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ABSTRACT

Employing image features pertaining to scene geometry for reliable scene under-

standing and reconstruction is an important task in computer vision. The pinhole camera

follows the perspective projection principle strictly, i.e project lines to lines and objects in

the distance appear smaller than objects close by. Though being identical to the human

vision, perspective images seem to lack effective features that can provide cues about the

scene structure. In contrast, images captured by non-centric cameras are generally distorted

(e.g.project lines to curves). The multi-perspective distortions produce some unique geomet-

ric features that will facilitate scene understanding tasks.

In this thesis, I comprehensively exploit the advantages of general non-centric cam-

eras, the XSlit Camera in particular, in scene understanding context. In addition to vanishing

point (VP), I first show that another geometric feature exists in non-centric cameras, called

the coplanar common point (CCP). A CCP is a point in the image plane corresponding to

the intersection of the projections of all lines lying on a common 3D plane. I explore the

existence of CCP in general non-centric cameras and show its potential in scene recovery

tasks. I show that CCP generally exists in non-centric cameras and derive the necessary and

sufficient conditions for CCP to exist. Specifically, I conduct a comprehensive analysis from

the perspective of ray-space and caustics and show how to determine the existence of CCP

for a general non-centric camera. Experiments show that the CCP analysis provides useful

insights on planar structure localization.

Another useful feature exhibited in non-centric images is the depth-dependent aspect

ratio (DDAR): aspect ratio (AR) of an object in the image changes according to its depth

to the camera. I first conduct a comprehensive analysis to characterize DDAR, infer object

depth from its AR, and model recoverable depth range, sensitivity, and error. I show that

repeated shape patterns in real Manhattan World scenes can be used for 3D reconstruction

xvi



using a single XSlit image. I also extend the analysis to model slopes of lines. Specifically,

parallel 3D lines exhibit depth-dependent slopes (DDS) in image which can also be used to

infer their depths. I validate the analyses using real XSlit cameras, XSlit panoramas, and

catadioptric mirrors. Experiments show that DDAR and DDS provide important depth cues

and enable effective single-image scene reconstruction.

Finally, I prove that structure-from-motion(SfM) via XSlit camera automatically avoid

the scale ambiguity that plagues the perspective camera based solutions. I demonstrate that

viewpoint transforms under XSlit camera can also be derived using the fundamental matrix

analogous to the perspective case. To address non-linearity and mitigate depth-dependent

distortions in XSlit images, I further develop a novel feature matching algorithm based on

non-uniform Gaussian kernels. I also extend the bundle adjustment to XSlit images to refine

the estimated camera poses. Experiments demonstrate that our XSlit-based SfM approach

can reliably estimate camera motion and scene geometry while avoiding ambiguity.
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Chapter 1

INTRODUCTION

The camera model describes how a camera collects light rays and converts them into

pixels in image. The pinhole model serves as the workhorse for many tasks in computer vi-

sion as it is simple, effective and almost identical to the human vision. The relations between

a 3D point and its pinhole projection can be characterized as a simple linear transformation,

which can be described as a 3×4 homogeneous matrix. Though being very popular, the pin-

hole model still has many defects. For example, it’s well known that pinhole cameras suffer

from the scale ambiguity when applied for scene reconstruction. If we scale the entire scene

by some factor k along with its distance to the pinhole camera, the image remains exactly

the same. Furthermore, it’s difficult for a pinhole camera to achieve very wide field of view

(FoV). The angular resolution decreases rapidly as the pixel moves further away from the

image center.

To overcome the defects, researchers have designed various more general cameras,

such as the XSlit camera, catadioptric camera, multi-camera rig system and the light field

camera and etc. These cameras do not obey the single viewpoint constraint, i.e.the collected

rays no longer pass through a common point. They fall into the non-centric camera category.

Non-centric cameras have advantages over the pinhole camera in some aspects. For example,

the catadioptric cameras are able to acquire images with much wider Field of View (FoV)

compared to perspective cameras. And a light field camera directly samples the 4D ray space

and allows post-shot refocusing.

In this thesis, I give a comprehensive exploration to the advantages of general non-

centric cameras. I present several unique features that only exist in non-centric cameras

such as the Coplanar Common Points (CCP) and Depth Dependent Aspect Ratio (DDAR). I

derive the necessary and sufficient conditions for these features to exist in general non-centric

1



CoP

View Point

Centeric Cameras

(a) (b) (d)(c)

Non-Centeric Cameras

Figure 1.1: General cameras can be modeled as light ray bundles. (a) pinhole camera, (b)
single view catadioptric camera. (c) con-centric mosaics, (d) stereo pair. (a)-(b) are central
devices which collected light rays passing through a common point. (c)-(d) are non-central
devices which don’t follow the single view point rule.

cameras. I propose several key applications, including plane localization and Manhattan

scene analysis, for demonstration. I further show how non-centric cameras can resolve the

scale ambiguity when employed for Structure from Motion (SfM).

1.1 Non-centric Cameras

The pinhole imaging is a natural optical phenomenon, which can be effectively viewed

as a light-proof box with a small hole on one side. Because of the rectilinear propagation

of light, all collected rays will pass through the hole, which is also the point of view. We

call imaging devices that follow the single view point rule as ”centric cameras”. The centric

model is dominating in computer vision for its simplicity. However, the pinhole model is not

the only valid camera model. A imaging model is valid as long as it satisfies the sampling,

continuity and unique projection properties [85]. There are many valid and more general

camera models.

General Linear Cameras: One type of non-centric cameras slightly relaxes the ray

constraints of the pinhole model. For instance, a Pushbroom camera [27] collects rays along

parallel planes from points swept along a linear trajectory. All rays of a XSlit camera [90]

pass through two non-coplanar lines. And in oblique cameras [57] no two rays can intersect

or be parallel. Yu and McMillan [85] introduced the General Linear Camera (GLC) model

that unifies many previous multi-perspective cameras with a single framework. It provides
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Figure 1.2: Non-centric images captured by real non-centric cameras or synthesized from
light field. Courtesy of Tomas Pajdla and Shree Nayar.

an analytical representation of multi-perspective cameras as 2D affine subspaces embedded

in the 4D light field space. The multi-perspective camera model is primitive and can be used

to represent other more sophisticated cameras.

The GLC cameras are widely used to synthesize novel views and generate panora-

mas [63]. Centric cameras, such as the fisheye camera or the single viewpoint catadioptric

camera, usually sacrifice the angular resolution to achieve wide FoV, which yields strong dis-

tortions around the image boundaries. Pushbroom and XSlit images exhibit relatively less

distortions and are far more consistent over different image regions.

Non-centric Mosaics: The non-centric mosaics are synthesized from images cap-

tured at different viewing positions. Normally the camera motion is constrained to a path,

e.g. a line or a circle. Novel views are rendered through composing images taken at different

positions. The concentric mosaics [75, 71] and circular XSlit [89] are two typical exam-

ples of this category. They are both synthesized from rotational panoramas. To acquire a

con-centric mosaics, it is common practice to rotate a camera off-axis on a circle. For each

camera position, a column is sampled according to its angle to the optical axis. Then all

selected columns are stitched together to form a panorama. The concentric mosaic allows

users to move freely in a circular region and observe significant parallax and lighting changes

without recovering the geometric and photometric scene models.
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Catadioptric Systems: Another commonly used class of real non-centric cameras

are catadioptric cameras [7, 74] in which refraction or reflection are integrated into an imag-

ing system. Catadioptric combinations have been used in many early optical systems, such

as lighthouse reflectors, microscope and telescopes. Nayar [52] proposed to place a ortho-

graphic camera in front of a paraboloid for acquiring images with much wider FoV. Bake [7]

derived the entire class of catadioptric systems with a single effective viewpoint constructed

from a single conventional camera and a single mirror. Such imaging systems require subtle

configuration and engineering. Slightly deviating from the single viewpoint constraint yields

more flexible and general non-centric cameras [74].

The catadioptric systems have the ability to achieve ultra wide FoV and cover vast

scene region with a single camera. Due to this property, they are widely used in robotic

vision and surveillance systems. Also, catadioptric images are able to store information of

the surroundings very efficiently and hence are used for environment mapping in computer

graphics.

Light Field Cameras: More advanced non-centric camera samples the complete

4D ray space. A simple way to achieve this is to move a camera on a plane and capture

the images accordingly [33, 39]. The plenoptic function [4, 39, 46] is measured separately

through groups of collected ray bundles. This method is easy to carry out but only applicable

for static scenes. A more sophisticated way to acquire the light field is to build a 2D camera

array [78]. However, building such camera array requires substantial amount of engineering

and efforts. The recent development of light field camera is to put a mirco-lens array in front

of a conventional sensor to sense the intensity, color and directional information [53]. This

design also leads to the commercialization of the light field camera. The Lytro and Raytrix

cameras can capture a few hundred of views of the scene at a single shot. From those views,

one can conduct post-shot refocusing and extract depth information of the scene.

Above mentioned non-centric cameras are developed in different contexts and aimed

at specific applications. For example, the Pushbroom camera and con-centric mosaics are

designed to synthesize new views and generate panoramas, while the catadioptric cameras
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are developed for acquiring images with ultra wide FoV. When applied for scene interpre-

tation, the advantages of non-centric cameras are far less clear. This thesis considers the

non-centric cameras in general by parameterizing them in ray space. With the mathematical

basis, I present several geometric features that commonly exist in non-centric cameras and

demonstrate that they are able to facilitate the scene understanding tasks.

1.2 Thesis Statement

The non-centric images have a lot advantages in analyzing scene geometry. Non-

centric images are able to describe the particulars of a scene that inaccessible from a single

view simultaneously. This property introduces several features, such as the Coplanar Com-

mon Points (CCP) and Depth Dependent Aspect Ratio (DDAR), that can help to understand

the scene geometry. Structure from motion (SfM) via non-centric cameras can naturally re-

solve the scale ambiguity that plagued the perspective camera based solutions. These features

convincingly demonstrate the advantages of non-centric cameras over single view cameras

for scene understanding.

Coplanar Common Points: A CCP corresponds to the intersection of the curved

projections of all lines lying on a common 3D plane in non-centric images. CCPs generally

exist in a broad range of non-centric cameras such as the GLC and catadioptric cameras.

The perspective camera is the single exception that does not have CCP. In contrast to the VP

in perspective images, which is the characteristics of line directions, the CCP, in essence, is

characteristics of positions. Detecting and identifying CCPs can facilitate 3D plane localiza-

tion tasks, which is crucial to Manhattan scene reconstruction.

Depth Dependent Aspect Ratio: Unlike perspective camera that preserves aspect

ratio (AR) under depth variations, aspect ratio changes monotonically with respect to depth

in a XSlit camera and catadioptric camera. Similar to AR variations, the slopes of projected

3D lines will change with respect to depth. This property leads to new depth-from-AR

scheme using a single XSlit image.
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XSlit Structure from Motion: Similar to the perspective case, there exists a fun-

damental matrix to correlate two XSlit images captured at different viewpoints. The funda-

mental matrix can be reduced to 4 × 4 such that absolute translation and rotation matrices

can be solved from a linear system. Hence SfM via XSlit camera can estimate the camera

motion and scene geometry with an absolute scale.

1.3 Contributions

The thesis makes the following contributions:

• CCP Existence Analysis: I conduct a comprehensive analysis in ray space and show that

finding the CCP of a 3D plane is equivalent to solving an array of ray constraint equations.

I then derive the necessary and sufficient conditions for CCP to exist in general non-centric

cameras such as concentric mosaics and catadioptric cameras. The analysis further reveals

the relationship between the CCP and the caustic (focal) surfaces of rays. I further pro-

pose a simple but effective recipe for determining CCP existence using caustic analysis for

catadioptric cameras.

• CCP Detection and Application: I develop robust algorithms for fitting curved images of

3D lines, locating the CCPs, and mapping them back to 3D planes. To detect the CCPs, I first

adopt a point-aggregate strategy to find all segments of the line on the image plane. Then the

CCPs are identified through circular constraints. Finial, I use the circular constraints to filter

out false intersections and identify the CCPs. The analysis provides useful insights on scene

structure for catadioptric cameras.

•Depth Dependent Aspect Ratio and Slope Analysis: I demonstrate that non-centric cam-

eras such as the XSlit camera and catadioptric camera exhibit a different DDAR property that

can help to resolve scale ambiguity. Then I conduct a comprehensive analysis to characterize

DDAR, infer object depth from its AR, and model recoverable depth range, sensitivity, and

error. I further show that repeated shape patterns in real Manhattan World scenes can be

used for 3D reconstruction using a single XSlit image. At last, I extend the DDAR analysis

to model the slopes of lines, which leads to a more effective depth inference scheme.

6



• Depth Recovery From A Single XSlit Image: I propose a simple but effective graph-cut

based scheme to recover object depths from a single XSlit image and an effective formu-

lation to model recoverable depth range, sensitivity and errors. In particular, I show how

to exploit repeated shape patterns exhibiting in real Manhattan World scenes to conduct 3D

reconstruction.

• XSlit Structure from Motion: I prove that structure-from-motion (SfM) via XSlit camera

automatically avoid the scale ambiguity that plagues the perspective camera based solutions.

I demonstrate that viewpoint transforms under XSlit camera can also be derived using the

fundamental matrix analogous to the perspective case. I then further reduce the degree of

freedom in the fundamental matrix by applying the XSlit constraints and solve the viewpoint

transformation from a linear system. Finally, I extend the bundle adjustment to XSlit images

to refine the estimated camera poses and scene geometry.

• XSlit Feature Matching: I develop a robust feature matching algorithm for XSlit im-

ages by applying multiple non-uniform Gaussian kernels to sample the affine SIFT feature

space to mitigate XSlit distortions. My method can generate substantial amount of corre-

spondences, and is more accurate than previous methods.

1.4 Thesis Overview

This thesis is organized as follows:

Chapter 2 discusses development of centric and non-centric cameras. It also reviews

works in camera development and scene analysis. It discusses the advantages and limitations

of both centric and non-centric cameras.

Chapter 3 models each ray using two parallel planes parametrization (2PP). Then it

discusses the ray constraints for general cameras. The geometric properties of XSlit camera,

as a special case, is further analyzed.
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Chapter 4 presents the Coplanar Common Points (CCP) in general non-centric cam-

eras. It discusses the necessary and sufficient conditions for CCP to exist in general non-

centric cameras such as concentric mosaics and catadioptric cameras. Then several key

applications, including plane localization, are proposed.

Chapter 5 first discusses scale ambiguity that enwinds scene interpretation tasks.

Then it demonstrates that non-centric cameras such as the XSlit camera exhibit a differ-

ent DDAR property that can help to resolve scale ambiguity. This chapter further shows how

to employ the DDAR property for depth inference from a single XSlit image.

Chapter 6 proposes the XSlit structure from motion framework. It first introduces

the XSlit fundamental matrix analogous to the perspective case under viewpoint transforms.

We then further reduce the degree of freedom in the fundamental matrix by applying the

XSlit constraints and solve the viewpoint transformation from a linear system. Finally, the

bundle adjustment is extended to XSlit camera to refine the estimated camera poses and

scene geometry.

Chapter 7 concludes the thesis and discusses the future works. Some open questions

that remain are also included.
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Chapter 2

BACKGROUND AND PREVIOUS WORK

This chapter discusses the background and previous work on both centric and non-

centric cameras. I first review the history, physical structure, imaging process and limitations

of the pinhole camera model. Then I discuss the development of various non-centric cameras

and their applications in computer vision. Finally I compare the pinhole camera model and

non-centric camera models in scene interpretation context.

2.1 Cameras

The first descriptions of pinhole images appeared in Mozi writings and the Aris-

totelian Problems. Arab polymath Ibn al-Haytham discovered that light rays travel in straight

lines and built the first camera obscura through digging a hole on a wall in 1040AD. The

French inventor Niepce (1765-1833) developed heliography, and created the world’s oldest

image using a lens based camera obscura. Following the predecessors’ footprint, researchers

and engineers have designed and constructed numerous cameras, including DSLR, mobile

phone cameras, surveillance cameras and etc., for specific purposes.

