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ABSTRACT

In this paper we provide a new method to derive the exact analytical solutions

of the moments for a general class of stochastic hybrid systems. We identified a sub-

class of stochastic hybrid systems where stochastic resets change the states of the

system, and extend our analysis to the systems in which random resets can change

both dynamics and the states of system. We provide the exact solutions of first and

second order moments. Further, we analyze a class of time-triggered stochastic hybrid

systems where the state-space evolves as per a linear time-invariant dynamical system.

This continuous time evolution is interspersed with two kinds of stochastic resets. The

first reset occurs based on an internal timer that measures the time elapsed since it

last occurred. Whenever the first reset occurs the states-space undergoes a random

jump and the timer is reset to zero. The second reset occurs based an arbitrary timer-

depended rate, and whenever this reset fires, the state-space is changed based on a

given random map. For this class of systems, we provide exact conditions that lead

to finite statistic moments, and the corresponding exact analytical expressions for the

first two moments.
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NOTATION

The set of real number is denoted by R. Constant vectors are indicated by a

hat, e.g. â, and matrices are denoted by capital letters. Further, transpose of a matrix

A is given by A> and the n-dimensional identity matrix is denoted by In. We show

zero vectors and matrices with the same notation, e.g. A = â = 0. Random variables

are indicated by bold letters. The expected value of a random variable x is denoted

by 〈x〉 and the expected value in steady-state is denoted by 〈x〉 ≡ limt→∞〈x〉. Finally,

the conditional expectation of x given another random variable y is denoted 〈x|y〉.
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Chapter 1

EXACT STATISTICAL MOMENTS OF MULTI-MODE STOCHASTIC
HYBRID SYSTEMS WITH RENEWAL TRANSITIONS

In this chapeter, we provide a new method to derive the exact analytical solu-

tions of the moments for a general class of stochastic hybrid systems. We previously

identified a sub-class of these systems where stochastic resets change the states of the

system [53–55]. However, our previous works do not allow that random resets change

dynamics of the system. Building on our previous work, here we extend our analy-

sis to the systems in which random resets can change both dynamics and the states

of system. We provide the exact solutions of first and second order moments. How-

ever, our approach can be generalized to derive any arbitrary moment of these systems

(skewness, kurtosis, etc.). We demonstrate our method on an example drawn from

systems biology. We quantify noise in protein concentration in the presence of random

gene switching times and random synthesis events. We observe that randomness in

gene-switching time increases the total noise in protein concentration. Since the noise

in gene switching time intervals is a function of the number of steps that needs to be

taken before transcription starts, we discuss how noise in protein sheds light on the

underlying gene expression mechanisms.

1.1 Model Formulation

The class of systems under study include:

1. Operation modes: The system, contains m operative modes. In each mode,
the states x ∈ Rn×1 are governed via a set of Stochastic Differential Equations
(SDEs)

dx = (âi + Aix)dt+Didωt, i = {1, . . . ,m}, (1.1)

1



Mode 2  Mode 1  

ℎ2(𝝉 ) 
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−) ⟼ 𝒙(𝒕𝑠

+) 

ℎ1(𝝉 ) 

Figure 1.1. Schematic of stochastic hybrid systems with two operation
modes. In each mode the states are governed via a set of stochastic differential
equations according to (2.1). Resets happen at random times. Any time that an event
occurs the states change their value and the system switches to another operation
mode. The states after reset depend on the states before reset (eq. 1.4). A timer τ
measures the time since the last even, and rest to zero after each event occurs.

where Ai ∈ Rn×n, Di ∈ Rn×n, and âi ∈ Rn×1. Moreover, ωt denotes n-
dimensional Wiener process where

〈dωt〉 = 0, 〈dωtdω>t 〉 = Indt. (1.2)

2. Reset intensity: When random events occur, the states will change and the
system will switch to another mode. Assuming that random events happen at
times ts, s ∈ {2, 3, . . .}, the time interval between the events is defined as τ s ≡
ts−ts−1. The set of time intervals τ s can be divided into m subsets denoting reset
time intervals between m different modes. In the rest of this paper for simplicity
of notation and mathematical derivations we consider the case of m = 2 (Fig. 1).
However the obtained results are general and can be applied to any m. In this
case system toggles between two modes and τ si is defined as

τ si ≡ ts − ts−1 =

{
i = 1 from mode 1 to 2,

i = 2 from mode 2 to 1.
(1.3)

3. Reset maps: When a reset happens, the states change as

x(t−s ) 7→ x(t+s ), (1.4)

where x(t−s ) and x(t+s ) denote the states of system before and after a reset,
respectively. We assume that x(t+s ) is a random variable in which its expectation
is a linear affine map of x(t−s ). These maps depend on i as

〈x(t+s )〉 = Jix(t−s ) + r̂i, i = {1, 2}, (1.5)

2



where Ji ∈ Rn×n andr̂i ∈ Rn×1. Further, the covariance matrix of x(t+s ) depends
on x(t−s ) as

〈x(t+s )x>(t+s )〉 − 〈x(t+s )〉〈x(t+s )〉> = Qix(t−s )x>(t−s )Q>i +Bix(t−s )ĉ>i

+ ĉix
>(t−s )B>i +Gi, i = {1, 2}.

(1.6)

Here Qi ∈ Rn×n, Bi ∈ Rn×n,Gi ∈ Rn×n, and ĉi ∈ Rn×1. In previous studies, we
showed that the matrices Qi, Bi, Ci, and Gi can be used to model presence of
constant or state-dependent noise in x [6, 49,51,52,60].

1.2 Statistical Moments of Multi-mode Stochastic Hybrid System

In order to obtain a mathematically tractable model, we introduce a timer τ

that measures the time since the last event. The timer increases with time between

the events

dτ = dt, (1.7)

and resets to zero whenever a new event occurs

τ 7→ 0. (1.8)

Note that we have two modes in the system, and the time intervals that the system

resides in each of them is independent from the other. Thus we further divide set of

τ into two subsets τ 1 and τ 2 indicating the accumulation of time in mode 1 and 2,

respectively (τ = {τ 1, τ 2}).

With this definition we can connect the probability of occurrence of an event

to probability density function of the time intervals between the events. Let the prob-

ability that a transmission occurs in the next infinitesimal time (t, t + dt] be hi(τ )dt,

where

hi(τ) ≡ fi(τ)

1−
∫ τ
y=0

fi(y)dy
, i = {1, 2}, (1.9)

Then, the time interval between events τ si follows a probability density function fi

τ si ∼ fi(τ) = hi(τ)e−
∫ τ
y=0 fi(y)dy, i = {1, 2} (1.10)

[13,35,41], and timers follow the following density function [60]

τ i ∼ pi(τ) =
1

〈τ si〉
e−

∫ τ
y=0 fi(y)dy, i = {1, 2}. (1.11)

3



Finally, note that the probability that the system resides in each mode is independent

of the states of system and is given by

Probability of being in mode 1 =
〈τ s1〉

〈τ s1〉+ 〈τ s2〉
,

Probability of being in mode 2 =
〈τ s2〉

〈τ s1〉+ 〈τ s2〉
.

(1.12)

1.3 The Steady-State Mean of Multi-mode SHS

By introducing the timer, we can derive the steady-state mean of x in the

following theorem.

Theorem 1 The steady-state mean of states of stochastic hybrid system in (2.1)-(1.6)

is given by (1.13)

〈x〉 =
〈τs1 〉

〈τs1
〉 + 〈τs2

〉

(
〈eA1τ1 〉(In − J2〈e

A2τs2 〉J1〈e
A1τs1 〉)−1

(
J2〈e

A2τs2 〉
〈
e
A1τs1

∫ τs1

0
e
−A1l

â1dl

〉
+ J2〈e

A2τs2 〉r̂1

+

〈
e
A2τs2

∫ τs2

0
e
−A2l

â2dl

〉
+ r̂2

)
+

〈
e
A1τ1

∫ τ1

0
e
−A1l

â1dl

〉)
+

〈τs2 〉
〈τs1

〉 + 〈τs2
〉

(
〈eA2τ2 〉

(
In − J1〈e

A1τs1 〉J2〈e
A2τs2 〉)−1

(J1〈e
A1τs1 〉

〈
e
A2τs2

∫ τs2

0
e
−A2l

â2dl

〉
+ J1〈e

A1τs1 〉r̂2

+

〈
e
A1τs1

∫ τs1

0
e
−A1l

â1dl

〉
+ r̂1

)
+

〈
e
A2τ2

∫ τ2

0
e
−A2l

â2dl

〉)
.

(1.13)

if and only if

〈eAiτ si 〉 =

∫ ∞
0

fi(τ)e−Aiτdτ, i = {1, 2} (1.14)

is finite, and all the eigenvalues of the matrices J2〈eA2τ s2 〉J1〈eA1τ s1 〉 and J1〈eA1τ s1

〉J2〈eA2τ s2 〉 are inside unit circle.

