. The parameter v(k, 0) can be

determined using the fact that a graph with exactly one positive eigenvalue must

be a complete multipartite graph (see Lemma 1.30). Indeed, the largest k-regular

multipartite graph is clearly the complete bipartite graph Kk,k, since a k-regular t-

partite graph has tk/(t− 1) vertices. Thus v(k, 0) = 2k, and Kk,k is the unique graph

meeting this bound. The values of v(k,−1) and v(k, 0) also follow from Theorem 4.11

(see Section 4.4).
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Results from Bussemaker, Cvetković, and Seidel [19] and Cameron, Goethals,

Seidel, and Shult [21] give a characterization of the regular graphs with smallest eigen-

value λmin ≥ −2. Since by Proposition 1.20 the second eigenvalue of the complement of

a regular graph is λ2 = −1−λmin, the regular graphs with second eigenvalue λ2 ≤ 1 are

also characterized. This characterization can be used to find that v(k, 1) (see Section

4.4).

The values remaining to be investigated are v(k, λ) for 1 < λ < 2
√
k − 1. The

parameter v(k, λ) has also been studied by Teranishi and Yasuno [92] from a design

theory perspective, Nozaki [76] from a linear programming point of view, Koledin and

Stańıc [58, 59, 89] from a spectral graph theory perspective, Høholdt and Justesen [53],

and Richey, Shutty and Stover [81]. Høholdt and Justesen [53] focused on bipartite

regular graphs and applied their results to the construction of graph codes while Richey,

Shutty, and Stover [81] implemented Serre’s quantitative version of the Alon-Boppana

Theorem [86] to obtain upper bounds for v(k, λ) for several values of k and λ. For

certain values of k and λ, these authors made some conjectures about v(k, λ).

In Section 4.3 we determine v(k, λ) explicitly for several values of (k, λ), con-

firming or disproving several conjectures in [81], and we find the graphs (in many cases

unique) which meet our bounds. A summary of our bounds is contained in the following

table.

(k, λ) v(k, λ) Graph meeting bound Unique? Reference

(3,
√

2) 14 Heawood graph yes Proposition 4.6

(3,
√

3) 18 Pappus graph yes Proposition 4.9

(3,γ ≈ 1.8662) 18 see Figure 4.7(b) yes Proposition 4.9

(3,2) 30 Tutte-Coxeter graph yes Proposition 4.4

(4,
√

5− 1) 10 circulant graph Ci10(1, 4) yes Proposition 4.7

(4,2) 35 Odd graph O4 yes Proposition 4.5

(4,3) ≥ 728 incidence graph of GH(3, 3) ? Proposition 4.8

Portions of the remainder of this chapter represent joint work with Sebastian

Cioabă, Jack Koolen, and Hiroshi Nozaki on the paper “Large regular graphs of given
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valency and second eigenvalue” [27]. In particular, Koolen gave the outline of a different

proof of Proposition 4.4 that gave me the idea for Lemma 4.3. Koolen also gave the

idea for Lemma 4.2 without proof. Theorem 4.11 and Proposition 4.12 are due to

Koolen and Nozaki. The remaining results are mine.

4.2 Interlacing Bound

In this section we make use of Proposition 1.28 to find a bound on the number

of vertices in a graph with induced subgraphs with certain properties. The idea is that

if G satisfies λ2(G) ≤ λ and G contains a subgraph H such that ρ(H) > λ, then the

subgraph K induced by Γ≥2(H) must satisfy ρ(K) ≤ λ. Indeed, if ρ(K) > λ, then the

subgraph of G induced by V (H) ∪ Γ≥2(H) is isomorphic to the disjoint union H +K,

which satisfies λ2(H+K) ≥ min(ρ(H), ρ(K)) > λ, which contradicts Proposition 1.28.

From ρ(K) ≤ λ we can bound |V (G)| in terms of |V (H)| and |E(H)|. Further, using

Lemma 4.2 we can make a similar argument even if ρ(H) = λ. The interlacing bound

is given in Lemma 4.3.

The following lemma can be easily verified.

Lemma 4.1. Each of the graphs in Figure 4.1 has spectral radius greater than 2.
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Figure 4.1: Two small graphs with spectral radius greater than 2.

Lemma 4.2. Suppose G is a connected, k-regular graph with second largest eigenvalue

λ2(G) ≤ λ < k, and H is an induced subgraph of G with d(H) ≥ λ. Then for

the subgraph K induced by Γ≥2(H) we have d(K) ≤ λ, with equality only if d(H) =

λ2(G) = λ.
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Proof. Consider the quotient matrix Q of the partition {V (H),Γ1(H),Γ≥2(H)} of

V (G). We have

Q =


α k − α 0

γ k − (γ + ε) ε

0 k − β β

 ,

where α = d(H), β = d(K), and γ and ε are the average numbers of neighbors in H

and K, respectively, of the vertices in Γ1(H). By Proposition 1.27, the eigenvalues of

Q interlace those of G, so we must have λ2(Q) ≤ λ2(G) ≤ λ. It is straightforward to

verify that λ1(Q) = k and

λ2(Q) =
1

2

(
α + β − (γ + ε) +

√
∆
)
, (4.1)

where ∆ = (α + β − (γ + ε))2 − 4(αβ − βγ − αε). By hypothesis we have α ≥ λ. If

also β ≥ λ, then we find that α = β = λ2(Q) = λ, as we will prove below.

Indeed, if both α > λ and β > λ, then by Proposition 1.28 we have λ2(G) ≥

λ2(H + K) > λ, a contradiction. Suppose α ≥ λ and β ≥ λ. If α = β = λ, then (4.1)

becomes λ2(Q) = λ. Otherwise we must have α > β = λ or β > α = λ. If
√

∆ ≥ γ+ ε,

then clearly λ2(Q) > λ, a contradiction. If
√

∆ < γ + ε, then ∆ < (γ + ε)2, which

implies (α−β)(α−β+2(ε−γ)) < 0. Thus we have either α > β and ε < γ− 1
2
(α−β),

or β > α and γ < ε − 1
2
(β − α). Suppose the former is true. Then β = λ and we can

write α = β + s = λ+ s and ε = γ − s
2
− t for some s, t > 0. Then (4.1) becomes

λ2(Q) =
1

4

(
4λ− 4γ + 3s+ 2t+

√
∆′
)
,

where ∆′ = 16γ2+(s−2t)2−8γ(s+2t). If
√

∆′ > 4γ−3s−2t, then clearly λ2(Q) > λ, a

contradiction. If
√

∆′ ≤ 4γ−3s−2t, then ∆′ ≤ (4γ−3s−2t)2, which implies γ ≤ s
2
+t.

However, this implies ε = γ− s
2
− t ≤ 0, a contradiction. If β > α and γ < ε− 1

2
(β−α),

the same argument holds (simply swap the roles of α and β and of γ and ε in the above

argument). Thus we cannot have α ≥ λ and β ≥ λ unless α = β = λ, so we must have

β < λ or α = β = λ2(Q) = λ.
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Lemma 4.3. Suppose G is a connected, k-regular graph with second largest eigenvalue

λ2(G) ≤ λ < k. If G contains an induced subgraph H on s vertices with t edges and

either d(H) ≥ λ or ρ(H) > λ, then

|V (G)| ≤ s+
2k − λ− 1

k − λ
(ks− 2t). (4.2)

Proof. Since G is k-regular, we have |E(H,Γ1(H))| = ks−2t, which implies |Γ1(H)| ≤

ks − 2t. We will show that |Γ≥2(H)| ≤ k−1
k−λ |Γ1(H)|, which completes the proof that

(4.2) holds.

First, note that each vertex in Γ1(H) has a neighbor in H, so each such vertex

has at most k−1 neighbors in Γ≥2(H). Then |E(Γ1(H),Γ≥2(H))| ≤ (k−1) |Γ1(H)|. If

d(H) ≥ λ then by Lemma 4.2 we have d(K) ≤ λ, where K is the subgraph induced by

Γ≥2(H). If not, then ρ(H) > λ, so ρ(K) ≤ λ by Proposition 1.28 (and thus d(K) ≤ λ

also by Proposition 1.12). In either case we have d(K) ≤ λ. Since G is k-regular, this

implies that the average number of neighbors in Γ1(H) of the vertices in Γ≥2(H) is

at least k − λ, so |E(Γ1(H),Γ≥2(H))| ≥ (k − λ) |Γ≥2(H)|. Thus (k − λ) |Γ≥2(H)| ≤

(k − 1) |Γ1(H)|, which completes the proof.

Lemma 4.3 is especially useful when λ ≤ 2, since there are many graphs H with

d(H) ≥ 2 or ρ(H) > 2.

For convenience we note that in the 3-regular case with λ = 2, (4.2) becomes

|V (G)| ≤ 10s−6t and in the 4-regular case with λ = 2, (4.2) becomes |V (G)| ≤ 11s−5t.

4.3 Results of the Interlacing Bound

Richey, Shutty, and Stover [81] show that v(3, 2) ≤ 105, but they note that

the largest 3-regular graph with λ2 ≤ 2 that they are aware of is the Tutte-Coxeter

graph on 30 vertices. Richey, Shutty, and Stover [81] conjecture that v(3, 2) = 30. We

confirm their conjecture and show that the Tutte-Coxeter graph is the unique graph

which meets this bound.
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Figure 4.2: The Tutte–Coxeter graph.

Proposition 4.4. If G is a connected, 3-regular graph with second largest eigenvalue

λ2(G) ≤ 2, then G has at most 30 vertices, with equality if and only if G is the Tutte-

Coxeter graph (see Figure 4.2).

Proof. Note that G cannot be a tree, so G contains a cycle Cm for some m ≥ 3. Note

also that Cm has m vertices and edges and d(Cm) = 2. Thus, if the girth of G is 3,

4, 5, 6, 7, or 8, then Lemma 4.3 implies that G has at most 12, 16, 20, 24, 28, or 32

vertices, respectively.

Also, if the girth of G is m > 5, then G induces a subgraph isomorphic to the

graph in Figure 4.1(a). Indeed, G induces a Cm but does not induce Ci for i < m.

Every vertex in the Cm must have a neighbor outside the Cm, and no two vertices in

the Cm can share a neighbor outside the Cm (since the girth is m). In particular, there

is a pair of vertices adjacent in the Cm each with a distinct neighbor outside the Cm.