The development of non-centric cameras is much earlier than modern digital cameras.

French photographer Ducos du Hauron (1837-1920) designed and constructed a crossed-

slit anamorphoser by replacing the pinhole of a camera obscure with two slits spaced apart

along the camera axis. The crossed-slit anamorphoser is a valid camera: for every scene

point, it determines two planes with the two slits, the intersection line of the two planes

corresponds to a valid light ray that will be captured by the camera. Apparently, the crossed-

slit anamorphoser falls into the non-centric camera category.

The crossed-slit anamorphoser inspired the exploring of more general camera models.

The Pushbroom scanners are regularly used for passive remote sensing from space. Gupta
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(a) (b)

Figure 2.1: (a). Niepce’s View from the Window, the earliest surviving photograph of a
real world scene, made using a camera obscura(top left); (b) Huaron’s crossed-slit anamor-
phoser(top right) and the anamorphic images.

and Hartley [57] introduced the simplified Pushbroom model that ignored the nonlinearity

of the mathematical model involving orbital dynamics. Zomet et al. [90] generated XSlit

images by stitching linearly varying columns across a sequence of perspective images and

derived a close-form projection model for the XSlit camera. Yu et al. [86] used GLC to model

a broad class of multi-perspective cameras, including Pushbroom, XSlit, Oblique camera and

etc.

Instead of moving camera along a line to generate new views, Shum [71] moved

a perspective camera around planar concentric circles, and create concentric mosaics by

composing slit images taken at different locations. Under the same setup, Zomet et al. [90]

proposed to extract the columns that pass through a common slit. This yielded a circular

XSlit image. The concentric mosaics provide a much richer user experience by allowing the

user to move freely in a circular region and observe significant parallax and lighting changes.

Another commonly used class of non-centric cameras are catadioptric camera sys-

tems, in which a regular pinhole camera is put in front a curved mirror. Nayar and Bak-

er [8, 7] proposed all possible profiles of the quadric mirrors that can be used to construct

10



single viewpoint catadioptric camera system. And all projection rays after projection pass-

ing through CoP would have passed through virtual viewpoint before reflected by the mirror

surface. If the perspective camera in catadioptric camera system slightly deviates from its

desired position, we have a non-centric catadioptric camera. Swaminathan et al. [74] used

the Jocobi matrix to derive the caustic surface from envelop of the reflection rays. As we

mentioned before, the primitive multi-perspective camera models can also be used to param-

eterize non-centric catadioptric cameras. Yu and McMillan [87] viewed the mirror surface

as piecewise triangle patches and represent each reflection patch as a GLC. The catadiop-

tric camera system has a larger FoV compared to the pinhole camera, and can benefit many

applications such as video surveillance, autonomous navigation and obstacle avoidance.

Recent progress in non-centric camera is the light field camera which samples the

4D light field directly. Isaksen, McLevoy and et al. [33, 39] moved a camera on a plane and

captured the images accordingly. This method is easy to carry out, but it is only applicable for

static scenes. Wilburn et al. [78] built a 2D camera array to capture the light field. However,

building such camera array requires substantial amount of engineering and efforts. Recent

development of light field camera is to put a micro-lens array in front of a conventional sensor

to sense the intensity, color and directional information [53]. This design also leads to the

commercialization of the light field camera. The Lytro and Raytrix cameras can capture

a few hundred of views of the scene at a single shot. From those views, one can conduct

post-shot refocusing and extract depth information of the scene.

Non-centric cameras are developed in different contexts and aimed at specific ap-

plications. For example, the Pushbroom camera and con-centric mosaics are designed to

synthesize new views and generate panoramas, while the catadioptric cameras are developed

for acquiring images with ultra wide FoV. The light field images allow post shot refocusing.

2.2 Non-centric Camera Applications

Non-centric cameras are widely used in graphics and vision.
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Figure 2.2: Generated panorama using Pushbroom camera model

2.2.1 Panorama

One application of the non-centric cameras is to generate panoramas. Centric cam-

eras, such as the fisheye camera or the single viewpoint catadioptric camera, usually sacrifice

the angular resolution to achieve wide FoV, which yields strong distortions around the im-

age boundaries. While non-centric images, such as Pushbroom and XSlit images, exhibit

relatively less distortions and are far more consistent over different image regions. The con-

centric mosaics are also very effective panorama generation method. It provides a much

richer user experience by allowing the user to move freely in a circular region and observe

significant parallax and lighting changes.

2.2.2 Non-photorealistic Rendering

Non-centric cameras change the viewpoint across the imaging plane, it is possible

to illustrate more details of the scene than that could be seen from a single point of view.

Fig. 2.3 top compares one of Picassos and M.C Escher’s paintings with images synthesized

using the GLC framework [86]. With subtle adjustment of viewing directions across different

regions, we can use multi-perspective rendering to create faux animations. Zomet et al. [90]

used a single XSlit camera synthesize approach to achieve out-open effects. Mei et al. [47]

introduced an occlusion camera that samples both the visible surface and hidden surface in

the reference view.

2.2.3 Scene Reconstruction

Similar to perspective cameras, stereoscopic parallax also exists in non-centric ge-

ometry. Seitz [70] and Pajdla [58] proposed all possible conditions for a non-centric camera
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Figure 2.3: Non-centric camera applications. Top: Non-photorealistic rendering, Bottom:
3D reconstruction using radial catadioptric camera.

to have epipolar geometry: that is the epipolar surfaces should be planes, hyperboloids, or

hyperbolic-paraboloids, which are also doubly ruled surfaces. In the same way with gener-

ating concentric mosaics, Peleg et al. [59] selected the center column and generate a circular

Pushbroom, and then created a stereo panorama. A pair of XSlit cameras can have valid

epipolar geometry, the necessary condition is that the two XSlit camera share one slit or

their slits intersect in four distinct points [21].

Some non-centric cameras do not satisfy the epipolar geometry constraint, Ding and

Yu [19] proposed the epsilon stereo pairs which allow a slight vertical parallax. With this

model, they then introduced a warping method to minimize stereo inconsistencies. Another

method to generate near stereoscopic is through cutting the light field [34]. Kim et al. [34]

generated the stereoscopic view from light field through piecewise continuous cuts, mini-

mizing an energy reflecting prescribed parameters, maximum disparity gradient and desired

stereoscopic baseline and etc.
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2.3 Scene Understanding

One of the most important applications of cameras is scene understanding. According

to the number of cameras employed, the techniques to analyze the scene structure can be very

different. Scene understanding through a single image usually is a ill-posed problem and

requires certain priors, such as planar scene structure or camera is up-right and et al. When

two cameras are involved, one can analyze the epipolar geometry and use stereo matching

method to estimate the depthmap. If we have more than two camera, the scene understanding

task becomes a SfM problem. Accordingly, feature matching, camera motion estimation and

bundle adjustment need to be analyzed in order to recover the scene structure.

2.3.1 Perspective Cameras

There are some nice properties of perspective projections that suitable for scene un-

derstanding tasks. For example, the images of lines are still lines and parallel lines con-

verging at a VP. With this property, the artists of Renaissance developed the famous linear

perspective technique for painting in 1400s. And today in computer vision community, VP

is widely used in the field of camera calibration [42], scene understanding [32, 17, 15] and

etc.

A major task of computer vision is to infer 3D geometry of scenes using as fewer

images as possible. Tremendous efforts have focused on recovering a special class of scene

called the Manhattan World (MW) [14]. MW is composed of repeated planar surfaces and

parallel lines aligned with three mutually orthogonal principal axes and fits well to many

man-made (interior/exterior) environments. Under the MW assumption, one can simultane-

ously conduct 3D scene reconstruction [18, 24] and camera calibration [69]. MW generally

exhibits repeated line patterns but lacks textures and therefore traditional stereo matching

is less suitable for reconstruction. Instead, prior-based modeling is more widely adopted.

For example, Furukawa et al.[24] assign a plane to each pixel and then apply graph-cut on

discretized plane parameters. Other monocular cues such as the vanishing points [15] and

the reference planes (e.g.the ground) have also been used to better approximate scene geom-

etry. Hoime et al.[32, 31] use image attributes (color, edge orientation, etc.) to label image
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regions with different geometric classes (sky, ground, and vertical) and then “pop-up” the

vertical regions to generate visually pleasing 3D reconstructions. Similar approaches have

been used to handle indoor scenes [18]. Machine learning techniques have also been used to

infer depths from image features and the location and orientation of planar regions [64, 65].

Lee et al.[38] and Flint et al.[23] search for the most feasible combination of line segments

for indoor MW understanding.

When multiply views are allowed, we are in the field of photogrammetry. The stere-

o method involves two perspective cameras and by comparing information about a scene

from two vantage points, 3D information can be extracted by examination of the relative

positions of objects in the two panels. The stereo matching methods can be divided into

local algorithms and global ones. The local methods compare a block of pixels around each

pixel between the stereo images [67]. Global methods compute the disparity map through

minimizing a global energy functional [35]. [30] suggested a efficient semi-global matching

approach which compare candidate blocks on the epipolar line along with dynamic pro-

gramming. With more than two cameras, we have a Structure from Motion problem. SfM

has been a well-studied problem in computer vision and great success has been achieved in

robotics [16], autonomous navigation [50], large-scale 3D reconstruction [5, 72] etc. The

very early root of SfM can be traced back to 1980s, where Higgins introduced a relative

orientation estimation technique. After decade of development, it evolves into the current

iterations of algorithms [25]. Modern SfM has shown great success in obtaining extremely

realistic models. With immerse computational powers, SfM can now be used to recover very

large scale 3D models, e.g., from community photo collections shared on the internet.

A typical SfM pipeline now includes feature detection and matching, camera pose

estimation, triangulation and bundle adjustment. Reliable feature matching is crucial for the

success of SfM. SIFT feature [43] has been proved to be very reliable. However it’s unsat-

isfiable to match images with very large view change. Several affine invariant detectors are

designed, e.g. Harris detectors and Hessian points. J. M. Morel [84] proposed ASift, which

follows affine transformation parameters to correct images, performs best in a comparative
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study of SIFT variants [79]. But we observe that ASIFT generally loses the subpixel accu-

racy of SIFT, which may introduce error into camera pose estimation. With corresponded

feature points across views, one can use the classical 8 point algorithm to estimate the cam-

era poses. Finally, the camera poses are optimized through minimize the retrojection error of

matched feature points. The absolute scale estimation remains to be a challenging problem

for SfM tasks. Standard approach for scale estimation is to use a stereo camera setup with

known baseline [54, 16] where the scale factor is determined by triangulating feature points

in the stereo pair. Clipp et al.[13] recover scale by tracking features on two non-overlapping

cameras. For the single perspective camera case, prior knowledge on the camera motion or

the scene has been used to recover the scale factor. Scaramuzza et al.[66] use the camera-to-

ground distance to keep track of the camera motion in order to estimate the scale. Davison et

al.[16] use a pattern of known size to compute the absolute scale of the entire scene. Polle-

feys et al.[61] adopt an additional GPS sensor to acquire exact dimension. Scaramuzza et

al.[66] use the nonholonomic constraints to estimate scale factor for cameras mounted on a

moving vehicle.

2.3.2 Non-centric Cameras

Unlike the perspective cameras, it’s possible to extract the scene information from a

single non-centric image. Based on the singular value decomposition(SVD) of the Plücker

coordinates of four points on a line, Lanman et al. [37] directly locate the line from a s-

ingle non-centric catadioptric image. Ye et al.[82] used line curvatures in XSlit images for

Manhattan scene reconstruction and developed a rotational stereo based on XSlit camera and

defined the corresponding disparity for depthmap estimation.

The problem of SfM for a general camera has attracted much attention in the past

decades. Pless [60] represented the generalized camera as a set of raxel and gave the epipolar

constraints under Plücker coordinate. In this framework, Sturm [73] unified the multi-view

geometry for general camera models. Li [40] analyzed the degenerated cases of the GEC

and proposed a linear algorithm as solution. Cardoso [12] discussed the problem of finding

the closest generalized essential matrix from a given 6 × 6 matrix. Other methods such as
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[55, 76] estimated the relative motions of the multi-camera rig without using the GEC. The

projection geometry of an XSlit camera has been widely studied in scene understanding.

Seitz and Kim [70] and Pajdla [21] independently classified all possible stereo pairs in terms

of their epipolar geometry. Sturm [70] analyzed the multi-view geometry in general non-

centric camera.
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Chapter 3

XSLIT CAMERA GEOMETRY

In this chapter, I first discuss how to parameterize a ray in space through two par-

allel planes parameterization (2PP). Then I introduce the ray space and represent a general

camera as a 2D manifold of light rays. The camera model essentially is the constraints im-

posed on the manifold of rays. Finally I discuss geometric properties of non-centric cameras,

especially the XSlit camera.

3.1 Ray Representation

Light essentially is electromagnetic radiation within a certain portion of the electro-

magnetic spectrum. A camera captures the radiation along each collected ray. Generally, the

radiance will weaken as it travels further in space due to the absorbtion effect of transmission

median. To simplify the analysis, most researchers do not take the fade of rays into count

and hence light rays can be equivalently represented as lines in space. In this thesis, we also

adopt this assumption for its simplicity. It’s crucial for many applications to have an efficient

and precise representation of the rays, and there are several mendelizing methods.

3.1.1 Plenoptic Function

The most straight forward way to represent a ray is to use a point on the ray, ray’s

direction and its radiation. Hence we can model the light ray as function L(x, y, z, θ, φ) that

describes the amount of radiation flowing in the light direction [θ, φ] start from the point

[x, y, z] in space. L(x, y, z, θ, φ) is the ideal 5D plenoptic function [4] which can express the

image of a scene from all possible viewing positions at all possible viewing angle. Similarly,

Gershun defined the light field as an infinite number of vectors for each point with lengthes

representing the radiances.
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Figure 3.1: (a) the 5D plenoptic function. (b)(c) two example ways to parameterize the 4D
light field

If we consider the radiance along a ray remains constant along its transmission path,

we have a four-dimensional function which called the light field [39] or Lumigraph [26]. The

set of rays in a light field can be parameterized in a many ways. For example, we can model

each ray as its intersection point on surface and its emit direction, as shown in Fig. 3.1(b).

Another way is using a pair of points on the surface of a sphere to represent the ray. The

most common is the two parallel planes parameterization (2PP) shown at Fig. 3.1(c).

Ray parameterizations methods is important in computer vision as it serves as the

analytic basis for many problems. For example, novel views can be generated by extracting

2D subset from the 4D light field of a scene [39, 26]. Orthographic, XSlit [90], General

Linear Cameras [86], perspective or another type of projection can be created by appropriate

parameterization of the light field. We can further synthesize the aperture and focus of the

view by integrating an appropriate 4D subset of the samples in a light field captured by a

light field camera [53].

3.1.2 Two Parallel Planes Parameterization

The most common approach to represent the 4D light field is 2PP. In 2PP, each ray is

parameterized by its intersections with two parallel plane [u, v, s, t] where [s, t] is the inter-

section with the first plane Πst and [u, v] the second Πuv. Though the 2PP cannot represent

rays parallel to the two planes, it has some nice properties. A linear combination of the
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[u, v, s, t] coordinate of any two rays is still a valid representation of some ray. In some ar-

ticles, the 4 dimensional vector [u, v, s, t] is further written as [u, v, σ, τ ], where σ = s − u

and τ = t − v. In this thesis, we use 2PP to represent general non-centric cameras, derive

the ray constraints and explore their advantages for scene understanding task.

3.1.3 Plucker Coordinates

Plücker coordinates, introduced by Julius Plücker in the 19th century, represent a

line with its direction and moment, which lead to a six dimension homogenous vector. A

line L in 3-dimensional Euclidean space is determined by two distinct points on the line:

x = [x1, x2, x3] and y = [y1, y2, y3]. The displacement vector from x to y is d = y − x. d

represents the direction of the line. The moment of the line is m = x× y, where × denotes

the vector cross product. L can be uniquely determined by d and m, the Plücker coordinate

of L is:

[d : m] = [d1, d2, d3,m1,m2,m3] (3.1)

Compared to 2PP parameterization, the Plücker coordinates have the ability to rep-

resent all possible rays. In contrast, rays that parallel to the uv and st planes can not be

parameterized by 2PP. Furthermore, Plücker coordinates can represent the line geometry

concisely in 3-dimensional space, especially for those involving incidence. For example, the

constraint for two rays L and L′ intersection in Plücker coordinate is dT ·m′ + mT · d′ = 0.