�

Proof of theorem 1 consists of two parts, we start with assuming that the system is

residing in mode 1, hence the states of the system right before the sth event is

x(t−s ) = eA1τ s1x(t+s−1) +

∫ τ s1

0

e−A1lâ1dl +

∫ τ s1

0

D1dωt. (1.15)

By using (1.5), the mean of the states after the sth event is

〈x(t+s )〉 = J1(〈eA1τ s1 〉〈x(t+s−1)〉+

〈
eA1τ s1

∫ τ s1

0

e−A1lâ1dl

〉
) + r̂1. (1.16)

4



After the sth event the system is residing in mode 2. Hence the states of the system

before s+ 1th event is given by

x(t−s+1) = eA2τ s2x(t+s ) +

∫ τ s2

0

e−A2lâ2dl +

∫ τ s2

0

D2dωt. (1.17)

Again by using (1.5) we derive the values of states right after s+ 1th event

〈x(t+s+1)〉 = J2(
〈
eA2τ s2

〉 〈
x(t+s )

〉
+

〈
eA2τ s2

∫ τ s2

0

e−A2lâ2dl

〉
) + r̂2. (1.18)

Substituting (1.16) into (1.18), we get

〈x(t+s+1)〉 = J2〈eA2τ s2 〉J1〈eA1τ s1 〉
〈
x(t+s−1)

〉
+ J2〈eA2τ s2 〉

〈
eA1τ s1

∫ τ s1

0

e−A1lâ1dl

〉
+ J2〈eA2τ s2 〉r̂1 +

〈
eA2τ s2

∫ τ s2

0

e−A2lâ2dl

〉
+ r̂2.

(1.19)

Note that after s + 1th event we have returned to mode 1. Hence in order to have

a finite recursive equation, all the eigenvalues of J2〈eA2τ s2 〉J1〈eA1τ s1 〉 should be inside

the unit circle. In this limit, the mean of states right after returning to mode 1 in

steady-state is

〈x(t+s )〉 = V1J2〈eA2τ s2 〉
〈
eA1τ s1

∫ τ s1

0
e−A1lâ1dl

〉
+ V1J2〈eA2τ s2 〉r̂1

+ V1

〈
eA2τ s2

∫ τ s2

0
e−A2lâ2dl

〉
+ V1r̂2,

(1.20)

where

V1 = (In − J2〈eA2τ s2 〉J1〈eA1τ s1 〉)−1. (1.21)

By having the steady state initial condition of being in mode 1, we can calculate

the mean of states for any time τ 1 = τ

〈x|τ1=τ 〉 = eA1τ

∫ τ

0

e−A1lâ1dl + eA1τV1(J2
〈
eA2τ s2

〉〈
eA1τ s1

∫ τ s1

0

e−A1lâ1dl

〉
+ J2

〈
eA2τ s2

〉
r̂1 +

〈
eA2τ s2

∫ τ s2

0

e−A2lâ2dl

〉
+ r̂2).

(1.22)

5



In the next part, we repeat our analysis by assuming that system is residing in

mode 2. Such analysis results in another recursive formula which is converging if all

the eigenvalues of J1〈eA1τ s1 〉J2〈eA2τ s2 〉 are inside the unit circle. In this case we can

calculate the steady-state mean of states for any time τ 2 = τ as

〈x|τ2=τ 〉 = eA2τ

∫ τ

0

e−A2lâ2dle
A2τV2(J1

〈
eA1τ s1

〉〈
eA2τ s2

∫ τ s2

0

e−A2lâ2dl

〉
+ J1

〈
eA1τ s1

〉
r̂2 +

〈
eA1τ s1

∫ τ s1

0

e−A1lâ1dl

〉
+ r̂1),

(1.23)

where

V2 = (In − J1〈eA1τ s1 〉J2〈eA2τ s2 〉)−1. (1.24)

Moreover, note that

A

〈
eAiτ si

∫ τ si

0

e−Ailâidl

〉
= A

∫ ∞
0

fi(τ)(e−Aiτi
∫ τ i

0

e−Ailâidl)d

=

∫ ∞
0

fi(τ)e−Aiτi(I − e−Aiτi)âidτ = −(In − 〈eAiτ si 〉)âi,

(1.25)

and

〈eAiτ si 〉 =

∫ ∞
0

hi(τ)e−
∫ τi
0 hi(y)dyeAiτdτ

= (−e−
∫ τ
0 hi(y)dyeAiτi)∞0 +

∫ ∞
0

e−
∫ τi
0 hi(y)dyeAiτAidτ

= In + 〈τ si〉〈eAiτ i〉Ai.

(1.26)

Hence if 〈eAiτ si 〉 exists then 〈eAiτ i
∫ τ i
0
e−Ailâidl〉 and 〈eAiτ i〉 are also finite. Finally,

taking expected value with respect to τ i, i = {1, 2} from (1.22) and (1.23) by using

(2.6) and then using (1.12) results in (1.13) and that completes our proof.

In general, matrices cannot commute, thus, J2〈eA2τ s2 〉J1〈eA1τ s1 〉 is not equal to

J1〈eA1τ s1 〉J2〈eA2τ s2 〉. This implies an important property of these systems: even if each

mode is stable, it does not result in stability of the whole system. Note that the states

of the system at a given time depends on the entire history of the resets.

6



1.4 The Second-order Moments

In [54] we introduced a method to convert dynamics of the second-order mo-

ments to a similar form as in (2.1) and (1.4). This is done by introducing a new vector

µ ≡ [x> vec(xx>)>]>, (1.27)

where vec(xx>) ∈ Rn2×1 stands for vector representation of the matrix xx> ∈ Rn×n.

The values of xx> after a reset is given by (1.6), and we need to derive its dynamics

in between the events. From (2.1) and Ito formula [27], it follows that

d(xx>) =
(
Aixx

> + xx>A>i + âix
> + xâ>i +DiD

>
i

)
dt, (1.28)

i = {1, 2}. Using vectorization on this equation results in

dvec
(
xx>

)
=
(
(In ⊗ Ai + Ai ⊗ In) vec

(
xx>

)
+vec

(
DiD

>
i

)
+(In ⊗ âi + âi ⊗ In)x)

)
dt, i = {1, 2}

(1.29)

[32]. From (2.1) and (2.32), the dynamics of µ between the events is given by

dµ = (âµi + Aµiµ(t))dt+ (Cµi)dwt, (1.30)

where

Aµi =

 Ai 0

In ⊗ âi + âi ⊗ In In ⊗ Ai + Ai ⊗ In

 ,
âµi =

 âi

vec
(
DiD

>
i

)
 .

(1.31)

Note that we did not show Cµi because this matrix has no role in the steady-state

mean of µ [27].

Moreover, when a reset occurs, the states of µ reset as

µ(t−s ) 7→ µ(t+s ), (1.32)
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where

〈µ(t+s )〉 = Jµiµ(t−s ) + r̂µi , (1.33a)

Jµi =

 Ji 0

Mi Ni

 , r̂µi =

 r̂i

vec
(
GiG

>
i

)
 , (1.33b)

Mi = Bi ⊗ ĉi + ĉi ⊗Bi + Ji ⊗ r̂i + r̂i ⊗ Ji,

Ni = Ji ⊗ Ji +Qi ⊗Qi.

Deterministic dynamics (2.32) and stochastic resets (1.32) are similar to (2.1) and (1.4).

Hence with a similar analysis as in Theorem 1, the following theorem provides the

necessary and sufficient conditions for having the steady-state second-order moments

of x.

Theorem 2 Suppose that the multi-mode stochastic hybrid system in (2.1)-(1.6) sat-
isfies the hypothesis of Theorem 1, then the steady-state mean of xx> is finite if and
only if all the eigenvalues of the matrices

1. (J2 ⊗ J2 +Q2 ⊗Q2)〈eA2τ s2 ⊗ eA2τ s2 〉(J1 ⊗ J1 +Q1 ⊗Q1)〈eA1τ s1 ⊗ eA1τ s1 〉,

2. (J1 ⊗ J1 +Q1 ⊗Q1)〈eA1τ s1 ⊗ eA1τ s1 〉(J2 ⊗ J2 +Q2 ⊗Q2)〈eA2τ s2 ⊗ eA2τ s2 〉

are inside the unite circle.