These neighbors are not adjacent, since the girth is m > 5. Thus as claimed G induces

a subgraph isomorphic to the graph in Figure 4.1(a) (which has 7 vertices and 6 edges),

so Lemmas 4.1 and 4.3 imply G has at most 34 vertices. By Lemma 1.1, if the girth

of G is more than 8 then G must have at least 46 vertices, so the girth of G must be

at most 8 and we have |V (G)| ≤ 32.
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If G has 30 or 32 vertices, then the girth of G must be 8. Partitioning the

vertices of G according to their distance from a vertex u in a cycle of length 8, we

find that |Γ1(u)| = 3, |Γ2(u)| = 6, |Γ3(u)| = 12, and |Γ≥4(u)| = m, m ∈ {8, 10}, with

quotient matrix

Q =



0 3 0 0 0

1 0 2 0 0

0 1 0 2 0

0 0 1 0 2

0 0 0 β 3− β


,

where β is the average number of neighbors in Γ3(u) of the vertices in Γ≥4(u). Note

that this implies mβ = 24 (just count |E(Γ3(u),Γ≥4(u))| in two ways). Proposition

1.27 implies that λ2(Q) ≤ λ2(G) ≤ 2. If |V (G)| = 32, then m = 10, β = 12/5, and

λ2(Q) = γ ≈ 2.04 > 2, where γ is the largest root of f(x) = 5x4 +12x3−23x2−48x+6,

a contradiction. If |V (G)| = 30, then m = 8, β = 3, and by Lemma 1.25 G must be a

distance-regular graph with intersection array {3, 2, 2, 2; 1, 1, 1, 3}. The Tutte-Coxeter

graph is known to be the unique distance-regular graph with this intersection array

(see, for example, [14, Theorem 7.5.1]).

Thus G has at most 30 vertices, with equality if and only if G is the Tutte-

Coxeter graph.

Richey, Shutty, and Stover [81] show that v(4, 2) ≤ 77 and conjecture that the

largest 4-regular graph with λ2 ≤ 2 is the so-called rolling cube graph on 24 vertices

(that is, the bipartite double of the cuboctohedral graph). We disprove their conjecture

and show that v(4, 2) = 35 and the Odd graph O4 is the unique graph which meets

this bound.

Proposition 4.5. If G is a connected, 4-regular graph with second largest eigenvalue

λ2(G) ≤ 2, then |V (G)| ≤ 35, with equality if and only if G is the Odd graph O4 (see

Figure 4.3).
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Figure 4.3: The Odd graph O4.

Proof. A similar argument to the one above using Lemma 4.3 shows that if G has girth

3, 4, 5, or 6, then G has at most 18, 24, 30, or 36 vertices, respectively. A 4-regular

graph with girth at least 5 must induce a subgraph isomorphic to the graph in Figure

4.1(b), which implies G has at most 41 vertices by Lemmas 4.1 and 4.3. By Lemma 1.1,

if the girth of G is more than 6 then G must have at least 53 vertices, a contradiction.

Thus G has girth at most 6 and at most 36 vertices.

If G has more than 30 vertices, then G must have girth 6. Partitioning the

vertices according to their distance from a vertex u in a cycle of length 6, we find that

|Γ1(u)| = 4, |Γ2(u)| = 12, |Γ≥3(u)| = m = |V (G)| − 17, with quotient matrix

Q =


0 4 0 0

1 0 3 0

0 1 0 3

0 0 β 4− β

 , (4.3)

where β is the average number of neighbors in Γ2(u) of the vertices in Γ≥3(u). Propo-

sition 1.27 implies that λ2(Q) ≤ λ2(G) ≤ 2. Note that we have mβ = 36 (by counting
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|E(Γ2(u),Γ≥3(u))| in two ways). Thus if |V (G)| = 36 then m = 19, β = 36/19 and

λ2(Q) = γ ≈ 2.02, where γ is the largest root of f(x) = 19x3 + 36x2 − 97x − 108, a

contradiction. Thus |V (G)| ≤ 35.

If |V (G)| = 35, then as seen above G has girth 6 and thus has quotient matrix Q

from (4.3) with β = 2. Then λ2(Q) = 2 with eigenvector y = (−6,−3, 0, 1)>. Since we

have λ2(G) ≤ 2, Proposition 1.27 implies that λ2(G) = 2. Let S be the characteristic

matrix of the partition with quotient matrix Q, so that S>A(G)S = KQ and S>S = K,

where K = diag(1, 4, 12, 18). Since G is 4-regular, we have λ1(G) = 4 and A1 = 41,

and Rayleigh’s inequalities (Proposition 1.26) give us x>A(G)x
x>x

≤ λ2(G) = 2 for any

x ∈ span{1}⊥ (that is, for any x whose entries sum to 0), with equality if and only if

x is an eigenvector of A(G) with eigenvalue 2. For v ∈ V (G) we have

(Sy)v =



−6, v = u,

−3, v ∈ Γ1(u),

0, v ∈ Γ2(u),

1, v ∈ Γ≥3(u),

and it is straightforward to verify that Sy ∈ span{1}⊥ and (Sy)>A(G)Sy
(Sy)>Sy

= y>S>A(G)Sy
y>S>Sy =

y>KQy
y>Ky

= 2, which implies that Sy is an eigenvector of A(G) with eigenvalue 2. Then

for any v ∈ Γ≥3(u) we have 2 = 2(Sy)v = (A(G)Sy)v =
∑

w∼v(Sy)w, which, since

vertices in Γ≥3(u) have neighbors only in Γ2(u) and Γ≥3(u), implies that v has exactly

2 neighbors in Γ≥3(u). This implies that the partition is equitable, so by Lemma 1.25

G is distance-regular with intersection array {4, 3, 3; 1, 1, 2}. The Odd graph O4 is the

unique distance-regular graph with that intersection array (see [72]), which implies G

is O4.

In addition to finding v(k, λ), it is also interesting to find the smallest possible

second eigenvalue greater than 1 among k-regular graphs for fixed k (there is always

a k-regular graph with second eigenvalue 1, for example the complement of the line

graph of K2,k+1). Below we find this eigenvalue for k = 3 and k = 4.

106



Figure 4.4: The Heawood graph.

Proposition 4.6. If G is a connected, 3-regular graph with λ2(G) > 1, then λ2(G) ≥
√

2, with equality if and only if G is the Heawood graph (see Figure 4.4).

Proof. We first note that the average degree of any cycle is 2 >
√

2. The average

degree of K1,3 is 3/2 >
√

2. If G has girth 3 or 4, then Lemma 4.3 implies |V (G)| ≤
6
7
(
√

2 + 10) ≈ 9.78 or 8
7
(
√

2 + 10) ≈ 13.04, respectively. Since G is 3-regular, this

implies |V (G)| ≤ 8 or 12, respectively. If G has girth more than 3, then G induces

K1,3, so Lemma 4.3 implies |V (G)| ≤ 2
7
(53 + 6

√
2) ≈ 17.57. Since G is 3-regular, this

implies |V (G)| ≤ 16. Lemma 1.1 implies that a graph with girth more than 6 has at

least 22 vertices, so G has girth at most 6.

We partition the vertices of G by P1 = {V (H),Γ1(H),Γ≥2(H)}, where H is a

subgraph of G isomorphic to Cm, where m is the girth of G. This partition has quotient

matrix Q given by

Q =


2 1 0

γ 3− (α + γ) α

0 β 3− β

 ,

where γ |Γ1(H)| = m (by counting |E(H,Γ1(H))|) and α |Γ1(H)| = β |Γ≥2(H)| (by

counting |E(Γ1(H),Γ≥2(H))|). By Proposition 1.27 we must have λ2(Q) ≤
√

2.

We first suppose G has girth 3. Lemma 1.1 implies V (G) ≥ 4, so 4 ≤ |V (G)| ≤

8. If |V (G)| = 4, then G ∼= K4, and we have λ2(G) = −1. If |V (G)| = 6, it is

straightforward to show that G ∼= C3�K2, and we have λ2(G) = 1. Either case is a

contradiction. If |V (G)| = 8 then Γ1(H) has 2 or 3 vertices. If |Γ1(H)| = 2, then we
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have |Γ≥2(H)| = 3, γ = 3/2, and depending on whether there is an edge in Γ1(H) or

not we have α = 1/2 or 3/2, β = 1/3 or 1, and λ2(Q) = 1
3
(
√

13 + 4) ≈ 2.54 or 2,

respectively. Either case is a contradiction. If |Γ1(H)| = 3, then |Γ≥2(H)| = 2, γ = 1,

and depending on whether there is an edge in Γ≥2(H) or not we have β = 2 or 3,

α = 4/3 or 2, and λ2(Q) = 5/3 or 1
2
(
√

17 − 1) ≈ 1.56, respectively. Either case is a

contradiction. Thus G cannot have girth 3.

Suppose G has girth 4. Then Lemma 1.1 implies V (G) ≥ 6, so we have 6 ≤

|V (G)| ≤ 12. If |V (G)| = 6, then G ∼= K3,3 and we have λ2(G) = 0. If |V (G)| = 8,

then it is straightforward to verify that G must either be the 3-cube Q3 or the graph

in Figure 4.5. In either case we have λ2(G) = 1, a contradiction. If |V (G)| = 10,

t t
t tt t
t t
J
J

�� ��

�� ��
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��

Figure 4.5: A 3-regular graph on 8 vertices with girth 4.

then Γ1(H) has 2, 3, or 4 vertices. If |Γ1(H)| = 2, then |Γ≥2(H)| = 4, γ = 2, α = 1,

β = 1/2, and λ2(Q) = 1
4
(
√

41 + 3) ≈ 2.35, a contradiction. If |Γ1(H)| = 3, then

|Γ≥2(H)| = 3, γ = 4/3, and α = β. Then α ≤ 5/3 (because the center entry of Q,

3 − (α + γ), must be nonnegative), so β ≤ 5/3, which implies Γ≥2(H) has at least

2 edges. Since G has girth 4, Γ≥2(H) cannot have 3 edges, so Γ≥2(H) has exactly 2

edges, α = β = 5/3, and λ2(Q) = 1
2
(
√

241 + 7) ≈ 1.88, a contradiction. If |Γ1(H)| = 4,

then |Γ≥2(H)| = 2, γ = 2, and depending on whether there is an edge in Γ≥2(H) or not

we have β = 2 or 3, α = 1 or 3/2, and λ2(Q) = 1
2
(
√

5 + 1) ≈ 1.62 or 3/2, respectively.

Either case is a contradiction. If |V (G)| = 12, then Γ1(H) must be a coclique on 4

vertices (otherwise |E(Γ1(H),Γ≥2(H))| ≤ 6, and Lemma 4.2 implies d(Γ≥2(H)) ≤
√

2,

so |E(Γ1(H),Γ≥2(H))| ≥ (3−
√

2) |Γ≥2(H)|, so we have |Γ≥2(H)| < 6/(3−
√

2) ≈ 3.78,

which implies |V (G)| < 11.78, a contradiction). Then we have |Γ1(H)| = |Γ≥2(H)| = 4,

γ = 1, α = β = 2, and λ2(Q) =
√

3. This is a contradiction, so G cannot have girth 4.

Suppose G has girth 5. Then Lemma 1.1 implies V (G) ≥ 10, so we have

10 ≤ |V (G)| ≤ 16. The Petersen graph with 10 vertices and λ2 = 1 is the unique
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(3, 5)-cage (see [52]), so G cannot have 10 vertices. Note we must have |Γ1(H)| = 5

and γ = 1, since vertices in H cannot have common neighbors outside of H (otherwise

the girth is at most 4, a contradiction). If |V (G)| = 12, then we have |Γ≥2(H)| = 2,

and depending on whether there is an edge in Γ≥2(H) or not we have β = 2 or 3,

α = 4/5 or 6/5, and λ2(Q) = 1
5
(2
√

6 + 3) ≈ 1.58 or 1
10

(
√

241− 1) ≈ 1.45, respectively.