While the line intersection constraint in 2PP is a bilinear equation, which involves nonlin-

earity. The major drawback of Plücker coordinate is that they don’t form a vector space. The

linear combination of the Plücker coordinates of two rays is not guaranteed to be a valid ray

parametrization.

3.2 Camera as Ray Space

A general camera, centric or non-centric, correspond to a 2D manifold of rays in ray

space. Hence, a general imaging process entails the mapping of 3D geometry onto a 2D
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manifold of rays, i.e., each pixel [i, j] maps to a ray [u, v, s, t] in 3D space. We can represent

the camera as 2D ray manifold Σ:

Σ(i, j) = [u(i, j), v(i, j), s(i, j), t(i, j)] (3.2)

A camera model imposes certain constraints on Σ to define which set of rays are

collected. Consider the pinhole model as a study case, for each ray r = [u, v, s, t] collected

by a pinhole camera with CoP [ox, oy, oz], there exist some λ that:

λ · [u, v, 0] + (1− λ) · [s, t, 1] = [ox, oy, oz] (3.3)

Eliminating λ we have:

1− oz 0 oz 0

0 1− oz 0 oz

 ·

u

v

s

t

 =

ox
oy

. The equations is the

constraints on the rays that collected by the pinhole camera.

Sophisticated general cameras have more complicate ray collection behavior, and

hence will yield more complicate constraints. The Pushbroom and XSlit cameras collect

rays that pass through one or two common slits. This yields linear constraints on ray space.

Non-centric catadioptric cameras collection rays through reflections of mirror with quadric

surface, the ray constraints are high ordered non-linear equations.

To analyze the ray geometry in this case, one can choose space varying parallel planes

to model the light rays. Specifically, we can choose the local tangent planes defined by the

derivative of [u, v, s, t], i.e.planes with span [ux, vx, sx, tx] and [uy, vy, sy, ty], where sub-

scription means the partial derivative. In this way, the local ray constraints become linear.

3.3 XSlit Geometry Analysis

In this section, I derive the constraints for a special type of non-centric camera, the

XSlit camera, in ray space.
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Figure 3.2: XSlit camera geometry: rays collected by the camera should simultaneously pass
through two slits at different depths.

3.3.1 Ray Constraints

Geometrically, an XSlit camera collects rays that simultaneously pass through two

oblique slits (neither coplanar nor parallel) in 3D space. For simplicity, we assume the

sensor plane is parallel to the two slits’ planes and use it as the x− y plane. Furthermore, we

use the intersection of the two slits’ orthogonal projections on the sensor plane as the origin

of the coordinate system. As shown in Fig. 3.3, the two slits lie on depth z1 and z2 and form

angle θ1 and θ2 w.r.t the x-axis, where z2 > z1 and θ1 6= θ2. This configuration is consistent

with the real XSlit construction [82] and the XSlit panoramas [90].

To conduct ray geometry analyze on XSlit, we adopt the Two-Plane Parametrization

(2PP) that represents a ray by its intersections with two parallel planes Πuv and Πst. To

simply our analysis, we choose the sensor plane (z = 0) to be Πuv and the plane at unit

distance (z = 1) to be Πst. If a ray intersects the two planes at [u,v,0] and [s,t,1], the ray

direction can be represented as [σ, τ, 1] = [s− u, t− v, 1]. We then uniquely represent each

3D ray using a four-tuple [u, v, σ, τ ]. Under this representation, the XSlit camera geometry

can be formulated as two linear constraints on the ray coordinates:

σ = (Au+ Bv)/E, τ = (Cu+ Dv)/E (3.4)

where
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A = z2 cos θ2 sin θ1 − z1 cos θ1 sin θ2, B = (z1 − z2) cos θ1 cos θ2

C = (z1 − z2) sin θ1 sin θ2, D = z1 cos θ2 sin θ1 − z2 cos θ1 sin θ2

E = z1z2 sin(θ2 − θ1).

We call Eqn. 3.4 the XSlit constraints. Previous studies reached similar conclusions

in various forms [86, 90, 62].

3.3.2 A Geometric Perspective

Another way to analyze the XSlit camera is from the geometric perspective. We

can decompose the XSlit camera into two pinhole projections along the two slits directions.

Specifically, we project along the two slits directions individually and then combine the

components after projection as the final result.

Under the XSlit setup, the z components along the two slits are 0. And the x-y

directions are v1[cos θ1, sin θ1] and v2[cos θ2, sin θ2] that spans R2 space.
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Previous approaches study projection using XSlit projection matrix [90], light field

parametrization[86], and linear oblique[58]. We introduce a simpler projection model anal-

ogous to pinhole projection. Consider a 3D point p to p′. The process can be described as

follows: first decompose the x-y components of p into two basis vectors, v1, v2 and write it

as [κx, κy, z]. Next project individual component to [κu, κv]. Each component can be viewed

as pinhole projection as they are parallel to either slits. Finally obtain the mapping from p to

p′.

We first represent p on the basis of v1 and v2x
y

 = κxv1 + κyv2

We then project κxv1 and κyv2 independently. Notice the two components are at

depth z. And κxv1 is parallel to slit 1 and κyv2 is parallel to slit 2. Their projections imitate

the pinhole projection except that the focal lengths are different:

κu = − z2
z − z2

κx, κv = − z1
z − z1

κy (3.5)

Notice the XSlit mapping is linear, we can combine κu and κu to compute p′.

p′ = κuv1 + κvv2

κu and κv are also the linear representations of p′ on basis of v1 and v2.

3.4 XSlit Camera Construction

For the former, we use an XSlit lens [82] to construct a real XSlit camera. The

design resembles the original anamorphoser proposed by Ducos du Hauron that replaces

the pinhole in the camera with a pair of narrow, perpendicularly crossed slits. Similar to

the way of using a spherical thin lens to increase light throughput in a pinhole camera, the

XSlit lens relay perpendicular cylindrical lenses, one for each slit. In this thesis, we use two

cylindrical lenses with focal lengths 2.5cm (closer to the sensor) and 7.5cm (farther away
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Figure 3.4: XSlit images can be captured by a real XSlit lens (left) or by stitching linearly
varying columns from a 3D light field (right).

from the sensor) respectively. The distance between the two slits is adjustable between 5cm

and 12cm and the slit apertures have a width of 1mm.

Another way to generate XSlit images is to capture a sequence of images by translat-

ing a pinhole camera along a linear trajectory at a constant velocity. In a similar vein, Seitz

and Adams et al. acquire the image sequence by mounting the camera on a car facing to-

wards the street. Additional registration steps [6] can be applied to rectify the input images.

Next, linearly varying columns across the images are selected and stitched together. Fig. 3.4

shows the procedure of generating a XSlit image using a regular camera.
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Chapter 4

COPLANAR COMMON POINTS

In this chapter, I explore the existence of Coplanar Common Points (CCP) feature in

a broad range of non-centric cameras and its applications for scene understanding.

I first derive the necessary and sufficient conditions for CCP to exist in a general

non-centric camera. I show that finding the CCP of a 3D plane is equivalent to solving an

array of ray constraint equations in ray space. For certain types of non-centric cameras,

e.g catadioptric imaging system, the ray space constraints can be highly complex. I show

that the caustics provides simple and effective solution for determining CCP existence in

these camera models. To demonstrate that CCP can potentially benefit the 3D reconstruction

tasks, I then show some key applications of CCP. I show that with solely CCPs, we still can

localize the planes in rotationally symmetric mirrors. Experiments on both synthetic and

real data show that the CCP based solution provides effective and reliable solution for scene

understanding.

4.1 Background

Employing image features pertaining to scene geometry for 3D reconstruction and

scene understanding is an important task in computer vision. The classical pinhole camera,

also referred as perspective camera, collects rays passing through a common CoP and exhibit

some unique features. The most notable one is the existence of the Vanishing Point(VP). The

Florentine artist and architect Brunelleschi first demonstrated its principles in early 1400s.

When a set of parallel lines in space is not parallel to the picture/imaging plane, their pro-

jections on the picture/imaging plane will intersect at a common point, i.e the VP. Based on

this rule, the artists of Renaissance developed the famous linear perspective technique for
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Figure 4.1: Different with the pinhole camera, lines map into curves in non-centric cameras.
Some CCPs are directly observable.

painting. And today in computer vision community, tremendous efforts [17, 11] have been

focused on utilizing the VP for scene understanding in perspective images.

The question this chapter aims to address is whether there exists some unique image

features analogous to VPs in non-centric cameras that can be used for scene reconstruction.

I demonstrate one such feature called the Coplanar Common Points (CCPs). CCP is the

characteristics of positions (as an opposite of VP, which imply co-directionality): for a set of

(oblique or parallel) lines lying on a 3D plane Π, will their images still intersect at a common

pixel in the image plane? This is equivalent to the question: does there exist a common ray

originating from the camera that will intersect with all lines on the plane. It is easy to verify

that CCP does not exist in pinhole cameras: suppose such ray exists for plane Π, then the

center of projection (CoP) must lies the plane since every ray will passes through the CoP.

The plane will degenerate into a line and the CCP existence becomes trivial.

Though absent in pinhole camera, CCP generally exists for a broad range of non-

centric cameras, ranging from well known Pushbroom and XSlit cameras [90], to the more

general general linear cameras (GLCs), and to non-centric catadioptric mirrors [74]. I first

observe that 3D lines map to curves (e.g., hyperbolaes in the XSlit cameras) as shown in

Fig. 4.1, these curves intersect at the CCP as far as they lie on the same plane. In fact, the

CCP and the 3D plane forms an one-to-one mapping, a highly useful property for 3D scene

reconstruction and understanding.
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the parallel lines. CCP is a point in the image plane corresponding to the intersection of the
projections of all lines lying on a common 3D plane. Same to VP, the ray generate CCP
shares the same plane.

4.2 Ray Space Analysis

Though the existence of VP is intuitive, all parallel lines that not parallel to image

plane will converge at VP, the existence of CCP is camera and plane dependent. In this

section, I explore how to explain the existence of CCP in the ray space. In general, a light

ray is the propagation of radiance and it may vary along the path in presence of participating

media and occlusions. To simplify the analysis, I assume that there is no participating media

or occlusions so that the rays can be equivalently represented as lines. To represent the ray

space, I adopt the two parallel planes paramterization (2PP). According to sec 3.1.2. All rays

are parameterized as the 4-tuple [u, v, σ, τ ]. More complicated representation is possible and

the derivation should be equivalent. The major reason to choose 2PP model is that, under

2PP, rays form a vector space, whereas other ray/line parameterizations such as the Plucker

coordinates, do not.

A camera should correspond to a 2D manifold of rays as each pixel (i, j) on the image

maps to a unique ray [u, v, s, t] in 3D space, as shown in Eqn. 4.1. To answer the question
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whether a CCP exists, I first investigate constraints imposed by a 3D plane. Given a 3D

plane with normal [nx, ny, nz] can be parameterized as Π : nxx + nyy + nzz + d = 0, any

ray r[u, v, σ, τ ] lying on Π should satisfy two constraints: 1) r’s origin must lie on the plane

and 2) r’s direction is orthogonal to Π’s normal. Therefore, we can derive the ray-on-plane

constraints as: nxu(i, j) + nyv(i, j) + d = 0

nxσ(i, j) + nyτ(i, j) + nz = 0

(4.1)

To find whether CCP exists in a general non-centric camera, I set out to combine

the ray-on-plane constraints with the camera’s ray constraints and determine if there exists

a solution that satisfies all constraints. This is equivalent find the point (i, j) in image that

satisfy the constraints. The ray that generates point (i, j) should lie on the plane Π, and

hence (i, j) is a CCP.

4.2.1 General Linear Camera

Yu and McMillan [86] introduced a class of primitive non-centric camera called the

general linear cameras or GLC. They correspond to 2D affine subspaces embedded in the

4D light field space [88] and they can be used to describe a broad range of commonly used

non-centric cameras including Pushbroom [27], XSlit, and linear oblique cameras.

A GLC is constructed by three generator rays r1, r2, r3 so that all rays that collected

by GLC are affine combinations of these three rays:

GLC = {r : r = αr1 + βr2 + (1− α− β)r3,∀α, β} (4.2)

where α, β are affine coefficients.

Without loss of generality, we can pick three special generator rays originating from

[1, 0], [0, 1] and [0, 0] on Πuv and rewrite the GLC equation as two linear constraints:σ = uσ1 + vσ2 + (1− u− v)σ3

τ = uτ1 + vτ2 + (1− u− v)τ3

(4.3)

where [σi, τi], i = 1, 2, 3 are the directions of the three ray generators.
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Now that given a 3D plane Π, to determine if it has a CCP in the GLC, we can simply

set out to find if there exists a ray that simultaneously satisfy the ray-on-plane constraints (E-

qn. 4.1 and the GLC constraints (Eqn. 4.3). Notice that combining the two sets of equations

result in a 4x4 linear system in [u, v, σ, τ ]:


−nx −ny 0 0

0 0 −nx −ny
σ3 − σ1 σ3 − σ2 1 0

τ3 − τ1 τ3 − τ2 0 1




u

v

σ

τ

 =


d

nz

σ3

τ3

 (4.4)

Whether the linear system has a solution depends on the determinant J:

J = n2
x(σ2 − σ3) + nxny(τ2 − τ3 − σ1 + σ3)− n2

y(τ1 − τ3)

Hence the condition for CCP existence of GLC is that the determinant J 6= 0.

Pinhole XSlit Pushbroom Pencil Bilinear
CCP ×

√ √ √ √
Existence

Table 4.1: CCP existence in popular GLCs.

Now that let us look at specific types of GLCs. To simplify our analysis, we assume

that we translate the uv plane so that the third generator ray passes both the origins of the st

and uv plane, i.e., r3 = [0, 0, 0, 0].

Pinhole: Assume the camera’s CoP is at [0, 0, f ], by using the similitude relationship,

we have σ2 = σ3 = 0, τ1 = τ3 = 0, σ1 − σ3 = τ2 − τ3 = −1/f . Therefore, we have J = 0

for any plane Π. Hence, CCPs do not exist in a pinhole camera.

Pushbroom: A pushbroom camera collects rays that passing through a common slit

and parallel to a plane. We assume that the slit is parallel to Πuv at distance Z. It is easy to

see that we have σ2 = σ3 = 0, τ1 = τ3 = 0, σ1−σ3 = 0, τ2− τ3 = −1/Z. Therefore, J 6= 0

for general a 3D plane and CCPs exist in a pushbroom camera.

XSlit: We assume that Πuv is parallel to both two slits. Z1 and Z2 are distances be-

tween Πuv and the two slits. [0, 0, 0] is the intersection point when orthogonally project both

slits onto Πuv. We further assume that the projections of two slits on Πuv are perpendicular.
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Figure 4.3: Synthesized GLC images through stitching specific rows or columns from a row
of pinhole images. (a) The perspective view of the scene. (b) Pushbroom Image. (c) XSlit
Image. (d) Pencil Image. Notice all lines on the 3D plane coverage at a CCP in Pushbroom,
XSlit and Pencil cameras.

For the non vertical case, see [82]. In this model, we have σ2 = σ3 = 0, τ1 = τ3 = 0,

σ1 − σ3 = −1/Z2, τ2 − τ3 = −1/Z2. J 6= 0 for general planes. XSlit camera has CCP.

Pencil and Bilinear: If we assume that the slit is parallel to Πuv at depth Z, we have

σ2 = 1/Z, σ3 = 0, τ1 = τ3 = 0, σ1 − σ3 = −1/Z, τ2 − τ3 = −1/Z. Therefore, J 6= 0

for a general 3D plane and therefore CCPs exist. A similar conclusion holds for the bilinear

(linear oblique) [57] cameras. The complete results are showed in Table. 4.1.