�

First let us define

yi ≡ eAiτ si
∫ τ si

0

e−Ailâidl. (1.34)

Similar to Theorem 1 we prove Theorem 2 in two parts. Assume that system is residing

in mode 1, then xx> right after sth event is related to x(t+s−1)x
>(t+s−1) as

vec(〈x(t+s )x>(t+s )〉) = (J1 ⊗ J1 +Q1 ⊗Q1)〈eA1τ s1 ⊗ eA1τ s1 〉vec(〈x(t+s−1)x
>(t+s−1)〉

+ (J1 ⊗ J1 +Q1 ⊗Q1)(〈eA1τ s1 ⊗ y1〉〈y1 ⊗ eA1τ s1 〉)〈x(t+s−1)〉

+ ((B1 ⊗ ĉ1 + J1 ⊗ r̂1)〈In ⊗ eA1τ s1 〉

+ (ĉ1 ⊗B1 + r̂1 ⊗ J1)〈eA1τ s1 ⊗ In〉)〈x(t+s−1)〉

+ vec(Q1

〈
y1y1

>
〉
Q>1 + J1

〈
y1y1

>
〉
J>1 +B1 〈y1〉 ĉ1>

+ J1 〈y1〉 r̂1> + ĉ1

〈
y1
>
〉
B>1 + r̂1

〈
y1
>
〉
J>1 +G1 + r̂1r̂1

>).

(1.35)
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Next, xx> right after s+ 1th event is related to x(t+s )x>(t+s ) as

vec(〈x(t+s+1)x
>(t+s+1)〉) = (J2 ⊗ J2 +Q2 ⊗Q2)〈eA2τ s2 ⊗ eA2τ s2 〉vec(〈x(t+s )x>(t+s )〉

+ (J2 ⊗ J2 +Q2 ⊗Q2)(〈eA2τ s2 ⊗ y2〉+ 〈y2 ⊗ eA2τ s2 〉)〈x(t+s )〉

+ ((B2 ⊗ ĉ2 + J2 ⊗ r̂2)〈In ⊗ eA2τ s2 〉

+ (ĉ2 ⊗B2 + r̂2 ⊗ J2)〈eA2τ s2 ⊗ In〉)〈x(t+s )〉

+ vec(Q2

〈
y2y2

>
〉
Q>2 + J2

〈
y2y2

>
〉
J>2 +B2 〈y2〉 ĉ2>

+ J2 〈y2〉 r̂2> + ĉ2

〈
y2
>
〉
B>2 + r̂2

〈
y2
>
〉
J>2 +G2 + r̂2r̂2

>).

(1.36)

Combining these two equations we obtain a recursive formula in which is converging

in steady-state if all the eigenvalues of (J2 ⊗ J2 + Q2 ⊗ Q2)〈eA2τ s2 ⊗ eA2τ s2 〉(J1 ⊗

J1 + Q1 ⊗ Q1)〈eA1τ s1 ⊗ eA1τ s1 〉 are inside unit circle. Similarly if we assume that the

system resides in mode 2 then the steady-state values exists if all the eigenvalues of

(J1⊗ J1 +Q1⊗Q1)〈eA1τ s1 ⊗ eA1τ s1 〉(J2⊗ J2 +Q2⊗Q2)〈eA2τ s2 ⊗ eA2τ s2 〉 are inside the

unit circle. The rest of proof is similar to that of Theorem 1.

Please see Appendix B for detailed derivations. Finally, 〈µµ>〉 can be obtained

from (1.13) by replacing Ai, âi, Ji, and r̂i in (1.13) with their respective Aµi , âµi , Jµi ,

and r̂µi , i = {1, 2}. In the next section, we apply our results on a biological example.

1.5 Biology Example

Inside a living cell different species show considerable levels of fluctuations

(noise) even between isogenic cells in an identical environment [4,38,40]. These fluctua-

tions may have beneficial or harmful effects such as corrupting functioning of gene net-

works [1,12,31] or helping cells to survive in an ever changing environment [5,11,29,61].

A main source of noise is occurrence of random events such as protein synthesis,

binding, etc. [7,33,39]. One such important event is stochastic gene switching: a gene

becomes active for a short period of time followed by a period of silence [9, 25, 42, 43,

47,62].

To explore the contribution of gene switching on protein concentration, we used

the multi-mode stochastic hybrid system introduced in the previous section. Let x(t)
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denotes a protein concentration level inside the cell at time t. We assume that pro-

duction occurs in exponentially distributed time intervals with rate k and we use a

Langevin approximation of this reaction [22]. Further we consider that protein decays

with a rate γ. When gene is active, the dynamics of protein concentration can be

written as

dx = (k − γx)dt+
√
k dwt, (1.37)

and when gene is inactive, protein dynamics only include decay

dx = −γxdt. (1.38)

Note that decay of protein concentration is mainly caused by cell growth. Since cell

growth is a cellular process which is the summation of many random events, we did

not consider any noise in the decay of proteins [3,20,60]. The dynamics of this system

are in the form of (2.1) with

A1 = A2 = −γ, â1 = k, D1 =
√
k, â2 = 0, D2 = 0. (1.39)

Moreover, J1 = J2 = 1, and r̂i = Qi = Bi = Gi = ĉi = 0, i = {1, 2} (Fig. 2). For

having a clear connection to our biological example, we rename τ s1 and τ s2 as τ on and

τ off , respectively.

Since A1 = A2 = −γ < 0, then both 〈e−γτoff 〉 and 〈e−γτon〉 exist. Moreover,

because J1 = J2 = 1 then 〈e−γτoff 〉〈e−γτon〉 < 1, hence we can use (1.13) to derive the

steady-state mean of protein concentration

〈x〉 =
〈τ on〉

〈τ on〉+ 〈τ off〉
k

γ
. (1.40)

The mean of protein concentration is independent of the probability density function

of gene-switching time intervals. This means that the mean of protein contains no

information about the underlying processes that leads to gene activation.

In the next step, we derive the second-order moment of protein to explore how

variations in gene-switching time intervals affect the fluctuations in protein count.
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Figure 1.2. The fundamental process of gene switching can be modeled
through multi-mode framework. A) Promoter randomly switches between active
and inactive states. Protein synthesis only occurs when promoter is ON. Protein is
subject to decay with a rate γ. B) The multi-mode system presented here is perfect
for modeling promoter toggling. When gene is OFF the protein dynamics are only
governed via decay. when promoter becomes active the protein synthesis is modeled
through a Langevin equation with a rate k.

First, we use (1.31) to derive the matrices needed for calculating the second-order

moment

Aµ1 =

 −γ 0

0 −2γ

 , âµ1 =

 k

k

 , Aµ2 =

 −γ 0

2k −2γ

 ,
âµ2 = 0, Jµ1 = Jµ2 = I2.

(1.41)

Further, here Jµi = I2 and r̂µi = 0, i = {1, 2}. Since −γ < 0 then the conditions of

Theorem 2 are satisfied and we can derive the second-order moment as

〈x2〉 =
k2

γ3
(〈e−γτoff 〉 − 1)(〈e−γτon〉 − 1)

(〈e−γτoff 〉〈e−γτon〉 − 1)(〈τ on〉+ 〈τ off〉)

+
k2

γ2
(〈e−γτoff 〉〈e−γτon〉 − 1)〈τ on〉

(〈e−γτoff 〉〈e−γτon〉 − 1)(〈τ on〉+ 〈τ off〉)

+
k

2γ

〈τ on〉
〈τ on〉+ 〈τ off〉

.

(1.42)
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We use the coefficient of variation squared to quantify noise in x

CV 2
x ≡

〈x2〉 − 〈x〉2

〈x〉2
=
γ(〈e−γτoff 〉〈e−γτon〉 − 1)〈τ off 〉〈τ on〉)

(〈e−γτoff 〉〈e−γτon〉 − 1)γ〈τ on〉2

+
(〈τ on〉+ 〈τ off 〉)((〈e−γτoff 〉 − 1)(〈e−γτon〉 − 1)

(〈e−γτoff 〉〈e−γτon〉 − 1)γ〈τ on〉2
+

1

2

1

〈x〉
.

(1.43)

The first two terms in the right-hand side of this equation show the contribution of ran-

dom gene switching times in protein noise, the last term quantifies the contribution of

random synthesis events. While the mean of protein is independent of statistical char-

acteristic of switching times, the protein fluctuations depend on the entire distribution

of τ on and τ off .

Next, based on the measurements inside the living cells [6], we assume that

gene deactivation reaction happens in exponentially distributed time intervals and we

explore the effect of noise in gene activation time interval. Fig. 3 shows that making

gene-activation reaction more noisy increases CV 2
x . Further, we can approximate the

results in the limit of fast gene switching as

CV 2
x ≈

1

2

〈τ on〉2γ
〈τ on〉+ 〈τ off〉

(
1 + CV 2

τon

)
+

1

2

1

〈x〉
, (1.44)

where CV 2
τon ≡ 〈τ

2
on〉/〈τ on〉2 − 1 denotes the coefficient of variation squared of gene-

activation time intervals. This equation clearly shows that the noise in gene activation

reaction increases the noise in protein concentration. Moreover, this equation quantifies

the contribution of decay rate on noise, i.e., higher decay rate means higher noise.