Either case is a contradiction.

If |V (G)| = 14 or 16, partition the vertices of G according to their distance from

a fixed vertex u. We have |Γ1(u)| = 3, |Γ2(u)| = 6, and |Γ≥3(u)| = k ∈ {4, 6}. Then G

has quotient matrix Q given by
0 3 0 0

1 0 2 0

0 1 2− α α

0 0 β 3− β

 , (4.4)

where kβ = 6α (by counting |E(Γ2(u),Γ≥3(u))|). As before, Proposition 1.27 implies

λ2(Q) ≤
√

2. We may assume there is an edge in Γ2(u) since G has girth 5, so we have

0 < α ≤ 5/3. The matrix Q has characteristic polynomial φQ(x) = (x− 3)f(x), where

f(x) = x3 +(α+β−2)x2 +(β−5)x−3α−2β+6. Thus λ1(Q) = 3. If |V (G)| = 14, we

have k = 4, 6α = 4β (so β = 3
2
α), f(

√
2) = (α−2)(3

√
2−2) ≤ (5/3−2)(3

√
2−2) < 0,

and f(3) = 42α > 0, so Q has an eigenvalue between
√

2 and 3, a contradiction. If

|V (G)| = 16, we have k = 6, α = β, f(
√

2) = 2 − 3
√

2 + (
√

2 − 1)α ≤ 2 − 3
√

2 +

5(
√

2 − 1)/3 < 0, and f(3) = 16α > 0, so Q has an eigenvalue between
√

2 and 3, a

contradiction. Thus G cannot have girth 5.

Finally, if G has girth 6, we again partition the vertices with respect to their

distance from a vertex u. As with girth 5 we have |Γ1(u)| = 3, |Γ2(u)| = 6, |Γ≥3(u)| = k,

and quotient matrix Q given by (4.4). As before, Proposition 1.27 implies λ2(Q) ≤
√

2.

Since the girth is 6 we have α = 2 and kβ = 12 (again by counting |E(Γ2(u),Γ≥3(u))|).

Then Q has characteristic polynomial φQ(x) = (x− 3)f(x), where f(x) = x3 + βx2 +

(β − 5)x− 2β. We have f(
√

2) =
√

2(β − 3) and f(3) = 2(5β + 6), so if β < 3 then Q

has an eigenvalue between
√

2 and 3, a contradiction. Thus β = 3, k = 4, |V (G)| = 14,
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and by Lemma 1.25 G is distance regular with intersection array {3, 2, 2; 1, 1, 3}. The

Heawood graph is the unique distance-regular graph with that intersection array (see

[9]), so G is the Heawood graph.

Note that this implies v(3,
√

2) = 14. We remark that Proposition 4.6 can also

be proved by a computer search once we have bounded V (G) depending on the girth

as in the beginning of the proof. One can simply check the girth 3 graphs on at most 8

vertices, the girth 4 graphs on at most 12 vertices, and girth 5 and 6 graphs on at most

16 vertices. The number of graphs which must be checked is only 94 (see, for example,

[83] for tables with the numbers of 3-regular graphs of given order and girth).

Proposition 4.7. If G is a connected, 4-regular graph with λ2(G) > 1, then λ2(G) ≥
√

5−1, with equality if and only if G is either the graph in Figure 4.6(a) or the circulant

graph Ci10(1, 4) (see Figure 4.6(b)).

(a) The 4-regular graph G
on 8 vertices with
λ2(G) =

√
5− 1. (b) The Circulant graph Ci10(1, 4).

Figure 4.6: The 4-regular graphs λ2 =
√

5− 1.

Proof. It is straightforward to verify that the two graphs mentioned have second

eigenvalue
√

5 − 1. Indeed, the graph in Figure 4.6(a) has characteristic polynomial

f(x) = x4(x−4)(x2 +2x−4)(x+2) and the circulant graph Ci10(1, 4) has characteristic

polynomial g(x) = x5(x−4)(x2 +2x−4)2. We also note that the spectral radius of K1,2

is
√

2 >
√

5− 1. Suppose G is a connected, 4-regular graph with λ2(G) ≤
√

5− 1. If G

has girth 3, then G induces a C3 and Lemma 4.3 implies |V (G)| ≤ 9
10

(15+
√

5) ≈ 15.51.

This implies |V (G)| ≤ 15. If G has girth more than 3, then G induces K1,2, so Lemma

4.3 implies |V (G)| ≤ 1
5
(17 + 6

√
5) ≈ 19.68. This implies |V (G)| ≤ 19. A 4-regular,
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girth 6 graph must have at least 26 vertices by Lemma 1.1, so G must have girth at

most 5.

We checked by computer all 4-regular graphs on at most 15 vertices and found

that, in each case where λ2(G) > 1, we have λ2(G) ≥
√

5− 1, with equality if and only

if G is either the graph in Figure 4.6(a) or the circulant graph Ci10(1, 4). Thus, if we

can show that |V (G)| ≤ 15, we are done. Since we have already shown that if G has

girth 3 then |V (G)| ≤ 15, we may assume that G has girth 4 or 5.

If G has girth 5 and at most 19 vertices, then G must be the Robertson graph,

the unique (4,5)-cage (see [82]). A direct computation shows that the Robertson graph

has second eigenvalue 1
2
(
√

21− 1) >
√

5− 1, so G does not have girth 5.

Suppose that G has girth 4. Partitioning the vertices of G with respect to their

distance from an arbitrary vertex u we find |Γ1(u)| = 4 and |Γ≥2(u)| = m. Then G has

quotient matrix

Q =


0 4 0

1 0 3

0 β 4− β

 ,

where β is the average number of neighbors in Γ1(u) of the vertices in Γ≥2(u). Note

that this implies mβ = 12 (by counting |E(Γ1(u),Γ≥2(u))|), so if |V (G)| = 16, 17,

18, or 19, then we have m = 11, 12, 13, or 14, β = 12/11, 1, 12/13, or 6/7, and

λ2(Q) = 2
11

(
√

97− 3), 1
2
(
√

13− 1), 2
13

(
√

139− 3), or 1
7
(
√

163− 3), respectively. Each of

these is larger than
√

5− 1, which contradicts Proposition 1.27. Thus if G has girth 4,

we have |V (G)| ≤ 15.

Note that this implies v(4,
√

5− 1) = 10. It would be interesting to find a proof

of Proposition 4.7 which does not require a computer search. For the proof above the

computer must check 906,331 graphs.

Richey, Shutty, and Stover conjectured that v(4, 3) = 27 and the largest 4-

regular graph with λ2 ≤ 3 is the Doyle graph on 27 vertices. We disprove this conjecture

and show that v(4, 3) ≥ 728, because there is a distance-regular graph on 728 vertices

which is 4-regular with λ2 = 3: the incidence graph of a generalized hexagon GH(3, 3)
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(see, for example, [15]). It turns out this is the largest such graph (though perhaps not

the only one), but we need more powerful bounds to prove it (see Section 4.4). Here,

we can prove that if the girth of a 4-regular graph with second eigenvalue 3 is at least

12, then the graph must have the same intersection array as GH(3, 3), as seen below.

Proposition 4.8. If G is a connected, 4-regular graph with girth at least 12 and

λ2(G) ≤ 3, then G is a distance regular graph on 728 vertices and intersection ar-

ray {4, 3, 3, 3, 3, 3; 1, 1, 1, 1, 1, 4}.

Proof. Since G is 4-regular with girth 12, by partitioning the vertices of G according

to their distance from a vertex u we find that |Γ1(u)| = 4, |Γ2(u)| = 12, |Γ3(u)| = 36,

|Γ4(u)| = 108, |Γ5(u)| = 324, and |Γ≥6(u)| = m, where m = |V (G)|−485, with quotient

matrix

Q =



0 4 0 0 0 0 0

1 0 3 0 0 0 0

0 1 0 3 0 0 0

0 0 1 0 3 0 0

0 0 0 1 0 3 0

0 0 0 0 1 0 3

0 0 0 0 0 β 4− β


,

where β is the average number of neighbors in Γ5(u) of the vertices in Γ≥6(u). Note that

this implies mβ = 3 · 324 = 972 (by counting |E(Γ5(u),Γ≥6(u))|). The characteristic

polynomial of Q is φQ(x) = (x − 4)f(x), where f(x) = x6 + βx5 + (β − 16)x4 −

12βx3 − (9β − 63)x2 + 27βx + 9β − 36. Clearly 4 is an eigenvalue of Q. We have

f(3) = 9(β − 4) and f(4) = 485β + 972, so for β < 4 we have f(3) < 0 and f(4) > 0,

which implies Q has an eigenvalue between 3 and 4. This is a contradiction, since

λ2(G) ≤ 3 by Proposition 1.27, so we must have β = 4 and m = 243. Then Lemma

1.25 implies that G is a distance-regular graph on 728 vertices with intersection array

{4, 3, 3, 3, 3, 3; 1, 1, 1, 1, 1, 4}.
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Richey, Shutty, and Stover conjectured that v(3, 1.9) = 18. We confirm this

conjecture, and show that there are exactly two graphs meeting this bound.

Proposition 4.9. If G is a connected, 3-regular graph with second largest eigenvalue

λ2(G) ≤ 1.9, then |V (G)| ≤ 18, with equality if and only if G is the Pappus graph (see

Figure 4.7(a)) or the graph in Figure 4.7(b).

(a) The Pappus graph. (b) A graph with λ2 = γ ≈ 1.8662, the largest
root of f(x) = x3 + 2x2 − 4x− 6.

Figure 4.7: The 3-regular graphs on 18 vertices with λ2 < 1.9.

Proof. We note again that any cycle has spectral radius 2. It is straightforward to

verify that the graph in Figure 4.8 also has spectral radius 2. Then, by Lemma 4.3,

t t t
t t
t
t

�
�
@
@

�
�

@
@

Figure 4.8: A graph with spectral radius 2.

if G has girth 3, 4, 5, 6, or 7, then G has at most 11.45, 15.27, 19.09, 22.91, or 26.73

vertices, respectively. Since G is 3-regular, this implies G has at most 10, 14, 18, 22, or

26 vertices, respectively. A 3-regular graph with girth at least 5 contains as an induced

subgraph isomorphic to the graph in Figure 4.8, so by Lemma 4.3 such a graph has at

most 28.54 vertices, hence at most 28 vertices. A 3-regular graph of girth 8 has at least

30 vertices by Lemma 1.1 (or note that the Tutte-Coxeter graph is the unique (3,8)-

cage, see [93] and [94]), so we have shown that a 3-regular graph G with λ2(G) ≤ 1.9

and more than 18 vertices must have girth 6 or 7.
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If G has 26 vertices, then G has girth 7. By partitioning the vertices according to

their distance from an arbitrary vertex u, we find |Γ1(u)| = 3, |Γ2(u)| = 6, |Γ≥3(u)| =

16. Then G has quotient matrix

Q =


0 3 0 0

1 0 2 0

0 1 0 2

0 0 β 3− β

 ,

with 16β = 12 (by counting |E(Γ2(u),Γ≥3(u))|), so β = 3/4. By Proposition 1.27, we

must have λ2(Q) ≤ 1.9, but we find that λ2(Q) = γ ≈ 1.9009, where γ is the largest

root of the polynomial f(x) = 4x3 + 3x2 − 17x− 6, a contradiction. This implies that

G has at most 24 vertices. In this case, the girth of G must still be 7. The McGee

graph on 24 vertices is the unique (3,7)-cage ([69] and [94]). Since the McGee graph

has second eigenvalue 2, we have proved that G does not have girth 7.