To prove the existence of CCPs in GLCs, I synthesize several popular GLC images

by stitching specific rows/columns from a row of pinhole images. I mount a Cannon 60D

SLR with 50mm F1.8 lens on translation track. Two planes are placed in front of the camera

and the planes intersect with the camera path. I record a video while the camera is moving

at a constant velocity. The resolution of the captured video is 1280×720. From each frame,

I choose a specific column or row and stitch them together to form a new image. For push-

broom, I choose column 480 in all frames, as showed in Fig. 4.3(b). I linearly increase the

column index in terms of frame number and stitch these columns to form an XSlit image, as

showed in Fig. 4.3(c). Finally, I linear increase the row index in terms of the frame number

and stitch these rows to form a pencil camera, as showed in Fig. 4.3(d). The highlighted

rectangles illustrate where CCPs occur in pushbroom, XSlit and pencil cameras, which is

consistent with our theory.
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Figure 4.4: Concentric mosaics are synthesized from a sequence of images captured by a
perspective camera moving along a circular path. (a) We define 2PP tangent to the camera
path and rotating with the camera. (b) Circular XSlit panorama.

4.2.2 Concentric Mosaics

There are other widely used non-centric cameras, for example, concentric mosaics

[75, 71] or circular XSlit [89]. These camera models are generally synthesized from rota-

tional panoramas. To acquire a concentric mosaics, it is common practice to rotate a camera

off-axis on a circle. For each camera position, a column is sampled according to its angle

from the optical axis. Then all selected columns are stitched together to form a panorama, as

showed in Fig. 4.4(a).

To investigate the existence of the CCP, we set the origin of the coordinate system

as the rotation axis. Assume the xy plane is the the camera path plane and we can also

adopt 2PP model for ray parametrization. However instead of using two fixed planes, we

use two parallel planes that rotate along with the camera. We set Πuv tangent to the camera

path at P and vertical to the xy plane. Πst is parallel to Πuv with distance 1. At each

position, the column with angle θ is sampled. The set of all collected ray intersect Πst at

[x + (x − y tan θ)/R, y + (y + x tan θ)/R]. This allows us to map rays collected by the

camera as a 2D manifold defined by x, y and θ:

[u, v, σ, τ ] = [x, y, (x− y tan θ)/R, (y + x tan θ)/R] (4.5)

Notice the z value of the intersection on Πst is not necessarily 1 as in the conventional 2PP
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Figure 4.5: Captured CCP in concentric mosaics.

case. Assume z = λ, we can rewrite the ray-on-plane constraints as: nxx+ nyy + d = 0

sin θ(sin θx+ cos θy) · nx + sin θ(sin θy − cos θx) · ny + λnz + d = 0

(4.6)

Notice though that the solution to Eqn. 4.6 is actually the intersection of Π and a

cylinder centered at origin and with radius R sin θ. Therefore Eqn. 4.6 essentially indicates

that the plane should have intersections both with the camera path circle and the cylinder,

as showed in Fig. 4.4(a). This analysis is consistent with the geometric interpretation: the

cylinder is the inner viewing surface and all rays the collected by the camera should be

tangent to the cylinder. This type of concentric mosaics resembles the pushbroom camera

where the central columns are stitched together.

A different way to construct concentric mosaic is propose in [89], analogous to stitch-

ing an XSlit panorama from a translational array of images. Using the same acquisition

setup, we select, at each camera position, the column with the ray that passes a predefined

vertical slit, as showed in Fig 4.4(b). The result is a circular XSlit model with one vertical

slit and one circular slit where the circular slit is the trajectory of the camera. In this set up,

θ is a nonlinear function of x and y. The intersections of the rays collected by P and Πst is

along PL. Hence σ = λ̃(sx−x), τ = λ̃(sy−y), sx, sy are x and y coordinates of the vertical

slit. Eqn. 4.6 now becomes: nxλ̃(sx − x) + nyλ̃(sy − y) + λnz = 0. Since λ, λ̃ are both
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scalers, we can eliminate λ̃ as: nxx+ nyy + d = 0

nzsx + nzsy + λnz + d = 0

(4.7)

This indicates that for a plane Π to have a CCP, it should intersect with both the vertical slit

and the camera path.

To construct a concentric mosaic, I mount a Cannon 60D SLR with 50mm F1.8 lens

on a rotation table. I align the optical axis to pass through the rotation axis. Two planes

are placed in front of the camera and the planes intersect the camera path. I record a video

as the camera rotates. The system setup is showed in Fig. 4.5(a). From the recorded view,

weI select specific columns from different frames and stitch them to form a concentric mo-

saic image. Fig. 4.5(b) shows the images formed by stitching column 560 from all frames.

Fig. 4.5(c) shows the result by stitching column 840. The highlighted regions show where

the CCPs occur.

4.3 Caustic Perspective

A commonly used class of real non-centric cameras are catadioptric mirrors [7, 74] in

which a regular pinhole camera is positioned in front of a curved mirror for acquiring images

with a much wider field-of-view (FoV).

Recall that our goal is to determine if we can find an incident ray collected by the

camera that lie on Π. Notice that each point P (x, y, z) on the mirror surface corresponds

to a reflection ray. Hence we can also potentially map the CCP problem into the ray space

similar to the GLC and concentric mosaic case: assume the mirror surface is in form z(x, y),

the incident ray vi = [ix, iy, 1] can be computed as:

vi = vr − 2
ns · vr
‖ ns ‖2

ns (4.8)

ns is the surface normal and vr is the reflection ray. Intersect this ray with Πuv and Πst, we

can get the 4D representation:

[u, v, σ, τ ] = [x− z · ix, y − z · iy, ix, iy] (4.9)
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Figure 4.6: (a) Ray geometry in rotationally symmetric mirror. The condition for a plane to
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by q. (b) Ray geometry in cylinder mirror. The condition for a plane to have CCP: Intersect
with the caustic ζ and not perpendicular to the xy plane.

u, v, σ, τ are functions in x and y. The set of rays collected by the mirror surface form a

ray-space parametric manifold in x and y.

Σ(x, y) = [u(x, y), v(x, y), σ(x, y), τ(x, y)] (4.10)

We have the ray-on-plane constraints: u(x, y)nx + v(x, y)ny + d = 0

σ(x, y)nx + τ(x, y)ny + nz = 0

(4.11)

For a given plane Π, we have two equations, two unknowns. In theory, we can determine if

Π has a CCP by testing if Eqn. 4.11 has a solution. In reality, Σ(x, y) can become highly

complex and searching for the solution is a challenging algebraic problem.

A different and more intuitive solution is view the problem from the caustic perspec-

tive. Caustic is a curve or surface where the light rays light concentrate [74, 87]. Caustic

surfaces always appear in pairs and locally they can be interpreted as XSlit cameras. If a

plane has a CCP, then the plane has to intersect with the two caustic surfaces, a necessary
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condition for the CCP to exist. However, the condition is insufficient: the resulting inter-

sections are two curves on the caustic surfaces. Since the caustic surfaces need to appear in

pairs, the two curves do not necessarily form valid correspondences. Therefore, we would

need to check for, every ray originating from the first curve, whether it will pass through the

second curve. If there exists such a ray, then the CCP exists. Otherwise, it does not. The

procedure above provides a simple but effective recipe for determining CCP existence. In

the following sections, I analyze several commonly used catadioptric mirrors.

4.3.1 Rotationally Symmetric Mirrors

A rotationally symmetric mirror is formed by rotating a quadric curve about its sym-

metric axis. Assume the symmetric axis is aligned with the z-axis, the mirror surface can be

parameterized as

r2 + Az2 + 2Bz − C = 0, x2 + y2 = r2 (4.12)

A, B and C are the curve parameters that determine the mirror shape. In particular, A =

1, B = 0, C > 0, the mirror is a sphere; A > 0, C > 0, elliptical mirror; and A < 0, C > 0,

hyperbolic mirror. We assume the the pinhole viewing camera is on the symmetric axis of the

mirror. The only singular case is when the pinhole coincides with curve’s foci that emulates

a virtual pinhole, in which the CCP does not exist. Therefore, in order to observe the CCP,

we need to place the viewing camera off the foci.

By the symmetry, all reflection rays that collection by the view camera should inter-

sect the symmetric axis. Hence the the symmetric axis is one of the two caustic surfaces.

CCP Condition 1: the 3D plane must have an intersection with the symmetric axis.

The projection under a rotationally symmetric mirror is shown in Fig. 4.6(a). Given

an incident ray vi from the scene towards the mirror surface, to produce image in the viewing

camera, its reflection ray vr must pass through the CoP c = [0, 0, c], lying on the z-axis.

Since vi and vr are coplanar, vi also have an intersection with the z-axis. Therefore, a valid

CCP projection must intersect with the z-axis, and hence the plane.

As mentioned above, the plane that intersects with the symmetric axis does not nec-

essarily have a CCP. Assume q = [0, 0, d′], d′ = −d/nz is the intersection point between the
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common plane and symmetric axis. We now only need to check the set of rays determined

by q. Assume the incident ray is reflected at p on the mirror surface and we have vi = p−q.

It is important to note that ruled by the law of reflection, there only exists one circle of p on

the mirror whose resulting reflection ray can enter c. Assume the circle is Ω : x2 + y2 = r∗2

for p, we can obtain the set of rays as a cone that connects q and Ω.

To compute Ω, we orthogonally project p onto the z-axis and obtain o = [0, 0, z∗].

By Eqn. 4.12, the surface normal at p can be computed as [x∗, y∗, Az∗+B]. Thus the tangent

plane at p is x∗x+y∗y+(Az∗+B)z+(Bz∗−C) = 0. Hence we can compute the intersection

point b of the tangent plane and z-axis. Since ∀p ∈ Ω, the corresponding reflection rays pass

through c, the tangent plane bisect the angle formed by vi and vr, i.e, α = β = 90◦ − θ, by

the law of reflection, as shown in Fig. 4.6. Consider the triangle formed by q,p and c, we

can formulate the following equation by applying the angle bisector theorem to solve for z∗

√
r∗2 + (d′ − z∗)2√
r∗2 + (c− z∗)2

=
C −Bd′ − (B + d′A)z∗

(cA+B)z∗ + cB − C
(4.13)

The solution to Eqn. 4.13 corresponds to valid reflection points on the mirror surface.

CCP Condition 2: the 3D plane must have intersection with Ω.

Recall that not all the planes contain q will intersect with the circle Ω. To test the

plane-circle intersection, we compute the distance from the plane to the z-axis at z = z∗ as:

D =
|nz(z∗ − d′)|√

n2
x + n2

y

(4.14)

If D > r∗, the plane will have no intersection with the circle and thus has no CCP.

If D = r∗, the plane has one intersection with the circle and thus has a single CCP; When

D < r∗, the plane has two intersections with the circle and will have two CCPs.

4.3.2 Cylinder Mirrors

Another commonly used class of catadioptric mirrors is cylinder mirrors. Given a

quadratic curve on the xy-plane, instead of rotating it about its symmetric axis, we extrude
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Figure 4.7: Captured CCP in cylinder mirror.

the curve along the z-axis to form a cylinder. By aligning the y-axis with symmetric axis, a

cylinder mirror can be parameterized as

x2 + Ay2 + 2By − C = 0, z = t (4.15)

Same as the rotational symmetric mirror, A, B and C are the quadratic curve param-

eters. When A = 1, B = 0, C > 0, we have a cylindrical mirror; A > 0, C > 0, elliptical

cylinder mirror; and A < 0, C > 0, hyperbolic cylinder mirror. We place the camera on the

y-axis such that the CoP can be written as c = [0, c, 0].

Whether the cylinder mirrors have one dimensional caustic is not as clear as the

rotationally symmetric mirrors. We start with considering the forward projection problem,

i.e, finding the incident ray constraints whose corresponding reflection ray will pass through

the CoP, as shown in Fig. 4.6(b). Assume p = [x, y, z] is a point on the mirror surface where

reflection occurs. First, we can determine the direction of the reflection ray vr by connecting

p and c. Thus we have vr = [−x,−y, c − t]. The surface normal at p can be computed as

ns = [x,Ay + B, 0]. By specular reflection, we can compute the incident ray from Eqn. 4.8

as:

vi = [
2g − f
f

x,
2Ag − f

f
y + (

2g

f
B + c),−t] (4.16)

Where f(x) = (1 − A)x2 + (B2 − AC), g(y) = −(B + Ac)y + (Bc − C). The

incident ray can be parameterized in the point-direction form as p+λvi. Let λ = 1, we have
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the intersection point of the incident ray and the xy-plane (z = 0) as q = [2gx/f, 2g(Ay +

B)/f + c, 0]. Notice that q is independent of the z component of p. This indicates that for

all p on a vertical line (parallel to z-axis) on the mirrors surface, the corresponding effective

incident ray will pass through the same point q on xy-plane. From the geometric perspective,

q is actually the reflection point of the CoP w.r.t the tangent plane of the mirror surface at p

and hence it is equivalent to a virtual CoP. Since all points on a vertical line share the same

tangent plane, the CoP reflection q remains the same. Further, by sliding the vertical line on

the mirror surface, we obtain a set of q that form a curve ζ . ζ is the one dimensional caustic

of cylinder mirrors and can be derived in q as:

ζ(x, y) = Σ{[2gx
f
, 2
g

f
(Ay +B) + c, 0]} (4.17)

For all x, y on the cylinder mirror surface.

CCP Condition: the 3D plane must intersect with ζ .

As mentioned before, each point on ζ determines a set of rays on a vertical plane Γ,

as show in Fig. 4.6(b). If only the common plane does not perpendicular to the x-y plane,

i.e nz 6= 0, there will be one valid CCP projection ray which is the intersection line of the

common plane and Γ. Similar to the rotationally symmetric mirror example, the number of

intersections between the common plane and ζ determines the number of CCPs.

For validation, I place a PointGrey FL2-08S2C camera in front of a cylindrical mirror

and align the optical axis with the cylindrical axis, as showed in Fig. 4.7(a). The resolution of

the captured images is 1024×768. I place a plane in front of the mirror and the catadioptric

images of the plane is shown in Fig. 4.7(b) and (c). Notice that the plane exhibits the CCP.

To understand why this is the case, recall that our analysis shows that as far as the plane has

an intersection with the caustic circle, the plane generally has a CCP. In our case, I position

the plane near the center of the mirror and tilt it so that it is guaranteed to intersect with the

circle and hence has a CCP.
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4.3.3 Validation

I render catadioptric mirror images using the POV-Ray ray tracer (www.povray.org).

My first experiment is performed on a cylindrical mirror x2+(y−10)2 = 16, z = twhere the

viewing camera is place at the origin (0, 0, 0) facing towards the cylindrical mirror. Our scene

consists with two planes: Π1 : 2.7475y + z − 12 = 0 and Π2 : 3.9153y + z − 8.9378 = 0.

Each plane consists of five lines, among which three are parallel. The camera and scene

setups are shown in Fig. 4.8(a). As shown in Fig. 4.8(b), Π1 has one intersection with ζ

while Plane Π2 has two. Fig. 4.8(c) shows the captured catadioptric images of Π1 and Π2

and we can observe that Π1 has one CCP and Π2 has two. Our results are hence consistent

with the theoretical prediction.

Next, I test on a hyperbolic mirror z2/16 − r2/9 = 1 with the viewing camer-

a the origin. The scene consists of two planes: Π3 : 0.6608y − z + 5.1530 = 0 and

Π4 : 0.7908y+z−5.4184 = 0. Same as our first experiment, I place five lines on each plane.

The experimental setup is shown in Fig. 4.9(a). As showed in Fig. 4.9(a), the intersections

between the planes and circle Ω. Fig. 4.9(b) shows the captured catadioptric image of the

two planes and the numbers and position of CCP are consistent with the intersection points

between the plane and Ω as predicted by our theory. We can further map the CCPs back to

3D space, showed in Fig. 4.9(c). The recovery of the 3D planes are highly accurate.