Additionally, this equation shows that noise in x depends on both fluctuations and

amplitude of gene-switching time intervals (Fig. 3). Finally, in the limit of slow gene

switching, noise in x is independent of noise in gene-switching time intervals

CV 2
x ≈

〈τ off〉
〈τ on〉

+
1

2

1

〈x〉
. (1.45)

1.6 Conclusion

We studied statistical moments of a class of stochastic hybrid systems with

multiple operation modes. We derived exact solution of the first and second order
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Figure 1.3. The noise in protein concentration is highly affected by the
gene-switching time intervals. A) Noise in gene ON time intervals will not change
the mean of a protein. Moreover, it does not have an obvious effect on the protein time
trend. B) The noise in protein is highly affected by the gene switching noise. While
the mean of protein only depends on the ratio of gene ON and OFF times, noise is
affected by the magnitude of the ON and OFF time intervals as well. For this plot
the protein production rate is selected to be k = 100, decay rate is γ = 1 min−1, and
mean ON and OFF time intervals are equal 〈τ on〉 = 〈τ off〉.

moments as well as necessary and sufficient conditions for having finite moments. While

we only present our derivations for a two mode system, the results can be generalized
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to a any arbitrary number of modes.

We used the framework presented here to calculate the mean and the noise in

protein concentration. We find that the randomness in gene-activation time intervals

increases the noise in protein while having no effect on the mean. Hence noise can be

used to infer protein expression parameters systematically. Noise in gene-activation

time intervals is an indicator of the number of steps that needs to be taken to activate

a gene [6]. Previously through a numerical model we explored this connection on

experimental data obtained from mouse [6]. Here we provide the exact solutions that

can be used to infer mechanisms behind gene switching in different types of cells.

The continuous dynamics here are governed via a set of time-invariant SDEs.

Our preliminary results show that some classes of time-varying differential equations

have closed set of moments. Changing dynamics of the modes to time-varying dif-

ferential equations will be the case of future efforts. Moreover, here we only allowed

occurrence of one reset in each operation mode. Our previous work addressed multiple

families of resets for a system with only one operational mode [55]. Future works will

consider inclusion of multiple families of resets for each mode.
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Chapter 2

TIME-TRIGGERED STOCHASTIC HYBRID SYSTEM WITH TWO
TIMER DEPENDENT RESET

We analyze a class of time-triggered stochastic hybrid systems where the state-

space evolves as per a linear time-invariant dynamical system. This continuous time

evolution is interspersed with two kinds of stochastic resets. The first reset occurs based

on an internal timer that measures the time elapsed since it last occurred. Whenever

the first reset occurs the states-space undergoes a random jump and the timer is reset

to zero. The second reset occurs based an arbitrary timer-depended rate, and whenever

this reset fires, the state-space is changed based on a given random map. For this class

of systems, we provide exact conditions that lead to finite statistic moments, and the

corresponding exact analytical expressions for the first two moments. This framework

is applied to study random fluctuations in the concentration of a protein in a growing

cell. In the context of this example, the timer denotes the time elapsed since the cell

was born, and the cell division event (first reset) is trigged based on a timer-dependent

rate. The second reset corresponds to synthesis of the protein in stochastic bursts, and

finally, during cell growth protein concentration continuously decrease due to dilution.

Our analysis provides closed-form formulas for the noise in the protein concentration

and leads to a striking result - noise in the concentration is invariant of the noise in

the cell-cycle time. We also investigate how protein noise levels change for different

forms of production rate that depend on the internal timer, as is the case for cell-cycle

regulated genes inside the cell.
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2.1 Model Formulation

The state space of the SHS x ∈ Rn×1 evolves as per a linear time-invariant

system

ẋ(t) = â+ Ax, (2.1)

with a constant matrix A ∈ Rn×n and vector â ∈ Rn×1. This continuous time evolution

of the state space is interspersed by two families of random resets, which we describe

in further detail below.

2.1.1 First family of resets

The first family of resets is assumed to occurs at times ts, s ∈ {1, 2, 3, . . .},

such that the time intervals τ s ≡ ts− ts−1 are independent and identically distributed

random variable following an arbitrary positively-valued continuous probability density

function (pdf) f . To model the timing of these resets we introduce a timer τ that

linearly increases over time

τ̇ = 1, (2.2)

and resets to zero

τ 7→ 0 (2.3)

whenever the event occurs. The occurrence of the next event depends on state of the

timer introducing memory in the event-arrival process. More specifically, the proba-

bility that an event occurs in the next infinitesimal time interval (t, t+ dt] is given by

h1(τ )dt, where the hazard rate

h1(τ) ≡ f(τ)

1−
∫ τ
y=0

f(y)dy
. (2.4)

Defining the arrival of events as per (2.10) ensures that τ s follows the pdf f

τ s ∼ f(τ) = h1(τ)e−
∫ τ
y=0 h1(y)dy, (2.5)

and the corresponding pdf of τ is given by (see Appendix A)

τ ∼ p(τ) =
1

〈τ s〉
e−

∫ τ
y=0 h1(y)dy. (2.6)
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For example, if f is exponentially-distributed with mean 〈τ s〉, then h1(τ) = 1/〈τ s〉

would be a constant corresponding to a Poisson arrival of events.

Having modeled the timing of the first family of resets, we next describe its

impact on the SHS state space. Each time the event occurs, the state of system

undergoes a random jump as per the reset

x 7→ x1+ , τ 7→ 0, (2.7)

where x+
1 is the state of a system immediately after an event belonging to the first

family of resets. We assume x1+ to be a random variable whose statistics depends on

the value of x just before the event.

iand its statisics a random variable of which mean is a linear affine map of states’

value before the first reset

〈x1+〉 = J1x+ r̂1, (2.8)

where J1 ∈ Rn×n and r̂1 ∈ Rn×1 are a constant matrix and vector, respectively. Further,

we define a state dependent noise form

〈x1+x
>
1+〉 − 〈x1+〉〈x>1+〉 =

Q1xx
>Q>1 +B1xĉ

>
1 + ĉ1xB

>
1 +G1,

(2.9)

where Q1 ∈ Rn×n, B1 ∈ Rn×n are constant matrices. G1 ∈ Rn×n is a constant symmet-

ric positive semi-definite matrix, and ĉ1 ∈ Rn×1 is a constant vector. Based on (2.14),

the covariance matrix of x1+ depends on x where noise term match the quadratic and

linear function of system state. [54]

Having defined this timer, one can now define a corresponding hazard rate

h1(τ) ≡ f(τ)

1−
∫ τ
y=0

f(y)dy
, (2.10)

In our time-triggered stochastic hybrid model, we formulated two random resets

(Fig.1.1); however, our model can easily extend to more random resets.

In addition, we introduce a measuring the time since the last first reset and

resets to zero whenever the next first random event occurs

τ 7→ 0. (2.11)
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Thereby, a timer-dependent hazard rate can be defined to ensure that time interval

τ s between two successive first random event following a given arbitrary probability

distribution function; thus, probability of the first random event happeningwhere y

and τ are dummy variables. Thus, the time interval τ s follows a probability density

function f

2.1.1.1 The first random reset

We assume the first random reset occurring in the next infinitesimal interval

(t, t+dt] with probability h1(τ )dt. After a random event occurring, the state of system

resets as

x 7→ x1+ , τ 7→ 0, (2.12)

where x1+ , denoting states of a system after the first reset, is a random variable of

which mean is a linear affine map of states’ value before the first reset

〈x1+〉 = J1x+ r̂1, (2.13)

where J1 ∈ Rn×n and r̂1 ∈ Rn×1 are constant matrix and vector, respectively. Further,

we define a state dependent noise form

〈x1+x
>
1+〉 − 〈x1+〉〈x>1+〉 =

Q1xx
>Q>1 +B1xĉ

>
1 + ĉ1xB

>
1 +G1,

(2.14)

where Q1 ∈ Rn×n, B1 ∈ Rn×n are constant matrices. G1 ∈ Rn×n is a constant symmet-

ric positive semi-definite matrix, and ĉ1 ∈ Rn×1 is a constant vector. Based on (2.14),

the covariance matrix of x1+ depends on x where noise term match the quadratic and

linear function of system state. [54]

2.1.1.2 The second random reset

Similarly, the probability of second random reset will happen in the next in-

finitesimal time (t, t + dt] is h2(τ )dt. The reset map for the second random reset is

x 7→ x2+ , (2.15)
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Figure 2.1. Modeling protein concentration in a single cell using time-
triggered stochastic hybrid system Right: Protein level x ∈ R is modeled by
SHS with two generally distributed stochastic resets, which are protein synthesis event
and cell division event, in a single cell. Cell division time interval is tracked by timer
τ ; whenever Cell division occurs, the state reset follow (2.16) and timer resets to 0.
Additionally, the steady state distribution of protein concentration is simulated by
a large number Monte Carlo method. Left top: Sketch of mathematical model for
protein concentration. Protein concentration is diluted at rate γ. Protein burst size
is a random variable u. Cell division dose not affect mean of protein concentration.
Left bottom: zoom-in figure for part of protein concentration evolving with time.

where x2+ denotes states of a system after the second random reset. Same as the first

random reset in (2.13), we have (2.16) relation between mean of states of a system

after second random reset and states of a system before second random reset

〈x2+〉 = J2x+ r̂2, (2.16)

where J2 ∈ Rn×n and r̂2 ∈ Rn×1 are constant matrix and vector, respectively. Fur-

thermore, the second family random event rest covariance matrix is same as (2.14) by

replacing Q2,B2,ĉ2,G2 with their respective.