Now, if G has more than 18 vertices then G must have girth 6 and at most 22

vertices. Among 3-regular graphs, we checked by computer the 32 graphs with girth 6

on 20 vertices and the 385 graphs with girth 6 on 22 vertices and found that each has

second eigenvalue more than 1.9. Thus G has at most 18 vertices. If G has 18 vertices,

then G must have girth 5 or 6. Among 3-regular graphs, we checked by computer

the 450 graphs with girth 5 on 18 vertices and found that each has second eigenvalue

more than 1.9. We checked the 5 graphs with girth 6 on 18 vertices and found that

all but two of them have second eigenvalue more than 1.9. The exceptions were the

Pappus graph with second eigenvalue
√

3 and the graph in Figure 4.7(b) with second

eigenvalue γ, where γ ≈ 1.8662 is the largest root of f(x) = x3 + 2x2 − 4x− 6 (again,

see [83] for tables with the numbers of 3-regular graphs of given order and girth).

Note that in addition to proving that v(3, 1.9) = 18, this result implies v(3,
√

3) =

18 and v(3, γ ≈ 1.8662) = 18. It would be interesting to find a proof of Proposition

4.9 that does not require a computer search.
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4.4 Linear Programming Bound

Recently, Nozaki [76] used linear programming to prove a bound on the number

of vertices in a k-regular graph whose eigenvalues satisfy certain conditions:

Let F
(k)
i be orthogonal polynomials defined by the recurrence formula

F
(k)
i (x) = xF

(k)
i−1(x)− (k − 1)F

(k)
i−2(x), (4.5)

for i ≥ 3, where F
(k)
0 (x) = 1, F

(k)
1 (x) = x, and F

(k)
2 (x) = x2 − k.

Theorem 4.10. Let G be a connected, k-regular graph with v vertices. Let τ0 =

k, τ1, . . . , τd be the distinct eigenvalues of G. Suppose there exists a polynomial f(x) =∑
i≥0 fiF

(k)
i (x) such that f(k) > 0, f(τi) ≤ 0 for any i ≥ 1, f0 > 0, and fi ≥ 0 for any

i ≥ 1. Then we have

v ≤ f(k)

f0

.

Let T (k, t, c) be the t× t tridiagonal matrix with lower diagonal (1, 1, . . . , 1, c),

upper diagonal (k, k−1, . . . , k−1), and with constant row sum k, where c is a positive

real number. Let M(k, t, c) = 1 +
∑t−3

i=0 k(k − 1)i + k(k−1)t−2

c
. We have the following

bound:

Theorem 4.11. Let λ be the second largest eigenvalue of T (k, t, c). Then we have

v(k, λ) ≤ M(k, t, c), with equality if and only if any graph meeting the bound is a

distance-regular graph with quotient matrix T (k, t, c) with respect to the distance parti-

tion.

The proof below, due to Koolen and Nozaki, is given in substantially the same

form as in [27].

Proof. We first show that the eigenvalues of T coincide with the zeros of
∑t−2

i=0 Fi(x) +

Ft−1(x)/c (see [14, Section 4.1 B]). Indeed,

[F0, F1, . . . , Ft−1/c]T = [xF0, xF1, . . . , xFt−2, (k − 1)Ft−2 + (k − c)Ft−1/c] ,
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and

[F0, F1, . . . , Ft−1/c] (T − xI) = [0, 0, . . . , 0, (k − 1)Ft−2 + (−x+ k − c)Ft−1/c]

=

[
0, 0, . . . , 0, (k − x)

(
t−2∑
i=0

Fi + Ft−1/c

)]
= [0, 0, . . . , 0, (k − x)((c− 1)Gt−2 +Gt−1)/c]

by (4.5), where Gi(x) =
∑i

j=0 Fj(x). From this equation, the zeros of (k − x)((c −

1)Gt−2 +Gt−1) are eigenvalues of T . The monic polynomials Gi form a sequence of or-

thogonal polynomials with respect to some positive weight on the interval
[
−2
√
k − 1,

2
√
k − 1

]
[76]. Since the zeros of Gt−2 and Gt−1 interlace on

[
−2
√
k − 1, 2

√
k − 1

]
, the

zeros of (k− x)((c− 1)Gt−2 +Gt−1) are simple. Therefore all eigenvalues of T coincide

with the zeros of (k − x)((c− 1)Gt−2 +Gt−1), and are simple.

Let µ1 = k > µ2 > . . . > µt be the eigenvalues of T . We show the polynomial

f(x) = (x− µ2)
t∏
i=3

(x− µi)2 =
2t−3∑
i=0

fiFi(x)

satisfies fi > 0 for i = 0, 1, . . . , 2t − 3. Note that it trivially holds that f(k) > 0, and

f(µ) ≤ 0 for any µ ≤ µ2. The polynomial f(x) can be expressed by

f(x) =
(c− 1)Gt−2 +Gt−1

x− µ2

(
t−2∑
i=0

Fi + Ft−1/c

)
.

By [28, Theorem 3.1] (or by [76, Theorem 4]), g(x) = ((c−1)Gt−2 +Gt−1)/(x−µ2) has

positive coefficients in terms of G0, G1, . . . , Gt−1. This implies that g(x) has positive

coefficients in terms of F0, F1, . . . , Ft−1. Therefore fi > 0 for i = 0, 1, . . . , 2t− 3 by [76,

Theorem 3].

The polynomial g(x) can be expressed by g(x) =
∑t−2

i=0 giFi(x). By [76, Theo-

rem 3], we have

f0 =
t−2∑
i=0

giFi(k) = g(k).
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By Theorem 4.10 with f(x), we have

v(k, µ2) ≤ f(k)

f0

=
t−2∑
i=0

Fi(k) + Ft−1(k)/c

= 1 +
t−3∑
i=0

k(k − 1)i +
k(k − 1)t−2

c
.

By [76, Remark 2], the graph attaining the bound has girth at least 2t−2, and at most

t distinct eigenvalues. Therefore the graph is a distance-regular graph with quotient

matrix T (k, t, c) by [76, Theorem 6] and [34]. Conversely the distance-regular graph

with quotient matrix T (k, t, c) clearly attains the bound M(k, t, c).

Note that, by Lemma 1.25, T (k, t, c) is the quotient matrix (with respect to the

distance partition) of the distance-regular graph with diameter t + 1 and intersection

array {k, k − 1, . . . , k − 1; 1, . . . , 1, c} (where k − 1 and 1 each appear t times), if such

a distance-regular graph exists. Further, M(k, t, c) is clearly the number of vertices in

such a graph. Thus, in addition to providing an upper bound on the number of vertices,

Theorem 4.11 states that any distance-regular graph with such an intersection array

must be maximal with respect to v(k, λ).

Theorem 4.11 simplifies many of the proofs from Section 4.3, and in a few cases

gives the extremal graph found in Section 4.3 immediately. We include the proofs

in Section 4.3 for the sake of completeness and clarity, since the method is easier to

understand than Theorem 4.11.

Table 4.1 gives some infinite families of graphs that meet the bound M(k, t, c)

for some values of k, t, c. Of course, by PG(2, q), GQ(q, q), and GH(q, q), we mean

the incidence graphs of those structures. The incidence graphs of PG(2, q), GQ(q, q),

and GH(q, q) are known to be unique for q ≤ 8, q ≤ 4, and q ≤ 2, respectively (see,

for example, [14, Table 6.5 and the following comments]). The incidence graphs of

PG(2, 2), GQ(2, 2), and GH(2, 2) are the Heawood graph, the Tutte-Coxeter graph

(or Tutte 8-cage), and the Tutte 12-cage, respectively. Note that for q = 3 in the last

line of Table 4.1 we obtain v(4, 3) = 728, which we were only able to partially prove in

Section 4.3.
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Table 4.1: Families of graphs meeting the bound M(k, t, c).

(k, λ) v(k, λ) Graph meeting bound Unique? Ref.
(2, 2 cos(2π/n)) n n-cycle Cn yes

(k,−1) k + 1 Kk+1 yes
(k, 0) 2k Kk,k yes

(q + 1,
√
q) 2(q2 + q + 1) PG(2, q) ? [14, 87]

(q + 1,
√

2q) 2(q + 1)(q2 + 1) GQ(q, q) ? [8, 14]
(q + 1,

√
3q) 2(q + 1)(q4 + q2 + 1) GH(q, q) ? [8, 14]
PG(2, q): projective plane, GQ(q, q): generalized quadrangle,

GH(q, q): generalized hexagon, q: prime power

Table 4.2 gives some sporadic examples of graphs meeting the bound M(k, t, c).

For the values of t, c in Table 4.2, one needs only check the intersection array of the

Table 4.2: Sporadic of graphs meeting the bound M(k, t, c).

(k, λ) v(k, λ) Graph meeting bound Unique? Ref.
(3, 1) 10 Petersen graph yes [52]
(4, 2) 35 Odd graph O4 yes [72]
(7, 2) 50 Hoffman–Singleton graph yes [52]
(5, 1) 16 Clebsch graph yes [45, 85]
(10, 2) 56 Gewirtz graph yes [16, 41]
(16, 2) 77 M22 graph yes [12, 51]
(22, 2) 100 Higman–Sims graph yes [41, 51]

given graph.

Theorem 4.11 and the characterization of graphs with least eigenvalue at least

−2 can be used to find v(k, 1) for any k:

Proposition 4.12. Let G be a connected k-regular graph with second largest eigenvalue

at most 1, with v(k, 1) vertices. Then the following hold:

(i) v(2, 1) = 6, and G is the hexagon.

(ii) v(3, 1) = 10, and G is the Petersen graph.

(iii) v(4, 1) = 12, and G is the complement of graph no. 186 in Table 9.1 in [19].

(iv) v(5, 1) = 16, and G is the Clebsch graph.
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(v) v(6, 1) = 15, and G is the complement of the line graph of the complete graph

with 6 vertices, or the complements of graphs nos. 171–176 in Table 9.1 in [19].

(vi) v(7, 1) = 18, and G is the complements of graphs nos. 177–180 in Table 9.1 in

[19].

(vii) v(8, 1) = 21, and G is the complements of graphs nos. 181, 182 in Table 9.1 in

[19].

(viii) v(9, 1) = 24, and G is the complement of graph no. 183 in Table 9.1 in [19].

(ix ) v(10, 1) = 27, and G is the complement of the Schläfli graph.