4.4 Application

In perspective images once the VP of a set of parallel lines is identified, the lines’

common direction can be directly recovered with calibrated camera parameters: the set of

parallel lines are also parallel to the light ray that passes through the CoP and VP. Notice

that the exact line can not be recovered since we still need to know at least one point the line

passes through.

A CCP determines only one on-plane ray in space. Similar to the VP, with one CCP

we can only recover to a set of planes that pass through the ray. This ambiguity exists in

GLCs, concentric mosaics and cylinder mirrors. In certain cases, one plane can have two

CCPs, e.g. in rotationally symmetric mirrors, a plane can be directly located from its CCPs.
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Figure 4.8: Experiments on a cylindrical mirror. (a) Experimental setup; (b) Intersections
between each plane and ζ; (c) Rendered catadioptric images; (d) Close-up views at each
CCP.
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Figure 4.9: Experiments on a hyperbolic rotationally symmetric mirror. (a) Experimental
setup; (b) Intersections between each plane and Ω; (c) Rendered catadioptric image; (d)
Close-up views at each CCP.
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Figure 4.10: (a) Line projection in a symmetric catadioptric mirror. The point s on line must
lay on a cone determined by p,q. (b) CCPs of a common plane must lie on a circle, this
constraint can effectively rules out interferences such as P1 and P2.
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Recall that a plane may have one or two CCPs for rotationally symmetric mirrors. We

consider the two cases separately.

Case I: One CCPs. If there is only one CCP, the plane must be the tangent plane of the

circle Ω. Therefore, we can first find the tangent line l at z = z∗ of Ω. The plane can be

reconstructed through the l and the CCP’s corresponding q.

Case II: Two CCPs. If two CCPs exist, we can instantly recover the plane by three points

on it, i.e, the two CCPs and their corresponding q.

Complete the image of 3D lines: since the CCP may lie out of the image plane, we need

to complete the image of 3D lines on the mirror in rotationally symmetric mirrors. Recall

that the line images in rotationally symmetric mirrors are high-order curves. Therefore, it

is infeasible to directly fit the curves using a parametric model. Instead, we adopt a point-

aggregate strategy to find all possible pixels on the image plane that can be the image of the

3D line. The complete set is then the line image.

Give a 3D point s : [x0, y0, z0] + λ[dx, dy, dz] on line l and its reflection point p :

[x, y, z] on mirror surface p. We first establish a constraint on s and p. Notice the s,p and c

are coplaner. So we have the following equation: (x0 + λdx)/(y0 + λdy) = tanϕ, ϕ is the

angle between op and y-axis. The incident ray vi intersects z-axis at q = [0, 0, z∗]. Line st

is perpendicular to the z-axis, we have its length as
z0 + λdz − z∗

z − z∗
r. Since s is on the cone

that defined by p,q, we obtain a constraint on the line equation and its possible reflection

point position on the mirror:

(x0 + λdx)
2 + (y0 + λdy)

2 =
r2

(z − z∗)2
(z0 + λdz − z∗)2

Substituting λ with tanϕ, we have:

a · tanϕz∗ + b · tanϕ+ c · z∗ + d =
√

1 + tan2 ϕ
(z − z∗)

r
(4.18)

where a = dy/e, b = (y0dz − z0dy)/e, c = −dx/e, d = (z0dx − x0dz)/e, e = y0dx −

x0dy.

Since a,b,c,d and e are uniquely determined by the line parameters, they can be used

to identify the line image. In our point-aggregate fitting algorithm, we first estimate the a, b, c
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and d using the observed line image. We then in turn use a, b, c and d to locate possible

pixels on the line image. Given a catadioptric mirrors, we first establish a lookup table T

that contains surface point p[r, z] and its corresponding q[0, 0, z∗]. For each pixel p′ on the

observed line image, we compute r and ϕ corresponding to p. We then consult the lookup

table T to find the corresponding z∗ of p. By Eqn. 4.18, we can use ϕ, r and z∗ to solve for

a, b, c and d. Recall that we can use a, b, c and d to trace out all the points on the line image.

Identify CCPs: after complete the image of 3D lines, we intersect every two lines and obtain

a set of CCP candidates through clustering and voting. We group these CCP candidates if

they are generated by the same set of lines. Recall our CCP condition analysis in Sec. 4.3.1,

the CCPs are generated by rays with refection points lie on a circle Ω. Hence in the image,

CCPs of a common plane should also lie on a circle, as shown in Fig. 4.10(b). With this CCP

candidates constraint, for each candidate group we test each two intersection points to see

whether they are on a circle. If yes, then we find a CCP pair.

For validation, I mount a spherical mirror on a vertical reference plane. The radius of

the mirror is 51.64mm. I place the PointGrey FL2-08S2C camera with focal length 7.85mm

in front of the spherical mirror. The camera is pre-calibrated. Next, I align the optical axis

to pass through the center of sphere using the reference plane, as showed in Fig. 4.11(b). I

set the center of the spherical mirror to be the origin of the coordinate system and connect it

with the camera’s CoP as the z axis. As a result, the CoP is at [0, 0, 182.37] in our coordinate

system.

I attach three parallel white stripes on to a black plane and place it in front of the

mirror. The captured image is showed in Fig. 4.11(a). I then apply our curve fitting algorithm

of the white stripes and the fitted results are showed in Fig. 4.11(c). Our results reveal that

the images of these stripes (lines) intersect at two CCPs in addition to the vanishing points.

The 3 fitted curves, however do not exactly intersect at the same CCPs due to errors in curve

fitting. I therefore average the estimation as the final detected CCPs. In this example, the

two CCPs have pixel coordinate as [332.5, 207.1] and [809.45, 232.5]. I map them back to

their reflection points on the mirror at z∗ = 33.675 and finally locate the plane from the two

CCPs and z∗. The plane reconstructed is x + 6.2806y − 3.8944z + 131.14 = 0, showed in
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Figure 4.11: Line projection in a symmetric catadioptric mirror. Left: We show the line
image and the mirror profile; Middle: Located CCPs by curve fitting; Right: Reconstructed
plane by using CCPs.
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Figure 4.12: Line projection in a symmetric catadioptric mirror. Left: We show the line
image and the mirror profile; Middle: Located CCPs by curve fitting; Right: Reconstructed
plane by using CCPs.

Fig. 4.12.

4.5 Discussion

I have explored a new type of image features called the coplanar common point or

CCP in general non-centric cameras. A CCP corresponds to the intersection of the curved

projections of all lines lying on a common 3D plane. I have shown that CCPs generally exist

in a broad range of non-centric cameras such as the general linear camera, and the perspec-

tive camera is the single exception that do not have CCP. I have further derived the necessary

and sufficient conditions for a plane to have CCP in an arbitrary non-centric camera such as

non-centric catadioptric mirrors. I have demonstrated that with CCPs, we can conduct scene
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understanding tasks, such as plane localization and Manhattan scene understanding. CCP

is one of the most advantageous feature of non-centric over centric cameras, e.g the inher-

it coplanar ambiguity in perspective imaging can be naturally resolved with a non-centric

camera and employ CCPs to distinguish different planes. Experiments on both synthetic and

real data show that the CCP based solution provides effective and reliable cues for scene

understanding.
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Chapter 5

SCALE AMBIGUITY

In this chapter, I explore the Depth Dependent Aspect Ratio(DDAR) feature in XSlit

camera [90]. I show that the XSlit camera exhibits DDAR that can help to resolve the scale

ambiguity that plagued perspective cameras. In contrast with the invariant aspect ratio(AR)

in perspective cameras, the observed AR of a frontal parallel object in XSlit image changes

according to its depth, as shown in Fig. 5.1. I first develop a comprehensive analysis to

characterize DDAR in the XSlit camera. This derivation leads to a simple but effective

graph-cut based scheme to recover object depths from a single XSlit image and an effective

formulation to model recoverable depth range, sensitivity, and errors. In particular, I show

how to exploit repeated shape patterns exhibiting in real Manhattan World scenes to conduct

3D reconstruction.

The DDAR analysis can further be extended to model the slopes of lines. Specifical-

ly, for parallel 3D lines of a common direction, I show that as far as the direction is different

from both slits, their projections will exhibit depth-dependent slopes or DDS, i.e., the pro-

jected 2D lines will have different slopes depending on their depths. DDS and DDAR can

be combined to further improve 3D reconstruction accuracy. I validate the theories and al-

gorithms on both synthetic and real data. For real scenes, I experiment on different types of

XSlit images including the ones captured by the XSlit lens [83] and synthesized as stitched

panoramas [68]. In addition, my scheme can be applied to catadioptric mirrors by modeling

reflections off the mirrors as XSlit images. Experiments show that DDAR and DDS provide

important depth cues and enable effective single-image scene reconstruction.

The GLC theory [85] has shown that the XSlit camera can describe a broad range of

non-centric cameras. In fact, the Pushbroom, orthographic and perspective cameras can all
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be viewed as special XSlit entities. Hence, the DDAR property of XSlit can be easily applied

to more general non-centric cameras in the future.

5.1 Background

A single perspective image exhibits scale ambiguity: 3D objects of difference sizes

can have images of an identical size under perspective projection. In photography and ar-

chitecture, the forced perspective technique employs this optical illusion to make an object

appear farther away, closer, larger or smaller than its actual size while preserving the aspect

ratio. An example is in the film “the Lord of the Rings” where characters apparently standing

next to each other would be displaced by several feet in depth from the camera. For computer

vision, however, such an invariance provides little help, if not harm, to scene reconstruction.

Prior approaches on resolving the scale ambiguity range from imposing shape priors

[10, 24], extracting local descriptors [56] to analyzing the vanishing points [36]. I approach

the problem from a different angle: I analyze aspect ratio changes of an object with respect to

its depth. Consider a frontal-parallel rectangleR of size lh×lv located d away from the sensor

and d > f where f is the camera’s focal length. Under perspective projection, its image is

an rectangle R′ similar to R of size [l′h, l
′
v] = f

d−f [lh, lv]. This implies that the aspect ratio

r = lv/lh of R and R′ remain the same. The property can termed as aspect-ratio invariance

(ARI). ARI is an important property of perspective projection. ARI, however, no longer

holds under non-centric projections, exhibiting depth-dependent aspect-ratio (DDAR).

5.2 Related Work

This chapter explores a different and previously overlooked properties of MW: the

scene contains multiple objects with an identical aspect ratio or size (e.g., windows) but

lie at different depths. In a perspective view, these patterns will map to 2D images of an

identical aspect ratio. In contrast, I show that the aspect ratio changes with respect to depth

if one adopts a non-centric or multi-perspective camera. Such imaging models widely exist

in nature, e.g., a compound insect eye, reflections and refractions of curved specular surfaces,

images seen through volumetric gas such as a mirage, etc. Rays in these cameras generally do
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Figure 5.1: Images of the same object lying at different depths have an identical aspect ratio
(AR) in a perspective camera (Top) but have very different ARs in an XSlit image (Bottom).

not pass through a common CoP and hence do not follow pinhole geometry. Consequently,

they lose some nice properties of the perspective camera (e.g., lines no longer project to

lines); at the same time they also gain some unique properties such as the coplanar common

points [80], special shaped curves [82], etc. I focus on the depth-dependent aspect ratio

(DDAR) property for inferring 3D geometry.

The special non-centric camera I employ here is the crossed-slit or XSlit camera. An

XSlit camera collects rays simultaneously passing through two oblique lines (slits) in 3D

space. The projection geometry of an XSlit has been examined in various forms in previous

studies, e.g., as projection model in [90], as general linear constraints in [86], and as ray

regulus in [62]. For long the XSlit camera has been restricted to a theoretical model as it is

physically difficult to acquire ray geometry following the slit structure. The only exception

is the XSlit panoramas [70, 58] where an XSlit panorama can be stitched from a translational

sequence of images or more precisely a 3D light field [39]. Recently, Ye et al.[83] presented
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a practical XSlit camera. Their approach relays two cylindrical lenses with perpendicular

axes, each coupled with a slit shaped aperture to achieve in-focus imaging.

5.3 Depth Dependent Aspect Ratio

I first analyze how aspect ratio of an object changes with respect to its depth in an

XSlit camera. I call this property Depth-Dependent Aspect Ratio or DDAR.

5.3.1 Aspect Ratio Analysis

Equation 3.5 reveals that κx and κy are projected to κu and κv with different scale

on the two directions parallel to the slits. In other words, with the change of depth, the ratio

will be change accordingly. Specifically, we can compute the ratio as:

κu
κv

=
z2(z − z1)
z1(z − z2)

κx
κy

(5.1)

This is fundamentally different from the pinhole/perspective case where the ratio

remains static across depth. To understand why it is the case, recall that the pinhole camera

can be viewed as a special XSlit camera where the two slits intersect, i.e., they are at the

same depth z1 = z2. In that case, Eqn. degenerates to κx
κy

= κu
κv

, i.e., the aspect ratio is

invariant to depth.

We use ro = κx
κy

to represent the base aspect ratio and ri = κu
κv

represents the aspect

ratio after XSlit projection. From Eqn. 5.1, we can derive the depth from the aspect ratio as:

z =
z1z2(ri − ro)
z1ri − z2ro

(5.2)

5.3.2 Monotonicity:

Given a fixed XSlit camera, Eqn. 5.2 reveals that the AR monotonically decreases

with respect to z. In fact, we can compute the derivative of z with respect to ri:

∂z

∂ri
=
z1z2(z1 − z2)ro
(z1ri − z2ro)2

(5.3)
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Since z1 < z2, we have ∂z
∂ri

< 0, i.e., the depth z decrease monotonically with ri. In fact the

minimum and the maximum ARs correspond to:

rmin
i = ri|z→∞ =

z2
z1
ro, r

max
i = ri|z→z2 =∞ (5.4)

5.3.3 Depth Sensitivity:

Another important we address here is depth sensitivity. We compute the partial

derivative of ri respect to z for z ranging from z2 to∞ and we have:

∂ri
∂z

=
z2(z1 − z2)
z1(z − z2)2

ro (5.5)

The sensitivity is the absolute value of ∂ri
∂z

and it decrease monotonically for z > z2.

This implies that as objects get further away, the depth accuracy recoverable from the AR

also decreases. According to Eqn. 5.5, the sensitivity is positively related to z2
z1

and z1 − z2.

Farther separated slits and greater ratio between two slits distances corresponds to higher

sensitivity. This phenomenon resembles classical stereo matching using two perspective

cameras where the deeper the object, the smaller the disparity and the less accuracy that

stereo matching can produce.

5.3.4 Depth Range:

We can further compute the maximum discernable depth zmax. To do so, we first

compute ri when z → ∞ as r∞i = z2
z1
ro. Next we change r∞i with ε, the smallest ratio

change that is discernable in image. We have r∗i = z2
z1
ro + ε. The lower bound of ε is

1/L, L is the image width or height, without considering subpixel accuracy. Sine the depth

changes monotonically with ri, the maximum discernable depth is correspond to r∗i . Finally

we compute the depth use Eqn. 5.2:

zmax =
z2
z1

[1 + (z2 − z1)
ro
ε

] (5.6)

Eqn. 5.6 indicates that the larger slit distance ratio z2
z1

and bigger separating distance of two

slits z2 − z1 correspond to a larger discernable depth range.
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Figure 5.2: Depth-from-DDAR: Top shows a scene that contains multiple cards of an iden-
tical but unknown size. Bottom shows their recovered depths and original size using the
proposed scheme from this single image.

5.4 Depth Inference

The analysis reveals that if we know ro in prior, i.e., the base aspect of the object,

we can directly infer the object’s depth from its aspect ratio in the XSlit camera. A typical

example is using an Parallel-Orthogonal XSlit camera (PO-XSlit) to capture an up-right

rectangle. In a PO-XSlit camera, the slits are orthogonal and axis aligned. In this case, ro

directly corresponds to the aspect ratio of the rectangle and ri corresponds to the observed

AR of the project rectangle. The simplest case is to capture a up-right square whose aspect

ratio ro = 1. From the AR change, we can directly infer its depth using Eqn. 5.2. In

practice, we do not know the AR of the object in prior. However, many natural scenes

contain (rectangular) objects of identical sizes (e.g., windows of buildings) and we can infer

their depth even without knowing their ground truth AR.
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5.4.1 Shape Prior

Specifically, considerK rectangles of an identical but unknown sizes and hence ARs.