2.1.2 Biology Example

Our model is motivated by stochastic fluctuations in gene expression occurring

during transcription and translation process [5,11,29,61], triggering variation at protein

concentration in a single cell [1,4,12,14,31,38,40,54,56,57]. We will briefly describe this

biology phenomenon to connect with mathematical model to further interpret model.
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we assume that protein degradation is a deterministic process, and protein con-

centration is diluted at a constant rate γ. By that means, we can write continuous

dynamics of protein as

ẋ(t) = −γx, (2.17)

comparing with (2.1), we could find parameters in our model for continuous dynamics

of protein concentration as A = −γ, â = 0. Instead of a matrix , A is a scalar in the

biology example; same as â.

The first random reset is cell divisions, happening at end of cell-cycle time

interval. Cell divisions will cause protein copy number and cell size variation randomly;

thus, cell division is one of essential reasons causing protein fluctuation in a single

cell [10,16,26,49]. τ s is time intervals between cell division, defined as a cell cycle time.

Additionally, mean of cell-cycle time (〈τ s〉) has the following relation with dilution

rate [2]

〈τ s〉 =
ln 2

2γ
, (2.18)

In our biology example, we assume symmetric division in a single cell. Accord-

ingly, when cell division event occurs, protein copy numbers and cell volume reduce

by half; thus, average protein concentration has no change. Especially, states of the

system are same before and after first random reset; based on (2.13), the first random

reset can be written as

〈x1+〉 = x. (2.19)

When cell division happens, each protein molecule follow binomial distribution to be

separated into one of two daughter cells. Such random binomial division introduce

noise in protein concentration, represented as

〈x2
1+〉 − 〈x1+〉2 = bx, (2.20)

where b ∈ R+ quantify the dispersion of protein division. Comparing with (2.13) and

(2.14), we can have reset parameters for the first family random event as J1 = 1,

B1 = b/2, ĉ1 = 1 and r̂1 = Q2 = G1 = 0.
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The second random reset is protein synthesis event. During cell-cycle time,

protein synthesis rate vary on different cell-cycle phase [23], and stochasticity of gene

expression cause fluctuation in protein synthesis [24]. Thus, we assume each synthesis

event increases the protein count by a identical and independent distributed random

variable u. Random variable u has mean 〈u〉 and variance〈u2〉 − 〈u〉2. Thus, the

second random reset express as

〈x2+〉 = x+ 〈u〉. (2.21)

According (2.13) and (2.16), we can identify random event reset parameters for the

second random reset as J2 = 1, and r̂2 = 〈u〉. The noise only comes from protein

synthesis size, thus Q2 = R2 = ĉ2 = 0 and G2 = 〈u2〉.

Motivated by randomness of protein synthesis process and cell-cycle division

process, we formulated a mathematical model to describe the system. In Fig.2.1, we

give the sketch of our biologic system and one trajectory simulation of the system with

both stochastic protein synthesis and cell division events. Since our mathematical

model is well defined, we will investigate statistical properties of the system in the

next section.

2.2 Statistical Moments

As all components of the system have been defined in 2.1, we will present our

novel method to find statistic moments for time-triggered stochastic hybrid system,

instead of using Monte Carlo simulation.

2.2.1 The first-order moment

The conditional mean of time-variant system evolves as

∂ 〈x|τ 〉
∂t

= âx(y) + Ax(y) 〈x|τ 〉 (2.22)

where

Ax(y) = A+ h2(y)(J2 − In),

âx(y) = â+ r̂2h2(y),
(2.23)
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Here, one can see that the conditional mean of systems change to time variant

system, and conditional mean of time-variant system can derived as

〈x|τ = τ〉 = e
∫ τ
0 Ax(y)dy 〈x|τ = 0〉

+ e
∫ τ
0 Ax(y)dy

∫ τ

0

e−
∫ l
0 Ax(y)dyâ(l)dl

(2.24)

where 〈x|τ = 0〉 is the first order moment of the system before the first family reset.

In order to calculate 〈x|τ = 0〉, We apply (2.13)

〈x|τ = 0〉 = J1〈x|τ = τ s〉 (2.25)

As τ 7→ 0, we have x|τ = τ 7→ x|τ = 0. Thus, 〈x|τ = 0〉 can solve as

〈x|τ = 0〉 = (In − J1〈e
∫ τs
0 Ax(y)dy〉)−1r̂1

+ J1〈e
∫ τs
0 Ax(y)dy

∫ τ s

0

e−
∫ l
0 Ax(y)dyâ(l)dl〉

(2.26)

Finally, we use (2.6) to uncondition (2.26) with respect to τ to get the result in

Theorem 1.

Theorem 3 Consider two random resets time-triggered stochastic hybrid system, lin-

ear continuous dynamics is given as (2.1), and two random resets satisfy (2.2)-(2.16).

If and only if all eigenvalues of J1
〈
e
∫ τs
0 Ax(y)dy

〉
are inside the unit circle, the first-order

moment can be finite and solved as

〈x〉 =
〈
e
∫ τ
0 Ax(y)dy

〉
(In − J1

〈
e
∫ τs
0 Ax(y)dy

〉
)−1×(〈

J1e
∫ τs
0 Ax(y)dy

∫ τ s

0

e−
∫ l
0 Ax(y)dyτ âx(l)dl

〉
+ r̂1

)
+

〈
e
∫ τ
0 Ax(y)dy

∫ τ

0

e−
∫ l
0 Ax(y)dyâx(l)dl

〉
,

(2.27)

where

Ax(y) = A+ h2(y)(J2 − In),

âx(y) = â+ r̂2h2(y),
(2.28)

�
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Corollary 1 Assume a system described as (2.1)-(2.16) with h2(τ ) = 0, system is

simplified to only one timer depended resets. First order moment of the system is

〈x〉 =
〈
eAτ
〉

(In − J1
〈
eAτ s

〉
)−1 ×

(〈
J1e

Aτ s

∫ τ s

0

e−Alâdl

〉
+r̂1) +

〈
eAτ

∫ τ

0

e−Alâdl

〉
.

(2.29)

Corollary 2 Assume a system described as (2.1)-(2.16) with A = 0, h2(τ ) = 0; and

all eigenvalues of the matrix J1 are inside the unit circle, first-order moment of the

system is

〈x〉 = (In − J1)−1(J1〈τ s〉+ r̂1) +
〈τ 2

s〉
2〈τ s〉

â, (2.30)

depending only on the first and second order moment of τ s.

2.2.2 The second-order moments

In order to calculate the second-order moments of system, we introduce vec-

torization transformation which linearly transfer a matrix into a column vector. The

second-order dynamics xx> follows

d(xx>)

dt
= Axx> + xx>A> + âx> + xâ>, (2.31)

By using Vectorization transformation, (2.31) can rewrite as

dvec
(
xx>

)
dt

= (In ⊗ A+ A⊗ In) vec
(
xx>

)
+ (In ⊗ â+ â⊗ In)x,

(2.32)

where vec(xx>) ∈ Rn2×1 denotes as vector representation of matrix xx> ∈

Rn×n. ⊗ stands the Kronecker Product.

In order to obtain as similar form of second order moment as (2.1), we define a

new vector

µ ≡ [x> vec(xx>)>]>, (2.33)

thus, based on (2.1) and (2.32), the dynamics of µ follows

µ̇ = âµ + Aµµ, (2.34)
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where

Aµ =

 A 0

In ⊗ â+ â⊗ In In ⊗ A+ A⊗ In

 ,
âµ =

 â

0

 .
(2.35)

When the first family and second family reset occurs, the states of µ reset as

µi+ = Jµiµ+ r̂µ1 , i ∈ {1, 2}, (2.36)

where

Jµi ≡


Ji 0

Bi ⊗ ĉi + ĉi ⊗Bi

+Ji ⊗ r̂i + r̂i ⊗ Ji Ji ⊗ Ji +Qi ⊗Qi

 , (2.37)

r̂µi ≡

 r̂i

vec(Gi + r̂ir̂
>
i )

 . (2.38)

We can observe that continuous time dynamics (2.34) is similar to (2.1), and

stochastic resets (2.36) are similar to (2.13). With a similar approach analyzing in

Theorem 1, we can find finite second order moments of x.

Theorem 4 The system follows (2.1)-(2.14) and satisfies Theorem 1. xx> can solve

through the vector µ. The steady state of µ exist if and only if all the eigenvalues of

the matrix (J1 ⊗ J1 +Q1 ⊗Q1)
〈
e
∫ τs
0 Aµ′(y)dy ⊗ e

∫ τs
0 Aµ′(y)dy

〉
are inside the unit circle.