(x ) v(k, 1) = 2k+ 2 for k ≥ 11, and G is the complement of the line graph of K2,k+1.

In Table 4.3 we summarize the known values of v(k, λ), k ≤ 22, given in this

section and Section 4.3.
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Table 4.3: Summary of our results.

(k, λ) v(k, λ) (k, λ) v(k, λ) (k, λ) v(k, λ)

(2,−1) 3 (7, 1) 18
(
14,
√

13
)

366

(2, 0) 4 (7, 2) 50
(
14,
√

26
)

4760(
2, 1

2

(√
5− 1

))
5 (8,−1) 9

(
14,
√

39
)

804468
(2, 1) 6 (8, 0) 16 (15,−1) 16(
2,
√

2
)

8 (8, 1) 21 (15, 0) 30(
2, 1

2

(√
5 + 1

))
10

(
8,
√

7
)

114 (15, 1) 32(
2,
√

3
)

12
(
8,
√

14
)

800 (16,−1) 17

(3,−1) 4
(
8,
√

21
)

39216 (16, 0) 32
(3, 0) 6 (9,−1) 10 (16, 1) 34
(3, 1) 10 (9, 0) 18 (16, 2) 77(
3,
√

2
)

14 (9, 1) 24 (17,−1) 18(
3,
√

3
)

18
(
9, 2
√

2
)

146 (17, 0) 34
(3, 2) 30 (9, 4) 1170 (17, 1) 36(
3,
√

6
)

126
(
9, 2
√

6
)

74898 (18,−1) 19
(4,−1) 5 (10,−1) 11 (18, 0) 36
(4, 0) 8 (10, 0) 20 (18, 1) 38

(4, 1) 12 (10, 1) 27
(
18,
√

17
)

614(
4,
√

5− 1
)

10 (10, 2) 56
(
18,
√

34
)

10440(
4,
√

3
)

26 (10, 3) 182
(
18,
√

51
)

3017196

(4, 2) 35
(
10, 3
√

2
)

1640 (19,−1) 20(
4,
√

6
)

80
(
10, 3
√

3
)

132860 (19, 0) 38
(4, 3) 728 (11,−1) 12 (19, 1) 40

(5,−1) 6 (11, 0) 22 (20,−1) 21
(5, 0) 10 (11, 1) 24 (20, 0) 40
(5, 1) 16 (12,−1) 13 (20, 1) 42

(5, 2) 42 (12, 0) 24
(
20,
√

19
)

762(
5, 2
√

2
)

170 (12, 1) 26
(
20,
√

38
)

14480(
5, 2
√

3
)

2730
(
12,
√

11
)

266
(
20,
√

57
)

5227320

(6,−1) 7
(
12,
√

22
)

2928 (21,−1) 22

(6, 0) 12
(
12,
√

33
)

354312 (21, 0) 42
(6, 1) 15 (13,−1) 14 (21, 1) 44(
6,
√

5
)

62 (13, 0) 26 (22,−1) 23(
6,
√

10
)

312 (13, 1) 28 (22, 0) 44(
6,
√

15
)

7812 (14,−1) 15 (22, 1) 46
(7,−1) 8 (14, 0) 28 (22, 2) 100
(7, 0) 14 (14, 1) 30
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Chapter 5

OPEN PROBLEMS AND FUTURE WORK

In this chapter we discuss open problems and future work in the areas of the

problems discussed in Chapters 2–4.

5.1 The Graphs With All But Two Eigenvalues Equal to 0 or −2

In Section 2.3 we determined the set G of connected graphs with all but two

eigenvalues equal to ±1. We also showed that any graph G with all but two eigenvalues

equal to ±1 must be either a disjoint union of complete graphs with exactly two

connected components different from K2 or a disjoint union of a graph H ∈ G and

some copies of K2. A graph G in G has eigenvalues r > 1 and s < −1 with multiplicity

1, and ±1 with any multiplicity. If a graph G ∈ G is a regular graph on n vertices,

then by Proposition 1.20 the complement G of G has eigenvalues n− 1− r and −1− s

with multiplicity 1, and 0,−2 with any multiplicity (the multiplicity of 0 and −2 in G

is the multiplicity of −1 and 1, respectively, in G).

Thus it is natural to next classify the set G of graphs with all but two eigenvalues

equal to 0 or −2. Those that are regular are the complements of regular graphs in G.

Consider the complements of graphs in G. It is possible that the complement of a

nonregular graph in G is also in G, so we will check them all. The complements of

B1(m) are Km�K2 with spectrum {m,m − 2, 0m−1,−2m−1}, and will be discussed in

Case 3 below. The complements of B2(a, k) are disjoint unions of a coclique and a

copy of CP (k) ∼= K2,2,...,2 (which has only one eigenvalue not equal to 0 or −2, see

Proposition 5.2). The complements of B3(`,m) are disjoint unions of two copies of

K2,2,...,2 (one copy with ` parts and one with m parts), which will be found in Corollary

5.3. The complements of the graphs B4(4), B4(5), B6(3, 5), and B6(4, 4) have three
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eigenvalues different from 0,−2. The complements of B5(6, 5), B5(4, 6), and B5(3, 8)

are disjoint unions of a coclique and a copy of K1,m for m = 5, 6, 8, respectively, and

are found in Proposition 5.5.

Since the addition of an isolated vertex to a graph adds the eigenvalue 0 to the

spectrum, if G ∈ G then the disjoint union of G and an isolated vertex is also in G.

For a graph G, we call the graph G∗ obtained by removing all isolated vertices from G

the main part of G.

Proposition 5.1. If G ∈ G, then G∗ has at most two connected components.

Proof. Each connected component of G∗ contributes a positive eigenvalue to the spec-

trum of G by Corollaries 1.11 and 1.19. Since G has at most two positive eigenvalues,

this completes the proof.

Proposition 5.1 allows us to consider the problem in cases based on whether

G∗ has one or two connected components. We further divide the case where G∗ is

connected based on whether G has one or two positive eigenvalues. We characterize

the graphs in G in the first two cases below. For the last case (G∗ is connected and

G has two positive eigenvalues) we give a partial characterization. In future work we

plan to finish the characterization of graphs in G.

Case 1: G∗ Has Two Connected Components.

In this case, G has two positive eigenvalues (one coming from each connected

component, see Corollary 1.19) and the rest of the eigenvalues of G are 0 or −2. The

candidates for the connected components of G∗ are given by the following proposition.

Proposition 5.2. If H is a graph with exactly one eigenvalue not equal to 0 or −2,

then H is either the complete bipartite graph K1,4 or a cocktail party graph CP (k) (see

Definition 1.9) for some k ≥ 2.

Proof. We note that H has exactly one positive eigenvalue r, and the rest of the

eigenvalues of H are 0 or −2. Chuang and Omidi [24] list all graphs that have exactly

three distinct eigenvalues, each of which is at least −2 (see also their references [21]
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and [30]). The graphs K1,4 and CP (k), k ≥ 2, are the only ones with exactly one

eigenvalue not equal to 0 or −2.

With Proposition 5.2, the following result is immediate:

Corollary 5.3. If G ∈ G and G∗ has two connected components, then G∗ is isomorphic

to the disjoint union H +K, where H,K ∈ {K1,4} ∪ {CP (k) | k ≥ 2}.

Case 2: G∗ is Connected and G Has Exactly One Positive Eigenvalue

We will need the following theorem on the spectra of multipartite graphs [39].

Theorem 5.4. Let p1 ≤ p2 ≤ · · · ≤ pk be positive integers and suppose G is the

complete k-partite graph Kp1,p2,...,pk on n =
∑
pi vertices. Let q1 < q2 < · · · < qt be the

distinct part sizes of G (so for each i, pi = qj for some j). Then G has exactly one

positive eigenvalue, k − 1 negative eigenvalues, and the rest of the eigenvalues are 0.

The negative eigenvalues λn−k+2, . . . , λn satisfy pi−1 ≤ −λn−k+i ≤ pi for i = 2, 3, . . . , k,

and t− 1 of the negative eigenvalues ηi (i = 2, . . . t), satisfy qi−1 < ηi < qi.

Proposition 5.5. If G ∈ G has exactly one positive eigenvalue, then G∗ is isomorphic

to K1,1,3, K`,m (`,m ≥ 1 and not both equal to 2), or K2,2,...,2,m (m 6= 2).

Proof. Since G has one positive eigenvalue, G has a negative eigenvalue not equal to

−2 with multiplicity 1, an eigenvalue −2 with any multiplicity (possibly 0), and no

other negative eigenvalues. Lemma 1.30 implies G∗ is a complete multipartite graph.

If G∗ is the complete bipartite graph K`,m, then G has eigenvalues ±
√
`m each with

multiplicity 1 and eigenvalue 0 with multiplicity `+m− 2 (possibly 0). If ` and m are

not both equal to 2, this gives exactly two eigenvalues, ±
√
`m, not equal to 0 or −2.

SupposeG∗ is not bipartite. ThenG∗ is a complete multipartite graphKp1,p2,...,pk ,

k ≥ 3. Recall that G has exactly one negative eigenvalue (including multiplicity) not

equal to −2. Theorem 5.4 implies that G∗ has an eigenvalue strictly between the neg-

ative of any two distinct part sizes, and if G∗ has a repeated part size m, then −m

is an eigenvalue. This implies that K2,3,3 has two eigenvalues smaller than −2, so G∗
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cannot induce K2,3,3 as a subgraph. As a result, G∗ cannot have two parts of size at

least 3 and another part of size at least 2. Thus G cannot have four distinct part sizes,

and if G∗ has three distinct part sizes then one of them must be 1.

If G∗ has only one part size, then it must be 2, since three parts of size m imply

−m is an eigenvalue with multiplicity 2. But K2,...,2 has only one eigenvalue different

from 0 and −2, so G∗ has at least two distinct part sizes.

Suppose G∗ has exactly two distinct part sizes. We first consider the case that

one of the sizes is 2. Let m be the other part size. Then there can be only one part of

size m, since otherwise G∗ has an eigenvalue between −2 and −m as well as eigenvalue

−m, a contradiction. In this case we find G∗ = K2,...,2,m, with t parts of size 2 and

m 6= 2, with spectrum λ1 > 0, 0t+m−1, −2t−1, λ2t+m ∈ (−m,−2) (or λt+2 ∈ (−2,−1) if

m = 1).