Assume they lie at different depths zj . According to Eqn. 3.5, we have two equations for

each rectangle:

κjuz
j + z2κx = z2κ

j
u

κjvz
j + z1κy = z1κ

j
v

(5.7)

Where j = 1..K, zj , κx and κy are unknowns. And κu and κv are computed from

the image. For K identical rectangles, we have K + 2 unknowns and 2K equations. The

problem can be solved using SVD when two or more identical rectangles are present. Fig.

5.2 shows several examples using the proposed technique recovering depth of multiple cards

of an identical size. The depth along with the exact scale can be extracted from a single XSlit

image under the shape prior.

5.4.2 Depth Prior

If the objects are of identical aspect ratios but of different sizes, still exhibit ambigu-

ity. Then according to Eqn. 5.1, there are K equations and K + 1 unknowns (assume K

objects). One useful prior that can be imposed here is the distribution of depth of objects. In

real scenes, objects are likely to br evenly distributed. For example, if we assume that these

rectangles are with equal distance along the z direction.

In this scenario/case, we obtain the AR equation for each object:

zjro − rji
z1
z2
zj − z1ro = −z1ri, j = 1..K (5.8)

Furthermore, the equal distance prior gives us the constraint zj−zj−1 = zj+1−zj , for

j = 2...(K−1). ForK objects in the scene, we have 2K−2 equations, andK+1 unknowns.

The problem is determined if we have 3 rectangles in the scene. And it’s over-determined if

we have more than 3 objects.

It is very important to note that inferring depth under the same setting is not possible

in the perspective camera case. In pinhole image z1 = z2 and ri = ro, hence Eqn. 5.7
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Figure 5.3: Extending DDAR to DDS. Top: parallel 3D lines map to 2D lines of different
slopes in an XSlit image. Bottom: the slopes can be used to infer the depths of the lines.

and Eqn. 5.8 degenerate. As shown in the introduction, scaling the scene and adjusting the

distance from the scene to the pinhole camera accordingly will result in a same projected

image as the ground truth scene dose.

5.4.3 Line Slope Analysis

Section 5.4 reveals that inferring depth from DDAR is that we need to obtain some

prior knowledge of either the base AR ro or the depth distribution of multiple identities.

Further, the rectangular shape needs to be in the up-right position to align with the two slits.

In this section, we extend the AR analysis to study the slope of lines and we show that this

analysis leads to a more effective depth inference scheme.

We treat a line frontal parallel to the XSlit camera as the diagonal of a parallelogram

(rectangle in PO-XSlit case), whose sides are along the two slits directions. Given a line with

slope s and a point p1[x1, y1, z] on it, then we have p2[x1 + 1, y1 + s, z] of is on the line. We

can map it to a line with slope s′ on XSlit image, which p1 and p2 map to points p′1(u1, v1)

and p′2(u1 + c, v1 + cs′) respectively. According to definition of ro, we can decompose the

segment p1-p2 onto two slits direction and take the ratio of the two component to get ro:

ro =
sin θ2 − s sin θ2
s cos θ1 − cos θ2

(5.9)

ri is computed using Eqn. 6.15 too, only substitute s with s′. Reuse Eqn. 5.2, we can

get the depth.
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Eqn. 6.15 and 5.2 reveals that we can directly infer the depth of the line from its

slope. Similar to the aspect ratio case, such inference cannot be conducted in the pinhole

camera since the frontal parallel line slope is invariant to depth.

The analysis above applies only to lines parallel to XSlit camera. For lines unparallel

to the camera, previous studies have shown that they map to curves, or more precisely hyper-

bolas [82]. However, the analysis can still be applied by computing the tangent direction on

the hyperbolas, where each tangent direction can be mapped to a unique depth. This can be

viewed as approximating a line as piecewise segments frontal-parallel to the camera where

each segment’s depth can be computed from its projected slope. The complete derivation is

included in the supplementary materials.

5.4.4 Scene Reconstruction

Based on the proposed theories, I present a new framework on single-image Manhat-

tan scene reconstruction using the XSlit camera. The main idea here is to integrate depth

cues from DDAR (for up-right rectangle objects) and from line slopes (for other lines and

rectangles) under a unified depth inference framework. Further, the initial depth estimation

scheme can only infer depths on pixels lying on the boundaries of the objects, it is important

to propagate the estimation to all pixels in order to obtain the complete depth map.

The proposed approach is to first infer the depth for the lines or repeat objects from

DDAR. Next I cluster pixels into small homogenous patches or superpixels [22]. The use of

superpixels not only reduce the computational cost and but also preserves consistency across

the regions, i.e the pixels in a homogeneous region such as walls of a building tend to have

a similar depth. Finally, I model optimal depth estimation/propagtion as a Markov Random

Field (MRF). The initial depth value Vi for superpixel Si is computed by blending the depths

inferred from DDAR according to their geodesic distance to Si. And then I the smooth out

V based on distance variations and color consistency. This procedure can be modeled as a

Markov Random Field (MRF), where the data term: Ed(Si) = Ui− Vi. And the smoothness

term is: Es(Si, Sj) = wij(Ui − Uj), wij is the weight account for distance variations and

color consistency. Finally I estimate the depth map U by optimizing the energy function:
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Figure 5.4: An XSlit image of the arch scene that contains 3D concentric circles (left). Their
images correspond to ellipses of different aspect ratios (right).

E(U) =
∑
Si

Ed(Si) + λ
∑

Si,Sj∈N
Es(Si, Sj), N represents the superpixel neighborhood. The

problem can be solved using the graph-cut algorithm [9].

5.5 Experiments

I experiment the proposed approach on both synthetic and real scenes. For synthetic

scenes, I render images using 3ds Max. For real scenes, I acquire images using the XSlit

lens as well as synthesize XSlit panoramas from video sequences.

5.5.1 Synthetic Results.

I first render an XSlit images of a scene containing repeated shapes (Fig. 5.4). The

architecture consists of concentric arches of depths ranging from 900cm to 2300cm. I assume

that the actual aspect ratio of the arches is 1, i.e., a circle. I position a PO-XSlit camera with

z1 = −3.2cm and z2 = −346.7cm frontal parallel to the arches and the images of the

arches are ellipses of different aspect ratios. Notice that in the pinhole case, they will be

map to circles. I first detect ellipses using Hough transform and then measure their aspect

ratios using the major and minor axes. Finally, I use the ratios to recover their depths using
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Eqn. 5.2. The recovered depths for the near and far arches are 906.6cm and 2281.0cm, i.e.,

the errors are less than 2%.

Next I render two XSlit panoramas, one for the corridor and the second for the facade.

Both scenes exhibit strong linear structures with many horizontal and vertical lines. Our

analysis shows that for lines to exhibit DDS, they should not align with either slit. Therefore,

I rotate the POXSlit, i.e., θ1 = 45◦ and θ2 = 135◦. For the corridor scene, the XSlit camera

has a setting of z1 = −3.6cm, z2 = −717.9cm and for the facade scene, z1 = −3.1cm,

z2 = 4895.9cm. I first use the LSD scheme[77] to extract 2D lines from the XSlit images and

cluster them into groups of horizontal and vertical (in 3D) lines. This is done by thresholding

their aspect ratios Eqn. 5.4. For lines in each group, I compute their depths using Eqn. 6.15

and 5.2. This results in a sparse depth map. To recover the full depth map, I apply the MRF

(Sec. 5.4.4) and the final result is shown in Fig. 5.6. My technique is able to recover different

depth layers while preserving linear structures. For comparison, I render a single perspective

image and apply the learning-based scheme Make3D [65]. Make3D can detect several coarse

layers but cannot detect fine details as mine since these linear structures appear identical in

slope in a perspective image but exhibit different slopes in an XSlit image.

5.5.2 Real Results.

I explore several approaches to acquire XSlit images of a real scene: by a real XSlit

lens and through panorama synthesis. For the former, I use an XSlit lens [82]. The design

resembles the original anamorphoser proposed by Ducos du Hauron that replaces the pinhole

in the camera with a pair of narrow, perpendicularly crossed slits. Similar to the way of using

a spherical thin lens to increase light throughput in a pinhole camera, the XSlit lens relay

perpendicular cylindrical lenses, one for each slit. In my experiments, I use two cylindrical

lenses with focal lengths 2.5cm (closer to the sensor) and 7.5cm (farther away from the

sensor) respectively. The distance between the two slits is adjustable between 5cm and 12cm

and the slit apertures have a width of 1mm.

I first capture a checkerboard at known depths and compare the measured AR and

our predicted AR using Eqn. 5.2. I test three different slit configurations, z2/z1 = 1.3,
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(a) (b)

(c) (d)

Figure 5.5: (a) An XSlit image of a scene containing parallel 3D lines, (b) the detected lines
and their estimated depth using DDS, (c) the depth map recovered using our scheme, and (d)
the one recovered using Make3D [65] by using a single perspective image.
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(a) (b)

(c) (d)

Figure 5.6: (a) An XSlit image of a scene containing parallel 3D lines, (b) the detected lines
and their estimated depth using DDS, (c) the depth map recovered using our scheme, and (d)
the one recovered using Make3D [65] by using a single perspective image.
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Figure 5.7: Experimental validations of the analysis. I place checker board in front of the
XSlit camera and move it away(Left). The comparisons of measured AR and predict AR
with different silts configurations(Right).

z2/z1 = 1.59 and z2/z1 = 2.0. Fig. 5.7 shows that the predicted AR curve fits well with

the ground truth. In particular, as an object gets farther away from the sensor, its AR also

changes slower. Further, the larger the baseline z2/z1 is, the larger the aspect ratio variations

across the same depth range, as predicted by the theory.

Next, I verify our DDS analysis using images captured the XSlit camera. In Fig. 5.8, I

position a Legor house model in front of the XSlit camera (z1 = 6.12cm and z2 = 11.81cm).

I rotate the XSlit camera by 45 degrees so that the 3D lines on the house will not align with

either slit. Fig. 5.8(a) shows the acquired image. Next, I conduct line fitting and slope esti-

mation similar to the synthetic case for estimating the depths of the detected lines. Fig. 5.8(a)

highlights the detected lines and their depths (using color) and Fig. 5.8(b) shows the complete

depth map using the MRF solution. The results shows that major depth layers are effectively

recovered. The error on the top-right corner is caused by the lacking of line structures.

A major limitation using the XSlit camera is its small baseline (between the two slits).

My analysis shows that the maximum recoverable depth range depends on this baseline.

Further, since images captured by the XSlit camera exhibits noise and strong defocus blurs,

the actual recoverable depth range is even smaller. For example, my analysis shows that
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Figure 5.8: Real result on a Legor house scene. (a) an XSlit image of the scene captured by
the XSlit camera. Detected lines are highlighted in the image. (b) the recovered depth map
using our slope and aspect ratio based scheme.

with baseline z2/z1 = 2, two cards are placed at 30m and 35m will have undistinguishable

ARs. Their ratio difference reach the lower bound that determined by pixel size. For outdoor

scenes, I resort to XSlit panorama synthesis.

To produce XSlit panoramas, Zomet et al. [90] capture a sequence of images by

translating a pinhole camera along a linear trajectory at a constant velocity. In a similar vein,

Seitz and Adams et al. acquire the image sequence by mounting the camera on a car facing

towards the street. Additional registration steps [6] can be applied to rectify the input images.

Next, linearly varying columns across the images are selected and stitched together. Fig. 3.4

shows the procedure of generating a XSlit image using a regular camera.

Fig. 5.9 shows the XSlit panorama synthesized from an image sequence captured by

a moving camera. I linearly increase the column index in terms of frame number and stitch

these columns to form an XSlit image. The moving path of the camera is 55cm long. And

the camera is tilt with 20◦ angle. The resulting two slits are at -1.8cm and 41cm respectively.

Recent ray geometry studies [20] show that reflections off certain types of catadiop-

tric mirror can be approximated as an XSlit image. In Fig. 5.11, I position a perspective

camera facing towards a cylindrical mirror and Fig. 5.11(b) shows that DDAR can both be

observed on the acquired image. In particular, I put multiple cubes of an identical size at
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Figure 5.9: The XSlit image of an outdoor scene. Left: An XSlit panorama and the detected
lines. Right: The recovered depth map.

Figure 5.10: More result of depth reference for XSlit panoramas
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Figure 5.11: Results on catadioptric mirrors. Left: I capture the scene using a cylindrical
catadioptric mirror. Right: the aspect ratios of cubes change with respect to their depthes.

different depths and their aspect ratios change dramatically. This is because two virtual slits

of the catadioptric mirror are separated far away where DDAR is more significant than the

XSlit camera case.

5.5.3 Discussion

I have comprehensively studied the aspect ratio (AR) distortion in XSlit cameras and

exploited its unique depth-dependent property for 3D inference. The studies have shown

that unlike perspective camera that preserves AR under depth variations, AR changes mono-

tonically with respect to depth in an XSlit camera, i.e., 3D objects of an identical size will

exhibit significantly different AR under different depths. This has led to new depth-from-AR

schemes using a single XSlit image even if the original AR of an object is unknown. I have

further shown that similar to AR variations, the slope of projected 3D lines will also vary

with respect to depth, and I have developed theories to characterize such variations based

on AR analysis. Finally, AR and line slope analysis can be integrated for 3D reconstruc-

tion and I have experimented on real XSlit images captured by an XSlit camera, synthesized

from panorama stitching, and captured using a catadioptric mirror to validate the proposed

framework.
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Chapter 6

XSLIT STRUCTURE FROM MOTION

Perspective camera emulates human eyes whereas multi-perspective models are more

common in insect eyes (e.g., fly’s compound eyes). Although classical computer vision

problems, such as structure-from-motion (SfM), have been well studied using perspective

camera, little attention has been paid to multi-perspective cameras. In this chapter, I study the

SfM problem using a generalized multi-perspective camera, the crossed-slit (XSlit) camera. I

demonstrate that XSlit SfM can automatically avoid scale ambiguity due to depth-dependent

distortions. To conduct SfM, I first derive the fundamental matrix in XSlit images. To

address non-linearity and handle distortions in XSlit images, I further develop a novel feature

matching algorithm based on non-uniform Gaussian kernels. Finally, I propose a novel error

metric based on depth-dependent aspect ratio for bundle adjustment to refine the estimated

camera poses. Experiments demonstrate that the proposed XSlit-based SfM approach can

reliably estimate camera motion and scene geometry while avoiding ambiguity.

6.1 Background

A perspective camera collects rays passing through a common 3D point (i.e., the

CoP) and its images resembles what would be seen by human eyes. However, this model

is rare in insect eyes. For example, many insects have compound eyes, which consist of

thousands of individual eye units or ommatidia. These ommatidia are located on a convex

surface and viewing towards different directions. Compound eyes hence have a very large

field-of-view that greatly help detect fast movement. Notice that a compound eye does not

have a common CoP and no longer follows the perspective camera model. Instead, they

follow the multi-perspective model that combines rays from different viewpoints. Despite

the incongruity of view, a multi-perspective image is able to preserve spatial coherence and
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Figure 6.1: The scale ambiguity in traditional SfM introduce align problem: the front and
back side of the skull are reconstructed individually and hence have different scale, it’s a
common practice to use additional marks for alignment.

depict details of a scene that are simultaneously inaccessible from a single view within a

single context.