〈µ〉 =
〈
e
∫ τ
0 Aµ′(y)dy

〉
(In − Jµ1

〈
e
∫ τs
0 Aµ′(y)dy

〉
)−1×(〈

Jµ1e
∫ τs
0 Aµ′(y)dy

∫ τ s

0

e−
∫ l
0 Aµ′(y)dyâµ′(l)dl

〉
+ r̂µ1

)
+

〈
e
∫ τ
0 Aµ′(y)dy

∫ τ

0

e−
∫ τ
l Aµ′(y)dyâµ′(l)dl

〉
,

(2.39)

where

Aµ′(y) = Aµ + h2(y)(Jµ2 − In2+n),

âµ′(y) = âµ + r̂µ2h2(y).
(2.40)
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In this section, we give theorems to solve the first and second order moment; however,

it can easily extend to solve high order moment by same approaches. We will give an

example in the next section to apply these theorems.

2.3 Biology Example

We have briefly introduced a biology example with connection to the mathe-

matical model in 2.1.2, and we also gave theorems in 2.2 to solve first- and second-

order moments of our mathematical model. Therefore, we will apply theorems into the

biology example to explore moments of the system.

Here, we quickly review defined parameters in protein concentration. The sys-

tem has continuous dynamics as A = −γ, â = 0. For cell division events, the system

has J1 = 1, B1 = b/2, ĉ1 = 1, r̂1 = Q1 = G1 = 0. For protein synthesis events, system

are taken J2 = 1, r̂2 = 〈u〉, Q2 = R2 = ĉ2 = 0 , G2 = 〈u2〉.

In order to quantify Fano factor of protein concentration, we need to solve the

mean and the variance of protein concentration. Given the Theorem 1 & 2, we first

define a new vector µ ≡ [x x2]>. According (2.35), the dynamics of µ be written as

Aµ =

−γ 0

0 −2γ

 , âµ =

 0

0

 . (2.41)

After stochastic protein synthesis event, based on (2.37) and (2.38), reset map of the

states can be written as

Jµ2 =

 1 0

2〈u〉 1

 , r̂µ2 =

 〈u〉
〈u2〉

 , (2.42)

Applying (2.40), the matrices Aµ′(y) and âµ′(y) are shown as

Aµ′(y) =

 −γ 0

2h2(y)〈u〉 −2γ

 ,
âµ′(y) =

 h2(y)〈u〉

h2(y)〈u2〉

 .
(2.43)
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After a cell division, protein concentration level reset in (2.36) as

Jµ1 =

1 0

b 1

 , r̂µ1 =

 0

0

 . (2.44)

Given the above setup matrices, we can use (2.39) to derive the first order moment of

protein concentration as

〈x〉 =
〈u〉
γ〈τ s〉

〈e−γτ s
∫ τ s

0

eγlh2(l)dl〉

+ 〈u〉〈e−γτ
∫ τ

0

eγlh2(l)dl〉,
(2.45)

and the second order moment of protein concentration is shown on (2.31).

〈x2〉 =
〈e−γτ s

∫ τ s
0
eγlh2(l)dl〉

2γ2〈τ s〉(1− 〈e−γτ s〉)
(−bγ〈e−γτ s〉+ 2〈u〉(〈

∫ τ s
0
h2(l)dle

−γτ s

τ s
〉

− 〈
∫ τ s
0
h2(l)dle

−2γτ s

τ s
〉)) + 2γ〈τ s〉(〈

∫ τ
0
h2(l)dle

−2γτ

τ
〉 − 〈

∫ τ
0
h2(l)dlτe

−γτ

τ
〉)

+
〈e

∫ τs
0 (−γ+h2(l))dl

∫ τ s
0
e−

∫ τ
0 (−γ+h2(l))dl〈u2〉h2(l)dl〉

2γ〈τ s〉

+ 〈e
∫ τ
0 (−γ+h2(l))dl

∫ τ

0

e−
∫ τ
0 (−γ+h2(l))dl〈u2〉h2(l)dl〉.

(2.31)

2.3.1 Constant protein synthesis rate

In the first place, we consider a simplest case which is a constant protein syn-

thesis rate

h2(τ ) = k, (2.32)

substituting into (2.45) and (2.31), we can solve the mean and Fano factor (FF ) of

protein concentration after applying (2.18)

〈x〉 =
k〈u〉
γ

, (2.33)

FF =
〈x2〉 − 〈x〉2

〈x〉
2 =

〈u2〉
2〈u〉

+
b

ln 2
. (2.34)
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One can observe that there are two terms in the Fano factor (FF ) of protein concentra-

tion: (2.34) shows that variation of FF comes from protein synthesis and cell division.

Furthermore, cell-cycle times dose not affect FF of protein concentration in a cell; in

other words, FF of protein concentration is independent of statistical characteristics

of cell-cycle times when protein synthesis rate is constant.

2.3.2 Time varying protein synthesis rate

Next, we will explore time varying protein synthesis rate. First, assuming pro-

tein synthesis rate is a linearly increasing function of timer,

h2(τ) = kτ, (2.35)

applying (2.45) to solve mean of protein as

〈x〉 =
k〈u〉〈τ 〉

γ
=
k〈u〉 ln 2

γ2
(CV 2

τ s + 1), (2.36)

where CV 2
τ s is noise (squared coefficient of variation) of cell division. One can observe

that mean of protein is dependent on the noise of cell division, and high noise of cell

division system will have large mean value; in other words, if a system has a constant

mean of protein concentration, large mean of protein synthesis value have low noise.

Additionally, if we assume the protein synthesis rate is a special decreasing

function of timer

h2(τ) = τe−kτ , (2.37)

Mean of protein concentration is

〈x〉 =
2〈u〉
k ln 2

(1− e
−k ln 2

2γ ) (2.38)

We plot the mean of protein concentration in Fig.3 representing constant protein syn-

thesis rate and both increasing and decreasing protein synthesis rate. One can observe

that as constant k increasing, mean of protein concentration increase both at constant

protein synthesis rate and increasing protein synthesis rate, which is reasonable. How-

ever, for the decreasing protein synthesis, mean of protein concentration decrease as k

increasing.
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Further, we plot the fano factor of protein concentration under different protein

synthesis rates to investigate how cell-cycle time affect fano factor of protein concen-

tration. As we discussed before, when protein synthesis rate is constant, fano factor

of protein concentration will not be affected by the cell-cycle time. Also, we could

observe fano factor of protein concentration present U-shape when protein synthesis

rates is linear increasing function of cell-cycle time. However, fano factor of protein

concentration is monotonically decreasing if protein synthesis rate is under decreasing

function τe−kτ .

2.4 Conclusion

In this paper, we formulate a mathematical model to explore statistical prop-

erties of protein concentration. We form a specific types of stochastic hybrid system

which is piece-wise time-triggered stochastic hybrid system with two random resets

where moment of the system can be solved directly without any approximation. The

first random reset of the system, coming from cell-division, occurs based on an ar-

bitrary distributed timer (cell-cycle time). the second random reset of the system is

protein synthesis of which probability is dependent on cell-cycle time. We find a novel

method to derive the exact first- and second- order moment of the system, and apply

our derived moments to the protein concentration inside a single cell. We discussed

the behavior of Fano factor of the protein concentration inside a single cell with dif-

ferent protein synthesis rate. If proteins has a constant synthesis rate, mean and Fano

factor of protein concentration are independent on statistical properties of cell-cycle

time. However, if protein synthesis rate is a linearly increasing function with respect

to cell-cycle time, with fixed constant mean level protein concentration in side a sin-

gle cell, longer cell-cycle time has lower noise of protein concentration. Moreover, for

other special protein synthesis rates, mean and Fano factor of protein concentration

are dependent on the cell-cycle time distribution. Finally, we plot the Fano factor of

protein concentration with respect to a deterministic cell-cycle time. Interestingly, any

constant protein synthesis rate has Also, we find that exponentially increasing protein
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synthesis rate achieve lower noise in protein concentration comparing with linearly

increasing protein synthesis rate.
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Figure 2.2. Deterministic Cell-cycle time affect Fano factor of protein
concentration with different protein synthesis rate. When protein synthesis
is a constant, Fano Factor of protein concentration has a monotonically decreasing
function with respect to cell-cycle time. The other two protein synthesis rates cause
a non-monotonically decreasing function of Fano Factor of protein synthesis. In both
cases, an optimal cell-cycle time can be determined to have a minimal Fano Factor
value of protein concentration. Fano Factor for protein synthesis τekτ increase much
sharply at long cell-cycle time. Parameters are taken value as: 〈u2〉 = 2, 〈u〉 = 1µg/ml,
k = 1h−1, γ = 5µg/ml · h−1, b = 1.
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Chapter 3

NOISE ANALYSIS IN BIOCHEMICAL COMPLEX FORMATION

Several biological functions are carried out via complexes that are formed via

multimerization of either a single species (homomers) or multiple species (heteromers).