If G∗ has two part sizes ` and m (`,m 6= 2), then G∗ has at most three parts

(thus exactly three parts). Indeed, if G∗ has at least four parts, then G∗ has at least two

parts each of sizes ` and m or at least three parts of size `. In the former case, G∗ has

eigenvalues −` and −m, while in the latter case G∗ has two eigenvalues −`. Either case

is a contradiction, so G∗ has exactly three parts and two part sizes, say two parts of size

` and one part of size m. We see that one of the part sizes must be 1, since otherwise G

has an eigenvalue ` and one between ` and m, a contradiction (since neither ` nor any

number between ` and m is 2). If ` is 1, then G∗ is K1,1,m with characteristic polynomial

xm−1 (x3 − (2m+ 1)x− 2m) (see, for example, [39], for computing the characteristic

polynomial of complete multipartite graphs) and spectrum 1
2

(
1 +
√

1 + 8m
)
, 0m−1,

−1, 1
2

(
1−
√

1 + 8m
)
. The last eigenvalue must be −2 if G ∈ G, so we must have

m = 3 and G∗ is isomorphic to K1,1,3 with spectrum 3, 03, −1, −2. If m = 1, then

G∗ is K1,`,` with characteristic polynomial x2`−2 (x3 − (`2 + 2`)x− 2`2) and spectrum

1
2

(
`+
√
`2 + 8`

)
, 02`−2, 1

2

(
`−
√
`2 + 8`

)
, −`. The second to last eigenvalue must be

−2 if G ∈ G. However, we have
√
`2 + 8` <

√
`2 + 8`+ 16 =

√
(`+ 4)2 = ` + 4, so

1
2

(
`−
√
`2 + 8`

)
> 1

2
(`− (`+ 4)) > −2, a contradiction.

Suppose G∗ has three distinct part sizes 1 < ` < m (recall one of the sizes
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must be 1). If ` = 2 then G∗ has an eigenvalue in each of the intervals (−2,−1) and

(−m,−2), a contradiction. We have 2 < ` < m, and G∗ has an eigenvalue in each

of the intervals (−`,−1) and (−m,−`). Note that K1,`,m is induced by K1,m,m, so

if the eigenvalue in (−`,−1) is −2, then K1,`,m has two eigenvalues at most −2, so

by interlacing K1,m,m does as well. This is a contradiction, since we have seen above

that the second smallest eigenvalue of K1,m,m is more than −2. This completes the

proof.

Case 3: G∗ is Connected and G Has Exactly Two Positive Eigenvalues

In this case, the smallest eigenvalue of G is −2. Such graphs have been charac-

terized (see [21]) as line graphs, generalized line graphs, or one of finitely many graphs

coming from exceptional root systems.

In [11], Borovićanin showed that a line graph has exactly two positive eigenvalues

if and only if it is an induced subgraph of one of the graphs in Figure 5.1 and contains

either P4 or K1∇(K1 + K2) as an induced subgraph. Most such graphs will still have

t tt t
t
t t

L1

���
�� @@@@@
@@@@@ ���

��
���
��
@@@
@@

@@@
@@
���
�� t
t
t
t
t
t t
t t

L2

����
����
� TTTTTTTTT
TTTTTTTTT ����

����
�

""""
""""
""""
"

bbbb
bbbb
bbbb
b """""""""""""

bbbbbbbbbbbbb

hhhhhhhhhhhhh
\\\\\
�����(((((((((((((���

���
���
���
���
��

@@@@@@@@@@@@@@@@@ZZZZ
ZZZZ
Z
����
����
� t
t
t
t
t
t ����Kn

L3(n)

����
����
� TTTTTTTTT
TTTTTTTTT ����

����
�

""""
""""
""""
"

bbbb
bbbb
bbbb
b """""""""""""

bbbbbbbbbbbbb

bbbbbbbbbbbbb

""""""
""""""
" ����������������Km Kp Kp Kn

t
L4(m,n, p)

�����
�����
�����
��








 HHHHH

HHHHH
HHHHH

HHJJJJJJJJJ

Figure 5.1: Graphs inducing line graphs with two positive eigenvalues.

more than two eigenvalues not equal to 0 or −2, but every line graph in G with two

positive eigenvalues must be induced by one of the graphs in Figure 5.1 (and must

induce P4 or K1∇(K1 + K2)). We checked by computer all subgraphs induced by the

graphs L1 and L2 and found that none are in G. We found also that graph L3(n) does

not induce any graph in G for n ≤ 10. The graph Kt�K2, which is the complement of

B1(t), is an induced subgraph of L4(m,n, p) when p ≥ t.

We do not know whether L3(n) induces any graphs in G for larger n, or whether

L4(m,n, p) induces any other graphs in G. We also do not know whether there are any

generalized line graphs or exceptional root systems graphs in G that have not already
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been found in Case 2. Haemers [50] conjectured that the graphs in Case 3 must be

the complements of bipartite graphs, so they must be able to be partitioned into two

cliques. For future work, we plan to prove this conjecture and use it to finish the

characterization of the graphs in G.

5.2 Partial Permutohedra

In Section 3.10 we mention that Martin and Wagner [68] construct some linearly

independent eigenvectors for the eigenvalues −
(
m
2

)
and −n, giving a lower bound for

the multiplicity of those eigenvalues Those eigenvectors are constructed as follows.

When n ≥
(
m
2

)
, Martin and Wagner construct permutohedra (so named be-

cause they are shapes defined by permutations) whose signed characteristic vector is

an eigenvector of SR(m,n) with eigenvalue equal to −
(
m
2

)
. The permutohedra are

defined as follows. Let p, w ∈ Rm be vectors such that P (p, w) = {p+ σ(w) | σ ∈ Sm}

are distinct vertices in SR(m,n). Then we say P (p, w) is the permutohedron centered

at p with offset w. Let w be the standard offset vector in Rm, that is w = wm =

((1 − m)/2, (3 − m)/2, . . . , (m − 3)/2, (m − 1)/2) = (i − (m + 1)/2)mi=1. Martin and

Wagner show that there are (
n−

(
m−1

2

)
m− 1

)
distinct p ∈ Rm such P (p,w) is a permutohedron in SR(m,n) whose signed charac-

teristic vector is an eigenvector of SR(m,n) with eigenvalue equal to −
(
m
2

)
, and in

fact these vectors are linearly independent (see [68]). That is, they prove the following

Proposition, which immediately implies Proposition 3.19.

Proposition 5.6. For p, w ∈ Rm such that P (p, w) are distinct vertices in SR(m,n),

define

Fp,w =
∑
σ∈Sm

sgn(σ)ep+σ(w).

Then each Fp,w is an eigenvector of SR(m,n) with eigenvalue −
(
m
2

)
, and for fixed w,

the collection of all such Fp,w is linearly independent.
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(The vectors ex for x ∈ V (m,n) are defined in Section 3.6.) Choosing w = w

yields the indicated multiplicity.

When n <
(
m
2

)
, Martin and Wagner [68] find so-called partial permutohedra in

SR(m,n) which lead to the eigenvalue −n with multiplicity at least the Mahonian

number M(m,n). The partial permutohedra are obtained as follows. For a sequence

of positive integers c = (c1, . . . , cm), the skyline board Sky(c) consists of a sequence of

m columns, such that the i-th column contains ci tiles. A rook placement on Sky(c)

is a choice of one tile from each column. A rook placement is proper if no two chosen

tiles are in the same row.

An inversion of a permutation π = (π1, . . . , πm) ∈ Sm is a pair i, j such that

i < j and πi > πj. Let Sm,n denote the set of permutations of {1, 2, . . . ,m} with exactly

n inversions. Note that |Sm,n| = M(m,n). For each π ∈ Sm,n, the inversion word of π

is a = a(π) = (a1, . . . , am), where ai is the number of pairs i, j that are inversions of π

(this is sometimes called the Lehmer code of π, see [60, 62]). Since π has n inversions,

a(π) is a vertex of SR(m,n). We denote by s(π) the skyline board Sky(a(π) + id),

where id = (1, 2, . . . ,m). Note that s(π) always has n tiles above the main diagonal

Sky(1, . . . ,m), since for each i s(π) has ai tiles above the main diagonal in column i. A

permutation σ ∈ Sm is π-admissible if it is a proper rook placement on s(π) (note that

if σ is a rook placement on a given skyline board, then it is automatically proper; the

only way for σ to fail to be a proper rook placement on s(π) is for some σi to be larger

than ai+i for some i, so that the rook is placed above column i in s(π)). Clearly σ is π-

admissible exactly when x(σ) = a(π) + id− σ is also a vertex in SR(m,n). We denote

by Adm(π) the set of all σ ∈ Sm that are π-admissible. The corresponding partial

permutohedron is Parp(π) = {x(σ) | σ ∈ Adm(π)}. One can show that Parp(π) is the

intersection of V (m,n) with the permutohedron centered at a(π) + w and with offset

w, which is why they are called partial permutohedra. Martin and Wagner [68] prove

that for each π ∈ Sm,n, the signed characteristic vector of Parp(π) is an eigenvector

for SR(m,n) with eigenvalue −n, and moreover that these eigenvectors are linearly

independent. That is, they prove the following Proposition, which immediately implies
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Proposition 3.20.

Proposition 5.7. For each π ∈ Sm,n, let

Fπ =
∑

σ∈Adm(π)

sgn(σ)ex(σ).

Then each Fπ is an eigenvector of SR(m,n) with eigenvalue −n, and the Fπ are linearly

independent.

(The vectors ex for x ∈ V (m,n) are defined in Section 3.6.)

Here we give an example of a permutation π ∈ S4,3 and explain how to find

the corresponding subgraph SR(4, 3)|Parp(π). Let π = (3, 2, 1, 4). Then π has three

inversions, because π1 > π2, π1 > π3, and π2 > π3. This also implies that the

inversion word of π is a = a(π) = (2, 1, 0, 0). Then s(π) is a skyline board con-

sisting of 4 columns of tiles such that the first three columns have three tiles and

the fourth column has four tiles (because a(π) + id = (3, 3, 3, 4)). We find that

the π-admissible permutations in S4 are Adm(π) = {(1, 2, 3, 4), (1, 3, 2, 4), (2, 1, 3, 4),

(2, 3, 1, 4), (3, 1, 2, 4), (3, 2, 1, 4)} (see Figure 5.2). Then the corresponding partial per-

x x
x x

σ = (1, 2, 3, 4)

x
x x
x

σ = (1, 3, 2, 4)

x x
x x

σ = (2, 1, 3, 4)

x x x

x

σ = (2, 3, 1, 4)

x
x x
x

σ = (3, 1, 2, 4)

x x x

x

σ = (3, 2, 1, 4)

Figure 5.2: The π-admissible permutations for π = (3, 2, 1, 4).

mutohedron is Parp(π) = {x(σ) | σ ∈ Adm(π)}, where x(σ) = a(π) + id − σ. Thus

Parp(π) = {(2, 1, 0, 0), (2, 0, 1, 0), (1, 2, 0, 0), (1, 0, 2, 0), (0, 2, 1, 0), (0, 1, 2, 0)}. We see
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Figure 5.3: The subgraph SR(4, 3)|Parp(π) for π = (3, 2, 1, 4).

that SR(4, 3)|Parp(π)
∼= K3,3 (see Figure 5.3), so SR(4, 3)|Parp(π) has integral spectrum

{31, 04,−31} by Proposition 1.10. The subgraph SR(4, 3)|Parp(π) can be seen within the

context of the whole graph SR(4, 3) in Figure 5.4. It is straightforward to check that

Figure 5.4: The subgraph SR(4, 3)|Parp(π) for π = (3, 2, 1, 4) within SR(4, 3).