Structure-from-Motion (SfM) is the problem that recovers both the camera motion

and 3D scene geometry from a sequence of images [44]. The problem is well studied us-

ing the motion of a perspective camera. However, little attention is paid to using multi-

perspective cameras. It is well known that compound eyes have much higher motion sen-

sitivity than human eyes. Therefore, studying SfM using multi-perspective cameras may

lead to new classes of algorithms that can apply to fast moving objects. Early works on

multi-perspective stereo matching lay out the theoretical foundation for studying SfM using
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multi-perspective camera. The seminal work of Seitz [70] characterizes all possible multi-

perspective stereo pairs and concludes that the epipolar geometry, if exists, has to be a doubly

ruled surface. Pajdla [57] independently reached similar results. Pless [60] further derives

the Generalized Epipolar Constraint (GEC) for generic camera models. To characterize the

properties of multi-perspective cameras, Yu et al.[86] propose the General Linear Camer-

a (GLC) and conclude that many multi-perspective cameras, such as catadioptric cameras,

are special cases of the XSlit because the two slits provide a special set of surface ruling

that determines the ray manifold of the local GLC. I hence adopt the XSlit as a generalized

multi-perspective camera to study the SfM problem. The proposed solution developed using

XSlit can be extended to a broad range of multi-perspective cameras.

Performing SfM using an XSlit camera, however, is challenging for two reasons: 1)

camera poses are difficult to estimate since the XSlit projection is non-linear and a projection

matrix from the perspective case cannot be generalized; and 2) feature matching is non-trivial

in XSlit images due to distortions. In this chapter, I develop a novel and robust XSlit SfM

framework that can estimate both camera poses and 3D scene geometry at an absolute scale.

I first show that, similar to the perspective case, there exists a fundamental matrix to correlate

two XSlit images captured at different poses. I further reduce the degree of freedom in the

fundamental matrix such that absolute translation and rotation matrices can be solved from

a linear system. I then develop a robust feature matching algorithm for XSlit images by

applying multiple non-uniform Gaussian kernels to sample the affine SIFT feature space to

mitigate XSlit distortions. Finally, I propose a novel error metric based on depth-dependent

aspect ratio for bundle adjustment to iteratively refine the estimated camera parameters and

scene geometry. It is worth noting that the depth-dependent distortions in XSlit images

enables the algorithm to automatically avoid the scale ambiguity that plagues SfM in the

perspective case. Synthetic and real experiments demonstrate that the proposed XSlit-based

SfM approach can estimate the camera motions and the scene geometry with an absolute

scale with high fidelity and reliability.
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6.2 Related Work

The work is closely related to SfM and multi-perspective (especially the XSlit) stereo

matching. In this section, I discuss the most relevant works.

SfM is a well-studied problem in computer vision and great success has been achieved

in robotics [16], autonomous navigation [50], large-scale 3D reconstruction [5, 72] etc. Most

existing works are performed using a perspective camera. I refer the readers to [44] for a

comprehensive survey. It is well known that SfM via a perspective camera suffers from the

scale ambiguity [28]. This is because the perspective projection is subjective to a scale fac-

tor: objects of different sizes can map to the same perspective images with identical scale

by placing the objects at different depths. Standard approach for resolving the scale ambi-

guity is to use a stereo camera setup with known baseline [54, 16] where the scale factor is

determined by triangulating feature points in the stereo pair. Clipp et al.[13] recover scale

by tracking features on two non-overlapping cameras. For a single perspective camera case,

constraints or priors on either the camera motion or the scene geometry has to be imposed

to recover the scale. Scaramuzza et al.[66] use the camera-to-ground distance to keep track

of the camera motion and estimate the scale. Davison et al.[16] use a pattern of known size

to compute the absolute scale of the entire scene. Pollefeys et al.[61] adopt an additional

GPS sensor to acquire exact dimension. I found that by using a multi-perspective camera,

the scale ambiguity is automatically resolved due to depth-dependent distortions.

There have been significant advances on the theory of multi-perspective stereo in the

past decade. Seitz [70] and Pajdla [21] independently studied all possible multi-perspective

stereo pairs that can have valid eipolar geometry. Sturm [70] analyzed the multi-view ge-

ometry in general multi-perspective camera. Ding and Yu [19] introduced a new near stereo

model called epsilon stereo pairs for multi-perspective images that do not satisfy the epipo-

lar geometry constraints. Pless[60] derived the Generalized Epipolar Constraint (GEC) in

generic cameras for motion estimation. Hee et al.[29] applied GEC on a multi-camera set-

up. Mičušı́k and Pajdla [48] studied the calibration of para-catadioptric camera by applying

the multi-perspective epipolar geometry. However, using multi-perspective cameras for SfM

is more challenging than stereo matching because the camera parameters also need to be
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Figure 6.2: Unlike the perspective camera, objects at different depths are distorted differently
in an XSlit image.

estimated on the fly.

Yu et al.[86] used the General Linear Camera (GLC) to model a broad range of multi-

perspective cameras and their result reveal that many multi-perspective cameras are special

cases of the XSlit. An XSlit camera collects rays passing through two oblique (neither

coplanar nor parallel) slits in 3D. Zomet et al.[90] derived a close-form projection model for

the XSlit. Ponce [62] proposed ray regulus to model the camera ray space. The proposed

work is also related to XSlit stereo and 3D reconstruction. Feldman et al.[21] proved that

a pair of XSlit cameras can have valid epipolar geometry if they share a slit or the slits

intersect in four pairwise distinct points. Ye et al.[83] constructed a new form of stereo pair

by rotating the slits. Ye et al.[82] used line curvatures in XSlit images for Manhattan scene

reconstruction. More recently, Li et al.[41] adopted XSlit camera to sample the 4D light

field.
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6.3 Camera Pose Estimation

In this section, I show how to estimate the camera poses under XSlit projection in

order to solve SfM. I perform the analysis using the ray space geometry. I first demonstrate

that similar to the perspective case, there exists a fundamental matrix to correlate two XSlit

images taken at different viewpoints. I then further reduce the degree of freedom in the

fundamental matrix by applying the XSlit constraints and solve the viewpoint transformation

from a linear system.

6.3.1 XSlit Fundamental Matrix

Given a reference XSlit image X and a target XSlit image X′ captured at a different

viewpoint, our goal is to align X′ to X via a rotation matrix R and a translation vector t.

Let’s consider a 3D scene point P. As shown in Fig. 6.3, P is projected into X and X′ by two

rays r[u, v, σ, τ ] and r′[u′, v′, σ′, τ ′] respectively. Assume the world coordinate is set under

the reference image X, we first transform r′ into the world coordinate as r∗[u∗, v∗, σ∗, τ ∗].

Since r and r∗ pass through a common 3D point P, their ray coordinates satisfy a bilinear

constraint [87]:
u− u∗

v − v∗
=
σ − σ∗

τ − τ ∗
. It’s vector form can be written as:

dT ·m∗ + mT · d∗ = 0 (6.1)

where d = [σ, τ, 1]T, m = [−v, u,χ]T, χ = vσ − uτ and d∗ = [σ∗, τ ∗, 1]T
∗ , m∗ =

[−v∗, u∗,χ∗]T, χ∗ = v∗σ∗ − u∗τ ∗.

Similarly, we define d′ and m′ for r′[u′, v′, σ′, τ ′]. Since the two image coordinates

in X and X′ are correlated by transformation matrices R and t, the relationship between d′,

m′ and d∗, m∗ can be derived as:

d∗ = R · d′, m∗ = R ·m′ − [t]×R · d′ (6.2)

By substituting Eqn. 6.2 into Eqn. 6.1, we have:

[
dT mT

]
F6×6

d′

m′

 = 0 (6.3)
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Figure 6.3: XSlit images captured from different viewpoints are correlated by a fundamental
matrix F.

where F =

−[t]×R R

R 0


Since both d and m are uniquely determined by image pixel coordinate [u, v], E-

qn. 6.3 indicates that there exists a fundamental matrix F similar to the perspective case to

register two XSlit images captured at different viewpoints. F is a 6 × 6 matrix. A linear

solution may treat −[t]×R and R as two independent unknowns and suggest solving it with

17 pair of correspondences. However, there are ambiguities in the linear equation system be-

cause of the enforced XSlit ray constraint. Non-linear methods can not solve the ambiguity

either.

In order to reduce the degree of freedom in F, we apply the XSlit constraints (E-

qn. 3.4) to decompose [d m]T into two matrices:

d

m

 = KpT (6.4)
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where K =


0 −B A 0

0 −D C 0

I4×4

 and p = [1,−v, u, χ]. Notice that K is only related to the

two slits’ configuration and we call it the XSlit intrinsic matrix, while p is determined by

pixel coordinates [u, v].

By substituting K and p into Eqn. 6.3, we can rewrite the equation as follow:

pTF̃p′ = 0, where F̃ = KTFK (6.5)

Since p is a 1 × 4 vector, our new fundamental matrix F̃ is a 4 × 4 matrix with its

last element to be zero. As a result, we are able to solve the unknown elements in F̃ with 14

pairs of corresponding points between X and X′ by applying SVD.

Pless[60] studied the multi-view geometry for generic cameras under the Plücker co-

ordinate. The Generalized Epiplor Constraint (GEC) is derived to characterize the epipolar

geometry. Our derivation of XSlit fundamental matrix performed in the ray space is consis-

tent with GEC.

6.3.2 Pose Transformation Estimation

Once we have the fundamental matrix F̃, we can use it to solve the camera pose

transformation matrices R and t. However, we cannot solve R and t directly from Eqn. 6.5

since the XSlit intrinsic matrixK is under-determined and cannot be inverted. To address this

problem, we apply the QR matrix decomposition onK and convertK into the multiplication

of an orthogonal matrix Q and an upper triangular matrixR, i.e., K = QR. Substituting K

into Eqn. 6.5, we have

F̂ = R−T4 ∗ F̃ ∗ R−14 =

QT

−[t]×R R

R 0

Q


4

(6.6)

where the subscript 4 means 4×4 sub-matrix from the lower left corner. By substituting K’s

formulation in Eqn. 6.4, we can rewrite Eqn. 6.6 as
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F̂ =

M V

U 0

 =

QT
1 QT

3

0 eT3

−[t]×R R

R 0

Q1 0

Q3 e3

 (6.7)

where M is a 3× 3 sub-matrix of F̂, U and V are 3× 1 vectors,Q1 andQ3 are the 3× 3 sub-

matrices of Q, and e3 = [0, 0, 1]T. From Eqn. 6.7, we can derive the following constraints

on R and t:

U = eT3 ·RQ1 (6.8a)

V = QT
1 R · e3 (6.8b)

M = QT
1 (−[t]×R)Q1 +QT

3 RQ1 +QT
1 RQ3 (6.8c)

From Eqn. 6.8b and Eqn. 6.8a, we have:

R · [Q−T1 UT × e3] = e3 ×Q−T1 V (6.9)

Combining Eqn. 6.8b, Eqn. 6.8a and Eqn. 6.9, we can solve the rotation matrix R.

Then we can solve the translation matrix t from Eqn. 6.8c by plugging in R.

Our derivation can also be degenerated to formulate the perspective projection and

explain why there exists the scale ambiguity. In the case of perspective camera, the high

order element χ = vσ − uτ = 0. Hence Eqn. 6.8b and Eqn. 6.8a becomes independent.

Eqn. 6.8c will be degenerated and becomes M = QT
1 (−[t]×R)Q1. Therefore, we can only

recover the direction of t and the absolute translation vector cannot be computed. By using

a multi-perspective camera, this scale ambiguity is automatically resolved.

6.4 XSlit Feature Matching

In order to obtain correspondences for camera pose estimation, it is critical to find

robust and invariant features in XSlit images. An XSlit image, however, exhibits various

distortions, making it difficult for correspondence matching.

Many invariant features, such as SIFT [43], Harris and Hessian Affine [49], and

MSER [45] are designed on perspective images. All these feature detectors cannot han-

dle the XSlit distortions properly. The only exception is the Affine SIFT (ASIFT) feature
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[51]. ASIFT can generate substantial amount of correspondences when applied on XSlit im-

ages since the affine transformation can approximate local XSlit distortion. However, there

still exists a lot of mismatches.

To properly handle the distortions in XSlit images, we develop a new feature match-

ing algorithm based on non-uniform Gaussian kernels. Similar to ASIFT, we sample the

SIFT feature under different subspaces in order to undistort the XSlit image patch. Howev-

er, what is different though, we use non-uniform Gaussian kernels to sample the subspaces

instead of the perspective warping that is used in ASIFT.

Specifically, an affine transformation can be defined by a rotation angle θ, a shear

factor s and a scale factor r:x′
y′

 =

cos θ − sin θ

sin θ cos θ

 1 sx

sy 1

rx 0

0 ry

x
y

 (6.10)

We then apply affine transformation matrix (Eqn. 6.10) to a Gaussian kernel to obtain

non-uniform Gaussian kernels g as

g(x, y, σ, θ, s, r) =
1

2πσ2
exp (−x

′2 + y′2

2σ2
) (6.11)

Finally, we apply the non-uniform Gaussian kernels g to transform the XSlit image

patch I to feature subspaces.In our feature subspace, various distortions can be properly

compensated. We can then perform SIFT feature detection in the subspace. However, mis-

matched correspondences can still occur occasionally. To eliminate the mismatched features,

we perform a bi-directional search for valid correspondences. In particular, we first perfor-

m feature matching from the reference image to the target image and we then reverse the

search direction and match features from the target to the reference. We only keep those

correspondences that exist in both rounds.

Fig. 6.4 illustrates the effectiveness our feature matching algorithm in comparison

with the state-of-the-arts. The top-left bar chart shows that our algorithm outperforms other

methods in terms of both number of detected feature points and mismatch rate. Although

ASIFT detects more feature points than our algorithm, its mismatch rate is extremely high.

We also show the “epipolar curves” from the fundamental matrix calculated from our features
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and ASIFT features. Our curves apparently establish more accurate correspondences and we

can achieve sub-pixel accuracy.

6.5 Scene Reconstruction

Once we have correspondences and camera poses, we can recover the 3D scene ge-

ometry (i.e., 3D point cloud) by triangulating the camera projection rays. Let’s consider a

3D point P[x, y, z], in a camera view with pose transformation matrices R and t. Assume

P is projected by ray r[u, v, σ, τ ] onto the image plane. The point projection in XSlit can be

formulated as


x

y

z

+ λ ·R−1


σ

τ

1

 = R−1 · (


u

v

0

− t) (6.12)

where λ is the ray propagation factor.

Our goal is to solve the 3D coordinate (x, y, z) of the scene point P. We treat λ as

independent variable and Eqn. 6.12 becomes a linear constraint. Given N views, we can

formulate three equations per viewpoint using Eqn. 6.12 and we have 3N equations in total.

We then stack these equations into a linear system and solve the N+3 unknowns (x, y, z and

N λ values) by applying SVD.

Bundle Adjustment by Depth-Dependent Slope. We perform bundle adjustment

on XSlit images to further refine the camera poses and the 3D scene geometry. Classical

approach minimizes the re-projection errors of detected feature points. Similarly, we also

adopt the re-projection error for optimization. The re-projection error metric can be written

as:

Ed =
m∑
i

n∑
j

wji

∥∥∥Φ
[
K, T

(
Pj, 〈Ri, ti〉

)]
− xij

∥∥∥2 (6.13)

where wji is a binary variable indicating the visibility of the jth 3D point in camera i (1

means visible). K is the XSlit intrinsic matrix; T transforms the 3D point P into the camera

coordinate using R, t; and Φ is the XSlit projection function defined as:
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Φ(K,P) = E ·

E + Az Bz

Cz E + Dz

−1 x
y

 (6.14)

Since the re-projection error is insensitive to deviations along the projection ray, we

adopt the depth-dependent slope (DDS) [81] as an additional constraint. DDS indicates that

the slope of a frontal parallel line segment in XSlit image changes according to its depth to

the camera.

Let’s consider the ith view Xi as reference and the jth view Xj as the target with

rotation Rij and translation tij . Point Pk projects to xik in Xi, and xjk in Xj . Alternatively,

we assume the camera is static and Pk moves reversely. Consider a frontal parallel line

segment ` passing through Pk and intersecting with the two projection rays. We denote the

slope of line segment connecting xik and xjk as sα. The observed aspect ratio of ` in image

is:

rα =
sin θ2 − sα sin θ1
sα cos θ1 − cos θ2

(6.15)

After transforming Pk, we obtain a new point P′k = RijPk + tij , where Rij and tij

is the transformation between Xi and Xj . Since ` is front parallel, we can easily compute

its slope sβ by trace P′k along its projection ray to Pk’s depth zk. Similarly, we can also

compute the aspect ratio rβ . The error metric based on DDS can be written as:

Er =
m∑
i

n∑
j

vji ‖z1(zk − z2)rα − z2(zk − z1)rβ‖2 (6.16)

We combine both the re-projection error and the DDS error as our final objective function

for optimizing the viewpoint transformation matrices R , t and the 3D point coordinate P.