Given functional relevance of these complexes, it is presumably desired to maintain

their level at a set point and minimize fluctuations around it. Here we consider two

simple models of complex formation – one for homomer and another for heteromer of

two species – and analyze effect of important model parameters on the noise in com-

plex level. In particular, we study the effect of (i) sensitivity of the complex formation

rate with respect to constituting species’ abundance, and (ii) relative stability of the

complex as compared with that of the constituents. By employing an approximate

moment analysis, we find that for a given steady state level, there is an optimal sensi-

tivity that minimizes noise (quantified by fano-factor; variance/mean) in the complex

level. Furthermore, the noise becomes smaller if the complex is less stable than its

constituents. Finally, for the heteromer case, our findings show that noise is enhanced

if the complex is comparatively more sensitive to one constituent. We briefly discuss

implications of our result for general complex formation processes.

3.1 Stochastic Model Formulation

In this section, we describe two simple models of complex formation (Fig. 3.1).

The first model consists of a single species that forms a homomer, whereas the second

model consists of two species that combine to form a heteromer.
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Figure 3.1. Schematic for complex formation. Top: A species X is produced at
a rate kx and its nx molecules combine to form a complex (homomer), Z, with rate
f1(x). The species X and the complex Z degrade enzymatically with rates γxx and γzz
respectively. Bottom: Two species, X and Y , are respectively produced at rates kx and
ky. nx molecules of X combine with ny molecules of Y to form a complex (heteromer),
Z, with rate f2(x, y). Both constituting species and the complex decay enzymatically
with corresponding rates γxx, γyy and γzz.

3.1.1 Homomer

Consider the following biochemical system that comprises of production and

degradation of a species, X. Furthermore, nx molecules of X interact to form a complex

Z, which can also degrade.

∅ kx−→ X, X
γxx−−→ ∅, (3.1a)

nxX
f1(x)−−−→ Z, Z

γzz−−→ ∅. (3.1b)

Here the levels of species X and the complex Z are denoted by small letters x and z
respectively. The production rates of X follows a zero-order kinetics with rate constant
kx while the complex Z is made with a rate f1(x) where f1 denotes an arbitrary positive
function in its argument. Assuming a mass action kinetics, f1(x) would take the form
k1x

nx where k1 > 0; however, other forms of f1(x) are also possible, e.g., Michelis-
Menten, Hill Function, etc. While we do not assume a particular form of f1, we
assume that it satisfies the following properties:

(a) limx→0+ f1(x) = 0

(b) f1(x) is a monotonically increasing function in x.

These assumptions are made to ensure that the system in (3.1) has unique positive

steady state. Finally, degradation of both X, and Z is assumed to follow first-order

reaction kinetics with rates γx, and γz.
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One way to describe the dynamics of the biochemical system in (3.1) is to use

the ordinary differential equation (ODE) based approach. In this case, the following

ODEs can be used to compute (x, z)

dx

dt
= kx − γxx− nxf1(x), (3.2a)

dz

dt
= −γzz + f1(x). (3.2b)

With the aforementioned assumptions on f1(x), it can be shown that (x, z) ∈ R2
+ is

positively invariant for the dynamical system in (3.2). That is, if the system starts

from an initial condition in R2
+, then it remains in that set. In addition, (3.2) has a

unique steady-state in (xss, zss) ∈ R2
+ which is given by the real-valued solution to the

following algebraic system

0 = kx − γxxss − nxf1(xss), (3.3a)

0 = −γzzss + f1(xss). (3.3b)

We refer interested readers to Appendix A for a sketch of proof of these statements.

3.1.2 Heteromer

Next consider the scenario where two species X and Y interact to form the

complex Z. The biochemical system now consists of production of X and Y , interaction

between them to form Z, and degradation of all three of them

∅ kx−→ X, X
γxx−−→ ∅, (3.4a)

∅ ky−→ Y, Y
γyy−−→ ∅, (3.4b)

nxX + nyY
f2(x,y)−−−−→ Z, Z

γzz−−→ ∅. (3.4c)

Here, the notations x and z have same meaning as the homomer case, and likewise
y denotes the level of Y . The production rates of X and Y are kx and ky while the
complex Z is made with a rate f2(x, y) where f2 denotes an arbitrary positive function
of its arguments. As in the homomer case, we do not assume a particular form of f2.
However in order to ensure that the system in (3.4) has unique positive steady state,
we assume that it satisfies the following properties
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(a) limx→0+ f2(x, y) = 0,

(b) limy→0+ f2(x, y) = 0,

(c) f2(x, y) is a monotonically increasing function in both its arguments.

Lastly, each of the species X, Y and Z are assumed to degrade enzymatically with

rates γx, γy and γz respectively.

In a deterministic description, the time evolution of (x, y, z) is governed by the

following system of differential equations

dx

dt
= kx − γxx− nxf2(x, y), (3.5a)

dy

dt
= ky − γyy − nyf2(x, y), (3.5b)

dz

dt
= −γzz + f2(x, y). (3.5c)

With the previously mentioned assumptions on f2(x, y), it can be seen that (3.5) has

a unique steady-state in (xss, yss, zss) ∈ R3
+ which is given by the real-valued solution

to the algebraic system

0 = kx − γxxss − nxf2(xss, yss), (3.6a)

0 = ky − γyyss − nyf2(xss, yss), (3.6b)

0 = −γzzss + f2(xss, yss). (3.6c)

Sketch of the proof for these properties is provided in Appendix A.

While the above deterministic descriptions of homomer/heteromer can provide

insights into some important system behaviors (e.g., response times), they fail in ac-

counting for stochastic effects. The stochasticity naturally arises from the probabilistic

nature of reactions, but it becomes particularly prominent when the reacting species

are present in low copy numbers [45] . Our focus in this work is to analyze the stochastic

behavior of the system, particularly the noise in complex level. To this end, we provide

stochastic descriptions of the systems in (3.1) and (3.4) in the subsequent section.
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3.2 Stochastic Models and Moment Equations

Let x(t), y(t) and z(t) respectively denote the molecular counts of X, Y and

Z (the species Y is only applicable for the heteromer case). While x(t), y(t), z(t) are

stochastic processes, we will omit the explicit dependence on time unless the context

demands it. The time evolution of these can be described via probabilities of various

events happening in an infinitesimal time-interval (t, t+ dt]. We describe the detailed

stochastic models for both cases in Table 3.1.

Ideally one needs to solve the chemical master equation in order to fully char-

acterize a stochastic model [17, 59]. However, here we are only interested in studying

the noise in complex level. Therefore, we directly use the dynamical equations to com-

pute first two moments. Below we provide moment equations for both homomer and

heteromer models of the complex formation process.

3.2.1 Moment Dynamics for Homomer

Using standard tools from stochastic systems [17, 59], the time evolution of

expected value of a monomial xm1zm2 , with m1,m2 ∈ N, can be written as

dE[xm1zm2 ]

dt
= E[kx ((x + 1)m1zm2 − xm1zm2)+f1(x) ((x− nx)m1(z + 1)m2 − xm1zm2)

+ γxx ((x− 1)m1zm2 − xm1zm2) + γzz (xm1(z− 1)m2 − xm1zm2)]. (3.7)

Here order of a moment is given by the sum m1 +m2.

An important point to note is that if the complex formation rate, f1(x), is con-

stant or a linear affine function of x, then dynamics of a moment of a certain order

can be described in terms of moments of same or lower order. However, if f1(x) is

is nonlinear, then moment dynamics is not closed: dynamics of a moment depends

on moments of order higher than it. This is referred to as the problem of moment

closure. Several moment closure methods that provide approximation to moment dy-

namics have been proposed in literature [8,18,19,21,28,34,37,44–46,48,50,58]. These

methods are based on several themes such as linearization, neglecting some higher or-

der moments/cumulants, assumptions on underlying distribution, preservation of some
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Table 3.1. Description of Stochastic Models for Complex Formation

Model Event Population Reset Propensity
Function

5*Homomer Production of X x(t) 7→ x(t) + 1 kx
Degradation of X x(t) 7→ x(t)− 1 γxx(t)
Production of Z z(t) 7→ z(t) + 1 f1(x)

x(t) 7→ x(t)− nx f1(x)
Degradation of Z z(t) 7→ z(t)− 1 γzz(t)

8*Heteromer Production of X x(t) 7→ x(t) + 1 kx
Degradation of X x(t) 7→ x(t)− 1 γxx(t)
Production of Y y(t) 7→ y(t) + 1 ky
Degradation of Y y(t) 7→ y(t)− 1 γyy(t)
Production of Z z(t) 7→ z(t) + 1 f2(x,y)

x(t) 7→ x(t)− nx f2(x,y)
y(t) 7→ y(t)− ny f2(x,y)

Degradation of Z z(t) 7→ z(t)− 1 γzz(t)

dynamical, physical or moment properties , etc. [28, 48]. In this paper, we use a lin-

earization technique called linear noise approximation wherein the nonlinear propensity

f1(x) is linearized around the deterministic solution to (3.1) [44,59]. This technique is

known to give accurate approximations in the limit of low noise.