Fπ as defined in Proposition 5.7 is indeed an eigenvector of SR(4, 3) for the eigenvalue

−3. We note also that the vertices x(σ) and x(ρ), σ, ρ ∈ Adm(π), are adjacent if and

only if the corresponding permutations σ and ρ differ by a transposition. For example,

the vertices x((1, 3, 2, 4)) = (2, 0, 1, 0) and x((3, 1, 2, 4)) = (0, 2, 1, 0) are adjacent ver-

tices in SR(4, 3)|Parp(π), while (1, 3, 2, 4) and (3, 2, 1, 4) differ by the transposition (1 3).

This is true for any partial permutohedra for simplicial rook graphs. Finally, note that

SR(4, 3)|Parp(π) is 3-regular and bipartite. As we will see, the subgraphs induced by

partial permutohedra are always n-regular and bipartite.

Martin and Wagner also made the following conjecture regarding the subgraphs

of SR(m,n) induced by the partial permutohedra, which they verified for m ≤ 5 (and

n ≤
(
m
2

)
).
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Conjecture 5.8. ([68, Conjecture 3.10]) For each π ∈ Sm,n, the subgraph induced by

Parp(π) has integral spectrum.

For the remainder of this section we present evidence in support of this conjec-

ture. The conjecture is still unsolved.

Given σ ∈ Adm(π), the corresponding vertex x(σ) in SR(m,n) is x(σ) =

(x1, . . . , xm), where xi is the number of tiles above the chosen rook placement (σi)

in column i of s(π). We can use this to prove the following lemma.

Lemma 5.9. For any π ∈ Sm,n, the induced subgraph SR(m,n)|Parp(π) is bipartite and

n-regular.

Proof. Let σ ∈ Adm(π), so x(σ) ∈ Parp(π). The neighbors of x(σ) in SR(m,n)|Parp(π)

are of the form x(ρ), where ρ ∈ Adm(π). If x(ρ) is adjacent to x(σ), then ρ is a

permutation corresponding to a rook placement in s(π) identical to that of σ in all

but two columns, say i and j. That is, ρi = σj, ρj = σi, and ρ` = σ` for ` 6= i, j,

or in more compact form ρ = (i j)σ. This proves that SR(m,n)|Parp(π) is bipartite,

since adjacent vertices correspond to permutations with opposite signature. For each

i ∈ {1, 2, . . . ,m}, there are ai+i−σi empty tiles above the rook on tile σi, so there must

be ai + i− σi columns j in s(π) with σj > σi. Thus there are ai + i− σi permutations

ρ = (i j)σ that are proper tilings of s(π). Summing over all i ∈ {1, 2, . . . ,m}, we

find that there are
∑m

i=1(ai + i− σi) = n permutations ρ that differ from σ in exactly

two entries and are proper tilings of s(π), so x(σ) has n neighbors in SR(m,n)|Parp(π),

which proves that the subgraph is n-regular.

The proof of Lemma 5.9 is contained in the proof in [68] that the signed char-

acteristic vector of a partial permutohedron is an eigenvector of SR(m,n). In addition

to this general property of SR(m,n)|Parp(π), we can determine more about the possible

graphs SR(m,n)|Parp(π) may be and how they arise.

Lemma 5.9 allows us to characterize the graphs SR(m, 3)|Parp(π).
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Corollary 5.10. For any π ∈ Sm,3, the induced subgraph SR(m, 3)|Parp(π) is isomorphic

to either the complete bipartite graph K3,3 or the 3-cube Q3.

Proof. Because K3,3 and Q3 are the only 3-regular bipartite graphs on 6 and 8 vertices

(it is straightforward to verify this, as there are only 2 cubic graphs on 6 vertices

and 5 cubic graphs on 8 vertices [83]), respectively, it remains only to show that

|Parp(π)| ∈ {6, 8} for any π ∈ Sm,3. Note that |Parp(π)| = |Adm(π)|. Fix π ∈ Sm,3.

Since n = 3, we know that s(π) has exactly 3 tiles above the main diagonal. We

consider cases based on the columns in which these tiles occur.

Case 1: The 3 tiles above the diagonal in s(π) occur in 3 columns, i < j < k.

A proper rook placement σ on s(π) must have σ` = ` for all ` except possibly

` ∈ {i, i+ 1, j, j + 1, k, k + 1}.

Case 1a: j > i+ 1 and k > j + 1.

We have σi, σi+1 ∈ {i, i + 1}, σj, σj+1 ∈ {j, j + 1}, and σk, σk+1 ∈ {k, k + 1}.

There are 23 = 8 possibilities, so in this case |Parp(π)| = 8.

Case 1b: j = i+ 1 and k > j + 1.

We have σi ∈ {i, i+1}, σj, σj+1 ∈ {i, i+1, i+2}\{σi}, and σk, σk+1 ∈ {k, k+1}.

There are 23 = 8 possibilities, so in this case |Parp(π)| = 8.

Case 1c: j > i+ 1 and k = j + 1.

We have σi, σi+1 ∈ {i, i+1}, σj ∈ {j, j+1}, and σk, σk+1 ∈ {j, j+1, j+2}\{σj}.

There are 23 = 8 possibilities, so in this case |Parp(π)| = 8.

Case 1d: j = i+ 1 and k = j + 1.

We have σi ∈ {i, i+ 1}, σj ∈ {i, i+ 1, i+ 2} \ {σi}, and σk, σk+1 ∈ {i, i+ 1, i+

2, i+ 3} \ {σi, σj}. There are 23 = 8 possibilities, so in this case |Parp(π)| = 8.

Case 2: The 3 tiles above the diagonal in s(π) occur in 2 columns: 1 in

column i, 2 in column j.

A proper rook placement σ on s(π) must have σ` = ` for all ` except possibly

` ∈ {i, i+ 1, j, j + 1, j + 2}.
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Case 2a: i+ 1 < j or i > j + 2.

We have σi, σi+1 ∈ {i, i+ 1}, σj+1 ∈ {j, j + 1}, and σj, σj+2 ∈ {j, j + 1, j + 2} \

{σj+1}. There are 23 = 8 possibilities, so in this case |Parp(π)| = 8.

Case 2b: i+ 1 = j.

We have σi ∈ {i, i+ 1}, σj+1 ∈ {i, i+ 1, i+ 2} \ {σi}, and σj, σj+2 ∈ {i, i+ 1, i+

2, i+ 3} \ {σi, σj+1}. There are 23 = 8 possibilities, so in this case |Parp(π)| = 8.

Case 2c: i = j + 1.

We have σj, σi, σi+1 ∈ {j, j + 1, j + 2}. There are 3! = 6 possibilities, so in this

case |Parp(π)| = 6.

Case 2d: i = j + 2.

We have σj+1 ∈ {j, j + 1}, σj ∈ {j, j + 1, j + 2} \ {σj+1} and σi, σi+2 ∈ {j, j +

1, j+ 2, j+ 3} \ {σj, σj+1}. There are 23 = 8 possibilities, so in this case |Parp(π)| = 8.

Case 3: All 3 tiles above the diagonal in s(π) occur in column i.

A proper rook placement σ on s(π) must have σ` = ` for all ` except possibly

` ∈ {i, i+ 1, i+ 2, i+ 3}. We have σi+1 ∈ {i, i+ 1}, σi+2 ∈ {i, i+ 1, i+ 2} \ {σi+1} and

σi, σi+3 ∈ {i, i + 1, i + 2, i + 3} \ {σi+1, σi+2}. There are 23 = 8 possibilities, so in this

case |Parp(π)| = 8.

This completes the proof.

We note that when n = 3, in almost all cases we find |Parp(π)| = 8. We can

show that |Parp(π)| = 6 only in the case where, for some j, s(π) has exactly j+ 2 tiles

in columns j, j + 1, and j + 2, and exactly i tiles in column i for i 6= j, j + 1, j + 2.

This corresponds to the case where π has 2 inversions at j, one inversion at j + 1, and

no other inversions, which occurs precisely when π is the transposition permutation

(j j + 2). This idea generalizes to larger n in Proposition 5.13.

Proposition 5.11. For any π ∈ Sm,n, there is a permutation π′ ∈ Sm+1,n such that

SR(m+ 1, n)|Parp(π′)
∼= SR(m,n)|Parp(π).
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Proof. Let π ∈ Sm,n and let π′ be the permutation in Sm+1 that acts on {1, . . . ,m} in

the same way as π and fixes m+1. Then π′ ∈ Sm+1,n, and we see that s(π) and s(π′) are

identical in the first m columns. In the m+ 1 column of s(π′) there are m+ 1 tiles, but

any σ′ ∈ Adm(π′) must have σ′m+1 = m+ 1. There is a bijection between Adm(π) and

Adm(π′): for any σ ∈ Adm(π), there is a unique permutation σ′ ∈ Adm(π′) which acts

on {1, . . . ,m} in the same way as σ and fixes m + 1. Clearly, for any ρ, σ ∈ Adm(π),

the vertices x(ρ′) and x(σ′) of the corresponding ρ′, σ′ ∈ Adm(π′) are adjacent if and

only if x(ρ) and x(σ) are adjacent. Thus SR(m+ 1, n)|Parp(π′)
∼= SR(m,n)|Parp(π).

Proposition 5.12. For any π ∈ Sm,n, there is a permutation π′ ∈ Sm+2,n+1 such that

SR(m+ 2, n+ 1)|Parp(π′)
∼= SR(m,n)|Parp(π)�K2.

Proof. Let π ∈ Sm,n and let π′ be the permutation in Sm+2 that acts on {1, . . . ,m} in

the same way as π and inverts m+ 1 and m+ 2. Then π′ ∈ Sm+2,n+1, and we see that

s(π) and s(π′) are identical in the first m columns. In the m + 1 and m + 2 columns

of s(π′) there are m + 2 tiles, so any σ′ ∈ Adm(π′) may have either σ′m+1 = m + 1

and σ′m+2 = m + 2, or σ′m+1 = m + 2 and σ′m+2 = m + 1. We partition the set

Adm(π′) into two subsets. Let Adm(π′)1 be the set of permutations in Adm(π′) such

that σ′m+1 = m + 1 and σ′m+2 = m + 2, and let Adm(π′)2 be the set of permutations

in Adm(π′) such that σ′m+1 = m + 2 and σ′m+2 = m + 1. There is a bijection between

Adm(π) and each of Adm(π′)1 and Adm(π′)2: for any σ ∈ Adm(π), there is a unique

permutation σ′ ∈ Adm(π′)1 which acts on {1, . . . ,m} in the same way as σ and fixes

m+ 1 and m+ 2, and a unique permutation σ′′ ∈ Adm(π′)2 which acts on {1, . . . ,m}

in the same way as σ and inverts m + 1 and m + 2. Clearly, for any ρ, σ ∈ Adm(π),

the vertices x(ρ′) and x(σ′) of the corresponding ρ′, σ′ ∈ Adm(π′)1 are adjacent if and

only if x(ρ) and x(σ) are adjacent, and similarly for ρ′′ and σ′ ∈ Adm(π′)2. Further,

the only neighbor of x(σ′) which arises from a permutation in Adm(π′)2 is x(σ′′). Thus

SR(m + 1, n)|Parp(π′) is isomorphic to two copies of SR(m,n)|Parp(π) connected by a

perfect matching between corresponding vertices. That is, SR(m+ 2, n+ 1)|Parp(π′)
∼=

SR(d, n)|Parp(π)�K2.
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Let Tk denote the k-th triangular number Tk =
∑k

i=1 i, and let CTp denote

the complete transposition graph on p letters, that is the graph whose vertices are

the permutations in Sp, where two vertices are adjacent if and only if they differ by a

transposition. Seen another way, CTp is the Cayley graph Cay(Sp, Tp), where Tp is the

set of all transpositions in Sp.