P,R, t← arg min
P,R,t

(Ed + Er) (6.17)

In Fig. 6.5, I show illustrations of our two error metrics and the bundle adjustment

results. We can see that the DDS error metric effectively improves the reconstruction accu-

racy.
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6.6 Experiments

In this section, I perform experiments to evaluate the proposed algorithms.

6.6.1 Feature Matching

I first evaluate the non-uniform Gaussian based feature matching algorithm. I show

that the proposed feature detector is able to handle drastic viewpoint changes as well as large

geometric distortions exhibited in XSlit images. I test our algorithm on the Graffiti dataset

[1] which contains images captured with viewing angles ranging from 20◦ to 60◦. Fig. 6.6(a)

shows a subset of matched feature points produced by our proposed algorithm. The viewing

angle difference between the two images is 60◦. The overlayed parallelograms illustrate the

affine transformations that are used to generate the feature points. This example shows that

our algorithm is able to handle images large viewpoint change.

To quantitatively evaluation the performance, I employ the recall-precision curve

where recall refers to the ratio between the number of valid features and all matched fea-

tures. I compare the proposed method with state-of-the-art feature detectors, such as SIFT,

Harris, Hessian, MSER and ASIFT. Valid feature points are defined as a pair of correspond-

ing points within 1.5 pixel difference after being warped by the estimated homography. In

Fig. 6.6(b), the left image shows the recall curve w.r.t the viewing angle change and the right

image shows the number of valid feature and all matched features. While the recall curves

of all other feature detectors descend rapidly when the viewing angle variation increases,

the ratio remains high for our method. This is because the non-uniform Gaussian kernels

adopted in our approach are effective in handle large distortions. Although in some cases the

ASIFT detects more feature points in total, its mismatch rate is very high.

6.6.2 Camera Pose Estimation

Next I evaluate our pose estimation algorithm through simulation. In our experiment,

I set up the XSlit camera as z1 = 1, z2 = 2 and θ1 = 0, θ2 = 90◦. I render images at resolu-

tion 800× 600. The camera is moved by a rotation matrix with Euler angles [30◦, 30◦,−30◦]

and translation vector [2, 3, 0].
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I compare our method with [40]. I randomly generate 100 3D points and project

those points into the XSlit camera. I then add Gaussian noise with std = 1 to the projected

pixels. I feed these noisy data to our algorithm and Li’s method [40]. I use the angular

difference between two rotation matrices as the rotation error. Given two rotation matrices

R1 and R2, their angular difference is computed as cos−1[(tr(R1 ∗ R2
T) − 1)/2]. The

translation error is directly measured by the Euclidean distance between the two translation

vectors. We simulate 1000 random tests. Fig. 6.7 shows the histogram of the rotation errors

and translation errors for our algorithm and [40]. Li et al.’s method [40] does not work well

on XSlit because it assumes the camera is locally central or axial.

I further evaluate the robustness of the proposed algorithm w.r.t the noise ratio and

the point-to-camera distance. The point-to-camera distance is measured by the XSlit camera

depth sensitivity rz = z2(z2−z1)/z1, where z1 and z2 are the two slits’ distances. The results

are shown in Fig. 6.8 .

6.6.3 Point Cloud Reconstruction

Finally, I evaluate our XSlit SfM framework on both synthetic and real data.

Synthetic Data. I use ray tracing to render synthetic XSlit images. Specifically, I

implement an XSlit camera model in the open source ray tracer POV-Ray [3].

I first test on a simple ladybug scene which contains very few feature points. I use a

XSlit camera with z1 = 1 and z2 = 3 to capture the ladybug image. The size of the ladybug

is 9 × 5 × 5. I place the XSlit camera about 15 unit away from the ladybug and rotate

around it. I render an image in every 10◦ and use 6 images in total. The image resolution

is 800 × 600. I follow the incremental SfM pipeline. I first perform feature matching and

pose estimation for camera 1 and 2 and triangulate rays from the matched feature points.

I then perform the same operations for camera 2 and 3, and so on until all cameras are

considered. After pose estimation and triangulation for all five camera pairs, I merge and

transform all recovered point clouds into the camera 1’s coordinate. Finally, I perform the

proposed bundle adjustment algorithm to refine both the camera poses and point clouds. The

results (both point cloud and camera poses) are shown in Fig. 6.9 (top row). I superimpose
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Figure 6.10: Left: Our experimental setup; Right: Our real XSlit camera construction.

the recovered point cloud onto the ground truth mesh. Although the point cloud is sparse

due to the few number of available feature points, the recovered points fit well on the ground

truth and the 3D points are recovered with absolute scales.

I then test on a more complex water pot scene. The size of the water pot is 20×10×20.

The pot has high resolution texture with fine details that can provide more feature points. I

use an XSlit camera with z1 = 3 and z2 = 9. I place the XSlit camera about 35 unit away

from the pot and then rotate around the object. I render 8 images in total with 15◦ step. The

image resolution is 800× 600. Our reconstruction process is the same as the ladybug scene.

Our results are shown in Fig. 6.9 (bottom row). I recovered a denser point cloud this time

and our reconstruction also fits the ground truth well.

Real Data. To capture real data, I construct an XSlit lens using two cylindrical

lenses [82]. In particular, the two cylindrical lenses are with focal lengths 25mm (closer to

the sensor) and 75mm (farther away from the sensor) respectively. The principal axis of the

two lenses are orthogonal and I use two slit apertures with 1mm width to form sharp images.

The distance between the two lenses is adjustable between 5cm and 12cm. Our camera setup

is shown in Fig. 6.10.

I first test our method on a simple checker scene (as shown in Fig. 6.10). I use a

cube as our reconstruction target and put checkerboards on the cube faces to provide feature

points. In this experiment, I manually extract the checker corners and use them to estimate

camera poses. I use triangulation to recover the 3D points. The estimated camera poses and
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Figure 6.11: Results of the checker cube scene. Left: Our recovered camera poses and 3D
points; Right: Histogram of distance errors.

3D points are shown in Fig 6.11 left. I use the distance error between neighboring corners to

evaluate our reconstruction since the checker corners are all equally spaced by 5mm. Fig 6.11

right shows the histogram of the distance errors.

I then construct another scene by placing two toys on a printed coordinate grid, as

shown in Fig. 6.12(a). I perform the proposed feature matching algorithm on captured XSlit

images. Fig. 6.12(b) shows the feature matching result for one XSlit image pair. I then

estimate the camera poses and triangulate the 3D point cloud. I also take 12 images using a

perspective camera and compute a surface mesh using a SfM software AgiSoft [2]. I treat

the mesh as ground truth. I resolve the scale ambiguity in the perspective case using the

coordinate grid. I align the two reconstructions and superimpose our point cloud on the

ground truth mesh. As shown in Fig. 6.12(c), the two reconstructions are consistent and our

XSlit SfM estimates the 3D point cloud with absolute scale.

6.7 Discussions

In conclusion, I have presented a novel SfM framework using an XSlit camera. XSlit

SfM is free from the scale ambiguity due to depth-dependent distortions. I first derived the
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Figure 6.12: Results of the toy scene. (a) Scene setup; (b) Matched feature points; (c)
Recovered point cloud superimposed on the ground truth mesh.
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fundamental matrix to correlate XSlit images captured at different viewpoints. I reduced

the degree of freedom in the fundamental matrix and use it to estimate the viewpoint trans-

formation. Furthermore, to perform accurate feature matching in XSlit images where often

exhibits large distortions, I developed a non-uniform Gaussian based feature algorithm to

handle distortions. Finally, I extend the bundle adjustment on XSlit images to refine the esti-

mated camera pose and the 3D scene structure. Through both synthetic and real experiments,

I show that the proposed XSlit SfM framework is able to estimate the camera pose accurately

and recover the 3D scene geometry with an absolute scale.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

This thesis has focused on the exploration of advantages of general non-centric cam-

eras. The specific context I interest in is scene understanding, including single camera and

multi-cameras based solutions. This chapter first summarize the approaches I use and the

contributions made in the thesis. Then I discuss the limitations and open questions. Finally,

I explore the future work implied by this work.

7.1 Summary

Here I summarize the approaches and contributions of the thesis. In summary, the

thesis have explored the advantages of general non-centric cameras. Chapter 4 presented

the CCP feature that exists only in non-centric cameras. The necessary and sufficient con-

ditions for CCP to exist in general non-centric cameras are identified. I propose several key

applications, including plane localization, for demonstration. Chapter 5 explored the DDAR

property in a special type of non-centric cameras, the XSlit camera. With repeat pattern or

vertical line assumptions about the scene, I propose a depth inference framework from a

single XSlit image for Manhattan scenes. Chapter 6 rebuilt the SfM framework for XSlit

camera, and show how non-centric cameras can resolve the scale ambiguity that enwinds the

perspective cameras.

7.1.1 CCP

In chapter 4, I have explored a new type of image features called the coplanar com-

mon point or CCP in general non-centric cameras. A CCP corresponds to the intersection

of the curved projections of all lines lying on a common 3D plane. I have shown that CCPs

generally exist in a broad range of non-centric cameras such as the GLCs and catadioptric
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cameras, and the perspective camera is the single exception that do not have CCP. I have

further derived the necessary and sufficient conditions for a plane to have CCP in an arbi-

trary non-centric camera such as non-centric catadioptric mirrors. Finding the CCP of a 3D

plane is equivalent to solving an array of ray constraint equations in ray space. For certain

types of non-centric cameras, e.g catadioptric imaging system, the ray space constraints can

be highly complex. The caustics provides simple and effective solution for determining C-

CP existence in these camera models. To demonstrate that CCP can potentially benefit the

3D reconstruction tasks, I then show some key applications of CCP. I show that with solely

CCPs, we still can localize the planes in rotationally symmetric mirrors. Experiments on

both synthetic and real data show that the CCP based solution provides effective and reliable

solution for scene understanding. Experiments have validated our theories and the detected

CCPs can facilitate 3D plane localization tasks, which is crucial to 3D scene reconstruction.

7.1.2 DDAR

I have comprehensively studied the aspect ratio (AR) distortion in XSlit cameras and

exploited its unique depth-dependent property for 3D inference in chapter 5. The studies

have shown that unlike perspective camera that preserves AR under depth variations, AR

changes monotonically with respect to depth in an XSlit camera, i.e., 3D objects of an i-

dentical size will exhibit significantly different AR under different depths. This has led to

new depth-from-AR schemes using a single XSlit image even if the original AR of an object

is unknown. I have further shown that similar to AR variations, the slope of projected 3D

lines will also vary with respect to depth, and I have developed theories to characterize such

variations based on AR analysis. Finally, AR and line slope analysis can be integrated for 3D

reconstruction and I have experimented on real XSlit images captured by an XSlit camera,

synthesized from panorama stitching, and captured using a catadioptric mirror to validate

our framework.
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7.1.3 XSlit Structure from Motion

In chapter 6, I have presented a novel XSlit SfM framework that directly solve the

scale ambiguity. I first demonstrate that there exists a fundamental matrix to correlate XSlit

images captured at different viewpoints. I reduce the degree of freedom in the fundamental

matrix and use it to estimate the viewpoint transformation. Furthermore, to perform accurate

feature matching in XSlit images where often exhibits large distortions, I develop a non-

uniform Gaussian based feature algorithm to handle distortions. Finally, I extend the bundle

adjustment on XSlit images to refine the estimated camera pose and the 3D scene structure.

Through both synthetic and real experiments, I show that the proposed XSlit SfM framework

is able to estimate the camera pose accurately and at the same time, reconstruct 3D scene

geometry with absolute scale.

7.2 Limitations

In the thesis, I show that non-centric cameras exhibit several nice properties that can

benefit the scene understanding tasks. However, there are still many limitations for proposed

solutions.

CCPs generally exist in non-centric cameras. However, the existence is camera and

plane dependent. For example, for the non-centric catadioptric cameras the CCPs existence

is limited to planes that intersect with the rotation axis and a corresponding reflection circle

on the mirror surface. We can see that the experiments used a slant plane to show the CCP

existence in chapter 4. The non-generality of CCP in catadioptric cameras limits its appli-

cable scope since catadioptric cameras are commonly used in robotic vision. Furthermore,

identifying CCPs from images is difficult since the images of lines are generally curved in

non-centric cameras. The conic curve fitting is less robust and reliable then line fitting. And

also there are a lot of false intersections. Separating CCPs from false intersections is another

problem that need to be addressed. Though being lack of generality in catadioptric system,

the CCPs generally exist in Pushbroom and XSlit cameras. Exploration of CCPs in XSlit

and Pushbroom for planar structure recovery is promising.
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Though DDAR provides useful information about the scene geometry in XSlit im-

ages, the depth inference problem is still undetermined, as we still require the original ratio

of the object to compute the depth. The solution illustrated in chapter 6 is assuming we posi-

tion the XSlit camera front parallel and up right. The projections of non-front parallel lines in

XSlit image are hyperbolas and hence it’s hard to perform depth analysis. For more general

usage of DDAR, we need to develop a depth inference scheme without explicit assumption

about the scene geometry.

In XSlit SfM, the depth sensitivity reduces as the object moves away from the XSlit

camera. Hence the accuracy of the XSlit camera motion estimation reduces accordingly.

The recoverable range of the XSlit camera is determined by the two slits distance and their

distances to the sensor. Generally the working distance is relatively smaller compared to

that of perspective cameras. To achieve larger depth recoverable range, we need larger XSlit

cameras.

7.3 Future Work

Though have answered many questions, the work in this thesis also have opened

many doors for future exploration about non-centric cameras in scene understanding.

First, the accuracy of CCP detection largely depends on the curve fitting. The curves

in catadioptric mirrors are highly non-linear, the current solution is to search for the optimal

solution from a set of basis functions using a look-up table. In particular, I do not consider

the mirror geometry and as a result it can be sensitive to discretization errors. In the future, I

plan to develop tailored curve fitting algorithm by imposing mirror geometry as constraints.

In addition, although our caustic-based analysis is applicable to arbitrary catadioptric mir-

rors, we have by far only studied in depth the cylindrical and rotationally symmetric mirrors.

In the future, I will explore efficient testing schemes for general catadioptric mirrors. Fi-

nally, I intend to integrate the VP and CCP analysis under a unified geometric framework.

Conceptually VPs present directions and CCPs represent positions. A unified representation

under projective geometry [62] may sufficiently address both problems via a more elegant

model.
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The cylindrical lens based XSlit camera has a small baseline(i.e., the distance be-

tween the two slits) and therefore can only acquire AR changes within a short range. Con-

structing a large baseline XSlit camera will be costly as it is difficult to fabricate large form

cylindrical lens. A more feasible solution would be adopt a cylindrical catadioptric mirror

where the reflection image can be approximated as an XSlit image. In the future, I will ex-

plore effective schemes for correcting both geometric distortion and blurs due to imperfect

mirror geometry. I will also investigate integrating our AR based solution into prior based

frameworks to enhance reconstruction quality. For example, a hybrid XSlit-perspective cam-

era pair can be constructed. Finally, since AR distortions commonly exhibit in synthesized

panoramas as shown in the thesis, I plan to study effective image-based distortion correction

techniques to produce perspectively sound panoramas analogous to [6].

The reconstructed point cloud by the proposed XSlit SfM framework is rather sparse.

This is because lack of texture on the object surface for feature matching. In the future, I

plan to extend the approach to dense point cloud reconstruction by triangulating textureless

regions using camera transformation matrices. On the other hand, the proposed approach

only works well within a limited depth range. This is due to the limitation in slit size. With

future advances on camera construction, I expect to apply the proposed approach to large

scale scenes. In the future, I also plan to extend the SfM framework to a broad range of

multi-perspective cameras.
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