Recall that because of our assumptions on the function f1(x), the system (3.1)

has a unique, positive, real equilibrium point. Assuming small fluctuations in (x, z)

around the steady-state deterministic solution (xss, zss), we linearize f1(x) and substi-

tute the linearized form in (3.7). More specifically, we take

f1(x) = f1 (xss)

(
1 + Sx

x− xss
xss

)
, (3.8a)

where

Sx =
∂ log f1(x)

∂ log x
|xss , (3.8b)

is the log sensitivity of f1(x) with respect to x. Plugging (3.8) in (3.7), the dynamics

of first two moments of each of the species can be obtained. We then use these to

compute approximate first two stationary moments of the complex Z and eventually

compute the noise in Z.
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3.2.2 Moment Dynamics for Heteromer

Next we consider the heterodimer wherein X and Y combine to form the com-

plex Z. In this case, expected value of a monomial xm1ym2zm3 , with m1,m2,m3 ∈ N,

is governed by the following ODE

dE[xm1ym2zm3 ]

dt
= E[kx ((x + 1)m1ym2zm3 − xm1ym2zm3) + ky (xm1(y + 1)m2zm3

− xm1ym2zm3 + f2(x,y) ((x− nx)m1(y − ny)m2(z + 1)m3 − xm1ym2zm3)

+ γxx ((x− 1)m1ym2zm3 − xm1ym2zm3) + γyy (xm1(y − 1)m2zm3 − xm1ym2zm3)

+ γzz (xm1ym2(z− 1)m3 − xm1ym2zm3)]. (3.9)

As with the homomer case, the assumptions on f2(x,y) imply that (3.4) has a

unique, positive, real equilibrium point. We can linearize f2(x,y) around the steady-

state deterministic solution (xss, yss, zss) More specifically, we take

f2(x,y) = f2 (xss, yss)

(
1 + Sx

x− xss
xss

+ Sy
y − yss
yss

)
, (3.10a)

where

Sx =
∂ log f2(x,y)

∂ log x

∣∣
(xss,yss) , Sy =

∂ log f2(x,y)

∂ log y

∣∣
(xss,yss) , (3.10b)

are the log sensitivities of f(x,y) with respect to x and y. Plugging (3.10) in (3.9),

the dynamics of first two moments of each of the species can be obtained. We can use

symbolic computations in Mathematica for this purpose. It turns out that the form of

the second moment of Z is quite convoluted, which subsequently results in convoluted

expression for the fano factor FFZ . We do not provide those expressions here and

only provide formula for FFZ for a simple case wherein Sx = Sy, xss = yss, γx = γy,

and nx = ny (see the next Section). For other cases, we have to rely on numerical

computation.

3.3 Analysis of Noise Properties of the Complex

In this section, we analyze how various parameters in the complex formation

process affect the noise in the complex level. For this purpose, we quantify the noise in
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Z using fano factor (variance/mean). We investigate the effect of varying the sensitivity

with respect to one of the constituents and relative degradation rate of the complex as

compared with those of its constituents.

3.3.1 Steady-State Noise in Homomer level

To systematically analyze the effect of important model parameters on the noise,

we keep the steady-state means in the linearized model constant (note that they are

exactly same as the deterministic steady-state solution to (3.1)). More specifically, we

find the production rate of X in terms of other model parameters and fixed steady-state

means (xss, zss)

kx = γxxss + nxγzzss, (3.11)

Using this we obtain the following expression for the fano factor (FFZ)

FFZ = − Sxzss(2rxss(nx − Sx) + nxSxzss(nx − 1))

2(rxss + nxSxzss)(((r + 1)xss + nxSxzss))
+ 1, (3.12)

where r = γx/γz is the ratio of degradation rates of the species X and the

complex Z.

Analyzing the above formula provides several important insights in to how noise

is affected by various parameters. For example, FFZ varies non-monotonically with

respect to sensitivity Sx. When the sensitivity is small, production rate of Z is ap-

proximately constant. Indeed FFZ takes a value close to one, which corresponds to

a Poisson limit (Fig. 3.2, Top). With increase in Sx, the noise first decreases and in-

creases back after an optimal value. Further, if the number of molecules required to

form the homomer, i.e., nx, is increased then the overall noise profile shifts downwards,

which suggests that a homomer made of more molecules is better in terms of noise

suppression.

It is also important to point out that we have treated Sx and nx separately

since we consider a general form of f1(x). However, if f1(x) is assumed to follow a

mass-action kinetics, then it can be easily checked from (3.8) that Sx = nx. For this
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reason, we only consider the values of Sx between 0 to nx to be physiologically relevant

and accordingly scale the Sx axis in Fig. 3.2.
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Figure 3.2. Noise in complex level as a function of sensitivity of complex
formation rate with respect to the species, and relative degradation rates
of the complex and the species. Top: The noise in complex level shows a non-
monotonic behavior with increase in the sensitivity (normalized by the stoichiometry).
The noise further decreases when the stoichiometry of the species in the complex for-
mation process is is higher, suggesting that a higher order multimer can suppress noise
better. The noise approaches the Poisson limit of low sensitivity values. Bottom:. The
non-monotonic curve between noise and sensitivity shifts upwards as the relative degra-
dation rates of the species and the complex are increased. Thus, the noise increases
when the complex is relatively unstable than the species.

In addition to Sx, we also investigate how stability of the species X and the

complex Z determine the noise in Z. To this end, we note that the fano factor in

(3.12) only depends on the parameter r = γx/γz, and not on individual values of the

degradation rates. Also, we can find the limit of FFZ for large/small r as

lim
r→0

FFZ = 1− Sxzss(nx − 1)

2(xss + nxSxzss)
, lim

r→∞
FFZ = 1. (3.13)

As shown in Fig. 3.2 (Bottom), increasing γx/γz shifts the noise vs sensitivity curve

upwards.Thus, making the complex relatively unstable with respect to the species

results in lower noise in the complex.

3.3.2 Steady-State Noise in Heteromer level

As in the homomer case above, we analyze the noise in the heteromer level

while maintaining the steady-state of the system at some (xss, yss, zss). To this end,
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the production rates of X and Y are varied such that the following hold

kx = γxxss + nxγzzss, (3.14a)

ky = γyyss + nyγzzss. (3.14b)

It turns out that while the expression for the fano factor FFZ is quite complicated for a

general case, a simpler form can be obtained for a special case when nx = ny, Sx = Sy

and γx = γy.

FFZ =
Sxzss(2r(Sx − nx)xss + (1− 2nx)nxSxzss)

(rxss + 2nxSxzss)((r + 1)xss + 2nxSxzss)
+ 1. (3.15)

Note that in this case xss is equal to yss, while r = γx/γz. A close examination of

(3.15) shows that it resembles (3.12) except for some scaling factors. Not surprisingly,

even in this case varying Sx produces a non-monotonic, U -shape behavior for noise in

Z (we do not show the results here). We further look at how the results change when

Sx 6= Sy. Interestingly, it is seen that the noise always increases in this case, showing

that if the complex formation rate is more sensitive to one constituent than another

then its results in a higher noise in the complex level (Fig. 3.3).
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Figure 3.3. Noise in complex level when complex formation rate has dif-
ferent sensitivities to each constituent. While the noise behavior shows non-
monotonic profile with increase in sensitivity with respect to a constituent, the curve
shifts upwards as the sensitivities of both species are changed. This implies that a
symmetric sensitivity is better for noise suppression.
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3.4 Conclusion and Future Work

In this paper, we analyzed two simple models of biochemical complex formation.
The first model was of a homomer that is formed from a single species, whereas the
second model was of a heteromer of two species. We explored the effect of two parame-
ters in the models: (i) sensitivity of the complex formation rate to the species, and (ii)
relative stability of the species and the complex. Key insights from our analysis are:

• For a homomer, its steady state noise shows a non-monotonic behavior as the
sensitivity of the complex formation rate to the species level is changed. More-
over, the noise in complex level reduces when the complex is relatively unstable
as compared to the species.

• For a heteromer, the noise exhibits similar behavior as in the homomer case if
sensitivities and other parameters of both species are exactly same. However,
when the complex formation rate is more sensitive to one species, then noise in
the complex increases.

While these results are derived for simple cases, the similarity between noise

behaviors of complexes made of one and two species suggests that they may hold even

for complexes consisting of additional species. Since many complexes that occur in

biochemical systems are made of multiple species [63], studying their noise behavior

and relating it to their function would be an important direction of future research. It

would also be interesting to explore reversible kinetics for the complex formation (i.e.,

Z dissociates to its constituents), and also self-regulation in production of the species

as found in production of a range of proteins [15,30,36].
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