Proposition 5.13. For every pair of integers k ≥ 1 and t ≥ 0, if n = Tk + t then

SR(m,n) contains partial permutohedra isomorphic to CTk+1�tK2 for every m ≥ k +

1 + 2t.

Proof. If n = Tk for some k, let m = k + 1 and let π be the permutation (k +

1 = m, k = m − 1, . . . , 2, 1) ∈ Sm,n. Then each of the m columns in s(π) has m

tiles. The resulting Parp(π) has as vertices the m! permutations of (0, 1, . . . ,m − 1)

with two vertices adjacent if and only if they differ by a single transposition. Thus

Parp(π) ∼= CTm = CTk+1. Now, if n = Tk + t for any pair of integers k ≥ 1 and

t ≥ 0, let n′ = Tk, m
′ = k + 1, and m = k + 1 + 2t. By the same argument as before,

SR(m′, n′) contains partial permutohedra isomorphic to CTk+1. By Proposition 5.12

applied t times, SR(m,n) contains partial permutohedra isomorphic to CTk+1�tK2.

By Proposition 5.11 this is also true for m > k + 1 + 2t.

For example, when n = 1 = T1, we obtain partial permutohedra with 2! = 2

vertices, the graph CT2
∼= Q1

∼= K2. When n = 3 = T2, we obtain partial permutohedra

with 3! = 6 vertices ,the graph CT3
∼= K3,3. When n = 6 = T3, we obtain partial

permutohedra with 4! = 24 vertices.

Proposition 5.14. For any fixed n ∈ N, for any m > 2n and π ∈ Sm,n, the induced

subgraph SR(m,n)|Parp(π) is isomorphic to SR(2n, n)|Parp(π′) for some π′ ∈ S2n,n.

Proof. As noted above, s(π) has exactly n tiles above the main diagonal. Suppose

columns u1, u2, . . . , uk have exactly t1, t2, . . . , tk tiles above the diagonal, respectively,

where
∑k

i=1 ti = n, so no other columns have tiles above the diagonal. It is clear that

any proper rook placement σ on s(π) must satisfy σ` = ` for any ` /∈ U =
⋃k
i=1{ui, ui+
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1, . . . , ui+ti}. The corresponding vertex x(σ) in Parp(π) must satisfy x` = 0 for ` /∈ U .

This is true for every σ ∈ Adm(π), so the corresponding vertices x(σ) ∈ Parp(π)

are all identical in coordinates not in U . Thus, if a coordinate not in U is removed

from every vertex of Parp(π), the resulting induced subgraph graph is isomorphic to

SR(m,n)|Parp(π). We see that |U | ≤ 2n. To finish the proof, we note by the above

argument that for any ` /∈ U we can remove column ` (and the corresponding row)

from s(π) without affecting the graph induced by Parp(π). We can remove columns

and rows from s(π) in this way until exactly 2n remain. The resulting skyline board

has 2n columns and still has n tiles above the main diagonal, so it can be obtained as

s(π′) for some π′ ∈ S2n,n, and we have SR(m,n)|Parp(π)
∼= SR(2n, n)|Parp(π′).

Proposition 5.14 allows us to characterize the graphs SR(m,n)|Parp(π) by check-

ing only the graphs SR(2n, n)|Parp(π). For example, we find a much faster proof of

Corollary 5.10 (although it requires a computer search).

Alternate proof of Corollary 5.10. Using Sage we find that SR(6, 3)|Parp(π) is always

isomorphic to one of the indicated graphs.

Corollary 5.15. For any π ∈ Sm,4, the induced subgraph SR(m, 4)|Parp(π) is isomorphic

to either K3,3�K2 or Q4.

Proof. Using Sage we find that SR(8, 4)|Parp(π) is always isomorphic to one of the

indicated graphs.

Propositions 5.11, 5.12, 5.13, and 5.14 allow us to get an idea of the way in

which many subgraphs induced by partial permutohedra arise in SR(m,n). We see

that for fixed n, the set of subgraphs induced by partial permutohedra in SR(m,n)

contains the set of subgraphs induced by partial permutohedra in SR(k, n) for every

k < m. Fixing n and increasing m results in a graph including the same subgraphs

induced by partial permutohedra and may only add new (nonisomorphic to those al-

ready obtained) partial permutahedra until m = 2n. For every m > 2n, SR(m,n)

contains exactly the same partial permutohedra as SR(2n, n). Incrementing n gives a
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graph with partial permutohedra isomorphic to G�K2 for partial permutohedra G in

the smaller graph. This implies, for example, that SR(m,n) always contains partial

permutohedra isomorphic to Qn, since SR(2, 1) contains partial permutohedron Q1.

SR(2, 1) contains only CT2
∼= Q1 as a partial permutohedron, and similarly

SR(4, 2) contains only CT2�K2
∼= Q2. As we have seen, SR(6, 3) contains CT2�2K2

∼=

Q3, CT3
∼= K3,3, and no others. SR(8, 4) contains only CT2�3K2

∼= Q4 and CT3�K2
∼=

K3,3�K2. Here it is tempting to hope that every partial permutohedra arises as in

Proposition 5.13. However, while SR(10, 5) contains CT2�4K2
∼= Q5 and CT3�2K2

∼=

K3,3�2K2, it also contains a third type of partial permutohedron. Similarly, SR(12, 6)

contains CT4 and G�K2 for each partial permutohedron G of SR(10, 5), but it also

contains a fifth type of partial permutohedron.

While CT2, CT3, and CT4 are integral, and G�K2 is integral for any integral

graph G, it is unclear whether CTk is integral for general k or whether the partial

permutohedra not arising as in Proposition 5.13 are integral. We checked using Sage

and found that for n ≤ 8, every partial permutohedron induced in SR(2n, n) (and thus

in SR(m,n) for any m) is integral. Thus we confirmed Conjecture 5.8 for n ≤ 8 for all

m.

5.3 Problems and Questions on the Second Eigenvalue of Regular Graphs

We conclude with some open questions and problems related to the work on

second eigenvalues of regular graphs.

Question 5.1. What is the value of v(k,
√
k) for any value of k?

We have T (k, 4, k−
√
k) =

√
k and M(k, 4, k−

√
k) = 2k2 + k3/2 − k−

√
k + 1,

which yields

v(k,
√
k) ≤ 2k2 + k3/2 − k −

√
k + 1.

The Odd graph O4 meets this bound (see Proposition 4.5 and Table 4.1). We do not

know what other graphs, if any, meet this bound. Odd graphs, in general, do not have

T (k, t, c) as a quotient matrix.
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Problem 5.2. Classify the k-regular graphs with second eigenvalue more than 1 but

less than
√

2 for each k ≥ 3.

Recall that for k = 3 no such graph exists. For k > 3 we note that Lemma

4.3 with H = K3 implies that a graph G with λ2(G) <
√

2 and girth 3 satisfies

|V (G)| ≤ 3(k − 1)
(

1 + k−2
k−
√

2

)
, and Lemma 4.3 with H = K1,2 implies that such a

graph with girth more than 3 satisfies |V (G)| ≤ 3 + (3k − 4)
(

1 + k−1
k−
√

2

)
(note that

in both cases we have ρ(H) > λ2(G)). Combining this with Lemma 1.1 allows one to

restrict the search to graphs with certain girth. For k ≥ 6, nl(k, g) is larger than these

bounds unless the girth is at most 4, and for k = 4 or 5 nl(k, g) is larger than these

bounds unless the girth is at most 5. Thus the graphs sought in Problem 5.2 must

have girth at most 5 for k = 4, 5 and girth at most 4 for k ≥ 6.

Question 5.3. Is there a k-regular graph with second eigenvalue
√

2 for every k ≥ 3?

Recall that for k = 3 the Heawood suffices. Using similar argument to the one

above, one finds that Lemma 4.3 with H = K3 or H = K1,3 (so that deg(H) >
√

2)

implies that the number of vertices in a graph G with λ2(G) ≤
√

2 and girth 3 satisfies

|V (G)| ≤ 3(k−1)
(

1 + k−2
k−
√

2

)
, and with girth more than 3 satisfies |V (G)| ≤ 4+2(2k−

3)
(

1 + k−1
k−
√

2

)
. Then, combining with Lemma 1.1 and arguing as before we find that

the graphs sought in Question 5.3 must have girth at most 5 for k = 4, 5, 6 and girth

at most 4 for k ≥ 7.

Question 5.4. Among regular graphs, what is the smallest second eigenvalue larger

than 1?

Yu [98] found a 3-regular graph G on 16 vertices (see Figure 5.5) with smallest
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Figure 5.5: The unique 3-regular graph with largest least eigenvalue less than −2.

eigenvalue λmin = γ ≈ −2.0391, where γ is the smallest root of f(x) = x6 − 3x5 −
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7x4 + 21x3 + 13x2−35x−4, and moreover proved that there is no connected, 3-regular

graph with smallest eigenvalue in the interval (γ,−2) (that is, among all connected,

3-regular graphs G has the largest least eigenvalue less than −2). Since the second

eigenvalue of the complement of a regular graph is λ2 = −1 − λmin by Lemma 1.20,

the complement G of G, a 12-regular graph on 16 vertices, has second eigenvalue

λ2(G) = −1− γ ≈ 1.0391. We do not know if G has smallest second eigenvalue larger

than 1 among regular graphs, but it is not unique. Indeed, the complement of the

disjoint union G+kK4 of G and k copies of K4 is a connected, (12 + 4k)-regular graph

on 16 + 4k vertices and second eigenvalue λ2(G+ kK4) = −1− γ, so we have found an

infinite family of regular graphs with second eigenvalue −1− γ.
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on integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. 12 (2002), 42–65.

[6] M. Bataineh, An alternative proof of the Friendship Theorem, Jordan Journal of
Mathematics and Statistics 2 (2009), 25–32.

[7] F. Belardo, B. Borovicanin, Q.X. Huang and J.F. Wang, On the two largest Q-
eigenvalues of graphs, Discrete Math. 310 (2010), 2858-2866.

[8] C.T. Benson, Minimal regular graphs of girths eight and twelve, Canad. J. Math.
18 (1966), 1091–1094.

[9] N.L. Biggs, A.G. Boshier, and J. Shawe-Taylor, Cubic distance-regular graphs, J.
London Math. Soc. (2) 33 (1986), 385-394.

[10] S.R. Blackburn, M.B. Paterson and D.R. Stinson, Putting dots in triangles, J.
Combin. Math. Combin. Comput. 78 (2011), 23–32.
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